
Stability-based, random matrix theory filtering of financial portfolios

Justin Daly

Bachelor of Arts in Mathematics

A Dissertation submitted in fulfillment of the

requirements for the award of

Doctor of Philosophy (Ph.D.)

to the

Dublin City University

Faculty of Engineering and Computing, School of Computing

Supervisors: Prof. Heather J. Ruskin, Dr. Martin Crane.

September 2009



Declaration

I hereby certify that this material, which I now submit for assessment on the programme

of study leading to the award of Doctor of Philosophy is entirely my own work, that I have

exercised reasonable care to ensure that the work is original, and does not to the best of my

knowledge breach any law of copyright, and has not been taken from the work of others

save and to the extent that such work has been cited and acknowledged within the text of

my work.

Signed

Justin Daly

Student ID 55131590

Date



Contents

Abstract viii

Acknowledgements ix

List of Tables x

List of Figures xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Portfolio Theory and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Volatility Forecasting and Riskmetrics . . . . . . . . . . . . . . . . . . . . 9

2.4 Applications of Some Aspects of Random Matrix Theory to Portfolio Se-

lection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Work of Laloux et al. (1999; 2000) . . . . . . . . . . . . . . . . . 11

2.4.2 Work of Plerou et al. (1999; 2000a; 2000b; 2001; 2002) . . . . . . 14

2.4.3 Agreement between Laloux et al. (1999; 2000) and Plerou et al. (1999;

2000a; 2000b; 2001; 2002) . . . . . . . . . . . . . . . . . . . . . . 15

iii



2.4.4 Other Work on RMT for Large Stock Portfolios . . . . . . . . . . . 16

2.4.5 Work of Pafka and Kondor (2002a,b) and Pafka et al. (2004) . . . . 17

2.4.5.1 Pafka and Kondor (2002a,b) . . . . . . . . . . . . . . . 17

2.4.5.2 Pafka et al. (2004) . . . . . . . . . . . . . . . . . . . . . 18

2.4.6 Small Portfolios . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Stability Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Eigenvalue Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Background and Methodologies 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Hedge Fund Portfolio Investment . . . . . . . . . . . . . . . . . . 25

3.2.2 Foreign Exchange Market . . . . . . . . . . . . . . . . . . . . . . 26

3.2.3 RMT and Historical Covariance . . . . . . . . . . . . . . . . . . . 27

3.2.4 RMT and Exponentially Weighted Covariance . . . . . . . . . . . 28

3.2.5 Standard Filtering Methods . . . . . . . . . . . . . . . . . . . . . 30

3.2.5.1 LCPB Filtering Method . . . . . . . . . . . . . . . . . . 31

3.2.5.2 PG+ Filtering Method . . . . . . . . . . . . . . . . . . . 32

3.2.6 Stability Based Filtering . . . . . . . . . . . . . . . . . . . . . . . 32

3.2.6.1 Krzanowski Stability . . . . . . . . . . . . . . . . . . . 32

3.2.6.2 Stability-based KR Filter . . . . . . . . . . . . . . . . . 34

3.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 In-sample Methodology . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.2 Out-of-sample Methodology . . . . . . . . . . . . . . . . . . . . . 40

3.4 Summary of Scenarios Tested . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

iv



4 RMT for Large Stock Portfolios 46

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Review of Pafka et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 In-sample Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.2 Measuring Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Measuring Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.4 In-sample Risk Reduction . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Out-of-sample Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2 Out-of-sample Analysis . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2.1 Overall Risk . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2.2 Annual Risk . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5.2.3 Daily Risk . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.5.3 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.4 Range of Realised Risks . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Filtering Covariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 In-sample Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 Out-of-sample Analysis . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.2.1 Overall Risk . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6.2.2 Annual Risk . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.2.3 Daily Risk . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.6.3 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6.4 Range of Realised Risks . . . . . . . . . . . . . . . . . . . . . . . 77

4.7 Comparison of Tested Filters . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.1 In-sample Comparison . . . . . . . . . . . . . . . . . . . . . . . . 80

4.7.2 Out-of-sample Comparison . . . . . . . . . . . . . . . . . . . . . . 80

v



4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 RMT for Foreign Exchange Portfolios 87

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Accuracy of the Limiting Approximations for 39 Assets . . . . . . . . . . . 89

5.4 Measuring Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 In-sample Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Further Reduction of S&P 500 Asset Numbers . . . . . . . . . . . 93

5.5.3 In-sample Analysis of the Fx Portfolio with 39 Assets . . . . . . . 95

5.5.4 Further Reduction of Fx Asset Numbers . . . . . . . . . . . . . . . 97

5.6 Out-of-sample Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.2 Out-of-sample Analysis . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.2.1 Overall Risk . . . . . . . . . . . . . . . . . . . . . . . . 102

5.6.2.2 Annual Risk . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6.2.3 Daily Risk . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6.3 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.6.4 Range of Realised Risks . . . . . . . . . . . . . . . . . . . . . . . 107

5.6.5 Reduction of Assets . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Conclusions and Future Work 115

6.1 Goals of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.2 Stability Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2.3 Foreign Exchange Filtering . . . . . . . . . . . . . . . . . . . . . . 118

vi



6.2.4 Choice of Weighting System and Parametrisation . . . . . . . . . . 120

6.2.5 Covariance Filtering . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

References 124

A Maximum Eigenvalue of an Exponentially Weighted Random Matrix 1

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

A.2 Maximum Eigenvalue of an Exponentially Weighted Random Matrix . . . . 2

A.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

B List of Publications 1

C Matlab R© source code disc 1

vii



Abstract

This thesis describes research on filtering methods using Random Matrix Theory (RMT)

Models in financial markets. In particular, a novel, stability-based RMT filter is proposed

and its potential, for reducing stock portfolio risk, is compared to two well-known alter-

natives. In terms of performance, the stability-based filter achieved 17.3% overall im-

provement in risk reduction for equally weighted forecasts, and 49.2% for exponentially

weighted. Of the filters investigated, not only did it prove to be the most effective and con-

sistent, for overall risk reduction, but was also shown to reduce the frequency of large risk

increases, (which, despite their importance, have attracted little attention in the literature

to date). The full frequency distribution of filter effects is studied and a comprehensive

test methodology established. Improvements, on previous approaches, include integrated

use of bootstrap analysis and out-of-sample testing. RMT filtering was also applied to the

foreign exchange market, which contains far fewer assets than a typical stock portfolio.

Filters were shown to reduce inherent currency trading risks, despite the small number of

assets involved. Once again, our novel filter resulted in the lowest risk for exponentially

weighted forecasts, and was most consistent in reducing overall levels, exhibiting also the

fewest large risk increases. Finally, and more generally, RMT filter testing and analysis can

be used to demonstrate the value of rapid response models, i.e. those reacting quickly to

market events. Despite the fact that these utilise very recent data, much information is typi-

cally masked by noise. Filtering is shown to be successful in exposing such key underlying

features.
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Chapter 1

Introduction

1.1 Motivation

Over the years, research into financial markets has borrowed from many other fields, and

investment professionals now use a wide range of tools in an effort to maximise their returns

and minimise their risks. Random Matrix Theory (RMT) is one such technique, originating

in statistical physics, which has recently been applied to studying financial correlations.

RMT has already been used successfully to remove noise in these correlation matrices,

leading to improved investment choices. Much of the focus for RMT applications to date

has been the analysis of the stock market, with its large asset class, but this represents

only one aspect of practical trading, which often deals with the management of smaller

asset groups. In what follows, we look at ways of augmenting RMT filters and examine

their potential to improve foreign exchange portfolios, one example of a class with limited

assets.

From the perspective of RMT, we review research which outlines how the eigenval-

ues, of the correlation matrix of stock market returns1, are consistent with those calculated

using random returns, with the exception of a few large eigenvalues. Moreover, filtering

techniques based on eliminating these “noisy” eigenvalues have been beneficial in both re-

1in this case we employ a daily return, which is the log of todays price divided by yesterdays, as defined in

Section 3.2.3
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ducing the realised risk2 of optimised portfolios, and improving the forecast of this realised

risk. Similar results have also been measured in other markets, such as volatility markets3,

and even fund of hedge fund management4.

In this thesis, we have assessed three such RMT filters, from the perspective of a portfo-

lio manager with a medium-term investment horizon, and an active (managed) investment

mandate. We tested how these filters can be used to reduce the realised risks of traded port-

folios, and what sort of behaviour can be expected from them on a daily basis in the trading

room. With this we aimed to provide a basis from which these filters can be integrated into

different trading applications.

1.2 Objectives

Our main objectives in this research were as follows.

1. Following the work of Sharifi et al. (2004), we proposed to test a novel RMT filter,

which we have developed, based on improving the stability of the filtered matrices.

The original filter was constructed in the context of high frequency data, and was

found to improve stability. We have modified and enhanced it, and applied it to our

daily data. We then compared this filter with two well known RMT filters from the

point of view of stability, risk reduction, and consistency, and assessed the behaviour

of all three filters in the stock market, and then foreign exchange.

2. We examined the use of RMT filters in the foreign exchange market. The stock

market, a typical market for testing these filters, is characterised in this instance by

the low availability of historical data in comparison with the number of tradeable

assets. It is this ratio that affects the amount of noise in the risk forecasts and, in

the case of the stock market, the ratio is low. This lends itself to a high expected

2the realised risk is the standard deviation of the portfolio return over the investment period, as defined in

Section 3.3.1
3A volatility trade is one where the asset traded is the standard deviation of some other asset.
4A fund of funds manager is one who invests in a portfolio of funds, using many of the same portfolio

management techniques used to invest in the underlying assets.
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level of noise. In contrast, the foreign exchange market has relatively few assets.

However, an auxiliary objective was to test the view that, just because historical data

are available, these are not necessarily useful. Thus the availability of relevant past

data is in question, and RMT filters may prove to be valuable in practice.

3. At the same time, we wished to build and improve upon the existing test methodology

available in the literature on RMT filtering. Firstly, we tested the filters using forward

validation, a simulation of a live environment, which can have no knowledge of future

events when performing either model parametrisation, or evaluation. Also, while

work has been done on the aggregate results of RMT filtering, we were keen to assess

the details. We aimed to evaluate both the annual and day-to-day performance of

these filters, to gain a deeper understanding of their behaviours than was previously

available. This is a necessary step for any potential live trading application, since

the trading room should demand to be appraised of typical low level expectations in

practice.

4. We tailored these tests for the type of problems that we were interested in. Following

on from prior industry experience, we were primarily concerned with medium term

investments, and have used 20 days as our main forecast period to coincide with

the work of Pafka et al. (2004). We were focused on the role of an active manager,

in which the expectation is that trading will take place on a daily basis. This is in

contrast to a passive investment, which is reviewed quarterly, for example.

5. We wished to evaluate a close approximation to a live trading application, while

making a limited number of underlying assumptions about the trading strategy. In this

way we planned for our research to be of benefit to a wide range of applications. To

achieve this we used the solutions to the minimum risk problem as our test portfolios.

6. We also aimed to assess the choice of weighting method in the forecasts, along with

the best parameters for each weighting, with and without filtering. We have consid-

ered two alternative weighting systems in the thesis, equal and exponential. Both of
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these can be filtered using RMT.

7. Finally, we wanted to study the effect of filtering the covariance matrix directly. The

standard implementation is to filter correlation, which is closer to the RMT assump-

tions. However, the covariance matrix should contain more information and so we

considered direct filtering of it here.

1.3 Thesis Outline

The thesis has been organised in the following way. In Chapter 2 we review the related

literature, showing how RMT has been applied in the past to improving the optimisation of

financial portfolios, and we discuss the different filters that have been tested. In Chapter 3

we define more strictly the concepts used in the thesis, and we detail the test methodologies

that have been applied. Here, we also define our novel, stability based RMT filter.

The results have been divided into two chapters, based on the market the filters were

applied to. In Chapter 4 we study the application of RMT filtering to an S&P 500 port-

folio. We first assess the amount of noise in the system, as measured by RMT. Next, we

examine the effect of RMT filtering on stability. We then compare the effect of the filters

on in-sample risk, (using bootstrapping), for three different portfolios sizes, and compare

our work with existing analysis. We then study the filters out-of-sample, using forward

validation. Here, we examine them also on an annual, monthly, and daily basis. We also

compare the range of the realised risk with and without filtering, and study the behaviour

of the filters as a function of the unfiltered risk. This was motivated by the daily analysis,

which revealed that filtering did not always decrease risk. Both in and out-of-sample, we

consider the optimal model parameters, and compare these to previous results. We also

examine the application of the filters to the covariance matrix, which is less directly related

to the assumptions of RMT, but potentially holds more information.

In Chapter 5 we apply the filters to the foreign exchange market. Here we consider a

portfolio with only 39 assets. We provide a comparative analysis to the stock portfolio case,
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again studying the amount of noise in the system and the effect of filtering on risk, using

bootstrap analysis and forward validation. Risk is once more evaluated annually, and daily,

and the range of filtered risk is also considered. We also assess the optimal choice of model

parameters, for both weighting systems, and how this choice is affected by filtering. Finally,

we consider the limitations of the filters, by further reducing the number of tradeable assets.

We compare this to the effect of further asset reduction in the stock market.

In Chapter 6 we summarise our work. We discuss our conclusions, from the point of

view of a practitioner wishing to implement the technology. We also discuss the future

research that would be required to apply the filters in a hedge fund context, (involving inte-

gration with other elements of a mathematical trading system), as well as potential further

improvements to the filters themselves.

In Appendix A, we review a numerical technique we have developed, for improving

the runtime needed to filter exponentially weighted risk forecasts using RMT. Appendix B

contains a list of publications related to this research. Finally, a disc of the Matlab R© source

code can be found in Appendix C.
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Chapter 2

Literature Review

2.1 Introduction

In recent years, the availability of large amounts of financial market data has provided an

opportunity for researchers from a wide range of fields to contribute to the study of financial

markets. Econophysics is one such field, which has developed a large body of work. On

reviewing this work, much attention has been paid to Bouchaud and Potters (2000, 2003),

where developments in areas such as the distributions of prices, the correlations within

and between assets, extreme events, and portfolio management, are discussed. A similar

overview is presented in Mantegna and Stanley (2000).

In Bouchaud and Potters (2000, 2003) the focus was on the interpretation of financial

data, using concepts from statistical physics in particular. One aspect studied was distri-

butional behaviour. Despite many theories of finance assuming normality of log returns, it

has been known by market practitioners for some time that these models have their lim-

itations, (Hull, 2006). For example, options are priced using volatility “smiles” which

effectively compensate for non-normality. In Bouchaud and Potters (2003), the authors

concluded that price returns more appropriately could be fitted by truncated Lévy or Stu-

dent distributions. Moreover, the tails could be fitted by a Pareto (power-law) tail. Risk was

also investigated, and complex fluctuations in volatility were noted, along with temporal
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correlations in the volatility time series. The importance of the correlations between assets,

central to this thesis, is further discussed below. Here, Bouchaud and Potters (2000, 2003)

showed good agreement between the eigenstates of market correlations, and a random sys-

tem. Other areas investigated included extreme events, portfolio theory, and option pricing.

What is most notable about this body of work is its efforts to remain close to practical

questions encountered in trading rooms by financial engineers.

This applied perspective can also be found in other areas of econophysics. For exam-

ple, Dacorogna et al. (2001) have studied high frequency effects, such as stylized facts,

seasonality, volatility and correlation. One result, particularly relevant to this thesis, is that

the behaviours of high frequency and daily volatility were quite different, and simply scal-

ing between them was not recommended. We have concentrated solely on daily data here,

and have considered a 20 and 50 day forecasting period. Thus caution should be exercised

in making any predictions about higher frequency effects based on this work.

Gençay et al. (2002) described how wavelets can be used to examine financial data, in

particular seasonality, to identify structural breaks, to study behaviours at different timescales,

and to remove high frequency effects from data prior to forecasting. This latter point is an

interesting area for future research, which may complement RMT filtering, perhaps by re-

vealing additional non-randomness. Meanwhile, many other types of filter have also been

applied in a financial context. A wide variety of these can be found, for example, in Brigo

and Hanzon (1998), Gençay et al. (2002), Tsay (2005) and Tumminello et al. (2005).

Much of the above analysis has aimed to understand the net behaviour of traded assets,

but recent research has also examined the trader viewpoint through agent based modelling

(e.g. Bak et al. (1997); Sornette and Johansen (1998); Zhu et al. (2009) and references

therein). Such models aim to describe the behaviours of individual agents in the market.

Following from this, it is possible to study the net result of these behaviours and compare

this to actual data, therefore improving our understanding of the drivers of price movement.

In the remainder of this chapter we review the key work which has underpinned this

thesis. We begin by reviewing traditional Markowitz portfolio theory, followed by the fore-
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casting of financial covariances, one of the key unknown parameters of that theory. We

then review the role of RMT in improving Markowitz portfolio optimisation. Central to

this thesis is the work of three groups: Laloux et al. (1999; 2000); Plerou et al. (1999;

2000a; 2000b; 2001; 2002); and Pafka and Kondor (2002a,b), Pafka et al. (2004). We re-

view some of this in detail, together with related work in the field of RMT in finance. In this

context, Conlon et al. (2007), discusses the application of RMT to a market with a small

number of assets, and this has informed our own study on foreign exchange filtering.

We also discuss the work of Sharifi et al. (2004), which introduced the concept of

stability-based filtering into the RMT literature, and from which we have developed an

extension of that filter, tested here. Finally, we look at some ways in which eigenanalysis

has been used to provide further information about market activity.

2.2 Portfolio Theory and Noise

Markowitz (1959) portfolio theory is an intrinsic part of modern financial analysis. The

aim of portfolio theory is to determine the optimal portfolio weights which either maximise

return for a fixed level of risk, or minimise risk for a fixed return. Constraints on the

optimisation can be imposed, which reflect the problem at hand, although care should be

taken, since certain formulations for constraints may cause multiple and unstable optimal

solutions, (Galluccio et al., 1998; Bongini et al., 2002).

In all its formats, portfolio theory relies on the covariance matrix of returns. However,

this can be difficult to estimate. For example, for a time series of length T , a portfolio of

N assets requires (N2 + N)/2 covariances to be estimated from NT returns. This results

in estimation noise, since the availability of historical information is limited. Moreover,

it is commonly accepted that financial covariances are not fixed over time (e.g. Morgan

and Reuters (1996); Dacorogna et al. (2001); Bouchaud and Potters (2003)); thus older

historical data, even if available, can lead to cumulative noise effects.

In this thesis, we consider two methods of forecasting the covariance matrix, namely
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equally and exponentially weighted. We now review these methods for unfiltered forecast-

ing, and later discuss the filtering methods for each one.

2.3 Volatility Forecasting and Riskmetrics

Market covariances vary over time, having periods of sustained low or high values ( Mor-

gan and Reuters (1996); Dacorogna et al. (2001); Bouchaud and Potters (2003)). Of the

two covariance forecasting methods considered in this thesis, equally and exponentially

weighted, the former are extensively discussed in the literature on RMT, (Section 2.4). This

method consists of a simple moving average of past data. Exponentially weighted forecasts

meanwhile, give more weighting to recent events, and use an exponential decay factor to

discount the effect of older data. The definitions of these methods are given in Chapter 3.

Exponentially weighted covariance forecasting was popularised by, for example, J.P.

Morgans Riskmetrics (1996) work. It is now considered a benchmark in risk manage-

ment, (Pafka et al., 2004). This method is held to have certain advantages over the equally

weighted model, that are amplified when there is a shock in the market, (Riskmetrics,

1996). Firstly, exponentially weighted models react faster to new market information, since

more recent data is more heavily weighted than older data. At the same time, the effect of

an event is slowly removed as time moves forward, by use of the exponential decay factor.

In contrast, equally weighted forecasts do not give preference to recent events by defini-

tion. All events in the system are given the same weighting, no matter when they occurred,

as long as they are within the time period considered. Moreover, when an event falls out-

side of this time period covariance can change suddenly which, in conceptual terms, is very

unsatisfactory.

In the Riskmetrics (1996) work, optimal decay factors were calculated for daily and

monthly forecasting. The recommended values were 0.94 (daily) and 0.97 (monthly). Other

sources have suggested the use of higher values, for example Pafka et al. (2004) recom-

mended, using RMT analysis, a value of 0.996 for one month forecasting of a large stock
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portfolio, while Litterman and Winkelmann (1998) analysed a bond portfolio, using maxi-

mum likelihood estimation, and reported values of 0.98 (daily) and 0.99 (monthly). In this

thesis, we have examined the optimal choice of decay factor for our particular problem.

Riskmetrics (1996) also discussed the heteroskedasticity of financial markets, using the

example of exchange rates and the S&P 500, where periods of low volatility and periods

of high volatility were clearly seen in both cases. Covariance was seen to display similar

behaviour. This work is a good example of why the use of long time series of historical data

for medium term forecasting is counter-intuitive.

When forecasting the covariance matrix, Riskmetrics (1996) considered a number of

alternative methods, including the use of implied volatility1, which has a number of draw-

backs. For example, it depends on the option pricing model used, while most option models

assume standard deviation is constant. Also, implied volatility is associated with fixed in-

tervals of time (1 week, 1 month, 3 months etc.) and so intervening times require some

type of interpolation. In general, the availability of data may be problematic, and implied

correlations in particular are hard to source. Covariance matrices calculated from implied

volatility are also not guaranteed to be positive definite.

Instead, exponentially weighted covariance forecasts were suggested, and the question

of optimal decay factors was addressed. While different decay factors are, in theory, possi-

ble for different assets, the problem quickly becomes very complex as the number of assets

increases. This is due to maintaining the properties of the covariance matrix, such as non-

negative variances, symmetry, and correlations in the appropriate range. Therefore, the use

of a single decay factor across all assets was recommended for use with Riskmetrics (1996).

However, different decay factors were used when considering different forecasting pe-

riods, since simply scaling up shorter-term estimates is inappropriate. For example a short

term rise in the level of volatility will result in short term forecasts being higher. But this

cannot be scaled out over a long time period without overestimating risk, since this short

term rise will not be sustained. Finally, the optimal decay factors themselves were calcu-

1Implied volatility is volatility calculated from traded option prices, by inverting an option pricing formula.
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lated using a root mean-squared error approach, where the individual errors were taken to

be the differences between the forecast and realised risk.

In this thesis, Riskmetrics style forecasts, and parameters, will be tested alongside fore-

casts made using equal weights, and also filtered forecasts using both weighting systems.

We now discuss how RMT has been used to filter both types of forecast.

2.4 Applications of Some Aspects of Random Matrix Theory to

Portfolio Selection

Random matrix theory (RMT) was first developed by authors such as Dyson and Mehta (1962;

1963; 1963; 1991), to explain the energy levels of complex nuclei (Plerou et al., 2002). It

was recently applied (by several authors including Plerou et al. (1999; 2000a; 2000b; 2001;

2002) and Laloux et al. (1999; 2000)) to noise filtering in financial time series, particularly

in large dimensional systems such as stock markets. We now review the work of these two

groups, who applied RMT to equally weighted covariance.

2.4.1 Work of Laloux et al. (1999; 2000)

Laloux et al. (1999; 2000) were one of the first groups to research the application of RMT

to finance, addressing the similarities between the eigensystems of financial correlation

matrices, and those of random matrices, and, importantly, where the differences lay. These

authors, primarily, examined an S&P 500 dataset, involving daily data over the period 1991

to 1996. A total of 406 stocks covered the entire time interval. On comparing the statistics,

of the eigenvalues and eigenvectors of the market correlations, to those of a corresponding

random matrix, Laloux et al. (1999, 2000) reported the following key observations.

• The largest eigenvalue was found to be 25 times larger than the maximum eigenvalue

predicted by RMT.

• On comparing the remaining eigenvalues with RMT, good agreement was found be-

tween the distributions, after fitting the total risk in the system to an appropriate value,
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in effect compensating for any further “non-noisy” eigenvalues.

• In this way they determined that 94% of the eigenvalues were within the noise band

predicted by RMT, while the highest 6% of eigenvalues were above the maximum

random eigenvalue. These largest 6% of eigenvalues were found to contain 26% of

the total system volatility.

• An examination of the eigenvectors themselves revealed that those, corresponding to

the eigenvalues which were within the noise band, had components which were con-

sistent with randomness. At the same time, the eigenvector for the largest eigenvalue

was shown to have clearly non-random elements. They concluded that this eigenvec-

tor represented the “market”, in the sense that it assigned a roughly equal weighting

to each stock.

• The “non-noisy” eigenvectors were found to be more stable in time.

• This analysis was also applied to other markets, including volatility markets, with

similar results.

The authors thus concluded that the use of such correlation matrices, which corre-

sponded so closely to pure noise, for portfolio optimisation, was unwise. Instead they

suggested a filtering algorithm based on RMT (Laloux et al., 2000) to isolate the non-noisy

information.

It should be noted that, in using such RMT filtering, empirical analysis is performed.

The observed statistics, of the bulk of the eigenvalues are, repeatedly across different mar-

kets, found to correspond to the statistics of random matrices, (further discussed in this

chapter). Following Laloux et al. (2000) this can be explained by assuming that the com-

ponents of the correlation matrix which are orthogonal to the eigenvectors of the “large”

eigenvalues is pure noise. This approach to market analysis differs from other approaches

that can be taken in financial econometrics and financial mathematics where the model

can be based on, for example, the capital asset pricing model or asset pricing theory, and
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the noise is usually taken to be stochastically independent of the “signal”. Such models

lend themselves more easily to techniques such as Bayesian filtering (e.g. Brigo & Hanzon

(1998)).

In Laloux et al. (2000), filtering correlation matrices using such RMT analysis was

found to improve portfolio optimisation, as follows. First a date in the centre of the data

was chosen, and the data was split into “past” and “future” periods. We note that this future

period involved a fixed long term investment, over many years, unlike our medium term

(monthly) investments. The past data was used to calculate a correlation matrix, which

was then filtered. The filter described by Laloux et al. (2000) works by assuming that

the market eigenvalues below the maximum random eigenvalue (defined Section 3.2.3) are

noise. These noisy market eigenvalues are then filtered out, by replacing them with constant

values, while maintaining the trace of the system (i.e. the sum of the eigenvalues) so that

the system does not become distorted.

