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1.1 Glycobiology 

Glycobiology is defined as the study of biological carbohydrates, and is, after 

decades of neglect finally emerging as one of the most rapidly growing fields within 

the natural sciences. The current understanding of this area is considered to be 

significantly behind the understanding of the other biological information carrying 

compounds, DNA and proteins, as it is only relatively recently that methodologies 

have emerged for the large-scale analysis of sugars. The reasons for this are many, 

and outlined in the following section, but the reasons for the sudden upsurge in the 

importance and interest in glycobiology are two-fold. Firstly, it has emerged from 

many studies that carbohydrates (often referred to as glycans) play an important role 

in a range of recognition events involving cells in a wide variety of tissues and 

organisms.  Secondly, from an industrial perspective, it has emerged that 

carbohydrates are crucially important in determining the properties of a many 

biological theraputics. This study focuses on lectins, a class of glycan binding 

proteins, and their application on a variety of platforms for use as bio-recognition 

molecules for glycosylated therapeutics. 

 

 

1.2 Glycosylation 

Glycosylation is a post-translational process that happens to around half of all 

proteins in eukaryotes (Apweiler et al., 1999). Depending on cell type and organism, 

the factors that control the events are very different, but it can generally be stated 

that the most important step is the formation of the sugar amino-acid bond, as it is 

this step that usually determines the type of carbohydrate unit to be later formed by 

the cellular machinery (Spiro, 2002).  

It was originally thought that glycosylation was a modification that only occurred in 

eukaryotic organisms, but in the mid-1970s S-layer glycoproteins were found on the 
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archaebacterium Halobacterium salinarium. Glycoproteins have since been 

identified on many other archaebacteria as well as some eubacteria (Messner 1997). 

The recent completion of the human genome project has allowed for the 

identification of the majority of the genes involved in glycosylation, which account 

for around 2% of the total genes in the human genetic code (Campell and Yarema, 

2005). Why an organism would dedicate such a high percentage of its genome to 

one process becomes apparent when the volume of information that can be carried 

through carbohydrates is investigated. Unlike nucleic acids and amino acids, glycan 

assembly is not a template driven process, with no proof-reading enzymes, and 

carbohydrates have the potential to be assembled in branched structures as well as 

linearly. As a result there are a colossal 38,016 permutations of three 

monosaccharides that can theoretically produce a tri-saccharide, compared to 64 

possible permutations of four nucleotides in a three-base codon (Laine, 1997).  

Again, the retention of such of a high percentage of the genome for this process 

becomes understandable when the benefits of glycans to a proteome are considered. 

The yeast genome was found to contain ~6,200 genes. When four glycosylation 

states (no glycans, low, medium and high glycosylation) of the 6,200 encoded 

proteins are deemed possible, the amount of possible proteins becomes 1.5x10
15

 

(Gabius, 2001). Essentially glycans can be considered an organisms mechanism for 

vastly increasing its proteome, as proteins with the same amino acid sequence but 

varying glycan structures can have vastly different roles. 

There are four main types of glycosylation, N-linked, O-linked, 

glycosylphosphatidylinositol (GPI)-anchored proteins and glycosaminoglycans. The 

first three are now briefly discussed. 

It is important at this juncture to highlight the difference between glycosylation and 

glycation. Glycosylation is a controlled enzyme driven process, whereas glycation 

can be defined as the attachment of a sugar molecule to a protein or lipid without the 

element of enzymatic control, often associated with diabetes (Singh et al., 2001). 
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1.2.1 N-linked glycosylation 

N-linked glycosylation gets its name from the addition of the glycan structure to the 

nitrogen group of the asparagine within the amino acid triplet which is to be 

glycosylated.  It is initiated by the transfer of a pre-fabricated 14-unit 

oligosaccharide common to most eukaryotes (Fig 1.1) consisting of N-acetyl-

glucosamine, mannose and glucose residues from a dolichol membrane anchor (Fig 

1.2) to the Asn located within Asn-X-Ser/Thr triplet where X is any amino acid 

except proline (Kornfeld and Kornfeld, 1985). This transfer is carried out within the 

rough endoplasmic reticulum (Fig 1.3) by the enzyme oligosaccharyl transferase 

(OT). The attached oligosaccharide then undergoes enzymatic trimming within the 

golgi apparatus by various glycosidases. Other monosaccharide units are then added 

by further glycosyltransferases often in a tissue or state specific manner (Review by 

Taylor, 1998). 

 Although glycosylation is often described as a post-translational event, N-linked 

glycosylation is a co-translational event. As a result, the process is important for the 

correct folding of the protein, though not crucial, as many studies incorporating N-

glycosylation inhibitors have shown (Erickson et al., 2007). The calnexin cycle is 

the quality control system within the ER that sends misfolded glycoproteins to the 

cytosol for degradation or chaperones correctly folded glycoproteins to the golgi for 

further processing. The process is reliant on mannose/glucose recognizing proteins 

that share many features with lectins. 

Glycosyltransferases and glycosidases are families of enzymes that cleave or 

transport sugars which are characterized according to the saccharide unit to which 

they are specific. The newly synthesized glycoproteins then exit the Golgi and are 

transported to their final destination. The primary β-glycosylamine bond (GlcNAc) 

was first identified in ovalbumin (Johansen et al., 1961), and was thereafter found in 

a vast array of proteins such as enzymes, cell surface receptors, plasma proteins, 

thyroglobulins, hormones and immunoglobulins. It has also been observed on 

archaea and, in rare cases, bacteria. 
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Fig 1.1: The precursor oligosaccharide unit for N-glycosylation. Schematic of the 

of the lipid-linked core oligosaccharide common to all N-linked glycans in all 

eukaryotes (Taylor, 1998) 
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Fig 1.2: Structure of the lipid molecule Dolichol. The precursor oligosaccharide is 

linked by a pyrophosphoryl group to dolichol. It is a highly hydrophobic molecule, 

and long enough (75-95 carbon atoms) to span the ER membrane 3-4 times. 
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Fig 1.3: Biosynthesis of precursor oligosaccharide unit for N-linked glycosylation. The 

process is initiated at the cytosolic face of the ER with the sequential addition of GlcNAc 

and mannose residues to a dolichol phosphate molecule. Membrane proteins named 

„flippases‟ then facilitate the transfer of the oligosaccharide as well as subsequently required 

free mannose and glucose residues across the ER membrane. The oligosaccharide is then 

transferred co-translationally to an Asn-residue on the polypeptide through the activity of 

OT (Image created  using ChemBioDraw 11.0).  

Endoplasmic Reticulum 
Cytosol 
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1.2.2 O-linked glycosylation 

O-linked glycosylation produces the second most common glycoform. The 

carbohydrate residue (GalNAc/Mannose/Galactose/Fucose/Xylose) in O-glycans is 

covalently attached to the peptide backbone via the hydroxyl group of serine, 

threonine, tyrosine, hydroxyproline, hydroxylysine or another hydroxylated amino 

acid. In contrast to N-glycans, these glycans show a higher degree of structural 

diversity and do not share a common core structure (Holemann and Seeberger, 

2004). As a result, their analysis has proven more difficult than the N-linked glycans, 

with less known about the organisation and structures involved.   

The process has been widely characterized for secreted glycoproteins in several 

yeast strains, where it was shown, like N-linked glycosylation, to be initiated in the 

ER by the transfer of a precursor sugar, in this case mannose, to the β-hydroxyl 

group of serine or threonine from Dol-P residues by members of the O-mannosyl-

transferase family. Additional mannose/galactose residues are then added to the 

primary mannose within the golgi apparatus (Goto, 2007).  

In eukaryotes, the most abundant and most widely characterized O-glycosylated 

proteins are the mucins (high molecular weight glycoproteins produced by epithelial 

cells which are important for the function of mucus membranes) where the variable 

glycans often total up to 80% of the proteins dry weight. In this case it is GalNAc 

that acts as the initial sugar and is attached to Ser/Thr residues by a family of 

ppGalNAc transferases, and then gets modified by further glycosyl-transferases 

within the golgi (Hang and Bertozzi, 2005) 
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Fig 1.4: Glycosylation of the mucin proteins in eukaryotic organisms. The 

diagram shows the process through which the complex carbohydrate chains are 

created within the golgi apparatus using the nomenclature that is explained in 

Appendix A.  

 

 

1.2.3 Other glycoforms 

Glycosylphosphatidylinositol (GPI)-anchored proteins were first identified in 1988, 

and have the basic core structure shown in Fig 1.5. It is seen most commonly when 

eukaryotic cell surface proteins are attached to a phospholipid bilayer through a GPI-

anchor. The protein to be anchored is translated with cleavable N and C-terminal 

signal sequences. Once the N-terminal signal sequence directs the protein to the ER, 

Complex Mucin-Type  

O-linked Glycans 
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the hydrophobic C-terminus is replaced by a pre-formed GPI-anchor (Bӧhme and 

Cross, 2002). Variation in this form of glycosylation comes from various 

substitutions within the GPI-pentasaccharide backbone shown below.  

 

 

 

 

 

 

Fig 1.5: Basic core structure of 

GPI-anchors. (Holemann and 

Seeberger, 2004). 

 

 

 

 

 

 

 

1.2.4 Bacterial glycosylation 

Until the 1970s the idea of protein glycosylation in prokaryotes was widely thought 

of as impossible, but with more evidence to the contrary being unearthed every year, 

it is now an accepted fact that bacteria express glycosylated proteins. The first such 

evidence was the discovery of S-layer glycoproteins in the Archaea, which dates 

back to the 70s, where they were found on halobacteria and thermophilic clostridia 

(Mescher and Strominger, 1976; Sleytr and Thorne, 1976). In the Archae and the 

Gram-positive bacteria, S-layer glycoproteins account for up to 20% of the total 

protein output of a cell, and in the case of Halobacterium halobium, accounted for 

50% of the cell envelope proteins (Mescher et al., 1974). The diversity that has been 

discovered to date in these glycan structures has far exceeded the range displayed by 

eukaryotes, with many reviews outlining their functions, structures, synthesis and 

molecular biology (Reviewed in Schaffer and Messner, 2004). 
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Non-S-layer glycoproteins have been increasingly the focus of much research, as 

they have been found to be important in the pathogenesis of many Gram negative 

bacteria. The flagella of many strains have been found to be extensively 

glycosylated such as Campylobacter coli and Campylobacter jejuni (Thibault et al., 

2001; Szymanski et al., 2002), Helicobacter spp. (Josenhans et al., 1999), and 

Treponema pallidum (Wyss, 1998). Pili and adhesins have also been found to 

contain glycan residues, as seen in E. coli, where the AIDA and TibA adhesion 

molecule is modified with heptose (Moorman et al., 2002). One adhesin (HMW1) 

that mediates the attachment of Haemophilus influenzae to human endothelial cells 

has also been found to be modified with galactose, glucose and mannose residues 

(Grass et al., 2003). The type IV pili of Neisseria meningitidis have been shown by 

carbohydrate labelling to contain both N-linked and O-linked glycans, both of which 

incorporate galactose (Virji, 1997). The organism P. aeruginosa has had the glycan 

additions to its flagellar subunits extensively characterised, as well as the pathways 

that control the process. A ~16kb cluster has been identified as the island that is 

required for the glycosylation process that is specific for a-type flagellins (Arora et 

al., 2001). It is thought that these surface exposed proteins in pathogenic bacteria 

display these glycans to mimic their hosts glycan patterns and avoid immune cells. 

Some of these proteins are glycosyated using enzymes and pathways normally used 

in the formation of LOS and LPS structures ( e.g. the E. coli AIDA and TibA 

proteins) whilst other have evolved their own glycosylation machinery that are not 

involved in LPS/LOS formation (e.g. the „glycosylation gene islands‟ found close to 

the flagella genes within Campylobacter).  

This list of various glycosylated proteins shows that to date, many predominantly 

surface exposed proteins that possess glycan structures have been identified, which 

has lead to some groups proposing roles in immune response evasion and resistance 

to proteolytic evasion (Szymanski and Wren, 2005). 

Complex glycoprotein based therapeutics are currently expressed in animal cells 

such as chinese hamster ovary cells. Expression systems based in bacterial cells 

would be more desirable for regulatory reasons, and as a result glyco-engineering 

within prokaryotic cells is an emerging industry.  
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1.3 The importance of biological carbohydrates 

So far, the complexity of biological carbohydrates and some mechanisms of protein 

glycosylation have been briefly discussed, with little emphasis on the biological 

importance or relevance of these molecules. Like many systems, the significance of 

a single wheel can only be gauged upon its malfunction, so a number of disease 

states that have been attributed to problems in the construction of glycan structures 

are listed below.  

Alzheimers disease (Huang et al., 2004), cardiac conditions, respiratory ailments, 

diabetes, stress, nephropathy (Smith et al., 2006), some auto-immune diseases 

(Hirschberg, 2001), cystic fibrosis (Xia et al., 2005), arthritis (Tomana et al., 1994) 

and  breast cancer (Dwek et al., 2001) are all well documented to display alterations 

in normal glycan patterns. 

Recently the primary immunodeficiency syndrome (LAD II) was found to occur as a 

result of two amino acid mutations in the GDP-fucose transporter. The alteration to 

this fucosyltransferase resulted in the complete lack of fucosylation and also all 

sialylated and sulfated Lewis derivatives (Hirschberg, 2001). An altered 

glycosylation pattern is known to occur in cystic fibrosis (CF). The CF 

transmembrane conductance regulator (CFTR) gene, mutated in CF, has been 

implicated in the decreased sialylation of glycoconjugates (Dosanjh et al., 1994).  

A family of inherited diseases termed congential disorders of glycosylation (CDGs) 

are characterized by varying symptoms from stroke and psychomotor retardation to 

the fragile skin seen in progeroid syndrome. These conditions are caused by 

inherited defects in genes involved in the biosynthesis of the core pentasaccharide 

(Fig 1.1) and its transfer to the Asn residue of the glycosylated protein. Due to the 

huge variety in functionality of N-glycans, the symptoms presented by these CDG 

patients are highly complex, and more CDGs are being identified every year (Aebi 

and Hennet, 2001).  
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1.3.1 Aberrant gycosylation in cancer cells. 

It has been well established over the last 40 years that the glycosylation pattern in 

cancerous cells is drastically altered from what is present on a healthy cell, with 

many of the cancer-specific glycan patterns accounting for the tumour specific 

antigens used in diagnostics. What is not well understood is the cause of this, and at 

present the scientific community is not even able to conclude if the aberrant glycans 

are the cause of, or the result of cancer (Reviewed by Hakamori, 2002).  

The connection between glycan-lectin mediated cell signalling and cancer 

development is a highly complex and involved subject that cannot be easily 

summarised. There are several reviews that have tackled separate areas within the 

subject, namely, glycan tumour markers (Fuster and Esko, 2005), O-glycans in 

specific tissue cancers (Brockhausen, 2006), galectins and cancer (van den Brule et 

al, 2004), GPI-glycans and cancer (Filmus, 2001), glycosylation pathways in cancer 

(Lemaire and Juillerat-Jeanneret, 2006).  

For the purposes of illustrating the link between the glycans and cancer sialylation is 

given as an example. Sialic acid is an important glycan that affects properties such 

as solubility and efficacy (Section 1.4). Sialic acid presentation on surface 

glycoproteins is largely controlled by the amount of sialyl-transferases (ST) present 

in the golgi. Over expression of sialylated O-glycans T-antigen, Le
x
 and Le

a
 antigens 

has been widely reported in cancer cells. The presence of these sialic acid residues 

promotes adherence to many salectins present on the surfaces of epithelial cells. In 

this way, cancer cells metastise through endothelial binding. In turn, it was found the 

regulation of some ST genes is controlled by pro and anti-apoptotic genes and ST 

expression was found to be dramatically altered in cancer cells. In addition, the 

picture is further complicated by the expression of different versions of these genes 

due to splice variants which contributes to the protein specificity and activity, and 

some ST genes are known to be transcribed using a combination of numerous 

differently controlled promoters (Reviewed by Wang, 2005) 
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1.4 Glycobiology and the biopharmaceutical industry  

Glycoproteins consititute approximately $60 billion worth of output from the 

pharmaceutical industry. The glycans presented on glycoprotein products can have 

drastic implications in terms of efficacy, activity and immunogenicity. 

Consequently, carbohydrate heterogeneity has serious implications for regulatory 

compliance, and often is the cause of additional expensive downstream purification 

steps. In recent times, the FDA has indicated that sugar moieties on glycoproteins 

will play a larger role in the future with regards to license approval, which was most 

recently observed in a request to Genzyme for more information regarding the 

monitoring and analysis of a glycoprotein product (Myozyme) produced in large-

scale cultures (Article in Nat. Biotechnol (2008) 26(6): 592).  

This is important to consider as current carbohydrate monitoring techniques are off-

line and require a significant amount of sample preparation. In the time it takes to 

elucidate the glycosylation profile of a product within a fermentation, the process 

has progressed by a significant length of time. Fermentation time (Hooker et al., 

1995) as well as other variable factors such as cell density, nitrogen concentration, 

pH (Liu et al., 2005), point of induction, and the concentration of heavy metal media 

components (Kopp et al., 1996; Gu et al., 1997) have all been shown to significantly 

contribute to glycosylation within a fermentation. Therefore, any improvements in 

glycan monitoring for the bio-pharmaceutical industry would be very welcome.   

As well as being legally obliged to analyse these carbohydrate structures, there are 

some examples of glycosylation being used to add commercial value to product. The 

importance of glycosylation to a protein‟s half-life was displayed when extra N-

glycosylation sites were engineered into recombinant human EPO being expressed 

in chinese hamster ovary cells. The end result was the increase in the number of 

sialic acid groups per molecule from 6-10 to 14-18, which nearly tripled the half-life 

of the molecule. This new molecule, as well as having the advantage of requiring 

lower dosage and administration, could also be patented as a new molecule, NESP 

(Darbepoitin alpha/ Aranesp). A similar strategy was also used to increase the 
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potency of the molecules Mpl ligand and leptin, which previously lacked any N-

linked glycans (Elliott et al., 2003).   

Any successful alterations to sample stability and production methodology, or 

formulation improvements, have been shown to provide new IP space, and extend 

product lifespan, which currently is a major issue for most pharmaceutical 

companies due to the threat of biosimilar products entering the market as patents 

expire. Successful examples of this include Pegintron® (Schering Plough) & 

Pegasys® (Roche), Pegfilgrastim® (PEG-GMCSF) and the Kirin-Amgen v 

Transkaryotic Therapies infringement decision (EPO manufacture IP- House of 

Lords 2004) over EPO.  

Several initiatives have also exploited technologies that allow for the in-vitro 

glycosylation of drug products, thereby drastically increasing the pharmaco-kinetic 

properties of a homogenous protein, often with associated improved stability and 

solubility. Examples include Glythera Inc which modify the HIV-inhibitor G-CSF, 

and are exploring the modification of Interferon-β1a.  

 

1.5 Traditional glycoprotein analysis techniques 

The highly complex nature of the glycosylation process has already been 

highlighted. Given that the process is also non-template driven, prediction of 

glycosylation is currently impossible. As a result, analysis of glycans has 

concentrated on the post-glycosylation stage, with an emphasis on techniques that 

require removal of carbohydrate moieties from the molecule that has been 

glycosylated. Chromatography, mass spectrometry (MS) and nuclear magnetic 

resonance (NMR) spectrometry techniques have proven most successful. Several 

reviews have compared the usefulness of MALDI-TOF LC/ESI and MS/MS for the 

investigation and quantification of carbohydrate moieties (Dell and Morris, 2001; 

Geyer and Geyer, 2006), with an efficient method recently described by Wada et al., 

(2007). However mass spectrometry has the disadvantage of not only being an 

extremely sophisticated technique requiring highly skilled operators, but also being 

expensive to establish and operate.  
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Another problem facing glycobiologists is that structural information is sparse due 

the lack of crystallographic data. X-ray crystallography relies on the immobilisation 

of proteins in single crystals, which proves complicated for glycoproteins owing to 

the considerable intrinsic mobility of carbohydrates (Wyss et al., 1996).   

Whether studying industrial glycoproteins or more complex structures such as the 

extracellular matrices, the glycocalyx and lipopolysaccharide, composed of 

glycolipids as well as glycosaminoglycans, the field of glycobiology is reaching a 

major bottleneck in terms of data analysis. A widely known image of the glycocalyx 

is shown in Fig 1.4, which gives an idea of the complexities facing glycobiologists. 

Given that this sugar layer is heterogenous, and varies according to cellular health 

and location, even when tools are developed that can identify the individual glycan 

moieties present within a complex mixture, the presentation of these results in a 

comprehensible manner to scientists in other fields will prove a major obstacle. In 

this way, glycobiology shares many common problems with bioinformatics.  

 

 

 
Fig 1.6: Image of the glycan layer surrounding an endothelial cell. The 

glycocalyx is the dense layer of complex glycans that surrounds the epithelial cell, 

which has been found to play important roles in the immune system, cell adhesion, 

fertilization and embryonic development. (Image taken from Mol.Biol. of the Cell, 

4
th

 Edition. Bruce Alberts et al, Garland Science, N.Y. USA.) 
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As with analytical procedure, the analysis of a glycan depends on the ability to have 

a purified homogenous analyte. With this requirement in mind it is appropriate to 

introduce a family of proteins called lectins. These are carbohydrate binding 

molecules with no enzymatic activity and are not immunologically derived. They 

have evolved to recognize specific glycans and are found in a wide variety of 

organisms, both prokaryotic and eukaryotic. Many regard lectins as the most 

obvious tool to decipher the glycode, as nature has created so many of these 

molecules already. To this end, lectins have proven an invaluable tool to chemists 

and biochemists alike, in that they allow for the separation of glycoproteins from a 

complex mixture of proteins. However this isolated glycoprotein may still contain a 

convoluted mixture of highly varied glycoforms which can hinder analysis without 

further separation.  

 

1.6 Lectins 

The first recorded description of a lectin can be dated back to 1888, when Peter 

Hermann Stillmark of the University of Dorpat (now Tartu, Estonia), described in 

his doctoral thesis a protein found in plant cell extract that had the ability to 

agglutinate erythrocytes. These proteins become known as hemagglutinins or 

phytoagglutinins, as they were generally found in plants. Stillmark isolated one such 

hemagglutinin from the seeds of Ricinus communis, and later called it ricin. Ricin, 

along with another agglutinin, abrin, were soon commercially available, and became 

model antigens in very early immunological studies at the turn of the last century.  

It would not be until 1936 before it was demonstrated that hemagglutinins were 

sugar specific, when Concanavalin A (ConA), isolated from jack bean (Canavalia 

ensiformis), was shown to agglutinate cells such as erythrocytes and yeast, and was 

inhibited by the addition of sucrose. The group (Sumner and Howell, 1936) thus 

suggested that the agglutination activity was a result of a reaction between the plant 

protein and sugars that coated the cells surface.  

Over the following decades, hemagglutinins became the area of intense interest in 

relation to the differentiation of different blood types. Many hemagglutinins specific 

for A, O, B, N and other blood types were discovered, and through inhibition 
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studies, their respective specific sugars revealed. Through various such discoveries, 

the term lectin was coined, from the latin legere, which means to pick out or to 

choose (Boyd and Shapleigh, 1954). This term has since become widespread for the 

description of all sugar specific agglutinins of a non-immune origin, irrespective of 

source and blood specificity. 

Typically, the affinity of lectins for individual carbohydrate units is low, generally in 

the micro to milli-molar range. Nature however compensates this low affinity by 

increasing the valency of the carbohydrate-protein interactions (Mulvey et al., 

2001). This „VelcroTM‟ effect is achieved through the assembly of individual lectins, 

each containing a single carbohydrate-binding site. This co-operative binding has the 

end result of significantly increasing the affinity of a lectin for its target. This 

technique is not unique to lectins, and can also be seen in filamentous pili, receptors 

on cell/viral walls and microbial toxins.  

With the field of glycobiology rapidly being recognised as critical in the next phase 

of biological and medical research, it has become clear that the tools for the analysis 

and evaluation of glycans and carbohydrates are not as well defined as those in the 

areas of genomics and proteomics. New methodologies and technologies are being 

designed for application in the expanding glycobiology sector, and amongst these 

lectins play an enormous role. Created by nature to perform a specific function of 

adhering to particular sugar residues, these molecules can be exploited in any 

number of formats to aid biologists to understand the complex field that is 

glycobiology.   

 

  

1.7 Lectin families 

1.7.1 Legume lectins 

There are currently over 100 characterised members of the legume lectin family, 

mostly purified from seeds of the plants from which they are derived. One of the 

first lectins to be isolated from the group was ConA, which is an abundant lectin in 

the jack bean plant. It became the subject of intense study after it was found to 

agglutinate tumour cells more readily than normal cells (Inbar and Sachs 1969). As a 
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model lectin, ConA has a number of traits, which are common characteristic of the 

legume lectins. It has a relatively low molecular mass of 26,500 Da (Min et al., 

1992) and its structure is depicted in Fig 1.7. 

Most legume lectins consist of two or four monomeric units of between 25-30 kDa 

each. Each of these typically contains one sugar binding site, as well as a tightly 

bound Ca
2+

 and a transition metal ion, usually Mg
2+

. Up to 20% amino acid 

similarity exists between all legume lectins, with the region involved in the co-

ordination of metal ions being most highly conserved (Ambrosi et al., 2005). The 

high similarity is not restricted to the primary level, as all legume lectins studied to 

date have been found to contain the same tertiary structure, which is of two anti-

parallel -sheets, a six-stranded flat “back” and a seven-stranded curved “front”, 

connected by a five-stranded -sheet, giving the well known “jellyroll” motif, also 

referred to as the „lectin‟ fold.  

Their varying specificities can allow for the further classification of this family of 

lectins into five main groups; mannose, galactose/N-acetylgalactosamine, N-

acetylglucosamine, fucose and sialic acid (Lis and Sharon, 1998).  

 

 
 

Fig 1.7: Monomeric structure of the lectin ConA. 3D structure of the legume 

lectin ConA, with its associated metal ions. Calcium is denoted as a green sphere, 

and magnesium as a pink sphere. These are located within the sugar binding pocket. 

Image created using Deepview. (PDB Code: 2CTV) 
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1.7.2 Cereal lectins 

These lectins are commonly founds as dimers, with cysteine rich sub-units, which 

differentiates them from the legume lectins, a family that usually lacks the residue. 

Wheat germ agglutinin (WGA) is the model lectin from the family and has been well 

characterized. An image depicting the dimeric structure and the reliance on disulfide 

binds is given in Fig 1.8. 

 

 
Fig 1.8: Crystal structure of the WGA lectin complexed with lactose. The two 

WGA monomers can be seen, one on the left, one on the right, each binding to a 

lactose molecule (green). (PDB Code: 1WGC)  

 

 

 

 

1.7.3 Amaryllidaceae and related family lectins 

The bulbs of the Amaryllis, garlic and orchid families contain mannose binding 

lectins that share a large number of characteristics. The amino acid sequence 

displays between 80-90% homology, and the lectins are around 12 kDa in size. 

Members of this family do not require a metal ion for sugar binding, and also display 

relatively weak binding affinities. A distinguishing feature is the presence of 3 

internal repeats of 36 amino acids (Van Damme et al., 1994). An example of a lectin 

from this family is that from Galanthus nivalis (GNA), the structure of which is 

shown in Fig 1.9.  
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Fig 1.9: Crystal structure of the GNA lectin complexed with mannoseα(1-

3)methyl-mannose. The two separate monomer structures are clearly visible left 

and right, with the associated sugars highlighted in green (PDB Code: 1NIV) 

 

The role of plant lectins in nature is unclear; however it is generally believed that 

they may protect plants against phytopathogenic fungi and insects. This has been 

shown in vitro with the lectins WGA, PNA and SBA inhibiting the growth of plant 

pathogens of the Aspergilli and Penecilli families (Barkai-Golan et al., 1978).  

Several theories also exist which suggest a role in the establishment of symbiotic 

relationships between leguminous plants and nitrogen-fixing bacteria, which have 

been reviewed Kijne et al., (1997).   

 

1.7.4 Galectins (formerly S-type lectins) 

Galectins are a family of 14 soluble -D-galactopyranoside recognizing proteins that 

are found predominantly in mammals, though they have also been reported in other 

vertebrates and invertebrates (Lis and Sharon, 1998). They have been shown to be 

important modulators of inflammatory processes, as well as being implicated in 

having roles in tumour growth and metastasis (Danguy et al., 2002). They are 

structurally very simple molecules, all exhibiting a highly conserved S-carbohydrate 

recognition domain (S-CRD). These small subunits (~14 kDa) either form 

multimeric homodimers, or contain one or two copies of the S-CRD with an 

accessory region (Rabinovich et al., 2002). Despite little sequence similarity to the 

legume lectins, the galectins exhibit the same jelly-roll topology (Fig 1.10). 
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Fig 1.10: Crystal structure of the fungal galectin CGL-2 complexed with 

lactose. The CGL-2 monomers can be seen at the left and right of the image, each 

containing one lactose molecule (green) within the binding pocket. (PDB Code: 

1ULC) 

 

 

1.7.5 Complex carbohydrate binding molecules 

The aforementioned lectin families are often grouped together and termed the 

„Simple Lectins‟. More complex carbohydrate binding molecules are abundant in 

nature, ranging from viral hemagglutinins, which recognize target carbohydrate 

moieties on host cell surfaces, to the immunological lectins covered in Table 1.1. 

There are many immunological lectins as the highly variable lipopolysaccharide 

layer of bacteria proves an invaluable target for host organisms in the detection and 

combatting of invading micro-organisms, and provokes responses such as 

inflammation, antibody formation and abscess formation. 

Animal lectins, particularly those in the immunological system have been the subject 

of more in-depth analysis, and the primary roles of some of the main families are 

summarized in Table 1.1.  

The function of microbial lectins has been easier to elucidate, due to the practical 

advantages of dealing with prokaryotic organisms compared to eukaryotes. Several 

specific lectins have been characterised already, with various proposed functions 

proposed for each (Section 1.7.6). 
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Table 1.1: Summary of animal lectins 

 

 

1.7.6 Bacterial ànd viral lectins 

Carbohydrates have long been known to be specific attachment sites for pathogen 

recognition (Hooper and Gordon, 2001) and in all of the following examples 

prokaryotic carbohydrate binding proteins are produced for that purpose. It is known 

that bacteria possess a significant array of carbohydrate binding proteins, which can 

fall into three main categories, soluble extra-cellular lectins, carbohydrate 

recognising domains within larger toxins, and fimbril/pilli localised lectins.  

 Studies on microbe recognition of target carbohydrate molecules have a long 

history, beginning with work on the influenza virus in the early 1950s. Focused 

research has isolated specific host sialic acid residues that play a crucial role in the 

complexing of the influenza neuraminidase and hemagglutinin to the host glycans 

Lectin Type Role Target Carbohydrate Properties 

Immunological Lectins   

Ficolins Complement Pathway GlcNAc, GalNAc, 

ManNAc 

Four domains: N-terminal, 

collagen, neck and fibrinogen 

domains 

Pentraxins Complement Pathway Galactose, Galactans, 

Fungal Extracts 

Disc-shaped pentamers,      

Ca dependant 

I-Type Membrane receptors 

on B-cells 

Sialylated moieties 7 extracellular domains, 

Mediates B-cell responses 

F-Box Innate Immunity Fucosylated Glycans Extracellular, characterised 

by presence of 2 domains 

Siglecs Immunological 

Regulation 

Sialylated moieties Contain immunoglobulin 

domains 

Housekeeping Lectins   

P-Type Transmembrane 

signalling 

Man-6-phosphate Oligomerisation unknown 

May exhibit „cluster‟ effect 

M-type Unfolded protein 

removal 

Mannose Transmembrane proteins 

short cytoplasmic tails 

L-type Protein trafficking 

within ER & Golgi 

Various Common CRD in plant, 

animal and fungi 

Chitinase-like Development & 

tissue remodelling 

Chitin Soluble, intracellular and 

secreted, barrel structure 

R-Type Enzyme Targeting Varied Also exists in prokaryotes, 

Often exist as domains 

Heparin-binding Extra-cellular matrix 

signalling 

Heparin Members often grouped with 

other lectins. 

Intelectins Fertilisation and 

embryogenesis 

Gal/Galactofuranose 

pentoses 

Very simple structure, CRD 

& fibrinogen domain 
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(Eisen et al., 1997), which has led to the development of several sialic acid analogs 

as therapeutic pharmaceuticals against the virus (Gubareva et al., 2000).  

Two bacterial lectins Pseudomonas aeruginosa Lectin-I (PA-IL) and Photorhabdus 

luminescens Lectin-I (PL-IL) will be discussed at length later (Section 1.10), but 

some other well characterised lectins are briefly described here.  

There are two reported glycan recognising proteins in Ralstonia solanacearum, RS-

IL and RS-IIL, which bind to specific carbohydrates present on the primary cell wall 

of plant cells, and are hypothesised to play a role in the infection of plants by R. 

solanacearum (Kostlanova et al., 2005).  

The homologues of RS-IL, Chromobacterium violaceum lectin CV-IL (Sudakevitz 

et al., 2004), and PA-IIL in Pseudomonas aeruginosa (Gilboa-Garber, 1982) both 

have proposed roles in binding to the primary cell wall of plants, and fucosylated 

glycan structures of epithelial cells respectively. Lectin homologues of PA-IIL and 

PA-IL (See Section 1.9) are widespread throughout organsisms such as 

Burkholderia spp. and Ralstonia spp.. In P. aeruginosa, these molecules were found 

to have roles in the formation and maintenance of biofilm structures (Diggle et al., 

2006; Sonowane et al., 2006).  Highlighted recently was the importance of biofilms 

for Ralstonia pickettii infections (Ryan et al., 2006), and without any reported 

investigation into the role of lectins within this organism, they remain a target for the 

development of novel therapeutics.    

Although they aren‟t strictly lectins, there is a similar galactose binding site present 

in the cholera toxin (CT) and in Escherichia coli heat labile enterotoxin (LT), both 

of which are major virulence factors and are thought to bind to a specific GM1 

ganglioside receptor, which is the subject for intense study at present (Holmner et 

al., 2007).  

Another important toxin that contains a glycan recognition site is the pertussis toxin 

(PT) of the bacterium Bordetella pertussis, the causative agent of whooping cough. 

The toxin, like LT and CT enters the target cell by endocytosis, and is believed to 

attach to the cell wall through sialic acid containing glycoconjugates (Hazes et al., 

1996).   
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Clostridium botulinum produces a neurotoxin called type C16S progenitor toxin that 

contains several hemagglutinating subunits. These play an important role in the 

internalisation of the toxin into target epithelial cells by binding to target 

glycoconjugates on the cell surface (Nakamura et al., 2007).  

The cyanobacterial lectin cyanovirin-N (CVN) is a carbohydrate-binding protein of 

great interest as it has the potential to bind to the viral envelope protein gp120 of the 

HIV virus, and thus inhibit viral entry (Bewley et al., 2001). Another inhibitor of 

viral entry through binding to the same HIV-glycoprotein is the cyanobacterial lectin 

MVL (Williams et al., 2005).   

To date, bacterial derived lectins have not received the same attention as lectins 

derived from more complex organisms (Fig 1.11). As lectin applications are 

becoming more complex and diverse (Section 1.8), this pattern should be reversed. 

This is due to the fact that many non-bacterial derived lectins are themselves 

glycosylated, which can hinder their usefulness in many applications. This is not an 

issue with bacterial-derived lectins, and as a result, data obtained from their use in 

many assay formats have the advantage of not showing discrepancies associated 

with their own glycans.  

 
Fig 1.11: Source of available lectin 3D-crystal structures studied to date. The 

proportion of bacterial and eukaryotic lectins that have been crystallized to date. 

Bacterial lectins account for only ~15%. (Data source; The lectine database, Centre 

Nationale de la Recherche Scientifique, http://www.cermav.cnrs.fr/lectines/) 

 

1.8 Lectin applications 

Lectin carbohydrate interactions are becoming an evermore significant area in 

glycobiology. The term „lectinomics‟ has even been coined to encompass the study 

and application of these varied carbohydrate binding molecules (Gabius et al., 

Bacteria

Plant

Animal

Viral

Fungi

Algae

http://www.cermav.cnrs.fr/lectines/
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2001). Some established and emerging applications of these molecules are now 

discussed.   

 

1.8.1 The enzyme linked lectin assay (ELLA)  

Lectin-carbohydrate binding assays are now commonplace, having been cited many 

times in the literature (McCoy et al., 1983; Rogerieux et al., 1993; Gornik and Lauc 

2007). These assays employ enzyme linked solid phase binding assay formats, and 

are generally done in microplate systems, with either lectin or glycoprotein 

immobilised onto microtiter plates. These methods can be both quantitative and 

qualitative, assayed usually by an enzyme linked secondary antibody similar to the 

indirect ELISA (Engvall and Perlman 1971; Van Weemen and Schuurs 1971) for 

antigen detection. The ELLA provides an accurate biochemical assay with high 

sensitivity and applicability to a variety of targets to determine both the sugar 

binding affinity of the probing lectin, but also the constitution of a complex glycan 

present either in a complex solution or as a conjugate to a glycolipid or glycoprotein. 

It also provides a more rapid, cost-effective and simpler alternative to the MS and 

HPLC alternative methods used for carbohydrate profiling (Section 1.5). 

The assay has not only been used for the assaying of glycoproteins of interest, as 

labelled lectins have already been employed for applications including the 

investigation of biofilm formation and EPS composition in bacteria (Neu and 

Lawrence, 1997; Leriche et al., 2000), in eukaryotes (Holloway and Cowen, 1997) 

and also in cyanobacterium (Kawaguchi and Decho, 2000). Multi-species 

communities within biofilms have also been investigated using derivatised lectins 

(Neu and Lawrence, 2001) 

Though it shares many characteristics with the ELISA technique, its use worldwide 

has not proven as commonplace as the original immunological based method 

(78,342 articles with ELISA vs 89 articles with ELLA in Title or Abstract fields of 

PubMed between 1971, when the ELISA was first published, and 2009). As 

discussed in Section 1.8.5, one of the main problems with any analytical process is 

the separation of the analyte from contaminant molecules. Immunological assays 

have the advantage of being able to select solely for the molecule of interest, 
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whereas the lectin will select any molecule that contains a carbohydrate residue to 

which it shows specificity. To overcome this problem some groups have attempted 

to combine the antibodies and lectins in ELISA formats, although the process 

becomes complicated through the knowledge that many immunoglobulins are 

themselves glycosylated.  

