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Abstract

This thesis aims to advance research in image segmentation by developing

robust techniques for evaluating image segmentation algorithms. The key con-

tributions of this work are as follows. First, we investigate the characteristics of

existing measures for supervised evaluation of automatic image segmentation

algorithms. We show which of these measures is most effective at distinguishing

perceptually accurate image segmentation from inaccurate segmentation. We

then apply these measures to evaluating four state-of-the-art automatic image

segmentation algorithms, and establish which best emulates human perceptual

grouping. Second, we develop a complete framework for evaluating interactive

segmentation algorithms by means of user experiments. Our system comprises

evaluation measures, ground truth data, and implementation software. We vali-

date our proposed measures by showing their correlation with perceived accuracy.

We then use our framework to evaluate four popular interactive segmentation

algorithms, and demonstrate their performance. Finally, acknowledging that

user experiments are sometimes prohibitive in practice, we propose a method

of evaluating interactive segmentation by algorithmically simulating the user

interactions. We explore four strategies for this simulation, and demonstrate that

the best of these produces results very similar to those from the user experiments.
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ÃB Fuzzy boundary accuracy measure

AO Object accuracy measure

Pr Precision

Re Recall



.



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Structure of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Image Segmentation: A Review 10

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Application-Centric Classification . . . . . . . . . . . . . . . 12

2.2.2 Algorithm-Centric Classification . . . . . . . . . . . . . . . . 17

2.3 Grouping Cues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Gestalt Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Low-level Features . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Automatic Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.1 Region Adjacency Graphs . . . . . . . . . . . . . . . . . . . . 30

2.4.2 Statistical Region Merging . . . . . . . . . . . . . . . . . . . . 37

2.4.3 Normalized Cuts for Image Segmentation . . . . . . . . . . . 41

2.4.4 Mean-shift Analysis for Image Segmentation . . . . . . . . . 47

2.4.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 54

2.5 Interactive Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 56

i



2.5.1 Seeded Region Growing . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 Interactive Graph Cuts . . . . . . . . . . . . . . . . . . . . . . 62

2.5.3 Interactive Segmentation using Binary Partition Trees . . . . 66

2.5.4 Simple Interactive Object Extraction . . . . . . . . . . . . . . 68

2.5.5 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3 Segmentation Evaluation: A Review 75

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Supervised Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Evaluation Metrics Based on Clustering . . . . . . . . . . . . 82

3.3.2 Local and Global Consistency Error . . . . . . . . . . . . . . 88

3.3.3 The Huang-Dom Evaluation Measure . . . . . . . . . . . . . 93

3.3.4 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 95

3.4 Unsupervised Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 97

3.4.1 Entropy Based Evaluation . . . . . . . . . . . . . . . . . . . . 99

3.4.2 Visible Color Distance Based Evaluation . . . . . . . . . . . . 104

3.4.3 Other Approaches . . . . . . . . . . . . . . . . . . . . . . . . 105

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4 Evaluating Automatic Segmentation 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.4 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.5 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.5.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

ii



4.6 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.7.1 Experiment 1: Examining the Evaluation Measures . . . . . 123

4.7.2 Experiment 2: Evaluating the Algorithms . . . . . . . . . . . 135

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5 Evaluating Interactive Segmentation 147

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.1 Human Factors . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.3.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 152

5.3.3 Boundary Accuracy . . . . . . . . . . . . . . . . . . . . . . . 153

5.3.4 Object Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.3.5 Choosing Sigma . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.3.6 Other Measures . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.4.1 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.4.2 Ground Truth . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.4.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

5.4.4 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.5.1 Object and Border Accuracy . . . . . . . . . . . . . . . . . . . 166

5.5.2 Perceived Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5.3 User Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.5.4 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

iii



6 Automating Interactive Segmentation Evaluation 181

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Automation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.2.1 Strategy 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.2.2 Strategy 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.2.3 Strategy 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.2.4 Strategy 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

6.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

6.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

6.4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.4.2 Correlation and Validation . . . . . . . . . . . . . . . . . . . 206

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7 Conclusion 214

A Evaluation Dataset 219

Bibliography 229

List of Figures 246

List of Tables 249

iv





Chapter 1

Introduction

This objective of this chapter is to provide a general introduction to the thesis

subject, our motivations for this research, and the overall research objectives. The

next section introduces image segmentation, discusses the various definitions

of image segmentation found in the literature, and outlines some applications

of segmentation. We also introduce the topic of image segmentation evaluation,

and describe why such evaluation is becoming increasingly important. We subse-

quently discuss the specific motivations behind our work. We then describe the

objectives of the research, and finally, outline the thesis structure.

1.1 Overview

Image segmentation is critical for many computer vision and information retrieval

systems, and has received significant attention from industry and academia over

the last 30 years. Despite notable advances in the area, there is no standard

technique for selecting a segmentation algorithm to use in a particular application,

nor even is there an agreed upon means of comparing the performance of one

method with another. This deficiency is likely a result of the inherent ambiguity

in what is understood as the purpose and scope of segmentation itself.
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Like many complex computer vision problems, image segmentation is ill-

defined. A common, if rather unconstrained, definition of segmentation is that

it is the process of partitioning the set of pixels in an image into several disjoint

subsets, according to a set of predefined criteria. Although this definition admits

and conforms to almost all other definitions found in the literature, the criteria

itself is usually a source of debate.