Using both the filtered and unfiltered matrices, they constructed two efficient frontiers

resulting from Markowitz optimisation. In doing this, the correlation matrix was the focus,

and future returns were assumed known when calculating the variance of the individual

assets. Once the efficient frontier portfolios were known, the authors were then able to

calculate the realised risk of these portfolios over the “future” period. They established the

following key results, which are of particular relevance to this thesis.

• Portfolios based on the unfiltered correlation greatly underestimated the actual re-

alised risk in the future period, at times by a factor of three.

• While the filtered results also underestimated realised risk, the forecast error was

greatly reduced, to a factor of order 1.5.

• The realised risk of the filtered portfolios was below that for the unfiltered at all points

on the efficient frontier. In fact, the difference in filtered and unfiltered risk was seen

to be fairly consistent along the frontier.
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We now examine the work of a second group, Plerou et al. (1999; 2000a; 2000b; 2001;

2002) which was undertaken over a similar period.

2.4.2 Work of Plerou et al. (1999; 2000a; 2000b; 2001; 2002)

Plerou et al. (1999; 2000a; 2000b; 2001; 2002) examined two datasets of US stocks. The

first consisted of 30 minute returns for 1000 US stocks with large market capitalisation,

for the two year period from 1994 to 1995, with a further two years, from 1996 to 1997,

for a subset of 881 stocks. The second database involved daily returns for 422 US stocks

over 35 years, from 1962 to 1996. Similar results were found for these two stock databases.

After analysing the return correlation matrices with RMT, focusing mainly on the 30 minute

returns, Plerou et al. (1999, 2000a,b, 2001, 2002) reached the following conclusions.

• The largest eigenvalue was found to be 25 times the maximum predicted by RMT.

• The majority (98%) of the eigenvalues were found to be within the RMT bounds,

and these, along with their corresponding eigenvectors, showed good agreement with

RMT.

• Eigenvectors, corresponding to the eigenvalues outside the RMT bounds, were found

to display non-randomness. In fact, the authors concluded that these eigenvectors

contained meaningful market information. The eigenvector for the largest eigenvalue

was found to represent a “market wide” influence, in the sense that all stocks were

found to participate, while almost all components had the same sign. The eigenvector

for the second largest eigenvalue contained stocks with large market capitalisation

relative to the database, the stocks in the third were from the electronics and com-

puter industries, the fourth and fifth eigenvectors contained stocks involved in gold

mining and investment. The sixth dealt with stocks linked to Latin America, the sev-

enth banking firms, the eighth oil and gas, the ninth auto-manufacturing, the tenth

drug-manufacturing, and the eleventh paper-manufacturing. Some of the smallest

eigenvectors were found to contain single pairs of stocks with high correlations.
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• The non-random eigenvectors were also found to be more stable in time, sometimes

for up to 30 years. The vector for the largest eigenvalue was the most stable, while

this stability decreased as the eigenvalues approached the RMT upper bound (defined

Section 3.2.3, Equation 3.3).

Similar to Laloux et al. (1999, 2000), these authors also studied the application of an

RMT-based filter. The filtering method was slightly different, involving replacement of the

eigenvalues less than or equal to the maximum noisy eigenvalue by zeros, and preservation

of the trace when restoring the main diagonal to its original values after filtering. Plerou

et al. (1999, 2000a,b, 2001, 2002) followed a similar analysis to Laloux et al. (1999, 2000),

splitting the data into “past” and “future” periods of equal length. The efficient frontier

was then calculated with and without filtering, and the forecasted and realised risks were

compared. The authors found that

• Portfolios based on the unfiltered correlation forecasts underestimated the realised

risk by a factor of 2.7.

• After filtering, the forecasts underestimated by a factor of 1.25.

• The realised risks of the filtered portfolios were below those for the unfiltered portfo-

lios.

2.4.3 Agreement between Laloux et al. (1999; 2000) and Plerou et al. (1999;

2000a; 2000b; 2001; 2002)

Working simultaneously on applying RMT to finance, these groups agreed on a number of

points, central to this thesis, as follows.

• Having analysed US stock markets, the eigenvalues of the correlation matrix of re-

turns, were found to be consistent with those calculated using random returns, with

the exception of a small percentage of eigenvalues.
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• The large eigenvalues, which did not conform to random returns, had eigenvectors

that were more stable over time2.

• Of particular interest: filtering techniques, based on RMT, were demonstrated to be

beneficial in portfolio optimisation, both reducing the realised risk of optimised port-

folios, and improving the forecast of this realised risk.

2.4.4 Other Work on RMT for Large Stock Portfolios

Since these key efforts, similar results have also been found for other markets. For exam-

ple, Utsugi et al. (2004) investigated the Tokyo stock exchange (TSE) and the conclusions

of Laloux et al. (1999) and Plerou et al. (1999, 2002) were also found to apply to this

market. Using daily returns for 493 TSE stocks over a time period of 1848 days between

January 1993 and June 2001, most of the eigenvalues were found by Utsugi et al. (2004) to

agree with RMT and large deviating eigenvalues (and eigenvectors) were also identified.

Emerging markets have also been studied. Nilantha et al. (2007) found agreement be-

tween RMT predictions and stocks on the Sri Lankan stock exchange. They used daily

returns of both the All Share and Milanka price indices, from August 2004 to March 2005,

with 150 stocks considered in both cases. Again, agreement was found between RMT and

most of the eigenvalues, and their eigenvectors, while large deviating eigenvalues also oc-

curred.

Wilcox and Gebbie (2007) looked at the Johannesburg stock exchange (JSE) between

January 1993 and December 2002. In this case, they had to overcome difficulties with miss-

ing data, and illiquid stocks3. In the presence of such data, good agreement with RMT was

still found. For all three data cleaning methods tested, the authors reported that most eigen-

values agreed with RMT, while there were a small number of large deviating values. They

also noted that the choice of data cleaning method affected the results, with some intro-

ducing more noise than others. The portfolios considered here were also large, containing

2and thus forecasts made here with matrices which have been filtered using RMT (i.e. by keeping the stable

eigenvalues and smoothing the unstable ones) are expected to show greater reliability over time.
3i.e. stocks that traded irregularly
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between 250 and 350 shares.

2.4.5 Work of Pafka and Kondor (2002a,b) and Pafka et al. (2004)

The work of Pafka and Kondor (2002a,b) and Pafka et al. (2004) is of relevance to us,

since it introduced the concepts for filtering exponentially weighted matrices using RMT.

In Pafka and Kondor (2002a,b), the authors first addressed the apparent contradiction be-

tween the widespread use of covariance matrices in finance, and the conclusions of Laloux

et al. (1999; 2000) and Plerou et al. (1999; 2000a; 2000b; 2001; 2002) that use of correlation

matrices which contain such a high level of noise was dangerous. Subsequently, in Pafka et

al. (2004), the theory of RMT was extended to include exponentially weighted Riskmetrics

style matrices. The effect, of RMT filtering on the realised risk of optimal portfolios, was

also assessed there.

2.4.5.1 Pafka and Kondor (2002a,b)

In Pafka and Kondor (2002a,b), the effect of noise on portfolio risk was studied using sim-

ulations. Noiseless covariance matrices were first constructed, and then noise was added to

these. Thus the true (noiseless) risk was known in advance, and so the effect of noise could

be calculated, through the risk of minimum risk portfolios. The minimum risk portfolio

problem aims to minimise risk over all levels of return. The advantage of using it here is

that it does not require, as inputs, the forecasted returns, which contain a high level of noise

themselves, and so additional noise is not introduced into the system.

One of the conclusions of this work was that noise has different effects depending on

whether the risk of a portfolio is being measured, or a portfolio is being optimised. In the

latter case, noise has an important effect, even for large ratios of data to assets, while in

the former case it becomes insignificant a lot sooner. When portfolios are optimised in the

presence of noise, the weightings of the optimal portfolio can be quite different from the

true optimum. Despite this, the impact of noise on the risk of the optimised portfolios was

concluded to be of second order. Since realised risk is the ultimate measure of investor
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satisfaction in this context, the authors conclusion was that in practice, the risk of optimal

portfolios, calculated in the presence of noise, is satisfactory.

It was shown that the measured effect of noise could be reduced in these simulations by

increasing T/N , the ratio of data to assets. For a portfolio with N = 500 assets, a range

of 2000 < T < 5000 was considered practical, and it was concluded that in this range, the

effect on the risk of optimal portfolios was of the order of 5% to 15%. The large impact of

noise measured in Laloux et al. (1999, 2000) and Plerou et al. (1999, 2002, 2000a,b, 2001)

was thus concluded to be the result of having a very low value of T/N in these studies.

As an aside, the authors also concluded that the realised risk of these portfolios was a very

good proxy for the true risk, and could be used when the true covariance matrix was not

known.

While these simulation results of Pafka and Kondor (2002a,b) were indicative, there

were a number of aspects which rendered the approach less than satisfactory for assessing

the realised risk of medium term investments. For example, the covariance matrices con-

structed were simplified, and cannot therefore account for the full market structure. Also,

since the market is heteroskedastic, it cannot be assumed that past data, even if available

in sufficient quantities as in this study, is in fact relevant. This is compounded by the fact

that the scale of forecasting period, we were most interested in, is much shorter than those

considered in these simulations. The simulations also only considered the effect of noise

at each level of Q = T/N . They did not take into consideration the possibility that the

optimal value of Q may be quite different in the presence of noise than without, (which we

will later find can be the case, and can have a large impact). Finally, all the RMT work

previously discussed only considered the case of equally weighted covariance. Many of

these questions were discussed in the subsequent work of Pafka et al. (2004).

2.4.5.2 Pafka et al. (2004)

In this later work, Pafka et al. (2004) extended RMT to Riskmetrics (1996) type financial

forecasts. They derived a method for estimating the spectrum of the eigenvalues of an
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exponentially weighted random matrix. The spectrum is valid in a limiting case4, as the

number of assets becomes infinite, and the decay factor tends toward unity. Good agreement

was shown between that limiting case and one with a finite number of assets and a realistic

decay factor.

From this, it becomes possible to determine, numerically, the maximum eigenvalue

of an exponentially weighted random matrix. Using this maximum random eigenvalue,

RMT filters were developed, analogous to the equally weighted case. So, when filtering,

the market eigenvalues above the maximum random eigenvalue were retained, and the rest

filtered. By filtering financial covariance matrices in this way it was shown that RMT

filters improved the realised risk of minimum risk portfolios, generated using exponentially

weighted covariance forecasts. The main forecasting period considered here was 20 days,

which is the main period we have used in our own tests.

The test methodology used was a bootstrapping technique. For a fixed number of as-

sets, the assets in each portfolio and a test date were randomly sampled, with replacement.

On each sampled date, equally and exponentially weighted covariance forecasts were gen-

erated, and filtered. Using these, a minimum risk portfolio was constructed in each case.

Then, the average, over many test dates, of the realised risk of these minimum risk portfolios

was calculated, and the performance of the different weighting and filtering combinations

was compared. This method is in contrast to both Laloux et al. (1999, 2000) and Plerou

et al. (1999, 2002, 2000a,b, 2001) for example, where a single test date in the middle of the

data was considered. Pafka et al. (2004) tested six methods for forecasting risk, based on

equally and exponentially weighted forecasts. The unfiltered forecasts were compared to

those filtered using RMT, and those filtered by retaining only the largest eigenvalue. The

results were as follows.

RMT filtered exponentially weighted forecasts resulted in the lowest risk from the six

methods. The unfiltered forecasts were found to be more competitive when a low number

of assets were used, or alternatively when large numbers of past data points were used (for

4This is also true of the corresponding equally weighted results
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equal weights) or when the decay factor approached one (for exponential). The largest

eigenvalue filter was the least successful method for both weightings.

In agreement with the previous simulations (Pafka and Kondor, 2002a,b), the effect of

filtering was found to be reduced, for fixed N , as the value of T increased. A similar effect

was noted for exponential weights, where increasing the decay factor was broadly found to

reduce the effect of filtering. (Increasing the decay factor is equivalent to using more data,

i.e. increasing T.) In the presence of filtering however, the best parameter values reduced

the amount of data used, compared to the unfiltered case.

In general, and assuming the existence of sufficient data, the improvements seen after

filtering were of the same order as, and below, the simulated effect of noise (Pafka and

Kondor, 2002a,b). These authors also found that the decay factors, which produced the least

risky portfolios, were higher than the range suggested by Riskmetrics and further concluded

that the unfiltered Riskmetrics-recommended forecasts were unsuitable for their portfolio

optimisation problem, more than doubling portfolio risk compared to the best filtered result.

2.4.6 Small Portfolios

While RMT has been extensively applied to large portfolios, like the S&P 500, some authors

such as Conlon et al. (2007), have examined its application to smaller portfolios. Conlon

et al. (2007) studied a portfolio consisting of 49 hedge funds, with limited historical data.

This is relevant to our foreign exchange analysis, due to the limited number of assets in the

hedge fund portfolio, since foreign exchange also has a limited number of tradeable assets.

Unlike foreign exchange however, hedge fund analysis suffers from limited availability of

data, since such funds typically only release results once a month. In the analysis of Conlon

et al. (2007), 105 months of returns data were available for 49 hedge funds. In fact, due

to the lack of data, it was necessary to select a subset of funds from the main database.

Those funds with the longest track records were chosen. This is similar to what happens in

practice, where typically a subset of funds with sufficiently long track records (usually five

years or more) are selected for investment analysis.
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There were a number of key similarities between the work of Conlon et al. (2007) and

the stock market analysis of Plerou et al. (1999; 2000a; 2000b; 2001; 2002) and Laloux et

al. (1999; 2000), for example. RMT was applied to the correlation matrix of hedge fund

returns, and it was found that 6.1% of the eigenvalues were outside the RMT bounds. More-

over, the corresponding eigenvectors were found to contain meaningful groups of funds, for

example one was related to currency funds. This is similar to the stock market analysis of

Plerou et al. (1999; 2000a; 2000b; 2001; 2002) where eigenvectors were observed which

related to specific sectors and regions, for example. The non-deviating hedge fund eigen-

vectors contained no such prevalent strategies, as was the case for stock market analysis.

When RMT was applied to the optimisation of hedge fund portfolios, the correlation

matrix was cleaned using the method of Laloux et al. (1999; 2000). Here, the method of

splitting the data into a past and future period of equal length was again used. Correlation

forecasts were made using the past period and the realised risk in the future period was

measured, as in Laloux et al. (2000). In this case an extra constraint was needed to prevent

short selling5, which is not common in hedge fund of fund management.

Following application of the RMT filter, a 35% improvement was found, between the

predicted and realised risk along the efficient frontier and, moreover, the realised risk for

filtered forecasts was always below that for the unfiltered, with a consistent difference be-

tween them along the efficient frontier. Thus, the results of Conlon et al. (2007) show that

even with a limited number of assets, RMT filtering can be effective in reducing realised

risk.

2.5 Stability Filtering

Stability based filtering was first introduced in a recent paper by Sharifi et al. (2004). Here,

covariance matrices calculated using equally weighted, high frequency (30 minute) S&P

5Short selling involves borrowing an asset and selling it to a third party. The asset is then bought at a later

date and returned to the lender. The trade will profit as the price of the borrowed asset declines. Note that this

is not relevant to foreign exchange, where currencies are traded in pairs, and so a long position in one currency

requires a short position in another, by default.
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500 returns were considered. In agreement with Laloux et al. (1999; 2000) and Plerou et

al. (1999; 2000a; 2000b; 2001; 2002), it was reported that almost all of the eigenvalues

of the correlation matrix conformed to those from a corresponding random matrix. In this

case, 4.7% of the eigenvalues were found to lie beyond the RMT bounds.

In this work, Sharifi et al. (2004) proposed an alternative eigenvalue-filtering method,

based on a principal components technique developed by Krzanowski (1984) for measuring

the stability of eigenvectors, in relation to small perturbations in the corresponding eigen-

values. This was in contrast to the stability over time, as measured by Laloux et al. (1999;

2000) and Plerou et al. (1999; 2000a; 2000b; 2001; 2002). Sharifi et al. (2004) concluded

that filtering correlation matrices according to the method outlined in Laloux et al. (2000)

reduced Krzanowski stability. This is a direct result of the definition of Krzanowski stabil-

ity, since it depends on the separation of adjoining eigenvalues. Such stability is adversely

affected when the eigenvalues are close together, as is the case with the filter of Laloux et

al. (2000), where the eigenvalues within the RMT bounds are set to a constant value by the

filter. Thus the filter proposed in Sharifi et al. (2004) aimed to maximise this stability, by

adjusting the filtered eigenvalues to be equally and maximally spaced, while preserving the

trace.

In this thesis we have extended the filtering technique of Sharifi et al. (2004), making

the separation of the eigenvalues an adjustable parameter. During our tests, we found that

maximising Krzanowski stability led to much reduced optimisation performance, while

some filters with reduced stability performed well in terms of reducing risk. By adjusting

the stability of the filtered matrices, we achieved a balance between stability and risk, which

improved on the stability of the commonly used filters of Laloux et al. (1999; 2000) and

Plerou et al. (1999; 2000a; 2000b; 2001; 2002), while at the same time improving on the

risk profile of the filter of Sharifi et al. (2004). In many of the tested cases, this extended

filter performed best overall in key scenarios, including minimising realised risk, frequency

of risk reduction and lowest number of large daily risk increases.
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2.6 Eigenvalue Analysis

Eigenvalue analysis has also yielded other interesting results about market behaviour. In Keogh

et al. (2003) analysis of the largest eigenvalue, of the covariance of Dow Jones EURO

STOXX sector data, was found to reveal epochs in the market evolution. Changes in this

eigenvalue were found to display a linear relationship with price within epochs. These

epochs were more strongly defined for certain sectors, such as technology and telecomms.

Kwapień et al. (2004) have studied eigenvalue behaviour at different timescales for both

US and German stocks. Studying timescales from seconds up to two days, they concluded

that the magnitude of the leading eigenvalues increased significantly with increasing time

scale. Moreover, they found that significant correlations have arisen at much smaller time

scales in more recent data. The scale that contained the most information in the leading

eigenvalue (days) is the one we have studied in this thesis.

In Sharkasi et al. (2006a) the two leading covariance eigenvalues, and their ratio, were

examined. This revealed different responses to crashes, between mature and emerging mar-

kets. Mature markets were found to move together after a crash, and were also seen to

recover faster. This analysis was further developed in Sharkasi et al. (2006b), where the

authors considered the three leading eigenvalues, and their ratios. In this later work the

authors also examined the eigenvalue behaviour at different timescales, using wavelet anal-

ysis. Overall, this series of work showed that the second and third largest eigenvalues held

meaningful information about market events, and that this was especially true for emerging

markets.

In light of these previous studies, it is the leading eigenvalue(s) that have been found to

reveal information about the underlying markets. In this thesis, we review the applicability

of three random matrix filters, which have been designed to isolate the information in the

leading eigenvalues, i.e. those which lie beyond the range of those for random matrices.
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2.7 Summary

In this chapter we have reviewed the key literature related to this thesis. We have seen

that covariances vary through time, and that their estimation suffers from noise. Further-

more, this noise is expected to affect optimised portfolios, by increasing realised risk. We

have reviewed two methods of forecasting covariance matrices, equally and exponentially

weighted. Both of these can be filtered using concepts from RMT. Here, most eigenvalues

are filtered, since they correspond well with the statistics of a random matrix. The largest

eigenvalues are maintained during this filtering since they, along with their eigenvectors,

have been found to contain valuable information. While much of this analysis has been

performed on large systems, such as those encountered in the stock market, we have seen

that filtering can also be successful when there are less assets.

We have reviewed three RMT filters, the latest of which has been based on the stability

of the filtered matrix. These filters were

Laloux et al. (2000) which filters the noisy eigenvalues by replacing them with their av-

erage

Plerou et al. (2002) which filters by replacing the noisy eigenvalues with zeros, followed

by restoration of the original main diagonal

Sharifi et al. (2004) which replaces the noisy eigenvalues with ones which are maximally

and equally spaced and which maintain the sum of the eigenvalues. In Section 3.2.6.2,

we extend this filter to vary the spacing of the replacement eigenvalues, for improved

risk reduction.

In the next chapter we will review in more detail the mathematical background of this

work.
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Chapter 3

Background and Methodologies

3.1 Introduction

In this chapter we review key methods, used in the thesis. We first outline some financial

context, discussing hedge fund investing and the foreign exchange market. This is followed

by a discussion of RMT. We review RMT as applied to equally weighted matrices, and

then exponential. We then discuss the RMT filters of Laloux et al. (2000), Plerou et al.

(2002), and Sharifi et al. (2004) and define Krzanowski (1984) stability. We also define a

novel stability-based filter. Finally, we discuss the in-sample and out-of-sample tests used

to examine these filters, and the reasons these tests were chosen.

3.2 Background

3.2.1 Hedge Fund Portfolio Investment

A hedge fund (e.g. L’Habitant (2006)) is a private investment vehicle typically only avail-

able to accredited investors, namely high net worth individuals and institutional investors

(e.g. commercial banks and pension funds). This pool of investors are able to seek more

sophisticated strategies, requiring a deeper understanding on the part of the investor, than

are typically available to the general public. Hedge funds come in many varieties, involving
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a wide range of investment strategies, but one common technique involves the forecasting

of asset returns, and their associated risks and correlations, and the construction of optimal

investment portfolios, based on these forecasts (e.g. Elton et al. (2006)).

In this work, we have focused on improving the risk profile of two common investment

scenarios. The first is the buying and short selling of stocks, in this case US stocks from

the S&P 500. The second scenario is the buying and selling of currencies and commodities.

For this research, we were principally concerned with managed, medium term investments

in these markets. We have endeavoured to mimic the active investment strategies of hedge

funds with our research methods, leading to our use of forward validation. At the same

time, we have been careful to avoid strategy specific assumptions, instead preferring a test

environment which has relevance to potentially many different investment strategies. This

aspect is discussed further in Section 3.3. Finally, while hedge fund style investing has been

the main focus of this work, these results are also relevant to other market participants, if

employed correctly.

3.2.2 Foreign Exchange Market

While most of the literature on RMT is concentrated on stock market analysis, as seen in

Chapter 2, in this work we have taken filtering methods developed in the stock market,

and applied them in the foreign exchange (“Fx”) market. We found remarkable agreement

between the effects of filtering in these markets.

The Fx market is by far the biggest and most liquid market in the world. According

to the Bank for International Settlements Triennial Report (Heath et al., 2007) the average

daily traditional1 turnover grew by 69% to to $3.21 trillion over the previous three years.

This was an unprecedented rate of growth, much larger than the previous period. In this

time, the type of market activity seen was found to have changed substantially. Transactions

with financial institutions like hedge funds, mutual funds, pension funds and insurance

companies more than doubled, while more diversification of the currencies being traded

1Traditional turnover consists of spot trades, outright forwards, and fx swaps.
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was observed. It is in this climate that we study the application of RMT filters to foreign

exchange.

3.2.3 RMT and Historical Covariance

In this section we review the statistical behaviour of the eigenvalues of a random matrix

constructed using equally weighted returns. (In particular, we require the expression for

the extremal eigenvalue, λ+, of these equally weighted random matrices, in the filtering

algorithms that follow.) These statistics have been found to correspond closely with the

bulk of observed market eigenvalues, as discussed in Chapter 2.

As described by Laloux et al. (1999), Plerou et al. (2002), Sharifi et al. (2004) and

others, in the context of correlation matrices of financial returns, if R is any matrix defined

by

R =
1

T
AA

′ (3.1)

where A is an N × T matrix whose elements are i.i.d. 2 random variables with zero

mean and finite variance, then it has been shown (Sengupta and Mitra, 1999) that, in the

limit N → ∞, T → ∞ such that Q = T/N ≥ 1 is fixed, the probability density function

P (λ) of the eigenvalues of R is self-averaging3, and is given by

P (λ) =























Q

2πσ2

√

(λ+ − λ)(λ − λ−)

λ
if λ− ≤ λ ≤ λ+

0 otherwise

(3.2)

where σ2 is the variance of the elements of A, and the extremal eigenvalues are given by

λ± = σ2
(

1 + 1/Q ± 2
√

1/Q
)

. (3.3)

2i.i.d. ≡ independent and identically distributed
3In this context, the term self-averaging is used to indicate that, in the large limit of N and T the p.d.f of

the eigenvalues of R tends to P (λ) (as given in Equation 3.2)
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Financial correlation and covariance matrices can be expressed, in general, in the form

given by Equation (3.1)4, so matrices for historical data can be compared to those generated

from i.i.d. random returns. (The details of the method for doing this are discussed in Section

3.3.1)

Here we define the covariance matrix V = {σij}N
i,j=1 of returns 5 6 by

σij = GitGjt − Git.Gjt (3.4)

where Git refers to the mean over time, and the correlation matrix C = {ρij}N
i,j=1 by

ρij =
σij√
σiiσjj

(3.5)

where {Git}i=1,...,N
t=1,...,T are the returns

Git = ln

(

Sit

Si,t−1

)

(3.6)

and where Sit is the spot price of asset i at time t.

Equation (3.3) now provides us with a closed form for the largest eigenvalue of equally

weighted random matrices, to be used with the filtering techniques.

3.2.4 RMT and Exponentially Weighted Covariance

In this section we review the behaviour of the eigenvalues of a random matrix, which has

been constructed using exponential weights. Again, for the filtering algorithms that follow

we will need to calculate the largest eigenvalues of such matrices.