 

1.8.2 Lectin arrays 

Microarrays allow for a multitude of interactions to be analysed simultaneously. 

Lectins are currently being utilised on a commercial microarray platform available 

from Procognia Ltd. The system was able to successfully evaluate the glycosylation 

states of ovalbumin, bovine submaxillary mucin, and porcine gastric mucin 

(Pilobello et al., 2005). A similar system named the „QProteome
TM

 Lectin Array‟ 

from Qiagen Ltd was used to successfully investigate the glycan structures present 

on porcine thyroglobulin, Tamm-Horsfall glycoprotein, and recombinant human 

erythropoietin (Rosenfeld et al, 2007).  

Like the ELLA technique, the requirement for highly skilled operators and 

equipment is eliminated by employing lectin arrays, so it again provides a useful 

alternative to MS and HPLC techniques (Section 1.5).  However, as the lectins are 

immobilised on the array surface, either the analyte needs to be labelled to observe a 

binding event, or a labelled antibody to the analyte must be employed to confirm 

binding. This limits the applicability of the assay.  

One of the main obstacles to any lectin array is the potential loss in protein activity 

due to attachment of the lectin to the array surface. The immobilisation strategy 

employed can greatly affect to what extent this will be a factor. The three main 

techniques are physical, covalent and bioaffinity immobilisation. Physical 

immobilisation relies on the natural hydrophobic, polar and ionic forces that will 

form between the lectin and the array surface, with a resulting heterogenous and 

randomly orientated protein layer. Covalent immobilisation involves the irreversible 

interaction between exposed amino acids on the protein and modified solid supports, 

which can result in random orientations depending on the frequency of a specific 

amino acid throughout the protein surface. The final strategy utilises bioaffinity 
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immobilisation, and produces a reproducible and homogenous array surface, which 

can also have the added advantage of being re-usable. 

Currently lectin arrays have proved problematic for a number of reasons. Firstly that 

they are comprised of lectins from several different sources, ultimately leads to a 

platform which consists of molecules that require different reaction conditions. For 

example the commonly used plant lectin MAAII (Maackia amurensis agglutinin – 

II) requires treated (and hence expensive) blocking agent such as oxidised BSA, as it 

is very sensitive to contaminant sialoglycoproteins (Kim et al., 2008). Certain plant 

lectin families require metal co-factors, which are not necessary for others. The same 

problem exists for optimum pH and temperature conditions for each lectin family. 

  

 

1.8.3 Lectin affinity chromatography (LAC) 

Lectin affinity chromatography is a powerful tool in the arsenal of glycobiologists. It 

is so effective because it combines a powerful separation principle (chromatography) 

with a selective and biologically significant bio-recognition phenomenon (lectin-

sugar affinity). One of the first examples of molecules being immobilised onto 

activated-Sepharose for the purposed of separating proteins was the immobilisation 

of L-tyrosine-D-tryptophan for the purification of carboxypeptidaseA (Cuatrecasas 

et al., 1968). It was quickly observed that lectins would prove useful in the 

separation of sugar containing molecules.  

Whether within a fermentation environment or in a complex biological sample such 

as blood or serum, lectin based methods remain the obvious means to characterise 

glycosylation changes on a glycoprotein. The prevalence of sialic acid, an 

industrially important terminal glycan (Section 1.4), has been investigated through 

lectin affinity chromatography. The sialic acid binding lectin Sambucus nigra 

agglutinin was immobilised on a column using simple covalent techniques, and the 

concentration of sialic acid containing glycoproteins in a sample could be evaluated 

(Qiu and Regneir, 2005).   

Multi-lectin affinity chromatography (M-LAC) has been used to selectively enrich 

glycoprotein fractions within serum (Yang and Hancock 2004). This was done using 
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the broad spectrum lectins ConA, WGA and jacalin lectin. It was proposed that this 

method would have potential in plotting healthy versus diseased state glycoproteins, 

and therefore could be used as a diagnostic tool in the detection of diseases that 

contained carbohydrate biomarkers, such as many cancers and liver abnormalities 

(Section 1.3). Another report of M-LAC being used as a diagnostic tool was the 

categorisation of N-linked moieties of prostate specific antigen (PSA) into prostate 

carcinoma or benign prostatic hyperplasia by M-LAC, due to an in increase in the 

GlcNAc β(1-4) Man glycan (Sumi et al., 1999).   

Lectin affinity chromatography columns are also being developed as downstream 

process tools for the purification of glycoproteins and other glycan containing 

targets. For example, using the Human influenza A/Puerto Rico/8/34 virus produced 

in Madin Darby canine kidney cells as a model, two glycoprotein antigens can be 

utilized to purify up to 97% of the target virus. In this case the particular virus 

encodes two glycoproteins on its viral coat, which are located on the viral envelope. 

Immobilization of the galactophilic lectins from Erythrina cristagalli and Euonymus 

europaeus allowed for the capture of the target virus (Opitz et al., 2006). The same 

technique could be used as a polishing step for the removal of antigenic gylans, or 

the enrichment of biologically significant sialylated glycoproteins.  

The potential for this technology within the biopharmaceutical and diagnostics 

industry is tremendous, and slowly being recognised by both industries. The limiting 

factor for the technology is the lack of well-characterised lectins that can be 

produced cost-effectively.  

 

1.8.4 Lectin delivery molecules 

An even more radical application of lectins is their utilization to improve the 

delivery and targeting of compounds to their target site. This idea exploits the fact 

that the majority of cells in the body are covered in glycosylated surface proteins. 

The idea of „bio-adhesive‟ drug delivery systems has been in circulation since the 

1980s, with several examples of commercially available bio-adhesive drugs 

available. The objective of these molecules are twofold; to increase the residence 

time of the therapeutic at the biological target, and to concentrate the administered 
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therapeutic at only the specific biological target. Of specific interest were mucosal 

specific drug carriers, and the original adhesion molecules were polymer based.  

However, they had a number of drawbacks, most significantly the issue of non-

specific interactions. With the advent of lectinomics, some groups have investigated 

the application of lectins as an alternative to the traditional polymer based drug 

carriers. And some examples of studied carriers are given in Table 1.2.  

An important consideration when using lectin carrier molecules is that they should 

not illicit any immune response, as that could render a loss or reduction in the effect 

of the therapeutic agent. Some plant lectins have been found to be highly 

immunogenic (e.g. the mistletoe lectins MLI, MLII, and MLIII, wheat germ 

agglutinin WGA, the tomato lectin LEA, and the Ulex europaeus lectin UEA-I) after 

high levels of specific IgA were found in mice after an extensive immunological 

survey (Lavelle et al., 2000). Antibodies specific to the lectins WGA, soybean 

lectin, and peanut agglutinin were also found in human serum (Tchernychev and 

Wilchek., 1996).  

 

Table 1.2: Lectins studied for the purpose of drug targeting. 

Lectin Specificity Identified Target Reference 

ConA (Jack Bean) 

GNA (Snowdrop) 

PHA (Kidney Bean) 

Mannose 

Mannose 

Core Structure 

 

GI-Tract 
 

Lehr and Pusztai, 1995 

MLI, II & III (Mistletoe) 

UDA (Nettle) 

WGA (Wheat Germ) 

Gal/GalNAc 

GlcNAc 

GlcNAc 

 

GI Tract 

 

Haltner et al, 1997 

MPA (Osage-Orange) 

RCA (Castor Bean) 

GalNAc 

Gal 

Alveolae 

Alveolae 

Kasper et al., 1993 

Kasper et al., 1993 

BSI-B4 (Griffonia) Gal Nasal Mucosa Takata et al., 2000 

WGA (Wheat germ) GlcNAc Blood/Brain Barrier Fischer and Kissel, 2001 
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1.8.5 Eukaryotic versus prokaryotic Lectins 

One of the main barriers to the wide-spread use of lectins in research and industry is 

cost. The most commonly used lectins are the plant lectins, as they are best 

characterized, and these are usually purified from source. It is widely understood 

that plant lectins when derived from source can themselves often be glycosylated. 

One associated problem is lectin cross-reactivity, which was highlighted in a recent 

study where the broadly specific lectin ConA was found to bind to the plant lectins 

MAA, SNA and UEA-I when they were plant derived, but not to their E. coli 

produced equivalents (Hsu et al., 2008). 

Production of recombinant plant lectins, which has to date mainly been attempted in 

the bacterium Escherichia coli and the yeast Pichia pastoris has had limited success, 

as many plant lectins have been found to form insoluble aggregates when expressed 

in simpler systems, e.g.  SBA in E. coli (Adar et al., 1997), and the seed lectin of 

Dolichus biflorus, in which 20% of the lectin was found in the soluble fraction 

(Chao et al., 1994). PHA was found to be hyper glycosylated in P. pastoris 

(Raemaekers et al., 1999). One recent study has attempted to overcome solubility 

problems by producing Gst-fusion lectins in E. coli for immobilisation onto glass 

slides (Hsu et al., 2008), however the effect of introducing such affinity tags to the 

lectin was not established.   

Prokaryotic derived recombinant lectins are not glycosylated and hence are more 

amenable to production and purification for large scale profiling studies. The most 

commonly used and commercially successfully biorecognition molecules include 

protein A and strepdavadin, both prokaryotic derived and amenable to expression in 

E. coli. Many legume lectins are abundant at source, and as a result facilitate high 

yields of protein from minimal source material, but this is not the case with all lectin 

families. In contrast it is not uncommon for recombinant proteins expressed in 

bacterial systems to achieve up to g/L quantities of purified product.   
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1.8.6 Lectin mutagenesis 

It is generally accepted that lectins have evolved from simple mannose/glucose 

binding molecules into galactose binders, and finally to sialic acid/fucose binders. 

Given that the presence of more complex glycans only exist in higher order 

organisms, this appears to make sense, and the theory is backed up by the presence 

of trace features of galactose binding molecules within the sialic acid binding plant 

lectins SNA (Sambucus nigra), MAL agglutinin (Maackia amurensis) and the 

galectins. 

The mutagenesis of lectins to alter their sugar specificity is not a novel field of 

lectinomics. However, the disadvantage for researchers concentrating on working 

with eukaryotic lectins is that manipulations of carbohydrate recognition domains is 

not as straightforward as it would have been had they been concentrating on 

prokaryotic sources.  

The potential of using bacterial lectins was highlighted in a study where the amino 

acid sequence of the P. aeruginosa lectin PA-IIL was mutated within the sugar-

binding loop to the sequence of its homologues in R. solanacearum and C. 

violaceum, resulting in a change in its specificity from fucose to mannose (Adam et 

al., 2007).   

One eukaryotic lectin that was shown to be particularly amenable to expression in E. 

coli was β-ricin, which is known to be β-Gal specific. Using error-prone PCR, the 

specificity of this was successfully altered to α(2-6)sialic acid, to which the parent 

molecule had no affinity (Yabe et al., 2007). Given the industrial significance of 

sialic binding lectins, lectins created in this way could have great potential in terms 

of IP and patentable material.   
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1.9 The galactophilic lectin PA-IL 

Having summarized briefly some of the key applications for lectins, it is clear they 

share many obstacles to their more widespread use. Many of the problems currently 

associated with using plant lectins may be overcome by the use of a core bacterial 

lectin with its carbohydrate recognition domain altered to recognize a variety of 

varying carbohydrates. A good candidate is the previously characterized PA-IL 

lectin.  

 

1.9.1 Discovery 

The gram-negative opportunistic human pathogen P. aeruginosa was found to 

produce an agglutinin (Gilboa-Garber, 1972a), which was later found to be 

galactophilic in nature (Gilboa-Garber, 1972b). Initial purification of the then named 

„bacterial hemagglutinin‟ was done via a sequence of steps involving the removal of 

nucleic acids by streptomycin sulfate, precipitation of other proteins by heating to 

70°C and acidification, fractionation by ammonium sulfate followed by dialysis and 

another heating (Gilboa-Garber, 1972a). This crude method was then improved 

upon, by using affinity chromatography using the carbohydrate matrix Sepharose-4B 

(Gilboa-Garber et al., 1972). This method produced high yields of purified PA-IL, 

which provided a basis for the many other PA-IL studies that would follow over the 

years. The gene that encodes PA-IL was identified, and has since been termed lecA 

as well as pa-IL (Avichezer et al., 1992). In this study PA-IL will be the 

predominant name for the protein, although in some cases LecA will be used. 

Another lectin, PA-IIL or LecB, was later identified in the same organism (Gilboa-

Garber, 1982), which has been shown to have an affinity sugars containing fucose, 

and is not featured in this study.   
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1.9.2 Sequence analysis of the lecA gene  

The lecA gene which encodes PA-IL is 369 bp in length, with a Shine-Dalgarno 

sequence located 9 bp upstream from the start codon (Avichezer et al., 1992). 

Excluding the initiating methionine the molecular weight of the PA-IL monomer is 

12,758 Da, and the protein contains a hydrophilic C-terminal domain (Fig 1.16) but 

no signal peptide.   

The genome of the entomopathogenic organism Photorhabdus luminescens was 

sequenced and a homologue to the gene lecA identified (Duchaud et al., 2003). 

Using the identified P. aeruginosa PA-IL 121 amino acid sequence (Avichezer et 

al., 1992) as a query against the P. luminescens genome reveals a 369bp open 

reading frame (ORF; contig 2483371 to 2483739, in reference NC005126, updated 

on 20 Jan 2009) encoding a PA-IL like protein comprising 121 amino acids 

(excluding the initiating methionine) displaying 32% identity and 46% similarity to 

PA-IL (Fig 1.12). This gene, named plu2096 due to its position on the genome, to 

my knowledge has not been studied by other groups, and after extensive literature 

searches, it was found mentioned once in a study that investigated by 2-D gel 

electrophoresis the proteome of P. luminescens (Turlin et al., 2006), where its 

predicted protein product was found in the extra-cellular fraction that of a P. 

luminescens stationary phase culture.  

It is also known that PA-IL: is produced only in stationary phase cultures, as it 

dependant on RpoS, a sigma factor that is stationary phase dependant (Winzer et al, 

2000). PA-IL expression is controlled by the lux box type element together with 

RpoS consensus sequences, which are contained upstream of the promoter region. 

The gene plu2096 has previously been described as encoding a PA-1L like lectin 

(Duchaud et al, 2003). This protein shows striking similarity to PA-1L in the sugar 

binding and calcium associated domains (Fig 1.12). This gene isn‟t located close to 

the same lux box-type elements or RpoS sequences, suggesting that transcription is 

control led by another mechanism.  
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Fig 1.12: Sequence alignment of PA-IL and PL-IL. Alignment created using 

ClustalW and edited using GeneDoc (Section 2.28). Homology is represented by 

black shading, areas highlighted with a blue box representing those amino acids in 

PA-IL that are involved in orientation of the calcium ion, and those in green 

identified as directly contacting the galactose molecule (Cioci et al., 2003).   

 

 

1.9.2 The structure of PA-IL   

The PA-IL lectin has been crystallised in a number of different studies, as a 

monomer (Liu et al., 2002), as a tetramer in the calcium free state (Cioci et al., 

2003), complexed with galactose (Cioci et al., 2003) and complexed with Galα(1-

3)Galβ(1-4)Glc (Blanchard et al., 2008). It is known that it oligomerises into a 

tetramer, a feature in common with many lectins. The four identical subunits are 

designated A-D (Fig 1.13) When the quaternary structure is examined closely it is 

clear that each monomer makes contact with two other subunit monomers. Each 

monomer is approx 47 Å by 29 Å by 25 Å, and they create a tetramer measuring 85 

Å by 53 Å by 25 Å. The A-D interface is predominantly hydrophobic (Fig 1.15), 

with a core region of approx 3,000 Å
3 

which is contributed to by the hydrophobic 

amino acid side groups of Val29, Ala30, Ala31, Gly32, Trp33, Gly43, Pro44, Gly80, 

Leu81 and Phe82. The hydrophilic C-terminus was found to be involved in 

tetramerisation as the A terminus interacts with the larger of the β-sheets on the B 

monomer (Cioci et al., 2003) seen in Fig 1.16..  

Two cysteine residues are located in close proximity to each other on the molecule, 

Cys 59 and Cys 64, (Fig1.17) however these are unlikely to form a disulphide bridge 

due to their distance apart, and because PA-IL is primarily found in the cytoplasm 

(Glick et al., 1983), a highly reducing environment that is not conducive to the 

formation of cysteine-cysteine bonds.  

PA-IL 

PL-1L 

 

 

PA-IL 

PL-1L 

 

PA-IL 

PL-1L 

 

 

PA-IL 

PL-1L 

 

http://en.wikipedia.org/wiki/%C3%85
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Fig 1.13: Crystal structure of PA-IL complexed with galactose. An image of the 

crystal structure of four individual PA-IL sub-units forming a tetrameric structure. 

Calcium ions present in the sugar binding pocket are represented by red spheres, 

with galactose highlighted in yellow (PDB Code: 1OKO). Image generated using 

PyMol (Section 2.28). 

 
Fig 1.14: Distribution of hydrophilic and hydrophobic regions on PA-IL. 

Ribbon diagram of the PA-IL tetramer. Residues corresponding to hydrophobic 

amino acids are represented in blue, with hydrophobic amino acids in orange. The 

position of the essential calcium ion is indicated with a red sphere. Image generated 

using PyMol (Section 2.28). 

A 

D 

C 

B 



36 

 

 

 
Fig 1.15: The A-D Interface of PA-IL. Ribbon diagram of the A-D interfacial 

region in PA-IL, with subunit A in blue and subunit D in green. The residues Val29, 

Ala30, Ala31, Gly32, Trp33, Gly43, Pro44, Gly80, Leu81 and Phe82 are highlighted 

in red as they contribute to a region of hydrophobicity. Image generated using 

PyMol (Section 2.28). 

 

 

 

 
Fig 1.16: The C-termini of PA-IL. Image of the N- and C-terminal regions in the 

tetrameric PA-IL structure. The N-terminus is highlighted in yellow, with the C-

terminal hydrophilic side chains of Asp119, Gln120 and Ser121 in monomers A and 

B represented by stick figures. Image generated using PyMol (Section 2.28). 

A 

D 
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Fig 1.17: The location of cysteine residues on PA-IL. The distance between the 

two sulphur atoms is 11.49 Å. Image generated using PyMol (Section 2.28). 

 

 

1.9.3 PA-IL affinity 

PA-IL has previously been shown to display medium range affinity for D-galactose 

(Garber et al., 1992) with a Ka value of 3.4 x 10
4
 M

-1
 from their conducted 

equilibrium study. From hemagglutination inhibition studies carried out it is clear 

that the lectin has a much higher affinity for more complex sugars in the order 

PhenylβGal > p-nitrophenyl-

PhenylβGal>Melibiose>Stachyose>Raffinose>>>Galactose  (Chen et al., 1998). 

Further to this enzyme linked lectin assays (ELLA) (Kirkeby et al., 2006) and 

carbohydrate microarrays (Fig 1.18) have shown that the specific Gal linkages 

which the lectin prefers are Gal(1-3)Gal and Gal(1-2)Gal. This affinity has 

already been found to be sensitive to temperature, with its ability to agglutinate 

RBCs diminished at higher temperatures (Gilboa-Garber and Sudakevitz, 1999). 

This has been disputed however, with the opposite effect described in a separate 

study (Kirkeby and Moe, 2005). The affinity was shown in vivo where much weaker 

binding of PA-IL to epithelial cells was seen compared to PA-IIL, which prefers 

higher temperatures (Mewe et al., 2005).  

Cys59 

Cys64 

http://en.wikipedia.org/wiki/%C3%85
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Fig 1.18: Glycan Binding Profile of PA-IL. Carried out by measuring the affinity 

of labelled PA-IL to biotinylated glycans immobilised on streptavidin coated plates. 

The structures of some of the positive reacting glycans have been inserted (Carried 

out by the Consortium for Functional Glycomics (CFG) on behalf of Anne Imberty). 

 

 

 

 

 

 

 

 

Table 1.3: Summary of identified PA-IL targets. 

Target Type Identified Target Reference 

Burkitts Lymphoma cells Glycolipid antigen Gb3/CD77 

Galα(1–4) Galβ(1–4)Glcβ-Cer 

 

Blanchard et al., 2008 

BSA glyco-conjugates Galα(1-3)Gal > Galα(1-4)Gal > Galα(1-2)Gal 

 

Kirkeby and Moe, 2005 

Mouse endothelial cells Galα(1-3)Galβ(1-4)GlcNAc 

 

Kirkeby et al., 2006 

Free dissacharides 

 

Mink capillaries & sero-

mucinous glands in lung 

Human B and P
k
 blood-groups 

Human Blood Group P
k
 Galα(1–4)Gal 

 

Unknown 

 

Galα(1-3)[Fucα(1-2)]Gal;      

 Galα(1–4)Gal 

Chen et al., 1998 

 

Kirkeby et al., 2007 

 

Sudakevitz et al., 1996 
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Fig 1.19: A 3D Structure of PA-IL sugar Binding Site complexed with galactose 

and Galα(1-3)Galβ(1-4)Glc. Image of the sugar-binding pocket of PA-IL with 

carbohydrate highlighted in yellow. The location of a calcium ion is depicted with a 

blue sphere (PDB Codes 1OKO and 2VXJ respectively; Cioci et al., 2003; 

Blanchard et al., 2008). Image generated using PyMol (Section 2.28). 

 

 

 

 

It has been determined exactly which residues within the PA-IL protein play a direct 

role in sugar binding from crystallographic studies, with a calcium ion identified as 

having a crucial role in the mediation of the sugar binding (Cioci et al., 2003). This 

characteristic is common with many C-type lectins, however, unlike most lectins, 

PA-IL has a very narrow specificity, namely for -linked Gal structures. The 

position of the calcium ion in relation to the sugar binding pocket can be seen in Fig 

1.19. 

Like many other C-type lectins, the galactose recognition is mediated by the 

presence of a calcium ion (Gilboa-Garber et al., 2000). Lectin binding curves in 

reactions lacking the ion have been shown to display a binding curve with a low KD, 

while the addition of Ca
2+

 dramatically increases this value. The addition of Mg
2+

 

did not have a similar effect on binding kinetics (Kirkeby and Moe 2005).  
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1.9.4 PA-IL and pathogenicity 

P. aeruginosa is a found in the regular flora in healthy adults, however its presence 

in cystic fibrosis and critically ill patients can result in a dramatically increased 

death rate, and particularly in the case of cystic fibrosis patients, it remains the most 

important pathogen associated with chronic airway infection (Bajolet-Laudinat et 

al., 1994), There are a number of proposed mechanisms through which PA-IL plays 

a role in the pathogenicity of the organism, which will be outlined here.  

It has already been shown that PA-IL expression is controlled by the RhlR and LasR 

quorum sensing regulatory systems (Winzer et al., 2000; Schuster et al., 2003) in P. 

aeruginosa with PA-IL with transcription strictly limited to the stationary phase of 

growth (Diggle et al., 2002). It is estimated that ~4% of the genes within the 

organism are regulated by these sytems, many of which encode virulence factors 

(Whitely et al., 1999).    

PA-IL is often described as an adhesin. These are molecules produced by micro-

organisms to overcome the complicated innate and acquired defence mechanisms of 

eukaryotic cells by binding to the cell surfaces. The tissues and cell types the 

molecule has been found to attach to are summarised in Table 1.3.   

Using the mink as an animal model for human P. aeruginosa infection, PA-IL has 

been found to bind to certain sections of the lung, in particular the seromucinous 

glands in the submucosa of the large bronchi, capillaries in the alveolar walls, and 

blood vessels forming the vasa vasorum around the larger vessels, and in the 

pancreas, the epithelium in the excretory ducts, as well as the pancreatic capillaries 

(Kirkeby et al., 2007).   

Several other P. aeruginosa carbohydrate binding proteins have already been 

identified and investigated which including flagellin and flagellar cap protein FliD, 

which recognises mucin oligosaccharides, and the pili adhesins (Scharfman et al., 

2001), such as type IV pili that bind asialo GM1 and GM2 glycolipids (Hahn, 1997).  

PA-IL has also been shown to inhibit the ciliary beat, which is an important 

mechanism through which the host combats bacterial colonization. It was found to 

have a dose dependent inhibitory effect on the activity of ciliated epithelial cells, and 
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consequently the ciliary beat frequency (CBF). The inhibition wasn‟t seen when the 

same cells were treated with P aeruginosa LPS (Bajolet-Laudinat et al., 1994). 

These results were seen in a later study also, although PA-IL addition was found to 

initially increase CBF, and was also found to have a lesser CBF-reducing effect than 

PA-IIL (Mewe  et al., 2005).  

When P aeruginosa is found in the intestinal tract of critically ill patients, there is an 

associated 70% increase in death rate (Marshall et al., 1993). As a result 

investigations into the role of the organism‟s lectins in the gastrointestinal tract have 

shown that PA-IL results in alterations in epithelial barrier function, which could be 

prevented with treatment of GalNAc, a binder of PA-IL (Laughlin et al., 2000).   

The importance of the lectins PA-IL and PL-IIL can be deduced from the interest of 

commercial drug companies in the inhibition of these molecules. The synthetic 

carbohydrate production company Glycomimetics Inc, have licensed a compound 

called GMI-1051, which inhibits the sugar-specific activity of the PA-IL and PL-IIL 

lectins of P. aeruginosa, and is a useful tool in cases where traditional antibiotic 

therapies prove ineffective against the pathogen. This field of carbohydrate 

inhibitory molecules can only increase in importance with more pathogenic bacterial 

lectins being characterised, and also with the increase in understanding of the 

importance of salectins in the fields of cancer biology.  
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1.9.5 Other PA-IL associated functions 

Biofilms can be found associated with many types of micro-organisms, and are 

described as communites of microbes encapsulated within a self-made polymeric 

matrix, and are usually attached to either a living or an inert surface. PA-IL has been 

shown to play an important role in the formation of P. aeruginosa  biofilms in 

nutrient-depleted environments, as a PA-IL mutant showed inhibited biofilm 

formation, while an over-expressing mutant showed enhanced biofilm coverage. 

Similarly, the addition of IPTG, to which PA-IL has a high affinity, successfully 

dispersed a mature biofilm (Diggle et al., 2006).  A contradictory study has also 

shown that PA-IL doesn‟t mediate biofilm formation through regulation of 

membrane proteins, as a lecA mutant showed no differences in membrane protein 

profiling compared to wild type P. aeruginosa (Sonawane et al., 2006).    

The organism P. aeruginosa synthesises several quorum-sensing molecules 

including N-acetyl homoserine lactones (AHLs). It has been found that the central 

hydrophobic pocket formed upon the construction of the lectin tetramer has the 

capacity to bind these AHLs (Boteva et al., 2005) 

P. aeruginosa utilises the type II secretory pathway to export a number of proteins 

including alkaline protease, protease IV and LasB. A PA-IIL but not a PA-IL 

mutant, was found to significantly reduce the caseinolytic activity of PAK cells. This 

was found to be due to the loss of protease IV activity (Sonowane et al., 2006). As a 

result, a role for PA-IL in the proteolytic activity of the organism has been 

discounted. 
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1.10 Project aims and objectives 

The primary objective of this research project was to clone the gene for 

Photorhabdus luminescens lectin PL-IL which was identified as a homologue to the 

Pseudomonas aeruginosa lectin PA-IL. Upon the cloning and expression of the 

lectin, it would then be investigated at a structural and functional level.  

As much of this characterization has already been carried out on the PA-IL protein, 

this protein was also cloned, expressed and purified, for use as an internal control 

within experiments.  

Following successful expression and purification of both lectins, large quantities of 

recombinant protein products would be available for traditional physical and 

functional methods to characterize the lectins. As well as the traditional methods, 

newly emerging techniques such as mass spectrometry and adaptations of the 

existing methods would be utilized. Such studies would be the first on the PL-IL 

protein.  

PA-IL would also be mutated within the sugar binding site to confirm if the sugar 

specificity of these lectins could be manipulated. This could ultimately lead to the 

creation of a uniform recombinant lectin microarray with each well containing the 

same core lectin molecule, but each with a variety of different glycan specificities. 

Finally attempts at elucidating the role of the lectin within the organism P. 

luminescens would be made, and any information obtained would be useful in the 

study of bacterial host interactions, as the bacterium is currently a model organism in 

the field of mutualistic relationships. 
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2.0 Materials and Methods 
 

  



45 

 

2.1 Bacterial strains, primers and plasmids 

 

The bacterial strains, plasmids and primers used in this study are listed in Tables 

2.1, 2.2 and 2.3 respectively. Selected plasmid maps are shown in Fig 2.1 to 2.5. 

 

 

Table 2.1 Bacterial strains 

Strain Genotype Features Source 

Escherichia coli   

JM109 FtraD36, proAB+ lacI
q
, lacZ M15 

endA1 recA1 hsdR17(rk-, mk+) mcrA 

supE44  - gyrA96 relA1 (lacproAB) 
thi-1 

 

All purpose cloning 

Strain 

Produces stable 

plasmid DNA 

Sigma 

XL-10 

Gold 
(mcrA)183 (mcrCB-hsdSMR-

mrr)173 

endA1 recA1 relA1 gyrA96 supE44 

thi-1 lac  

[F proAB lacI
q
ZM15 ::Tn10(tet

R
) 

Amy (Cm
R
)] 

 

High transformation 

efficiency 

 (Tet
R
 and Cm

R
) 

Expression host 

Stratagene 

BL21 F dcm ompT hsdSB(rB-,mB-) gal Protease deficient Novagen 

KRX [F´, traD36, ΔompP, proA
+
B

+
, lacI

q
, 

Δ(lacZ)M15] ΔompT, endA1, recA1, 

gyrA96 (Nal
r
), thi-1, hsdR17 (rk

–
, 

mk
+
), relA1, supE44, Δ(lac-proAB), 

Δ(rhaBAD)::T7 RNA polymerase. 

High transformation 

efficiency 

Expression host 

Promega 

Photorhabdus luminescens   

TTO1 Wild Type Rif
R
 Dr. David 

Clarke 

(U.C.C.) 

Pseudomonas aeruginosa   

PAO1 Wild Type  Dr Keith 

Poole 
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Table 2.2: Plasmids 
Plasmid Description Source 

   

pCR2.1 (Fig 2.1) PCR cloning vector, Amp
R
, Km

R
, lacZ Invitrogen 

pUC18 Amp
R
, Plac, lacZα,   Amersham Pharmacia 

pJQ200sk+ (Fig 2.5) Gm
R
m, mob, sacB (Quandt and Hynes, 1993)  

pBBR1MCS-5 (Fig 2.4)     Gm
R
, mob, Broad host range cloning vector (Kovach, et al., 1995)  

pUC4K (Fig 6.2) Amp
R
, Source of Km

R
 cassette Amersham Pharmacia 

pRK600 Provides transfer functions, Cm
R
 (Finan, et al., 1986)  

pLecB1 Amp
R
, Expression vector for (His)6 tagged LecB, 

derived from pKK223-3 (Amersham), Ptac 

promoter 

Creavin et al, (in prep) 

pQE30 (Fig 2.3) Amp
R 

 Expression vector for N-terminally tagged 

(His)6 proteins, T5 promoter/lac operon 

Qiagen 

pQE60 (Fig 2.2) Amp
R 

Expression vector for C-terminally tagged 

(His)6 proteins, T5 promoter/lac operon 

Qiagen 

   

pCR2.1 derived vectors 

pKM1                              pCR2.1 containing lecA                                                        This Study 

pKM2                              pCR2.1 containing plu2096                                                  This Study 

 

pLecB1 derived vectors 

pLecA1 lecB replaced with lecA This Study 

pLecA4 

pPL-IL 

pLecA1 containing 3 amino acid changes  

lecB replaced with plu2096 

This Study 

This Study 

   

pQE derived Vectors 

pPL-ILwt pQE60 containing plu2096 with a stop codon 

encoded before the (His)6 tag 

This Study 

pPL-IL30 pQE30 containing plu2096 This Study 

pPL-IL60 pQE60 containing plu2096 This Study 

pPA-ILwt pQE60 contining lecA with a stop codon encoded 

before the (His)6 tag 

This Study 

pPA-IL30 pQE30 containing lecA This Study 

pPA-IL60 

PPA-ILmut130 

pQE60 containing lecA 

pQE30 containing lecAmut1 

This Study 

This Study 

   

pJQ200sk+ derived vectors 

pKM3 pJQ200sk+ vector containing 5 1kb region 

of plu2096 region  

This Study 

pKM4 pKM3 containing 3 1kb region of plu2096  This Study 

pKM5 pKM4 containing a kanamycin cassette from 

pUC4K 

This Study 
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Table 2.3: Primer Sequences (Synthesised by Sigma-Aldrich, U.K.) 
Name Primer Sequence (5     3) Tm(

o
C) 

lecA-F1 CCATGGCTTGGAAAGGTGAGGTTCTGG 76.5 

lecA-R1 AGATCTGGACTGATCCTTTCCAATATTGACAC 71.3 

lecA-F2 GAATTCACGCGTTTTGTGGTGCGCTGGTCATG 83.3 

lecA-Rmut1 ACGCGTCGTGGCAGATCAGCCCGTTGTTCGGAACCTCCCGATCGCCCTG 96.0 

lecA-Rwt ACGCGTCGTGGCAGATCAGCCCTTGGTCCGGATGCTCCCGATCGCCCTG 97.0 

l e b B f 1 AACGTATGcGGGCCGCAGGGCGAATCGAAA 78.0 

lecAfntag AAAAGGATCCATGGCTTGGAAAGGTGAGG 76.2 

lecArevntag AAAAAAGCTTTCACGACTGATCCTTTCCAATATT 79.0 

Plu2096-F CTAACCATGGGTTCTGATTGGTCAGGAAGTGT 74.8 

Plu2096-R TTGGAAGATCTTTTTAAAGGGGAGATCGAGACTCT 72.8 

PlIlntagfor ATCCGAGGATCCATGGGTTCTGATTGGTCAGGA 75.1 

plIlntagrev ATCCCAAGCTTTTTAAAGGGGAGATCGAGACTCT 76.2 

LecA-Rstop AAAAAAGATCTTCAGGACTGATCCTTTCCAATATT 70.7 

PL-Rstop AAAAAAGATCTTTATTTTAAAGGGGAGTATCGAGACTC 69.9 

lecA6-f CTCCATTGCGTTTTGTGGTGCGCTGGTCATGAAGATTGGCAACAGCGGAA 92.5 

lecA6-r CTCGGCTGCGGGTTGGTTCGCAACCTCCCGATCGCCCTG 92.1 

lecA7-r CTCGGCTGCGGGTTGGTCCGGATGCTCCCGATCGCCCTG 93.8 

lecA8-f CGTGACAACGTATGGGGGCCGCAGGGCGATCGGGAG 91.5 

lecA8-r TCCGTAACTGGCCCAACCGGCGGCGACGATGGTAATGACATC 90.2 

P L 0 1 - f TCTCAGATAATTCCATGAATTCTCATTACCCT 66.0 

P L 0 1 - r CTGCAGCTATTGATGACGGTTGTGGATT 73.4 

P L 0 2 - f CTGCAGCCACTCTCGTCGCTAAGATC 73.4 

P L 0 2 - r CTCGAGTAAAATTGATATACCCGGCCAG 70.6 

P L c - F CTCGAGTCGGAGGTAATACTATGTCTGATTG 69.5 

P L c - R TCTAGATTATTTTAAAGGGGAGTATCGAGACTC 66.6 

 Sequencing Primers  

Q E - F CCCAAAAGTGCCACCTG 59.6 

Q E - R GTTCTGAGGTCATTACTGG 59.4 

K m - f     AATGCAAGTTCTGCATTAGC 59.5 

K m - r    TCGATGGTACCAACACAATC 60.5 
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Fig 2.1: pCR2.1 Vector. (Invitrogen, U.S.A.) 

The TA cloning vector from invitrogen, with the position of the 3‟ T overhangs 

indicated with the letter T. These are located within the lacZα ORF, under the 

control of the Plac promoter (shown in grey). Some of the enzymes located within the 

multiple cloning site (MCS) are displayed, as well as the position of the ampicillin 

(blue) and kanamycin (red) antibiotic resistance cassettes.  

 
 

Fig 2.2: pQE60, (Qiagen) 

The expression vector pQE60, contains the following features. The MCS is located 

before the (His)6 amino acid sequence (green) which allows for the C-terminal 

tagging of a protein with the affinity tag. This is under the control of the T5 

promoter/lac operon (yellow). The bla gene that encodes beta-lactamase confers the 

bacteria with ampicillin resistance (red).  
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Fig 2.3: pQE30, (Qiagen) 

The expression vector pQE30 has the MCS located after the (His)6 amino acid 

sequence (green) which allows for the N-terminal tagging of a protein with the 

affinity tag. This is under the control of the T5 promoter/lac operon (yellow). An 

ampicillin resistance gene also exists on the plasmid (red) 

 
Fig 2.4: pBBR1MCS-5 Vector, (Kovach et al., 1995)  

The pBBR1MCS-5 broad host range, has a multiple cloning site (MCS) between 

bases 3219 and 3321, a gentamycin resistance cassette is shown in red, the origin 

of replication in green, and the mobilization site in blue.   
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Fig 2.5: pJQ200sk+ vector, (Quandt and Hayes, 1993) 
The pJQ200sk+ suicide vector, with the location of the gentamycin resistance gene 

highlighted in green, and the sacB gene shown in blue. The mobilization site (OriT) 

and the origin of replication (OriV) are also highlighted. The MCS is located 

between bases 972 and 1074.  
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Microbiological media were obtained from Scharlau Ltd unless otherwise stated. 