Cheng et al. [Cheng et al., 2001] define image segmentation as the process

of dividing an image into different regions such that each region is, but the

union of any two adjacent regions is not, homogeneous. Similarly, Morris et

al. [Morris et al., 1986] describes segmentation as the process of partitioning

an image into regions that are in some sense homogeneous, but different from

neighboring regions. Skarbek and Koschan [Skarbek and Koschan, 1994] opt

for a simpler interpretation: the identification of homogeneous regions. All

these definitions use the concept of homogeneity, which usually corresponds to

identifying regions containing features that are relatively nearby according to a

prescribed distance measure.

Segmentation may also be considered as an algorithmic attempt to mimic a

human interpretation of an image, known as perceptual grouping. Consider-

ing segmentation in this way substantially increases the scope and complexity

of the problem. Fu and Mui [Fu and Mui, 1981] assume this viewpoint, stating

that “the image segmentation problem is basically one of psychophysical percep-

tion, and therefore not susceptible to a purely analytical solution.” Martin et al.

[Martin et al., 2001] also imply this interpretation in their work on comparing au-

tomatic segmentation algorithms with human generated ground truth. Martin et

al. [Martin et al., 2001], and Salembier and Garrido [Salembier and Garrido, 2000]

both argue that perceptual grouping is hierarchical in nature, and consequen-

tially a flat partitioning of an image is insufficient for representing a perceptual

segmentation.
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Other authors admit both viewpoints are valid. Adamek et al. state that

segmentation is the process of partitioning an image into into a set of seman-

tic entities or homogeneous regions [Adamek et al., 2005]. Shi and Malik con-

cede that the final goal is perceptual; however, they imply that the scope of

segmentation should be limited to robust homogeneity-based hierarchical group-

ing of low-level features, and that high-level reasoning can be used at a later

stage to identify the semantic entities [Shi and Malik, 2000]. Nock and Niel-

son [Nock and Nielsen, 2004] suggest a more physical definition; if an image

is thought of as an observed phenomena induced by physical objects and lighting

conditions, then segmentation is a process of attempting to infer some knowledge

about the model that caused the observed patterns, i.e., retrieving a model of the

image generation process.

It is clear from the above that there is considerable variation in what is under-

stood to be the scope and definition of the image segmentation problem. Image

segmentation is usually one of several components in a larger information process-

ing system, and the variation observed in the definition of image segmentation is

mirrored in the variation in requirements on the image segmentation algorithms

in these systems. For multimedia information retrieval systems, image segmenta-

tion algorithms capable of producing homogeneous regions usually suffice, since

the purpose of image segmentation in such systems is often simply to create a

set of localized features. Object recognition systems, on the other hand, usually

require semantic objects from which features can be extracted and processed by

a pattern recognition engine (a support vector machine, for example). In some

cases, a priori information about the object is available, or can be fed back into

the segmentation algorithm; in other cases, no such information is available, and

the segmentation algorithm is required to produce regions or objects based on the

image data alone.
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When developing a system in which image segmentation is an integral com-

ponent, the choice of algorithm used can directly affect the performance of the

system as a whole. For example, if the segmentation phase in a object recognition

system produces a very inaccurate object boundary, then the shape features for

this object may change dramatically, ultimately causing the recognition to fail.

If the object selection algorithm in a photo-editing application consistently fails

to locate a satisfactory object boundary, the user becomes frustrated. If, given

two similar images, the segmentation algorithm used by a content based retrieval

system produces very different segmentations, then the features extracted for

the regions in these segmentations will likely be very dissimilar, and the perfor-

mance of the retrieval engine will suffer. Choosing the appropriate segmentation

algorithms for a particular system is therefore critical.

Arguably the most effective way to select the most appropriate segmentation

algorithm for a particular application is to implement each available segmentation

algorithm, integrate each into the system in turn, test the system to measure its

performance, and select the algorithm that gives the best overall performance.

Given the number of segmentation algorithms in the literature, and their com-

plexity, such a study is usually infeasible. Furthermore, repeatedly testing some

systems, particularly interactive systems, requires many time consuming user

experiments. In practice, only a small subset of the available algorithms can be

tested when developing such systems. It is necessary, therefore, to select a subset

of algorithms based on known properties and performance characteristics that

can be measured in advance, and that are independent of the target application.

Segmentation evaluation is concerned with measuring and comparing, in a

reasonably generic way, the performance and characteristics of segmentation

algorithms. The objective is to measure and compare attributes of segmentation

algorithms that are likely to be pertinent to a wide range of applications. If

a segmentation evaluation technique can demonstrate that one segmentation
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algorithm is significantly better than some others, for a given set of assumptions,

then a systems designer can reasonably exclude the other algorithms from further

consideration, provided the assumptions hold for their particular application.

If the evaluation is sufficiently generic, then evaluating existing segmentation

algorithms can potentially make designing a whole range of systems significantly

easier. Research efforts in segmentation can then focus on optimizing, modifying,

or generalizing techniques shown to be effective for a wide range of applications.

New algorithms can be justified by comparing them against the existing state-of-

the-art using structured and well understood evaluation techniques.