In extending RMT filtering to exponentially weighted matrices, Pafka et al. (2004) have

4where N is the number of assets and T is the number of past price moves (one move is recorded each day

in these markets)
5throughout this thesis the following notation is used: {xi}

N
i=1 ≡ {xi : i = 1, . . . , N}, {xij}

N
i,j=1 ≡

{xij : i = 1, . . . , N ; j = 1, . . . , N}, {xit}
i=1,...,N

t=1,...,T ≡ {xit : i = 1, . . . , N ; t = 1, . . . , T} etc.
6Please note that, formally, objects such as σij and ρij can be considered as having a time subscript, as they

will vary through time by definition. However, this subscript has been dropped in what follows, so as not to

clutter the already complex notation.
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analysed matrices of the form M = {mij}N
i,j=1 with

mij =

∞
∑

k=0

(1 − α)αkxikxjk (3.7)

and where {xik}i=1,...,N
k=0,...,∞ are assumed to be N.I.D.(0, σ2) 7. They have shown that, in

the special case N → ∞, α → 1 with Q ≡ 1/(N(1 − α)) fixed, the probability density

function, ρ(λ), of the eigenvalues of M is given by

ρ(λ) =
Qv

π
(3.8)

where v is the root of

F (v) =
λ

σ2
− vλ

tan(vλ)
+ ln(vσ2) − ln(sin(vλ)) − 1

Q
(3.9)

F (v) is well defined on the open interval (0, π/λ). If a root does not exist on this interval

for a given value of λ we define ρ(λ) = 0 for that λ. The family of matrices, defined by

Equation (3.7), includes the Riskmetrics (1996) covariance and correlation matrices. We

define this exponentially weighted covariance matrix V
∗ = {σ∗

ij}N
i,j=1 by

σ∗
ij =

1 − α

1 − αT

T−1
∑

t=0

αt (Gi,T−t − Git) (Gj,T−t − Gjt) (3.10)

and define the corresponding, exponentially weighted, correlation matrix C
∗ = {ρ∗ij}N

i,j=1

by

ρ∗ij =
σ∗

ij
√

σ∗
iiσ

∗
jj

(3.11)

Here, α is commonly called the decay factor.

The largest eigenvalue of an exponentially weighted random matrix can now be de-

termined by examining Equation (3.9) numerically. We have derived a more efficient

method (Daly et al., 2008), presented in Appendix A, where we have shown that this ex-

7N.I.D.(µ, σ2) ≡ Normally and identically distributed (with mean µ and variance σ2)

29



tremal eigenvalue is also the solution of

λ

σ2
− ln

(

λ

σ2

)

= 1 +
1

Q
, λ > σ2 (3.12)

3.2.5 Standard Filtering Methods

The three filtering methods compared in this thesis are all based on replacing the “noisy”

eigenvalues of the correlation matrix, while maintaining its trace. The noisy eigenvalues

are taken to be those that are less than the largest eigenvalue of the corresponding random

matrix8. This is because, as discussed in Chapter 2, the statistics of those eigenvalues

below λ+ have been observed to correspond closely with RMT, for different markets. The

empirical conclusion has been that only the largest market eigenvalues (those above λ+)

can be relied upon to contain genuine information (c.f. Chapter 2).

There are a number of empirical reasons why the minimum random eigenvalue is not

considered in these filters. First amongst them is that, while the large market eigenvalues

which have been studied are clearly separated from the RMT bounds, the same cannot be

said for the smallest measured eigenvalues. Typically, small eigenvalues have been found

outside the bounds, which were consistent with those which occur simply due to the fact

that N and T are finite in practice. To complement this, following examination of the

eigenvectors corresponding to the large eigenvalues, clear non-randomness, and stability

over time, of the eigenvectors has been reported, while the same cannot be said for the mea-

sured eigenvectors of the smallest eigenvalues. For these reasons, we follow the suggestions

of the original authors in this field ( Plerou et al. (2002), Pafka et al. (2004), Laloux et al.

(2000)) and retain only the eigenvalues above λ+ during filtering. We suggest that further

examination of the minimum RMT eigenvalue would only be valid, and potentially useful,

if it were done in conjunction with the future work suggested in Section 6.3, to further study

the effect of finite dimensions (N and T ).

8The corresponding random matrix is the random matrix which uses equivalent values of Q and σ2. This is

further discussed in Section 3.3.1
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The theoretical limiting cases (described in Sections 3.2.3 and 3.2.4) are commonly

used to estimate the largest eigenvalues of the random matrices, which can also be estimated

by calculating them directly from Monte Carlo simulated random returns. In this work,

we have used the maximum eigenvalue predicted by RMT (Equations 3.3 and 3.12) for

filtering, due to computational efficiency. We now discuss the three RMT filters which use

this concept.

3.2.5.1 LCPB Filtering Method

The filtering method of Laloux et al. (2000) (and referred to here as LCPB) replaces the

noisy eigenvalues with their mean as follows. Starting with the sequence, Λ = {yi}N
i=1,

of eigenvalues (ordered by size of the numbers), of some N × N matrix, M, and the

corresponding eigenvectors, E, we define the sub-sequence

Λnoisy = {yi}n
i=1 (3.13)

of eigenvalues which are less than the maximum eigenvalue predicted by RMT. A sequence

of filtered eigenvalues are then defined as

Λfiltered = {x1, . . . , xn, yn+1, . . . , yN} (3.14)

where {yi}N
i=n+1 are the eigenvalues assumed to contain information and

Λnew = {xi}n
i=1 (3.15)

are the replacements, where for all i = 1, . . . , n we have

xi =
1

n

n
∑

j=1

yj (3.16)
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These filtered eigenvalues Λfiltered are then combined with the original eigenvectors, E,

using the eigen decomposition theorem 9 , to construct a filtered matrix

Mfiltered = EDfilteredE
−1 (3.17)

where Dfiltered is a matrix with Λfiltered on the main diagonal and zeros everywhere

else. Replacing the noisy eigenvalues by the mean noisy eigenvalue means that the trace of

Mfiltered is equal to the trace of M. When using these three RMT filters the trace (i.e. the

sum of the eigenvalues) should be preserved so that the system does not distort.

3.2.5.2 PG+ Filtering Method

As described by Plerou et al. (2002) (and referred to here as PG+), this method is the same

as the LCPB method, except that the noisy eigenvalues are all replaced by zeros. Then,

after the filtered matrix Mfiltered is built, its main diagonal is set to be equal to that of the

original matrix M, thus preserving the trace (i.e. the sum of the eigenvalues) to prevent

system distortion.

3.2.6 Stability Based Filtering

In this section we give the details of our novel, stability-based filter, which is an extension

of that of Sharifi et al. (2004), which is in turn based on the stability (defined below), as

described by Krzanowski (1984), of the filtered matrix.

3.2.6.1 Krzanowski Stability

Krzanowski (1984) measured eigenvector stability, specifically the effect on each eigenvec-

tor of a perturbation in the corresponding eigenvalue. This is in contrast to stability over

time, as analysed by many other authors, e.g. Laloux et al. (2000) and Plerou et al. (2002).

9Let M be a square matrix and let E be a matrix of eigenvectors. If E is a square matrix then M =
EDE

−1 where D is a diagonal matrix containing the corresponding eigenvalues on the main diagonal, (e.g.

Strang, 1980).
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Krzanowski (1984) considered the angle, θi, between an eigenvector vi and vp
i , where vp

i is

the maximum perturbation that can be applied to vi while ensuring that the eigenvalue, λp
i ,

corresponding to vp
i is within ǫ of the eigenvalue, λi, corresponding to vi. He showed that

θi is given by:

cos θi =































(

1 +
ǫ

λi − λi−1

)− 1

2

for λp
i < λi

(

1 +
ǫ

λi+1 − λi

)− 1

2

for λi < λp
i

(3.18)

where λ1 ≤ λ2 ≤ . . . ≤ λL are the eigenvalues, and suggested using ǫ = kλi with

k = 0.1, 0.05 or 0.01. When measuring stability, we have chosen k = 0.1, which was the

most consistent with typical eigenvalue changes between different subperiods of our data.

Note however that the choice of k has no effect on the filtering algorithms. Rather, it is used

when measuring the stability (Eqn 3.18) of the subsequently filtered matrices, as is done in

Section 4.4.3. When measuring this mean stability, of the filtered and unfiltered covariance

matrices, the arithmetic mean of the cases λp
i < λi and λi < λp

i was calculated.

To summarise, we consider here the stability of the eigenvectors, in response to changes

in the corresponding eigenvalues. In the Krzanowski method, stability is measured by con-

sidering the biggest perturbation to an eigenvector that can be generated by a perturbation,

no larger than ǫ, in the corresponding eigenvalue. In the in-sample and out-of-sample tests

that follow we assess empirically how this stability impacts the performance of optimal

portfolios, (i.e. calculated using underlying matrices of varying stability). We find that in-

creasing Krzanowski stability can improve the realised risk of those optimal portfolios. It

is possible that one reason for this may be that changes in the market (caused by the arrival

of new information) result in eigenvalue fluctuations over the life of the investment, and so

matrices which are well balanced in anticipation of such changes perform better, although

this has not been proved.
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3.2.6.2 Stability-based KR Filter

The stability-based filtering method is defined as follows. To maximise the Krzanowski

stability of the filtered matrix, while also maintaining its trace, the method of Sharifi et

al. (2004) replaces the noisy eigenvalues with ones that are equally and maximally spaced,

are positive, and have sum equal to the sum of those replaced. This formulation is a result

of the observation that increased stability of an eigenvector follows directly from increased

separation of its eigenvalue from the neighbouring eigenvalues (c.f. Eqn 3.18). To achieve

maximal spacing, the filter of Sharifi et al. (2004) assumed that the smallest replacement

eigenvalue should be very close to zero.

During the work described in this thesis, the method of Sharifi et al. (2004) was adapted

to create a novel filter, by making the smallest replacement eigenvalue a parameter of the

filter, so that changes in stability and optimisation results, achieved for various values of

this parameter, could be measured. We call the adapted version the KR method, (Daly

et al., 2008). It follows that the original filter of Sharifi et al. (2004), using a minimum

replacement eigenvalue of 10−8, is a special case of the new KR method

The KR method is identical to the LCPB method except in the choice of eigenvalues to

replace the noisy eigenvalues. If

Λnoisy = {yi}n
i=1 (3.19)

are the original noisy eigenvalues then, for the KR method, the replacement eigenvalues

Λnew = {xi}n
i=1 (3.20)

are given by

xi = x1 + (i − 1)k (3.21)

for some constant k ≥ 0, which is defined by the choice of minimum replacement eigen-

value, x1, and the constraint that the sum of the replacement eigenvalues must equal the
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Table 3.1: List of KR methods tested

Method Name Minimum Replacement Eigenvalue

KR2 1
2Λnoisy

KR4 1
4Λnoisy

KR8 1
8Λnoisy

KR16 1
16Λnoisy

KR64 1
64Λnoisy

KR100 1
100Λnoisy

KR1000 1
1000Λnoisy

KR0 10−8

sum of the eigenvalues being replaced to prevent distortion. In addition, the replacement

eigenvalues must all be strictly positive. It follows that

k =
2(a − x1)

n − 1
(3.22)

where a is the mean of the eigenvalues being replaced. Since k ≥ 0 we require that x1 ≤ a.

Moreover, the case k = 0 just collapses to the LCPB method, since k = 0 ⇔ x1 = a.

The KR methods considered here, and their defining minimum replacement eigenval-

ues, are listed in Table 3.1, where Λnoisy refers to the mean of the noisy eigenvalues. In

the in-sample tests, these variations of the KR filter were compared. In the out-of-sample

tests, one had to identify, based on past performance, the best KR filter to be used each day

for that days investment, (further details provided in Section 3.3.2).
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3.3 Methodologies

In this thesis we have employed two main methods for testing these filters. The first, in-

sample, method follows directly from Pafka et al. (2004), and involves randomly sampling

many test dates with replacement. The second, out-of-sample, method known as forward

validation, evaluates all dates once, by simulating an actual implementation over time. We

give the details of these two methods now.

3.3.1 In-sample Methodology

For any in-sample analysis, and following Pafka et al. (2004), bootstrapped samples were

taken, together with the mean across these samples. For a given value of N , (the number

of assets), we randomly selected N assets from the data set, and a random test date. Every-

thing up to and including the test date was taken as historical information and everything

afterward as realised, future information. For each N , we repeated this random selection

1000 times, with replacement, and calculated the mean, across all bootstrapped samples,

of the realised risk of the forecast minimum risk portfolio (Pafka et al., 2004), calculated

using our forecast covariance.

A covariance forecast in this context consisted of a raw forecast, which was either ex-

ponentially or equally weighted, and could be unfiltered, or filtered by one of the LCPB,

PG+ or KR methods applied to the correlation or covariance matrix.

On each test date, we calculated the forecast minimum risk portfolio, optimised as

follows (Pafka et al., 2004). Choose a portfolio weighting {wi}N
i=1 that minimises the total

expected risk
N

∑

i,j=1

wiwj σ̂ij (3.23)

while satisfying the budget constraint

N
∑

i=1

wi = 1 (3.24)
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Here, V̂ = {σ̂ij}N
i,j=1 is the forecast covariance matrix, which can be either equally (Eqn

3.1) or exponentially (Eqn 3.7) weighted, and filtered or unfiltered. The solution, {ŵi}N
i=1,

of this problem is:

ŵi =

N
∑

j=1

σ̂−1
ij

N
∑

j,k=1

σ̂−1
jk

∀i (3.25)

where V̂
−1 = {σ̂−1

ij }N
i,j=1 is the matrix inverse of V̂. The realised risk of the optimal

portfolio is then defined by

√

√

√

√

N
∑

i,j=1

ŵiŵj σ̃ij (3.26)

where Ṽ = {σ̃ij}N
i,j=1 is the realised covariance matrix, and is the (equally weighted)

covariance matrix of the realised future returns over the investment period, calculated anal-

ogously to Equation 3.4. (This realised risk thus describes the variation in returns of the

investment. Overall investment success is typically measured by its return divided by this

risk.) The forecast risk is calculated analogously, using the forecast covariance matrix, V̂.

As seen in Pafka and Kondor (2002a,b), (discussed Section 2.4.5.1), this realised risk can

be considered a good proxy for the true portfolio risk, which can never be known.

By comparing the covariance forecasts in this way, we measured their effect on realised

risk without using forecast returns, which would introduce additional noise into the results.

Further, we have not used any knowledge of future returns in our tests, since we wished

to evaluate both forecasting methods (equal vs. exponential weighting) as well as filter-

ing methods. This is in contrast to some previous studies (e.g. Laloux et al. (2000)), that

have isolated the effect of the filtering method on the correlation matrix, by using future

knowledge of realised returns to estimate the variance of each individual asset.

We now detail the bootstrapping procedure, referring to the mathematical methods de-

fined earlier in this chapter.

For each portfolio size considered (e.g. N = 100, 250, or 432 for stocks), we:
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1. First select a random test date (with replacement) from those available

2. For that date, select a random list of N assets (again with replacement) from the full

list of available assets. (This avoids having to forecast returns, which would introduce

further noise.)

3. For that list of assets, on that date, we generate alternative forecast covariance matri-

ces, V̂, as follows.

(a) We start with an unfiltered covariance matrix, which is calculated from either

equally (c.f. Eqn 3.4) or exponentially (c.f. Eqn 3.10) weighted past returns.

(b) We apply the filters by first selecting a target matrix. We have tested filtering

the covariance matrix directly, as well as filtering the associated correlation

matrix. The latter is more standard. To perform this filtering we first require

the maximum eigenvalue of the corresponding random matrix. This maximum

eigenvalue can be found using Eqn 3.3 for the equally weighted case, or Eqn

3.12 for exponential.

In both cases, for calculating the appropriate λ+, we require two inputs, namely

Q and σ. The calculation of Q is trivial for both weighting schemes. We calcu-

late σ in the equally weighted case as follows.

(c) As defined in Section 3.2.3, σ2 is the variance of the elements of A (where A is

first described as part of Eqn 3.1). All that is required here is to transform our

target matrix into the form of R specified in Eqn 3.1. For filtering correlation

we set A = {ait}i=1,...,N
t=1,...,T where

ait =
Git − Git√

σii
(3.27)

and for filtering covariance we have A = {ait}i=1,...,N
t=1,...,T where

ait = Git − Git (3.28)
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where σii and Git are defined in equations 3.4 and 3.6 respectively, and where

we recall that Git refers to the mean over time. σ2 is now the variance of

all the elements of A combined. Identical transformations are required in the

exponentially weighted case to calculate the appropriate σ2.

We can now calculate λ+ for the target matrix using the appropriate equation

(Eqn 3.3 for equally weights or Eqn 3.12 for exponential).

(d) Once λ+ has been calculated, we can apply the filtering techniques defined

in Sections 3.2.5.1 (LCPB method), 3.2.5.2 (PG+ method) and 3.2.6.2 (KR

method) to the target matrix. Note that the treatment of the KR filter in the in-

sample (bootstrapping) case involves considering separately all possible flavours

of the KR filter (c.f. Section 3.2.6.2), which have been listed in Table 3.1. In

this table we see that we are considering a total of eight different KR filters here

(KR2, KR4, etc), and we compare them to each other in-sample, and also to the

LCPB and PG+ methods.

(e) Finally, when correlation has been the target matrix for filtering, we calculate

our forecast covariance matrix V̂ = {σ̂}N
i,j=1, as usual, using the transformation

σ̂ij = ρ̂ij
√

σiiσjj (3.29)

where {ρ̂}N
i,j=1 is the result of filtering the correlation matrix using RMT (i.e.

in step 3(d)), while σii is as before, (Eqn 3.4 when using equal weights and Eqn

3.10 when using exponential).

4. Having calculated these filtered covariance matrices in this way, we can now compare

them with the unfiltered covariance as follows. We evaluate each forecast covariance

matrix (each day) by calculating the realised risk (c.f. Eqn 3.26) of the corresponding

minimum risk portfolio (c.f. Eqn 3.25) for each forecast matrix (for that day).

5. We now repeat steps 1-4 one thousand times and calculate, for each method of fore-

casting covariance, the average realised risk (as calculated in step 4) across these
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experiments.

6. These average risks are then examined for different values of the decay factor (α) (for

exponential weights) or size of time window (T ) (for equal weights), and the filters

are compared directly. An example of such a comparison can be seen in Figure 4.5.

While this method yields valuable information about the average behaviour of the filters, it

should be noted that, since it is an in-sample method (i.e. best parameter values are assessed

after the test), the KR method has some advantage over both the PG+ and LCPB methods.

This is because it has an extra parameter (namely its minimum replacement eigenvalue,

leading to alternative specifications KR2, KR4, etc as listed in Table 3.1) and thus the KR

method has more potential for “fitting the data”. Despite this, we subsequently found good

agreement between the results of the in-sample tests and those of the out-of-sample tests

described in the following section.

The results of such in-sample risk analysis are found in Sections 4.4.4, 4.6.1, 4.7.1, and

5.5.

3.3.2 Out-of-sample Methodology

For comparing the forecasting and filtering models out-of-sample we used forward valida-

tion. This method simulates a live implementation (of trading every day using risk fore-

casting). The method considers every available test date and, for each one, uses only data

(and past performance) prior to the test date to optimise any model parameters, as follows.

(Note that this method is very similar to the bootstrapping method of Section 3.3.1, so we

will concentrate on the differences here.)

1. We first make a selection of assets to examine. For both markets we have examined

the full list of available assets (results found in Sections 4.5.2, 4.6.2, and 5.6). For

foreign exchange we also examined a subset of major assets (results found in Section

5.6.5). (Again, asset selection is required to avoid the noise introduced when using

forecast returns.)
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2. This is a preparatory stage, which sets up all the results which we need during the

forward validation. For each filter (LCPB, PG+, KR, and unfiltered), and for both

weighting schemes (equal and exponential), for all available test dates, and for all

parameter values considered (i.e. values of T and α, with the KR filter having a

second parameter, x1, the minimum replacement eigenvalue), we implement steps 3

and 4 of the in-sample algorithm. This means that we:

• generate all possible covariance forecasts (step 3)

• and calculate the realised risk of the minimum risk portfolio associated with

each forecast (step 4).

Note that for in-sample testing have have used 1000 randomly sampled dates, while

in the out-of-sample algorithm here we have assessed each available date once. Note

also that the treatment of the KR filter has now changed from the in-sample case.

Here, we are no longer considering KR2, KR4 etc. explicitly. Instead, we consider

the different KR flavours as parameterisations of the more general “KR” method, with

each one defined by its minimum replacement eigenvalue x1 (c.f. Section 3.2.6.2).

To summarise: in this step, we have generated the following data set (which we will

refer to in the steps that follow): {Ut′,f,w,p} where U refers to the realised risk (c.f.

Eqn 3.26) of the minimum risk portfolio (c.f. Eqn 3.25) associated with some covari-

ance forecast, t′ refers to the test date (the start date of the investment), f refers to

the choice of filter used in the forecast (LCPB, PG+, KR, or unfiltered), w refers to

the choice of weighting scheme (equal or exponential) and p refers to the parameters

associated with that weighting scheme and filter combination.

3. Using this, we now forward validate as follows. For a test date t′, for a given filter,

f , and weighting scheme, w, we choose the optimal parameters p′t′ which minimises

average past realised risk associated with this forecasting method. We effectively
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minimise this sum:
∑

t≤t′−tF

Ut,f,w,p (3.30)

Note that we only consider portfolios which were invested before t′ − tF , or on that

date, where tF is the investment period (20 days) since, on day t′, we do not have

full knowledge of investments made after t′ − tF , since conceptually they are still

invested.

4. Now, using the optimal parameters generated in the previous step, we invest for-

ward using these parameters and, for each {t′, f, w} we measure Ut′,f,w,p′
t′

, (which

of course has been pre-calculated as part of step 2). This quantity is therefore the

realised portfolio risk (c.f. Eqn 3.25) of the minimum risk portfolio (c.f. Eqn 3.25)

which is associated with the covariance forecasting method {f, w} on day t′.

We study the behaviour of these realised risks by examining their average behaviour

(e.g. Section 4.5.2.1), their average behaviour in each year (e.g. Section 4.5.2.2),

and their individual behaviours (e.g. 4.5.2.3), as would be done in practice when

considering an investment.

We now have a simulation of how each forecasting method would have performed in

practice. This method allows the fair comparison of filtering methods with different num-

bers of parameters and also gives some insight into the stability of the models over time. In

comparison, as previously stated, the bootstrapping method can favour models with more

parameters, since the best parameter values are assessed after testing. In this work, the

stability-based filter had one extra parameter, the choice of the minimum replacement eigen-

value.

Note that the forward validation test also allows for the optimal parameters to vary over

time, which is realistic, since markets are capable of rapidly changing behaviours, (and

so choosing one optimum parameter after testing may not be appropriate). In contrast,

when performing the bootstrapping procedure, all parameter combinations were tested, and

compared after the fact, and so any “best” combination is assumed to have been at fixed
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values over the entire test period.

Forward validation, also known as historical simulation or back testing, is a typical test

performed prior to implementing any new models into a systematic trading environment.

Its primary aim is to simulate a live deployment. In our case, daily parameter retraining

reflects the trading style of a highly adaptable, active fund manager.

3.4 Summary of Scenarios Tested

In Chapters 4 and 5 various test scenarios are explored, for measuring the risk reducing

capacity of the RMT filters. In Tables 3.2 and 3.3, we summarise the different variations of

assets and target matrices tested in these scenarios, and state where the relevant key results

are reported in the thesis. Table 3.2 refers to in-sample testing and Table 3.3 to out-of-

sample testing. In all cases we have tested both equal and exponential weighting systems.

Table 3.2: List of in-sample scenarios used to test the effect of filtering on risk, and where

the main results are reported, for different portfolio sizes (N ). Three different categories

have been tested: (1) filtering the S&P correlation, (2) filtering the S&P covariance, and (3)

filtering the Fx correlation.

N S&P 500 / Corr S&P 500 / Cov Fx / Corr

432 Section 4.4 Section 4.6 -

250 Section 4.4 Section 4.6 -

100 Section 4.4 Section 4.6 -

39 Section 5.5 - Section 5.5

30 - - Section 5.5

20 - - Section 5.5

15 - - Section 5.5

10 - - Section 5.5
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Table 3.3: List of out-of-sample scenarios used to test the effect of filtering on risk, and

where the main results are reported, for different portfolio sizes (N ). Three different cate-

gories have been tested: (1) filtering the S&P correlation, (2) filtering the S&P covariance,

and (3) filtering the Fx correlation.

N S&P 500 / Corr S&P 500 / Cov Fx / Corr

432 Section 4.5 Section 4.6 -

39 - - Section 5.6

15 - - Section 5.6

3.5 Summary

This chapter has outlined the different models and techniques that have been used in this

thesis to test the RMT filters. It has also shown how a novel, stability-based filter may

be developed. In the forthcoming chapters, this novel filter has been compared, in-sample

and out-of-sample, to the two well known filters also described in this chapter, first in

the context of stock market trading, and then foreign exchange. This stability-based filter

was developed to improve, compared to pre-existing methods, the stability of optimised

solutions, in response to changes in the market eigenvalues.

The testing methods of this thesis also aimed to improve on the available literature, in

particular by providing an out-of-sample test of the models using forward validation. The

advantages of this method are that

1. forward validation simulates an actual implementation of the test models.

2. by choosing parameters each day based only on “past data” it allows the comparison

of models with different numbers of parameters, and avoids “over fitting” of the data.

3. it does not assume that model parameters should be fixed over time. This is important,

since it allows for evolution in the market. For example, there may be changes to

prevailing economic policies.
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4. it allows the generation of meaningful annual, monthly etc. averages, which would

be required by practitioners. While overall performance is important, consistency is

also valued.

In the next chapter we use these in-sample and out-of-sample methods to evaluate the ap-

plication of RMT filtering to a stock portfolio.
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Chapter 4

RMT for Large Stock Portfolios

4.1 Introduction

In this chapter we consider the case of a portfolio manager trading S&P 500 stocks, and

evaluate whether RMT filtering can be used to reduce risk. Since the number of assets

tested was large in comparison to the amount of available data points, we expected to be

able to filter noise from our forecasts of risk. We compared the three RMT filters described

in Sections 3.2.5 and 3.2.6.2 (the LCPB, PG+ and KR filters) to establish how each filter

could be used to improve managed, medium term equity investments. We first recall the

work of Pafka et al. (2004) in this area, which is particularly relevant to the work that

follows. Pafka et al. (2004) first studied the application of these filters to medium term

stock portfolios, including exponentially weighted forecasts in this analysis.