Sterilisation was achieved by autoclaving at 121
o
C and 15 lb/in

2
 for 20 minutes. 

 

 

 

Luria Bertani Broth (LB) 

 Tryptone   10 g/L 

 NaCl    10 g/L 

 Yeast Extract   5 g/L 

The solution was adjusted to pH 7.0 with NaOH and sterilised by autoclaving. For 

solid media, 15g/L Oxoid Bacteriological Agar was included. For culturing of P. 

luminescens, sodium pyruvate was added to a final concentration of 0.1% (w/v) 

(Xu and Hurlbert, 1990).   

 

SOB Medium 

 Tryptone   20 g/L 

 Yeast Extract   5 g/L 

 NaCl    0.5 g/L 

 KCl    2.5 mM 

 pH    7.0 

The solution was autoclaved and allowed to cool to 55
o
C before MgCl2 and 

MgSO4 were added to 10mM each from sterile 1 M stock solutions. 
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2.2 Microbiological media 

 

 

Nutrient Broth/Agar 

 Nutrient Broth Powder (Oxoid) 12.8g/L 

 Nutrient Agar (Oxoid)  21.4g/L 

Sterilised by autoclaving 

 

Lipid Agar  

Corn Syrup    10g/L 

 Yeast Extract    5g/L 

 Nutrient Agar    25g/L 

 Cod Liver Oil    5ml/L 

 MgCl26H2O    2g/L 

The solution was brought to one litre with dH2O and autoclaved. Plates were 

prepared on the same day as inoculation, and poured deeper than normal to ensure 

moisture retention. In addition, plates were allowed to set with lids in place, and 

only air dried for a minimal time period.  
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2.3 Solutions and buffers 

 

TE Buffer 

 Tris-HCl   10 mM 

 Na2-EDTA   1 mM 

 pH    8.0 

 

TAE Buffer (50X) 

 Tris    242 g/L 

 Glacial Acetic Acid  57.1 ml/L 

 EDTA    100 ml/L (of 0.5M stock) 

 pH    8.0 

The solution was diluted to  1X with dH2O before use. 

 

Solutions for 1-2-3 Method of Plasmid Preparation (See section 2.6) 

 

Solution 1 

 Glucose   50 mM 

 Na2-EDTA  10 mM (from 0.5 M stock) 

 Tris-HCl   25 mM (from 1 M stock) 

 

Solution 2: 

 NaOH   200 mM 

 Sodium Dodecyl Sulfate 1% (w/v) 

Solution 3:  

 Potassium Acetate 3 M 

 pH    4.8 

To 60 ml of 5 M potassium Acetate, 11.5 ml of glacial acetic acid and 28.5 ml of 

dH2O was added. The resulting solution was 3 M with respect to potassium and    

5 M with respect to acetate. 
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TB Buffer 

 PIPES    10 mM 

 CaCl2    15 mM 

 KCl    250 mM 

 pH    6.7 

The pH of the solution was adjusted with KOH, and then MnCl2 was added to 50 

mM. The solution was then sterilised through a 0.22 m sterile filter and stored at 

4
o
C.  

 

Lysis Buffer for Protein Purification 

 NaH2PO4   50 mM 

 NaCl    300 mM 

 Imidazole   10 mM 

 pH    8.0  

 

Solubilisation Buffer for SDS-PAGE 

 Glycerol   50% (v/v) 

 SDS    2% (w/v) 

 2-Mercaptoethanol  5% (v/v) 

 Bromophenol Blue  0.1% (w/v) 

 Tris-HCl, pH 6.8  62.5 mM 

For native-PAGE, SDS and 2-mercaptoethanol were omitted and replaced with the 

equivalent volume of H2O.  

 

SDS-PAGE Running Buffer (5X) 

 Tris-HCl   125 mM 

 Glycine   960 mM 

 SDS    0.5% (w/v) 

For native-PAGE, SDS was omitted.  
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Gel Loading Dye (6X) 

 Bromophenol Blue  0.25% (w/v) 

 Xylene Cyanol  0.25% (w/v) 

 Ficoll (Type 400)   15% (w/v) 

Made in dH2O and sterilised by autoclaving. On a 1% agarose gel, bromophenol 

blue and xylene cyanol migrate approximately with the 300bp and 4,000bp 

fragments respectively. 

 

 

20X SSC Buffer for Colony Blot  

NaCl    3 M 

 Sodium Citrate  300 mM 

Adjust to pH 7.0 with HCl and sterilise by autoclaving.  

 

 

Tris Buffered Saline (TBS) 1X 

Tris-HCl   10 mM 

NaCl    150 mM 

pH    7.4 

For TBST, the detergent Triton X-100 was added to a final concentration of 0.1% 

(v/v). 

 

Phosphate Buffered Saline (PBS) 1X  

 NaCl    137 mM 

 NaH2PO4   4.3 mM 

 KCl    2.7 mM 

 K2HPO4   1.5 mM 

 pH    7.4 

For PBST, the detergent Triton X-100 was added to a final concentration of 0.1% 

(v/v). 
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Western Blot Transfer Buffer  

Methanol   10% (v/v) 

 Trizma Base   25 mM 

 Glycine   192 mM 

 

Ethidium Bromide Stain 

 

A 10 mg/ml solution in dH2O was stored at 4
o
C in the dark. For the staining of 

agarose gels, 100l of the stock solution was mixed with 1 L of dH2O. The 

staining solution was kept in a plastic tray and covered to protect against light. 

Used ethidium bromide was collected and the ethidium bromide was extracted by 

mixing with a de-staining bag (GeneChoice) overnight. The clear liquid was 

disposed of routinely, and the ethidium waste was incinerated.  
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2.4 Antibiotics 

 Ampicillin was prepared in dH2O and stored at -20
o
C. The working 

concentration in solid and liquid media for E. coli was 100g/ml.  

 Gentamycin was prepared in dH2O and used at a final concentration of 

20g/ml for E. coli and P. luminescens in solid and liquid media. 

 Kanamycin was prepared in dH2O and used at a final concentration of 

30g/ml in both solid and liquid media for E. coli and P. luminescens. 

 Tetracycline was prepared in 50% ethanol and stocked at a concentration 

of 10 mg/ml. This was stored at -20
o
C.  The working concentration for E. coli was 

10 g/ml in solid and liquid media.  

 Rifampicin was prepared in methanol and a stock solution was prepared at 

20 mg/ml. It was stored in the dark at -20
o
C as it is light sensitive, and used at a 

concentration of 100µg/ml in solid and liquid media. 

 Chloramphenicol was prepared in ethanol at a concentration of 100 mg/ml 

and stored at -20
o
C. The working concentration for E. coli was 25 g/ml in solid 

and liquid media 

 

 

2.5 Storing and culturing of bacteria 

Glycerol stocks were prepared for each strain and stored in duplicate, at -20
o
C and 

-80
o
C. A 0.5 ml aliquot of an exponentially growing culture was added to 0.5 ml 

of autoclaved 80% glycerol (v/v), and stored accordingly. Where host strains 

harboured plasmids, the appropriate antibiotic was added to the growth medium. 

Working E. coli and P. luminescens stocks were stored on plates at 4
o
C and room 

temperature respectively, for a period of up to one week.  
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2.6 Plasmid preparation by the 1-2-3 Method 

This method is adapted from the procedure described by Birnboim and Doly 

(1979), which utilises the selective alkaline denaturation of high molecular weigh 

chromosomal DNA, while circular plasmid DNA remains double stranded. A 1.5 

ml volume of overnight bacterial culture was transferred to a microfuge tube and 

centrifuged at 13,000 rpm in a microfuge. The supernatant was discarded and the 

pellet resuspended in 100 l of Solution 1 (Section 2.3). This was left at room 

temperature for 5 min. A 200 l volume of Solution 2 (Section 2.3) was added, 

mixed by inversion and left on ice for 5 min. To the solution, 200l of Solution 3 

(Section 2.3) was added and the tube mixed by inversion, then placed on ice for 10 

min. A clot of chromosomal DNA was pelleted by centrifugation at 13,000 rpm for 

10 min. The supernatant was transferred to a fresh tube with 450 l of phenol 

chloroform isoamylalcohol (25:24:1) added, which was mixed by rigorous 

vortexing. Upon centrifugation for 10 min at 13,000 rpm the solution was divided 

into an upper aqueous layer and a lower organic layer. The upper layer was 

transferred to a fresh tube and an equal volume of isopropanol was added. After 

mixing by inversion, the tube was left on ice for 10 min, and then centrifuged for 

10 min at 13,000 rpm to pellet the plasmid DNA. The pellet was washed with 100 

l of 70% ethanol and centrifuged at 13,000 rpm for 5 min. The ethanol was 

removed and the pellet dried in a vacuum dryer for 5 min. The plasmid DNA was 

resuspended in 50 l of TE buffer, and stored at 4
o
C. 

2.7 Plasmid preparation using the GenElute plasmid 
miniprep kit 

The kit was used according to the manufacturer‟s instructions (Sigma-Aldrich). A 

1.5 ml volume of an overnight culture was transferred to a microfuge tube and 

centrifuged at 13,000 rpm for 5 min. The supernatant was removed and the cell 

pellet re-suspended in 200 l of re-suspension solution. A total of 200l of cell 

lysis solution was then added, and the mixture left at room temperature for 5 min. 

To this mixture, 350 l of neutralisation/binding buffer was added and mixed by 

inversion. The precipitated chromosomal DNA and cell debris was pelleted by 
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centrifugation for 10 min at 13,000 rpm. A spin column was prepared by spinning 

500 l of spin column preparation solution through it, and discarding the flow-

through. The supernatant was then added to the spin column and centrifuged at 

13,000 rpm for 1 min to bind the plasmid DNA. The flow through was discarded 

and the column was then washed by the addition of 750 l of wash solution, and 

centrifugation at 13,000 rpm for 1 min. The flow through was discarded and the 

column dried by centrifugation at 13,000 rpm for 4 min. The column was 

transferred to a fresh tube and 50 l of TE buffer added. This was allowed to stand 

for 5 min before elution of the plasmid DNA by centrifugation at 13,000 rpm for 1 

min.  

 

2.8 Preparation of Gram-negative bacterial genomic DNA. 

An overnight culture was prepared of the appropriate organism, and 1.5 ml of this 

culture was pelleted by centrifugation at 13,000 rpm and the supernatant removed. 

The supernatant was re-suspended in 200 l lysis buffer, containing 40 mM Tris-

Acetate pH 7.8, 20 mM Sodium Acetate, 1 mM EDTA, and 1% SDS (w/v), and 

the solution mixed by pippetting. To this solution, 66 l of 5 M NaCl was then 

added and mixed by inversion. This was then centrifuged at 13,000 rpm for 10 min 

at 4
o
C. The solution was then transferred to a fresh tube and an equal volume of 

phenol chloroform isoamyl-alcohol (25:24:1) added. This was mixed by vortexing 

and centrifuged as before. The phenol chloroform isoamyl-alcohol purification 

step was then repeated, and the supernatant removed to a fresh tube containing 2.5 

volumes of ice cold ethanol. This was centrifuged as before, and the supernatant 

removed. The remaining DNA pellet was washed by adding 50 l of 70% ethanol, 

and centrifuged as before. The supernatant was removed and the pellet dried in a 

vacuum dryer. The pellet was then re-suspended in 50 l of sterile TE buffer, and 

stored at 4
o
C.  
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2.9 Agarose gel electrophoresis 

DNA was analysed by electrophoresis through agarose gels in a BioRad horizontal 

gel apparatus. Agarose was added to TAE buffer to the required concentration 

(typically 0.7% w/v) and dissolved by boiling. The solution was poured into 

plastic trays and allowed to set with a plastic comb fitted to create sample wells. 

TAE was used as running buffer. Loading dye was mixed with the DNA samples 

to allow loading and to indicate DNA migration during electrophoresis. Gels were 

run at 140V for ~20 min. Gels were stained by immersion in an ethidium bromide 

staining solution for 15 min, and then visualised using a UV transilluminator 

coupled with an image analyser to capture the image on a PC. On every gel 0.5g 

of 1 Kb Plus DNA Ladder (Invitrogen) was run as a molecular size marker. 

 
Fig 2.6: 1 kb Molecular Marker (Invitrogen). A representative image of the 1 kb 

DNA molecular marker used in this study.  
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2.10  Isolation of DNA from agarose gels 

DNA was purified from agarose gels using the DNA Gel Purification Kit (Qiagen), 

according to the manufacturer‟s instructions. The samples to be purified were run 

as normal on an agarose gel that contained 1ng/ml SYBR Safe DNA stain 

(Invitrogen). The bands were then visualised using a non-UV transilluminator, and 

the bands excised using a clean scalpel. The gel fragment was placed in a 

microfuge tube, to which, 500 l of gel solubilising buffer was added and the tube 

incubated at 42
o
C until the gel dissolved. The solution was then transferred to a 

spin column and was centrifuged at 13,000 rpm for 1 min. The flow through was 

discarded and 750 l of wash buffer was then added. The column was then spun as 

before. The flow through was discarded, and residual ethanol removed by spinning 

the column at 13,000 rpm for 4 min. The column was transferred to a fresh tube 

and 30 l of TE buffer added, and left to incubate at room temperature for 5 min. 

The column was then centriguged at 13,000 rpm for 1 min to elute the purified 

DNA. This was then stored at 4
o
C until required.  

 

2.11 Preparation of high efficiency competent cells 

This method was developed by Inoue et al (1990). A glycerol stock of an E. coli 

strain was streaked on LB agar and incubated at 37
o
C overnight. A 10 ml volume 

of LB broth was inoculated with a single colony from this plate and cultured 

overnight at 37
o
C while shaking at 220 rpm. One ml of this culture was used to 

inoculate 250 ml of SOB medium in a 1 L flask. This culture was incubated at 

37
o
C, shaking at 220 rpm, until an O.D.600nm of 0.6 was reached. The flask was 

then placed on ice for 10 min. All subsequent steps occurred at 4
o
C. The culture 

was transferred to a sterile 250 ml centrifuge tube and centrifuged in a Beckman 

J2-21 centrifuge at 3,000 rpm for 5 min. The supernatant was discarded and the 

pellet resuspended in 80 ml of ice-cold TB buffer (Section 2.3). The suspension 

was left on ice for 10 min and centrifuged as before. The resulting cell pellet was 

finally resuspended in 20 ml of ice-cold TB buffer and DMSO was added to a final 
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concentration of 7%. After incubation on ice for 10 min the cells were aliquotted 

into cooled sterile microfuge tubes and flash frozen in liquid ethanol before 

storage at -80
o
C.  

 

2.12 Transformation of competent cells 

An aliquot of the competent cells was thawed on ice. A 200 l aliquot of the cells 

was mixed gently with 2l plasmid DNA/ligation mixture and kept on ice for 30 

min. The cells were heat shocked at 42
o
C for 30 seconds and quickly placed back 

on ice for 2 min. Using aseptic technique, 800l of LB broth was then added to the 

cells followed by incubation at 37
o
C for 60 min.  A total of 100l of the 

transformation suspension was then spread on an LB agar plate containing the 

relevant antibiotics and incubated at 37
o
C overnight.  

 

2.13 Determination of competent cell efficiency 

Competent cell efficiency was defined in terms of the number of colony forming 

units obtained per g of transformed plasmid DNA. A 25 ng/l stock of pUC18 

plasmid DNA was diluted to 250 pg/l, 25 pg/l, and 2.5 pg/l. An aliquot of 2 l 

from each dilution was transformed as described in Section 2.12. The 

transformation efficiency was calculated from the number of colonies obtained, 

taking into account the dilution factor and the volume of each culture transferred to 

the spread plate.  
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2.14 Protein expression 

An LB plate with the appropriate antibiotic was streaked with a glycerol stock of 

the strain containing the expression plasmid. One colony was selected and used to 

inoculate 5 ml of LB broth containing the appropriate antibiotic, and grown 

overnight at 37
o
C while shaking. A 250 ml conical flask containing 100 ml of LB 

broth was inoculated with 1ml of the overnight culture, and the antibiotic added. 

The culture was incubated at 37
o
C, with shaking at 220 rpm until an OD (A600) of 

0.6 was reached. IPTG was then added to a concentration of 50 M to induce 

expression. The culture temperature was then dropped to 30
o
C and incubated for a 

further 6 hours, whereupon the cells were harvested. The culture was centrifuged 

at 5,000 rpm for 5 min (using a Sorvall SLA-1500 rotor) to pellet the cells. The 

supernatant was discarded and the cell pellets then stored at -20
o
C until lysis. 

 

2.14.1 Cell lysate preparation 

Cell pellets from Section 2.14 were washed with 50 ml of lysis buffer (Section 

2.3). This was centrifuged at 5,000 rpm for 5 min and the supernatant discarded. 

The cells were then re-suspended in 10 ml lysis buffer, and disrupted using a 3 mm 

micro-tip sonicator (Sonics & Materials Inc).  Cells were subjected to 2.5 sec, 40 

kHz pulses for 30 sec while being kept on ice. DNAse was added to a 

concentration of 10 µg/ml, and cell debris removed by centrifugation at 4,000 rpm 

for 20 min at 4
o
C. The cleared lysate was filtered through a 0.45μm sterile filter 

into a sterile universal and stored at 4
o
C. 

For large scale purifications, the cell pellet pre-sonication was re-suspended in 10 

ml lysis buffer per 100 ml culture. The re-suspended pellet was then treated with 

10 mg/ml lysozyme at 37
o
C while shaking gently for 30 min before sonication on 

ice. DNase treatment and filtration was as normal, with sonication time increased 

to 30 sec per 100 ml culture.  
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2.14.2 Colony blot procedure 

Using a multichannel pipette, 500 l of LB containing the required antibiotic was 

aseptically aliquotted into an autoclaved deep well 96-well plate. Each well was 

inoculated with a single colony obtained from the transformation plate. The plate 

was sealed with Breathe-Easy Sealing Membrane (Sigma), and incubated at 37
o
C 

overnight. An LB-amp agar plate containing 50 M IPTG was overlaid with 

nitrocellulose membrane, and an equal volume each of overnight culture spotted 

on the membrane. This was incubated at 37
o
C for eight hours. The nitrocellulose 

membrane was then removed carefully and placed colony side up on blotting paper 

that had been soaked in 10% (w/v) SDS, with care taken not to introduce any air 

bubbles. After 5 minutes the nitrocellulose membrane was removed and placed 

colony side up on blotting paper that had been soaked in denaturing solution (0.5 

M NaOH, 1.5 M NaCl). After 5 min incubation the membrane was again removed 

and placed on blotting which had been pre-soaked in neutralization solution (1.5 M 

NaCl, 0.5 M Tris-Cl, pH 7.4). This step was repeated, and finally the membrane 

was placed on a solution containing 2X SSC solution (Section 2.3).  

The membrane was washed twice in TBS (Section 2.3), and blocked for one hour 

in TBS contining 2.5% BSA. Unbound BSA was removed by washing twice in 

TBST (Section 2.3), before the addition of 1:10,000 mouse anti histidine HRP-

labelled antibody. This was allowed to bind for one hour before washing unbound 

antibody twice for 10 minutes in TBST. Two Sigma colourfast tablets were 

dissolved in 100ml of dH2O, and poured on the membrane. This was left to 

develop for 2-5 min, and stopped by rinsing twice with dH2O.  
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2.15: Immobilised metal affinity chromatography (IMAC) 

 

2.15.1 IMAC using Ni-NTA resin 

A 1 ml aliquot of nickel-nitrilotriacetic acid resin (Ni-NTA, Invitrogen) was mixed 

with 10 ml of cleared cell lysate (Section 2.14) at 4
o
C overnight. The mixture was 

then poured into a 0.7 x 15 cm column allowing the resin to settle.  The column 

was then washed with 10 ml of cell lysis buffer (Section 2.4). Two 20 ml washes 

of lysis buffer supplemented with up to 80 mM imidazole was then passed through 

the column, with elution of the final protein by the addition of 5 ml lysis buffer 

supplemented with 300 mM imidazole. Imidazole was then removed by the 

transfer of the eluent to an Amicon Centrifuge tube. The solution was de-salted in 

the Amicon tube by centrifugation at 3,800 rpm for 20 min, and the protein was 

washed twice in PBS (Section 2.3), and concentrated to a final volume of 1 ml. 

Sodium azide was then added to a concentration of 0.05% (w/v), and frozen, or the 

sample was lyophilized if long-term storage was necessary.  

 

 

2.15.2 IMAC using FPLC and Amersham nickel-resin 

Before the attachment of the HisTrap FastFlow Crude 1 ml column to the FPLC 

the maximum back pressure was set to 3 bar. The top of the affinity column was 

attached to the pump outlet no 3 and the bottom of the column attached directly to 

the FPLC unit. The HisTrap column storage buffer (20% ethanol) was washed out 

with 5 column volumes of water (5 ml) and the resin equilibrated with at least 10 

column volumes of lysis buffer (Section 2.3) at a flow rate of typically 1 ml/min.  

A blank run was then performed using the same purification protocol that was 

required for the sample. The sample injection loop was filled with a volume of 

lysis buffer that was equal to the sample that was purified. A stock of lysis buffer 

was attached to pump A, with lysis buffer containing 1 M imidazole attached to 

pump B. The purification strategy involved 
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 Column equilibration with 10 ml Lysis buffer 

 Sample application from sample injection loop 

 A wash of 20 ml lysis buffer 

 Application of an imidazole gradient to remove non-specifically 

bound proteins, by applying 20 ml of a 20 mM imidazole wash 

 A more stringent wash of 80 mM imidazole was then applied (20ml) 

 Purified protein was then eluted by the application of 1 M imidazole 

After the blank run, the sample was applied, and the process repeated. The 

absorbance values measured during the blank run were subtracted from the 

absorbances recorded in the sample run, and the sample values were determined.  

 

2.15.3: Desalting of purified protein using HiPrep 26/10 desalting 
column 

The FPLC maximum post column pressure limit was set to 3.5 bar before 

attachment of the HiPrep 26/10 Desalting Column. The top of the column was 

attached to pump outlet no 5 and the bottom of the column attached to pump inlet 

no. 2. Before the first sample application the column storage buffer (20% ethanol) 

was removed, and the column equilibrated with sample buffer. This was done by 

washing with 2 column volumes of water (106 ml) followed by 5 column volumes 

(265 ml) of sample buffer (either water or PBS) (Section 2.3). Equilibration was 

not necessary between runs using the same buffer. Washing was done at the flow 

rate intended for chromatography, typically 20 ml/min. Samples were collected in 

1 ml fractions in 96-well plates.   
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2.16 Recharging of IMAC resin 

The column was routinely recharged prior to re-use. The used resin was poured 

into a column and washed with 2 column volumes of dH2O, followed by 2 column 

volumes of 50% (v/v) ethanol. The resin was then stripped with 2 column volumes 

of 100 mM EDTA, pH 8.0. Remaining impurities were removed with 2 column 

volumes of 200 mM NaCl, followed by 2 column volumes of dH2O. 

Hydrophobically bound proteins and lipoproteins were removed by washing with 

10 column volumes of 30% isopropanol for 30 minutes, followed by 10 column 

volumes with water.  The resin was then recharged by adding 2 column volumes of 

100 mM NiSO4. The resin was washed again with 2 column volumes of dH2O, 

before transfer to a sterile universal, where it was stored in 20% ethanol.  

2.17 Protein quantification by BCA assay 

The bicinchonic acid (BCA) described by Smith et al, (1985) was utilised to 

quantify total protein in the range of 20-2,000 g/ml. All samples were diluted to 

within the range of the assay and added in triplicate to 150 l of BCA reagent 

(Sigma), and incubated at 37
o
C for two hours. Absorbance was read at 562 nm. A 

standard curve was created using bovine serum albumin (BSA) as the reference 

protein (Appendix A).  Protein concentration of the unknown was determined from 

this standard curve.  

 

2.18 SDS-PAGE 

The SDS-PAGE method was used to analyse protein samples. A 20% resolving gel 

and a 4% stacking gel were prepared as per Table 2.4. Gels were cast using the 

ATTO vertical mini electrophoresis system. Upon the addition of TEMED the 

resolving gel was immediately overlaid with isopropanol. After polymerisation, 

the isopropanol was poured off and the stacking gel added. A comb was inserted 

into the top of the gel to form loading wells.  
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Table 2.4: SDS-PAGE gel recipes 

Solution 20% Resolving Gel 4% Stacking Gel 

1.5 M Tris-HCl, pH 8.8 1.875 ml - 

0.5 M Tris-HCl, pH 6.8 - 0.94 ml 

dH2O 0.54 ml 2.3 ml 

Acrylamide/Bis-acrylamide 30%/0.8% (w/v) 5.0 ml 0.5 ml 

10% (w/v) Ammonium Persulphate 38 l 19 l 

20% (w/v) SDS 38 l 19l 

TEMED 4 l 2 l 

 

2.18.1 Sample preparation: 

To a microfuge tube, 20l of sample was added to 5 l of 5X solubilisation buffer 

(Section 2.3). Samples were then boiled for 5 min and applied to wells that were 

flushed of un-polymerised acrylamide. The preparation of insoluble fractions 

depended on the original sample. The insoluble fraction should be applied in the 

same concentration as the soluble fraction, so to the insoluble pellet obtained from 

a 1 ml sample, 20µl of 5X solubilisation buffer was added, and boiled for 5 min. 

The sample was then diluted with water to the original 1 ml with dH2O.  

 

2.18.2 Sample application 

A total of 25l of the prepared sample was applied to each SDS-PAGE well. One 

lane on each gel was kept for the relative molecular weight protein marker 

(SigmaMarker, Sigma, Fig 2.7). A 10l aliquot of the marker was applied, which 

consisted of Rabbit Muscle Myosin (205 kDa), β-Galactosidase from E. coli (116 

kDa), Rabbit Muscle Phosphorylase b (97 kDa), Rabbit Muscle Fructose-6-

phosphate Kinase (84 kDa), Bovine Serum Albumin (66 kDa), Bovine Liver 

Glutamic Dehydrogenase (55 kDa), Chicken Egg Ovalbumin (45 kDa), Rabbit 

Muscle Glyceraldehyde-3-phosphate Dehydrogenase (36 kDa), Bovine 

Erythrocyte Carbonic Anyhdrase (29 kDa), Bovine Pancreas Trypsinogen (24 

kDa), Soybean Trypsin Inhibitor (20 kDa), Bovine Milk -Lactalbumin (14.2 

kDa) and Bovine Lung Aprotinin (6.5 kDa). When western-blot  analysis was 
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required, the NEB pre-stained protein ladder was used. A representative image of 

both ladders is given in Fig 2.5. Gels were run at 25 mA for 70 min at room temp 

with 1X SDS-PAGE running buffer (Section 2.3).  

 

Fig 2.7. NEB Prestrained marker and Wide Range SigmaMarker visualised on 20% 

SDS-PAGE. 

 

2.18.3 Gel analysis 

PAGE gels were removed from the electrophoresis chamber and washed with 

dH2O. Gels were then routinely stained for one hour with staining solution which 

contained 10% (v/v) Acetic Acid, 45% (v/v) Methanol and 0.25% Coomassie 

Blue. Overnight destaining followed using destaining solution which consisted of 

10% (v/v) Acetic Acid and 45% (v/v) Methanol. For gels which required a greater 

degree of sensitivity the silver staining method was used which was described by 

Blum et al (1987), and outlined in table 2.5.  
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Table 2.5: Silver Staining of SDS-PAGE gels 

Step Duration Reagent        (total volume for each, 100 ml) 

Fix 60 min (min) 30 % Ethanol, 10 % Acetic Acid 

Wash 15 min 20 % Ethanol 

Wash 15 min dH2O 

Sensitize 1 min 0.1% (w/v) Na2S2O3,  

Rinse 2 x 20 sec dH2O 

Silver Stain 20 min 0.1 % AgNO3, 70 µl of 37% (v/v) Formaldehyde stock 

Rinse 2 x 20 sec dH2O 

Develop 10 min (max) 3% Na2CO3, 50 µl of 37% (v/v) Formaldehyde stock, 0.002% (w/v) Na2S2O3, 

Stop 5 min 50 g/L Trizma Base. 2.5 % Acetic Acid (v/v) 

 

 

 

2.19 Native-PAGE 

 

For the preparation of Native-PAGE gels, the concentrations outlined in Table 2.4 

were used with the omission of 20% SDS, and supplemented with the appropriate 

volume of water. The sample to be analysed was not boiled and the sample buffer 

contained neither SDS nor 2-Mercaptoethanol. The gels were run in 1X Native-

PAGE running buffer (Section 2.3).  
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2.20 Western blot 

An SDS-PAGE gel was run (Section 2.18.2) using the NEB pre-stained molecular 

weight marker. Four pieces of blotting paper, and a piece of nitrocellulose 

membrane were cut to the same dimensions as the SDS-PAGE gel. These were 

soaked in transfer buffer (TBS), and arranged on the semi-dry electroblotter as per 

Fig 2.8. Transfer then occurred at a constant 50 mA for 1 hour.  

To detect transferred recombinant (His)6 tagged proteins, the membrane was 

washed twice in TBST, and then blocked with 2.5% BSA-TBST (Section 2.3) for 

one hour. The membrane was washed twice more in TBST and then incubated 

with 1:10,000 murine anti-His antibody in 1% BSA-TBST. This was finally 

washed four times with TBST and incubated in 15 ml sH2O containing 

SIGMAFAST
™

 3,3′-Diaminobenzidine tablets. Development was stopped by 

washing with sH2O.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.8: Schematic of Western Blot. Sheets of Whatman paper and nitrocellulose 

membrane are cut to the exact same dimensions as the SDS-PAGE gel, as any 

overlap over the gel surface can lead to inefficient protein transfer.  
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 2.21Gel filtration 

Before the attachment of the Superdex 75 10/300 High Performance Column (GE 

Healthcare; Uppsala, Sweden) to the AKTA Purifier FPLC (Amersham 

Biosciences; Uppsala, Sweden), the maximum back pressure limit was set to 1.8 

mPa. The column storage valve was disconnected from the gel filtration column, 

and the top connected to pump outlet no. 1. The bottom of the column screwed 

directly into the FPLC. To remove the column storage buffer (20% ethanol) two 

column volumes of water were pumped through the column (Pump P-900, 

Amersham Biosciences; Uppsala, Sweden) at a flowrate of 1 mL/min. The column 

was then equilibrated with 5 column volumes of sample buffer at the same flow 

rate, before sample application. With pump A connected to a stock of degassed 

sample buffer, 1 mg of sample was applied through the sample injection port in a 

volume of no more than 100 µl, and the run commenced, with a constant flow rate 

of 1 ml/min of buffer A. After sample addition, 2.5 column volumes of buffer was 

passed through the column. The proteins retention time was measured using the 

online Monitor UV-900 (GE Healthcare; Uppsala, Sweden), which read the eluent 

absorbance at OD 280nm.  

 

2.22 Blood preparation for hemagglutination assay 

Whole blood was obtained from a rat and stored in 1% (v/v) sodium citrate, for a 

maximum of 3 days. To wash the red blood cells (RBCs) 500 l of blood was 

mixed with 500 l PBS, and then centrifuged at 600 g for 10 min at 4
o
C. The 

supernatant was removed and the remaining red blood cells re-suspended in 1 ml 

of PBS. The washing process was repeated three times. To remove glycoproteins 

from the surface of the RBCs, 350 l of RBCs was mixed with 9.65 ml PBS 

containing 0.1% papain and 0.01% cysteine. This solution was incubated for 30 

min at 37
o
C with shaking. The RBCs were then spun down as before, and washed 

four times with PBS. The cells were finally resuspended in 965 l PBS, giving a 

3.5% RBC solution. This was stored in at 4
o
C for a maximum of 5 days.  
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2.23 Hemagglutination assay  

A 25 l aliquot of PBS was added to each well of a U-bottomed 96-well plate. 

Purified lectin in a total volume of 25 l was then added to one well containing 25 

l PBS, which was mixed, and 25 l of the solution was transferred to the next 

well creating a serial dilution across the plate. A total of 50 l of 3.5% papain-

treated RBCs was then added to each well, along with a further 25 l of PBS, and 

was left to incubate for 30 min at room temperature. Hemagglutination was 

observed as a coating of RBCs across the bottom of the well, whereas no 

agglutination activity was observed as a spot of RBCs which had aggregated as a 

result of gravity. One hemagglutination unit (HU) was defined as the minimum 

quantity of lectin required to agglutinate the RBCs.  

 

 

2.23.1 Hemagglutination inhibition assay 

A serial dilution of the relevant sugar was created on a U-bottomed 96-well plate 

using a stock sugar solution in PBS. A total of 8 HU of the lectin in 25 l was then 

added, and allowed to incubate for 20 min. A 50 l aliquot of RBCs were then 

added to each well, and incubated for 30 min at room temperature.  

 

 

2.24 Enzyme linked lectin assay 

A 50 l volume of glycoprotein was immobilised in each well of a 96-well Nunc 

MaxiSorb ELISA plate. Each sample was assayed in triplicate, at a concentration 

of 10 g/ml. These were left overnight at 4
o
C, or if glycoprotein denaturation was 

required, the sample was heated to 60
o
C for 30 min, and then applied to the plate. 

The plate was then immobilised at 60
o
C overnight. The unbound glycoprotein was 

removed by inverting the plate and the wells were then blocked with 150 l of 5% 

BSA in TBS for one hour. This solution was then removed by inverting the plate 
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and was washed using TBS supplemented with 0.1% Triton X. A 50 l aliquot of  

lectin suspended in TBST-BSA 1%, supplemented with 10 mM CaCl2 was then 

added at a concentration of 10 g/ml, and let incubate at room temperature for one 

hour. This was removed by inversion and washed with TBST. This was followed 

with 50 l of 1:10,000 mouse anti-histidine or anti-biotin antibody as appropriate. 

This was created fresh and diluted with TBST-BSA 1%, and incubated for one 

hour at room temperature. Unbound antibody was removed by inversion and 

washed four times with TBST, before the addition of 50 l of TMB substrate 

(Section 2.3). The reaction was stopped after 5 min by adding dilute H2SO4 and 

the absorbance was read at 450nm.  

 

 

 

2.25  Lectin purification using sepharose-4B 

Sepaharose-4B was poured into a 20 ml column and washed with 2 column 

volumes of water to remove the storage buffer. The column was then equilibrated 

by washing with two column volumes (C.Vs) of lysis buffer. Cleared cell lysate 

prepared as outlined in Section 2.14.1, was then added to the column, which was 

allowed to mix overnight at 4
o
C. Unbound material was collected as flowthrough, 

followed by a 20 ml wash using lysis buffer. Lectin elution was then facilitated by 

adding 20 ml of EDTA 0.2 M pH 8.0. 
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2.26 Immobilisation of protein onto cyanogen bromide-
activated agarose 

The protein to be immobilised was suspended in 0.1 M NaHCO3 coupling buffer, 

pH 8.5, which contained 500 mM NaCl. The capacity for the gel was 5-10 mg per 

ml of gel. The resin was then washed in cold 1 mM HCl for 30 mins, at 200 ml per 

g of gel. The supernatant was removed and the resin was washed with 10 cv of 

dH2O, followed by 1 cv of coupling buffer. The protein solution was immediately 

added to the column, and the flow stopped. The solution was allowed to mix by 

inversion overnight at 4
o
C, after-which it was washed with coupling buffer to 

remove unbound protein. The resin was then blocked by adding 2 cv of 0.2 M 

glycine, pH 8.0, and was allowed to mix by inversion for 2 hours at room 

temperature. The unbound glycine was removed by washing with 2 cv coupling 

buffer, followed by a wash of 2 cvs using 0.1 M Sodium Acetate, pH 4.0, 

containing 500 mM NaCl. Alternate washing steps using coupling buffer and 

acetate buffer were repeated 5 times. The resin was then used immediately or 

stored at 4
o
C in 1 M NaCl with 0.05% sodium azide.  
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2.27Tri-parental mating 

P. luminescens was grown to late stationary phase in nutrient broth, while two E. 

coli cultures containing the donor plasmid and the mobilising plasmid pRK600 

(Finan et al., 1986) were also grown to stationary phase. The two E. coli cultures 

(0.75 ml each) were mixed and pelleted by centrifugation at 13,000 rpm for 3 min, 

and resuspended in 100 µl of fresh LB. This suspension was then spotted onto the 

centre of an LB plate. This was incubated overnight at 37
o
C and then resuspended in 

3 ml of LB broth. A 0.75 ml aliquot of this culture was then pelleted as before, with 

0.75 ml of P. luminescens recipient culture. These were re-suspended in 100 µl of 

nutrient broth and spotted onto the centre of a nutrient agar plate. This was left 

incubate at 30
o
C for two nights, before re-suspension in 2 ml of nutrient broth. 

Dilutions of this suspension were then spread on selective media, along with aliquots 

from each previous step, to act as controls.  

 

2.28 In silico analysis of DNA and protein sequences 

To identify homologous protein and DNA sequences deposited in GenBank, the 

BLAST programme (Altschul et al, 1997) available at NCBI 

(www.ncbi.nlm.nih.gov) was used. DNA sequences for the strains used in this study 

were obtained from the following sequencing studies; Pseudomonas aeruginosa 

PAO1 (NC_002516), Photorhabdus luminescens (NC_005126). DNA and protein 

sequences were aligned using the ClustalW programme (Thompson, 1994) available 

at (http://www.ebi.ac.uk/Tools/clustalw/) and the Genedoc programme, available to 

download at http://www.nrbsc.org/. DNA sequences were analysed for restriction 

sites using the Webcutter 2.0 programme (http://rna.lundberg.gu.se/cutter2/). 

Protein imaging software used was Deepview Swiss PdbViewer from 

http://www.expasy.org/spdbv/ and PyMol from Delano Scientific available from 

http://pymol.sourceforge.net/.  

