Wearable CO₂ sensor

Tanja Radu¹, Cormac Fay¹, King Tong Lau¹, Rhys Waite², and Dermot Diamond¹ ¹CLARITY: The Centre for Sensor Web Technologies, National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Ireland ²Zarlink Semiconductor Ltd, UK

High concentrations of CO_2 may develop particularly in the closed spaces during fires and can endanger the health of emergency personnel by causing serious physiological effects. The proposed prototype provides real-time continuous monitoring of CO_2 in a wearable configuration sensing platform. A commercially available electrochemical CO_2 sensor was selected due to its selectivity, sensitivity and low power demand. This was integrated onto an electronics platform that performed signal capture, processing and wireless communication, all within a compact, low-power, rugged enclosure. Wireless transmission (up to 1 km) of the sensor's signal was achieved using a 2.4 GHz Zigbee module with an integrated ceramic antenna. The signal is currently received by a base station which is connected to a PC and monitored using HyperTerminal. The sensors are powered by a nickel metal hydride rechargeable battery which supplies power to the module for approximately 5 hours. The CO_2 sensor is directly attached to the wireless module housed within the specially designed protective casing, and finally placed inside of the pocket on the boot of fire-fighter. Sensors are calibrated for CO_2 concentrations ranging from atmospheric to 42000 ppm.

The authors gratefully acknowledge the financial support of the European Union (Proetex FP6-2004-IST-4), the Centre for Bioanalytical Sciences (IDA-116294), and the CLARITY CSET (SFI-07/CE/I1147). Also, we thank to Diadora-Invicta Group (Italy) for providing the testing boot.