The results here are separated into in-sample and out-of-sample. For the in-sample re-

sults we started by assessing the noise in the unfiltered forecasts, and comparing the stability

of the filtered matrices, for the different filters. We then used this bootstrapping technique to

assess the effect of the filters on the realised portfolio risk, and we compared our results to

those of Pafka et al. (2004), where we also considered stability-based filters in our compari-

son. Here we found that our modified stability-based filter outperformed both the unfiltered

results, and the other filters tested, for three different sizes of portfolio, containing 100, 250,
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and 432 assets respectively. How these stocks were chosen is documented below.

We then tested these filters using forward validation, which was our primary testing

methodology. Forward validation allowed us to better compare filters with different num-

bers of parameters, and best replicated an actual implementation of the methods used here.

The forward validation was done for the full portfolio of 432 assets. We again found that

our novel, stability-based filtering produced the best average realised risks, while it also

generated the highest frequency of reduction, and reduced the number of days that filtering

resulted in large risk increases. These daily increases had not been previously discussed in

the literature on RMT. We also analyse their effect on the range of the daily realised risk.

In comparison to the filtering tested above, we have also tested the concept of filtering

the covariance matrix directly, since this matrix was found to contain more information

than the correlation matrix. Here we have found that, while both correlation and covariance

filtering improved risk out-of-sample (compared to the unfiltered) in all cases, correlation

filtering was preferred on average.

In conjunction with these tests, we also analysed the parameter values recommended by

both the bootstrapping, and forward validation, and compared these to Pafka et al. (2004)

and Riskmetrics (1996), which are in disagreement on the best choice of exponential decay

factor in particular.

We finish by comparing all the forecasting methods, filtered and unfiltered, discussed

in this chapter.

4.2 Review of Pafka et al.

In this section we review the work of Pafka et al. (2004), and its relevance to this thesis. The

authors examined six methods of forecasting risk. Starting with equally and exponentially

weighted covariance forecasts, they tested standard random matrix filtering alongside a filter

which retained only the largest eigenvalue, and compared these results with the unfiltered

forecasts. Using the bootstrapping technique described in Section 3.3.1, Pafka et al. (2004),
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analysed portfolios with 100 assets and a 20 day forecasting period and determined that for

both weighting methods the RMT filter outperformed the other methods, while the largest

eigenvalue filter was the worst performing of the three. Overall, the exponentially weighted,

RMT filtered forecasts produced the lowest risk value, by a small margin. Results for other

(longer) forecasts were reported to be very similar.

When greater numbers of assets were considered, similar results were found. When the

number of assets was reduced, to N = 50, historical unfiltered were found to be competi-

tive with RMT filtered forecasts. Finally, Pafka et al. (2004) determined that the unfiltered

Riskmetrics (1996) forecasts, using the Riskmetrics (1996) recommended decay factor, pro-

duced portfolios that were far riskier than those produced with filtered forecasts, especially

when large numbers of stocks were involved.

The paper of Pafka et al. (2004) was the closest found in the literature to our own ques-

tions for a number of reasons. First, they have considered a forecasting period comparable

to our own, while also dealing with longer forecasting. Secondly, they have evaluated expo-

nentially weighted, Riskmetrics (1996) style forecasts, which we also wished to consider,

particularly in their RMT filtered form. Thirdly, they have averaged over many different

test dates, which we considered essential to properly assess the forecasts. Finally, the effect

of filtering on portfolios containing different numbers of assets was evaluated. We built on

this work in what follows, in particular by assessing the stability-based filter, and including

forward validation testing.

4.3 Data

In this chapter we examine the dataset of Daly et al. (2008). These data, used to test filter

performance on a stock portfolio, were daily closing prices for the S&P 500 index stocks.

The index composition was taken as of 1st February 20061. This dataset ran from 1st June

1995 to 1st February 2006, and any series not covering the entire period were discarded,

leaving a total of 432 stocks available for testing.

1from www.standardandpoors.com
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4.4 In-sample Testing

4.4.1 Methodology

For the in-sample analysis, and following Pafka et al. (2004), we applied the bootstrapping

procedure described in Section 3.3.1. For the S&P 500, we examined portfolios with differ-

ent numbers of assets (N ), considering the cases N = 100, 250 and 432. We also evaluated

two forecasting periods, F = 20 and 50 days, with 20 days being the one of primary in-

terest, to coincide with other research, such as Pafka et al. (2004) and Morgan and Reuters

(1996). We found the results for F = 20 and F = 50 to be comparable, and concentrated

subsequently only on the F = 20 case. The filters considered were the LCPB method (Sec-

tion 3.2.5.1), PG+ method (Section 3.2.5.2), and the KR method (Section 3.2.6.2), with the

KR method being our novel filter. We did not consider the filter which retains only the

largest eigenvalue, due to its previously measured performance (Pafka et al., 2004).

4.4.2 Measuring Noise

We started by assessing the noise in the unfiltered forecasts, as measured using RMT anal-

ysis. Figures 4.1 and 4.2 show, for equally and exponentially weighted forecasts, and for

100 and 432 assets, the percentage of actual measured eigenvalues that were larger than the

theoretical maximum eigenvalue predicted by RMT. Both covariance and correlation fore-

casts were considered. Here, we see that the number of non-noisy eigenvalues increased

with both the number of past moves in the equally weighted case, and with the decay fac-

tor in the exponential case. In other words, measured in this way, the amount of noise in

the unfiltered forecasts was reduced when more data were used. In the case of exponential

weights, using a higher decay factor is equivalent to using more data, and here again we

saw that this reduced noise.

These effects were expected, following from the work of Pafka and Kondor (2002a,b),
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Figure 4.1: Percentage of eigenvalues that were larger than the maximum eigenvalue pre-

dicted by RMT, for equally weighted correlation and covariance with 100 assets (above),

and 432 assets (below).

which showed that noise was reduced as the ratio of data to assets was increased. However,

we note that the suggestion to use more data to reduce noise is not satisfactory, since not

only may the data not be available, but long price histories may not be suitable for the

medium term forecasting periods we are interested in.

It can also be seen here that, in general, compared to the correlation matrix, the covari-

ance matrix contained more “non-random” eigenvalues. In the case of exponentially
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Figure 4.2: Percentage of eigenvalues that were larger than the maximum eigenvalue pre-

dicted by RMT, for exponentially weighted correlation and covariance with 100 assets

(above) and 432 assets (below).

weighted matrices with 432 assets however, the effect was less pronounced.

Notably, for a wide range of decay factor values, exponentially weighted matrices had

very few non-noisy eigenvalues when all 432 assets were used. The range for α included the

values of 0.94 and 0.97 suggested by Riskmetrics (1996) for daily and monthly forecasts.

Despite this, filtered exponentially weighted forecasts produced the lowest mean realised

risk in out-of-sample tests, as seen in Section 4.5.
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4.4.3 Measuring Stability

For the case of 100 assets, Figures 4.3 and 4.4 display, for selected filters, and averaged over

all bootstrap samples, the mean stability across all eigenvectors of the filtered and unfiltered

covariance matrices. For these particular graphs equal weights were used, and they show

the results for filtering correlation and covariance respectively.

The covariance matrices produced by KR filtering were seen to have better stability

than both the LCPB and PG+ filtered ones. This was particularly true for direct filtering

of the covariance matrix. It was also seen here that stability improved as the minimum

replacement eigenvalue for the KR filter approached zero. Conversely, the closer the min-

imum eigenvalue approached to the mean noisy eigenvalue, the more stability decreased,

although it always remained above that of the LCPB and PG+ filters, as expected. These

results were consistent with the definition of the KR filter, which was designed to give

improved stability over the other filters.
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Figure 4.3: In-sample mean stability for the equally weighted covariance forecast with 100

assets, filtering correlation.
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Figure 4.4: In-sample mean stability for the equally weighted covariance forecast with 100

assets, filtering covariance.

4.4.4 In-sample Risk Reduction

Here we review the in-sample results for filtering the stock correlation matrix. The in-

sample results showed, in general, the potential of RMT filters to reduce realised risk.

Figures 4.5 to 4.9 show the bootstrap results for 20 day forecasting, for equally and ex-

ponentially weighted forecasts, for selected filters. We noted some key areas of agreement

between our results and those of Pafka et al. (2004), as follows. Firstly, similar risk reduc-

tion was achieved, while it is interesting to note that the optimal parameter values suggested

were identical in this case. We were also in agreement with Pafka et al. (2004) that longer

forecasting periods produced comparable results to the 20 day case, while the results for dif-

ferent numbers of assets were also similar, (with historical unfiltered forecasts being more

competitive for the lower numbers of assets). Moreover, RMT filtering performed best for

both uniform and exponential weighting, again in agreement with Pafka et al. (2004), and

we also found that the Riskmetrics-recommended decay factors were inappropriate for use

with the unfiltered forecasts, particularly for the larger numbers of stocks, since they greatly

increased realised risk.
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Figure 4.5: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

equally weighted volatility forecasts of S&P 500 stocks, and for unfiltered volatility

(“ORIG”), for 100 assets. The x-axis shows the Q-value, which is the number of past

moves used, divided by the number of assets in the portfolio. Note that filtering is most

effective for low values of Q, and produces the best overall risk.

Focusing on the stability-based KR filter, we found that optimisation performance dis-

improved as the minimum replacement eigenvalue approached zero. The KR method with

a minimum replacement eigenvalue of 10−8 was not competitive when compared to other

methods for reducing risk, (or with the unfiltered series), despite being the filter with the

greatest stability. In contrast, the LCPB method had the lowest stability, but had reasonably

good risk reduction, although not the best. We found a marked risk reduction was achieved

by varying the minimum replacement eigenvalue of the KR method. We noted, in particular,

that the KR2, KR4 and KR8 methods were among the best performing of all filters for this,

and were also reasonably consistent with each other.

When considering parameters, in many filtered cases two local minima were produced

for the choice of optimal decay factor for the exponential weights 2 . One coincided with

the suggestion of Riskmetrics (1996), i.e. 0.97 for monthly forecasts. The other was much

closer to 1. In the case of equally weighted forecasts, with 250 and 432 assets, we noted

2optimal for reducing in-sample realised risk
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that the optimal number of past moves was the minimum possible. This was true for many

different filters, not just the best one. In contrast, the unfiltered forecasts, when used with

this low number of past moves, produced the worst risks seen in the test. This is a very
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Figure 4.6: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

equally weighted volatility forecasts of S&P 500 stocks, and for unfiltered volatility

(“ORIG”), for 250 assets (above) and 432 assets (below). The x-axes show the Q-value,

which is the number of past moves used, divided by the number of assets in the portfolio.

Filters were more effective, overall, for the larger number of assets, and the best risk oc-

curred, with stability filtering, at the lowest possible value of Q in both cases. Note also the

consistency between the stability filters shown.
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interesting effect, namely that the best forecasts were found to be ones that reacted most

swiftly to market events. Meanwhile, these adaptable methods were not available without

filtering.
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Figure 4.7: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

exponentially weighted volatility forecasts of S&P 500 stocks, and for unfiltered volatility

(“ORIG”), for 100 assets (above), and with detailed view (below). RMT filtering is seen to

improve risk across a wide range of decay factors, with a stability filter (KR2) resulting in

the best overall risk.
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Figure 4.8: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

exponentially weighted volatility forecasts of S&P 500 stocks, and for unfiltered volatility

(“ORIG”), for 250 assets (above), and with detailed view (below). The lowest risk was

again produced by using a stability filter.
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Figure 4.9: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

exponentially weighted volatility forecasts of S&P 500 stocks, and for unfiltered volatility

(“ORIG”), for 432 assets (above), and with detailed view (below). Stability filters can again

be seen to outperform other models, while two local minima for the decay factor are also

seen. Note that the Riskmetrics decay factor of 0.97 performed poorly without filtering (for

all three values of N).
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4.5 Out-of-sample Testing

4.5.1 Methodology

For comparing the models out-of-sample we used forward validation, as described in Sec-

tion 3.3.2. To summarise, we considered every available test date and for each one used

data prior to the test date to optimise any model parameters. The value of the weighting

parameter (α or T ) and the choice of KR model were determined out-of-sample. In this

case we had 1658 available test days, 129 of which were used as the initial training period.

Subsequent retraining was done daily. All 432 assets were used to eliminate the need to

arbitrarily choose assets each day.

4.5.2 Out-of-sample Analysis

4.5.2.1 Overall Risk

Table 4.1 shows a summary of the out-of-sample performance of the covariance forecasting

and filtering combinations, in the case where correlation was filtered. The figures shown are

mean realised risk as a percentage of the result for unfiltered equally weighted covariance.

We see that RMT filtering reduced risk on average in all cases where it was used. The range

of reduction was 12.4% to 14.9% for equal weights, and 5.7% to 10.1% for exponential

(these exponential figures are expressed as a percentage of the corresponding unfiltered

exponential result. This normalisation occurs in a number of parts of the thesis, (where it

has been noted), to facilitate direct comparison with the equally weighted improvements.).

The KR filter supplied the most risk reduction in both cases. Overall, the best performing

forecast in this test used exponential weights with a KR filter, which had a risk which was

84% of the benchmark.

4.5.2.2 Annual Risk

Table 4.2 shows a breakdown of the results on an “annual” basis over 6 years . In this case,

the figures in the table are the mean realised risks, as a percentage of the equally weighted
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Table 4.1: Mean out-of-sample realised risk as a percentage of that for unfiltered equally

weighted covariance, where correlation was filtered. Filtering was seen to reduce mean

realised risk in all cases, and to as low as 84% of our benchmark risk, when applying KR

filtering to exponentially weighted forecasts.

Model Unfiltered LCPB PG+ KR

Equal Weights 100 87.3 87.6 85.1

Exponential Weights 93.4 87.1 88.1 84

Table 4.2: Mean out-of-sample realised risk per year for 6 years as a percentage of the

equally weighted unfiltered result each year, filtering correlation. In some cases, RMT

filtering was seen to increase mean realised risk over the course of a year. The KR filter

was the only one to reduce realised risk in all cases each year.

Weights Filter 1 2 3 4 5 6

Equal None 100 100 100 100 100 100

Equal LCPB 86.3 86.5 89.8 85.3 94.6 81.3

Equal PG+ 87.1 84.7 89.8 85.3 95.7 83.5

Equal KR 84.2 84.7 87.4 83.2 91.4 80.2

Exp None 96.4 96.4 92.9 87.4 95.7 90.1

Exp LCPB 81.3 82.9 89.8 85.3 94.6 91.2

Exp PG+ 84.9 85.6 89 86.3 91.4 93.4

Exp KR 80.6 81.1 89.8 80 88.2 85.7

unfiltered result in each year.

Here we see some examples of filtering increasing the mean risk in a year. However,

the majority of the time filtering reduced risk and, when risk was increased, no large in-

creases were observed, the largest being from 90.1 to 93.4, a percentage increase of only

3.7%. Overall, the range of percentage changes was [-19.8%, -4.3%] for equal weights and

[-16.4%, +3.7%] for exponential (exponential figures are expressed as a percentage of the

corresponding unfiltered exponential result). The stability-based KR filter was the only filter

to reduce mean realised risk in each year in all cases. For this filter, the range of percentage

changes to realised risk was [-19.8%, -8.6%] for equal weights and [-16.4%, -3.3%] for ex-

ponential (exponential figures are expressed as a percentage of the corresponding unfiltered

exponential result). The overall best method (exponential weighting, KR filter) was found
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Table 4.3: Daily frequency of percentage effect, on realised risk, of applying RMT filters to

the correlation matrix. “Low” and “High” specify a range for the realised risk, expressed as

a percentage of the relevant unfiltered realised risk. Filtering was seen to reduce risk 74.3%

of the time, while stability-based filtering reduced it the most often, 80.7% of the time. It

can also be seen that, despite reducing mean realised risk overall, all filters had the potential

to markedly increase realised risk on any individual day.

Low High LCPB PG+ KR

40 60 38 45 25

60 80 723 649 816

80 100 1431 1464 1626

100 120 668 706 495

120 140 158 153 80

140 160 30 32 11

160 180 7 8 4

180 200 3 1 1

to produce the lowest risk in four of the six years tested, while being competitive in the

other two.

4.5.2.3 Daily Risk

Table 4.3 shows the frequency of daily filtering effects. “Low” and “High” specify a range

for the realised risk, expressed as a percentage of the relevant unfiltered realised risk. The

effects on equally weighted and exponentially weighted matrices were combined here. For

example, the LCPB method reduced realised risk to 60%-80% of the unfiltered realised

risk for 723 out of 3058 tests, 1529 equally weighted and 1529 exponentially weighted.

From this we observe that, taking the mean across all filters, RMT filtering reduced realised

risk on 74.3% of the days. The KR method was the most consistent in terms of reducing

realised risk, 80.7% of the time overall, compared to 71.7% and 70.6% for the LCPB and

PG+ methods respectively.

While filtering reduced realised risk on average, and on the majority of years and days,

all the tested filters had the capacity to increase realised risk on any particular day, with

some marked increases being observed. Combining all methods, RMT filtering caused an

increase in realised risk of 20% or more on 5.3% of the days, while KR filtering increased
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realised risk by 20% or more the least often, 3.1% of the days, less than half the frequency of

either the LCPB or PG+ methods. On 0.3% of the days (approximately two days every three

years), RMT filtering increased realised risk by 60% or more, with the largest increases

almost doubling risk. To our knowledge, the capacity of RMT filtering to increase risk in

this way had not been previously discussed in the literature. Despite these daily fluctuations,

which can be attributed to the arrival of new market information, we note that forecasts

using filtering improved risk with good annual consistency.

4.5.3 Parameter Values

Figure 4.10 shows, in the equally weighted case, the number of past moves chosen through

time by our forward validation test, for each of the three filtering methods applied to the

correlation matrix. This graph shows good agreement with the in-sample tests. For the

majority of the forward validation test days, very low numbers of past moves were preferred,

which corresponded with the models that were most reactive to market events. The value

chosen by the unfiltered series was always the maximum available in this test (T = 1010).

The reason that a maximum value of T was chosen is so that a consistent “sliding window”

of equal length can be used across all tests. The behaviour at different values of T is of

interest. The actual maximum value, T = 1010, was picked after analysis, to balance

the conflicting requirements of (1) capturing as much interesting behaviour as possible, by

using a large range for T and (2) performing a forward validation test over the longest

possible time frame (the choice of T affects this since the first T days are required for

covariance forecasting and cannot therefore explicitly appear in the forward validation).

Typically, a minimum of a five year test is considered a good rule of thumb in practice.

Figure 4.11 shows the decay factor values chosen by the forward validation, for each of

the three filtering methods applied to the correlation matrix. The decay factor chosen for

the unfiltered series, not shown, was always the maximum tested (α = 0.999), a value much

higher than the Riskmetrics (1996) recommended 0.97. A value of 0.999 yields a markedly

different style of model to 0.97, with the former behaving almost like a linear model, as
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seen in Figure 4.12. For the filtered forecasts, all the decay factors chosen, using forward

validation, were higher than 0.97. We also see here that the optimal parameter values varied

over time, as expected.
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Figure 4.10: Optimal forward validation number of past moves for equally weighted co-

variance, filtering the correlation matrix. Note that low values of T were usually chosen for

all three filters.
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Figure 4.12: First thousand normalised exponential weights corresponding to decay factors

of 0.97 and 0.999. Note that the style of models generated are markedly different, with the

weights corresponding to 0.999 behaving almost like an equally weighted model.

4.5.4 Range of Realised Risks

In Section 4.5.2 it was observed that filtering had the capacity to increase realised risk on

individual days. Risk was increased on 25.7% of the days during the forward validation

test. In some cases the percentage increases were found to be substantial, with the largest

observed in the range of 80% to 100%. Here, we study the effect of these increases on the

range of the filtered risks, finding that filter performance was not consistent across different

risk levels, performing better when unfiltered risk was high. This resulted in the range of

the filtered risks being equivalent to, or actually improved upon, that of the unfiltered risk.

Analysing these out-of-sample results further, Figure 4.13 shows the effect of filtering,

on each individual day tested, for equally and exponentially weighted covariance respec-

tively. The unfiltered risk is included for comparison, as a straight line. We noted that the

bulk of observations were at low unfiltered risk levels. We also observed good risk reduction

when the unfiltered series was at the upper end of its range. This last point was particularly

true for equal weights, where all the filtered risks were below the unfiltered, in the upper
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part of the range. At the same time, we observed large percentage increases occurring in

the middle and lower ends of the ranges.

Overall, we found that the range of the filtered risks was equivalent to that of the unfil-

tered risk. For equal weights, the upper limit of the filtered range was actually below that

for the unfiltered, while for exponential weights, this was true for two of the three filters

(LCPB and KR). For the PG+ filter and exponential weights, the increase to the upper limit

of the range was marginal (0.02%).

These results are summarised in Tables 4.4 and 4.5, for equally and exponentially

weighted covariance forecasts respectively. Here, we broke the full range of unfiltered risks

into quintiles. “All data” refers to the full range, while “Top Quintile” refers to the top 20%

unfiltered risks, and so on. The results shown are the average risk, after filtering, in each

quintile, as a percentage of the corresponding unfiltered result. Thus, it can be seen that

filtering resulted in the biggest percentage risk reductions during periods where that risk

was high. For equal weights we saw reductions of up to 20%, and for exponential 15.7%,

in the top quintile. For all three filters, a general deterioration in performance with each

subsequent lower quintile was observed. For the lowest quintiles we saw that some risks

were increased after filtering, although not for the KR filter.

To summarise, despite resulting in large increases in individual daily risks, RMT filter-

ing was not found to have an adverse effect on the range of realised risk, and so would be a

viable tool for use in practical situations.
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Figure 4.13: Filtered vs. unfiltered realised risks, for the S&P 500 portfolio, for equally

(above) and exponentially (below) weighted forecasts. The unfiltered risk is also included,

as a 45 degree line, for comparison. It can be seen that filtering was most effective when the

unfiltered series was in the upper end of its range, while the large risk increases occurred in

the middle and lower ends of this range. Overall the upper limit of the range of the filtered

risks was either equivalent to, or improved upon, that for the unfiltered risk.
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Table 4.4: Summary of filter performance in different unfiltered risk environments, for the

S&P 500 portfolio, for equally weighted covariance forecasts. “All data” refers to the full

range of unfiltered realised risk. The remaining columns break this range into quintiles.

The results shown are the average realised risk in each quintile, as a percentage of the

corresponding unfiltered result. Thus it can be seen that the filters were most effective at

reducing risk during periods where that risk was high. This resulted in the range of risk

being improved upon the unfiltered case for all filters.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 87.3 80.3 88.6 90.1 90 94.6

PG+ 87.6 80.1 88.3 90.7 90.4 96.2

KR 85.1 80 86.2 86.8 87 90.4

Table 4.5: Summary of filter performance in different unfiltered risk environments, for the

S&P 500 portfolio, for exponentially weighted covariance forecasts. This table corresponds

to Table 4.4. It can again be seen that the filters were most effective at reducing risk during

periods where that risk was high. In this case, this resulted in the range of risk being

equivalent to (PG+) or improved upon (LCPB, KR) the unfiltered range.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 93.2 84.3 92.8 96.7 96.7 107

PG+ 94.3 88.1 93.4 95.4 96.1 107.6

KR 89.9 84.3 89.4 92.6 92 98.6
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4.6 Filtering Covariance

In Laloux et al. (2000) and Plerou et al. (2002) the correlation matrix was filtered. While

the correlation matrix is closer to the RMT assumption of i.i.d. returns, here we also wished

to assess the impact of filtering covariance directly, since it retains more information about

the individual assets. Indeed, in Section 4.4.2 we saw that the covariance matrix, when

assessed using RMT, was found to have more non-noisy eigenvalues. Here, we determined

if this translated into better forecasting performance after filtering. We applied the same

methods as used to test filtering correlation, and compared them directly.

4.6.1 In-sample Analysis

Figures 4.14 to 4.18 show the bootstrap results for 20 day forecasting, and equally and ex-

ponentially weighted forecasts, for selected filters. The general pattern seen here was very

similar to that observed for correlation filtering. RMT filtering still performed best for both

uniform and exponential weighting, and the type of improvements seen were comparable

with the correlation filter. As was the case with correlation filtering, the results for different

numbers of assets were quite similar, with historical unfiltered forecasts being more com-

petitive for the lower numbers of assets. A clear preference for a low number of past moves,

in conjunction with filtering, was again observed in the N = 432 case. We noted also that

the KR2, KR4 and KR8 methods3 were still among the best performing of all filters, and

were still consistent with each other.

Some differences to correlation filtering were also noted. For example, different optimal

filters were frequently observed in-sample, while the best exponential decay factors were

also different. When filtering correlation we observed two competing local minima for the

optimal decay factor, one around [0.97,0.98] and the other in the range [0.99,1]. For direct

covariance filtering the latter range was clearly preferred in-sample.

3The KR2, KR4 and KR8 methods are those with minimum replacement eigenvalues equal to the average

noisy eigenvalue divided by 2, 4 and 8 respectively.
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Figure 4.14: Mean bootstrapped (in-sample) realised risk, for selected filters, filtering co-

variance, with exponentially weighted volatility forecasts of S&P 500 stocks, and for un-

filtered volatility (“ORIG”), for 100 assets (above), and with detailed view (below). RMT

filtering is again seen to be effective across a wide range of decay factors, with stability

filtering being preferred.
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Figure 4.15: Mean bootstrapped (in-sample) realised risk, for selected filters, filtering co-

variance, with exponentially weighted volatility forecasts of S&P 500 stocks, and for unfil-

tered volatility (“ORIG”), for 250 assets (above), and with detailed view (below). Stability

filtering is again preferred in-sample, with good consistency between the stability filters

shown.
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Figure 4.16: Mean bootstrapped (in-sample) realised risk, for selected filters, filtering co-

variance, with exponentially weighted volatility forecasts of S&P 500 stocks, and for un-

filtered volatility (“ORIG”), for 432 assets (above), and with detailed view (below). These

figures have much in common with those for filtering correlation, with stability filtering

again found to result in the best risks. Here though we see one clear minimum, and subse-

quent optimal decay factor.
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Figure 4.17: Mean bootstrapped (in-sample) realised risk, for selected filters, filtering co-

variance, with equally weighted volatility forecasts of S&P 500 stocks, and for unfiltered

volatility (“ORIG”), for 100 assets (above) and 250 assets (below). The x-axes show the

Q-value, which is the number of past moves used, divided by the number of assets in the

portfolio.
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Figure 4.18: Mean bootstrapped (in-sample) realised risk, for selected filters, filtering co-

variance, with equally weighted volatility forecasts of S&P 500 stocks, and for unfiltered

volatility (“ORIG”), for 432 assets. In this case, an overall preference for the lowest value

of Q, with filtering, can again be seen, similar to the correlation case.