1.2 Motivation

Segmentation is an important component in many systems. In multimedia anal-

ysis systems, image segmentation can be used to partition images into regions

that are in some sense homogeneous, or have some semantic significance. This

provides subsequent processing stages with high-level information about scene

structure. From regions we can derive geometric features, shape features, texture

features, and contextual features (like spatial arrangement); individual pixels

admit far less semantic information. In pattern classification systems, image

segmentation can be used to delineate objects and provide features to the classi-

fier. In photo-editing applications, segmentation can be used to isolate semantic

objects so that they can be independently manipulated. From a computer vision

standpoint, the ability to reliably obtain a good segmentation implies a useful

model of human perceptual grouping. The diverse requirements of systems that

use segmentation have led to the development of segmentation algorithms that

vary widely in both algorithmic approach, and the quality and nature of the seg-

mentation produced. Some applications simply require the image to be divided
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into coarse homogeneous regions, others require rich semantic objects. For some

applications precision is paramount, for others speed and automation.

TRECVid is an annual event, sponsored by the National Institute of Standards

and Technology (NIST), that encourages researchers to develop innovative video

information retrieval engines through coordinated evaluation and comparison

procedures. Our group frequently participates, and our retrieval engines often use

segmentation as a core step in the feature extraction process. From our member-

ship in the K-Space Network of Excellence in 2006 to 2008, we had available to us

implementations of various state-of-the-art segmentation algorithms, contributed

by several K-Space partners. We therefore needed to select, in some way, one of

these algorithms to use for our TRECVid system. Our research into methods for

evaluating and comparing segmentation algorithms revealed that several, rela-

tively recent, methods for evaluating automatic region segmentation algorithms

had indeed been proposed. However, it was clear that the research was still in

its incipiency, that the values produced by the proposed measures were not yet

widely understood, and that relatively few segmentation algorithms had been

actually evaluated using these measures.

At the same time, other members of the K-Space network were interested

in performing semantic reasoning on multimedia objects, and required ways to

delineate and annotate these objects. The research required annotating meaningful

objects; automatic segmentation is, in general, incapable of locating such semantic

entities without high-level guidance. Interactive segmentation provides a solution

by invoking the aid of a human operator to provide this guidance. As with

automatic segmentation, there are also several interactive algorithms to choose

from. Again we were faced with the issue of how to select the most appropriate

algorithm for our application; we required a method to evaluate and compare

the available algorithms. Unfortunately, we discovered that no research had

yet been done into how to evaluate interactive segmentation algorithms. The
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only literature on the subject that we located ([Mao et al., 1999]) was targeted

specifically at medical image segmentation. Furthermore, the algorithm that was

evaluated in this paper was not interactive in the sense that it accepted input and

provided feedback, but more semi-automatic, in the sense that it accepted a single

seed point and produced a final segmentation. In interactive systems the user

iteratively refines the segmentation, and therefore the relationship between effort

and accuracy is important.

Evaluation is not yet standard practice when proposing segmentation algo-

rithms. Authors typically give anecdotal evidence of a segmentation algorithm’s

performance, in the form of a few sample images and the corresponding segmen-

tations. It is difficult to compare segmentation algorithms based solely on sample

images. The algorithms themselves are often complex and computationally de-

manding; implementing them efficiently and correctly requires significant effort.

Because of this, systems designers often choose the segmentation algorithm that

is closest to hand, or easiest to implement, instead of the one that is most suitable.

In some instances, as with interactive segmentation, standard evaluation tech-

niques are unavailable. In others, as with automatic segmentation, the evaluation

techniques are relatively new and not well understood. Researchers are, therefore,

often reluctant to apply them to their proposed algorithms.

There have been several significant advances in image segmentation, but it is

far from a solved problem. We believe that developing methods for evaluating

image segmentation is key to advancing the state-of-the-art. Effective segmenta-

tion evaluation techniques benefit application designers, who need to select the

best algorithm for their system. They benefit researchers, who can use them to

justify new algorithms.
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1.3 Objectives

The objectives of this thesis are as follows. First, to produce a comprehensive

and up-to-date review of the state-of-the-art in image segmentation and segmen-

tation evaluation techniques. Second, to experimentally examine, in detail, the

properties of existing segmentation evaluation techniques and determine which

are most effective at judging segmentation accuracy. Third, to apply the most

effective of these techniques to evaluate the performance of several state-of-the-art

segmentation algorithms, and compare it with human perceptual grouping. In

doing so we should like to establish (1) if any of these algorithms can produce

segmentations that have a higher accuracy on average than random, (2) if any

of these algorithms can produce segmentations that are as accurate on average

as those produced by humans, and (3) which of these algorithms is the most

effective at emulating human perceptual grouping. Fourth, to develop measures,

tools, and techniques for evaluating interactive segmentation, with a particular

focus on segmentation of natural scenes. Finally, to apply these new techniques to

evaluating existing interactive segmentation algorithms, and in doing so establish

which of these algorithms is most effective.

1.4 Structure of Thesis

The remainder of this thesis is organized as follows. Chapter 2 reviews and

discusses the state-of-the-art in image segmentation. We begin by classifying

segmentation algorithms according to their applicability and algorithmic prop-

erties, and follow with a discussion of the psychological principles underlying

perceptual grouping. We then discuss how these principles are usually applied in

practice: through the use of low-level image features. We conclude the chapter by

reviewing eight well-known segmentation algorithms that we believe to be repre-
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sentative of the state-of-the-art: four automatic algorithms, and four interactive

algorithms.

Chapter 3 reviews the literature in segmentation evaluation. Again, we begin

the discussion by classifying the methods for segmentation evaluation, and follow

with a review of specific evaluation techniques. We review several measures

from the two major classes of segmentation evaluation techniques: supervised

evaluation techniques, which compare a machine segmentation against a prede-

fined ground truth, and unsupervised evaluation techniques, which endeavor to

measure the general quality of a segmentation independent of a particular ground

truth.