 

http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/Tools/clustalw/
http://www.nrbsc.org/
http://rna.lundberg.gu.se/cutter2/
http://pymol.sourceforge.net/
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2.29 TA cloning of PCR products 

Polymerase chain reactions (PCR) carried out with RedTaq (Invitrogen) DNA 

polymerase were routinely performed to clone a gene of interest into the pCR2.1 

vector. Fig 2.9 shows the principle of the TA cloning method. 

 

 

 

Fig 2.9: Principle of TA Cloning 

PCR products amplified by RedTaq polymerase have a deoxyriboadenosine 

addition at the 3′ end. The commercial pCR2.1 vector has been linearised within 

the lacZ gene, and the cleavage site contains deoxyribothymidine overhangs. 

This is complementary to the dA of the PCR product, and can thus be ligated 

easily. 

3′ 3′ 

3′ 3′ 5′ 

5′ 

5′ 

Vector Vector PCR Product 
T 

T A 

A 
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 2.30 Enzymatic reactions: 

 

Standard Phusion PCR Reaction Mixture: 

 Template DNA    1 l 

 Primers     0.5 l of each 

 Buffer (5X)     4 l 

 dNTPs (10 mM each)    4 l 

 dH2O      9 l 

  PhusionTaq Polymerase (1:5 dilution) 1 l 

 

Standard PCR Program Cycle 

 

 Stage 1:   Step 1: 98
o
C  for 5 min 

 Stage 2: (30 Cycles)   Step 1: 98
o
C for 10 sec 

     Step 2: Annealing temp for 15 sec 

     (Tann was routinely 5 below the Tm) 

     Step 3: 72
o
C for 20 sec for every kb to be 

synthesised 

Stage 3:   Step 1: 72
o
C for 10 min 

 

 

RedTaq PCR Reaction Mixture 

 Template DNA  1 l 

 Primers (0.5 nm/l)  1 l of each 

 RedTaq Buffer (10X)  5 l 

 dNTP mix (10 mM)  1 l 

 Sterile dH2O   40 l 

 RedTaq DNA Polymerase 1 l 
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RedTaq (Invitrogen) PCR Program Cycle 

 Stage 1:   Step 1: 95
o
C for 10 min 

 Stage 2: (30 cycle)  Step 1: 95
o
C for 1 min 

     Step 2: Annealing temp for 30 sec 

     Step 3: 72
o
C for 1 min per kb to be synthesised 

 Stage 3:   Step 1: 72
o
C for 10 min 

 

 

TA Ligation Reaction: 

  PCR Product   1 l 

  pCR2.1 Vector  1 l 

  T4 DNA Ligase  1 l 

  10X Ligase Buffer  1 l 

  dH2O    6 l 

   

      

2.31 ElectroSpray ionization mass spectrometry 

Fresh samples (< 3 days old) of lectins were used as lectins tend to aggregate in 

solution over time.  Samples were desalted using Centricon PM10 (mass cut off at 

10,000 Da) micro-concentrators (Amicon, Millipore, Bedford MA, USA) and 

diluted to appropriate concentrations with mass spectrometry grade solvents.   

Electrospray ionization mass spectrometry (ESI-MS) was performed on a 

quadrupole- time-of-flight mass spectrometer (Q-TOF Ultima Global™, Micromass, 

Manchester, UK) coupled with either a standard or nanoflow Z-spray source.  For 

the standard source, desolvation temperature was set at 65°C.  The nanoflow source 

interface was operated at room temperature and was equipped with a PicoTip™ 

emitter with distal coating (20 µm i.d with 10 µm Silica tip™, New Objective, 

Woburn, MA, USA).  Ions were focused by a radio frequency
 
(RF) lens before 

transmission to the quadrupole, which was used
 
in RF-only mode as a wide bandpass 

filter.  The ions were
 
then transmitted through the hexapole collision cell and were 
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pulsed into the TOF analyzer.  The TOF analyzer was set in the positive ion mode at 

9.10 kV when the reflectron was used in V configuration at 35.6 V and pusher was 

in auto mode.  In W configuration, the TOF analyzer was set at 10.15 kV with the 

reflectron at 25 V and the pusher was set manually at 250 µs.  Acquisition was 

achieved by using a time-to-digital
 
converter operating at 4 GHz.  Mass spectra were 

recorded using a micro channel plate (MCP) detector at the exit of the TOF analyzer, 

after calibration with NaI solution (1 mg/ml) in isopropanol/water (50/50).  A mass 

range (m/z) of 500 – 5000 Th was scanned over 5 sec with an inter scan delay time 

of 0.1 sec.  Samples were analyzed in both “native like” and “denaturing” conditions 

and instrument parameters were optimized separately for each condition as described 

in the results and discussion section.  Samples (typically 5 - 10 pmol/μl) were 

introduced into the source by direct infusion using a syringe pump (Cole-Parmer, 

Vernon Hills, Illinois, USA) at a rate of 0.8 ml/min for the standard source and 200 

nl/min for the nanoflow source. 

Calculations and data analyses were performed using MassLynx software version 

4.0 (Waters, Manchester, UK).  Deconvolution of spectra was accomplished either 

manually or by using a transform algorithm.  Mass spectra were background 

subtracted, smoothed using the Savitzky Golay method, and centered before final 

calculations of the molecular mass.  Molecular species were represented by an 

envelope of a series of peaks corresponding to multiply charged ions that 

deconvoluted to a mean mass ± standard deviation. 

 

2.32  P. luminescens pathogenicity assay 

One ml of P. luminescens overnight culture was centrifuged at 8,000 rpm for two 

minutes. The supernatant was discarded and the pellet washed in 1 ml of PBS 

(Section 2.3) and centrifuged as before. The final pellet was re-suspended in one ml 

of PBS, and the OD measured at 600nm. The cells were diluted in PBS and the OD 

measured at 600nm. The cells were then diluted in PBS to give a final O.D. of 1.0 

which equates to 2 x 10
8
 cells/ml. This was then diluted to 1 x 10

4
 cells/ml. A 

hypodermic syringe was sterilised by submersion in 100% ethanol, and flushed 

several times. The syringe was then flushed with sterile PBS 8 times. Ten Galleria 
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mellonella larvae were injected between the 1
st
 and 2

nd
 set of prolegs, with either 

sterile 10μl of PBS solution to act as negative controls, or by 10μl of the 10
4
 cells/ml 

dilution. The insects were placed in a 25
o
C incubator and monitored for the next 48 

h, checking every 1.5 h for insect death from the 42 hour time-point. 

For a competitive assay, two strains were diluted to an OD600nm of 1.0, and then 

mixed in a ratio of 50:50. This mix was then diluted to 1x10
4 

cells/ml and injected 

into the insect as per the standard pathogenicity assay. The dilutions were plated on 

plates containing the appropriate antibiotics to ensure the ratios were correct.  

To check the ratios of bacteria within the dead insects, they were surface sterilised 

by dipping in ethanol and excess liquid was removed with blotting paper. The 

cadaver was flamed quickly, before being placed in a sterile Petri dish containing 5 

ml of PBS. A sterile scalpel blade was then used to cut the insect lengthwise into 

two, and the resulting solution was poured into a universal containing 7 sterile glass 

beads. The mixture was mixed in a vortex for two minutes, and the resulting solution 

serially diluted in PBS. This was spread on plates containing the appropriate 

antibiotics to ascertain relative numbers and hence their competitiveness.  

 

2.33 P. luminescens symbiosis assay 

A total of 50μl of P. luminescens overnight culture was diluted to an O.D600nm of  1.0  

and spotted three times onto freshly poured lipid agar plates (Section 2.3). Using a 

sterile loop, this was spread across the plate in a „Z‟ pattern. These were inverted 

and incubated at 30
o
C for three days. A flask of TT01 Heterorhabditid nematodes, at 

least two-weeks old, were checked for viability under the microscope. Live 

nematodes are bent and motile, dead nematodes are straight. Approximately 20 ml of 

nematodes were poured into a sterile 50 ml universal, and PBS was added to a final 

volume of 45 ml. A 5 ml aliquot of 4% hyamine was added to the suspension, and 

left for 15 minutes, after which as much as possible of the supernatant was removed. 

Then 50 ml of PBS was added, and the nematodes were allowed to settle for 15 min. 

The supernatant was decanted and PBS added again to 50 mls. This wash step was 

repeated three times before finally re-suspending the surface-sterilized nematodes in 
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50 ml of PBS. To prevent damaging the nematodes, the point of a P20 tip was 

removed, and 10 μl of the solution dropped onto a petri dish three times. The number 

of nematodes was counted under a microscope to calculate an average number of 

nematodes per 10 μl. A volume equivalent to 50 nematodes was then added to the 

centre of the symbiosis plate. The plate was wrapped in parafilm, and stored at 25
o
C 

for the remainder of their life-cycle.  

For a competitive symbiosis assay, two strains were mixed 50:50 once their OD600nm 

had been adjusted to 1.0. Control plates were required for each ratio set up. To 

achieve this the cultures collected at 3 and 21 days were plated on media containing 

the relevant antibiotic to ensure the mixing ratio was correct.  

After 21 days, live infective juveniles (IJs) had migrated to the lid of the plate, from 

where they were washed off in PBS, and counted. They were surface sterilised in 

hyamine as before, after which one individual nematode was selected and added to a 

1.5 ml centrifugation tube. The nematode was re-suspended in 100 μl of PBS, and 

crushed by micro-pestle for one minute. Then 50 μl of the resulting extract was 

spread on plates containing the appropriate antibiotic.  
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3.0 Cloning Expression and Purification of Recombinant 
PA-IL and PL-IL  
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3.1 Introduction 

 

This chapter describes the cloning of the two genes that encode the lectins PA-IL 

and PL-IL in the organisms P. aeruginosa and P. luminescens, and the subsequent 

development of recombinant expression systems, which were then utilised to prepare 

active recombinant protein to a level of high purity. A mutant derivative of the PA-

IL lectin was also constructed. Structural (Chapter 4) and functional analysis 

(Chapter 5) of these lectins was then carried out. 

 

 

3.2 Cloning, small-scale expression and mutagenesis of lectin genes 

 

3.2.1 Cloning and small scale expression of the P. aeruginosa gene lecA 

encoding PA-IL 

 

The P. aeruginosa strain PAO1 was obtained from Prof. Keith Poole, and the 

sequence for the organism (Fig 3.1) obtained from the NCBI data bank (data entry 

no NC002516).  The primers used for the amplification of lecA were lecA-F1 and 

lecA-R1 (Table 2.3) which contained NcoI and BglII sites. The PCR products were 

analysed by agarose gel electrophoresis and a band corresponding to the expected 

size was present. The PCR product was then ligated into the TA cloning vector 

pCR2.1 (Table 2.2, Fig 2.1) as described in Fig 2.9 and Fig 3.2. E. coli  JM109cells 

were transformed with the ligation mixture and spread onto LB amp plates 

containing IPTG and X-Gal. The plasmid DNA isolated from some of the resulting 

white colonies (Section 2.6), and screened for an insert by restriction analysis with 

EcoRI. The insert was cut out of the plasmid with NcoI-BglII, gel extracted, and 

ligated to NcoI-BglII digested, and gel extracted pLecB1 vector. The pLecB1 vector 

is an expression vector that has been established within the laboratory (Creavin et 

al., in prep) which expresses the P. aeruginosa lectin PAIIL as a C-terminally (His)6 

tagged protein. After transformation into JM109 cells (Section 2.12), plasmid DNA 
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was isolated and the presence of the correct insert was confirmed by restriction 

analysis. As the lecA and lecB genes are similar in size, the presence of the correct 

insert was further confirmed by DNA sequencing. The gene was then expressed in a 

100 ml culture (Section 2.14) to ensure the recombinant lectin was soluble in E. coli 

(Fig 3.3). 

 

 

 

 

      1 ATGGCTTGGA AAGGTGAGGT TCTGGCTAAT AACGAAGCAG GGCAGGTAAC GTCGATTATC 
 

       61 TACAATCCGG GCGATGTCAT TACCATCGTC GCCGCCGGTT GGGCCAGTTA CGGACCTACC 

 

      121 CAGAAATGGG GGCCGCAGGG CGATCGGGAG CATCCGGACC AAGGGCTGAT CTGCCACGAT 

 

      181 GCGTTTTGTG GTGCGCTGGT CATGAAGATT GGCAACAGCG GAACCATTCC GGTCAATACC 

 

      241 GGGTTGTTCC GTTGGGTTGC ACCCAATAAT GTCCAGGGTG CAATCACTCT TATCTACAAC 

 

      301 GACGTGCCCG GAACCTATGG CAATAACTCC GGCTCGTTCA GTGTCAATAT TGGAAAGGAT 

 

      361 CAGTCCTGA 

 

 

Fig 3.1 P. aeruginosa lecA coding sequence. Nucleotide sequence AF229814; 

Annealing sites of primers lecA-F1 and lecA-R1 (Table 2.3) are indicated with red. 

There are no NcoI, BglII or EcoRI restriction sites within the gene.  
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A 

A 

NcoI BglII 

lecA (366bp no stop codon) 

  TA 
Cloning 

Fig 3.2: Cloning Strategy for pLecA1. Outline of the cloning strategy from genomic 

DNA to generate pLecA1. The primers LecA-F1 and LecA-R1 amplified the lecA gene 

without the stop codon, and the restriction sites NcoI and BglII at the 5' and 3' ends 

respectively. The product was ligated into the pCR2.1 vector through TA cloning 

(Section 2.29), and the insert which was then excised as an NcoI-BglII fragment. The 

expression vector pLecB1 was digested NcoI-BglII, and the larger band purified by gel 

extraction (Section 2.10) and ligated with the lecA fragment to create pLecA1 vector.  

 

Intermediate  

Clone 

lecA  
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(LecA-F1 

&  LecA-R1) 

 

NcoI-BglII Digestion 
(366bp fragment isolated) 

 
NcoI 

BglII 

Ligation & 
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NcoI-BglII Digestion 
(3.6 bp fragment isolated) 

 



87 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.3: Expression of PA-IL in E. coli JM109. Analysis by 15% SDS-PAGE 

(Section 2.18) of the expression of PA-IL from the vector pLecA1 in E. coli JM109. 

Lane 1, Protein molecular weight marker (sizes indicated in Section 2.18); Lane 2, 

Soluble Cell extract at O.D.600nm 0.6; (T0); Lane 3, T1 hour; Lane 4, T2 hour; Lane 5 , T3 

hour; Lane 6, T4 hour; Lane 7, T5 hour; Lane 8, T8hour; Lane 9, T18 hours  (overnight cell 

extract). 

 

 

The gene lecA was successfully cloned into the expression vector pLecB1 to create 

the vector pLecA1 which expressed C-terminally (His)6 tagged PA-IL. The construct 

was verified by gene sequencing. The protein was expressed at small scale (Section 

2.14) in E. coli JM109, and the cell lysate examined by SDS-PAGE (Fig 3.3). An 

over-expressed protein of the correct size (13.8 kDa) was visible.  

 

3.2.2 Cloning and small-scale expression of P. luminescens gene plu2096 which 

encodes PL-IL 

 

The P. luminescens TTO1 strain was provided by Dr. David Clarke, University of 

Bath, UK. Genomic DNA was prepared according to the method outlined in Section 

2.8, and primers were designed for the amplification of the gene plu2096 using the 

TTO1 sequence available through NCBI (Entry No. NC005126). The primers used 

for the amplification of plu2096 were plu2096-F and plu2096-R (Table 2.3) which 

contained NcoI and BglII sites and after amplification with RedTaq polymerase, 

were ligated into the pCR2.1 cloning vector as was previously done for lecA in 

Section 3.2. This intermediate vector was digested NcoI-BglII, the gene was excised 

1      2     3     4     5    6     7     8     9  

PA-IL 

20 kDa 

  

14 kDa 
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by gel extraction, and was ligated to an NcoI-BglII digested pLecB1 plasmid. As 

plu2096 and lecB are similar in size, the presence of the correct insert was confirmed 

by DNA sequencing. As the protein encoded by plu2096 is PL-IL, the resulting 

expression vector was named pPL-IL. The gene was then expressed in a 100 ml 

culture to ensure the recombinant lectin was soluble in E. coli (Fig 3.5). 

 

 1 ATGTCTGATT GGTCAGGAAG TGTTCCAGCT AACGCTGAAA ATGGTAAATC CACAGGACTT 

 

       61 ATTCTCAAAC AGGGAGATAC AATCTCTGTT GTTGCTCATG GATGGGTGAA ATATGGCCGT 

 

      121 GATAATGTTG AATGGGCAGC ACCTGATGGT CCTGTACCCA ATAATCCACA ACCGTCATCA 

 

      181 ATAGCCACTC TCGTCGCTAA GATCGCCAAC AAGAAGTTTG CAATTGGCAA CGGAGTACTT 

 

      241 CATAAAACGG TTCCTGTAGA TGGCGAATTA ATACTTTTAT TCAATGACGT ACCGGGTACT 

 

      301 TTTGGTGATA ATTCAGGTGA ATTTCAAGTC GAGGTCATAA TAGAGTCTCG ATACTCCCCT 

 

      361 TTAAAATAA 

 

 

Fig 3.4 : Sequence analysis of the P. luminescens plu2096 coding sequence. The 

369 bp coding sequence of plu2096 located within nucleotide sequence NC005126 

available on the NCBI database. Annealing sites of primers plu2096-F and plu2096-

R (Table 2.3) are indicated with red. There are no NcoI or BglII sites within the 

sequence.  

  
 

 

 
Fig 3.5: Expression of PL-IL in E. coli JM109. Analysis by 15% SDS-PAGE of 

the expression of PL-IL of in E. coli JM109. Lane 1, Protein molecular weight 

marker (sizes indicated in Section 2.18); Lane 2, soluble cell extract at O.D.600nm 0.6; 

(T0); Lane 3,   T1 hour; Lane 4, T2 hour; Lane 5 , T3 hour; Lane 6, T4 hour; Lane 7, T5 hour; 

Lane 8, T8hour; Lane 9, T18 hours (overnight cell extract).  

 

PL-IL 

20 kDa 

 

 

14 kDa 
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The gene plu2096 was successfully cloned into the expression vector pLecB1 using 

the same strategy as outlined in Fig 3.2 to create the vector pPL-IL1 which 

expressed C-terminally (His)6 tagged PL-IL. The construct was verified by gene 

sequencing. The protein was expressed at small scale (Section 2.14) in E. coli 

JM109, and the cell lysate examined by SDS-PAGE (Fig 3.5). An over-expressed 

protein of the correct size was visible (13.9 kDa).  

 

 

 

3.2.3 Mutagenesis of PA-IL, and small-scale expression of the mutated gene 

encoding PA-ILmut1 

 

As described previously, the lectins PA-IL and PL-IL show high similarity in their 

amino acid sequences (Section 1.9.2), with the highest identity in the calcium 

binding site. The non-calcium binding amino acids that contacted the sugar did 

display some sequence differences however. To determine if these residues played a 

role in sugar specificity, the lecA sequence was altered within the sugar binding loop 

by site directed mutagenesis, from the amino acids Histidine, Aspartic Acid and 

Glutamine (PA-IL), to the corresponding amino acids found in PL-IL, namely, 

Valine, Asparagine and Asparagine. The resulting gene was names lecAmut1 and the 

protein named PA-ILmut1. This molecule is essentially the PA-IL lectin, containing 

the PL-IL sugar binding loop. The procedure used for site-directed mutagenesis is 

outlined in Fig 3.6. The mutation of lecA is outlined in Fig 3.7. The predicted impact 

to the protein structure was modelled using 3D-structure analysis software, with the 

theoretical structure of the mutant protein given in Fig 3.8, and the resulting amino 

acid sequence of PA-ILmut1 shown in Fig 3.9.  

Having successfully constructed a plasmid expressing the mutated gene, it was then 

examined whether a soluble protein could be expressed in E. coli (Fig 3.10). 
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Fig 3.6: Schematic of PhusionTM site directed mutagenesis. Two primers are 

designed to amplify the entire expression plasmid, one or both of which contains the 

desired mutation. After PCR (Section 2.30), the phosphorylated primers can be 

ligated (Section 2.30) and transformed (Section 2.12) directly into an E. coli 

expression strain. (Image adapted from Finnzymes Ltd, Finland). A silent mutation 

which introduces a restriction site can be incorporated into the junction of the 

forward and reverse primers to help distinguish between the template plasmid and 

the resulting mutated plasmid. For the mutation of lecA, the template plasmid was 

pLecA1.  

 

 

 

 
  atggcttgga aaggtgaggt tctggctaat aacgaagcag ggcaggtaac gtcgattatc 

             

  tacaatccgg gcgatgtcat taccatcgtc gccgccggtt gggccagtta cggacctacc 

           gtt   aaca ac               ac 

  cagaaatggg ggccgcaggg cgatcgggag  CTtccgGacC aCgggctgat ctgccacgaT 

  gagt       

  gCgttttgtg gtgcgctggt catgaagatt ggcaacagcg gaaccattcc ggtcaatacc 

  

  gggttgttcc gttgggttgc acccaataat gtccagggtg caatcactct tatctacaac 

 

  gacgtgcccg gaacctatgg caataactcc ggctcgttca gtgtcaatat tggaaaggat 

        

     agtcc  

 

Fig 3.7: Outline of the construction of PA-ILmut1. Representation of the position 

of the two primers used for the mutation of lecA, LecAmut1-F (red) and LecAmut1-

R (blue) (Table 2.3) within the lecA sequence, which create the mutations H50V, 

D52N and Q53N within the sugar binding site. The nucleotides to be mutated are 

denoted in capital letters, with the nucleotides introduced on each primer highlighted 

in green. At the junction of the forward and reverse primers a silent mutation to 
introduce the restriction site MluI was made.  This restriction site was introduced to 

help distinguish between the template plasmid and the resulting mutated plasmid.  
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Fig 3.8: Structure of PA-IL binding site and PA-ILmut1 binding site. Cartoon 

representation of the residues involved in calcium and sugar binding within the PA-

IL (A) and the PA-ILmut1(B) binding pocket. The calcium ion is symbolized by a 

blue sphere, with galactose highlighted in yellow. The impact to the shape of the 

sugar binding loop by the mutation of three amino acids is clearly visible. Image 

generated using Pymol (Section 2.28), PDB Code 1OKO.  

 

 

 

 

 

 

 

Fig 3.9: Sequence alignment of PA-IL and PA-ILmut1. Position of the mutations 

on the amino acid sequence of PA-IL. The conserved proline was not altered as it is 

conserved through all homologues. The silent mutation that introduced the MluI 

restriction site spans C59, H60 and D51.  

 

 

 

 

 

 

 

 

 

 

A       B 
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Fig 3.10: Expression of PA-ILmut1 in JM109. Analysis by 15% SDS-PAGE 

(Section 2.18) of the expression of PA-ILmut1 into the soluble expression of an E. 

coli JM109 culture. Lane 1, Protein molecular weight marker (sizes indicated in 

Section 2.18); Lane 2, Soluble Cell extract at O.D.280nm 0.6; (T0); Lane 3, T1 hour; 

Lane 4, T2 hour; Lane 5 , T3 hour; Lane 6, T4 hour; Lane 7, T5 hour; Lane 8, T8hour; Lane 9, 

Overnight cell extract (T18 hours). 

 

 

 

The mutations H50V, D52N and Q53N were successfully introduced into the gene 

lecA to create the gene lecAmut1 by using the strategy outlined in Fig 3.6 using the 

plasmid pLecA1 as a template. The resulting expression plasmid was named 

pLecA4. The construct was verified by gene sequencing. The protein was expressed 

at small scale (Section 2.14) in E. coli JM109, and the cell lysate examined by SDS-

PAGE (Fig 3.10). An over-expressed protein of the correct size was visible (13.8 

kDa). 

 

 

3.3 Expression of cloned lectin genes 

3.3.1 Sub-cloning of lectin genes into pQE vectors 

For the small-scale production of a recombinant lectin that could be purified using 

IMAC (Section 2.15), the vectors pLecA1, pPL-IL and pLecA4 (Section 3.2) were 

sufficient. The low level of expression for each protein seen in each case led to the 

cloning of the genes lecA, lecAmut1 and plu2096 into expression vectors containing 

features that would increase yield of recombinant protein The Qiagen pQE 

 1   2      3     4      5      6     7      8     9  

20 kDa 

 

14 kDa 

PA-ILmut1 
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expression vectors, pQE30 (Fig 2.3) and pQE60 (Fig 2.2), contain various desired 

elements including an optimised promoter consisting of the phage T5 transcriptional 

promoter and a lac operator sequence, extensive multiple cloning sites, and (His)6  

tag sites at each of the required sites. They also express the β-lactamase gene which 

confers on the cell resistance to ampicillin. To study the effect of the (His)6 position 

however, a panel of differently tagged lectins was required. As the clones already 

created expressed C-terminally (His)6 tagged lectins, plasmids that express an N-

terminally (His)6  tagged lectin and an untagged lectin were desired.  

To avail of the optimised promoter features on pQE60 (which adds a (His)6 tag to 

the C-terminus of a protein), lecA, plu2096 and lecAmut1 were subcloned into it from 

pPA-IL, pPL-IL and pLecA4 to determine if a higher yield of protein could be 

obtained than was previously produced. Conveniently within the pQE-60 MCS site 

were the recognition sequences for NcoI and BglII. As a result, each lectin could be 

extracted as an NcoI-BglII fragment from pPA-IL, pPL-IL and pLecA4 and inserted 

into the pQE60 vector to create the vectors pPA-IL60, pPL-IL60 and pPA-ILmut160.  

The pQE30 plasmid, which adds a (His)6 tag to the N-terminus of a protein, contains 

within its MCS the recognition sites BamHI and HindIII. Consequently, the genes 

lecA, plu2096 and lecAmut1 and were amplified as BamHI-HindIII fragments. The 

genes lecA and lecAmut1 were amplified using the primers LecA-Fntag, LecA-Rntag, 

while the gene plu2096 was amplified using plu2096-Fntag and plu2096-Rntag 

(Table 2.3). The reverse primer in each case included a stop codon at the 3' end. All 

lectins were cloned into the pQE-30 (Fig 3.11) vector and the resulting plasmids 

were named pPA-IL30, pPL-IL30 and pPAILmut130 respectively.  

To create untagged PA-IL and PL-IL, the lecA and plu2096 genes were amplified for 

insertion into the pQE60 vector with a stop codon included in their respective 

reverse primers. This stopped transcription before the (His)6 tag located at the 3′ end 

of the gene. In this amplification the same forward primers used in the initial cloning 

of the respective lectins (LecA-F1, and plu2096-F1) were used in conjunction with a 

stop codon including reverse primer (LecA-Rstop and plu2096-Rstop). This allowed 

for the cloning of the genes as NcoI-BglII fragments. The resulting plasmids were 
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named pPA-ILwt and pPL-ILwt. The sequences of each clone were verified by DNA 

sequencing. Fig 3.11 shows a schematic of the construction of these plasmids 

A summary of the clones created, and the nomenclature that will be used in the 

remainder of the study is given in Table 3.1 

 

 

 

 

Table 3.1: Summary of lectin nomenclature used in this study. 

Gene Parent Plasmid Plasmid Protein Features 

lecA pLecB1 pLecA1 PA-IL C-tagged 

 pQE30 pPA-IL30 PA-IL30 N-tagged 

 pQE60 pPA-IL60 PA-IL60 C-tagged 

 pQE60 pPA-ILwt PA-ILwt Untagged 

plu2096 pLecB1 pPL-IL PL-IL C-tagged 

 pQE30 pPL-IL30 PL-IL30 N-tagged 

 pQE60 pPL-IL60 PL-IL60 C-tagged 

 pQE60 pPL-ILwt PL-ILwt Untagged 

lecAmut1 pLecA1 pLecA4 PA-ILmut1 C-tagged 

 pQE30 pPA-ILmut130 PA-ILmut130 C-tagged 
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Fig 3.11: Schematic of sub-cloning of lecA, lecAmut1 

and plu2096 into commercial pQE-expression 

vectors. Outline of the positions of the relevant 

restriction sites and (His)6 tag involved in the sub-

cloning of lecA, plu2096 and lecAmut1 into the Qiagen 

expression vectors pQE30 and pQE60.  
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3.3.2 Selection of an E. coli expression strain for recombinant 

lectins 

E. coli is the most commonly used host for recombinant protein expression. It grows 

rapidly on inexpensive media and is one of the most highly characterised organisms 

at a genetic level, with many varying strains commercially available.  As the 

recombinant proteins being investigated (PA-IL and PL-IL) are prokaryotic in 

source, the question of eukaryotic post-translational modification requirements is not 

an issue in the choice of an expression host.  

The optimal E. coli strain for the expression of PA-IL and PL-IL was investigated. 

PL-IL is a similar sized protein as PA-IL, however its behavior in an E. coli 

expression culture could prove very different to that of PA-IL. As a result, 

expression conditions needed to be optimized separately. The plasmids pPA-IL30 

and pPL-IL30 (Section 3.3.1), which expressed N-terminally (His)6 tagged PA-IL 

and PL-IL respectively, were transformed into three expression strains to ascertain 

which was optimal for the expression of recombinant lectin. The three E. coli strains 

used were XL10Gold, BL21, and KRX (Table 2.1). 

XL10-Gold is a strain that contains the lacI
q
 allele. This genotype results in a high 

expression level of the LacI repressor protein, which in turn strongly represses the 

activity of the Ptac promoter in the absence of IPTG. BL21 and KRX are commonly 

used expression strains that are OmpT protease deficient, which should allow for 

higher recovery of recombinant proteins. Culturing conditions for the three strains 

were as described in Section 2.14.  

The optimal expression strain was determined, by densitometry, by examining the 

percentage of total soluble protein that was the recombinant protein in the three 

strains over a six hour culture period (Fig 3.12 and Fig 3.13). The effect of 

individual clonal selection was then investigated by the colony blot method (Fig 

3.15). 

After verifying the DNA sequences for each of the clones through gene sequencing, 

and visual analysis of the purified proteins by SDS-PAGE, the mass of the purified 

proteins were then examined by electrospray ionization mass spectrometry (Section 

2.31). The exact mass (± 2 Da) of the monomeric forms of each lectin could be 
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evaluated through this method. It was discovered that lectins produced in one strain 

(XL10Gold), displayed significant product deterioration (Fig 3.16). This was not the 

case when protein products from other strains were examined, all of which, showed 

homogenous molecular weight products.  

 

 

 

 
 

Fig 3.12: Expression of PA-IL30 in BL21, KRX and XL10Gold. Analysis of the 

expression of PA-IL30 in E. coli from pPA-IL30 (Section 3.5). by SDS-PAGE 

(Section 2.18). LecA30 expression is portrayed as a percentage of total protein, as 

determined by densitometry. Growth curves for each strain are shown in Fig 21. 

Lane 1, Ladder (Sizes given in Fig 2.5); Lane 2, XL 10Gold 3.5 hours; Lane 3, 

XL10Gold 6.5 hours (35%); Lane 4, XL10Gold 9.5 hours (31%); Lane 5, BL21 3 

hours; Lane 6, BL21 6 hours (20%), Lane 7, BL21 9 hours (23%); Lane 8, KRX 3.5 

hours; Lane 9, KRX 6.5 hours (15%); Lane 10, KRX 9.5 hours (24%) ; Lane 11 

Ladder.  
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Fig 3.13: Expression of PL-IL in E. coli BL21, KRX and XL10Gold. Analysis of 

the expression of PL-IL30 in E. coli from pPL-IL30 (Section 3.3.1) by SDS-PAGE. 

PL-IL30 expression is portrayed as a percentage of total protein, as determined by 

densitometry. Growth curves for each strain are shown in Fig 3.21. Lane 1, Ladder 

(Sizes given in Fig 2.5); Lane 2, XL 10 Gold 3.5 hours; Lane 3,XL10Gold 6.5 hours 

(17%); Lane 4, XL10Gold 9.5 hours (17%); Lane 5, BL21 3 hours; Lane 6, BL21 6 

hours (20%), Lane 7, BL21 9 hours (23%); Lane 8, KRX 3.5 hours; Lane 9, KRX 

6.5 hours (16%); Lane 10, KRX 9.5 hours (24%); Lane 11 Ladder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.14: Growth curves for the expression of recombinant PA-IL30 and PL-

IL30 in E. coli. Log absorbance readings recorded at 600nm during the expression 

of PA-IL30 (Fig A) and PL-IL30 (Fig B) in the E. coli strains JM109, XL10Gold, 

BL21 and KRX.  Growth rates for the strains in both experiments represented in 

terms of doubling time are JM109, 62 min; XL10Gold, 34 min ; KRX, 42 min; 

BL21, 43 min; and in PL-IL JM109, 57 min, XL10Gold, 31 min,  KRX, 40 min, 

BL21, 40 min. 
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Fig 3.15: Effect of colony selection on lectin expression in E. coli KRX. Colony 

blot of PA-IL constructs expressed in E. coli. KRX (Section 2.14.2). Row 1, KRX 

cells containing pQE60; Row 2, PA-IL30 in KRX; Row 3, PA-IL60 in KRX; Row 4, 

PA-ILmut130; Lane 5, PA-ILmut160; Lane 6, PA-IL (Section 3.2.1); Lane 7, PA-

ILgfp30 (not included in this thesis). Highlighted with red arrows are individual 

clones that were shown to express higher levels of protein that their counterparts.  

 

 

In this optimisation study the PA-IL30 and PL-IL30 molecules were expressed in a 

number of different E. coli strains to determine which strain yielded the highest 

amount of soluble protein. In a time-course experiment, SDS-PAGE analysis shown 

that for PA-IL this strain was XL10Gold (Fig 3.12), and for PL-IL the optimal strain 

was BL21 (Fig 3.13). The growth rates of each strain were also investigated, with 

XL10Gold cells proving to have faster growth rate than BL21 and KRX, which 

behaved in a similar manner (Fig 3.14). Upon investigation by ES-MS of purified 

PA-IL from XL10Gold and PL-IL from BL21, it was discovered that deterioration 

of PA-IL was significant, which was not seen with PL-IL (Fig 3.16). As the second 

most efficient expression strain for PA-IL was KRX, this strain was then used to 

express this molecule. KRX expressed PA-IL did not display any such deterioration. 

Upon selection of a clone that was deemd to be a succesful expressor (Fig 3.15), a 

glycerol stock was created, which could then be referred to when lectin was desired.  
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3.3.3 Optimization of expression conditions for recombinant 

lectins 

Having elucidated in the previous section that E. coli KRX is the optimal strain for 

the production of PA-IL, and BL21 is the optimal strain for the production of PL-IL 

the conditions for induction and harvesting of the expressed proteins were 

investigated.  

Both lectins were expressed from plasmids derived from the pQE range of 

expression plasmids (Section 3.3.2), which are under the control of the PTAC operator 

system. The tac promoter/operator (PTAC) is one of the most widely used expression 

systems, and is a strong hybrid promoter composed of the -35 region of the trp 

promoter and the -10 region of the lacUV5 promoter/operator. Expression of PTAC is 

repressed by the LacI protein. The lacI
q
 allele is a promoter mutation that increases 

the intracellular concentration of LacI repressor, resulting in strong repression of 

PTAC. Addition of the inducer molecule IPTG inactivates the LacI repressor. Thus, 

the amount of expression from PTAC is proportional to the concentration of IPTG 

added: low concentrations of IPTG result in relatively low expression from PTAC and 

high concentrations of IPTG result in high expression from PTAC. The IPTG 

concentration was varied in PL-IL expression and the amount of protein product 

expressed from PTAC in its soluble form examined by SDS-PAGE (Fig 3.17). The 

effect of increasing IPTG levels on growth rate was also examined (Fig 3.18).  
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Fig 3.17: Effect of varying IPTG concentrations on expression of PL-IL in 

BL21. Analysis of increasing IPTG concentration on the expression of recombinant 

PL-IL in E. coli BL21 by 20% SDS-PAGE. Lane 1, Protein marker; Lane 2, 

insoluble fraction 0 hours; Lane 3, Soluble fraction 0 hours; Lane 4, Insoluble 

fraction 2 hours; Lane 5, Soluble fraction 2 hours; Lane 6 Insoluble fraction 4 hours; 

Lane 7, Soluble fraction 4 hours, Lane 8, Insoluble fraction 6 hours; Lane 9, Soluble 

fraction 6 hours; Lane 10 Protein marker 

 

 
Fig 3.18: Effect of varying IPTG concentrations on growth rate of E. coli BL21. 

Absorbance readings taken during expression of PL-IL30 in E. coli BL21 using 

varying IPTG concentrations (Fig 3.25). The point of induction for the three cultures 

in indicated with a red arrow. The growth rates for the three cultures (increase in 

A600nm per hour during exponential phase) was 0.28. 
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It was deduced from densitometry that there was no significant difference between 

the amount of soluble protein produced upon induction with 50 μM IPTG and any 

higher concentration of the compound (43% of the soluble protein consisted of PL-

IL at 50 μM IPTG, compared to 44% at 500 μM and 42% at 1 mM). Increasing the 

IPTG concentration from 50 μM to 1mM concentration was found not to 

significantly reduce the growth rate of the cells (Fig 3.18), however, to save on 

reagents, 50 μM of IPTG was concluded to be the optimal induction concentration. 

The harvesting point was then measured by examining the soluble cell extract of an 

active culture at set points post-induction for both PA-IL in E. coli KRX (Fig 3.19) 

and PL-IL in E. coli BL21 (Fig 3.20). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.19: Expression of PA-IL in E. coli KRX.  Analysis of the expression of the 

protein PA-IL30 from the plasmid pPA-IL30 in E. coli KRX by 20% SDS-PAGE. 