4.6.2 Out-of-sample Analysis

We now examine the out-of-sample performance of the direct covariance filtering, for the

full portfolio of 432 assets.

4.6.2.1 Overall Risk

Table 4.6 shows a summary of the performance of the forecasting and filtering combina-

tions, in this case. The figures shown are mean realised risk as a percentage of the result

for unfiltered equally weighted covariance. RMT filtering was found to reduce risk on av-

erage in all cases where it was used, as was the case for correlation filtering. Here, the

range of reduction was 6.4% to 11.6% for equal weights, and 1.5% to 7.2% for exponential

weights (exponential figures are expressed as a percentage of the corresponding unfiltered

exponential result). The KR filter again supplied the most risk reduction for both equal

and exponential weights, and the overall best performing forecast in this test was again

exponential weighting filtered with the KR method (86.7%).
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Table 4.6: Mean out-of-sample realised risk as a percentage of that for unfiltered equally

weighted covariance, with direct filtering of the covariance matrix. Filtering was seen to

reduce mean realised risk in all cases, and to as low as 86.7% of the benchmark, for the KR

filter applied to exponentially weighted covariance.

Model Unfiltered LCPB PG+ KR

Equal Weights 100 93.6 89.2 88.4

Exponential Weights 93.4 92 87.1 86.7

4.6.2.2 Annual Risk

Table 4.7 shows a breakdown of the mean realised risk of the various weightings and filters

on an annual basis. The figures in the table are the mean realised risks, as a percentage of the

equally weighted unfiltered result in each year. Similar to correlation filtering, there were

a few instances where filtering increased the mean risk in a year. However, the majority of

the time filtering reduced risk. This annual consistency is an interesting feature, and is seen

throughout this work. The range of percentage changes in this case was [-16.8%, 0.0%]

for equal weights and [-12.3%, +6.8%] for exponential weights (exponential figures are

expressed as a percentage of the corresponding unfiltered exponential result). The stability-

based KR filter again reduced mean realised risk in all cases in each year. For this filter,

the range of percentage changes to realised risk was [-16.8%, -7.9%] for equal weights and

[-12.3%, -2.5%] for exponential (exponential figures are expressed as a percentage of the

corresponding unfiltered exponential result), the best ranges of the three filters.

4.6.2.3 Daily Risk

Table 4.8 shows the frequency of daily filtering effects. “Low” and “High” specify a range

for the realised risk, expressed as a percentage of the relevant unfiltered realised risk. The

effects for equal and exponential weights were combined here. From this we saw that,

taking the mean across all filters, RMT filtering reduced realised risk on 70.3% of the days.

The KR method was the most consistent in terms of reducing realised risk (80.4% of the

time overall, compared to 59.5% and 70.9% for the LCPB and PG+ methods respectively).
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Table 4.7: Mean out-of-sample realised risk per year for 6 years as a percentage of equally

weighted unfiltered result each year, filtering covariance. In some cases, RMT filtering was

seen to increase mean realised risk over the course of a year.

Weights Filter 1 2 3 4 5 6

Equal None 100 100 100 100 100 100

Equal LCPB 95.7 100 96.1 87.4 91.4 89

Equal PG+ 90.6 85.6 86.6 87.4 100 87.9

Equal KR 89.2 91.9 92.1 83.2 87.1 84.6

Exp None 96.4 96.4 92.9 87.4 95.7 90.1

Exp LCPB 92.1 95.5 99.2 85.3 84.9 93.4

Exp PG+ 86.3 87.4 91.3 84.2 83.9 90.1

Exp KR 89.2 89.2 90.6 81.1 83.9 83.5

Table 4.8: Daily frequency of percentage effect, on realised risk, of applying RMT filters

directly to the covariance matrix. “Low” and “High” specify a range for the realised risk,

expressed as a percentage of the relevant unfiltered realised risk. Filtering was seen to

reduce risk 70.3% of the time, while stability-based filtering reduced it the most often,

80.4% of the time. It can again be seen that, despite reducing mean realised risk overall, all

filters had the potential to markedly increase realised risk on any individual day.

Low High LCPB PG+ KR

40 60 10 42 5

60 80 449 604 513

80 100 1359 1523 1941

100 120 909 720 575

120 140 278 148 22

140 160 36 15 2

160 180 7 4 0

180 200 8 2 0

200 220 1 0 0

220 240 1 0 0

Combining all methods, RMT filtering caused an increase in realised risk of 20% or

more around 5.7% of the days. KR filtering increased realised risk by 20% or more by

far the least often (0.8% of the days, compared to 10.8% for LCPB and 5.5% for PG+).

On 0.3% of the days, RMT filtering increased realised risk by 60% or more, more than

doubling it on two of those days. Thus we again see that consistent daily forecasting was

not achieved, and that it was not required to achieve consistent annual improvement.
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4.6.3 Parameter Values

Figure 4.19 shows, in the equally weighted case, the number of past moves chosen through

time by our forward validation test, for each of the three filtering methods applied to the

covariance matrix. Here we saw a different pattern from the correlation filtering case, as

the lowest values are not preferred, in particular by the KR method. The value chosen by

the unfiltered series was always the maximum available in this test (T = 1010).

Figure 4.20 shows the decay factor values chosen through time by the forward validation

in this case. The decay factor chosen for the unfiltered series, not shown, was always the

maximum tested (α = 0.999). All the decay factors chosen using forward validation were

higher than the 0.97 suggested by Riskmetrics (1996), and the one for the preferred KR

filter reached the highest values of all the filters. Similar to correlation filtering, we saw that

the optimal decay factors, like the number of past moves, varied over time. In this case the

range of decay factors was higher than the correlation case.
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Figure 4.19: Optimal number of past moves for equally weighted covariance, filtering the

covariance matrix directly. Here we see that the best parameter choices varied across the

range, over time.
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Figure 4.20: Optimal forward validation decay factor values for filtering the covariance

matrix directly. The range of decay factors seen here was higher in all cases than the

Riskmetrics (1996) value of 0.97.

4.6.4 Range of Realised Risks

In this section we review the range of realised risks in the covariance filtering case. As can

be seen from Figure 4.21, a similar pattern to the correlation filtering case was observed.

For equal weights, the range was reduced after filtering, and the large percentage increases

were all found in the lower and middle parts of the range. This information is summarised

in Table 4.9 where we see risk reduction by quintile. Again, the percentage effect of filtering

improved in general with higher quintiles. In this case, the KR filter was very consistent

across quintiles.

For exponential weights, we also saw the largest percentage increases in the lower and

middle of the range. However, here we saw an overall increase in the upper limit of this

range for the LCPB and PG+ filters, but not for the KR filter. The KR filter was also the

only one to reduce in all quintiles for exponential, as seen in Table 4.10, where it was again

very consistent. In this table, we see the same general trend of better percentage reduction

in higher quintiles.

Overall, RMT filtering cannot be said to have adversely affected the range of realised
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risk, despite the large individual daily percentage increases that were observed, since these

increases were concentrated in areas where unfiltered risk was low to medium.
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Figure 4.21: Filtered vs. unfiltered realised risks, for the S&P 500 portfolio, for equally

(above) and exponentially (below) weighted forecasts, using direct covariance filtering. The

unfiltered risk is also included, as a 45 degree line, for comparison. It can be seen that

filtering was most effective when the unfiltered series was in the upper end of its range,

while the large risk increases occurred in the middle and lower ends of this range. For equal

weights, the upper limit of the range of the filtered risks was less than that for the unfiltered

risk, while, for exponential, some increase in the upper limit was seen.
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Table 4.9: Summary of filter performance in different unfiltered risk environments, for the

S&P 500 portfolio, for equally weighted covariance forecasts, using direct covariance fil-

tering. “All data” refers to the full range of unfiltered realised risk. The remaining columns

break this range into quintiles. The results shown are the average realised risk in each quin-

tile, as a percentage of the corresponding unfiltered result. Thus it can be seen that the filters

were most effective at reducing risk during periods where that risk was high.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 93.6 88.8 92.2 94.8 96.3 102.3

PG+ 89.2 82.5 90.6 92.2 91.5 95.7

KR 88.4 89 88.2 87.9 86.9 89.6

Table 4.10: Summary of filter performance in different unfiltered risk environments, for the

S&P 500 portfolio, for exponentially weighted covariance forecasts, using direct covariance

filtering. This table corresponds to Table 4.9. We again see that the filters were most

effective at reducing risk during periods where that risk was high.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 98.5 93.2 94.2 101 101.4 111.9

PG+ 93.3 89.4 91.8 95.3 93.8 102.1

KR 92.9 92.4 92.9 92 92.6 95.6
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4.7 Comparison of Tested Filters

These results showed that direct covariance filtering was viable, and moreover reduced over-

all risk in all cases. We now compare the results from covariance and correlation filtering

directly, and also consider the best choice of weighting system in this test.

4.7.1 In-sample Comparison

Figure 4.22 shows an extract of the in-sample results, comparing the best, or two best,

filtering methods, in each of the following cases: equally weighted filtered (i) correlation

and (ii) covariance, and exponentially weighted filtered (iii) correlation and (iv) covariance.

Results are shown (on the same graph) vs. decay factors in the case of exponential weighting

and vs. number of past moves in the case of equal weighting. The legends can be interpreted

as “forecast weighting (equal or exponential), matrix filtered (correlation or covariance),

filtering method”. For example, “Equal, Corr, KR2” refers to the mean realised risk over

all bootstrapped samples for equally weighted forecasts, filtered using method KR2 on the

correlation matrix.

In the case of 100 assets, a correlation filter achieved lowest risk for both equal and

exponential weights. In both cases a KR filter was preferred, while there was little to choose

between the two types of weighting. Moving to 432 assets, we found direct filtering of the

covariance matrix was better in-sample, in both cases. Again, a KR filter was best, while in

this case exponential weighting achieved the lowest risk.

4.7.2 Out-of-sample Comparison

We now consider the out-of-sample results. Table 4.11 shows the percentage of times that

best performance was achieved by each method in the forward validation test, on an annual,

monthly and daily basis. One month was assumed equal to exactly 21 trading days for this

purpose. The daily results showed that an unfiltered forecast was best for only 6% of days,

and on the majority of these days the best unfiltered forecast was exponentially weighted.
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Figure 4.22: In-sample mean realised risk for selected best forecasting methods, for 100

assets (above) and 432 assets (below), showing both equal and exponential weighting

schemes. Stability filters are preferred in all cases.
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Table 4.11: Percentage of the time each method had the lowest mean out-of-sample re-

alised risk on an annual, monthly and daily basis. The most consistent method by far was

the stability-based filter, applied to the correlation matrix of the exponentially weighted

forecasts.

Weights Matrix Filtered Filter Yearly Monthly Daily

Equal - None 0 0 0.8

Exp - None 0 5.5 5.2

Equal Corr LCPB 0 4.1 7.1

Equal Corr PG+ 0 9.6 6.9

Equal Corr KR 16.7 8.2 7.7

Exp Corr LCPB 0 6.2 4.9

Exp Corr PG+ 0 4.1 6.1

Exp Corr KR 50 25.3 19

Equal Cov LCPB 0 4.1 3.3

Equal Cov PG+ 16.7 8.2 7.5

Equal Cov KR 0 2.7 4.6

Exp Cov LCPB 0 6.8 6.9

Exp Cov PG+ 16.7 8.2 8.8

Exp Cov KR 0 6.8 11.2

The fact that unfiltered forecasting was found to be best for 5.5% of the months reflects

some clustering of these daily effects.

The overall best method out-of-sample, KR filtering of the exponentially weighted cor-

relation matrix, was consistently best on an annual (50%), monthly (25.3%) and daily (19%)

basis. A covariance filtering method was best 33.3% of the years, 36.8% of the months and

42.3% of the days. This means that filtering the correlation performed best the majority of

the time.

Table 4.12 displays a direct comparison between the overall risk of the different meth-

ods, sorted from best to worst. Here we can see that the three best methods involved KR

filtering, while in the top two it was the correlation matrix that was filtered. For both types

of weighting, the KR filter was the best risk reducer, while four of the top five methods

involved exponential weights. Overall, our results suggested that correlation filtering was

preferred over direct covariance filtering.
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Table 4.12: Mean out-of-sample realised risk as a percentage of that for unfiltered equally

weighted covariance, for all methods, and sorted best to worst. The three best methods

involved KR filtering, while four of the best five used exponential weights.

Weights Matrix Filtered Filter Mean Risk

Exponential Corr KR 84

Equal Corr KR 85.1

Exponential Cov KR 86.7

Exponential Corr LCPB 87.1

Exponential Cov PG+ 87.1

Equal Corr LCPB 87.3

Equal Corr PG+ 87.6

Exponential Corr PG+ 88.1

Equal Cov KR 88.4

Equal Cov PG+ 89.2

Exponential Cov LCPB 92

Exponential - None 93.4

Equal Cov LCPB 93.6

Equal - None 100

4.8 Summary

In this chapter we have examined the application of three RMT filters, including one novel

filter, to the optimisation of an S&P 500 portfolio. We have implemented the bootstrapping

technique of Pafka et al. (2004) to compare the filters in-sample, and have supplemented

this with a full, out-of-sample, forward validation test. Broadly, our results are in agreement

with previous results (Pafka et al., 2004), that RMT-based filtering can improve the realised

risk of minimum risk portfolios.

In-sample, our bootstrap tests for the standard filters were in close agreement with

Pafka et al. (2004). Here, we found similar risk profiles and the choice of optimal pa-

rameters was found to be identical. We also determined that the results for our two fore-

casting periods, 20 and 50 days, were comparable, and found that the competitiveness of

unfiltered forecasts improved as the number of assets was decreased. It was also observed

that the Riskmetrics-recommended decay factor was unsuitable for use with the unfiltered

forecasts.
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Subsequently, we determined that, with filtering, two alternative ranges for the optimal

decay factor were viable. For equal weights, we observed that, in particular for 250 and

432 assets, forecasts which used a very low number of past moves were optimal, indicating

reactive models. Without filtering these models were found to be hidden by noise.

While in-sample analysis provides valuable information, about filter behaviour across a

wide range of parameters for example, we used out-of-sample forward validation to simu-

late an actual implementation, requiring daily parameter tuning. Out-of-sample, we studied

the effect of filtering on an overall, annual, monthly, and daily basis. RMT filters were

found to reduce mean realised risk, overall, in all cases tested. However, in some individual

years this was not the case. When considering individual days, RMT filtering was found

to reduce realised risk for 74.3% of the test cases. However, it was also found capable of

increasing realised risk for all types of filters, substantially in some cases. Overall, RMT

filtering of the correlation matrix was found to reduce realised risk by between 12.4% and

14.9% for equal weights, and by 5.7% to 10.1% for exponential.

We also examined the behaviour of the RMT filters at different levels of the unfiltered

realised risk, with a view to establishing the effect of filtering on the range of the realised

risk. In general, we found that the days when risk was increased were more likely when

unfiltered risk was in the lower and middle parts of its range, while in the lower quintiles

average risk was frequently increased. We observed good risk reduction when the unfiltered

series was in the upper end of its range. In the case of equal weights, all filtered risks in the

upper part of the range were below the unfiltered risk. As a result, the range of the filtered

risks was equivalent to the unfiltered range for exponential weights, while for equal weights

the upper limit of the range was reduced after filtering.

In-sample tests supplied some evidence, in the form of local optima, to support the Risk-

metrics (1996) recommended decay factor of 0.97. However, the optimal out-of-sample

decay factors, for both filtered and unfiltered forecasts, were higher in all cases than those

suggested by Riskmetrics (1996), with those for the latter approaching a value of α = 1. In

practice, such a system, with a decay factor approaching 1, behaves almost like an equally
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weighted model.

When considering the covariance matrix, we found that it contained more non-noisy

eigenvalues than the correlation matrix. When filtering the covariance directly was exam-

ined in-sample, it produced lower risk portfolios than correlation filtering in some cases.

Out-of-sample, covariance filtering reduced in all cases, but on average filtering correlation

generated lower realised risk. Covariance filtering was also found to result in a lower fre-

quency of daily risk reduction, while the range of increases observed included larger values.

Overall, we determined both methods to be viable, but correlation filtering to be preferable,

based on these tests.

On comparing our novel filter to the two well-known filters, we found that it offered

improvements in terms of risk and stability. When filtering correlation we found that, for

equally weighted forecasts, our filter produced a 17.3% improvement in risk reduction com-

pared to the best of the other filters. When moving to exponential weights this improvement

rose to 49.2%. We found that, as well as contributing the best overall risk for both types

of weighting, the KR filter had the highest frequency of risk reduction, at 80.7%. The next

highest frequency was 71.7% for the LCPB filter. In addition, the KR filter resulted in only

3.1% of the days having risk increased by more than 20%, less than half the frequency of

the other filters.

The KR filter was also the only filter to reduce risk in every year tested, and out of these

twelve annual reductions (six for equal weights and six for exponential), only once did

another filter outperform the stability-based filter. The overall best forecasting method, out-

of-sample, was exponentially weighted covariance, with our Krzanowski stability-based

filter applied to the correlation matrix, which resulted in a total risk reduction to 84% of

the benchmark. Finally, the KR filter performed consistently well across the full range of

unfiltered risks during this test. It returned the lowest risk in all five quintiles for both equal

and exponential weights, while in the exponential case it was the only filter to reduce risk

in each quintile.

In the next chapter, we study the application of these filters to a foreign exchange and
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commodity portfolio with only 39 assets, and report many similar results. This asset class

was chosen to utilise previous hedge fund industry experience, trading with systematic

mathematical models, especially of foreign exchange.
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Chapter 5

RMT for Foreign Exchange

Portfolios

5.1 Introduction

In the previous chapter we investigated the behaviour of RMT filters applied to a large stock

portfolio, where the amount of data was limited in comparison to the number of available

assets. In our case, the lowest number of stocks considered was 100. In this chapter, we

extend this analysis to filter correlation matrices of a foreign exchange and commodity

portfolio, where the number of tradeable assets was smaller again than the stock market.

We considered a portfolio containing at most 39 assets. The ratio of available data points

to the number of assets was thus higher than the previous chapter, and we wished to assess

the benefit of noise filtering in this data rich environment. We noted that, as with stocks,

older data may not be relevant for our forecasting period, and thus noise filtering may be

successful in reducing portfolio risk.

We first assessed the accuracy of the RMT limiting approximations for such a low num-

ber of assets. Finding this satisfactory, we measured the amount of noise in the correlation

matrices, using RMT analysis. We then examined the filter behaviour in-sample. We started

by reducing the number of assets in the S&P 500 portfolio to 39, for comparison purposes.
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Table 5.1: List of currencies and commodities used. The base currency was the U.S. Dollar.

Name Code Name Code

Australian Dollar AUD Peruvian Nuevo Sol PEN

Brazilian Real BRL Philippine Peso PHP

Canadian Dollar CAD Platinum Ounce XPT

Chilean Peso CLP Polish Zloty PLN

Colombian Peso COP Romanian New Leu RON

Czech Koruna CZK Russian Rouble RUB

Euro EUR Silver Ounce XAG

Fijian Dollar FJD Singapore Dollar SGD

Gold Ounce XAU Slovak Koruna SKK

Hungarian Forint HUF South African Rand ZAR

Icelandic Krona ISK South Korean Won KRW

Indian Rupee INR Sri Lankan Rupee LKR

Indonesian Rupiah IDR Pound Sterling GBP

Israeli New Sheqel ILS Swedish Krona SEK

Japanese Yen JPY Swiss Franc CHF

Mexican Peso MXN Thai Baht THB

Moroccan Dirham MAD Thaiwanese Dollar TWD

New Zealand Dollar NZD Tunisian Dinar TND

Norwegian Krone NOK Turkish New Lira TRY

Oil, Brent Crude, Barrel XCB
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We then examined the 39 asset Fx portfolio and, finally, we reduced the assets in this port-

folio even further to assess the limits on filtering. Out-of-sample, we examined the full 39

asset case, as well as a portfolio consisting of 15 major assets from this portfolio. For the

full portfolio, we also measured the optimal parameter values, and the effect of filtering on

the range of realised risk.

5.2 Data

To examine the application of RMT filters to the currency and commodity portfolio we

considered the dataset of Daly et al. (2009). This consisted of daily currency spot prices vs.

the US Dollar (USD), along with equivalent rates for Silver, Gold, Platinum and Oil. This

data, provided by Pacific Exchange Rate Service1, covered the period from 4th January

1999 to 31st December 2007. The currencies and commodities selected for this analysis

are outlined in Table 5.1. We chose the largest group possible for this, while discarding

currencies which were unsuitable due to, for example, regulatory or political restrictions on

trading. This group of assets is referred to as the “Fx portfolio” throughout this thesis.

In this chapter we also assess the effect of further reducing the number of assets in the

S&P 500 portfolio, studied in Chapter 4, to a size comparable with the Fx portfolio. For

this we have reused the dataset of the original S&P 500 analysis, outlined in Section 4.3.

5.3 Accuracy of the Limiting Approximations for 39 Assets

As a preamble, we measured here the accuracy of the RMT limiting approximations, in

comparison with simulated random returns for 39 assets. Here we have chosen two typical

parameter values, 40 past days for equal weights and a decay factor of 0.97 for exponen-

tial. Figure 5.1 shows a sample comparison, between the eigenvalue distribution of 1000

sampled random matrices, and the corresponding RMT approximation, for equally and ex-

ponentially weighted matrices.

1http://fx.sauder.ubc.ca/data.html
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Figure 5.1: Eigenvalue distribution of 1000 sampled random matrices vs RMT approxima-

tion, for 39 assets, with equal weights and T = 40 historical data points (above), and with

exponential weights and a decay factor of α = 0.97 (below).

We saw good agreement between the sampled distributions and their RMT approxi-

mations, while noting that the RMT distributions, which are approximations as N → ∞,

underestimated the maximum random eigenvalue in both sample cases. This may result

in slightly more eigenvalues being identified as containing information, when using the
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limiting approximation. Adjustments for finite numbers of assets are discussed further in

Chapter 6, under future work.

5.4 Measuring Noise

In this section we assess the noise in the unfiltered forecasts, as measured using RMT analy-

sis. This can be compared to the same analysis, performed for the stock portfolio, in Section

4.4.2. Figure 5.2 shows, for equally and exponentially weighted forecasts, and for 39 as-

sets, the percentage of actual measured eigenvalues that were larger than the corresponding

theoretical maximum eigenvalue predicted by RMT. This showed good agreement with the

stock portfolio case.

We saw again that the number of non-noisy eigenvalues increased with both the number

of past moves in the equally weighted case, and with the decay factor in the exponential

case. However, as before, we note that using long data histories to reduce noise can be

unsatisfactory, since the data can be unavailable, or simply not relevant to medium term

forecasting.

We observed that, as in the S&P 500 case, exponentially weighted matrices had very

few non-noisy eigenvalues when all 39 assets were used, for a wide range of decay factors.

The range for α included values of 0.94 and 0.97, suggested by Riskmetrics (1996) for daily

and monthly forecasts.

5.5 In-sample Testing

5.5.1 Methodology

For the in-sample analysis we repeated the methodology which was applied to the S&P

500 portfolio, outlined in Section 3.3.1. To summarise, for a given value of N (the number

of assets), we randomly selected N assets from the data set, and a random test date. For

each N , we repeated this random selection 1000 times, with replacement, and calculated

the mean, across all of these samples, of the realised risk of the forecast minimum risk
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Figure 5.2: Percentage of eigenvalues that were larger than the maximum eigenvalue pre-

dicted by RMT, for equally (above) and exponentially (below) weighted covariance, with

39 assets. As the amount of past data is increased, (corresponding to an increase of decay

factor in the exponential case), the amount of non-noisy eigenvalues is increased. However,

using long price histories may not lead to the best medium term forecasts.
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portfolio. This is the bootstrapping procedure of Pafka et al. (2004), applied to our data and

filters.

In this section, we first review in-sample results for S&P 500 portfolios with 39 assets,

so that we can compare these with the Fx portfolio. In the foreign exchange case, we

considered portfolios with the full 39 assets. Subsequently, we also examined Fx portfolios

with 10, 15, 20 and 30 assets, to study the limitations of RMT filtering in this case. A

covariance forecast again consisted of a raw forecast, which was either exponentially or

equally weighted, and could be unfiltered, or filtered by one of the LCPB, PG+ or KR

methods , applied to the correlation matrix. In this chapter we have considered a forecasting

period of F = 20 days for our analysis.

5.5.2 Further Reduction of S&P 500 Asset Numbers

For comparison, we first analysed the behaviour of the filters with the S&P 500 portfolio

discussed in Chapter 4, when it was restricted to having the same number of assets as the

Fx portfolio. Figure 5.3 shows the effect of RMT filtering on in-sample mean realised risk,

for an S&P 500 portfolio consisting of 39 stocks, in the equally and exponentially weighted

cases. These graphs are directly comparable with those for 100, 250 and 432 assets given in

Section 4.4.4. The trend of the graphs from Section 4.4.4 was continued here, in the sense

that the unfiltered forecasts became more competitive as the number of assets was reduced.

We also noted, in the equally weighted case, that low Q-values were no longer optimal.