Chapter 4 focuses on evaluating four automatic segmentation algorithms

using existing segmentation evaluation measures. Our objective is to examine

the properties of these evaluation measures, to establish which are the most

effective for evaluating an image segmentation algorithm’s ability to emulate

human perceptual grouping, and then to use these measures to compare the

performance and characteristics of the selected algorithms.

Chapter 5 investigates how interactive segmentation algorithms can be evalu-

ated. In particular, we outline how evaluating interactive segmentation is different

from evaluating automatic segmentation, and develop a set of measures and a

methodology for evaluating interactive segmentation using user experiments.

Since user experiments can sometimes be prohibitive in practice. Chapter

6 considers some strategies for automating the process, and investigates their

effectiveness. Finally, Chapter 7 presents our conclusions and outlines some

avenues for future research.
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Chapter 2

Image Segmentation: A Review

2.1 Introduction

The purpose of this chapter is to review and discuss the state-of-the-art in image

segmentation technology. The research in the area is vast: a profusion of papers,

studies, and reports have been published investigating new methods for image

segmentation and their applications. The nature of the problem has inspired

diverse algorithms, drawing from fields of research that include statistics, machine

learning, graph theory, and psychology. The applications of image segmentation

are as varied as the algorithms; such applications include: bio-medical image

analysis, multimedia information retrieval, image understanding, and machine

vision.

Our first task is to comprehend this extensive body of work. In the next

section we take our first step toward this; we investigate and characterize the

different approaches to segmentation. The objective is to develop a useful means

to classify segmentation algorithms, and limit the scope of our investigation if

necessary. Following this, we investigate grouping cues: the criteria segmentation

algorithms use to determine which pixels belong in each region. This necessitates

a discussion on human perceptual grouping, upon which many of these grouping
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cues depend. We then individually introduce region segmentation and interactive

segmentation and discuss specific algorithms in detail. We conclude the chapter

with a discussion on the limitations of the state-of-the-art, and how we believe

they can be addressed by the research reported in this thesis.

2.2 Taxonomy

Image segmentation algorithms can be classified in various different ways, and

several useful taxonomies already exist. Some of these taxonomies are general,

others are tailored for a specific application domain (for example, the taxonomy

in [Pham et al., 2000] focuses on medical image segmentation). It is difficult to

produce a single taxonomy that encompasses all aspects of image segmentation;

there exists considerable variety and crossover in the proposed techniques.

We do not try to devise a single taxonomy. Instead, we consider two separate

classification viewpoints, and produce two independent classification strategies.

The first strategy is to classify each algorithm from the perspective of how it can

be used. We call this the application-centric classification. The idea here is to

produce a classification scheme that focuses solely on an algorithm’s applicability,

as opposed to its method: what an algorithm does, not how it does it. The second

strategy is from the opposite viewpoint: it focuses on the underlying method of

the algorithm itself.

Together these viewpoints give a clear indication of a segmentation algorithm’s

applicability and its algorithmic properties. We shall use both of these viewpoints

to classify each of the segmentation algorithms that we investigate later in this

chapter. Of course, other facets such as algorithm complexity and adaptability

should also be considered when developing, selecting, or evaluating segmentation

methods. Note that several other authors have proposed alternate classification
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schemes, for instance: [Adamek and O’Connor, 2006], [Lucchese and Mitra, 2001],

and [Adams and Bischof, 1994].

2.2.1 Application-Centric Classification

Image segmentation algorithms are often designed with specific application do-

mains in mind. The target application domain limits the scope of the algorithm’s

applicability. Of course, this does not mean that an approach designed for a

particular application domain is useful only within that domain. In general,

however, an application domain does imply certain requirements that may be

incompatible with other domains. The objective behind our application-centric

classification scheme is to examine the aspects of a segmentation algorithm that

most substantially effect its applicability.

Consider an image segmentation algorithm designed for a photo-editing appli-

cation. The purpose of such an algorithm is to allow a user to easily select an object

in a photograph so it can be independently changed: copied, moved, removed,

touched-up, etc. The application implies a set of requirements. Suitable algo-

rithms are usually interactive, and partition the image into two non-overlapping

regions: the region of interest, and everything else. A fully automatic image seg-

mentation algorithm, designed to partition an image into regions, might be ideal

for a multimedia information retrieval engine, in which automation is essential

and errors are tolerated. However, such an algorithm may be useless in a photo-

editing application. Similarly, an interactive segmentation algorithm designed for

a photo-editing application is unlikely to be suitable for a multimedia retrieval

application. This does not mean that an image segmentation method designed for

one application, say, photo-editing, can only be used for photo-editing; it might

be suitable many more tasks. For example, such an algorithm might be ideal for
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Application Centric Classification

Interaction Identification Media Generality
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Independent
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Figure 2.1: Application-centric classification of segmentation algorithms

generating HTML image maps for rich web content (the software described in

Section 5.4.1 is capable of generating such content).

From the above discussion, we can already identify two aspects that affect

the applicability of a segmentation algorithm: (1) whether the algorithm requires

interaction or is automatic, and (2) whether it identifies regions or objects. Further

consideration reveals four specific facets that significantly influence the domain in

which a segmentation algorithm can be used. These are illustrated in Figure 2.1,

and addressed in the following sections.