Lane 1, Protein molecular weight. marker; Lane 2, Cell extract at point of induction; 

Lane 3, 1 hour; Lane 4, 2 hours; Lane 5, 3 hours; Lane 6 , 4 hours; Lane 7, 5 hours; 

Lane 8, 6 hours; Lane 9, 7 hours; Lane 10, overnight culture; Lane 11, Protein 

molecular weight marker.  
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Fig 3.20 Expression of PL-IL30 in E. coli BL21. Analysis of the expression of PL-

IL  from the plasmid pPLIL30 in E. coli BL21 by 20% SDS-PAGE. Lane 1, Protein 

molecular weight marker; Lane 2, Cell extract one hour post-point of induction; 

Lane 3, 2 hour; Lane 4, 3 hours; Lane 5, 4 hours; Lane 6, 5 hours; Lane 7, 6 hours; 

Lane 8, 7 hours; Lane 9, 8 hours; Lane 10, overnight culture; Lane 11, Protein 

molecular weight marker.  

 

 

 

 

Densitometry and SDS-PAGE were used to deduce the optimal harvesting point for 

the expression of recombinant lectins in E. coli KRX and BL21. From SDS-PAGE 

analysis, it was clear that overnight expression of the lectins significantly reduced 

the amount of both PA-IL (Fig 3.19) and PL-IL (Fig 3.20) visible in the soluble 

fraction. At time-point T6 hours for both fermentations there was shown not to be the 

same percentage of product as was visible at time-point T7hours (38% and 38% for 

KRX; 45% and 44%, for BL21 at T6 hours and T7hours respectively) indicating the T6 

hours time-point was the optimal harvesting point for both strains.  
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3.4 Purification of recombinant  lectins 

 

3.4.1 Purification of untagged lectins 

The lectin PA-IL was initially purified using sepharose 4B (Gilboa-Garber et al., 

1972). This method exploited the proteins natural affinity for the carbohydrate to 

separate it from other proteins present in the cytoplasm of P. aeruginosa. This was 

initially attempted after ammonium sulphate precipitation of PA-IL gave only partial 

purity (Gilboa-Garber, 1972a). A modified version of this technique (Section 2.21) 

was carried out on the cell extract of a 100ml culture of E. coli expressing the lectin 

from the pPA-ILwt plasmid (Section 3.5). Fig 3.21 shows the SDS-PAGE analysis 

of the successful purification of untagged PA-IL using sepharose, using galactose to 

elute bound protein, with an O.D280nm trace of proteins eluted from the sepharose 

column displayed in Fig 3.22. 

 

 

 

Fig 3.21: Purification of untagged PA-IL by affinity chromatography using 

sepharose-4B. Analysis by 20% SDS-PAGE of PA-ILwt purification by affinity 

chromatography using sepharose. Lane 1, Molecular weight marker (sizes given in 

Section 2.29); Lane 2, crude extract; Lanes 3-8, flow through; Lanes 9-12, 100mM 

galactose elution; Lane 13, Molecular weight marker.  
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Fig 3.22: Purification of untagged PA-IL using sepharose 4B. Absorption values 
of the ml fractions from the purification of 10 ml cell lysate from E. coli BL21 

expressing PA-ILwt from the plasmid vector pPA-ILwt (Section 3.3.1), over a 15 ml 

Sepharose 4-B column. 

 

 

 

 

 

It was investigated whether PL-IL and PA-ILmut1 had a similar affinity for 

Sepharose-4B, and whether both lectins be purified from E. coli in the same manner. 

This was done by adding to a sepharose column, the cytoplasmic fraction of an 

induced culture expressing the lectins PL-ILwt and PA-ILmut130 (Section 3.3.1) 

respectively (Fig 3.23A&B), and subsequent elution with galactose or EDTA. 

The PL-IL and PA-ILmut1 molecules could not be purified from E. coli cell extract by 

affinity chromatography using sepharose. It was later shown in Section 4.7 that PA-

ILmut1 behaved like PA-IL with respect to oligomer assembly, and as a result it was 

not necessary to purify an untagged version of the molecule. 
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Fig 3.23A&B: Attempted purification of PL-ILwt and PA-ILmut1-30 by affinity 

chromatography using sepharose 4B. E. coli BL21 cell lysate expressing untagged 

PL-IL from the plasmid pPL-ILwt (A) and C-tagged PA-ILmut1 from the plasmid 

pPA-ILmut1(B), was passed over a Sepharose 4B column. The resulting fractions 

were analysed by 15% SDS-PAGE. Lane 1, Molecular weight  marker; Lane 2, 

Crude cell extract; Lanes 3- 7, column flow through; Lanes 8-9, 100mM galactose 

elution; Lanes 10, 20mM EDTA elution; (Lane 11, Molecular weight marker) 

 

 

 

PL-IL shares significant homology with PA-IL (Section 1.5), and as a result it was 

thought that it would display many similar physical characteristics that could be 

exploited for its purification. Prior to the discovery that PA-IL could be purified by 

affinity chromatography, the protein was crudely purified from P. aeruginosa cell 

extract using a combination of heating, acidification and salt fractionation (Gilboa-

Garber, 1972a). This approach was used to purify PL-IL from cleared cell lysate 

(Figs 3.24, 3.25 and 3.26). 
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Fig 3.24 Effect of increasing temperature on E. coli cell lysate containing over-

expressed PL-ILwt. Analysis by 15% SDS-PAGE (Section 2.18) of cell lysate 

containing over-expressed PL-ILwt heated to varying temperatures and fractionated. 

Lane 1, Mr; Lane 2, crude cell lysate; Lane 3, 50
o
C soluble fraction; Lane 4, 50

o
C 

insoluble fraction; Lane 5,  60
o
C soluble fraction; Lane 6, 60

o
C insoluble fraction; 

Lane 7, 70
o
C soluble fraction; Lane 8, 70

o
C insoluble fraction; Lane 9, 80

o
C soluble 

fraction; Lane 10, 80
o
C, insoluble fraction.  

 

 

 
 

Fig 3.25: Effect of Acetic Acid on Purification by Heating. Analysis by 15% 

SDS-PAGE (Section 2.18) of cell lysate containing over-expressed PL-ILwt heated 

to varying temperatures in the presence of 1 mM acetic acid. Lane 1, Mr; Lane 2, 

Crude cell extract; Lane 3, insoluble cell extract; Lane 4, 50
o
C soluble fraction; Lane 

5, 50
o
C insoluble fraction; Lane 6,  60

o
C soluble fraction; Lane 7, 60

o
C insoluble 

fraction; Lane 8, 70
o
C soluble fraction; Lane 9, 70

o
C insoluble fraction; Lane 10, 

80
o
C soluble fraction; Lane 11, 80

o
C, insoluble fraction.  
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Fig 3.26: Size fractionation of heat treated cell lysate.  Elutions measured at 

OD280nm of elution fractions colleceted by gel permeation chromatography using the 

Superdex 75 column matrix (Amersham). of heat treated cell E. coli BL21 lysate 

containing PL-ILwt from the plasmid pPL-ILwt. After SDS-PAGE and Mass-

Spectrometry analysis it was confirmed that the highlighted peak represented the 

purified untagged PL-IL.   

 

 

PL-IL remained soluble at temperatures up to 70
o
C, at which point it was the 

predominant soluble protein. When acid was added to the cell extract, the majority 

of PL-IL became insoluble above 50
o
C. As a result, non-acidified, cell extract, 

which had been heated to 70
o
C was added to a gel permeation chromatography 

column, and purified from the remainder of the cellular proteins (Fig 3.26).   

 

3.4.2 Purification of recombinant lectins by IMAC 

The purification of histidine tagged lectins through IMAC involves the exploitation 

of the strong interaction between six histidine residues in the introduced tag and the 

two ligand binding sites of the Ni
2+

 ion, which has been immobilised on a solid 

matrix, in this case nitrilotriacetic acid linked to sepharose/sephadex (Ni-NTA). As 

many cellular proteins will display histidine residues on their surface, several wash 
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steps are employed using imidazole, the active side-chain of histidine, which 

displaces loosely bound proteins, and when used in high concentration, displaces the 

(His)6 tagged recombinant protein. 

Depending on the position of the (His)6 affinity tag, purification conditions will 

vary, as the strength of binding between the tag and the nickel matrix is largely 

dependant on the availability of the histidine residues. The strength of binding will 

affect the strength of wash tolerated by the interaction, and the point at which within 

wash gradient the target protein will be eluted. As a result, wash stringencies were 

investigated for PA-IL30 (Fig 3.29), PA-IL60 (Fig 3.28), PL-IL60 (Fig 3.30) and 

PL-IL30 (Fig 3.31).  

To determine if the matrix composition interferes with the purification of a 

carbohydrate binding molecule, as it is a sepharose based matrix, a PA-IL30 cell 

extract was split and passed through two commercial Ni-NTA columns (Qiagen and 

Amersham) which have slightly different compositions, and an imidazole gradient 

applied as normal (Fig 3.27 and 3.29). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.27 Application of cell lysate containing PA-IL30 to Qiagen nickel-NTA 

resin. Analysis by 20% SDS-PAGE (Section 2.18) of fractions collected from 

purification on a Nickel-NTA resin (Invitrogen) (Section 2.15.1) of a 100ml E. coli 

cell lysate containing the PA-IL30 protein. Lane 1, Molecular weight marker; Lane 

2, crude cell extract; Lane 3, Unbound protein; Lane 4, 20 mM imidazole wash, 

Lane 5, 40 mM imidazole wash; Lane 6, 60 mM imidazole wash; Lane 7, 80 mM 

imidazole wash; Lane 8, 100 mM imidazole wash; Lane 9, 300 mM imidazole 

elution; Lane 10, Molecular weight marker. 
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Fig 3.28 Application of cell lysate containing PA-IL60 to Amersham Ni-NTA 

resin. Analysis by 20% SDS-PAGE (Section 2.18) of fractions collected from 

purification on an Amersham HisTrap nickel affinity column (Section 2.15.2), of 

cell lysate from a 100ml culture of E. coli cell lysate containing the PA-IL60 protein. 

Lane 1, Molecular weigh marker (Section 2.28); Lane 2, crude cell extract; Lane 3, 

Unbound protein; Lane 4, 20 mM imidazole wash, Lane 5, 6 mM imidazole wash; 

Lane 6, 80 mM imidazole wash; Lane 7, 100 mM imidazole wash; Lane 8, 120 mM 

imidazole wash; Lane 9, 1 M imidazole elution;  Lane 10, Molecular weight marker 

 

 

 
 

Fig 3.29 Application of PA-IL30 fermentation lysate to Amersham Ni-NTA 

resin. Analysis by 20% SDS-PAGE (Section 2.18) of fractions collected from 

purification on an Amersham HisTrap nickel affinity column (Section 2.15.2), of 

cell lysate from a 100ml culture of E. coli expressing the PA-IL30 protein. Lane 1, 

Molecular weight marker (Section 2.28); Lane 2, crude cell extract; Lane 3, 

Unbound protein; Lane 4, 40 mM imidazole wash, Lane 5, 60 mM imidazole wash; 

Lane 6, 80 mM imidazole wash; Lane 7, 100 mM imidazole wash; Lane 8, 120 mM 

imidazole wash; Lane 9, 300 mM imidazole elution; Lane 10, Molecular weight 

marker. 
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Fig 3.30: Application of cell lysate containing PL-IL60 to Amersham Ni-NTA 

resin. Analysis by 20% SDS-PAGE (Section 2.18) of fractions collected from 

purification on an Amersham HisTrap nickel affinity column (Section 2.15.2), of 

cell lysate from a 100ml culture of E. coli expressing the PL-1L60 protein. Lane 1 

Mr (Section 2.28); Lane 2, Cleared cell lysate;  Lane 3, Unbound column flow 

through; Lane 4, 40mM imidazole wash; Lane 5,  60mM imidazole wash; Lane 6, 

80mM imidazole wash; Lane 7, 100 mM imidazole wash; Lane 8, 120mM imidazole 

wash; Lane 9, 300 mM imidazole flush; Lane 10, molecular weight marker. 

 

 

 

 
 

Fig 3.31 Application of cell lysate containing PL-IL30 to Amersham Ni-NTA 

resin. Analysis by 20% SDS-PAGE (Section 2.18) of fractions collected from 

purification on an Amersham HisTrap nickel affinity column (Section 2.15.2), of 

cell lysate from a 100ml culture of E. coli expressing the PL-1L30 protein. Lane 1 

Mr (Section 2.28); Lane 2, Cleared cell lysate;  Lane 3, Unbound column flow 

through; Lane 4, 40mM imidazole wash; Lane 5,  60mM imidazole wash; Lane 6, 

80mM imidazole wash; Lane 7, 100 mM imidazole wash; Lane 8, 120mM imidazole 

wash; Lane 9, 300mM imidazole elution; Lane 10, molecular weight marker 
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From SDS-PAGE analysis it was seen that the position of the (His)6 tag on each 

lectin affected the purification strategy to be employed. PA-IL60 and PA-IL30 could 

tolerate imidazole washes of up to 100 mM and 80 mM respectively, before 

significant amounts of product leached from the column. PL-IL60 and PL-IL30 

could tolerate washes of up to 120 mM and 80 mM respectively. It was also found 

that the composition of the IMAC resin affected the strength of the Ni
2+

 / (His)6 

interaction, as the Qiagen resin was found to bind PA-IL30 more strongly than the 

Amersham resin (Fig 3.27 and Fig 3.29),  
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3.4.3 Protein purification using fast protein liquid chromatography (FPLC) 

FPLC is a form of chromatography that is commonly employed to separate proteins 

from complex mixtures found in soluble cell extracts. It was developed in 1982 by 

Pharmacia and the self-contained system comprises a liquid mobile phase, with a 

usually solid stationary phase. The solvent velocity is controlled by pumps attached 

to a reservoir, and the system has the advantage of being compatible with many 

different column types, which are used depending on what type of separation needs 

to be exploited. In this case, the column type is an Amersham Ni-NTA column 

(HisTrap), which is composed of the same elements used in the manual IMAC 

purification of Section 3.4.2. 

Having determined the optimal IMAC purification strategy for lectins using 

Amersham Ni-NTA resins, this knowledge could be applied to FPLC-compatible 

Amersham HisTrap columns. For large scale purification of recombinant lectins, this 

approach would be preferable to manual gravity-flow purification, as there is more 

control of variables such as flow-rate and pressure as well as having the advantage 

of being able to monitor properties such as conductivity and absorbance.  

Two sample FPLC purification traces are given in Figs 3.32 and 3.33. It is known 

that PA-IL60 is lost at the wash step of 120 mM imidazole (Fig 3.28), and as a 

result, a maximum imidazole wash of 100mM was utilised on the FPLC HisTrap 

column. The protein elution profile can be visualised at OD280nm and can be seen in 

Fig 3.32, with the corresponding SDS-PAGE analysis of each fraction shown in Fig 

3.33. Similarly a PL-IL60 purification strategy using the previously evaluated wash 

stringency of 120 mM imidazole (Fig 3.30) is shown in Fig 3.34 with the 

corresponding SDS-PAGE analysis in Fig 3.35. 
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Fig 3.32: Purification of PA-IL60 over HisTrap FF Crude Column by FPLC. 

Purification profile of cleared cell lysate (Section 2.18), from a 100 ml expression 

culture of E. coli BL21 expressing the protein PA-IL60 from the plasmid pPA-IL60  

passed through the Amersham HisTrap FF crude 1 ml column, using FPLC (Section 

2.21). The blue line indicates the absorbance at A280, the green line, indicates the 

percentage of imidazole contained in the running buffer, while the red markers signify 

the fractionation of the flow-through. The baseline absorbance increasing with respect 

to imidazole concentration is shown with the brown dashed line.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.33 Purification of PA-IL60 by FPLC-IMAC. Fractions collected during the 

IMAC purification of PA-IL60 expressed from pPA-IL60 in E. coli KRX analyzed by 

15% SDS-PAGE (A) and Silver stained (B) (Section 2.16). Lane 1, Mr; Lane 2, cleared 

cell lysate; Lane 3, unbound column flow through; Lane 4, 120 mM imidazole wash; 

Lane 5, 100 mM wash; Lane 6, 300mM imidazole product elution. 
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Fig 3.34 Purification of PL-IL60 over HisTrap FF crude column by FPLC. 

Purification profile of cleared cell lysate from a 500 ml expression culture of E. coli 

BL21 expressing the protein PL-IL60 from the plasmid pPL-IL60 (Section 3.5) 

passed through the Amersham HisTrap FF crude 1 ml column, using FPLC (Section 

2.21). The blue line indicates the absorbance at A280, the green line, indicates the 

percentage of imidazole contained in the running buffer, while the red markers 

signify the fractionation of the flow-through. The baseline absorbance increasing 

with respect to imidazole concentration is shown with the brown dashed line 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.35 Purification of PL-IL60 by FPLC-IMAC. Analysis by silver stained 15% 

SDS-PAGE (Section 2.18) of fractions collected during the IMAC purification of 

PL-IL60 expressed from pPL-IL60 (Section 3.3.2) in E. coli BL21 Lane 1, Mr; Lane 

2, cleared cell lysate; Lane 3, unbound column flow through; Lane 4, 80 mM 

imidazole wash; Lane 5, 80 mM wash; Lane 6, 300mM imidazole product elution. 
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It was found that each lectin could be purified successfully on the FPLC using the 

strategies found optimal in Section 3.4.2. The advantages of purifications using the 

FPLC include the ability to control parameters such as flow-rate, whereas in manual 

purification, gravity flow was relied on. Another advantage of the FPLC system is 

that the quantity of lectin being purified can be accurately determined using the peak 

height and peak volume recorded for the lectin elution. This saves time by 

eliminating the requirement for subsequent protein quantification assays. It was also 

found upon investigation of the purified lectin product by silver-stained SDS-PAGE, 

that no detectable impurities were present (Fig 3.33 and Fig 3.35).  

 

 

 

 

 

 

 

 

3.5 Total yields of recombinant lectin 

The expression conditions were optimised for recombinant N-terminal (His)6 tagged 

PA-IL and PL-IL. The optimised PA-IL30 expression conditions were used for all 

derivatives of PA-IL, including PA-ILmut1. Similarly, the optimal expression 

conditions found for PL-IL30 were used for the expression of all derivatives of PL-

IL. Separate purification strategies were optimised for each recombinant lectin. The 

average yields for each lectin per g/cell paste after expression and purification 

optimisation are given in Table 3.2. The average yield is taken after 5 separate 

fermentations. The g/cell paste value is the weight of cells harvested from a 500 ml 

culture.   
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Table 3.2 Protein yields obtained from optimised expression conditions. 

Lectin E. coli Expression Strain Yield 

PA-ILwt KRX 10-12 mg /5g 

PA-IL60 KRX 20 mg /5g 

PA-IL30 KRX 25-30 mg /5g 

PA-ILmut130 KRX 25-30 mg /5g 

PL-ILwt BL21 2-4 mg/5g 

PL-IL60 BL21 20 mg/5g 

PL-IL30 BL21 20 mg /5g 
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3.6 Discussion 

Extensive optimisation of PL-IL and PA-IL expression was essential due to the high 

quantity of purified analyte required by analytical methods such as mass 

spectrometry and gel filtration chromatography. Optimisation of expression 

conditions is also a pre-requisite for the production of large scale recombinant 

lectins which would be essential for the application of these novel molecules into 

formats such as arrays or lectin affinity chromatography columns.  

Despite their significant variation on an amino acid level (Fig 1.12), it was hoped 

that the expression profiles of PA-IL and PL-IL would prove similar in E. coli 

expression systems. PA-IL has already been successfully expressed in E. coli 

(Avichezer et al., 1992), and this result was repeated in Section 3.2, where the 

addition of the (His)6 affinity tag to the C-terminus of the lectin by the cloning of the 

lecA gene into the pLecB1 expression vector did not adversely affect the proteins 

solubility (Fig 3.3).  

As the genes encoding PA-IL and PL-IL were similar in size, and lacked the same 

restriction sites, the same cloning strategy was employed for both lectins (Fig 3.2).  

The PL-IL protein proved soluble in an E. coli expression system (Fig 3.5) with a 

similar proportion of both JM109 cultures (PA-IL expression and PL-IL expression) 

being comprised of recombinant lectin.  

As the PA-IL molecule has been extensively characterised, with several 3D protein 

structures available, an attempt was made to mutate PA-IL within the sugar binding 

site. The PA-IL sugar binding site is comprised of three loops, two involved in the 

orientation of the essential calcium ion, and one that directly contacts the galactose 

residue (Section 1.9.3). When the family of PA-IL molecules is examined it is clear 

that the calcium binding residues remain highly conserved, with only the sugar 

contacting loop showing considerable variation (Fig 3.36). It was theorized that by 

mutating this sugar binding loop in PA-IL, the sugar-affinities would be altered in 

the mutant. 

 



120 

 

 

 
 

Fig 3.36 Sequence alignment of entire PA-IL-like protein super-family. Amino 

acid alignment of PA-IL like protein sequences that includes sequences from 

Photorhabdus asymbiotica (Pas), Xenorhabdus nematophila (Xnem) and 

Xenorhabdus bovienni (Xbov). Highlighted in green are the amino acid sequences 

mutated to create the mutant lectin PA-ILmut1. The blue square highlights another 

variable region positioned close to the sugar binding pocket in PA-IL. 

 

To prove this concept, the PA-IL sugar-contacting loop was mutated to the 

corresponding loop in PL-IL. A site-directed mutagenesis strategy was employed 

that consisted of amplifying the entire expression plasmid in a PCR reaction, with 

the desired mutations encoded on the reverse primer. This method proved 

successful, with the gene lecAmut1 created, which expressed a soluble protein named 

PA-ILmut1 (Fig 3.10). Another variable region within the family (highlighted in Fig 

3.36) was also mutated using the same strategy, again by changing amino acids in 

PA-IL, to the corresponding amino acids in PL-IL, however this resulted in an 

insoluble protein. As a result, the initial mutant remained the focus of this study. 

 

Having achieved the successful expression of soluble recombinant PA-IL, PA-ILmut1 

and PL-IL in E. coli, the genes lecA, lecAmut1 and plu2096 were cloned into 

commercial pQE vectors (Qiagen). These are high yield expression plasmids which 

have a stronger promoter system than pLecB1, a pKK223-3 derived expression 

plasmid. The optimal E. coli expression strain was then determined from three 

commonly used expression strains, BL21, KRX, XL10Gold. Although most 
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plasmids were constructed within the E. coli strain JM109, this was not included in 

the expression optimisation study as it is not commonly considered an optimal 

protein expression strain, and had previously been shown to express soluble protein 

to a relatively poor level (Figs 3.3, 3.5 and 3.10). Optimisation was not carried out 

for the expression PA-ILmut1, as it was thought that this would share the same 

expression characteristics as PA-IL, which only differs to it by three amino acids. 

The expression optimisation study looked at the cytoplasmic fraction of three 

cultures expressing recombinant lectins from the same plasmid (pPA-IL30 or pPL-

IL30), and the percentage of total soluble protein that was the desired recombinant 

protein was calculated. Though the percentage desired protein may be higher in 

certain strains, the total yield may be higher in another strain, due to a higher cell 

density and therefore total protein. To combat this, samples to be compared were all 

taken at the same O.D. rather then the same time-point, as the strains grew at 

different rates (Fig 3.14). However, even if the same cell mass is present, inefficient 

cell lysis methods may result in more soluble protein being extracted from one 

sample than another. Sonication is not the most efficient lysis method that exists, 

however the other alternative available, freeze-thaw, requires lysozyme which is the 

same size as the recombinant lectins (14.6 kDa), and so would complicate any SDS-

PAGE analysis. As a result, the BCA assay (Section 2.17) was used to estimate the 

total amount of protein present in each sample, which was then diluted to the same 

value prior to loading on SDS-PAGE. 

The optimal E. coli expression strain for PA-IL was determined to be XL10Gold, 

and for PL-IL, BL21. These recombinant proteins were then purified by IMAC 

(Section 3.10) and the samples analysed by mass spectrometry, to ensure no protein 

integrity. However, after mass spectrometry analysis it was discovered that because 

XL10Gold is not a protease deficient strain, a significant amount of proteolytic 

degradation of protein product was occurring. This degredation was not visible by 

SDS-PAGE analysis. A sample trace of PA-ILmut130 degredation after purufication 

is provided in Fig 3.16. Usually, this would be countered by purifying at 4
o
C, except 

when large-scale purification strategies employing the FPLC were required, and this 

was not an option. Protease inhibitors were also considered, however due to the 
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hazardous nature and expense of these molecules, especially in a large-scale protein 

production environment, the protease deficient E. coli KRX strain was selected for 

the expression of PA-IL. Protein products purified from both BL21 and KRX did not 

display the same proteolytic degradation of product. The total percentage protein 

yield for this strain was less than XL-10Gold, but total quantity was sacrificed in 

favour of protein quality.   

Having determined the optimal strain for the expression of recombinant PA-IL was 

KRX, and for PL-IL was BL21, the colony blot method was utilised to distinguish 

between clones that have high expression rates, as freshly transformed colonies can 

possess highly varying expression rates. An example dot-blot is given in Fig 3.15, 

where the majority of colonies expressed the same level of protein, with only a few 

possessing significantly higher or lower expression rates. This experiment has its 

limitations however, as it does not distinguish between soluble and insoluble protein.  

As the chosen strains were BL21 and KRX, with KRX being a derivative of BL21 

(Table 2.1), expression conditions were optimised for BL21, assuming that they 

would transfer to KRX. Induction by IPTG is routinely done at 50 μM concentration 

once the O.D600nm reaches 0.5-0.6. However, it is known that PA-IL has a very high 

affinity for hyrophobically derivatised galactose molecules (Section 1.9.3), an 

example of which is IPTG. As a result, the effect of induction with varying levels of 

IPTG was investigated by looking at the percentage of soluble and insoluble product 

produced at certain stages of the fermentation. As expected, 0 μM IPTG still allowed 

the expression of low levels of product. The BL21 strain is known to be a leaky 

expressor, as unlike KRX and XL10Gold, it does not contain the lacI
q
 mutation, 

which results in an overproduction of the Lac repressor protein. As a consequence, 

expression can occur without the addition of the repressor binding molecule IPTG. It 

was concluded that increasing the IPTG concentration did not result in a greater 

amount of recombinant protein being expressed to the soluble fraction (Fig 3.17), 

and that dramatically increasing the IPTG concentration adversely affected the cells 

growth rate (Fig 3.18), and would have a negative impact on protein yield as a result.  

It was also determined that the optimal harvest time for fermentation in both E. coli 

KRX and BL21 was 6 hours post-induction (Fig 3.19 and Fig 3.20) as the 7 hours 
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and overnight samples showed no greater percentage increase in soluble 

recombinant lectin. It is possible that at his point aggregation of the product within 

the cytoplasm results in a limit to how much lectin can be produced.  

Having evaluated the conditions for the optimal expression of the recombinant 

proteins within the cell, a purification strategy was then investigated to recover the 

maximum amount of recombinant protein from the soluble cell extract whilst 

maintaining the highest level of purity.   

PA-IL, as expected, bound to sepharose, and eluted with galactose, and as a result, 

could be purified from E. coli cell extract by affinity chromatography (Fig 3.21). 

Without prior knowledge of the sugar binding affinities for PL-IL and PA-ILmut1, it 

was unknown whether the same strategy could be employed for these lectins. They 

did not bind sepharose (Fig 3.23), indicating either an alternative binding specificity, 

or a greatly reduced affinity to sepharose compared to that of PA-IL. Rather than 

cloning a cleavable (His)6 affinity tag, which would require optimization of the 

proteolytic cleavage step, PL-IL was purified by a crude mixture of gel filtration and 

heating. Though acidification was reported to aid in PA-IL purification, it resulted in 

the loss of significant amounts of PL-IL. However, the considerable stability of the 

PL-IL structure is seen when the majority of other cellular proteins are denatured, 

leaving PL-IL soluble. Gel filtration was then used as a polishing step in the 

purification.  

IMAC purification strategies were employed for the purification of (His)6 tagged 

lectins. PA-IL30 and PA-IL60 could tolerate imidazole washes up to 80 mM and 

100 mM respectively, with PL-IL30 and PL-IL60 tolerating 80 mM and 120 mM 

strength washes respectively. These optimised conditions were transferred to the 

automatic FPLC system, which would be employed in the large-scale manufacture 

of any recombinant lectins. The high level of purity obtainable by solely using 

IMAC can be seen by the highly sensitive silver stain method, whereupon, no 

impurities were detectable (Fig 3.33 and Fig 3.35).  
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4.0  Structural Analysis of Recombinant PA-IL, PA-ILmut1 
and PL-IL 
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4.1 Introduction 

The expression of recombinant lectins has been reported previously in E. coli where 

it has been shown biologically active plant lectin may be produced (Section 1.8.5). 

This is a useful alternative to traditional lectin production that required large 

volumes of source material. For example, the SALT lectin from Oryza sativa was 

expressed and purified from E. coli (Branco et al, 2004). Previous studies required 

large volumes of rice plant roots to be used as the protein source.  

The effects of affinity tags, incorporated into the recombinant lectins produced in 

these E. coli expression systems are less well characterised. However initial work 

has been undertaken. For example, PTA agglutinin from P. ternata which was 

expressed in E. coli with a (His)6 affinity tag which was found to be biologically 

active. Good yields comparable to those seen in Chapter 3  of  this thesis were also 

achieved (Lin et al, 2003). Another lectin purified in this way was the galactophilic 

lectin from Sarcocystis muris, which was found to be fully biologically active after 

the addition of the affinity tag (Klein et al, 1998). In this chapter, the effects of the 

addition of affinity tags to the physical properties of the recombinant lectins PA-IL 

and PL-IL were examined.  

 

 

 

 

4.2 Biochemical properties of native PA-IL and PL-IL 

Previous studies have shown that native PA-IL consists of 121 amino acids , with 

amino acid sequencing determining that one sub-unit has a Mw of 12,754 Da and a 

pI of 4.94 (Avichezer et al., 1992). Crystallographic data indicates the formation of a 

tetramer in the native state containing a central hydrophobic pocket and four 

exposed sugar binding sites, one on each sub-unit (Karaveg et al., 2002; Cioci et al., 

2003) . This will be discussed further in Section 1.9.3.  

PA-IL shows significant sequence homology to PL-IL (Section 1.9.2), and using 

PA-IL as a template, the amino acid sequence for PL-IL was submitted to the 3D-
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Jigsaw Comparative Protein Modeling  web server (Section 2.30), which provides an 

automatic protein homology modeling service (Bates et al., 2001). The predicted 

structure for PL-IL is shown in Fig 4.1 where it is compared with the structure of its 

homologue, PA-IL. Significant similarities are visible throughout the core of the 

molecule with many sheets and loops displaying an identical structure. Some areas 

of variation include the extremities of the molecule which include the sugar binding 

loops and the regions that play a role in oligomerisation in PA-IL. 

With respect to PL-IL, there has been no reported investigation of the physical 

structure other than the pI being reported as 5.06 and the relative molecular mass at 

12.96 kDa (Turlin et al, 2006).  

 

 
 

 

 
 

Fig 4.1 Monomeric structure of PL-IL compared to PA-IL as predicted by the 

3D-Jigsaw Protein Comparative Modelling Server. Cartoon images of the PA-

ILwt monomer (green) and the PA-ILmut1 (red) monomer at both the backbone and 

protein surface levels. Image is displayed using Pymol (Section 2.30) PDB Code 

1L7L. 
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4.3 Construction of a standard curve for lectin molecular 

weight determination by gel permeation chromatography 

To investigate the quaternary structure of the recombinant lectins gel permeation 

chromatography (GPC) was employed using the superdex 75 gel filtration matrix. 

This technique separates proteins based on the retardation of lower relative 

molecular mass proteins within porous beads and the passage of higher relative 

molecular mass proteins, as they are forced through a packed column. The larger 

proteins will pass through the column more rapidly than smaller proteins , and their 

exact size can be elucidated by comparison with a set of standards used to create a 

standard curve (Fig 4.2 and 4.3). The standards included bovine serum albumin, 

bovine carbonic anhydrase, ovalbumin, myoglobin and cytochrome C.  

Equation 4.1 was used to create the standard curve 

 

Equation 4.1     
ot

et

a
VV

VV
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In this equation Vt represents the fill volume, Vo, the void volume and Ve the elution 

volume of the protein standard. These were then plotted against the log of the MW 

to create the graph in Fig 4.2. The elution of each protein on the column can be seen 

in Fig 4.3. 
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Fig 4.2 Development of size exclusion chromatography standard curve. The 

protein molecular weight standard curve was created using size exclusion 

chromatography, with the Superdex 75 10/300 High Performance Column (GE 

Healthcare) (Section 2.22). Void volume (Vo) of 7.325 ml was determined from the 

elution volume of blue dextran, and fill volume (Vt) was 18.755 ml, determined with 

acetone. The elution volumes of protein standards were as follows; BSA, 8.871 ml; 

Carbonic Anhydrase, 10.98 ml; Ovalbumin, 9.67 ml; Cytochrome C, 12.601 ml; 

Myoglobin, 11.80 ml. These values were used to construct a plot of Ka versus log 

MW. This could be in turn used to calculate the relative MW of all lectin samples 

that were eluted in this range. 

 

 

 

 

 

 

Table 4.1 Construction of a protein molecular weight standard curve for the 

Superdex 75 high performance column (GE Healthcare) at pH 7.2 in PBS.  

Standard Elution Volume Expected MW logMW Ka Actual MW %Error 

Cytochrome C 12.601 ml 12400 9.43 0.54 12652 2.04 

Myoglobin 11.8 ml 17600 9.78 0.61 18100 2.85 

Carbonic anhydrase 10.98 ml 29000 10.28 0.68 26115 -9.95 

Chicken albumin 9.67 ml 45000 10.71 0.79 46908 4.24 

BSA 8.871 ml 66000 11.10 0.86 67046 1.59 
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Fig 4.3 Elution of protein standards on Superdex 75 column. The elution profiles 

of standard proteins using gel permeation chromatography with the Superdex 75 

column. The optical density at OD280nm of eluted protein is plotted against the 

elution volume.  The elution peak volumes were used in the construction of the 

standard curve (Fig 4.2) 

  

 

 

  

200 
 

 

0 
 

 

50 
 

 

100 
 

 

150 
 

 

250 
 

 

m
A

U
 

  

 4                   8                   12                    16                 20 
 

 
Elution Volume (ml) 

 

 

Blue Dextran & Acetone 

BSA 

Ovalbumin  

Carbonic Anhydrase 

Myoglobin 

Cytochrome C 

 



130 

 

4.4 Investigation of lectin compatibility with Superdex 75 

GPC column 

 

The Superdex 75 10/300 GL gel permeation chromatography column (GE 

Healthcare; Uppsala, Sweden) is composed of cross-linked agarose and dextran (Fig 

4.4), oligosaccharides for which a lectin could display an affinity. To determine if 

binding was occurring between a lectin and the column matrix, PA-IL (Fig 4.6) and 

PL-IL (Fig 4.7) were applied to the column under normal conditions in the presence 

of competing raffinose sugar for which both lectins have a high affinity (Section 

5.2). The sample and mobile phase both contain 50 mM raffinose to ensure 

competition throughout the entire run. Any difference in elution volume between the 

sugar replete and sugar deplete samples could then be accounted for by matrix-lectin 

interaction.  

 

 

 

 

Fig 4.4 Schematic view of a superdex 75 bead composed of dextran and cross 

linked agarose. Average bead size is 13µm. (Image taken from Amersham Ltd.). 
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Fig 4.5 The adsorption A280nm of PA-IL through the Superdex 75 10/300 column 

in the presence/absence of raffinose. The elution profile of PA-IL30 (Section 

3.3.1) is indicated with a brown line, with the profile of the same lectin in 50mM 

raffinose highlighted in blue. Peak maxima are at 11.425 ml and 11.487 ml 

respectively.  

 

 

 
 

 

 

Fig 4.6 The adsorption A280nm of PL-IL through the Superdex 75 10/300 column 

in the presence of raffinose. The elution profile of PL-IL30 (Section 3.3.1) is 

indicated with a brown line, with the profile of the same lectin in 50mM raffinose 

highlighted in blue. Peak maxima are at 9.882ml and 9.829 ml respectively. 
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It was found that both PA-IL had the same elution volume in raffinose replete and 

raffinose deplete conditions in the Superdex 75 column (Fig 4.5). Similarly, the  PL-

IL lectin did not elute any sooner in the presence of raffinose (Fig 4.6). This 

indicates no sugar-specific interaction with the column matrix which would have 

otherwise contributed to false elution volume values later in the study.  

 

 

 

 

4.5 Determination of lectin size using Superdex 75 GPC  

As outlined in Section 2.27, 100l of 1 mg/ml lectin was analysed using gel 

permeation chromatography. The lectin was suspended in PBS, pH 7.2 in order to 

ascertain its multimeric structure under native conditions. Having elucidated that no 

sugar-specific interactions were occurring between the lectins and the gel matrix, 

evaluation of lectin size was undertaken. Samples were applied to the column in 100 

l volumes at a concentration of 1 mg/ml, in various PBS-based buffers (Section 

2.20), and the peak heights recorded were converted into relative molecular weights 

using the standard curve created in Section 4.2.  
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Fig 4.7 Elution Profile of PA-IL. The OD online analysis of purified PA-IL in PBS 

pH 7.2, passing through the Superdex 75 10/300 gel filtration column. Three large 

peaks can be seen. In blue is the elution profile of PA-ILwt with an elution volume 

of 9.87 ml, in grey the elution profile of PA-IL60 with an elution volume of 9.91 ml, 

and in green the elution profile of PA-IL30 with an elution volume of 11.48 ml. 