We found that filtering was effective for low numbers of stocks for certain values of the

parameters. This was observed in the equally weighted case when the amount of historical

data used was low, (equivalent to a low value of Q), and in the exponentially weighted

case across a wide range of decay factors. However, the best unfiltered in-sample risk

approached the best filtered result as the number of assets was reduced to 39.
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Figure 5.3: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

equally (above) and exponentially (below) weighted volatility forecasts of S&P 500 stocks,

and for unfiltered volatility (“ORIG”), for 39 assets. For equal weights, the x-axis shows

the Q-value, which is the number of past moves used, divided by the number of assets in

the portfolio. Note that the trend of the 432, 250 and 100 asset cases (Figures 4.5 to 4.9)

was continued here, namely that the unfiltered forecasts became more competitive as the

number of assets was reduced.
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5.5.3 In-sample Analysis of the Fx Portfolio with 39 Assets

We now consider the in-sample results for the full Fx portfolio, with 39 assets. As in the

S&P 500 case, the in-sample results showed the potential of RMT filters to reduce realised

risk. Figure 5.4 shows the effect of RMT filtering on the in-sample mean realised risk of

the Fx portfolio, with 39 assets, for equal and exponential weights.

Comparing these to the in-sample results for our S&P 500 portfolios we noticed a

number of similarities. Taking the equally weighted case, we noted that, in general, the

in-sample results for the Fx portfolio were very similar to those of the S&P 500 case. How-

ever, the type of improvements seen after filtering in the Fx case with 39 assets had more

in common with the S&P 500 case with 432 assets, rather than the 39 stock case. Such

similarities included the scale of risk reductions and the tendency for the lowest available

number of past moves to be used (equivalent to the lowest Q value), in conjunction with

RMT filtering.

In the exponentially weighted case, RMT filtering was again preferred overall. Here

we noted a number of key differences to the stock portfolio. The unfiltered forecasts were

more competitive in the Fx case, over a wide range of decay factors. Moreover, the optimal

decay factor for these unfiltered forecasts was very close to the Riskmetrics (1996) value.

For the filtered matrices, this optimal decay factor (in-sample) coincided exactly with the

Riskmetrics (1996) recommendation of 0.97, and there was one clear global choice, instead

of the local minima seen in the S&P 500 case.

In both the equally and exponentially weighted case, the KR2, KR4 and KR8 methods

were again found to be amongst the best performing of all filters, and reasonably consistent

with each other, while optimisation performance of the KR filters disimproved, in gen-

eral, as the minimum replacement eigenvalue approached zero, meaning that, while some

increase in stability was seen to improve risk performance, maximising stability was not

effective.
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Figure 5.4: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

equally (above) and exponentially (below) weighted volatility forecasts, and for unfiltered

volatility (“ORIG”), for the Fx portfolio, with 39 assets. Filtering is seen to have been

effective in both cases. For equal weights, a preference for low Q-values, with filtering,

can be seen, and the closest agreement is with the S&P 500 case with N = 432, (Figure

4.6). In the exponential case, with filtering, the optimal decay factor (0.97) coincided with

Riskmetrics (1996).
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5.5.4 Further Reduction of Fx Asset Numbers

In this section we examine the effect that filtering had on an Fx portfolio with a reduced

number of assets. Figures 5.5 to 5.8 show the effect of RMT filtering on in-sample mean

realised risk, for portfolios with N = 10, 15, 20 and 30 assets, in the equally and exponen-

tially weighted cases. These results shared many similarities with the results, for reducing

the number of stocks in the S&P 500 portfolio, of Section 4.4.4.

In the case of equal weighting, it was observed that filtering was effective for a small

Q value, at all four values of N , and so, in an environment where the number of past

data points, T , was limited, either by choice or necessity, RMT filtering may be of some

benefit. However, without restrictions on T , the effectiveness of RMT filtering was seen to

be reduced as N was reduced.

For exponential weights, it was found that RMT filtering provided most benefit for

lower decay factors, as in the S&P 500 case. However, in the presence of a free choice of

decay factor, filtering was seen to provide little or no overall risk reduction for N ≤ 20, as

unfiltered estimates became more competitive with the reduction of assets, as was the case

for the S&P 500 portfolio.

While the S&P 500 and Fx portfolios shared this tendency for filtering to be less ef-

fective as the number of assets was reduced, it was notable that this happened at different

numbers of assets. Indeed, the value of filtering was already called into question for S&P

500 portfolios with 39 assets, while an Fx portfolio with the same number of assets clearly

benefited from filtering. Meanwhile much lower asset numbers were involved before Fx

portfolio filtering could be seen to be ineffective.

It is apparent from these results, and comparing the Fx and S&P 500 portfolios, that the

relationship between the effectiveness of filtering, the number of assets, and the amount of

information, is not as clear cut as previously concluded in the RMT literature.
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Figure 5.5: Mean bootstrapped (in-sample) realised risk, for selected filters, applied

to equally weighted volatility forecasts of the Fx portfolio, and for unfiltered volatility

(“ORIG”), for 30 (above) and 20 (below) assets. Filtering is still effective, reducing overall

risk in both cases.
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Figure 5.6: Mean bootstrapped (in-sample) realised risk, for selected filters, applied

to equally weighted volatility forecasts of the Fx portfolio, and for unfiltered volatility

(“ORIG”), for 15 (above) and 10 (below) assets. Note that as N was reduced, the unfil-

tered forecasts became more competitive.
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Figure 5.7: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to

exponentially weighted volatility forecasts of the Fx portfolio, and for unfiltered volatility

(“ORIG”), for 30 (above) and 20 (below) assets. Stability filtering is still effective in both

cases.
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Figure 5.8: Mean bootstrapped (in-sample) realised risk, for selected filters, applied to ex-

ponentially weighted volatility forecasts of the Fx portfolio, and for unfiltered volatility

(“ORIG”), for 15 (above) and 10 (below) assets. As for equal weights, the unfiltered fore-

cast was shown to be more competitive as N was reduced.
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5.6 Out-of-sample Testing

We now review the out-of-sample test results, first for the full Fx portfolio with 39 assets,

and then for a sub-portfolio with 15 major assets.

5.6.1 Methodology

For the out-of-sample testing, we again compared the models using forward validation, as

outlined in Section 3.3.2. To summarise, we considered every available test date and for

each one used data prior to the test date to optimise any model parameters. The value of the

weighting parameter (α or T ) and the choice of KR model were determined out-of-sample.

In the Fx case, the forward validation was performed over a period of 1837 days, 129

of which were used as the initial training period, consistent with the S&P 500 analysis.

Subsequent retraining was done daily. All 39 assets were used to eliminate the need to

arbitrarily choose assets each day, unless otherwise stated.

5.6.2 Out-of-sample Analysis

5.6.2.1 Overall Risk

Table 5.2 shows a summary of the performance of the forecasting and filtering combina-

tions. The figures shown are mean realised risk as a percentage of the result for unfiltered

equally weighted covariance. RMT filtering was seen on average to reduce realised risk in

all cases, compared to the unfiltered portfolio.

We found evidence that behaviour was consistent with the S&P 500 analysis in Chapter

4. Namely, risk was reduced in all cases and the reductions were of the same magnitude as

the S&P 500 case. For the Fx portfolio the range of reduction was seen to be 13.0% to 14.2%

for equal weights, and 5.5% to 10.9% for exponential (exponential figures are expressed as

a percentage of the corresponding unfiltered exponential result). (These figures in the S&P

500 case were 12.4% to 14.9% for equal weights, and 5.7% to 10.1% for exponential.)

Here, the best overall performance was seen when applying the PG+ filter to the equally
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Table 5.2: Mean out-of-sample realised risk as a percentage of that for unfiltered equally

weighted covariance, for the full Fx portfolio, with 39 assets. Filtering was seen to reduce

mean realised risk in all cases.

Model Unfiltered LCPB PG+ KR

Equal Weights 100 87 85.8 86.6

Exponential Weights 98.1 91.8 92.7 87.4

weighted forecast, while the KR method was also competitive when using equal weights.

In the exponentially weighted case, KR filtering was found to be best, offering a 69.8%

improvement in reduction compared to the best of the other models. We noted that in both

the S&P 500 and Fx cases, the KR filter offered substantial improvements in reduction, for

exponentially weighted forecasts, compared to the other filters.

5.6.2.2 Annual Risk

The annual mean realised risk of the different weightings and filters is shown, over 7 years,

in Table 5.3. As in the S&P 500 case, we saw here a few instances where filtering increased

the mean risk in a year. In this case, all filters were found to be capable of this behaviour.

However, the majority of the time filtering did reduce risk. No very large risk increases

were found in these annual figures. The largest percentage increase was 10.9%, when using

exponential weights and the PG filter. When using equal weights this was reduced further, to

2.9%, in conjunction with the LCPB filter. In contrast, the best percentage risk reduction for

equal weights was 31.7% with the LCPB filter, and for exponential weights was 23.5% with

the KR filter. Therefore, the range of percentage changes after filtering were [-31.7%,2.9%]

for equal weights, and [-23.5%,10.9%] for exponential (exponential figures are expressed

as a percentage of the corresponding unfiltered exponential result). For the KR filter these

ranges became [-31.2%,0.2%] for equal, and [-23.5%,4.9%] for exponential (exponential

figures are expressed as a percentage of the corresponding unfiltered exponential result).
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Table 5.3: Mean out-of-sample realised risk per year, for 7 years, as a percentage of the

equally weighted unfiltered result each year, for the full Fx portfolio, with 39 assets. RMT

filtering was seen to increase mean realised risk over the course of a year in a few cases,

and for all filters, and to reduce it in the majority of cases.

Weights Filter 1 2 3 4 5 6 7

Equal None 100 100 100 100 100 100 100

Equal LCPB 93.1 102.9 85.5 102.6 68.3 79.2 87

Equal PG+ 93.7 87.5 87.9 102.8 69.7 76.3 86.6

Equal KR 95.2 100.2 88.8 99.3 68.8 76.2 87.4

Exp None 95.8 115.5 104.3 102.7 90.8 88.4 103.2

Exp LCPB 92.7 104.2 99.6 108.5 70.2 81.7 99.5

Exp PG+ 93 104.2 99.2 113.9 72.8 78.5 101.6

Exp KR 88.5 91 90.5 107.7 69.5 76.9 96.1

5.6.2.3 Daily Risk

Table 5.4 shows the frequency of daily filtering effects. “Low” and “High” specify a range

for the realised risk, expressed as a percentage of the relevant unfiltered realised risk. The

effects on equally weighted and exponentially weighted matrices were combined here. In

this case we found that, taking the mean across all filters, RMT filtering reduced realised

risk on 62.6% of the days. The KR method was the most consistent in terms of reducing

realised risk, doing so on 66.7% of the days, compared to 59.9% and 61.1% for the LCPB

and PG+ methods respectively. We noted that these figures were reduced, compared to the

corresponding ones for the larger S&P 500 portfolio, (which were reduction frequencies

of 80.7% (KR), 71.7% (LCPB), and 70.6% (PG+) respectively). Combining all methods,

RMT filtering of the Fx portfolio caused an increase in realised risk of 20% or more on

15.4% of the days. The stability-based KR filter had the lowest frequency of such increases

(10.6%). This compared favourably with 16.9% for the LCPB method and 18.6% for the

PG+ method. On 2.8% of the days these filters increased risk by 60% or more. This was

somewhat higher than in the S&P 500 case (0.3%), while the size of the largest increase

(and decrease) was also found to be greater than that of the S&P 500 case.
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Table 5.4: Daily frequency, of percentage effect on realised risk, of applying RMT filters

to the Fx portfolio. “Low” and “High” specify a range for the realised risk, expressed as

a percentage of the relevant unfiltered realised risk. Similar to the S&P 500 case, RMT

filtering was seen to reduce realised risk in the majority of cases, while also having the

potential to increase realised risk, more than doubling it on some individual days.

Low High LCPB PG+ KR

20 40 66 68 59

40 60 342 320 331

60 80 712 650 724

80 100 927 1050 1163

100 120 790 692 776

120 140 333 370 205

140 160 134 155 93

160 180 67 66 44

180 200 25 23 5

200 220 5 6 3

220 240 2 5 7

240 260 6 7 5

260 280 6 3 1

280 300 1 1 0

5.6.3 Parameter Values

Figure 5.9 shows the optimal number of past moves (in the equally weighted case), and

decay factor values (in the exponential case), as selected through time by the forward vali-

dation. Here, unlike for the S&P 500, the decay factors chosen were quite consistent with

the value of 0.97 suggested by Riskmetrics (1996), although we noted that the optimal value

changed over the course of the test. For the Fx portfolio, the unfiltered decay factors were

higher than the filtered ones, but not, as was the case for the S&P 500, the maximum tested.

These results were consistent with the optimal in-sample Fx parameters.

In the equally weighted case, low numbers of past moves were preferred by the end, and

so a tendency toward models which were reactive to recent market changes was seen. In

fact, the best number of past moves in the equally weighted case tended toward the lowest

possible value (40 days), indicating that using the previous two months data was optimal

for forecasting the next month in this case. The best values for unfiltered forecasts were
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higher, at 200 to 240 days. In both cases, this was consistent with the in-sample parameters.
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Figure 5.9: Optimal parameters for equally (above) and exponentially (below) weighted

forecasts, as selected by forward validation, for the Fx portfolio. In the unfiltered cases (not

shown), the number of past moves ranged between 200 and 240, and the decay factors were

usually equal to 0.98, and sometimes in the range 0.99 - 0.995. A tendency toward reactive

models can be seen in these graphs.
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5.6.4 Range of Realised Risks

In Section 5.6.2 we saw that filtering could increase daily realised risk. Here, we study

the effect of these increases on the range of the filtered risks, again finding that filter per-

formance was not consistent across different risk levels. The filters performed better when

unfiltered risk was high and so, as in the S&P 500 case, the range of the filtered risks was

equivalent to that of the unfiltered risk. In the Fx case we found that risk was decreased on

62.6% of the days, while on 15.4% of the days risk was increased by 20% or more. Here,

both the frequency, and the size, of the large risk increases were bigger than for the S&P

500. The largest percentage risk increases observed for Fx were in the range of 180% to

200%.

Figure 5.10 shows the effect of filtering, on each individual day, for equally and expo-

nentially weighted covariance respectively. The unfiltered risk is included for comparison,

as a straight line. As in the S&P 500 case, we found that the bulk of observations were at

low unfiltered risk levels. We also observed good risk reduction when the unfiltered series

was at the upper end of its range, while the largest percentage increases occurred in the

middle and lower ends of the range. We again found that the range of the filtered risks

was equivalent to that of the unfiltered risk. In fact we found that, for both weightings, the

highest filtered risk was less than the highest corresponding unfiltered risk. Moreover, the

overall frequency of high risks remained consistent, or reduced, after filtering.

These results are summarised in Tables 5.5 and 5.6, for equally and exponentially

weighted covariance forecasts respectively. Here, as before, we broke the full range of

unfiltered risks into quintiles. “All data” again refers to the full range, while “Top Quintile”

refers to the top 20% of unfiltered risks, and so on. The results shown are the average risk,

after filtering, in each quintile, as a percentage of the corresponding unfiltered result. Thus

it can again be seen that filtering led to the biggest percentage risk reductions during peri-

ods where that risk was high. For equal weights we saw reductions of up to 28.4%, and, for

exponential, 16.9%, in the top quintile. For all three filters, performance deteriorated with

each subsequent lower quintile. For the lowest two quintiles we see risk was increased after
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filtering in all cases for equal weights, and half the cases for exponential weights.

We also noted that, despite reducing the higher unfiltered risks, none of the filters re-

solved the issue of poor forecasting performance in the upper end of the range. An example

of this is seen in Figure 5.11, which shows forecast and realised risks, for equally weighted

covariance, comparing unfiltered and KR filtered results. The increased inaccuracy for

forecasts in the upper part of the range can be clearly seen in both cases.

Table 5.5: Summary of filter performance in different unfiltered risk environments, for

equally weighted covariance forecasts. “All data” refers to the full range of unfiltered re-

alised risk. The remaining columns break this range into quintiles. The results shown are

the average realised risk in each quintile, as a percentage of the corresponding unfiltered re-

sult. Thus it can be seen that the filters were most effective at reducing risk during periods

where that risk was high.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 87 73.4 77.8 97.4 105 110.3

PG+ 85.8 71.6 76.6 95.9 106.1 108.8

KR 86.6 75.8 77.2 96.8 102.6 103.8

Table 5.6: Summary of filter performance in different unfiltered risk environments, for

exponentially weighted covariance forecasts. This table corresponds to Table 5.5. It can

again be seen that the filters were most effective at reducing risk during periods where that

risk was high.

Filter All data Top Quintile Quintile 2 Quintile 3 Quintile 4 Bottom Quintile

None 100 100 100 100 100 100

LCPB 93.6 85.9 91.1 96.2 99.4 109.3

PG+ 94.5 83.1 92.9 99.5 104.4 110.1

KR 89.1 85.5 87.5 90.6 92.7 95.5
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Figure 5.10: Filtered vs. unfiltered realised risks, for equally (above) and exponentially

(below) weighted forecasts. The unfiltered risk is also included, as a 45 degree line, for

comparison. It can be seen that filtering was most effective when the unfiltered series was

in the upper end of its range, while the largest percentage risk increases occurred in the

middle and lower ends of this range. Overall, the upper limit of the range of the filtered

risks was less than that for the unfiltered risk in both cases.
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Figure 5.11: Forecast and realised risks, for unfiltered (above) and KR filtered (below)

equally weighted covariance forecasts, over the life of the forward validation. We see a

shortfall in forecasting in the middle and, particularly, upper sections of the range. This

“flat” forecast profile, and resulting shortfall, was common to all three filters, (and the un-

filtered), and to both types of weighting scheme. This highlights the difficulty in forecasting

financial markets.
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5.6.5 Reduction of Assets

Following on from the in-sample analysis of Section 5.5.4, where the effect of filtering

was seen to be reduced as the number of assets was decreased, we now review the out-

of-sample behaviour of a portfolio consisting of 15 major currencies and commodities,

selected from the main portfolio. Consistent with the in-sample results, RMT filtering was

found to provide no benefit in the long run, despite some variation in the daily realised risk,

in the range [-50%, +60%]. This is shown in Tables 5.7 to 5.9. Overall, filtering was seen

to increase risk slightly in most cases, while risk was also increased for the majority of

individual years and days.

Table 5.7: Mean out-of-sample realised risk as a percentage of that for unfiltered equally

weighted covariance, for the Fx portfolio with 15 major assets. Risk was increased after

filtering in all but one case.

Model Unfiltered LCPB PG+ KR

Equal Weights 100 103.8 103.1 99.1

Exponential Weights 97.1 103.1 102.6 98.2

Table 5.8: Mean out-of-sample realised risk per year, for 7 years, as a percentage of the

equally weighted unfiltered result each year, for the Fx portfolio with 15 major assets.

Compared to the 39 assets case, we saw many more years with increases after filtering, and

larger increases were observed.

Weights Filter 1 2 3 4 5 6 7

Equal None 100 100 100 100 100 100 100

Equal LCPB 98.4 106.6 102 112.4 109.2 99.5 94

Equal PG+ 99 106.5 102.4 111.7 105.5 99.2 93.1

Equal KR 96.2 101.8 99.4 103.2 99.3 96.2 96.5

Exp None 93.5 98.7 99.5 98 93.3 95.9 103.6

Exp LCPB 97.6 105.2 100.8 111 101.8 101 105.7

Exp PG+ 99 106.8 100.4 112.6 99.4 97.7 103

Exp KR 95.9 101.3 99.2 102.1 94 94.6 102.3
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Table 5.9: Daily frequency, of percentage effect on realised risk, of applying RMT filters

to the Fx portfolio with 15 major assets. “Low” and “High” specify a range for the realised

risk, expressed as a percentage of the relevant unfiltered realised risk. The range of frequen-

cies was seen to be narrower than that of the full Fx Portfolio, while a higher frequency of

risk increases was observed.

Low High LCPB PG+ KR

50 60 2 3 0

60 70 18 7 13

70 80 72 45 25

80 90 328 399 182

90 100 856 882 1455

100 110 889 990 1441

110 120 704 635 267

120 130 358 308 32

130 140 161 107 1

140 150 21 34 0

150 160 7 6 0

5.7 Summary

In this chapter, we have studied the application of three RMT filters to a currency and com-

modity portfolio consisting of just 39 assets. We found that our results were in agreement

with those for the S&P 500 portfolio, namely that RMT-based filtering can improve the

realised risks of minimum risk portfolios, despite the low number of assets considered here.

Using forward validation, RMT filters were found, overall, to reduce mean realised risk

in all cases tested, and in the majority of individual years. However, they were also found

capable of increasing realised risk substantially on some individual days. While this latter

observation is valuable, it would be unrealistic to expect any forecasting system to succeed

every day, as markets adapt to the arrival of new information. We see that good annual

consistency was observed, in the presence of these daily fluctuations. These out-of-sample

results were consistent with the S&P 500 case.

We found that the days when risk was increased were more common when unfiltered

risk was in the lower and middle parts of its range, and as a result, average risk was fre-
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quently increased in the lower quintiles. We found good risk reduction when the unfiltered

series was in the upper end of its range. We again found the biggest reductions in the

top quintile of unfiltered risks, for both weightings, while performance was reduced with

each lower quintile. Overall, this resulted in the range of the filtered risk being improved,

compared to the unfiltered case, an important practical consideration.

When RMT filtering was applied to Fx portfolios with fewer asset numbers it was ob-

served, in general, that the benefit of filtering was reduced as asset numbers decreased. In

some cases filtering provided no overall risk reduction. This was also reflected in the out-of-

sample filter performance, for a portfolio consisting of 15 major currencies and commodi-

ties, which revealed that, in this case, RMT filtering provided no long term risk reduction,

and was more likely to increase realised risk, both overall and on any individual day.

When comparing the Fx results to those for the S&P 500, we noted that this loss of

filter effectiveness occurred at different numbers of assets in the two markets, suggesting

that it was reducing the number of assets from that of the “full” portfolio that caused the

fall off in filter performance. The type of improvements seen after filtering in the Fx case

with 39 assets had more in common with the full S&P 500 case with 432 assets, rather than

the 39 stock case. Such similarities included the scale of risk reductions and the tendency

for the lowest available number of past moves to be used with RMT filtering. Therefore,

the relationship between the effectiveness of filtering, the number of assets, and the amount

of information, is less straightforward than previously discussed in the literature (Pafka and

Kondor, 2002a,b). This introduces the possibility of applying RMT filters to a wider range

of markets, namely those with a high ratio of data to assets. We consider the power of past

data for forecasting, and the complex interactions of the system, rather than simply the ratio

of available data to assets, to be important in this context, based on these results.

RMT filters also uncovered different styles of models than were possible with unfiltered

analysis, namely ones that reacted quickly to market events. Without filtering these models

utilising very recent data were found to be hidden by noise. Meanwhile, in contrast to the

S&P 500 case, the decay factors chosen here showed good consistency with the value of
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0.97 suggested by Riskmetrics (1996).

The observed behaviour of the stability-based filter was generally in agreement with

that of the S&P 500 case, namely that the KR2, KR4 and KR8 methods delivered better

performance than most filters, and were reasonably consistent with each other. When con-

sidering exponential weights, the KR filter performed best over the period, and was the best

filter in each individual year. In total, it improved risk reduction by 69.8% for exponential

weights. It also remained competitive when using equal weights, although in that case the

PG+ filter was marginally preferred. The KR filter was also found to reduce the number of

days that filtering led to a large increase in risk, as well being the filter that reduced risk

most often, as in the S&P 500 case. Here, the KR filter reduced risk on 66.7% of the days,

compared to 59.9% and 61.1% for LCPB and PG+. Finally, the KR filter again performed

consistently well across the full range of unfiltered risks during this test, and was again the

only filter to reduce in each quintile for exponential weights.

Taken as a whole, these results suggested that RMT filtering can provide strong risk

reduction, in this case of a foreign exchange and commodity portfolio. Filtering was found

to reduce average portfolio risk by between 5.5% and 14.2%, and to do so in a way that was

consistent with a larger portfolio.
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Chapter 6

Conclusions and Future Work

6.1 Goals of the Thesis

Here, we summarise the goals of the thesis, which were

• an assessment of the stability-based KR filter. We wished to study this, and the other

two filters mainly from the point of view of risk reduction, but also taking stability

and consistency into account.

• improving the test methodology, (c.f. that reported in previous literature), by includ-

ing in particular an out-of-sample test, which simulated a live implementation where

parameters were updated, and trades were executed, on a daily basis.

• the application of the filters to a medium term forecasting scenario, while making

minimal assumptions about the trading strategy.

• a review of the potential use of RMT filters in the foreign exchange market.

• an examination of filter behaviour on an annual, monthly and daily basis, to comple-

ment the summary results found in the literature, and here.

• studying the choice of forecast weighting, and the best parametrisation of these meth-

ods, with and without filtering.
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• measuring the impact of filtering the covariance matrix directly, as opposed to filter-

ing correlation.

6.2 Conclusions

In this section we review and discuss the conclusions of the thesis, from the point of view

of a practitioner considering implementing one of these forecasting systems.

6.2.1 Overview

In this thesis we have examined the application of three RMT filters, including one novel

filter, to the optimisation of (1) an S&P 500 and (2) a foreign exchange portfolio. We have

studied the effect on realised portfolio risk, both in and out-of-sample. Our results are in

good agreement with previous results (Pafka et al., 2004), that RMT-based filtering can

improve the realised risk of minimum risk portfolios. Similar in-sample reductions were

seen for both portfolios, and corresponded well with Pafka et al. (2004).

We observed that, for the full portfolios, filtering correlation, these three filters reduced

risk out-of-sample in all cases, with overall improvements ranging from 5.5% to 14.9%.

We primarily used a forecasting period of 20 days for our analysis, while results for a 50

day forecast were found to agree well with the shorter time frame.

When considering the effect of filtering on annual risk, good consistency was observed.

Overall we tested correlation filtering over 13 years, spread between the two asset classes.