Interaction

The first facet is the amount and granularity of interaction required to segment an

image. Using the level of user interaction as a criteria, segmentation algorithms

can be roughly divided into two categories: automatic and interactive. Automatic

segmentation algorithms require no user interaction to compute a segmentation

(although many require a set of initial parameters to be selected). Automatic

algorithms are especially useful when the quantity of data prohibits interaction.

Multimedia information retrieval is a typical application, often using automatic
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segmentation to partition images into regions, thereby enabling local feature

extraction. Examples of multimedia IR engines that use automatic image seg-

mentation include Blobworld [Carson et al., 2002] and the 2007 K-Space TRECVid

engine [Wilkins et al., 2007].

Automatic segmentation algorithms are an effective solution for applications

that require quick, coarse, region-based segmentation. Other applications require

more accurate semantic objects. When such objects are necessary fully-automatic

segmentation is typically impossible; some high-level information is needed

to traverse the so called “semantic-gap” between homogeneous regions and

perceived objects.

Interactive segmentation algorithms1 provide a solution by invoking the aid

of a human operator. This operator supplies the high-level information needed

to detect and extract semantic objects through a series of interactions. Typically,

operators mark areas of the image as object or background, and the algorithm

updates the segmentation using the new information. By iteratively providing

more interactions, the user can refine the segmentation. The goal of interactive

segmentation is thus to provide a means of extracting semantic objects from an

image quickly and accurately.

Identification

Segmentation techniques also differ in the type, form, and quantity of objects that

they identify. We can roughly divide image segmentation algorithms into two

categories based on what they identify: object-based, and region-based. Object-

based algorithms partition the image into two distinct parts: object (foreground)

pixels and non-object (background) pixels. Region-based algorithms partition the

image into an arbitrary number of parts (regions). Unlike object-based algorithms,

1Also referred to herein as semi-supervised or semi-automatic segmentation algorithms
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no semantic significance is assigned to these regions. The aim is typically to create

regions that are, in some way, coherent, or homogeneous.

Most thresholding techniques [Sezgin and Sankur, 2004] can be considered

simple object-based segmentation algorithms. Many interactive segmentation

algorithms are also object-based (see Section 2.5). The majority of automatic

segmentation algorithms, especially those designed for use on natural scenes,

are region-based: it is very difficult to detect objects without some high-level

information about the scene 2.

Region-based techniques do not directly imply what regions are part of the

foreground, and indeed, most semantic objects are composed of several regions

in the segmentation. It is clear, therefore, that the type of identification performed

by a segmentation algorithm directly effects its applicability: if an application

requires semantic objects, a region-based algorithm will not suffice.

Media

When deciding what segmentation technique to apply, it is often important to

know if the algorithm was intended to be used on video sequences or static

images. The majority of classic segmentation algorithms, such as Watershed seg-

mentation [Vincent and Soille, 1991], and the iterative split and merge algorithms

[Horowitz and Pavlidis, 1974], were originally proposed for static image segmen-

tation. Recently some of these methods have been extended [Bailer et al., 2005],

and other new techniques have been proposed [Galmar and Huet, 2006], specifi-

cally for segmenting moving pictures.

The main challenge faced when considering video segmentation is that of

producing regions or objects that are consistent across groups of frames. If a

static image segmentation algorithm is applied to each frame in a video sequence,

2The most notable exception to this is video segmentation algorithms, especially those used in
surveillance applications, that use background modeling and motion information to automatically
extract semantic objects. This thesis is focused primarily on image segmentation.
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usually the phenomenon of regions or objects abruptly disappearing and reap-

pearing occurs. Algorithms designed specifically for video segmentation typically

incorporate techniques for dealing with such phenomena.

Video segmentation is a large research area. In this thesis, we will limit

our focus exclusively to image segmentation; a thorough treatment of video

segmentation would require another dissertation. It is, however, worth noting

that some of the algorithms that we discuss have been extended to work with

video, and we shall indicate this where possible.

Generality

The final facet to consider when choosing a segmentation algorithm for a par-

ticular application domain is the algorithm’s generality; that is, how general, or

how specific, is the problem that the algorithm was designed to address? We

refer to algorithms that are designed for a particular domain as model-specific,

and general purpose algorithms as model-independent. Clearly whether an al-

gorithm is model-specific affects the algorithms applicability; if an algorithm is

designed specifically to segment the brain mass from an MRI scan, its unlikely

to be very good at extracting flowers or trees from natural images. In general,

model-specific algorithms perform better in their respective domains, whereas

model-independent algorithms can be used for more applications.

When the application domain is sufficiently restrictive, model-specific algo-

rithms are often a better choice. In medical image analysis, for example, the kinds

of objects that are required are restrictive enough for model specific techniques to

perform quite well: atlas guided segmentation [Kikinis et al., 1996], deformable

models, and active contours [Kass et al., 1988, Caselles et al., 1995] are a few ex-

amples of such techniques. Similarly, model-driven algorithms are suitable for

segmenting regular shapes, like lines, curves, and ellipses. The Hough-transform
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and its derivatives [Duda and Hart, 1972, Yang et al., 1997] are well known exam-

ples of model-driven algorithms for segmenting lines and curves.

If, however, the application requires segmentation of more general scenes then

model-independent algorithms are necessary. This thesis will focus primarily on

model-independent algorithms.

2.2.2 Algorithm-Centric Classification

Classifying segmentation algorithms according to the previous criteria is useful in

determining the different application domains in which they can be used. Another

interesting way of considering segmentation algorithms is in terms of the general

properties of the algorithms themselves. This algorithm-centric view, although

perhaps less useful for the purposes of selecting an algorithm for a particular

application, is useful when developing and evaluating segmentation algorithms.