Impurities are visible as smaller peaks at 17 ml elution volume.  
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Fig 4.8 Elution Profile of PL-IL. The elution profile of recombinant PL-IL using 

gel permeation chromatography with the Superdex 75 column. The optical density at 

OD280nm of eluted protein is plotted against the elution volume. Three large peaks 

can be seen. In cyan is the elution profile of PL-ILwt with an elution volume of 9.78 

ml, in dark blue, the elution profile of PL-IL60 with an elution volume of 9.75 ml 

with a smaller peak at 12.3 ml, and in brown, the elution profile of PA-IL30 with an 

elution volume of 10.03 ml. A large acetone peak can be seen at 19 ml. Acetone is 

added to some samples as an internal control. 
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Table 4.2 Average Molecular Weights Obtained from Superdex 75 GF Column 

Lectin Average Retention 

Time (ml) 

Theoretical Monomer 

Size (Da) 

Calculated 

Molecular Weight 

PA-ILwt (Untagged) 9.87 12761.8 44418.1 

PA-IL60 (C-Tagged) 9.68 (±0.03) 13828.3 41884.2 

PA-IL30 (N-Tagged) 11.484 (±0.05) 14291.9 20518.5 

PL-ILwt (Untagged) 9.78 12884.5 44657.8 

PL-IL60 (C-tagged) 9.75 (±0.02) 13881.5 45321.9 

PL-IL30 (N-Tagged) 10.03 (±0.16) 14356.0 39941.04 

 

 

 

 

 

 

The calculated molecular weights for each recombinant lectin are provided in Table 

4.2. The molecular weights were calculated by measuring the average elution 

volume at which the maximum peak height was eluted from three separate runs and 

correlating these with the standard curve created in Section 4.3. Each lectin was run 

on the column separately. Their elution profiles are plotted together in Fig 4.7 and 

Fig 4.8.  These molecular weights are not clear multimers of the actual monomer 

sizes (for example the predicted tetramer size for PA-ILwt is 51 kDa with the 

trimeric species at 38 kDa with the measured size of the protein was 44 kDa). All 

molecules were determined to have relative molecular masses below the predicted 

size of a tetramer with the exception of PA-IL30, which is measured half-way 

between the expected size of a monomer and a dimer. The differences between the 

predicted molecular weights of each monomer are a result of the (His)6 tag and of 

spacer residues that exist between the tag and the lectin. The pQE30 vector 

incorporates a MRGS sequence before the N-terminal (His)6 tag  and a GS sequence 

between the lectin and tag, while the pQE60 plasmid encodes the RS residues 

upstream of the C-terminal (His)6 tag).  
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4.6 Validation on Superdex GF results using a different 

column matrix. 

Although it was shown that the lectins PA-IL and PL-IL did not interact with the 

matrix in the Superdex 75 gel filtration column (Section 4.5), the values obtained for 

the relative molecular masses of each protein were not comparable to predicted 

relative molecular masses based on their amino acid sequences (Table 4.2). It was 

decided to use another gel filtration matrix to examine protein size and to investigate 

if any non-specific interactions were causing the unexplained protein sizes. 

The Toyopearl HW-50S (Tosoh Bioscences, Germany) column matrix is composed 

of methyl-methacrylate (the compounds structure is displayed in Fig 4.9) ,  and has 

no carbohydrate component. As a result, it could be said that this matrix would be 

more suitable for the examination of carbohydrate binding molecules.  

The HW-50S column had to be poured manually and as a result an extra column 

validation step had to be carried out. Column performance was checked at regular 

intervals, as manually poured columns can be susceptible to compaction over time. 

The number of theoretical plates (N), the figure used to validate column efficiency, 

was determined using the following equation.  

Equation 4.2   
L

x
V

V
N e 1000

54.5

2

2
1 













  

In this equation, Ve corresponds to the retention volume; V1/2 is the peak width at 

half the peak height; and L the peak height (mm). Depending on the matrix type, 

typical values for column performance will vary. Values are calculated by running 

0.5 ml of 0.1% (v/v) acetone over the column at the flowrate to be used for running 

samples. The retention time measured is at OD280nm. The resulting elution profile  

can be seen in Fig 4.10. Values for L, Ve  and V1/2 are measured from this profile and 

imputed into equation 4.2, to obtain N. This is then compared to manufacturers 

operators parameters to determine of the column is operational.  
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Having validated the column, a standard curve was again created using the method 

outlined in Section 4.3 with the same set of standard proteins. The elution profile for 

each standard can be seen in Fig 4.11 with the values for each given in Table 4.3 

 

 

 

 

 

 

 

 

 

 

Fig 4.9 Monomeric and polymeric structure of methyl methacrylate. Stick 

diagram of the monomeric methyl methacrylate and the hydroxylated polymeric 

version that forms the matrix in the gel filtration chromatography column of HW50s.  

 

 

 

 

Fig 4.10 Determination of column efficiency. The elution profile of acetone (0.1% 

w/v) using gel permeation chromatography with the Toyopearl HW50 column. The 

optical density at OD280nm of eluted acetone is plotted against the elution volume. 

Void volume (elution volume for acetone) was determined to be 104.82 ml.  

 

O 

O 

0                  40                   80                  120 

100 
 

0 
 

200 
 

m
A

U
 

 

Elution Volume (ml) 
 

 



138 

 

 
 

 

 

Fig 4.11 Elution of Protein Standards from the Toyopearl HW-50S GPC 

column. The elution profiles of standard proteins using gel permeation 

chromatography with the Toyopearl HW50 column. The optical density at OD280nm 

of eluted standard proteins are plotted against the elution volume. The standard 

proteins are the same as those used in Section 4.4, The elution volume for each 

protein was used in the construction of the standard cure (Fig 4.12). 
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Table 4.3 Construction of a protein molecular weight standard curve for the 

Toyopearl HW50S gel permeation chromatography column at pH 7.2 in PBS  

Standard Elution Volume Expected MW logMW Ka Actual MW %Error 

Cytochrome C 60.88 ml 12400 9.43 0.67 12376 -0.19 

Myoglobin 55.87 ml 17600 9.78 0.75 21978 -0.41 

Carbonic anhydrase 54.12 ml 29000 10.28 0.78 28881 14.92 

Chicken albumin 49.47 ml 45000 10.71 0.84 51717 24.24 

BSA 47.54 ml 66000 11.10 0.87 65848 -0.23 

 

 

 
Fig 4.12 Development of size exclusion chromatography standard curve for the 

Toyopearl HW50S GPC column. The protein molecular weight standard curve was 

created using size exclusion chromatography, with the Toyopearl HW50S GPC 

column. Void volume (Vo) of 39 ml was determined from the elution volume of blue 

dextran, and fill volume (Vt) was 105 ml, determined with acetone. The elution 

volumes of protein standards are given in Table 4.3. These values were used to 

construct a plot of Ka versus log MW. This could be in turn used to calculate the 

relative MW of all lectin samples that were eluted in this range. 

 

 

 

Prior to any investigations using the Toyopearl HW GPC column, its efficiency 

needed to be determined as the column had been poured manually. It is not 

uncommon for air-pockets or ineffective packing to occur during this process. Using 

equation 4.2 and the values obtained from Fig 4.10, the theoretical plate count for 

the resin was determined to be 2014, which was within the operable range for this 

resin. Before the relative molecular mass of any unknown protein could be 

evaluated, a molecular weight standard curve was required. This was constructed as 

before (Section 4.3). The R
2
 value for the standard curve was 0.97.  The standards 

used were in the range of the expected size of monomeric and tetrameric lectins.  
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Fig 4.13 Elution profile of PA-IL in 0.2 M PBS pH 7.2 (Toyopearl HW-50S 

column matrix). The elution profiles of PA-IL proteins using gel permeation 

chromatography with the Toyopearl HW50 column. The optical density at OD280nm 

of the eluted proteins are plotted against the elution volume. The positioning of the 

(His)6 tag at the N-terminus has a drastic effect on the tertiary structure, as the main 

peak for the recombinant lectin is shown to be significantly smaller than the C-

terminally tagged and untagged counterparts. Also identifiable here are varying 

forms of high molecular weight multimers that elute earlier in the gel filtration 

which elute outside the range of the standard curve..  
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Fig 4.14: OD 280nm elution profile of PL-IL in 0.2M PBS pH 7.2. (Toyopearl 

HW-50S column matrix). The elution profiles of PL-IL proteins using gel 

permeation chromatography with the Toyopearl HW50 column. The optical density 

at OD280nm of the eluted proteins are plotted against the elution volume In Blue, C-

terminally tagged PL-IL, in brown N-terminally tagged PL-IL, and in green 

untagged PL-IL. The three lectin variants can be seen to elute in close proximity 

suggesting the position of the recombinant (His)6 tag had little effect.  
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Table 4.4: Lectin sizes calculated using Toyopearl HW-50S column 

Lectin Average  Retention 

Time  (ml) 

Theoretical 

Monomer Size (Da) 

Calculated 

Molecular Weight 

PA-IL Untagged 50.15 (±0.0) 12761.8 47493.9 

PA-IL C-Tagged 50.525 (±0.1) 13828.3 44749.9 

PA-IL N-Tagged 57.265 (±0.3) 14291.9 19476.0 

PL-IL Untagged 49.86 (±0.2) 12884.5 50818.3 

PL-IL C-tagged 49.96 (±0.1) 13881.5 49809.7 

PL-IL N-Tagged 52.18 (±1.3) 14356.0 45536.1 

 

 

 

 

Having successfully created a standard curve for the Toyopearl GPC column (Fig 

4.12), the relative molecular masses of the different recombinant lectins could be 

estimated. PA-ILwt, PA-IL30 and PA-IL60 were run separately three times with 

three representative elution profiles seen in Fig 4.13. The average elution volumes 

for each form of PA-IL lectin are given in Table 4.4 with the respective relative 

molecular masses that correspond to an elution volume also provided. In agreement 

with the Superdex 75 results (Section 4.5), the PA-ILwt and PA-IL60 molecules 

were found to form high molecular weight molecules smaller than the expected size 

of a tetramer (51 kDa and 55 kDa) while the PA-IL30 molecule forms a 20 kDa 

molecule which falls between the expected size of a monomer (14 kDa) and a dimer 

(28 kDa). The PL-IL recombinant molecules respective elution profiles can be seen 

in Fig 4.14 and the result obtained from each provided in Table 4.4. The PL-IL 

results also correspond with those seen on the Superdex 75 column as they form 

structures that lie between the expected sizes of trimers and tetramers.  
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4.7 Determination of PA-ILmut1 quaternary structure by GPC 

In the PA-ILmut1 the amino acids predicted to play a role in carbohydrate binding in 

PL-IL were introduced into PA-IL. Before investigating the binding proprties of the 

mutant lectin it was important to compare the quaternary structures of the wild-type 

with the mutated PA-IL molecules. The proteins were analysed by GPC using the 

HW50S column and their respective elution profiles are presented in Fig 4.15.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.15 Comparison of PA-IL30 and PA-ILmut130 elution profiles. The elution 

profiles of PA-IL30 and PA-ILmut130 using gel permeation chromatography with the 

Toyopearl HW50 column. The optical densities at OD280nm of the eluted proteins are 

plotted against the elution volume. The elution volume of PA-IL30 was 57.31 and 

the elution volume PA-ILmut130 was 56.98. Due to the amino acid changes 

introduced by mutagenesis, the mutant should be 78.2 Da larger per monomer.  

 

PA-IL30 and PA-ILmut130 showed no significant difference when both were 

examined on the HW-50S column matrix. According to the standard curve created in 

Section 4.6, the relative molecular masses of PA-ILmut130 was 20.1 kDa compared to 

19.5 kDa determined for PA-IL30. Consequently, it could be concluded that the 

three amino acids changes introduced in the mutant were not effecting the formation 

of quaternary structures in the molecule. This result means the binding affinities and 

specificities of both molecules can be directly compared as they have the same 

valencies. This is not the case when tetrameric and dimeric molecules are compared.  
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4.8 Determination of lectin quaternary structure by mass 

spectrometry 

 

Mass spectrometry is a method used to determine the relative masses of atoms or 

molecules. An electrical charge is placed on the molecule and the resulting ions are 

separated by their mass to charge ratio (m/z). In Section 3.3.2  mass spectrometry 

was used to evaluate the precise mass of purified proteins by examining the 

charge/mass ratio. Lectins are known to form non-covalent oligomeric complexes in 

their native state and thus the assembly of the oligomeric complex needs to be 

quantified in order to determine the number of subunits present in the molecular 

assembly.   

Careful optimization of operating parameters was required to observe intact non-

covalently associated molecular assemblies as the integrity of the molecular 

assemblies needs to be preserved during phase transition from the solution to the gas 

phase.  

The sample source is one such parameter and a standard source and a nano-flow 

source were compared. The nanoflow source was preferred as it provides 

desolvation (the release of the water electrostatically bound to a particle in solution) 

of ions from aqueous solvents at room temperature.  Sensitivity is also higher due to 

higher desolvation efficiency as the flow volumes are much lower.  An infusion rate 

of 200 nL/min and a capillary voltage of 2.75 kV were found to be optimal for this 

application.  The standard source proved to have broader peaks, resulting from the 

presence of solvent adducts due to ineffective desolvation and the inherently low 

resolving power of the TOF analyzers at higher m/z values. A sample analysis of 

PA-IL using the standard source is shown in Fig 4.16.  

PA-IL is known to exist in its native state as a tetramer and so „native‟ conditions 

were optimized for it. It was found that all forms of PA-IL and PL-IL could then be 

examined under the same electro-spray (ES) conditions and in the same solvent 

(formic acid 0.1% (v/v)) without sample dissociation. 

A mass spectrometry method named collision-induced dissociation (CID) was used 

to break up ions in the gas phase. It dissociates the ions, in this case charged 

http://www.biology-online.org/dictionary/Release
http://www.biology-online.org/dictionary/Water
http://www.biology-online.org/dictionary/Bound
http://www.biology-online.org/dictionary/Particle
http://www.biology-online.org/dictionary/Solution


145 

 

proteins, by accelerating them under high electric potential in the vacuum of the 

mass spectrometer, before collision with a neutral gas. The transfer of kinetic energy 

to internal energy within the analyte results in bond breakage. By using increments 

of higher collision energies, quaternary structure disruption is brought about and the 

degree of multi-valency can then be accurately estimated. Thus the relative internal 

strength of a molecule can be estimated. Through changing the collision energy 

imparted on the lectin molecule, it was then possible to analyze the extent of 

oligomerisation of PA-ILwt, PA-IL30, PA-IL60, PL-ILwt, PL-IL30 and PL-IL60. 

Results obtained could then be compared with those obtained from the GPC 

described in Sections 4.5 and 4.6. 
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Table 4.5: Summary of lectin quaternary structures observed by mass spectrometry 

Lectin Molecular assembly 

observed 

Dissociation 

voltage (V)  

Products observed 

upon dissociation 

PA-IL Tetramer (100%) 10 V Trimer, Dimer, 

Monomer 

PA-IL60 Dimer (100%) 10 V Monomer  

PA-IL30 Dimer (100%) 5 V Monomer 

PL-IL Tetramer (100%) 5 V Trimer, Dimer, 

monomer 

PL-IL60 Tetramer (88%) 

 

Dimer (12%) 

5 V 

 

10 V 

Trimer, Dimer, 

Monomer 

Monomer 

PL-IL30 Tetramer (100%) 10 V Trimer, Monomer 

 

 

Fig 4.17 shows that at sufficiently low accelerating potential (< 5 V) mass spectra of 

PA-ILwt deconvoluted to 51139.14 ± 0.0 Da. It was later shown that commercially 

available wild-type PA-IL deconvoluted to 51665.1 ± 6.5 (methionine is cleaved in 

PA-ILwt which results in the apparent mass difference). At higher accelerating 

potential (10 V) the tetrameric species was partially dissociated into the 

corresponding dimeric and monomeric species.   At 40 V, the tetrameric species 

were completely dissociated into the trimeric species at 38270.5 ± 10.9 Da, the 

dimeric species at 25516.6 ± 0.4 Da and the monomeric species at 12758.7 ± 0.8 Da. 

Under the same operating conditions as for PA-ILwt, the mass spectrum for PA-

IL60 displayed only a dimeric form (Table 4.5). The dimer ion could withstand 

collision activation up to 5 V and started to dissociate at 10 V into a monomeric 

form. Further collisional activation at 40 V produced lower charge state product ions 

corresponding to the monomeric species at 13828.3 ± 1.5 Da (calc. av. mass 13828 

Da) and the dimeric species (27801.8 ± 40.05 Da). 

Similarly to PA-IL60, even at low accelerating potential (1 V), the mass spectrum of 

PA-IL30 displayed the presence of only dimeric (94%) and monomeric ion (6%) 

species, with the tetrameric species being completely absent (Table 4.5).  The 

dimeric form started dissociating at 5 V into the monomeric form while at 40 V, 

dimer ions were completely dissociated into the monomer ions.  The higher charge 
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state monomer ions started to fragment at this potential.  Under „solvent stripping‟ 

conditions monomer and dimer ions deconvoluted to 14308 ± 0.4 (calc. av. mass 

14292) and 28874.8 ± 3.4 Da, respectively.  The observed mass for the monomer is 

16 Da higher than the calculated mass, consistent with retention and subsequent 

oxidation of the terminal methionine residue to methionine sulfoxide in the purified 

lectin protein. This has been reported in other E. coli derived proteins (Spector et al., 

2003). 

The dissociation pattern of PL-ILwt is similar to PA-ILwt, wherein the tetramer ion 

dissociates into the trimer, dimer and monomer ions with asymmetric distribution of 

charge (Fig 4.20).  However, the collision activation required to dissociate the PL-IL 

tetramer ion was appreciably less (5 V vs 10 V) when compared to PA-IL, 

suggesting that PA-ILwt is more stable compared to PL-ILwt. 

PL-IL60 exists as both a tetramer (88%) and a dimer (12%) in its native state (Fig 

4.18). At increasing collision energies (5 V and 10 V) the tetramer began to 

dissociate into dimers and monomers, with only monomer visible at CE 40 V. In 

contrast, PL-IL30 retained its structural integrity until at a collision energy of 20V. 

The trimeric species were still detectable at CE 40V, suggesting it is a slightly more 

stable protein its C-tagged counterpart (Fig 4.19). 

A comparison of the results obtained by ES-MS with those obtained by GPC is 

given in Table 4.6. Assuming that the GPC determines the actual sizes of tetramers 

to fall below what would be expected, the results obtained between the two methods 

agree, with the exception of PA-IL60. This result is examined further is Section 4.9.  

 

 

 

 

Table 4.6 Comparison of ES-MS results with those observed by GPC 

Lectin ES-MS Superdex 75 HW-50S 

PA-ILwt Tetramer Tetramer Tetramer 

PA-IL30 Dimer Dimer Dimer 

PA-IL60 Dimer Tetramer Tetramer 

PL-ILwt Tetramer Tetramer Tetramer 

PL-IL30 Tetramer  Tetramer Tetramer 

PL-IL60 Tetramer & Dimer Tetramer Tetramer 

PA-ILmut130 Dimer  Dimer Dimer 
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4.9 Disruption of quaternary structure by pH and salt 

concentration 

 

 
The quaternary structures determined by gel filtration in Section 4.4 and Section 4.5 

and by mass spectrometry observed structures in Section 4.6 shows discrepancies 

only in terms of the molecule PA-IL60. Each other assembly showed matching 

structures for all techniques. Therefore, the PA-IL60 molecule was investigated 

under more expansive conditions.  

The GPC experiments to date had been conducted at pH 7.2 in PBS, relatively 

neutral conditions when compared to the conditions required for ionisation in the 

mass spectrometer, which required 0.1% (v/v) formic acid. The PA-IL60 molecule 

was then investigated by GPC, under acidic as well as high salt concentration 

solutions , in order to evaluate if the harsher conditions could account for the break 

up of the tetrameric molecule seen in the mass spectrometer (Fig 4.22),  and the 

formation of the dimeric molecule seen in mass spectrometer analysis (Section 4.8) 

The exact conditions used in ES-MS could not be repeated in GPC ,  as the operating 

parameters for the HW-50s and Superdex 75 columns do not allow for pH‟s  ranging 

below 3. Similarly, the buffering capacity of PBS buffers is at its lowest point at pH 

5.6. Therefore, citrate buffer at pH 4 was used to examine the effect of pH on the 

molecule. For comparison, the apparently more stable PA-ILwt molecule was also 

studied under the same conditions (Fig 4.21).  
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Fig 4.21: Elution volumes of PA-ILwt under varying conditions. The elution 

profiles of PA-ILwt using gel permeation chromatography with the Superdex 75 

column using various buffer conditions The elution volume of PA-ILwt was 

unaffected by dripping the pH to 5.6, and only slightly by dropping to pH 4, with 

severe break visible under high salt concentration,  
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Fig 4.22 Elution volumes of PA-IL60 under varying pH and salt conditions. The 

elution profiles of PA-IL60 using gel permeation chromatography with the Superdex 

75 GPC column under various buffer conditions. PA-IL60 has one elution peak at 

9.9 ml. When the PBS pH is dropped to 5.6, a second peak is visible at 12 ml, the 

size of a monomer. When exposed to citrate buffer pH 4, the tetrameric peak moves 

to 10.6 ml, with the monomer peak shifting by the same amount. However, with 

increased salt concentration there was a dramatic break up with these peaks not 

being as well defined.   
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4.10 Determination of the valency of lectins according to the 

hemagglutination assay 

Lectins form structures consisting of two or more identical or highly similar 

subunits, each containing one carbohydrate binding site with the same specificity 

(Sharon and Lis, 2002). It is this property that allows many lectins to agglutinate 

erythrocytes, with each subunit (protomer) binding to one of the array of glycans 

coating the erythrocyte. Thus, the quantity of lectin required to agglutinate a fixed 

concentration of RBCs will be directly proportional to its valency. Traditionally, this 

assay was used to characterise the sugar specificity of a lectin by the addition of 

competing free sugars. However, we propose that the assay can also be used to 

provide information about the type of oligomer assembly present in a lectin 

molecule. In Table 4.6, the relative molecular masses for each of the recombinant 

lectin forms determined by previous methods were compared. To calculate the 

valency of the lectins forms, hemagglutination was utilised (Section 2.23). A fresh 

100 g/ml of each lectin stock was used for each study and serially diluted until the 

hemagglutination limit was reached. Table 4.7 shows the minimum quantity for each 

lectin form required to agglutinate 50 l of 3.5% (v/v) RBCs.   

 

 Table 4.7 Quantities of lectin required for hemagglutination  

Lectin Minimum Concentration 

Required 

 for Hemagglutination 

Quaternary structure 

estimated from GF and 

MS 

PA-ILwt 0.4 µg (±.0.06 µg) Tetramer 

PA-IL60 0.6 µg (±.0.1 µg) Tetramer 

PA-IL30 0.1 µg (±.0.05 µg) Dimer 

PL-ILwt 1.2 µg (±.1.0 µg) Tetramer 

PL-1L30 0.9 µg (±.0.2 µg) Tetramer 

PL-1L60 0.8µg (±.0.15 µg) Tetramer 
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4.11: Discussion: 

Lectins are often describes as VelcroTM type molecules. Although the lectin-

carbohydrate interaction often has a weak affinity this is compensated for by their 

ability to form multivalent molecules that can bind tightly to the targets. 

Consequently, any disruption to a lectins quaternary structure can have serious 

effects on the molecules binding properties and hence its potential on analytical 

platforms. For functional analysis of these lectins it is important to have an 

understanding of the degree of multi-valency of the molecule to be investigated. 

This knowledge can greatly improve the understanding of their functional analysis  

and also aid in the comparison of different lectins.  

Initial gel filtration studies were carried out using the carbohydrate matrix Superdex 

75. After confirming that lectins PA-IL and PL-IL eluted similarly from the column 

in the presence and absence of raffinose (Fig 4.5 and Fig 4.6) it was concluded that 

carbohydrate-lectin interactions were not impeding protein migration through the 

column.   

It was then shown, in the case of PL-IL, that the location of the (His)6 affinity tag did 

not hinder the formation of the native tetramer structure as seen in the untagged 

version (Fig 4.8). This was not the case for PA-IL, where an N-terminal (His)6 tag 

had completely impeded the ability of the lectin to form structures higher than a 

dimer (Fig 4.7).  

As can be seen from Table 4.2, the actual relative molecular masses are consistently 

smaller than those predicted from the amino acid sequence. The one exception being 

PL-IL60, which is only slightly larger. It is theorized that as the standard curve was 

created using globular proteins, it serves as only a rough estimate as to the size of 

the non-globular shaped lectins. The PA-IL molecule (Section 1.9.2) and from 

theoretical modeling, the PL-IL molecule (Fig 4.1) are not globular but instead form 

long narrow structures. As a result it is probable they do not migrate through the 

column matrix at the same rate as globular proteins. When the size of the PA-IL30 

was examined, on both GPC matrices, a molecule of around 20,000 Da was 

estimated. As the monomer is 14 kDa, and a dimer 28 kDa, this value suggests a 



158 

 

truncated dimer of some type. However, if the N-terminally tagged molecule forms a 

shape not resembling a globular protein, the standard curve will not apply and only 

broad conclusions are possible. 

The Superdex and HW-50S GPC matrices, although both composed of different 

materials and employed in columns of different dimensions, gave similar results for 

all lectins tested (Table 4.2 and Table 4.4). It is unlikely that the same non-specific 

interactions are occurring between the lectins and two different matrices. Therefore, 

it can be reasonably concluded that the migration pattern of the lectins through these 

columns are attributable to relative molecular mass and shape only.  

Noticeable on the HW-50S traces are the presence of high molecular weight 

aggregates (Fig 4.13 and Fig 4.14). This may be due to fact that with the HW-50S 

column being much larger than the Superdex column, in length and width, a higher 

concentration of protein was applied. It was often observed that when working with 

these lectins at concentrations of 1 mg/ml or greater, that they would often fall out of 

solution. It is possible that this is what is being seen in these traces, as according to 

the standard curve, these peaks correspond to proteins larger than dextran blue. In 

determining the stoichiometry of the lectins inconclusive results were obtained. For 

example, it was not conclusive whether PL-IL30 formed a trimer or tetramer or if 

PA-IL30 formed a monomer or dimmer. Therefore, another technique was employed 

to investigate lectin assembly. 

Mass spectrometry is a useful technique for protein mass determination but its use in 

the evaluation of multivalent structures is an emerging field. The technique involves 

the transition of lectins from liquid to gaseous phase and the removal of the water 

molecules associated with the protein can result in unnatural interactions. For the 

visualization of the different charged molecules within the electrospray of the mass 

spectrometer it was necessary to suspend the lectins in 0.1% (v/v) formic acid. This 

was also an environment that could lead to results that were not representative of the 

lectin in its native state. However, the results that were obtained by mass 

spectrometry, largely agreed with the gel permeation results (Table 4.6) with the 

exception of PA-IL60, which clearly did not form structures of a higher order than a 
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dimer when examined by ES-MS but formed tetrameric/trimeric structures when 

examined by GPC. 

The mass spectrometry data also provided interesting information about the strength 

of the various assemblies as different collision energies were required to break up 

the oligomers depending on the stability of the structure. 

Many groups have reported a seemingly odd dissociation behavior for large 

multimeric protein complexes and have suggested conformational flexibility of the 

monomeric subunit in the complex is responsible for this phenomenon (Felitsyn et 

al., 2001; Jurchen and Williams, 2003).  In the case of PA-ILwt, initial removal of a 

large amount of charge results in the formation of the lower charge state trimer ion 

and, as such, it appears at higher m/z values than the parent tetramer ion (Fig 4.18).  

With sufficiently high collision activation (>40 V), the trimer ion undergoes two 

successive dissociation steps, each reducing the charge state of the product ions and 

finally resulting in a single envelope corresponding to a monomeric species at 80 V. 

The most abundant charge state shifted from 7+ to 5+ which deconvoluted to 

12758.7 ± 0.8 Da.  This is in close agreement with the average molecular mass of 

12762 Da for the monomer calculated from the amino acid sequence.   

The dissociation patterns of PA-IL30 and PA-IL60 could only be partly investigated 

as the native state of both molecules, according to the ES-MS was a dimer. These 

dimers were relatively stable with relatively high low collision energies (40 V) 

required for the compete dissociation of the molecules. 

A final method was then investigated for the determination of lectin assembly.  

Hemagglutination has been historically used as a technique to evaluate if a lectin had 

the ability to form multivalent structures. In this study it was used to differentiate 

between dimeric and tetrameric forms of the same lectin. This is done on the basis 

that the length, width and breadth of a monomeric unit are 167Å, 50 Å and 51 Å 

respectively (Cioci et al, 2003) with the diameter of a red blood cell at ~6µm. As a 

result it is unlikely that a tetramer will have the ability to attach to more than two 

different red blood cells ,  with two sub-units in excess (Fig 4.23). With this in mind, 

two lectin solutions with similar lectin concentrations, have the ability to agglutinate 

to very different levels according to what their quaternary structure is. From the 
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lectin hemagglutination levels seen in Table 4.7 it is clear that the PL-IL molecule 

agglutinates at the same level regardless of tag location confirming the results seen 

by GPC and ES-MS. PA-IL results show that roughly twice as much untagged and 

C-tagged PA-IL is required for hemagglutination than N-tagged PA-IL. This 

suggests that the results seen in GPC are more representative of the lectins 

quaternary structure than the results seen in ES-MS. The amount of PA-ILwt 

required for hemagglutination is comparable to that found in the literature (5 μg) for 

previous PA-IL studies (Giboa-Garber and Sudakevitz., 1999) giving further 

confidence to the results displayed.  

As a final attempt to explain the difference between GPC and ES-MS results, the 

PA-ILwt and PA-IL60 molecules were analyzed by GPC under various conditions. 

Fig 4.22, shows that the molecule is more susceptible to break up than the wild-type 

(Fig 4.21). Varying conditions did not produce any peaks in the region where a 

dimer would be expected to elute. Therefore, conditions seen within the MS were 

not reproducible. However, it can be seen that the molecule does dissociate under 

acidic conditions and hence this could possible be the reason for the discrepancy 

within Table 4.6.  

 

 

 

 

 

 

 

Fig 4.23 Illustration of hemagglutination by tetrameric and dimeric lectins. The 

size difference between the cell and the lectin are not to scale, but from the diagram 

it can be seen that in the hemagglutination reaction it is unlikely that one lectin 

molecule will be involved in the binding of more than two cells, due to stearic 

hindrance. In the second diagram, it is shown how the dimeric molecule will 

agglutinate the red blood cells in the same manner, though if present in the same 

concentration as a tetrameric lectin, will be able to agglutinate twice as many red 

blood cells, due to there being twice as many „active‟ molecules. Image is drawn 

using ChemBiodraw (CambridgeSoft Ltd) 

 

RBC 
 

Tetrameric Lectin 

 

Dimeric Lectin 

A B 



161 

 

 

 

 

 

 

 

 

5.0 Determination of the Sugar Specificity of 
Recombinant Lectins 
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5.1 Introduction 

The cloning and expression of active recombinant PL-IL and PA-IL lectins is 

described in Chapter 3. Subsequent structural characterisation of these molecules 

was carried out through a number of complimentary methods (Chapter 4). The 

functional characterisation of these molecules is now explained through a series of 

specificity and affinity analysis experiments. It is important at this juncture to 

highlight that the specificity of a molecule refers to the selection of a ligand to its 

receptor, while the affinity relates to the strength of the attraction between ligand 

and receptor. Traditionally, lectins were characterised through the hemagglutination 

assay (Section 2.23). This method is utilised in this study, however the ELLA 

(Section 2.24) is proving a more useful method for glycobiologists, as it provides 

more detailed information about both lectin specificity and affinity.  
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5.2 Determination of lectin specificity by hemagglutination 

inhibition 

The hemagglutination assay was introduced in Section 4.7, where it was utilised to 

investigate the valency of the recombinant lectins. The traditional use of the 

hemagglutination assay is for the determination of lectin specificity. It was using this 

technique that the first lectins were investigated and the human blood groups were 

identified in the 1950s (Section 1.6). 

In summary, the lectins agglutinate red blood cells in a U-bottomed well (as opposed 

to red blood cells falling out of suspension by gravity), and the minimum amount of 

lectin required for the agglutination of a fixed quantity of red blood cells is termed 

one hemagglutination unit (HU). The fixed quantity of red blood cells used in this 

study was 3.5% (v/v), as some researchers use 3% (v/v) whilst others use 4% (v/v). 

The amount of each lectin required for 1 HU is already given in Table 4.5. A HU 

value for the mutant lectin PA-ILmut1 is not provided, as the quantity required for 

hemagglutination is in the region of 100 times greater than PA-IL or PL-IL, 

indicating a significant difference in affinity or specificity from PA-IL and PL-IL. It 

is worth noting at this juncture that the assay is dependant on the lectin having a high 

specificity for the sugars displayed on the red blood cell. Red blood cells from 

another animal, such as rabbit or mouse may display sugars which would have been 

more readily agglutinated by PA-ILmut1, however rat red blood cells were the only 

erythrocytes available constantly. Consequently, PA-ILmut1 characterisation using the 

technique could not proceed. As seen later, other methods were thus employed.  

Having determined the amount of lectin required for 1 HU (values displayed in 

Table 4.7), inhibition assays could be carried out. To directly compare the 

specificities of two lectins, it is vital that they have the same valency, as a result, 

untagged PA-IL and PL-IL were used for this study, as from Chapter 4, it was 

known that the untagged versions of each exist in the tetrameric form. The assay was 

carried out by the addition of 8 HU of lectin to a serial dilution of a free sugar, 

which was left to bind for twenty minutes before the addition of a fixed quantity of 

red blood cells. The higher the affinity of the sugar for the lectin, the less will be 
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required to inhibit the agglutination reaction. A primary screen of the main mono- 

and di-saccharides was carried out to investigate the specificity of the lectins (Table 

5.2).  

Having concluded that both lectins have a strong preference for galactose and 

glucose, more complex oligosaccharides and derivatised galactose molecules were 

employed in a more concentrated specificity study, the results of which are shown in 

(Fig 5.1). The structures of the more common oligosaccharides are provided in Table 

5.1. Among the glycans tested, PL-IL reacted most strongly with were raffinose and 

stachyose as well as melibiose while PA-IL agglutination was most readily inhibited 

by the addition of monomeric galactoses with hydrophobic groups (phenyl-βGal and 

nitrophenyl-βGal). 

It was also investigated whether the agglutination of red blood cells by PL-IL was in 

some way affected by variables such as temperature (Fig 5.2), as was found to be the 

case in a previous study, where PA-IL was found to be more active in the range 0
o
C 

to 20
o
C than at warmer temperatures (Gilboa-Garber and Sudakevitz, 1999). Due to 

the impracticalities of carrying out ELLA assays at colder temperatures, the results 

were not applied in terms of exploiting the higher activity, however this data is 

useful when discussing issues such as low activity and specificity later in the study.  

  

Table 5.1 Structure of common oligosaccharides 

Name  Structure Name  Structure 

Cellobiose Glcβ(1-4)Glc Raffinose Gal(1-6)Glcβ(1-2)Fru 

Lactose Galβ(1-4)Glc Stachyose Gal(1-6)Gal(1-6)Glcβ(1-2)Fru 

Maltose Glcα(1-4)Glc Melibiose Gal(1-6)Glc 

Sucrose Glcα(1-2)Fru   
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Table 5.2 Hemagglutination inhibition against a range of sugars 

Sugar PA-IL PL-1L 

Agarose X X 

Arabinose X X 

Cellobiose X X 

Fructose X X 

Fucose X X 

Galactose   

GalNAc   
GlcNAc   

Glucose   
Lactose   

Maltose   
Mannose X X 

Ribose X X 

Sucrose X X 

Xylose X X 
 

(√ denotes the ability to inhibit RBC agglutination at 5 mM concentration. X denotes no inhibition at 

the same concentration) 
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Fig 5.1 Hemagglutination inhibition of PA-IL and PL-IL using simple glycans. 

Graph showing the quantities of sugar (nmol) required to inhibit hemagglutination of the 

molecules PA-IL and PL-IL. Each lectin was used at a concentration of 8HU, to which 

serial dilutions were added. Inhibition is observed as red blood cells having fallen to the 

centre of the well through gravity.  
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Fig 5.2 Effect of temperature on hemagglutination activity. Hemagglutinations 

were carried out at various different temperatures using different quantities of lectin. 

One HU is the quantity of lectin required for agglutination at room temperature. 

When less or more than this quantity is required for agglutination, the percentage 

activity was calculated. 

 

 

 

 

The result that PA-IL and PL-IL readily agglutinate rat RBCs, while PA-ILmut1 does 

not, immediately indicates a drastic difference in specificity/affinity between the 

molecules. Secondly, it is also clear that PA-IL and PL-IL share clear similarities in 

their preference for galactose containing molecules (Table 5.1), and in their 

preference for oligosaccharides over monosaccharides (Fig 5.1), as low 

concentrations of these sugars are required to inhibit hemagglutination. PA-IL, in 

agreement with previous studies (Chen at al., 1998) has the highest preference for 

hydrophobic derivatives of galactose, namely phenyl-βGal and nitrophenyl-βGal. 

Raffinose in contrast preferred raffinose which has the structure                      

Gal(1-6)Glcβ(1-2)Fru, stachyose, which is composed of  Gal(1-6)Gal(1-

6)Glcβ(1-2)Fru and melibiose which is Gal(1-6)Glc. A common feature of these 

oligosaccharides is that they terminate in alpha-linked galactose. Both raffinose and 

stachyose share the terminal Glcβ(1-2)Fru structure, commonly known as sucrose. 
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Both lectins show a very low affinity for sucrose, so it can be concluded that it is the 

α(Gal) linkage to which they are displying an affinity. 

It was also shown that the lectins PA-IL and PL-IL agglutinate red blood cells more 

efficiently at low temperatures (Fig 5.2), with both lectins displaying a significant 

drop in hemagglutination activity above 25
o
C. It is unknown whether lectin affinity 

is increased at this temperature due to a change in its structure, or if the rat 

erythrocytes undergo a physical change whereby glycan units are more available to 

the lectin.  