This was done for both equal and exponential weighting and for all three filters. This

resulted in 78 annual tests of RMT filtering. Of these, risk was reduced 88.5% of the years.

The best annual reduction measured was 31.7%.

When the daily figures were examined, we found risk reduction in the majority of port-

folio trades: 74.3% and 62.6% of the days for the stock and foreign exchange portfolios

respectively. The fact that risk was capable of being increased, and moreover in so many

cases, was to our knowledge an effect that had not been previously discussed in the litera-
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ture, and one that would be vital knowledge to anyone planning to implement such filters. In

addition, all of these filters were capable of substantial risk increases. These were measured

at up to 200% for Fx, and 100% for the stocks.

While these limitations should be noted, it would be unrealistic to expect that any fore-

casting system be 100% accurate, due to the arrival of new market information. Despite

these daily fluctuations, consistency was achieved annually. Moreover, the range of the fil-

tered risks was found to be equivalent, or slightly improved on, that produced in the absence

of filtering. This resulted from the large increases occurring when the unfiltered risk was

already low. On the days when the unfiltered was high, filtering performed well.

6.2.2 Stability Filtering

In this thesis, we have proposed a novel method of filtering covariance matrix forecasts

with RMT. This new filter is based on improving the stability of the filtered matrix, to

prevent optimised solutions being too sensitive to changes in the underlying market. While

maximising this stability preferentially could not be recommended, due to its adverse effect

on realised risk, balance between stability and risk performance is vital to a successful

outcome, and in this case, when filtering correlation, led to

• improved out-of-sample risk reduction, by 49.2% for the stock portfolio, and 69.8%

for the foreign exchange portfolio1, in the case of exponential weights.

• a moderate improvement (17.3%) to risk reduction in the case of equal weights, and

the stock portfolio. The stability filter was also competitive in the equally weighted

case for foreign exchange.

• increased Krzanowski stability (c.f. Section 3.2.6.1) compared to established meth-

ods. (This is an expected result due to the definition of the filter, which is designed to

increase Krzanowski stability)

• an increase in the percentage of days that risk was reduced.

1These improvements were relative to the best performing alternative
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• a decrease in the number of days where filtering resulted in large risk increases.

• good consistency of risk reduction, both on an annual basis, and at different levels of

the unfiltered risk.

The frequency of daily reduction was measured at 80.7% for the stocks, while that for

foreign exchange was 66.7%. We found a good agreement between the most competitive

KR filters, namely the KR2, KR4 and KR8 filters. These involved minimum replacement

eigenvalues of one half, one quarter and one eighth of the average noisy eigenvalue. For

the stock portfolio, the KR filter was the only one to reduce each year, and only once did

another filter outperform it, while for foreign exchange, it was the best filter in every year

for exponential weights. Meanwhile, for exponential weights, and in both markets, the

stability filter was the only one to reduce in all five quintiles of the unfiltered realised risk.

6.2.3 Foreign Exchange Filtering

Despite the fact that RMT filtering was designed for situations where the ratio of data to

assets was low, we found that these filters applied well to an Fx portfolio with just 39 assets,

and a long time series of data. The effects of filtering, both in and out-of-sample were very

similar to an S&P 500 portfolio with 432 assets. In the in-sample case, and with equal

weights, the similarity was striking. In both cases, using too little price history without

filtering resulted in large risks, while using too much was also not ideal. When filtering was

added, the picture changed completely for both asset classes, and in the same way. Now,

using the shortest possible price history was best. In the Fx case this was 40 data points, just

two months of data. This is a very reactive model, and indicates that it is not the availability

of past data that is important in this case, but the relevance of that data for forecasting.

In the exponential case, similarities were also seen between the two portfolios in-

sample. In the unfiltered exponential case, a wide range of decay factors performed poorly,

particularly at lower values. With filtering included, risk was reduced substantially across

this range in both cases.
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Table 6.1: Mean realised risk as a percentage of unfiltered, for all filters and both portfolios.

The improvements show remarkable consistency between the two asset classes.

Weights Filter Fx S&P 500

Equal LCPB 87 87.3

Exp LCPB 93.6 93.3

Equal PG+ 85.8 87.6

Exp PG+ 94.5 94.3

Equal KR 86.6 85.1

Exp KR 89.1 89.9

Out-of-sample, the results were also very similar. The improvements seen are shown in

Table 6.1. Here, we see just how similar the filter behaviour is between these two portfolios,

giving a clear impression that filtering can be applied successfully to this smaller portfolio.

The similarities also extended to the yearly and daily figures. Here, we saw risk reduc-

tion in the majority of years, with some years showing moderate increases. Daily ranges

were wider for the Fx portfolio, and the frequency of reduction was lower. However, the

majority of days involved risk improvement for both markets, and the histograms showed

similar patterns. In both cases, the best reduction occurred when the unfiltered value was

high and so the range of realised risk was effectively unchanged, or improved, by filtering.

All of these results point to RMT filtering being very valuable as a tool for improving the

risk of foreign exchange investments. However, filter use should be taken into consideration

in conjunction with choosing the composition of assets in the portfolio. Here, we have

included all currencies that were tradeable. Any attempt to reduce the number of currencies

resulted in a fall off in filter performance. A similar effect was seen for stocks, although

at different asset numbers. These results suggest that filtering will be more effective for

managers who trade a more diversified portfolio, and that those who restrict their asset

choice should reconsider this strategy, in light of this new technology.
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6.2.4 Choice of Weighting System and Parametrisation

We now consider the choice of weighting system in the forecasts, and the associated pa-

rameters. Without filtering, exponential weights outperformed equal weights in all out-of-

sample tests. However, it has been noted that the decay factors that were associated with

this improvement were far from those recommended by Riskmetrics. In many cases, the

optimal unfiltered decay factors approached one, and therefore lost much of the intention

behind using exponential weights, performing almost like an equally weighted forecast in-

stead.

When filtering was included, we saw mixed results. As is clear from Table 6.1, the

effect of filtering was always greater for equal weights. As a result, in the S&P 500 case,

the best model was exponentially weighted, while in the Fx case equal weights performed

better. When using the stability based filter, there was little to choose between the different

weightings. Again, exponential weights were better for the S&P 500 portfolio and equal

for the Fx one.

We recall that in Riskmetrics (1996), it was considered preferable to use exponential

weights, due to conceptual benefits. In particular, the ability of events to suddenly drop

off the end of the equal weighting moving window, and the fact that recent changes in

volatility are given the same weighting as older information, were considered drawbacks.

From our results, when noise filtering was included, the difference in performance of the

two weightings was not great, and in some cases, equal weights were better. This suggests

that those times when giving a current event an equal weighting is a disadvantage, are

compensated by other times when a sudden shift in market behaviour turns out not to be

sustained, and the longer term behaviour is soon restored.

In Pafka and Kondor (2002a,b), it was discussed that the effect of noise was reduced

by increasing the amount of data being used. From our results it became clear that this

was not the complete picture. While the unfiltered and filtered bootstrap results did indeed

converge as the amount of data increased, we saw that this convergence was not to the best

risk. Instead, by reducing the amount of data, in the equally weighted case, to the minimum,
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and filtering, a much lower risk was found. Therefore, ideas based on simply increasing the

amount of data, to remove the need for filtering, are overly simplistic.

This improvement, (after filtering), in the reaction times to market events, was seen

in both markets, and also reflected in the optimal decay factors. We saw that these decay

factors were reduced, in general, after filtering, particularly for the stock portfolio. The op-

timal out-of-sample decay factors for the S&P 500 were still higher, after filtering, than the

Riskmetrics value, while in the Fx case the filtered decay factors showed good agreement

with that work.

6.2.5 Covariance Filtering

We have also considered direct filtering of the covariance matrix, since it contains more

information about the individual assets, and was also shown to contain more non-noisy

eigenvalues. In this case the S&P 500 portfolio was used, and we found that, while direct

filtering reduced risk in all out-of-sample tests, filtering the correlation matrix produced

lower risk. In fact, filtering correlation resulted in lower risk in five of the six test cases.

The frequency of reductions also disimproved when covariance was filtered, while larger

increases were observed. Finally, the overall best forecast involved correlation filtering.

Based on these tests, applying RMT filtering to the correlation matrix was preferred.

6.2.6 Summary

In these tests it was seen that the use of RMT filtering reduced the realised risk of investment

portfolios. All filters were successful. In the case of exponential weights, our novel stability

filter out-performed the other filters tested. The situation was more competitive for equal

weights, where the stability filter was best for the stock portfolio. In general, this filter

showed greater consistency throughout.

Despite the small number of assets involved, filtering was just as valid for foreign ex-

change as for stocks, implying that noise cannot be reduced simply by considering more

data. In fact, for both markets, filtering led to models which considered less data, and were
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thus more reactive to recent events in the market.

6.3 Future Work

Following on from this, we now consider future work. First, since assumptions have been

made here, to preserve the generality of the test to many different applications, our next

step would be to test one specific implementation.

In a hedge fund environment the main measure of success is the ratio of the trading

return to trading risk, known as the Sharpe ratio (e.g. L’Habitant (2006)). Therefore, any

system which uses filtering to reduce risk can gain a competitive advantage. Moreover,

funds are allocated to managers not only on their own Sharpe ratio, but also on their corre-

lation to other managers, and so there is a definite advantage, in a portfolio of funds context,

associated with reducing correlation to other managers. Any new technology is beneficial

in this regard. With this in mind, we consider the typical steps necessary for developing this

technology into a working trading system. This would involve

• a forecasting system for expected returns. These forecasts are critical to the success

of any systematic trading model. With forecasted returns available, we can con-

sider the problem of minimising risk for a fixed target level of return. The literature

(e.g. Laloux et al. (2000); Conlon et al. (2007)) records a steady level of risk reduc-

tion, after filtering, along the whole of the efficient frontier, at realistic target returns.

It follows that comparable reduction to that seen in this thesis can be expected for any

practical target return level.

• considered operating constraints. Many funds involve gearing2 of their capital, which

is possible in this case due to only a percentage of capital, known as margin, being

needed at any one time to insure against trading losses. This, and other operating

constraints, may be beneficial. However, recent work (e.g. Galluccio et al. (1998);

Gábor and Kondor (1999); Kondor (2000); Bongini et al. (2002)) has pointed out that

2i.e. investment based on notional, or borrowed, funds. Gearing therefore increases potential profit and loss.
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the addition of such non-linear constraints causes the appearance of many different

unstable optimal solutions. Further research is clearly needed in this area.

• an accurate trading simulation system. Great care is needed in the building of such a

system to avoid unrealistic predictions. A key element of this is a good understanding,

and modelling, of spread costs and brokerage fees that are encountered in practice.

These are the key modelling questions. Following these, technological challenges such as

database construction, trade execution and administration, reporting, and compliance, can

be considered.

The second strand of future work relating to this thesis involves the improvement of the

filters themselves. Second order improvements can potentially be made, by making adjust-

ments to take account of the largest measured eigenvalues. Further details of this can be

found in, e.g., Laloux et al (2000). Essentially, the total risk in the system can be itera-

tively adjusted, when calculating the maximum random eigenvalue, to exclude the effect of

the eigenvalues known to be non-random. In this way further non-random sub-dominant

eigenvalues may potentially be identified. Moreover, adjustments can also be made for fi-

nite N effects (Laloux et al., 2000). What the practical benefits of these refinements are,

and whether they would be enough to compensate for the increased run time, is a matter for

further research.

Finally, it would be interesting to study the correspondence between RMT and tradi-

tional models of mathematical finance, such as the implications of simulating data using

RMT in combination with the Capital Asset Pricing Model or Arbitrage Pricing Theory

(e.g. Campbell et al. (1996)).
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Appendix A

Maximum Eigenvalue of an

Exponentially Weighted Random

Matrix

A.1 Introduction

Many of the tests performed as part of this thesis involved significant runtime, and it was

necessary to improve on this at various points. In this appendix we present an efficient

method for determining the maximum eigenvalue of an exponentially weighted random

matrix. This has been developed following from the work of Pafka et al (2004), who out-

lined the original formulation, as described in Section 3.2.4.
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A.2 Maximum Eigenvalue of an Exponentially Weighted Ran-

dom Matrix

As discussed in Section 3.2.4, Pafka et al. (2004) have shown that for a matrix M =

{mij}N
i,j=1 of the form

mij =

∞
∑

k=0

(1 − α)αkxikxjk (A.1)

where {xik}i=1,...,N
k=0,...,∞ are N.I.D.(0, σ2), the special case, with N → ∞, α → 1 and Q

fixed, where

Q =
1

N(1 − α)
(A.2)

results in the density, ρ(λ), of the eigenvalues of M being given by

ρ(λ) =
Qv

π
(A.3)

where v is the root of

F (v) =
λ

σ2
− vλ

tan(vλ)
+ ln(vσ2) − ln(sin(vλ)) − 1

Q
(A.4)

F (v) is well defined on the open interval (0, π/λ). If a root does not exist on this interval

for a given value of λ we define ρ(λ) = 0 for that λ.

We now analyse the behaviour of this function, F (v), on (0, π/λ), and determine a more

efficient method for finding the maximum eigenvalue. While this maximum eigenvalue can

be found directly from Equation (A.4), that method involved a large computational expense,

during our tests.

We first note that, on the interval v ∈ (0, π/λ), the following limits hold

lim
v→0

F (v) =
λ

σ2
− ln

(

λ

σ2

)

− 1

Q
− 1 (A.5)

lim
v→(π/λ)

F (v) = ∞ (A.6)
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The first limit can be found by considering the following form for F (v)

F (v) =
λ

σ2
− ln

(

λ

σ2

)

− 1

Q
− vλ

tan(vλ)
+ ln

(

vλ

sin(vλ)

)

(A.7)

and noting that both

lim
x→0

x

sin(x)
= 1 (A.8)

and

lim
x→0

x

tan(x)
= 1 (A.9)

The second limit can be found by writing F (v) in the form

F (v) =

(

λ

σ2
+ ln(σ2) − 1

Q

)

− vλ

tan(vλ)
+ ln(v) − ln(sin(vλ)) (A.10)

and noting that as v → π/λ from below the following limits hold

λ

σ2
+ ln(σ2) − 1

Q
= constant (A.11)

− vλ

tan(vλ)
→ +∞ (A.12)

ln(v) → ln(π/λ) (A.13)

− ln(sin(vλ)) → +∞ (A.14)

The second part of the derivation requires us to show that F (v) is increasing on the

interval v ∈ (0, π/λ). This can be shown by examining the derivative

F ′(v) =
1

v
− x

v

(

2 tan(x) − x sec2(x)

tan2(x)

)

(A.15)

where x = vλ, which can also be written as

F ′(v) =
1

v

(

sin2(x) − 2x sin(x) cos(x) + x2

sin2(x)

)

(A.16)
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This derivative can be shown to be positive as follows. The denominator is clearly positive

on the interval v ∈ (0, π/λ), which is equivalent to the interval x ∈ (0, π). Examining the

numerator

h(x) = sin2(x) − 2x sin(x) cos(x) + x2 (A.17)

we see that this is also positive on the interval, since

h(0) = 0 (A.18)

and

h′(x) = 4x sin2(x) (A.19)

> 0 (A.20)

It follows that, since F (v) is increasing to +∞ on the interval v ∈ (0, π/λ), a root of

F (v) exists on this interval, for a given Q and λ, when its lower limit on the interval is

negative. From Equation (A.5), this corresponds to

λ

σ2
− ln

(

λ

σ2

)

< 1 +
1

Q
(A.21)

Now, as seen in Figure A.1,

λ

σ2
− ln

(

λ

σ2

)

≥ 1 (A.22)

with a minimum at 1 when λ = σ2, and it crosses 1 + 1/Q > 1 just once above λ = σ2

and once below it. Outside of the open interval, bracketed by these crossovers, we have

λ

σ2
− ln

(

λ

σ2

)

≥ 1 +
1

Q
(A.23)

and thus F (v) cannot have a root on v ∈ (0, π/λ). It follows that these crossovers are the

minimum and maximum eigenvalues for the exponentially weighted random matrix. Thus,
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the theoretical maximum eigenvalue is the solution of

λ

σ2
− ln

(

λ

σ2

)

= 1 +
1

Q
, λ > σ2 (A.24)

We note also that Potters et al. (2005) have demonstrated an alternative derivation, with

σ = 1, using “Blue” functions.

A.3 Summary

In this appendix we have derived an efficient method for estimating the maximum eigen-

value of an exponentially weighted random matrix. This alternative method offers a valu-

able saving of computation time compared to the original formulation.
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Exponentially Weighted Volatility, Random-Matrix-

Theory Filters and Stability in Portfolio Opti-

mization

Laloux et al. [1] and Plerou et al. [2], amongst others, have shown that techniques
based on random matrix theory (RMT) for filtering the “noisy” eigenvalues of
financial correlation matrices can benefit portfolio optimization. Recently Pafka
et al. [3] provided an extension of this to Riskmetrics [4] type, exponentially
weighted, covariance models. This work [3] showed that RMT based eigenvalue
filters can improve the realized risk of minimum risk portfolios, where these are
generated using exponentially weighted forecasts.

A recent paper by Sharifi et al. [5], using equally weighted historical returns
for estimating covariance, proposed an alternative eigenvalue filtering method
based on a principal components technique developed by Krzanowski [6] for
measuring the stability of the eigenvectors. Sharifi et al. [5] concluded that
filtering correlation matrices using existing methods can have a negative effect
on stability.

We have evaluated three existing RMT filtering methods [1,2,5] in the con-
text of exponentially weighted volatility. We also examine an alternative scheme
of filtering the covariance matrix directly (as opposed to the method of filter-
ing the correlation matrix) and we assess the implications for the choice of
decay factor in the exponential weighting. Finally, we compare equally and ex-
ponentially weighted volatility forecasts, filtered and unfiltered, using forward
validation. This work has led us to define an extension to the filtering method
of Sharifi et al. [5].
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Abstract

Random matrix theory (RMT) filters, applied to covariance matrices of financial returns, have recently been shown to offer
improvements to the optimisation of stock portfolios. This paper studies the effect of three RMT filters on the realised portfolio
risk, and on the stability of the filtered covariance matrix, using bootstrap analysis and out-of-sample testing.

We propose an extension to an existing RMT filter, (based on Krzanowski stability), which is observed to reduce risk and
increase stability, when compared to other RMT filters tested. We also study a scheme for filtering the covariance matrix directly, as
opposed to the standard method of filtering correlation, where the latter is found to lower the realised risk, on average, by up to 6.7%.

We consider both equally and exponentially weighted covariance matrices in our analysis, and observe that the overall best
method out-of-sample was that of the exponentially weighted covariance, with our Krzanowski stability-based filter applied to
the correlation matrix. We also find that the optimal out-of-sample decay factors, for both filtered and unfiltered forecasts, were
higher than those suggested by Riskmetrics [J.P. Morgan, Reuters, Riskmetrics technical document, Technical Report, 1996.
http://www.riskmetrics.com/techdoc.html], with those for the latter approaching a value of α = 1.

In conclusion, RMT filtering reduced the realised risk, on average, and in the majority of cases when tested out-of-sample, but
increased the realised risk on a marked number of individual days–in some cases more than doubling it.
c© 2008 Elsevier B.V. All rights reserved.

PACS: 05.40.-a; 05.45.Tp; 89.65.Gh

Keywords: Random matrix theory; Portfolio optimisation; Econophysics

1. Introduction

Markowitz portfolio theory [2], an intrinsic part of modern financial analysis, relies on the covariance matrix of
returns and this can be difficult to estimate. For example, for a time series of length T , a portfolio of N assets requires
(N 2

+ N )/2 covariances to be estimated from N T returns. This results in estimation noise, since the availability of
historical information is limited. Moreover, it is commonly accepted that financial covariances are not fixed over time
(e.g. Refs. [1,3,4]) and thus older historical data, even if available, can lead to cumulative noise effects.

∗ Corresponding author.
E-mail addresses: jdaly@computing.dcu.ie (J. Daly), mcrane@computing.dcu.ie (M. Crane), hruskin@computing.dcu.ie (H.J. Ruskin).

0378-4371/$ - see front matter c© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2008.02.045

http://www.elsevier.com/locate/physa
http://www.riskmetrics.com/techdoc.html
mailto:jdaly@computing.dcu.ie
mailto:mcrane@computing.dcu.ie
mailto:hruskin@computing.dcu.ie
http://dx.doi.org/10.1016/j.physa.2008.02.045


J. Daly et al. / Physica A 387 (2008) 4248–4260 4249

Random matrix theory (RMT), first developed by authors such as Dyson and Mehta [5–8], to explain the energy
levels of complex nuclei [9], has recently been applied to noise filtering in financial time series, particularly in
large dimensional systems such as stock markets, by several authors including Plerou et al. [9–13] and Laloux
et al. [14,15]. Both groups have analysed the US stock markets and have found that the eigenvalues of the correlation
matrix of returns are consistent with those calculated using random returns, with the exception of a few large
eigenvalues. Moreover, their findings indicated that these large eigenvalues, which do not conform to random returns,
had eigenvectors that were more stable over time. Of particular interest was the demonstration [9,15] that filtering
techniques, based on RMT, could be beneficial in portfolio optimisation, both reducing the realised risk of optimised
portfolios, and improving the forecast of this realised risk.

More recently, Pafka et al. [16] extended RMT to provide Riskmetrics type [1] covariance forecasts. Riskmetrics,
dating from the 1990s, and considered a benchmark in risk management [16], uses an exponential weighting to model
the heteroskedasticity of financial returns. Pafka et al. [16] showed that RMT-based eigenvalue filters can improve
the optimisation of minimum risk portfolios, generated using exponentially weighted forecasts. However, these
authors found that the decay factors which produced the least risky portfolios were higher than the range suggested
by Riskmetrics and further concluded that unfiltered Riskmetrics-recommended forecasts were unsuitable for their
portfolio optimisation problem. A recent paper by Sharifi et al. [17], using equally weighted, high frequency returns
for estimating covariances, proposed an alternative eigenvalue-filtering method, based on a principal components
technique developed by Krzanowski [18] for measuring the stability of eigenvectors, in relation to small perturbations
in the corresponding eigenvalues. Sharifi et al. [17] concluded that filtering correlation matrices according to the
method outlined in Laloux et al. [15] had a negative effect on this stability.

Our objectives in this article are: (i) to present a computationally efficient method for calculating the maximum
eigenvalue of an exponentially weighted random matrix; (ii) to study the behaviour of the stability-based filter [17]
for daily data and for exponentially weighted covariance; (iii) to explore the possibility of filtering the covariance
matrix directly (as opposed to the standard method of filtering correlation); and (iv) to compare three available
RMT filters using bootstrapping and out-of-sample testing. The paper is organised as follows. In Section 2, we
review the theoretical background for the three RMT filters, Section 3 contains the in-sample analysis of the filters
from a stability and risk reduction perspective, and in Section 4 we present results of the out-of-sample test on the
effectiveness of the filters in reducing risk. In the Appendix, we describe the filtering methods of Laloux et al. [15] and
Plerou et al. [9].

2. Background

2.1. Random matrix theory and historical covariance

As described by Laloux et al. [14], Plerou et al. [9], Sharifi et al. [17] and others, in the context of correlation
matrices of financial returns, if R is any matrix defined by

R =
1
T

AA′ (1)

where A is an N ×T matrix whose elements are i.i.d.1 random variables with a zero mean, then it has been shown [19]
that, in the limit N → ∞, T → ∞ such that Q = T/N ≥ 1 is fixed, the distribution P(λ) of the eigenvalues of R is
self-averaging, and is given by

P(λ) =

 Q

2πσ 2

√
(λ+ − λ)(λ − λ−)

λ
if λ− ≤ λ ≤ λ+

0 otherwise
(2)

where σ 2 is the variance of the elements of A and

λ± = σ 2
(

1 + 1/Q ± 2
√

1/Q
)

. (3)

1 i.i.d. ≡ independent and identically distributed.
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Financial correlation and covariance matrices can be expressed, in general, in the form given by Eq. (1), so matrices
for historical data can be compared to those generated from random returns. Here, we define the covariance matrix
V = {σi j }

N
i, j=1 of returns2 by

σi j = 〈Gi (t)G j (t)〉 − 〈Gi (t)〉〈G j (t)〉 (4)

where 〈·〉 refers to the mean over time, and the correlation matrix C = {ρi j }
N
i, j=1 is given by

ρi j = σi j/
√

σi iσ j j (5)

where {Gi (t)}
i=1,...,N
t=1,...,T are the returns

Gi (t) = ln(Si (t)/Si (t − 1)) (6)

and where Si (t) is the spot price of asset i at time t .

2.2. Random matrix theory and exponentially weighted covariance

In extending RMT filtering to exponentially weighted matrices, Pafka et al. [16] have analysed matrices of the form
M = {mi j }

N
i, j=1 with

mi j =

∞∑
k=0

(1 − α)αk xik x jk (7)

and where {xik}
i=1,...,N
k=0,...,∞ are assumed to be N.I.D.(0, σ 2).3 They have shown that, in the special case N → ∞, α → 1

with Q ≡ 1/(N (1 − α)) fixed, the density, ρ(λ), of the eigenvalues of M is given by ρ(λ) = Qv/π where v is the
root of

F(v) =
λ

σ 2 −
vλ

tan(vλ)
+ ln(vσ 2) − ln(sin(vλ)) −

1
Q

. (8)

F(v) is well defined on the open interval (0, π/λ). If a root does not exist on this interval for a given value of λ, we
define ρ(λ) = 0 for that λ. The family of matrices, defined by Eq. (7), includes the Riskmetrics [1] covariance and
correlation matrices. Following this, we define the exponentially weighted covariance matrix V∗

= {σ ∗

i j }
N
i, j=1 by

σ ∗

i j =
1 − α

1 − αT

T −1∑
t=0

αt (Gi (T − t) − 〈Gi 〉)(G j (T − t) − 〈G j 〉) (9)

and define the corresponding, exponentially weighted, correlation matrix C∗
= {ρ∗

i j }
N
i, j=1 by

ρ∗

i j = σ ∗

i j/
√

σ ∗

i iσ
∗

j j . (10)

Here, α is commonly called the decay factor.