Figure 2.2 illustrates the algorithm-centric classification. From this viewpoint we

consider more general algorithmic properties: the problem the algorithm is trying

to solve (model), how it considers the data (perspective), and the level at which it

attempts to compute the solution (scale).

Perspective

Most segmentation algorithms (aside from thresholding techniques), can be con-

sidered either region-based, edge-based, or a hybrid of these. Region-based

algorithms are identified as methods that attempt to produce coherent regions

by clustering together groups of pixels based on some homogeneity condition,

such as the Euclidean distance in a particular color space. Edge-based algorithms

begin by estimating the discontinuities in the image, usually by approximat-

ing the first or second derivatives, and proceed by linking together these edge

pixels in some manner to form closed regions. Hybrid algorithms use both
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Figure 2.2: Algorithm-centric classification of segmentation algorithms

the homogeneity and discontinuity information to perform the segmentation.

The EDISON system, described in [Christoudias et al., 2002], is an example of

a hybrid algorithm. There is evidence to suggest that both discontinuity and

homogeneity play important roles in low-level human and animal vision (see

[Marr and Hildreth, 1980, Lee et al., 1998]).

Model

The model used to form a segmentation is closely related to the algorithm’s

generality in our application-centric classification. Bottom-up algorithms, also

referred to as data-driven algorithms, attempt to infer regions or objects using low-

level visual cues, like color, texture, and geometric information. Thus, these data-

driven algorithms tend make up the set of more general segmentation techniques.

Top-down, or model-driven algorithms, begin with certain assumptions about

the nature of the scene, i.e. they have a specific model of the objects that are to be

segmented, and proceed by attempting to locate and extract these objects. Notable

examples of top-down techniques include face extraction, line detection, and

18



thresholding. The model view of segmentation algorithms is also considered in

[Adamek and O’Connor, 2006], where the authors use it as their primary method

of classifying algorithms. They also consider semi-automatic and interactive

segmentation algorithms to be model-driven, where in this case the model is

created using markup supplied by the user.

Scale

Another important facet to consider is the level at which algorithms process in-

formation in the scene. Local algorithms are characterized by only processing

a certain subset of the pixels in the scene at each step. Usually this subset is

a central pixel and a prescribed set of neighbor pixels. Examples of local algo-

rithms include: mean-shift [Comaniciu and Meer, 2002], seeded region growing

[Adams and Bischof, 1994], statistical region merging [Nock and Nielsen, 2004],

region adjacency graphs [Garrido et al., 1998], and recursive shortest spanning

tree [Morris et al., 1986]. Global algorithms, on the other hand, consider the entire

image when performing the segmentation. Often this involves (recursively) parti-

tioning the image into regions while optimizing some predefined criteria. Popular

global algorithms include the normalized cuts algorithm [Shi and Malik, 2000],

the interactive graph cuts algorithm [Boykov and Jolly, 2001], and algorithms that

are based on the Hough transform [Duda and Hart, 1972]. Multi-scale algorithms,

in general, only consider local features, but do so at several different spatial scales.

2.3 Grouping Cues

All segmentation techniques require criteria to determine which pixels belong to

which region. These criteria are known as grouping cues. Knowing which pixels

to group into regions, and eventually into objects, requires some knowledge of

how the human visual system works.
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Our current understanding of the human visual system suggests that we

perform perceptual grouping and structure extraction using many complex and

interacting mechanisms [Grossberg and Raizada, 2000]. A simplified model of

perception often used in computer vision research involves three stages. First,

the visual information from the eye is filtered using structures in the visual

cortex. These filters extract low-level features that describe the information in

different parts of the scene: the color, texture, edges, geometry, and spatial layout.

Next, these features are grouped into a more compact representation of the scene

using perceptual grouping principles. The study of these perceptual grouping

principles is known as Gestalt psychology [Koffka, 1935, Wertheimer, 1997], and

the principles themselves are called Gestalt laws. Finally, this representation is

processed by high-level mechanisms in which complex learned associations guide

the discovery of structure.

The final stage in the above scheme is the least well understood, and the most

difficult to model. Indeed developing an algorithm to model this stage involves ad-

dressing core artificial intelligence problems: learning, knowledge representation,

and reasoning. Nevertheless, several groups have tackled the problem, and pro-

duced some interesting results [Athanasiadis et al., 2005, Athanasiadis et al., 2006,

Papadopoulos et al., 2006], albeit in limited domains.

In the remainder of this section, we address the first two stages of this model,

first discussing the principles of perceptual grouping, and then the low-level

features to which they are typically applied.

2.3.1 Gestalt Laws

The Gestalt Laws are descriptive principles in Gestalt psychology that specify the

way in which the human brain performs perceptual grouping. They have found

extensive application, not only in computer vision, but as guiding principles in
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visual interface design [Mullet and Sano, 1995, Chang et al., 2002] and in design-

ing educational material [Moore and Fitz, 1993]. The main principles that govern

perceptual grouping, according to Gestalt theory, are as follows:

Similarity

The mind groups together similar entities. This is perhaps the most widely applied

Gestalt law in image segmentation. In computer vision applications it usually

defined in terms of distance between low-level image features like color and

texture, or higher level shape features such as size and shape.

Proximity

Entities that are spatially or temporally nearby are grouped together by the mind.