 

5.3 Establishment of the enzyme linked lectin assay (ELLA) 

The principle of the ELLA has been outlined in Section 1.8.1, but in summary the 

ELLA is a modified ELISA where the primary antibody has been replaced by a 

lectin, and the protein target is a glycoprotein (McCoy et al., 1983; Kirkeby et al., 

2002). In this study, a (His)6 affinity tag that serves as a purification tool and a target 

for a secondary antibody has been engineered into the lectin. The effects of this tag 

have already been established at a structural level (Chapter 4), and from preliminary 

hemagglutination analysis it is known that though this tag did affect valency, it did 

disrupt sugar-binding activity (Table 4.7). If the (His)6 tag was shown to destroy or 

reduce sugar binding activity, other tags such as strepII biotin could similarly have 

been engineered into the lectin. Lectins are most commonly tagged with biotin, with 

many biotinylated lectins now commercially available. One study also described the 

labelling of lectins with a radioactive isotope such as Na
125

I and the binding event 

detected by measuring radioactivity (Spiro et al., 1984).  

All lectin, glycoprotein and secondary antibody concentrations used in the ELLA are 

outlined in Section 2.24, and any deviations from this method are highlighted. 

A number of different blocking agents and detergents were investigated to maximise 

the positive signal emitted by the lectin in the assay. From the literature it has 

already been proven that optimisation was necessary for the ELLA (Kim et al., 

2008) as some lectins used were found to bind to the blocking agent BSA. As the 

lectin is usually diluted in a 1% (w/v) solution of the blocking agent prior to 
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incubation in the assay (See Section 2.24), any interaction that is occurring between 

the lectin and BSA would severely quench any binding signal. As a result, a variety 

of blocking agents and detergents were investigated in terms of the binding of PA-IL 

and PL-IL.  

In lectin arrays (eg Procognia Ltd lectin array) or other lectin assay systems, 

glycoproteins are often denatured. Therefore and the effect of glycoprotein 

denaturation in ELLAs was investigated (Fig 5.4). In this assay, a range of 

glycoproteins were denatured by heating, and the binding of three lectins (PA-IL, 

PL-IL and ConA) to native and denatured glycoproteins was compared. 

Many commercially available plant lectins such as ConA are employed in this study. 

These lectins are bioinylated, and their binding in the ELLA detected through the 

use of a HRP-labelled anti-biotin antibody. The specificities of all plant lectins are 

provided in Appendix A. 

Calcium has already been shown to be necessary for the function of PA-IL (Cioci et 

al, 2003). This is due to the location of the ion in the sugar binding pocket, where it 

makes direct contact with the galactose residue upon binding. The chemical 

compound ethylenediaminetetraacetic acid (EDTA) is widely used to sequester di- 

and trivalent metal ions. When used in the ELLA format, the dependence of the 

lectins on metal ions can easily be elucidated. To investigate the role of calcium in 

PA-IL, PL-IL and PA-ILmut1 binding lectins were incubated with 20 mM EDTA for 

two hours prior to buffer exchanging into TBS, and subsequent incorporation into 

the ELLA assay. As shown in Fig 5.5, incubation of the three lectins with EDTA 

significantly inhibited the binding of each lectin indicating the necessity of calcium 

for binding 
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Fig 5.3 Comparison of blocking reagents in ELLA. Quantitative detection of 

lectin bound to BSA coated and uncoated plates assayed by the activity of a HRP-

linked secondary antibody (OD450nm). The binding of PA-IL30, PL-IL30 and the 

control lectin ConA to differently blocked empty wells in the Nunc ELISA plate is 

compared.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.4 Comparison of native and denatured glycoprotein in ELLA. Quantitative 

detection of lectin bound to various glycoproteins assayed by the activity of a HRP-

linked secondary antibody (OD450nm). The effect of native immobilisation (A) and 

denaturing immobilisation (B) on lectin binding signal was compared. Three 

recombinant lectins were used to evaluate lectin binding. Slightly higher signals 

were seen when lectins were incubated with denatured glycoproteins, though the 

error also increased. 
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Fig 5.5 Calcium is required for PL-IL and PA-ILmut1 binding. Quantitative 

detection of lectins bound to thyroglobulin assayed by the activity of a HRP-linked 

secondary antibody (OD450nm). The effect of the removal of calcium ion from the 

lectin binding pocket by EDTA on lectin binding to the glycoprotein porcine 

thyroglobulin was evaluated. 

 

 

It was discovered the coating the ELLA well with BSA significantly lowered the 

background binding signal within the ELLA assay, which could be further reduced 

by the addition of detergents. It can be seen from Fig 5.3 that the detergent Triton 

X100 proved slightly more effective than Tween 20, while blocking of the well with 

BSA was preferable to not having a blocking step, as the binding signals were 

consistently lowest for PA-IL, PL-IL and a positive control lectin, ConA when BSA 

coated plates were used in conjunction with Triton X 0.1 (% v/v).  The effect of 

glycoprotein denaturation was also investigated. It was concluded that denaturation 

of the glycoprotein did slightly increase the binding signal, however the error also 

increased (Fig 5.4) and consequently, in future assays glycoprotein denaturation was 

not employed. Finally, it was confirmed that like PA-IL, PL-IL and PA-ILmut1 have a 

dependency on a metal ion which is removed through the addition of EDTA (Fig 

5.5). 
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5.4 Quaternary structure affects lectin detection in ELLA 

In Chapter 4 it was determined that the position of the (His)6 tag could disrupt 

quaternary structure of PA-IL, but not PL-IL. It is important to understand the 

degree of multi-valency of a lectin when investigating the affinity of a lectin, as this 

is directly related to its valency. This relationship is even more important in the 

ELLA method, as the detection of the lectin-binding event is dependent on the 

binding of a secondary antibody to a ligand present on the lectin molecule. If the 

lectin is tetrameric, there will be four secondary antibody targets available which 

will indicate the binding of one molecule, compared to only two for a dimer. 

Consequently, affinities of tetramers and dimers cannot be directly compared using 

the method. As a result it would have been desirable to use the PA-IL60 and PL-

IL60 molecules in the assay, as both formed tetramers according to Chapter 4. 

However, though the (His)6 tag did not disrupt the functionality of the lectin 

according to the hemagglutination assay (Section 4.10), the binding of the (His)6 tag 

was not detectable by interrogation with an HRP-linked α-(His)6 antibody when 

located on the C-terminus of the lectin (Fig 5.6). However, positioning the (His)6 tag 

on the N-terminus allowed the secondary antibody to bind the (His)6 tag and 

therefore the presence of the lectin could be deteted.  

 

Fig 5.6 Binding of differently tagged forms of PA-IL and PL-IL to immobilised 

glycoprotein (hyaluronidase). Quantitative detection of lectins bound to 

immobilised hyaluronidase assayed by the activity of a HRP-linked secondary 

antibody (OD450nm). Analysis of the binding of N-terminally and C-terminally (His)6 

tagged PA-IL and PL-IL to immobilised hyaluronidase. The commercial lectins 

ConA, PNA, MAAII, and WGA which bind to mannose, galactose, sialic acid and 

GlcNAc respectively are employed as positive controls in the assay.  
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It was discovered, that though N-terminally tagged and C-terminally PA-IL and PL-

IL were both active in the hemagglutination assay (Table 4.7), the C-terminally 

tagged versions proved to show no activity in the ELLA (Fig 5.6). The (His)6  tag 

was exploited in Section 3.4 for the purification of these C-tagged molecules by 

IMAC, so it is known that the tag was present. It was concluded that although the 

presentation of the tag in both PA-IL60 and PL-IL60 permitted IMAC purification, 

it was not sufficiently exposed for the binding of a α-(His)6 antibody. Consequently, 

in all subsequent ELLA assays the PA-IL30 and PL-IL 30 molecules were used for 

the determination of the specificity of PA-IL and PL-IL. This unfortunately means 

that affinity results for the tetrameric PL-IL and the PA-IL could not be compared. 

However, it was shown that PA-IL30 and PA-ILmut130 display similar quaternary 

structures (Section 4.7), and these molecules can be directly compared. 

 

 

5.5 Investigation into recombinant lectin specificity by ELLA  

Having optimised the conditions for ELLA in Section 5.3, the specificity of the 

lectins PA-IL, PL-IL and PA-ILmut1 were investigated by ELLA. In section 5.2 it had 

already been determined that the lectins PA-IL and PL-IL have a high affinity for 

complex galactose containing oligosaccharides and derivatised galactose molecules.  

Galactose is a commonly occurring structure in N-glycan structures which are 

displayed on many glycosylated proteins, though it is usually capped by the terminal 

sugar, sialic acid. The binding of the recombinant lectins to an array of 

commercially available glycoproteins was investigated with only thyroglobulin 

showing any significant binding for the three lectins (Fig 5.7 A, 5.7B and 5.7C). 

Next, the glycoproteins were treated with the enzyme neuraminidase, which removes 

terminal sialic acid, and should expose the underlying galactose residues. The 

glycosidase reaction was confirmed through the binding of sialic acid specific 
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commercial lectins in a separate ELLA (Fig 5.9). The removal of sialic acid resulted 

in increased reactivity of recombinant PA-IL, PL-IL and PA-ILmut1 to the 

glycoproteins fetuin, thyroglobulin, hyaluronidase and ovalbumin (Fig 5.8). Having 

created some target glycoproteins for which the recombinant lectins display an 

affinity, the specific sugars in the underlying glycan structures were then 

sequentially removed from these glycoproteins by glycosidases, to discover exactly 

which linkages the lectins were binding (Fig 5.10 and Fig 5.11).  Commercial 

biotinylated lectins were used as positive controls for the glycosidase reactions to 

ensure the sugar removal was complete and specific, as these enzymes can be 

unstable and display broad specificity. The specificity of these commercial lectins 

are given in Appendix B. Fig 5.10 shows the binding signal for PA-IL against fetuin 

increase upon neuraminidase treatment, a fall after α-galactosidase treatment, and no 

change after β-galactosidase treatment. PL-IL shows an increase in signal upon 

neuraminidase treatment, a fall after α-galactosidase treatment, and a smaller fall 

after β-galactosidase treatment. PA-ILmut1 displays a starkly different binding profile 

to that of PA-IL as there is an increase upon neurominidase treatment, no change 

after α-galctosidase treatment and a decrease after β-galactosidase treatment. Fig 

5.12, which displays the same set of glycosidase treatments to the glycoprotein 

porcine thyroglobulin, shows a broadly similar trend, with PA-IL and PA-ILmut1 

displaying contrasting specificities. 

The sources of the glycoproteins are as follows; fetuin, bovine; thyroglobulin, 

porcine; hyaluronidase, bovine; ovalbumin, chicken; glucose oxidase, Aspergillus 

niger; invertase, bakers yeast; transferrin, human; RNAse B, bovine; carbonic 

anhydrase, bovine; and urease from the jack bean.  
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Fig 5.7A Identification of target glycoprotein molecules for PA-IL by ELLA. 

Quantitative detection of PA-IL bound to a range of commercially available 

glycoproteins assayed by the activity of a HRP-linked secondary antibody 

(OD450nm). The three lines represent three purified batches of PA-IL from three 

separate fermentations.     

 

 

 
Fig 5.7B Identification of target glycoprotein molecules for PL-IL by ELLA. 

Quantitative detection of PL-IL bound to a range of commercially available 

glycoproteins assayed by the activity of a HRP-linked secondary antibody 

(OD450nm). The three lines represent three purified batches of PL-IL from three 

separate fermentations.      
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Fig 5.7C Identification of target glycoprotein molecules for PA-ILmut1 by ELLA. 

Quantitative detection of PA-ILmut1 bound to a range of commercially available 

glycoproteins assayed by the activity of a HRP-linked secondary antibody 

(OD450nm). The three lines represent three purified batches of PA-ILmut1 from three 

separate fermentations. 

 
Fig 5.8 Investigation of recombinant lectin binding to asialylated glycoproteins. 

Quantitative detection of recombinant lectins bound to a range of glycoproteins 

treated with neuraminidase and assayed by the activity of a HRP-linked secondary 

antibody (OD450nm).  Lectin binding to un-treated versions of the same glycoproteins 

was also investigated. Neuraminidase (Sigma-Aldrich) was used as per 

manufacturer‟s instructions. 
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Fig 5.8 shows that the relatively low signals seen in Fig 5.7A, 5.7B and 5.7C which 

represented PA-IL, PL-IL and PA-ILmut1 binding to a range of commercially 

available glycoproteins could be significantly increased upon removing the sugar 

sialic acid from the glycoproteins. In Section 1.2, it was outlined how sialic acid is 

often the terminal sugar on a glycan chain, and its removal by the enzyme 

neuraminidase will expose many underlying glycans, the most common of which is 

galactose. The binding of PA-IL and PL-IL to asialylated version of glycoproteins 

(neuraminidase treated glycoproteins) was significantly increased for thyroglobulin 

and hyaluronidase, while PA-ILmut1 binding increased with respect to all 

glycorpteins except for glucose oxidase and invertase. These glycoproteins were 

purified from Aspergillus niger and bakers yeast respectively organisms that would 

not be expected to decorate glycans with galactose residues (Section 1.2 and Section 

6.2.5).  

 
Fig 5.9 Binding of recombinant lectins to neuraminidase treated glycoproteins. 

Quantitative detection of biotinylated lectins bound to a range of neuraminidase 

treated glycoproteins assayed by the activity of an enzyme-linked secondary 

antibody (OD450nm).  Neuraminidase (Sigma-Aldrich) was used as per manufacturers 

intructions, and immobilised. The ability of ConA, WGA and SNA to bind to these 

glycoproteins was then used to elucidate if neuraminidase treatment was succesful. 
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The lectin SNA binds sepcifically to α(2-6) linked sialic acid. WGA binds to sialic 

acid, but also displays an affinity for the residue GlcNAc, which is a common glycan 

in N-linked structures (Section 1.2). If the neuraminidase treatment of the various 

glycans has been succesful, the binding signal for SNA should be high for a 

glycoprotein, and disapear once it has been neuraminidase treated. Similarly, the 

signal should be high for WGA, and should disapear upon sialic acid removal unless 

the sugar GlcNAc has been exposed. In Fig 5.9, it is clear that sialic acid removal 

occurred to completion, as the signal for SNA returned to baseline for each asialo-

glycoprotein except thyroglobulin and hayluronidase, and in both cases the majority 

of signal has been removed (baseline is determined by SNA binding to a negative 

glycoprotein sample in the last two columns). ConA is another control lectin that 

binds to the core mannose structure present in all N-linked glycan chains. It serves as 

a control to ensure the same amount of glycoprotein has been immobilised in each 

instance. In this assay, ConA signals remain constant between each glycoprotein and  

corresponding asialoglycoprotein, indicating that any reduction in SNA/WGA signal 

was not due to a reduction in the amount of glycoprotein that has been immobilised. 

This assay serves a useful purpose as when interpreting the data shown in Fig 5.8, as 

it can be concluded that the increase in signals of PA-IL, PL-IL and PA-ILmut1 for 

many of the glycoproteins were as a result of the removal of sialic acid which 

exposed some glycan residue to which each lectin bound. The identification of these 

glycans was the subject of further investigation. 

Next, it was attempted to further define the glycans within the glycan chains to 

which PA-IL, PL-IL and PA-ILmut1 display an affinity. In N-linked structures, sialic 

acid usually is attached to a galactose molecule, so two galactose enzymes were used 

to differentiate between alpha-linked and beta-linked galactose, both of which have 

been found in N-linked glycan chains.  

Asialo-glycoproteins were treated with α-galactosidase (source green coffee beans) 

and β(1-4)-galactosidase (recombinant enzyme purified from E. coli) and 

immobilised as per previous ELLA experiments. A number of biotinylated lectins 
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were used in conjuction with the recombinant lectins to act as controls for the 

glycosidase treatments, and to identify the sugars present on the glycoprotein. The 

two glycoproteins investigated in this manner were fetuin and thyroglobulin.  

 

 

 

 

Fig 5.10 Glycan structures that have been found on fetuin. The structures and 

linkages of the major N-linked and O-linked glycans that were found to be present 

on fetuin (Iskratsch et al., 2009). Nomenclature for the glycans can be found in 

Appendix A.  
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When the N-linked glycans of fetuin are examined, the only structure that is exposed 

upon neuraminidase treatment of fetuin is β(1-4) linked galactose (Fig 5.10).  

However the O-linked structures display higher variability, with several other 

possible residues exposed to which each lectin could display an affinity. 

When the binding profiles of biotinylated plant lectins are investigated in Fig 5.11, a 

great deal of information about the glycans present on the glycoprotein can be 

extracted. ConA, which acts as an internal positive control, displays a positive 

binding signal at the same level for each derivative of fetuin. This control shows the 

same amount of glycoprotein was immobilised in each case. It is important to 

highlight at this stage that ConA is tho only lectin used that binds to core glycan 

structures. All other biotinylated lectins bind to terminal sugars only. SNA binds to 

sialic acid. After neuraminidase treatment of fetuin, the binding signal for this lectin 

drops to baseline. The WGA lectin is known to bind sialic acid and GlcNAc, and its 

signal can be seen to drop upon neuraminidase treatment and rise again upon β-

galactosidase treatment, as GlcNAc is usually exposed upon the removal of β(1-4) 

galactose. 

The lectins GSL-I and DBA show no binding to any derivative of fetuin, indicating 

that the sugars α-linked galactose and GalNAc are not present in significant 

quantities on the glycoprotein, which disagrees slightly with the structures identified 

by Iskratsch et al., 2009 (Fig 5.10), as these sugars are proposed to exist on the O-

linked glycans. It is possible however that signal quenching by BSA is occurring for 

these lectins.  

The PNA and ECL binding patterns to fetuin derivatives prove very informative in 

determining the specificity of the three recombinant lectins. PNA is specific to 

terminal β-linked galactose, and as expected, the lectin doesn‟t bind to fetuin, a large 

signal is seen for asialofetuin, and the signal does not drop after α-galactosidase  or 

β(1-4) galactosidase treatment, indicating the presence of a β(1-3) galactose on the 

molecule to which the lectin is binding. The ECL lectin is specific for β(1-4) linked 

galactose, and the signal for this lectin drops significantly after β(1-4) galactosidase 

treatment, though not completely, indicating incomplete activity of the enzyme.  
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The PA-ILmut1 lectin shows an identical binding pattern to the ECL lectin, suggesting 

that this too is a β(1-4) galactose specific lectin. This is in contrast to PA-IL, which 

it is known binds to α(1-3) and α(1-4) linked galactose (Section 1.9.3). When the 

fetuin binding pattern of PA-IL is investigated it is clear that the lectin displays an 

affinity for some glycan exposed after neuraminidase treatment. This binding signal 

is then reduced upon α-galactosidase treatment. This is an unexpected result as there 

are no reported of any α-galactose structure on fetuin, suggesting an α-galactose 

containing contaminant present within fetuin, or that α-galactosidase has non-

specifically cleaved the glycan to which PA-IL is binding, e.g GalNAc. It has been 

shown previously the PA-IL displays a low specificity for β-linked galactose 

structures (Section 5.2), however if PA-IL was binding to these glycans in fetuin, the 

signal would have reduced upon β-galactosidase treatment and not upon α-

galactosidase treatment. 

PL-IL has an unknown specificity, but like PA-IL, it is clear that the lectin‟s ability 

to bind fetuin is increased upon neuraminidase treatment of the glycoprotein 

suggesting an exposed galactose residue is being bound. The binding of the 

molecule to asialofetuin is then decreased upon both α-galactosidase and β-

galactosidase treatment of the glycoprotein, indicating a broader specificity of the 

lectin.  
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Unlike fetuin, there has not been a comprehensive glycoprofiling study for porcine 

thyroglobulin, partly due to the protein having 15-20 different N-glycosylation sites 

with its glycan chains comprising 10% of its dry weight.  However studies such as 

Rosenfeld et al., (2007) and Kamerling et al., (1988) have identified many of the 

individual sugar residues that exist on the glycoprotein. The presence of α-linked 

galactose and GalNAc was described in these studies, and it was proposed that these 

occurred in O-linked glycans. 

 

 

 

 

Fig 5.13 The structure of the most abundant N-linked glycan 

chain present in porcine thyroglobulin. Cartoon representation 

of the glycan assembly in the most common N-linked structure 

found on porcine thyroglobulin (Kamerling et al., 1988). 

Nomenclature is as described in Appendix A.  

 

 

Like the fetuin profiling experiment, the binding profile of ConA is examined first, 

to ensure that equal amounts of each thyroglobulin derivative have been 

immobilized.  The SNA signal, has not returned to baseline after neuraminidase 

treatment, indicating incomplete cleavage of sialic acid, or the presence of sialic acid 

linked to another sugar by a linkage to which it could not cleave. However enough 

sialic acid was removed for the binding of the galactophilic lectins PNA and ECL to 

increase their respective binding signals to the asialo-thyroglobulin. Similarly to the 

fetuin experiment, α-galactosidase and β(1-4) galactosidase treatment did not result 

in a lower PNA binding signal. Again, β(1-4) galactosidase did not completely 

reduce the signal of the β(1-4) galactose specific ECL lectin.  

Again, PA-ILmut1 displayed a similar binding profile to ECL, which suggests that the 

specificity of this molecule is β(1-4)galactose. This is an important result, as it 

shows that by altering just three amino acids within the sugar binding pocket of PA-

IL, the specificity of the molecule was completely altered.  
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PA-IL, as expected binds to asialo-thyroglobulin strongly with a significant 

reduction in signal after α-galactosidase treatment confirming that the molecule is 

strongly α-galactophilic. PL-IL once again shows a reduced signal for both α-

galactosidase and β(1-4) galactosidase treatment, indicating a broad specificity for 

galactose containing molecules.  

 

 

5.6 Investigation of recombinant lectin affinity 

The affinity of one molecule for another is most commonly represented by a value 

termed the Ka (the association constant), or Kd (the dissociation constant 
1

𝐾𝑎
). The 

dissociation constant is more commonly used, because although two molecules can 

have the same affinity for a target, their rates of dissociation can be very different. 

Hence, the Kd is a more useful measurement, and is calculated from the amount of 

substrate that leads to half-maximal specific binding. The lower the Kd the higher the 

affinity as it will take a lower amount of lectin to bind half of the immobilised target 

proteins. 

                                                       

 

Equation 5.1    Y = 
𝑃𝐴𝑀𝐴𝑋 .𝑋

𝐾𝑑+ 𝑋
 

 

 

In this equation Y represents the specific binding, PAMAX  the is the absorption 

values at which the maximum number of binding sites is occupied, with X 

representing the concentration of the glycoprotein. It is difficult to determine the 

affinity of a lectin for an α-linked galactose glycan, as target molecules displaying 

this sugar are not widely commercially available. Of the commercial glycoproteins 

available in this study, only thyroglobulin has had the presence of α-galactose 
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previously reported, and this glycoprotein has been the subject of very limited 

glycoprotein studies. Fetuin, which lacks α-galactose, has been the subject of intense 

carbohydrate analysis, with its glycan profile having been extensively analysed, and 

is provided in Fig 5.10. For this reason it was useful for the study of PA-ILmut1.  The 

affinities for each lectin towards thyroglobulin and fetuin were calculated in Fig 5.14 

and 5.15 

 

 

Fig 5.14 Determination of recombinant lectin affinity for asialothyroglobulin. 

Quantitative detection of recombinant lectin bound to various concentrations of 

asialothyroglobulin assayed by the activity of an enzyme-linked secondary antibody 

(OD450nm). The constant lectin concentration is 7nM, with immobilized 

asialothyroglobulin concentrations ranging from 20 to 2500 ng concentration. PAMAX 

values for PA-IL, PL-IL and PA-ILmut1were 1.04, 0.57, and 1.35, and Kd values were 

108 ng 129 ng and 94 ng respectively. 
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Fig 5.15 Determination of recombinant lectin affinity for asialofetuin. 

Quantitative detection of recombinant lectin bound to various concentrations of 

asialofetuin assayed by the activity of an enzyme-linked secondary antibody 

(OD450nm). The constant lectin concentration is 7nM , with immobilized asialofetuin 

concentrations ranging from 20 to 1,000 ng concentration. PAMAX values for PA-IL, 

PL-IL and PA-ILmut1were 0.31, 0.22, and 0.82, and Kd values for PA-IL and PL-

ILwere not detectable within this range, but PA-ILmut1 was 2.43 ng. 

 

 

Depending on the glycoproteins used, different Kd values for each lectin were 

obtained. In each case PA-ILmut1 had the lowest Kd indicating the highest affinity. 

From the characterization results displayed in Fig 5.11 and 5.12, it is presented that 

the sugar to which PA-ILmut1 has a high specificity for is β(1-4) galactose, an 

abundant sugar on N-linked structures, so this is the expected result. PL-IL, in Fig 

5.11 and Fig 5.12 was shown to have the broadest specificity of the recombinant 

lectins, as it could not be ascertained exactly to which glycan structure it was 

binding. This low specificity to the displayed gycans is possibly contributing to a 

high Kd value, whereas the high specificity of PA-ILmut1 to β(1-4) galactose residues 

is a contributing factor for its low Kd values.   
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Competition ELLAs were carried out using asialothyroglobulin as the target 

glycoprotein, to further expand the understanding of each lectin‟s specificity. The 

competing sugars used are galactose, raffinose, melibiose, glucose, phenyl-β-

galactose, nitrophenyl-β-galactose, cellobiose and lactose, whose structure can be 

seen in Appendix A. When interpreting this assay, it is important not to compare the 

different inhibition profiles of each lectin, as it has been shown that in each case they 

are binding to a different target molecule on asialothyroglobulin (Fig 5.12). Instead, 

the affinity of each lectin to the inhibitory molecule can be deduced. Finally, PL-IL 

in this assay is a tetramer, and while present in the same concentration as the dimeric 

PA-IL and PA-ILmut1, will dissociate more slowly from the glycoprotein, as it will 

have more binding site per molecule that will need to be occupied by the saccharide. 

 

 

Fig 5.16 Inhibition of PA-IL binding to asialothyroglobulin by various sugars. 
Quantitative detection of PA-IL bound to a constant concentration of 

asialothyroglobulin in the presence of varying amounts of inhibitory sugars assayed 

by the activity of a HRP-linked secondary antibody (OD450nm). The constant lectin 

concentration is 7nM , with inhibitory sugar concentrations ranging from 0 to 50 

mM concentration. 100% binding was determined by incubation of 

asialothyroglobulin with PA-IL without competing sugar.  
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Fig 5.17 Inhibition of PL-IL binding to asialothyroglobulin by various sugars. 
Quantitative detection of PL-IL bound to a constant concentration of 

asialothyroglobulin in the presence of varying amounts of inhibitory sugars assayed 

by the activity of a HRP-linked secondary antibody (OD450nm). The constant lectin 

concentration is 7nM , with inhibitory sugar concentrations ranging from 0 to 50 

mM concentration. 100% binding was determined by incubation of 

asialothyroglobulin with PL-IL and no competing sugar. 
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Fig 5.18 Inhibition of PA-ILmut1 binding to asialothyroglobulin by various 

sugars. Quantitative detection of PA-ILmut1 bound to a constant concentration of 

asialothyroglobulin in the presence of varying amounts of inhibitory sugars assayed 

by the activity of a HRP-linked secondary antibody (OD450nm). The constant lectin 

concentration is 7nM , with inhibitory sugar concentrations ranging from 0 to 50 

mM concentration. 100% binding was determined by incubation of 

asialothyroglobulin with PA-ILmut1 with no competing sugar. 

 

In the competition assays presented in Figs 5.16, 5.17 and 5.18, very different 

inhibition profiles for each lectin can be seen. PA-IL inhibition reaches maximum at 

low concentrations of each sugar except for lactose, glucose and cellobiose. The 

predominant glycan type in thyroglobulin is N-linked structures, which generally 

lack the α-galactose residue. As a result it will not require large amounts of 

competing sugar to inhibit lectin binding to the immobilized glycoprotein. Secondly 

the lectin PA-IL30, exists in a dimer in its native state (Table 4.6), and consequently 

requires less sugar than the tetrameric PL-IL30 for inhibition. The most inhibitory 

oligosaccharide for PL-IL was raffinose followed by melibiose (in agreement with 

Section 5.2). The two least inhibitory sugars for PL-IL, like PA-IL were cellobiose 

and lactose. The monosaccharide glucose could inhibit the majority of binding at 
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low concentrations. From Fig 5.11, where it was suggested that PL-IL had a broad 

specificity, which correlates with the findings in this experiment, as glucose, 

galactose and melibiose could all bind some of the PL-IL molecule, but never 

completely inhibited the binding event.  

The inhibitory profiles for PL-IL and PA-ILmut1 in terms of glucose inhibition 

proved very similar. PA-ILmut130, like PA-IL30, is a dimer, and as a result would 

require less sugar than PL-IL to inhibit binding. However, as seen from Fig 5.14, its 

affinity for asialothyroglobulin is much greater than the other two molecules. 

Consequently, far greater concentrations of sugar are required to inhibit the binding 

event. In comparison with the parent molecule PA-IL, glucose and lactose are more 

inhibitory, highlighting the change in specificity between the two molecules.  

 

 

 

 

 

 

 

 

5.7 Application of recombinant lectins in the characterization 

of a biopharmaceutical product 

 

Having proved the ELLA assay reproducible (Figs 5.7A, B and C) and useful in 

terms of obtaining useful data about the carbohydrate profile of a glycoprotein 

(Section 5.5), the use of the recombinant lectins in the characterization of a 

commercial biopharmaceutical product was investigated. The product was provided 

in two states, an optimally glycosylated product and an undesirable derivative of the 

product displaying immature glycans. A unsialylated derivative  of the product was 

created by neuraminidase treatment, The binding profiles of PA-IL30, PL-IL30 and 

PA-ILmut130 to the product are shown in Fig 5.19. Having determined the 

specificities of each lectin in Section 5.5, they can be used to characterize the 

glycoprofile of the product. 
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Fig 5.19 Binding of recombinant lectins to a biopharmaceutical product. 
Quantitative detection of recombinant lectins bound difffernt versions of the same 

biopharmaceutical product assayed by the activity of an enzyme-linked secondary 

antibody (OD450nm). 

 

 

It is has been shown in Section 5.4 that PA-IL displays a high specificity for α-

galactose and a low specificity for GalNAc, that PL-IL broadly binds galactose 

molecules, and that PA-ILmut1 is strictly β(1-4) specific. In Fig 5.19, the binding of 

these lectins to a biopharmaceutical product was investigated. Knowing the range of 

glycans each respective lectin binds to, it can be deduced from the assay that α-

galactose is not present on either Product A or Product B. PA-IL, displays low level 

activity, but as shown in Fig 5.11, this lectin can display low affinity to other 

galactose molecules. PL-IL shows similar levels of binding to the biopharmaceutical 

products, however this molecule has a broader specificity, and no conclusions can be 

drawn from this pattern. The PA-ILmut1 binding pattern clearly demonstrates the 

predominant glycan present beneath sialic acid is β(1-4) galactose, as the binding 

signal dramatically increases upon neuraminidase treatment. It is also clear that in 

Product A and Product B, unsialylated protein is not present in high quantities, as 

this would expose the residue β(1-4) galactose. The significance of this result in 

terms of the pharmaceutical industry is summarised in Section 1.4, where it was 

outlined that sialic acid is a key glycan in terms of efficacy and function.  
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5.8 Lectin affinity chromatography 

 

 

The principles of lectin affinity chromatography (LAC) are outlined in Section 1.8.3. 

In Section 5.4 it was shown the lectin PA-ILmut1 showed a high specificity or 

asialylated derivatives of many asialylated glycoproteins. In Section 1.4 the 

importance of the presence of sialic acid residues to the biological activity of these 

therapeutics was outlined, and as a result the removal of unsialylated contaminant 

product during down-stream processing could significantly enhance the potency and 

the value for the producer. Thus far, the recombinant lectins have only been used as 

tools for the analysis of a purified glycoprotein. Applying the molecules into a 

downstream purification platform would greatly enhance the value of the lectins, so 

an experiment was set up to create a PA-ILmut1 column for the purposes of LAC. The 

column matrix was composed of cyanogen bromide activated sepharose-4B (Fig 

5.20), which would bind to surface exposed primary amines on the lectin. The 

position of these lysine residues on the PA-ILmut1 structure can be seen in (Fig 5.21). 

The process of lectin immobilisation is outlined in Section 2.27, and the 

corresponding OD280nm readings and SDS-PAGE analysis can be seen in Fig 5.21 

and Fig 5.22. Having successfully immobilised lectin onto the column an attempt of 

capturing asialofetuin is shown in Fig 5.23.  

 

 

 

 

 

 

 

 

 

Fig 5.20 Activation of sepharose by cyanogen bromide and protein coupling to 

the activated matrix. Cyanogen bromide in basic conditions reacts with -OH 

groups on sepharose  to form cyanate esters or imidocarbonates. These groups react 

readily with primary amines under very mild conditions; the net result is a covalent 

coupling of lectin, via lysine residues, to the agarose matrix.  
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Fig 5.21 Location of surface exposed lysine residues on the PA-IL molecule. 

Cartoon representation of the location of lysine residues on the PA-IL molecule 

based on the crystal structure of Chen et al., (1998). Lysine residues are highlighted 

in pink with the location of the sugar binding site indicated with a red galactose 

molecule. On the left is the monomeric structure, and the right is the proposed 

dimer. Image created using PyMol (Section 2.30). 

 

 
Fig 5.22 Determining the amount of PA-ILmut1 which successfully immobilised 

on activated sepharose. OD280nm readings taken from 5 ml elutions during each step 

of the immobilisation process (Section 2. 27). The starting O.D of a solution of PA-

ILmut130 was 8.96 which equates to a 5mg/ml solution. After mixing with the 

activated resin overnight, the flow-through an O.D of 1.72 was recorded, indicating 

that nearly 1 mg of protein did not immobilise. The subsequent wash steps show 
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minimal protein leaching. After subtracting the total amount of protein eluted from 

the protein from the initial concentration it was calculated that ~3 mg of lectin had 

been successfully immobilised on a 1 ml resin.  

 

 

 

 

 
Fig 5.23 Immobilisation of PA-ILmut1 to activated sepharose. Analysis of the 

fractions from Fig 5.21 By 20% SDS-PAGE (Section 2.18). Lane 1, Molecular 

weight marker; Lane 2, Pa-ILmut1 in Immobilisation buffer; Lane 3, Unbound 

material; Lane 4, eluted blocking buffer, Lanes 5-7, acid/base wash steps; Lane 8, 10 

μl of boiled resin; Lane 9, Molecular weight marker.  

 

 
Fig 5.24 Application of asialothyroglobulin onto PA-ILmut1 column. OD280nm 

values of successive 1 ml elutions from the PA-ILmut1 column following the 

application of asialothyroglobulin in binding buffer. At the 10 ml volume point, 10 

mM galactose in binding buffer was added to the column.  
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There are four surface-exposed lysine residues per monomer on the PA-ILmut1 

monomer (Fig 5.21). These were exploited in immobilisation of the molecule onto 

activated sepharose. Fig 5.22 displays how the amount of protein successfully 

immobililsed was calculated. It was calculated that approximately 3 mg of lectin had 

been successfully immobilised, and upon SDS-PAGE analysis, it was discovered 

that a band of the correct size was present in a sample of boiled resin.  

It was then attempted to use the constructed resin to purify asialothyroglobulin. It 

has already been shown in Section 5.5 that the lectin has a high affinity for this 

glycoprotein. Fig 5.23 shows the attempted purification. If the purification was a 

success, a peak at the 10ml point indicating eluted asialothyrogobulin would be 

expected. There proved to be no peak however, indicating that the PA-ILmut130 resin 

was inactive. Upon further investigation of Fig 5.21 it was clear that the most 

exposed lysine residue is K43, which is positioned close to the sugar binding site. It 

is possible that immobilisation via this amino acid would stearically hinder any 

binding of glycoproteins by the sugar binding site.  

 

 

 

 

 

5.9 Discussion 

The glycan binding profile seen for PA-IL is consistent (Table 5.1 and Fig 5.1) with 

results found in previous studies where structures containing terminal α(1-3)Gal, 

α(1-4)Gal and α(1-6)Gal (Lanne et al., 1994; Blanchard et al., 2008) as well 

hydrophobic derivatives of galactose (Garber et al, 1992) were found to bind wild-

type PA-IL with the highest affinity. PA-IL has been shown previously to have a 

hemagglutination inhibition profile in the order 

phenylβGal>melibiose>stachyose>raffinose>galactose, which is similar to the 

results obtained here (Chen et al, 1998). 
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PL-IL on an amino acid level shows only 34% identity and 46% similarity to PA-IL 

(Section 1.9.2) yet, it has been shown that PL-IL displays similar binding profiles to 

its homologue PA-IL through both hemagglutination inhibition assays and ELLA. 

This is most evident from the similar inhibition profile seen in Table 5.1, and the 

same glycoproteins providing signal in Fig 5.7. Both proteins also have the same 

cation dependence (Fig 5.18), and prefer colder temperatures (Fig 5.2). Given the 

high homology between the two proteins especially within the sugar-binding loop 

this is not surprising.   

However in terms of specific galactose containing oligosaccharides and 

glycoproteins, PL-IL displays binding properties with subtle but important 

differences to PA-IL (Fig 5.2). PL-IL displays a lower affinity for asialylated 

glycoproteins than PA-IL (Section 5.6), and low affinities to sepharose (Section 

3.4.1) and phenyl--derivatives of galactose (Fig 5.2).   

In terms of affinity values for the lectins, this study was limited in terms of available 

substrates. Oligosaccharides, though available, are very expensive, and the 

methodology for their immobilisation onto surfaces was not available within the 

laboratory. Similarly, neo-glycoconjugates (eg. BSA coated in specific 

oligosaccharide units) are extremely expensive, and glycan array technology is only 

available to groups that will publish the resulting data. This was not possible in this 

study due to extensive I.P. restraints. However an abundance of information can be 

procured from the limited resources that were available. 