2.3. Maximum eigenvalue of an exponentially weighted random matrix

The maximum eigenvalue of an exponentially weighted random matrix can be found using Eq. (8), but a more
efficient method can be derived as follows. On the interval v ∈ (0, π/λ), the following limits hold:

lim
v→0

F(v) =
λ

σ 2 − ln
(

λ

σ 2

)
−

1
Q

− 1 (11)

lim
v→(π/λ)

F(v) = ∞. (12)

2 Throughout this paper the following notation is used: {xi }
N
i=1 ≡ {xi : i = 1, . . . , N }, {xi j }

N
i, j=1 ≡ {xi j : i = 1, . . . , N ; j = 1, . . . , N },

{xi t }
i=1,...,N
t=1,...,T ≡ {xi t : i = 1, . . . , N ; t = 1, . . . , T } etc.

3 N.I.D.(µ, σ 2) ≡ Normally and identically distributed (with mean µ and variance σ 2).
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Fig. 1. x − ln(x).

Moreover, F(v) is increasing on the interval v ∈ (0, π/λ), since for x = vλ

F ′(v) =
1
v

−
x

v

(
2 tan(x) − x sec2(x)

tan2(x)

)
(13)

=
1
v

(
sin2(x) − 2x sin(x) cos(x) + x2

sin2(x)

)
(14)

and also h(x) = sin2(x) − 2x sin(x) cos(x) + x2 > 0 on x ∈ (0, π), which is true because h(0) = 0 and
h′(x) = 4x sin2(x) > 0.

Therefore, a root of F(v) exists on v ∈ (0, π/λ) for a given Q and λ when its lower limit is negative on the interval,
i.e. when

λ

σ 2 − ln
(

λ

σ 2

)
< 1 +

1
Q

. (15)

Now, as seen from Fig. 1, λ/σ 2
− ln(λ/σ 2) ≥ 1, with a minimum at 1 when λ = σ 2, and it crosses 1 + 1/Q > 1 just

once above λ = σ 2 and once below it. Outside of the open interval bracketed by these crossovers, we have

λ

σ 2 − ln
(

λ

σ 2

)
≥ 1 +

1
Q

(16)

and thus F(v) cannot have a root in v ∈ (0, π/λ). It follows that these crossovers are the minimum and maximum
possible eigenvalues for the exponentially weighted random matrix. Thus, the theoretical maximum eigenvalue is the
solution of

λ

σ 2 − ln
(

λ

σ 2

)
= 1 +

1
Q

, λ > σ 2. (17)

We note also that Potters et al. [20] have demonstrated an alternative derivation, with σ = 1, using “Blue” functions.

2.4. Krzanowski stability

One of the filtering methods discussed, Sharifi et al. [17], and considered also here, is based on the stability, as
described by Krzanowski [18], of the filtered matrix. Krzanowski [18] measured the eigenvector stability, specifically
the effect on each eigenvector of a perturbation in the corresponding eigenvalue. This is in contrast to stability over
time, as analysed by many other authors, e.g. Ref. [9,15]. Krzanowski [18] considered the angle, θi , between an
eigenvector vi and v

p
i , where v

p
i is the maximum perturbation that can be applied to vi while ensuring that the

eigenvalue, λ
p
i , corresponding to v

p
i , is within ε of the eigenvalue λi , corresponding to vi . He showed that θi is given
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by:

cos θi =


(

1 +
ε

λi − λi−1

)−
1
2

for λ
p
i < λi(

1 +
ε

λi+1 − λi

)−
1
2

for λi < λ
p
i

(18)

where λ1 ≤ λ2 ≤ . . . ≤ λL are the eigenvalues, and suggested using ε = kλi with k = 0.1, 0.05 or 0.01. We have
chosen k = 0.1, which was the most consistent with typical eigenvalue changes between different subperiods of our
data. When measuring the mean stability, of the filtered and unfiltered covariance matrices, the arithmetic mean of the
cases λ

p
i < λi and λi < λ

p
i was calculated.

2.5. Filtering methods

The three filtering methods compared here are based on replacing the “noisy” eigenvalues of the covariance or
correlation matrix, while maintaining its trace. The noisy eigenvalues are taken to be those that are less than or equal
to the maximum possible eigenvalue of the corresponding random matrix. The theoretical limiting cases (described,
Sections 2.1 and 2.2) are commonly used to estimate the maximum eigenvalues of the random matrices. However,
these can also be estimated by calculating them directly from Monte Carlo simulated random returns (for example if
the number of assets is small). In this work, we have used “first order filtering”, i.e. exactly the maximum eigenvalue
predicted by RMT. Improvement to these filters can potentially be made by adjusting these limits to take account of
the largest measured eigenvalues (generally known not to be random). For further details see, e.g., Laloux et al. [15].
The filtering methods of Laloux et al. [15] (referred to hereafter as LCPB), and of Plerou et al. [9] (referred to hereafter
as PG+), are detailed in the Appendix. The third filtering method is defined as follows. To maximise the Krzanowski
stability of the filtered matrix while also maintaining its trace, the method of Sharifi et al. [17] replaces the noisy
eigenvalues with ones that are equally and maximally spaced, are positive, and have a sum equal to the sum of those
replaced. To achieve maximal spacing, it was assumed that the smallest replacement eigenvalue should be very close
to zero. In this paper, this method is adapted by making the smallest replacement eigenvalue a parameter of the filter,
so that changes in stability and optimisation results, achieved for various values of this parameter, can be measured.
We call the adapted version the KR method.

The KR method is identical to the LCPB method except in the choice of eigenvalues to replace the noisy
eigenvalues. If Λnoisy = {yi }

n
i=1 are the original noisy eigenvalues, then for the KR method the replacement

eigenvalues Λnew = {xi }
n
i=1 are given by xi = x1 + (i − 1)k for some constant k, defined by the choice of minimum

replacement eigenvalue x1 and the constraint that the sum of the replacement eigenvalues must equal the sum of
the eigenvalues being replaced. In addition, the replacement eigenvalues must all be strictly positive. It follows that
k = 2(a − x1)/(n − 1), where a is the mean of the eigenvalues being replaced. The cases k > 0 and k < 0 can
be shown to be equivalent, so we can assume without loss of generality that x1 ≤ a. Moreover, the case k = 0 just
collapses to the LCPB method (as defined in the Appendix), since k = 0 ⇔ x1 = a.

2.6. Data

The data, used to test the filter performance, were the daily closing prices for the S&P 500 index stocks, with the
index composition taken as of 1st February 2006.4 The dataset runs from 1st June 1995 to 1st February 2006, and any
series not covering the entire period was discarded, leaving a total of 432 stocks.

3. In-sample evaluations

3.1. Evaluation methods

For the in-sample analysis, and following [16], bootstrapped samples were taken, together with the mean across
these samples. For a given value of N (the number of assets) and F (the forecast horizon in working days), we

4 From www.standardandpoors.com.

http://www.standardandpoors.com
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randomly selected N assets from the data set, and a random test date. Everything up to and including the test date
was taken as historical information and everything afterwards as realised, future information. For the same N and
F , we repeated this random selection 1000 times, with replacement, and calculated the mean across all bootstrapped
samples, of: (i) the realised risk of the forecast minimum risk portfolio [16] (calculated using our forecast covariance),
and (ii) the mean Krzanowski stability [18] across all eigenvectors of the forecast covariance matrix. We analysed the
cases N = 100, 250 and 432, and F = 20 and 50. The results for F = 50 were very similar to those for F = 20, and
thus we concentrated subsequently on the F = 20 case.

A covariance forecast in this context consisted of a raw forecast, which was either exponentially or equally
weighted, and could be unfiltered, or filtered by one of the LCPB, PG+ or KR methods applied to either the covariance
or correlation matrix. In much of the literature (e.g. Ref. [9,15]) the correlation matrix is filtered, it being closer to the
RMT assumption of i.i.d. returns than the covariance matrix. Here, we also wish to assess the impact of filtering the
covariance directly, since it retains more information about the individual assets.

On each test date, we calculated the forecast minimum risk portfolio, optimised as follows [16]. Choose a portfolio
weighting {wi }

N
i=1 that minimises

N∑
i, j=1

wiw j σ̂i j (19)

while satisfying the budget constraint

N∑
i=1

wi = 1. (20)

Here, V̂ = {σ̂i j }
N
i, j=1 is one of the 14 forecast covariance matrices. The solution, {ŵi }

N
i=1, of this problem is:

ŵi =

N∑
j=1

σ̂−1
i j

N∑
j,k=1

σ̂−1
jk

∀i (21)

where V̂
−1

= {σ̂−1
i j }

N
i, j=1 is the matrix inverse of V̂. The realised risk of the optimal portfolio is defined by√√√√ N∑

i, j=1

ŵi ŵ j σ̃i j . (22)

Here, Ṽ = {σ̃i j }
N
i, j=1 is the realised covariance matrix, and is just the (equally weighted) covariance matrix of the

realised future returns over the investment period. The forecast risk is calculated analogously, using the forecast
covariance matrix, V̂.

By comparing the covariance forecasts in this way, we measure their effect on the realised risk without using
forecast returns, which would introduce unwanted noise into the results. Further, we have not used any knowledge of
future returns in our tests, since we wish to evaluate both forecasting methods (equal vs. exponential weighting) as well
as filtering methods. This is in contrast to some previous studies that have isolated the effect of the filtering method on
the correlation matrix by using future knowledge of realised returns to estimate the variance of each individual asset.

3.2. Measuring noise

Fig. 2 shows, for equally and exponentially weighted forecasts, and for 100 and 432 assets, the percentage of
measured eigenvalues, for both covariance and correlation forecasts, that were larger than the corresponding maximum
eigenvalue predicted by RMT. It can be seen that, in general, compared to the correlation matrix, the covariance matrix
contained more “non-random” eigenvalues. In the case of exponentially weighted matrices with 432 assets, however,
the effect was less pronounced. For a wide range of decay factor values, exponentially weighted matrices had very few
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Fig. 2. Percentage of eigenvalues that are larger than the maximum eigenvalue predicted by RMT, for equally weighted correlation and covariance
with (a) 100 assets and (c) 432 assets, and for exponential weights with (b) 100 assets and (d) 432 assets.

non-noisy eigenvalues when all 432 assets were used. The range for α included values suggested by Riskmetrics [1]
(0.94 to 0.97). The high level of measured noise reflects that lowering the value of the decay factor is equivalent to
using less (equally weighted) data. Despite this, the filtered exponentially weighted forecasts produced some of the
lowest mean realised risks.

3.3. Stability

Focusing on stability, Fig. 3 displays, for selected filters, and averaged over all bootstrap samples, the mean stability
across all eigenvectors of the filtered covariance matrix (for the case of 100 assets, and using equally weighted
forecasts). These results are representative of the stability results for other sizes of the asset group, and for the
exponential weights. The covariance matrices produced by KR filtering are seen to have a better stability than the
LCPB and PG+ filtered ones, particularly for direct filtering of the covariance matrix. The KR methods considered,
(and their defining minimum replacement eigenvalues), were: KR2 ( 1

2Λnoisy), KR4 ( 1
4Λnoisy), KR8 ( 1

8Λnoisy), KR16
( 1

16Λnoisy), KR64 ( 1
64Λnoisy), KR100 ( 1

100Λnoisy) and KR1000 ( 1
1000Λnoisy), where Λnoisy is the mean of the noisy

eigenvalues. It can also be seen that the stability improved as the minimum replacement eigenvalue for the KR filter
approached zero. However, the closer the minimum eigenvalue got to the mean noisy eigenvalue, the more the stability
decreased (though it remained above that of the LCPB and PG+ filters). These results are consistent with the definition
of the KR filter, which is designed to give improved stability.

3.4. In-sample risk reduction

We found that the KR method as described in Sharifi et al. [17] (i.e. with a minimum replacement eigenvalue
of 10−8) was not competitive when compared to other methods for reducing risk, including a comparison with the
unfiltered series. Fig. 4 shows a sample comparison of this method, (which we call method KR0), with the LCPB
and unfiltered methods and it is clear that the KR0 method increases the mean realised risk. We found a marked risk
reduction was achieved by varying the minimum replacement eigenvalue. The in-sample results showed, in general,
the potential of the RMT filters to reduce the realised risk, and we noted, in particular, that the KR2, KR4 and KR8
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Fig. 3. In-sample mean stability for the equally weighted covariance forecast with 100 assets, filtering correlation (left) and covariance (right).

Fig. 4. In-sample mean realised risk for unfiltered, LCPB and KR0 filtered exponentially weighted forecasts, with 432 assets, filtering covariance.

methods were amongst the best performing of all filters for this, and they were also reasonably consistent with each
other. In general, the optimisation performance of the KR filters deteriorated as the minimum replacement eigenvalue
approached zero.

In many cases, two local minima were produced for the choice of the optimal decay factor for the exponential
weights.5 One of these coincided with the suggestion of Riskmetrics [1], i.e. 0.97 for monthly forecasts. The other
was much closer to 1. Fig. 5 shows an extract of the in-sample results, namely the best, or two best filtering methods,
from the point of view of the mean realised risk, in each of the following cases: equally weighted filtered correlation,
equally weighted filtered covariance, exponentially weighted filtered correlation and exponentially weighted filtered
covariance. Results for 100 assets (left) and 432 assets (right) are shown vs. decay factors (α) in the case of exponential
weighting and vs. number of past moves (T ) in the case of equal weighting. The legends can be interpreted as the
“forecast weighting (equal or exponential), matrix filtered (correlation or covariance), filtering method”. For example,
“Equal, Corr, KR2” refers to the mean realised risk over all bootstrapped samples for equally weighted forecasts,
filtered using method KR2 on the correlation matrix.

4. Out-of-sample testing

For comparing the models out-of-sample we used forward validation. This method considers every available test
date and for each one uses data prior to the test date to optimise any model parameters. This allows the comparison
of filtering methods with different numbers of parameters and also gives some insight into the stability of the models
over time. The value of the weighting parameter (α or T ) and the choice of the KR model were determined out-
of-sample. Possible KR models were all the KR models mentioned above (KR2, KR4, KR8, KR16, KR64, KR100,

5 Optimal for reducing in-sample realised risk.
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Fig. 5. In-sample mean realised risk for selected best forecasting methods, for 100 assets (left) and 432 assets (right).

Table 1
Mean out-of-sample realised risk as a percentage of that for unfiltered equally weighted covariance

Model Unfiltered LCPB PG+ KR

Equal weights/Correlation filtered 100 87.3 87.6 85.1
Exponential weights/Correlation filtered 93.4 87.1 88.1 84
Equal weights/Covariance filtered 100 93.6 89.2 88.4
Exponential weights/Covariance filtered 93.4 92 87.1 86.7

The weights (equal or exponential) are as described in Sections 2.1 and 2.2 and values are set using daily forward validation. Filtering is seen
to reduce the mean realised risk in all cases, to as low as 84% of our benchmark risk, when applying KR filtering to the correlation matrix for
exponentially weighted forecasts.

KR1000 and KR0) as well as the LCPB model for completeness. The forward validation was performed over a period
of 1658 days, 129 of which were used as the initial training period. Subsequent retraining was done daily. We used the
realised risk of the forecast minimum risk portfolio as our metric and all 432 assets were used to eliminate the need
to arbitrarily choose assets each day. Table 1 shows a summary of the performance of the covariance forecasting and
filtering combinations. The figures shown are the mean realised risk as a percentage of the result for unfiltered equally
weighted covariance. The overall best performing combination in this test was exponential weighting with a KR filter
applied to the correlation matrix (84%). RMT filtering is seen on average to reduce the realised risk in all cases where
it is used.

Table 2 shows a breakdown of the mean realised risk of the various weightings and filters on an “annual” basis
over 6 years. In this case, a year is taken to have 255 trading days, with the final year having 254. Here, there are a
few instances where the filtering increases the mean risk in a year. However, the majority of the time filtering reduces
risk. The overall best method was found to produce the lowest risk in three of the six years, and was competitive in
the other three years. The stability-based KR filter is the only filter to reduce the mean realised risk in all cases in each
year.

Table 3 shows the percentage of times that the best performance was achieved by each method, on an annual,
monthly and daily basis. One month is assumed to be equal to exactly 21 trading days for this purpose. The daily
results show that an unfiltered forecast was best for only 6% of days, and on the majority of these days the best
unfiltered forecast was exponentially weighted. The fact that unfiltered forecasting was found to be best for 5.5% of
the months reflects some clustering of these daily effects. Overall, the best method was consistently so on a monthly
(25.3%) and daily (19%) basis.

Table 4 shows the frequency of the daily filtering effects. “Low” and “High” specify a range for the realised
risk, expressed as a percentage of the relevant unfiltered realised risk. Methods L, P and K refer to the LCPB, PG+

and KR filters respectively. L/C and L/V refer to the LCPB filter applied to the correlation matrix and covariance
matrix respectively and the L column is the sum of these. The effects on equally weighted and exponentially weighted
matrices are combined to calculate L/C, L/V etc. For example, the LCPB method reduced the realised risk to 60%–80%
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Table 2
Mean out-of-sample realised risk per year for 6 years as a percentage of equally weighted unfiltered results each year

Weights Filtered Filter 1 2 3 4 5 6

Equal No – 100 100 100 100 100 100
Equal Corr LCPB 86.3 86.5 89.8 85.3 94.6 81.3
Equal Corr PG+ 87.1 84.7 89.8 85.3 95.7 83.5
Equal Corr KR 84.2 84.7 87.4 83.2 91.4 80.2

Exp No – 96.4 96.4 92.9 87.4 95.7 90.1
Exp Corr LCPB 81.3 82.9 89.8 85.3 94.6 91.2
Exp Corr PG+ 84.9 85.6 89 86.3 91.4 93.4
Exp Corr KR 80.6 81.1 89.8 80 88.2 85.7

Equal No – 100 100 100 100 100 100
Equal Cov LCPB 95.7 100 96.1 87.4 91.4 89
Equal Cov PG+ 90.6 85.6 86.6 87.4 100 87.9
Equal Cov KR 89.2 91.9 92.1 83.2 87.1 84.6

Exp No – 96.4 96.4 92.9 87.4 95.7 90.1
Exp Cov LCPB 92.1 95.5 99.2 85.3 84.9 93.4
Exp Cov PG+ 86.3 87.4 91.3 84.2 83.9 90.1
Exp Cov KR 89.2 89.2 90.6 81.1 83.9 83.5

In a few cases, RMT filtering is seen to increase the mean realised risk over the course of a year. The KR filter is the only one to reduce the
realised risk in all cases each year.

Table 3
The percentage of the time each method had the lowest mean out-of-sample realised risk on an annual, monthly and daily basis

Weights Filtered Filter Yearly Monthly Daily

Equal No – 0 0 0.8
Equal Corr LCPB 0 4.1 7.1
Equal Corr PG+ 0 9.6 6.9
Equal Corr KR 16.7 8.2 7.7

Exp No - 0 5.5 5.2
Exp Corr LCPB 0 6.2 4.9
Exp Corr PG+ 0 4.1 6.1
Exp Corr KR 50 25.3 19

Equal No – 0 0 0.8
Equal Cov LCPB 0 4.1 3.3
Equal Cov PG+ 16.7 8.2 7.5
Equal Cov KR 0 2.7 4.6

Exp No – 0 5.5 5.2
Exp Cov LCPB 0 6.8 6.9
Exp Cov PG+ 16.7 8.2 8.8
Exp Cov KR 0 6.8 11.2

Unfiltered forecasts are seen to have the lowest values for only 6% of the days and for 5.5% of the months. The most consistent method was the
stability-based filter, applied to the correlation matrix of the exponentially weighted forecasts.

of the unfiltered realised risk for 1172 of the 6116 daily tests. When only correlation filtering is accounted for, LCPB
filtering reduces to 60%–80% for 723 out of 3058 tests, 1529 equally weighted and 1529 exponentially weighted.
From this we can see that taking the mean across all filters, the RMT filtering reduced the realised risk on 72.3% of
the days. This breaks down as 74.3% when the correlation was filtered and 70.3% when the covariance was filtered.
The KR method was the most consistent in terms of reducing the realised risk (80.5% of the time overall). However,
combining all methods, the RMT filtering caused an increased realised risk by 20% or more on 5.5% of the days,
with the correlation and the covariance filtering accounting for roughly half of this each. The KR filtering increased
the realised risk by 20% or more the least often (2.0% of the days). On 0.3% of the days, the RMT filtering increased
the realised risk by 60% or more, at least doubling it on two of those days. This shows that while the RMT filtering
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Table 4
The daily frequency of the percentage effect, on the realised risk, of applying the RMT filters

Low High L/C P/C K/C L/V P/V K/V L P K

40 60 38 45 25 10 42 5 48 87 30
60 80 723 649 816 449 604 513 1172 1253 1329
80 100 1431 1464 1626 1359 1523 1941 2790 2987 3567

100 120 668 706 495 909 720 575 1577 1426 1070
120 140 158 153 80 278 148 22 436 301 102
140 160 30 32 11 36 15 2 66 47 13
160 180 7 8 4 7 4 0 14 12 4
180 200 3 1 1 8 2 0 11 3 1
200 220 0 0 0 1 0 0 1 0 0
220 240 0 0 0 1 0 0 1 0 0

“Low” and “High” specify a range for the realised risk, expressed as a percentage of the relevant unfiltered realised risk. Methods L, P and K refer
to the LCPB, PG+ and KR filters. L/C and L/V refer to filtering the correlation and covariance matrices respectively. Filtering is seen to reduce the
realised risk 72.3% of the time overall, while stability-based filtering reduced it the most often, namely 80.5% of the time. It can also be seen that,
despite reducing the mean realised risk overall, all filters have the potential to markedly increase the realised risk on any individual day.

Fig. 6. Optimal forward validation decay factor values for filtering the correlation matrix (left) and the covariance matrix (right). The range of the
decay factors seen here is higher in all cases than the Riskmetrics [1] value of 0.97.

reduced the realised risk on average, and on the majority of days, all the tested filters had the capacity to increase the
realised risk, and in fact some marked increases were observed.

Fig. 6 shows the values of the decay factors chosen through time by the forward validation. The decay factor chosen
for the unfiltered series, not shown, was always the maximum tested (0.999). All the decay factors chosen using the
forward validation were higher than the 0.97 suggested by Riskmetrics [1], especially those for filtering covariance.

5. Conclusions

In this work, we have studied the application of RMT filters to the optimisation of financial portfolios. Broadly,
our results for our novel filter are in agreement with previous results [16], that RMT-based filtering can improve the
realised risk of minimum risk portfolios. Based on Krzanowski stability, the filter extends that which we developed
earlier, Sharifi et al. [17], and offers improvements in terms of risk and stability compared to other RMT filters tested.

Using forward validation, the RMT filters were found to reduce the mean realised risk, overall, in all cases tested.
However, in some individual years this was not the case. When considering individual days, RMT filtering was found
to reduce the realised risk for 72.3% of the test cases (74.3% for filtering the correlation and 80.5% for the best filter).
However, it was also found to be capable of increasing the realised risk for all types of filters, even substantially in
some cases. The overall best method, out-of-sample, was an exponentially weighted covariance, with our Krzanowski
stability-based filter applied to the correlation matrix. This method also showed good consistency for reducing the risk
on an annual, monthly and daily basis.
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When examined in-sample, filtering covariance, rather than correlation, produced lower risk portfolios in some
cases, but on average, filtering correlation generated a lower realised risk out-of-sample. In-sample tests also supplied
some evidence, in the form of local optima, to support the Riskmetrics [1] recommended decay factor of 0.97.
However, the optimal out-of-sample decay factors, for both filtered and unfiltered forecasts, were higher in all cases
than those suggested by Riskmetrics [1], with those for the latter approaching a value of α = 1.

While this work focuses on the realised risk (of the forecast minimum risk portfolio) as the measure for assessing
optimal performance, we note that a different choice of metric can affect the results. For example, minimizing the
portfolio risk and obtaining the best forecast of the portfolio risk do not necessarily result in the same choice of
models or parameters. This limits wide ranging conclusions on the best choice of filter or parameter values. Instead,
these results suggest that RMT filtering has the potential to offer risk reduction for portfolio optimisation applications.
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Appendix. LCPB and PG+ filtering methods

A.1. LCPB filtering method

The method described by Laloux et al. [15] (and referred to here as LCPB) takes the set, Λ, of eigenvalues of some
N × N matrix, M, and the corresponding eigenvectors, E, and defines the subset

Λnoisy = {λ ∈ Λ : λ ≤ λ+} (A.1)

of noisy eigenvalues, where λ+ is some maximum eigenvalue predicted by RMT. A set of filtered eigenvalues is then
defined as

Λfiltered = Λnew ∪ (Λ − Λnoisy) (A.2)

where

Λ − Λnoisy = {λ ∈ Λ : λ 6∈ Λnoisy} (A.3)

are the eigenvalues assumed to contain information and

Λnew = {λi : λi = Λnoisy ∀ i = 1, . . . , n} (A.4)

where n is the number of elements in Λnoisy and Λnoisy is the mean of all the elements of Λnoisy. In other words,
the noisy eigenvalues are all replaced by their mean. These filtered eigenvalues Λfiltered are then combined, via the
eigendecomposition theorem,6 with the original eigenvectors, E, to construct a filtered matrix

Mfiltered = EDfilteredE−1 (A.5)

where Dfiltered is a matrix with Λfiltered on the main diagonal and zeroes everywhere else. Replacing the noisy
eigenvalues by the mean noisy eigenvalue means that the trace of Mfiltered is equal to the trace of M.

A.2. PG+ filtering method

As described by Plerou et al. [9] (and referred to here as PG+), this method is the same as the LCPB method,
except that the noisy eigenvalues are all replaced by zeroes. Then, after the filtered matrix Mfiltered is built, its main
diagonal is set to be equal to that of the original matrix M, thus preserving the trace.

6 Let M be a square matrix and let E be the matrix of its eigenvectors. If E is a square matrix then M = EDE−1 where D is a diagonal matrix
containing the corresponding eigenvalues on the main diagonal [21].
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