This principle is implicit in any algorithm that considers pixel neighborhoods,

either in the temporal or spatial domain, and so is particularly important in image

segmentation.

Closure

The mind fills in missing gaps to complete entities. This principle has also received

attention in image processing, for example, in edge-based image segmentation

algorithms and Hough transforms. However, the principle of closure is often

particularly difficult to formulate, as one often is required to first detect the object

in order to rectify missing pieces that occur due to noise or occlusion. Figure 2.3

illustrates the Gestalt law of closure; despite the missing parts, we still easily

perceive a circle and a square.
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Figure 2.3: The Gestalt law of closure

Symmetry

The mind can easily interpolate missing pieces in symmetric entities, and studies

such as [Attneave, 1954] give an indication of the capacity of the mind for perceiv-

ing symmetry. Attneave’s study further investigates the significant informational

redundancy that occurs as a result of the Gestalt principles, an indication that the

mind exploits these principles to reduce the amount of information it is required

to process and store by capitalizing on inherent redundancies in visual forms.

This has a direct impact on perception.

Simplicity (Prägnanz)

The mind organizes or reduces reality into its simplest possible forms in terms

of complexity, regularity, symmetry, etc. As an example, consider Figure 2.4.

Although the entity is relatively complex, the mind immediately recognizes that it

is composed of simple geometric primitives, that of a circle, rectangle, and triangle.

Attempts to incorporate the simplicity principle into image segmentation have

been made in [Adamek et al., 2005] and [Bennstrom and Casas, 2004].

Note that there are several other principles of Gestalt perception, such as

the principle of common-fate, and the principle of continuity, that also have
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Figure 2.4: The Gestalt law of Prägnanz

applications in machine vision and segmentation. The interested reader is referred

to [Koffka, 1935] and [Wertheimer, 1997] for a more thorough exploration.

The Gestalt principles discussed above are descriptive, not explanatory; they

do not tell us how or why humans perceive entities in this way. Moreover, the

degree of effect of any particular Gestalt principle on our interpretation of a scene

is difficult to quantify: in Figure 2.3, is our interpretation based more on the

closure principle, or more on symmetry? Such difficulties have lead to researchers

focusing their efforts mainly on the proximity and similarity principles, as these

can be formulated in terms of low-level image features.

2.3.2 Low-level Features

To perform perceptual grouping, the Gestalt principles tell us that we should

group pixels that are in some way close to each-other (proximity), and that are

also in some way alike (similarity). The most common way in computer vision of

deciding how similar pixels or distinct groups of pixels are is by using low-level

image features, and defining distance measures between these features. The

purpose of these low-level features is to encapsulate information about the pixels

they describe. The purpose of distance measures is to determine how similar
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two sets of pixels are, based on the low-level features that describe them. Some

of these low-level features are available directly from the image pixels; others

require pre-filtering or pre-processing to extract. The following is an overview of

the most commonly used low-level features in image segmentation.

Spatial Distance

According to the Gestalt law of proximity, entities should be grouped if they are

near one another. Proximity is usually measured in terms of spatial distance for

images, or spatiotemporal distance for video. Almost every image segmentation

algorithm uses proximity in some way to guide the segmentation.

In segmentation, proximity is usually either implicitly observed using a hier-

archical neighborhood system, or explicitly, by clustering pixels based on some

distance metric in a joint feature space that incorporates both the spatial lo-

cation of the pixel and its value (such as its color, or luminance). In the first

case, common in local graph-based algorithms like statistical region merging

[Nock and Nielsen, 2004], each pixel is assigned a neighborhood, usually consist-

ing of the four or eight points that surround the pixel in the image grid. Grouping

is then performed hierarchically, by merging similar neighbors to form regions.

Observation of the proximity principle is therefore implicit since, at each step, only

adjacent pixels or regions can be merged. Other algorithms, like normalized cuts

[Shi and Malik, 2000] and mean-shift segmentation [Comaniciu and Meer, 2002],

use spatial distance explicitly, clustering pixels based on (among other things)

their spatial Euclidean distances.

Color

Color is by far the most common feature that is used to determine similarity,

as color information is directly available from image pixels. The color space
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Figure 2.5: An illustration of the loss of information when converting to grayscale.
The top two colors are c1 = [1 0 0]T , and c2 = [0 0.5 0]T . Their grayscale values,
shown below, are indistinguishable.

and color distance measure used, however, vary substantially from algorithm to

algorithm, and effect the computational complexity and overall performance.

Many earlier algorithms simply use absolute gray level difference as a color

distance measure, for computational efficiency and simplicity of implementation.

Although this leads to fast implementations, it discards color information, which

can often negatively impact segmentation. As an example, consider two colors c1

and c2 in a RGB space, the first bright-red and the second green. We can represent

these colors as three dimensional column vectors c = [r g b]T , where r, g, b ∈ [0, 1]

describe the brightness of each of the color channels. Let c1 = [1 0 0]T , and

c2 = [0 0.5 0]T . The standard color to grayscale transform is a dot product with

the vector t = [0.3 0.59 0.1]T . Most would perceive c1 to be different from c2, yet

their grayscale values are indistinguishable: c1 · t = 0.2999, c2 · t = 0.2949 (see

Figure 2.5).