In the glycoprotein based ELLA, an image of what the lectin binds to in nature can 

be visualised, as free individual glycans are unlikely to be the intended targets for 

these proteins. Our results show that depending the glycoprotein in question, the PA-

IL and PL-IL have similar binding profiles. However, PA-ILmut1 shows a different 

pattern (Figs 5.7A, 5.7B and 5.7C). The glycoproteins, all immobilised at the same 

level, that proved preferable to PA-IL and PL-IL were thyroglobulin asialo-

thryoglobulin, asialo-hyaluronidase and asialo-ovalbumin. PA-ILmut1 was shown to 

bind to neuraminidase-treated versions of every glycoprotein screen with the 

exception of glucose oxidase (A.niger) and invertase (yeast), sources which would 

not be expected to encode for β-galactosyl transferases and hence the glycoproteins 
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are devoid of β-linked galactose residues. Results from glycan profiling studies of 

thyroglobulin, ovalbumin and hyaluronidase are limited but what they all possess is 

α-linked galactose moieties. For this reason, alpha-galactosidase was used to cleave 

off this residue in the case of asialothyroglobulin. The α-Gal specific commercial 

lectin used in this experiment was GSL-I, which did not show any binding to 

asialothyroglobulin, despite α-Gal residues being previously detected on the 

molecule (Rosenfeld et al., 2007; Spiro et al., 1984; Ronin et al., 1986; Kamerling et 

al., 1988). When treated with α-galactosidase, the binding signal of PA-IL and to a 

lesser extent PL-IL was reduced compared to the asialo-thyroglobulin signal, 

indicating some α-Gal binding, with no effect on PA-ILmut1 signal. β(1-

4)galactosidase treatment had no effect on PA-IL binding, a very large effect on PA-

ILmut1 binding, and a small effect on the PL-IL signal, indicating PA-ILmut1 to show a 

high specificity for β(1-4)galactose, which is abundant on the molecule. The 

commercial lectin specific for this residue is ECL, which had a reduction in signal 

after β(1-4)galactosidase treatment similar to the PA-ILmut1 reduction.  

In the case of the glycoprotein fetuin, there have been no reports of α-galactose on 

the molecule, which would explain the low binding signals of PA-IL and PL-IL (Fig 

5.10), but after the removal of sialic acid, the predominant terminal sugar is β(1-

4)galactose. After β(1-4)galactosidase treatment, the lectins ECL and PA-ILmut1 both 

show a similar significant reduction of signal, indicating that both are binding to the 

same glycans. The reduction of signals by using galactosidase, particularly in 

thyroglobulin, are not completely back to baseline, but it should be considered that 

these enzymes are more unstable and less widely used than neuraminidases, and 

extremely expensive, hence optimisation of their activity proves difficult. Though 

PA-IL and PL-IL have no α-galactose on fetuin to bind to, there is clearly some 

binding occurring, which is reduced through the use of alpha-galactosidase rather 

than β-galactosidase. Both lectins have been shown to have low affinity for GalNAc 

(Fig 5.1), which is present on asialofetuin,  

Coupling this data with the inhibition data seen in Fig 5.14, Fig 5.14 and Fig 5.16, 

where PA-IL was shown to be very quickly inhibited with α-Gal containing sugars, 

compared to PL-IL, which is not inhibited as efficiently by any of the sugars 
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investigated, it is clear that PA-IL and PL-IL, though binding to glycoproteins with 

similar affinities, have different specificities.  

In summary, the highly characterised PA-IL molecule has had its specificity changed 

from α(1-3)Gal and α(1-4)Gal to β(1-4)Gal by the mutation of three amino acids 

within the sugar binding site. The significance of this mutation becomes apparent in 

Section 5.7. Here a purified biopharamaceutical product is examined by PA-IL and 

PA-ILmut1 for α-Gal and β(1-4)Gal residues. The α(1-3)Gal epitope is highly 

immunogenic, and would be targeted by the human innate immune system, with an 

estimated 1% of the total IgG molecules circulating in human serum targeting the 

sugar (Galili et al, 1984). The β(1-4)Gal residue is an indicator of an unsialylated 

product, as it is exposed upon neuraminidase treatment. In a fermentation 

environment, neuraminidases are often released from animal cells at cell death, and 

detection of PA-ILmut1 binding could be a useful indicator of neuraminidase cleavage 

of sialylated products. Currently, the plant lectin most commonly used for this 

purpose is ECL. It has been attempted to produce a recombinant version of this 

lectin in E. coli, but it was shown to be insoluble, with purification from solubilised 

inclusion bodies required to obtain a functional molecule (Stancombe et al., 2003). 

We propose that PA-ILmut1 would be a cheaper, and more functional alternative to 

ECL 
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6.0 Determination of the role of PL-IL in the life-cycle of 
P.  luminescens 
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6.1 Introduction 

The role of PL-IL in the life-cycle of P. luminescens in terms of its pathogenicity 

and its symbiotic relationship with Heterorhabditis nematodes was examined. The 

complex life-cycle of the bacteria and the nematode symbiont are summarized in 

Sections 6.2 and 6.3, with some facets of the life-cycle that could prove significant 

to the role of a potential adhesin such as PL-IL summarized in Section 6.4. As 

already shown in Chapter 5, PL-IL binds to alpha-linked galactose residues. It is also 

known to exist as a tetramer in its native form (Chapter 4). In this respect PL-IL 

shares its primary physical and affinity characteristics with the lectin PA-IL from 

Pseudomonas aeruginosa.  

It was investigated whether PL-IL shares any functional characteristics with the 

homologue PA-IL, which is known to play an important role in the adhesion of P. 

aeruginosa to epithelial cell walls, and also to be involved in biofilm formation. This 

was done through a variety of established bio-assays carried out in the laboratory of 

Dr. David Clarke in U.C.C.  

For these experiments, a mutant strain that lacked the lectin PL-IL was created by 

the insertion of a kanamycin resistance cassette within the gene plu2096 that 

encodes the lectin, which in effect creates a mutant strain of P. luminescens which 

lacks the ability to express the lectin.  

 

6.2 The bacterium Photorhabdus luminescens. 

The bacterium Photorhabdus luminescens was initially described as Xenorhabdus 

luminescens. Its main characteristics include the ability to bioluminesce and to form 

symbiotic relationship with entomopathogenic nematodes (Thomas and Poinar, 

1979). On the basis of phenotypic characteristics a new genus Photorhabdus was 

created (Boemare et al., 1993). It is a member of the Enterobacteriacaeae family 

and, therefore, is closely related to a number of common pathogens such as 

Escherichia coli, Salmonella enterica and Yersinia pestis. It forms mutualistic 

associations with specific entomopathogenic nematodes of the Heterorhabditidae 

(Fischer-Le Saux et al., 1999). The two organisms have a complex life-cycle (Fig 
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1.11) that involves a symbiotic phase where the bacteria colonize the gut of the non-

feeding infective stage nematodes (IJs). After the nematodes locate a susceptible 

insect host they release the facultatively anaerobic bacteria into the insect‟s 

hemolymph, where the bacteria enter a pathogenic stage of their life-cycle. 

Heterorhabditis enter the insect through respiratory spiracles, the mouth or the anus 

and migrate to the hemolymph.  P. luminescens then in conjunction with the 

nematodes then induces septicaemia in the insect within 72 hours of infection, 

during which the nematode develops into a self-fertile hermaphrodite. Nematode 

development usually undergoes 3-4 generations, whereupon they develop once more 

into infective juveniles (IJs). These IJs are colonised by P. luminescens before the 

nematode emerges from the insect cadaver. Under laboratory conditions this takes 

approximately 14 days, and one initial IJ can result in the development of ~ 100,000 

IJs (Forst et al., 1997; Ciche et al., 2006).   

As a result of this multifaceted life-cycle, the bacteria must carry an array of proteins 

and secondary metabolites that can cater for mutualistic and pathogenic stages of 

growth. This range of proteins encompasses insecticidal toxins that lead to mortality 

in the insect, as well as antimicrobial compounds to repel competing micro-

organisms (Akhurst, 1982; Richardson et al., 1988; Williams et al, 2005b), 

nematicides (Hu et al., 1999), and factors that will allow for acquisition and 

symbiosis with the nematode host.  

The genus is characterised by the ability to bioluminesce (through luciferase), and 

are the only terrestrial bacteria known to produce light. The genus has been divided 

into three subspecies; Photorhabdus luminescens, Photorhabdus temperata and 

Photorhabdus asymbiotica, the third of which comprises isolates from human 

wounds and was thought not to have a natural association with nematodes (Fischer-

Le Saux et al., 1999; Gerrard, 2003). Recently however, a nematode symbiont of P. 

asymbiotica has since been identified in the Heterorhabditidae genus (Gerrard et al., 

2006).  

The genus is also characterised by the capacity to produce phase variants, which are 

designated primary and secondary forms (Smigielski et al., 1994). There are some 

basic biochemical and morphological tests to distinguish between the two, as a stark 
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variance in the production of compounds such as antibiotics, pigments, and 

extracellular proteases exists between the two forms. Both forms are equally 

pathogenic when injected into the insect hemolymph, though bacteria recovered 

from the nematode are predominantly in the primary form. It is known that the 

primary form of Photorhabdus is required for nematode development and 

reproduction, and little is known about the role of the secondary form in nature, with 

some commentators suggesting it is an artefact of laboratory conditions, as it has 

never been seen in nature.  

 

 
 

 

Fig 6.1 The life cycle of Photorhabdus luminescens and Heterorhabditis 

bacteriophora (Adapted from Ffrench-constant et al., 2003). 

 

6.2.1 Mutualism in P. luminescens 

Microbial symbioses are ubiquitous in nature, with all plants and animals at some 

level associated with micro-organisms. One model system currently being used to 

understand these mutually beneficial relationships is the association of microbes 

from the genus Photorhabdus with the insect pathogen Heterorhabditis, which has a 

dependence on the bacterium for normal nematode growth and development (Joyce 

et al., 2006).  
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The symbiotic relationship between P. luminescens and the nematode host can be 

divided into three distinct categories (Ffrench-Constant et al., 2003). In the first 

stage, the bacteria exist in the lumen of the gut of the IJ nematodes, until entry of the 

nematode into an insect host when regurgitation of the bacteria into the hemolymph 

occurs. During this stage the bacteria produce signals that control nematode 

development and the recovery of adult Heterhorabdtitis as hermaphrodites (Strauch 

and Ehlers, 1998). Pathogenicity is tightly regulated at this stage also and the 

expression of virulence factors such as insecticidal toxin complexes and 

metalloproteases are tightly linked to the bacterial growth rate (Daborn et al., 2001).  

In the next stage, the bacteria have grown to a high cell density and have entered the 

stationary phase of growth. In this stage a wide array of toxins and exoenzymes are 

released from the bacteria, for the purpose of inducing lethal septicaemia in the 

insect, and the bioconversion of the organic matter, which is in turn utilised by the 

nematode (Bowen et al., 1998; Han and Ehlers, 2000).  This relationship is very 

inflexible, as related organisms are often incompatible and cannot be substituted, 

with P. luminescens found to be pathogenic to the nematodes Meloida incognita (Hu 

and Webster, 1999), Steinorma carpocapase (Sicard et al., 2004) and 

Caenorhabditis elegans (Sicard et al., 2007). To date, the only gene that has been 

found to be specific for mutualism is cip  (Bintrim and Ensign, 1998).  

The genome of P. luminescens has been sequenced (Duchaud et al., 2003), and a 

number of genes were identified with homology to virulence factors characterised in 

other pathogens (Ffrench-Constant et al. 2000).  Some toxins bear no resemblance to 

known proteins, an example of which is Mcf-1 (makes caterpillars floppy), a high 

molecular weight toxin that confers on E. coli the ability to persist in, and kill an 

insect (Daborn et al., 2002). This toxin appears to cause apoptosis in both the insect 

hemocytes and the midgut epithelium, a domain which is thought to be related to the 

BH-3 domain present in the protein, a feature found in many pro-apoptotic proteins 

(Baskin-Bey and Gores, 2005). Growth within the insect is essential for 

pathogenesis, and knock-out studies have to date identified genes required for in-

vivo growth as being essential for virulence (Watson et al., 2005). To date, there has 

been no investigation into the role of PL-IL in Photorhabdus virulence.  
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The final stage in the interaction with the nematode is the uptake of bacteria by the 

final generation of IJs. At this moment, the bacteria are still present in high densities, 

and thus far, an undiscovered colonization strategy commences which requires some 

specific interaction between the bacteria and the nematode gut, as unrelated bacteria 

have been found not to be retained.  

To date, there has been no investigation into the role of PL-IL in the nematode-

bacterial symbiosis.  

 

 

 

.  

6.2.2 Glycan profile of P. luminescens associated organisms 

The bacterium P. luminescens is heavily dependant on the organisms 

Heterorhabditis as well as their insect prey, both of which have been the subjects of 

limited glycoprofiling studies. Insect cell lines are often seen as the intermediary 

between animal cells and yeast with respect to the degree of glycosylation seen on 

their respective glycoproteins (Lopez et al., 1999). Whereas yeast cells 

predominantly decorate their proteins with mannose using the precursor structure 

Man8GlcNAc2-N-Asn, animal cells use glycosidase enzymes to cleave off the 

majority of mannose and add residues such as galactose, fucose and sialic acid using 

glycosyl-transferases (Section 1.2). Insects have many of these glycosidases, 

however they lack many of the glycosyl-transferases, and as a result the main 

structure present on insect glycoproteins is Man3GlcNAc2-N-Asn (Hollister et al., 

2002). When O-linkages are considered, the glycome becomes more complicated, 

with several reports of Gal and Gal-GalNAc being presented in this manner (Chen et 

al., 1991).  

The nematode H. bacteriophora, the other essential organism in the life-cycle of P. 

luminescens, like all other eukaryotes, shares the same initial steps in the process of 

N-glycosylation (i.e. the same core structure shown in Fig 1.1 is transferred to the 

protein within the ER). Much of characterization of nematode glycosylation has 

been done in Caenorhabditis elegans, which is closely related to H. bacteriophora. 



205 

 

C. elegans is found to display, like insect cells, high mannose containing glycans, as 

more complex glycans (i.e. those containing the sugars GlcNAc, Gal, and Neu5Ac) 

are uncommon. C. elegans, like H. bacteriophora goes through several stages of 

development, including a Dauer stage, which is very similar to the IJ stage (the stage 

of P. luminescens uptake and colonization by H. bacteriophora). The glycoprofile of 

this Dauer stage of development corresponds to more complex glycans than that of 

the other stages (Cipollo et al., 2005), with some of these glycans being absent in 

any other stage of growth.  

 

 

 

 

6.3 Construction of the plu2096::kan
R
 mutant 

Gene specific cassette mutagenesis by allelic replacement is a standard procedure for 

the construction of knock out mutations in bacteria. This is facilitated by the suicide 

vector pJQ200sk+, which allows for the integration of mutated DNA fragments into 

a micro-organisms genome through homologous recombination (Quandt and Hynes, 

1993), and the positive selection of a second recombination event which leaves the 

cassette intact in the genome, The positive selection is facilitated by the sacB gene 

which causes a suicide effect in the presence of sucrose. Therefore, once the plasmid 

is integrated into the genome of the bacteria by an initial homologous recombination 

event, selection on sucrose selects for cells in which the plasmid has been lost 

following a second recombination event in which the mutated copy of the gene is 

retained in the genome (Outlined in Fig 6.3). 

To mutate the organism P. luminescens, vector constructs using the vector 

pJQ200sk+ are made in E. coli, and delivered by conjugation using a mob based 

system. Inserted into the pJQ200sk+ vector is the gene to be mutated as well as 1 kb 

of DNA that flanks that area of interest. In the centre of the gene of interest an 

antibiotic resistance cassette is inserted in the opposite orientation to the gene. A 

number of recombination events described in Fig. 6.3, allow for the elimination of 
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the pJQ200sk+ vector from the host cell, while incorporating the mutated gene into 

its own chromosome.  

The plu2096:kan
R
 mutant was created in a rif

R
 P. luminescens TT01 strain. A 2kb 

region of DNA, which encompassed the gene plu2096 and the sequence flanking on 

either side, was amplified in two sections, as an XbaI-PstI and a PstI-XhoI, which 

were inserted into the XbaI-XhoI sites within the MCS of the suicide vector 

pJQ200sk+. The PstI restriction site created in the centre of the gene, served as the 

site for the insertion of the kanamycin resistance cassette from the plasmid pUC4K 

(Fig 6.2). An XhoI restriction site within the kanamycin cassette allowed for 

determination of the orientation of the cassette. This was incorporated into the 

genome by homologous recombination, and a successful clone validated by PCR 

(Fig 6.4). 

 

 

Fig 6.2 The pUC4K vector.  The 3914 bp vector pUC4K (Table 2.2). The 

kanamycin resistance gene (orange) is flanked by multiple cloning sites to allow for 

the extraction of the cassette. An ampicillin resistance gene (green) is also present on 

the plasmid, but it wasn‟t used in this study. 
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Fig 6.3 Schematic of homologous recombination events. The suicide vector 

pJQ200sk+ (Quandt and Hynes, 1993), containing the gene to be mutated, is shown 

with the following regions highlighted; the gene (green), the antibiotic resistance 

cassette (grey), 1 kb of chromosomal DNA flanking the gene (blue), gentamycin 

resistance (yellow), sacB gene (pink) and the mobilisation site (red). The first 

recombination event involves the incorporation of the entire vector into the 

chromosome through the interaction of regions bearing high homology (blue). The 

second recombination event involves the loss of the vector through internal 

recombination events.  
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Fig 6.4 Confirmation of the plu2096::kan
R
 mutant by PCR. Agarose gel analysis 

of a PCR of wild type and mutant P. luminescens genomic DNA using the primers 

2096KO-f and 2096KO-r (Table 2.3) which anneal 20 bp outside of the region 

amplified in the original cloning strategy. 

 

 

6.4 The role of PL-IL in P. luminescens pathogenicity 

The role of the lectin PL-IL in pathogenicity was determined by the pathogenicity 

assay (Section 2.33). In summary, Galleria mellonella larvae (supplied by Livefood, 

Rooks Bridge, Somerset, U.K.) were injected with a defined number of planktonic 

bacteria, with the time taken for insect death measured. This insect, commonly 

known as the greater wax moth, is a commonly used organism in in-vivo toxicology 

and pathogenicity modelling, as it is has a well characterised immune response, and 

is an in-expensive and easy to handle insect. 

In Fig 6.5 the comparison of wild-type and mutant pathogenicity is shown. This is 

typically displayed in terms of the LD50 (the time at which 50% of the injected 

insects have died). There was little difference between the pathogenicity of the wild-

type and the mutant, 48.5 and 48 hours respectively. After insect death, the cadaver 

turns a red colour and luminescence can be detected, as shown in Fig 6.7, as has 

been been reported in similar studies (Silva et al., 2002).  

When both wild type and mutant bacteria were injected into the insect in an equal 

50:50 ratio, similar quantities of each were re-isolated from the insect cadaver 48 

hours later (Fig 6.6) . This would indicate no competitive advantage in retention of 

the plu2096 gene in terms of pathogenicity towards Galleria larvae.  
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Fig 6.5 Pathogenicity of P. luminescens strains towards Galleria larvae. Twenty 

larvae were injected with 100 cells from each strain to assay for their pathogenicity. 

The LD50 for each strain is marked with a dashed red line, with the blue and pink 

lines indicating the pathogenicity of wild-type and mutant trains respectively. The 

death rate of insects injected with PBS is marked in light blue. 

 

 
 

Fig 6.6 Comparison of P. luminescens wild-type and the mutant plu2096::kan
R
 

in a competitive pathogenicity assay. The total number of each phenotype 

recovered from the cadaver of an insect that has been injected with a 50:50 mixture 

of both wild-type and plu2096::kan
R
 is depicted. 

 

 

-5

0

5

10

15

20

25

44 45 46 47 48 49 50 51 52 53 54

D
e

a
d

 L
a

rv
a

e

Hours

1.E+07

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

1 2 3 4 5 6 7 8 9 10

C
el

ls
 p

er
 In

se
ct

 C
ad

av
er

Insect Number

wt

mut

Wild-type strain 

plu2096 mut 

PBS controls 



210 

 

 

 

 

 

 

 

 

 

 

 

Fig 6.7 Infection of G. mellonella larvae by P. luminescens. Photographs showing 

G. mellonella larvae before and after infection with P. luminescens.  Uninfected 

larvae are shown in Fig A, uninfected and infected larvae directly compared in Fig 

B, and the light emitted by the bacteria in infected larvae 48 hours post-infection is 

shown in C. (The image depicted in C was taken using an Andor fluorescence 

camera, 0.2 sec exposure time, f number 16. The amount of light emitted is 

measured in relative luminescence units (RLU), with a red colour indicating 35,000 

and dark blue depicting less than 10,000).  

 

6.5 The role of PL-IL in P. luminescens symbiosis 

The symbiosis assay (Section 2.34) determines if P. luminescens is capable of 

colonizing the nematode. The IJ nematodes are added to a plate overlain with the 

appropriate bacteria, whereupon they mature through the early stages of their life-

cycle. At the J4 stage (See Fig 6.1) they take up the bacteria, which will then 

colonize the gut of the nematode. The nematode matures into an adult, from which 

all daughter nematodes will not only contain identical genetic material, but also the 

same bacteria that were present in the parent nematode.  

When nematodes are harvested from plates inoculated with either the wild-type or 

the mutant strain, the bacteria that are harvested from their guts were found to have 

the kanamycin resistance phenotypes shown in Fig 6.8. The wild-type strain is 

kanamycin sensitive, while the mutant is kanamycin resistant as a result of the 

kanamycin resistance cassette inserted in the plu2096 gene. 

A B C 
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From the symbiosis assay it was shown that the mutation of plu2096 did not result in 

any loss in the ability to colonize the nematodes. The numbers of nematodes 

recovered from wild-type and mutant inoculated plates were both in the region of 

10,000. To determine if the mutation resulted in reduced colonisation ability by 

comparison with the wild-type, a competitive symbiosis assay was set up. 

 

 

 

Fig 6.8 Colonization of Heterorhabditis nematodes by wild-type and mutant 

strains.  Heterorhabditis nematodes were added to plates containing only the wild-

type (Kan
S
) or the mutant (Kan

R
) strains. In each case the inoculated bacteria were 

recovered from the next generation of nematodes and the kanamycin resistance 

phenotype was determined. 

 

6.5.1 Competitive symbiosis assay 

To set up a competitive symbiosis assay, an equal proportion of wild-type and 

mutant strains are spread on lipid agar plates. Nematodes are added to the plates 

once a mat of bacteria has developed and any advantage of one strain over the other 

to colonize the nematodes should be identifiable from the colonization pattern of the 

next generation of nematodes. As controls, the proportion of both strains present on 

the plate was estimated at point of inoculation, and at 3 and 24 days. This served to 

determine that the strains were equally represented when colonisation of the 
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nematodes was initiated at day 3. The counts for days 3 and 24 also enabled a 

comparison to be made between the strains with respect to their survival in the 

absence of nematodes.  

Bacterial samples were taken from the plates at three time periods, diluted in PBS 

and plated on medium in the presence and absence of kanamycin to estimate the 

relative abundance of the wild type and mutant bacteria. 

The ratio of wild-type and mutant bacteria was determined at day zero to be 50:50 

(Fig 6.8). At day three, within error, both strains retained the same ratio, however by 

day 24 the wild-type had outgrown the mutant by a factor of 10%. Day 3 

corresponds to the time that nematodes were added to a separate set of plates on 

which symbiosis assays were conducted. 

After 24 days bacteria were isolated from 50 nematodes and the proportion of Kan
s 

and Kan
r 
isolates was determined by plating on medium containing kanamycin. Fig 

6.11 shows the percentage of nematodes that were found to have been colonised by 

each strain alone, by the two strains together and by neither strain. 

Ten individual plate assays were conducted to measure competition for colonisation 

and symbiosis. From each plate the relative proportion of mutant and wild type was 

determined and compared with the proportions recovered from nematodes that were 

grown on those plates. The results from four of these plates are shown in Fig 6.10. It 

is notable that in one case, although the wild type was most predominant among the 

free living bacteria the mutant had colonised all three of the nematodes that were 

screened. 

 



213 

 

 

Fig 6.9 Proportions of strains on lipid agar plates in the absence of nematodes. 
The percentage of each phenotype growing on control plates at set time-points for 

the competitive symbiosis assay.   

 

 

 

Fig 6.10 Proportion of each bacteria type present in the colonized nematodes in 

the competition assay at day 24. The percentage of each bacterial phenotype 

present within crushed nematodes at the end of the competitive symbiosis assay.  
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6.6 Discussion 

From the literature it is known that the specific sugar residues for which PL-IL 

displays a high affinity (α-Gal) are not present to a large extent on cell surfaces of 

glycoproteins within the majority of insect cell lines (due to the fact that insects lack 

many of the relevant galactosyl-transferases) (Chen et al., 1991; Hollister et al., 

2002). As a result it was not unexpected that the plu2096 mutant would not have 

reduced pathogenicity towards the Galleria mellonella larvae (Fig 6.5).  This result 

was confirmed by a competition pathogenicity assay (Fig 6.6), where it was found 

that neither strain of the bacteria out-grew the other within a cadaver of a dead insect 

when injected into a live insect in equal proportions. 

It can thus be said that the lectin isn‟t crucial for pathogenicity in Galleria 

mellonella, though it is worth noting that the activity of a lectin from the PA-IL 

family has previously been shown to be sensitive to temperature (Gilboa-Garber and 

Sudakevitz., 1999). All of the assays presented here were performed at 25
o
C, which 

is not the typical temperature at which these organisms are found in nature. After 

conducting these bio-assays, it was then found that PL-IL activity is very sensitive to 

temperature (Section 5.2), so it is possible that the molecule plays more of a role in 

pathogenicity under different conditions. Also, mutants of P. luminescens that have 

been shown to be non-pathogenic in Galleria mellonella have sometimes proved to 

be pathogenic in other insects such as Manducta sexta, and vice-versa, so the lectin 

could have a more important role for the organism‟s pathogenic life-cycle than 

proposed here. 

In the symbiosis assay, the ability of nematodes to be colonized by P. luminescens 

and then reproduce is assayed, as germ-free nematodes do not reproduce as 

efficiently as their colonized counterparts (Han and Ehlers, 2000). It was found in 

these experiments that both the wild-type and the lectin mutant colonized the 

nematodes and allowed nematode reproduction (Fig 6.8). It could be concluded that 

the protein product of plu2096 is not essential for nematode symbiosis. 
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In the competitive symbiosis assays, the crushing of 50 nematodes yielded the result 

that 66% of the juvenile nematodes contained mutant bacteria, compared with 8% 

that contained the wild-type only (Fig 6.10), which indicates a clear advantage, in 

terms of nematode colonization, for the bacteria that do not encode PL-IL. If the 

nematodes are not selectively taking up the mutant, then the prevalence of the 

mutant in the guts of the next generation of bacteria (compared to the wild-type) (Fig 

6.10) must be explained. This result should only be interpreted in terms of the 

proportion of bacteria that were available to the nematodes at the time of 

colonization (Fig 6.9). As the experiment is dependent on there being an equal ration 

of both strains, any deviation from this can have a serious effect on the final 

colonisation data. As shown in Fig 6.9 at day 3, at the time of colonization, the 

strains were present on the lipid agar plates in equal proportion, within the 

boundaries of error. However, notwithstanding the error bars, the results in Fig 6.9 

suggest that the mutant may have been present in slightly higher numbers at the time 

of colonisation. 

It would also be of interest to investigate inoculation with weighted proportions e.g. 

where the colonisation with an inoculum weighted 10:1 in favour of the mutant or 

10:1 in favour of the wild type would be compared with a 1:1 proportion. If the 

mutant is indeed more aggressive as a colonizer then this may emerge from 

weighted infection ratios. 

A recent paper reported the conclusion that it is usually only one of the ingested 

bacteria that adheres to the nematode intestinal wall prior to invasion of the juveniles 

from the maternal nematode, in order to prevent „cheating‟ cells that will not 

contribute to virulence (Ciche et al., 2008).  In the experiments reported here three 

nematodes from fifty were found to be colonized by both bacterial strains in 

disagreement with Ciche et al, (2008), indicating some co-infection. As this 

molecule is present in significant amounts in the extracellular fraction of P. 

luminescens culture (Turlin et al., 2006), it should be investigated whether the 

mutants have colonized more effectively by utilizing the protein that has been 

produced by other cells, and are in effect „cheating‟. Comparison of the original 
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mutant with a mutant constructed by either a deletion of plu2096, or insertion of 

another cassette would ascertain if this was the case. 

This study was an initial study investigating the importance of the lectin in the 

symbiotic relationship between P. luminescens and Heterorhabditis bacteriophora, 

with the conclusion that strains that lack this molecule are not any more defective in 

their ability to colonize the nematode gut than the wild–type. A more comprehensive 

study would have to evaluate how these mutants behave in the animal model, as this 

symbiosis assay removes the insect from the natural life-cycle, where this lectin 

could play a more critical role.  
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7.0 Conclusions and Recommendations 
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In this research thesis, the genes that encode P aeruginosa PA-IL and P. 

luminescens PL-IL were cloned into bacterial expression systems, enabling high 

level expression and purification of the recombinant lectins. A novel lectin was then 

created which contained the binding site of PL-IL, as well as the core lectin skeleton 

of PA-IL (Chapter 3). Extensive physical characterisation of these recombinant 

lectins was then undertaken (Chapter 4) before the affinity and specificity of the 

molecules were investigated by a series of assays (Chapter 5). Finally, preliminary 

studies into the role of PL-IL in P. luminescens were then carried out (Chapter 6). 

Through bioinformatics analysis, it was discovered that the gene lecA, which 

encodes PA-IL, has a number of homologues (Section 1.9.2), which had not 

previously been the subject of any characterisation studies. The data revealed in this 

thesis contributes significant insight into not only PA-IL, the original member of 

thesis PA-IL superfamily, but also its homologue PL-IL. By constructing a mutant 

lectin containing a novel sugar binding site, the study was further expanded to 

encompass a novel member of the family. It was theorized that in order to develop a 

larger range of lectins with different specificities, cloning the binding site from one 

homologue into the PA-IL molecule would eliminate the need to clone entire 

molecules from other strains. However from Section 5.5, it was seen that cloning a 

PL-IL binding site with a low specificity and affinity for α-galactose and β-galactose 

into PA-IL, did not recreate a molecule with the same specificity, but instead created 

a molecule with a high specificity for β-galactose with no specificity for alpha 

galactose. It was therefore concluded that by the construction of mutants in PA-IL it 

would be possible to create novel binding specificities, and not only re-create 

existing specificities that exist within the family.  

PA-IL and PL-IL, are the most distally related members of the PA-IL family as 

shown by bio-informatic analysis (Fig 3.38), and if a similar approach was to be 

taken again, PA-IL would not be the core skeletal molecule used, but rather PL-IL, 

as it is more closely related to the other members of the family. PL-IL is also well 

characterised as a result of this study, with detailed information on its multimeric 

assembly (Chapter 4) as well as temperature (Section 5.2) and co-factor 

requirements (Section 5.7).  
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The next step in the characterisation of the PL-IL molecule would be X-ray 

crystallography, as only limited information can be obtained from a predicted model 

based on sequence homology (Section 4.2). As a result of the expression 

optimisation carried out in Chapter 3, large amounts of soluble recombinant lectin 

could be purified from E. coli without having expended every possible optimisation 

avenue. Crystallisation requires a large amount of purified protein substrate, due to 

an extensive screening process that examines the compatibility of numerous 

different crystallisation buffers and conditions. The total yields for purified 

recombinant lectin per 500/ml culture are given in Table 3.3. For the purposes of this 

thesis, these yields were sufficient for all subsequent characterisation studies, but if 

higher yields of expression were desired, several options remain regarding further 

optimisation of expression. For example, plasmid stability was not investigated in 

this study, and poor plasmid maintenance within the cells can seriously affect 

protein expression levels. The introduction of a more stable antibiotic resistance 

cassette, such as carbenicillin, as ampicillin is well known to be highly unstable, is 

one such possible method. Another possible area for optimisation is media 

composition, as LB is the only medium used throughout this study, but several 

alternatives exist, for example terrific broth, SOB broth, or several proprietary 

enriched media.  

The availability of a crystal structure would allow for further site-directed 

mutagenesis of the molecule, to elucidate which individual amino acids play the 

most important role in sugar binding. Of further interest would be a random 

mutagenesis study what would concentrate on specific sugar-binding residues. It has 

been shown in this thesis the ease with which PA-IL had its specificity changed from 

α-galactose to β-galactose, and that was incorporating residues seen in a related 

molecule. Through the incorporation of very different residues it could be possible 

to change the affinity of the molecule for other glycan residues such as mannose or 

sialic acid.  

The PA-IL family of molecules has already been shown to provide robust and 

reproducible results in the ELLA assay (Section 5.4), which have been used in the 

characterisation of glycoprotein-based therapeutics (Section 5.6). With the 
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possibility of further additions to the family though site-directed mutagenesis, an 

array of specificities may be created within the basic framework of one lectin 

molecule. This could ultimately lead to the creation of a uniform recombinant lectin 

microarray with each well containing the same core lectin molecule, but each with a 

variety of different glycan specificities. The main benefits to such an lectin-array 

would be every molecule having the same optimal conditions (pH, temperature, co-

factor requirements and buffer composition) and the ease at which these 

recombinant lectins can be produced to a high level of purity. Recombinant 

expression of bacterial lectins also allows for the introduction of immobilisation tags 

into the protein structure. Directed immobilisation via these tags would create a 

more homogenous distribution of lectin on the array surface. 

The possibility of incorporation of the molecules into a lectin affinity 

chromatography platform was also briefly investigated. PA-ILmut1 (Section 5.8) was 

successfully immobilised on a sepharose matrix, but there was no indication of 

successful glycoprotein capture for the lectin. As a result of the extensive physical 

characterisation carried out in Chapter 4, the effect on lectin activity by the addition 

of affinity tags to either terminus is known. As a result of this a lysine tag could be 

incorporated onto the C-terminus of the lectins to allow for a more directed 

immobilisation approach, which it is hoped would result in a more active lectin-

resin. Alternatively, poor glycoprotein capture could be the result of relatively low 

affinities for both molecules. Altering affinities can be achieved using the same site-

directed mutagenesis approach that was used for changing specificities.  

Finally, this thesis included an initial study investigating the importance of the lectin 

in the symbiotic relationship between P. luminescens and Heterorhabditis 

bacteriophora, with the conclusion that strains that lack this molecule are not any 

more defective in their ability to colonize the nematode gut than the wild–type. 

Mutant strains lacking the molecule were also found not to be any less pathogenic 

than the wild type strain within the Galleria insect model, indicating no role in 

pathogenesis. A more comprehensive study would have to evaluate how these 

mutants behave in the animal model, as the symbiosis assay removes the insect from 
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the natural life-cycle, while the pathogenesis assay removes the nematode from the 

natural life-cycle, where this lectin could play a more critical role.  

In conclusion, this study, and novel lectin characterisation studies like this, will 

prove invaluable to the increasingly important field of glycobiology, as the 

biopharmaceutical industry will require a wide variety of molecules such as these 

recombinant lectins that will ultimately be used to obtain a comprehensive 

glycoprofile of the next generation of recombinant glycoprotein therapeutics. 
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Appendix I: Carbohydrate structures 

 

Table 1: Symbol nomenclature for the representation of common monosaccharides. 

Symbol Sugar Abbreviation 

 N-AcetylGlucosamine GlcNAc 

 Glucose Glc 

 N-AcetylGalactosamine GalNAc 

 Galactose Gal 

 Mannose Man 

 Fucose Fuc 

 Neuraminic Acid/Sialic Acid Neu5Ac/Neu5Gc 

     Fructose Fru 

 

Fig 1. Structures of some monosaccharides (Drawn using ChemBiodraw) 
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FDA    The U.S. Food and Drug Administration 
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Kd   Dissociation constant 

Log    Logarithm 

LPS    Lipopolysaccharide  

MAL-I   Maackia amurensis lectin I 

MCS    Multiple cloning site 

MW    Molecular weight, 

OD    Optical density,  

ORF   Open reading frame 

PAGE    Polyacrylamide gel electrophoresis 

PDB    Protein data bank 

PNA    Peanut (Arachis hypogaea) agglutinin 

SBA    Soy Bean (Glycine max) agglutinin 

SNA    Sambucus nigra agglutinin-I 

TEMED   N,N,N,N‟-tetramethyl ethylenediamine 

Tris    Tris (hyroxymethyl) amino methane 

UEA-I   Ulex europaeus agglutinin-I  

v/v    Volume per volume 
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w/v    Weight per volume 

WGA    Wheat germ (Triticum vulgaris) agglutinin 
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Abstract 

The growing development and application of glycoproteins as biopharmaceutical 

therapeutics has led to increased interest in the glycan content and glycoforms of 

glycoproteins. The level of glycosylation of these therapeutics have important 

implications for their efficacy. Lectins are naturally occurring bio-recognition 

protein molecules that bind glycoproteins. They have huge potential as specific tools 

in the analysis and purification of glycoproteins that are produced for therapeutic 

purposes. Lectins are found in all classes of organisms including the bacteria 

Pseudomonas aeruginosa and Photorhabdus luminescens. These bacteria 

respectively encode the highly studied lectin PA-IL and its previously 

uncharacterised homologue, PL-IL.  

In this study these two lectins were expressed in Escherichia coli and purified to 

homogeneity via polyHis affinity tags which were fused to their N- and C- termini. It 

was shown through gel permeation chromatography and electrospray-ionisation 

Mass Spectrometry that the addition of affinity tags affected the quaternary structure 

of PA-IL to a greater extent than PL-IL. This was subsequently found to affect sugar 

binding activity. The sugar binding specificities for both lectins were determined by 

hemagglutination inhibition and enzyme linked lectin assays (ELLAs). Both lectins 

were found to have similar preferences for glycans terminating in α-Gal linkages. 

This specificity, in the case of PA-IL, could be altered through site directed 

mutagenesis, giving an insight into the roles of specific residues within the sugar 

binding pocket. Immobilisation studies on the recombinant lectins was carried out 

for their insertion onto novel analytical platforms for the ultimate characterisation 

and purification of therapeutic glycoproteins. The biological role of PL-IL within the 

organism P. luminescens was also investigated through pathogenicity and symbiosis 

assays.   
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