Image segmentation algorithms can use information from all three color chan-

nels to avoid problems like this. The issue now becomes how to compare two

different colors. A first attempt might be to use the Euclidean distance between

two RGB color vectors. Unfortunately, however, the distance between two points

in RGB space is, in general, unrelated to the perceptual distance. There have

been several attempts to design perceptually uniform color spaces, that is, color

spaces in which the spatial Euclidean distance between two points reflects the

perceived difference in the colors. Two of note are the CIELUV color space and
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Figure 2.6: The saturation effect for large color differences. In swatch 1 and 2,
most would agree that color b is more similar to color a than is color c. For swatch
3 the answer is less clear; the colors are simply judged to be “just different.”

the CIELAB color space [Wyszecki and Stiles, 2000, Schanda, 2007]; both were

designed to be perceptually uniform with respect to the Euclidean metric. More

accurate, non-Euclidean distance measures have since been developed for the

CIELAB space (for instance CIEDE2000 [Johnson and Fairchild, 2003]).

The color spaces and distance measures described above are designed to model

perceived color difference; they can, however, only do this with reasonable accu-

racy for small color differences [Shevell, 2003a]. This is not so much a problem

with the models but more due to a saturation effect in the visual system: it is easy

for us to tell which colors are more similar when the differences are small. When

the differences are large, they become “just different.” Figure 2.6 illustrates the

effect.

There are other complications when dealing with color perception. For in-

stance, the human visual system compensates for differences in illumination

conditions across a scene, allowing us to perceive different color stimuli as the

same physical color. This effect is known as color constancy [Ebner, 2007]. The

famous gray square optical illusion illustrates the effect (Figure 2.7).

Color science and colorimetry are fascinating research areas, and play a key

role in image segmentation. For more information on the subject, there are several

comprehensive books, including: [Wyszecki and Stiles, 2000], [Shevell, 2003b],
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Figure 2.7: The gray square optical illusion. We perceive square marked ‘A’ to
be darker than the square marked ‘B;’ in reality, they are exactly the same color.
(Image due to Adelson [Adelson, 1995]; this is best seen on a computer screen as
color reproduction may be inaccurate in the print version).

and [Ohta and Robertson, 2005]). More information on color science as applied to

image segmentation can be found in the survey papers by Skarbek and Koschan

[Skarbek and Koschan, 1994], and Cheng et al. [Cheng et al., 2001].

Edges

Abrupt changes in brightness or color in an image are known as edges, and

have long been known to play an important role in recognition and perceptual

grouping [Marr and Hildreth, 1980]. They have been used for image segmenta-

tion in edge linking algorithms [Farag and Delp, 1995], and hybrid algorithms

[Sabera’b et al., 1997].
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Edges can be extracted in many different ways. First-order edge detectors iden-

tify edges as the peaks in the first order spatial derivative of the image. Examples

of first order edge detectors include the Sobel [Sobel and Feldman, 1968], Prewitt,

and Roberts cross operators. The widely used Canny operator [Canny, 1986] is

essentially a first order edge detector with some post processing steps. Second-

order edge detectors identify edges as the zero crossings in the second derivative;

the most well know example is the Marr edge detector [Marr and Hildreth, 1980].

Another, entirely different approach to edge and corner detection is the SUSAN

operator [Smith and Brady, 1997], which uses a moving circular window to detect

the presence of edges.

Texture

Humans find it easy to distinguish between textures. We have an intuitive no-

tion of what texture is, yet a formal definition is elusive. Petrou and Sevilla

[Petrou and Sevilla, 2006] state that texture is variation of data at scales smaller

than the scale of interest. Their definition is subjective but instructive; useful tex-

ture features should capture the high-level structure of image detail but suppress

the detail itself.

Texture is an aggregate feature. It makes no sense to analyze the texture of an

individual pixel; texture features must be defined on groups or blocks of pixels.

For image segmentation applications, extracting texture features usually involves

analyzing the local spatial context of a pixel, and creating a vector of values that

describe the variation in this context. Many methods have been devised to do

this.

Two popular methods are local binary patterns and oriented multi-scale filter

banks. Local binary patterns [Ojala and Pietikainen, 1999] produce a descriptor

from the eight neighbors of each individual pixel. Since they operate at such a

small spatial scale, they can be computed very quickly, but are only useful for
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capturing micro-textures. Oriented multi-scale filter banks [Pietikäinen, 2000], on

the other hand, are computationally expensive, but can distinguish texture at mul-

tiple scales and orientations. Various types of filters can be used to for these banks;

Gabor filters and Wavelets are common choices. However, designing an optimal

filter bank for a particular application, i.e. selecting an appropriate set of filters

and filter parameters, can be challenging, and has been the subject of considerable

research (for example, see: [Randen and Husoy, 1999, Clausi and Jernigan, 2000])

We have only glossed over the many ways of analyzing and creating texture

features here; there is much literature on the subject. The interested reader should

refer to the collection of papers in [Pietikäinen, 2000] for more information on

filter banks and local binary patterns, and the survey paper by Materka and

Strzelecki [Materka and Strzelecki, 1998] for a more in-depth review of texture

analysis methods. The book by Petrou and Sevilla [Petrou and Sevilla, 2006] is

also a good reference, with practical advice and many worked examples.

Geometry

The final family of low-level features we discuss are the geometric features. By

geometric features we refer to the shape and configuration of spatial entities

in an image. Several algorithms make use of geometric features, including

many model-driven segmentation approaches, such as the Hough transform

[Duda and Hart, 1972] and ellipse segmentation techniques. Geometric features

are, however, more difficult to use as grouping cues in bottom-up segmentation as

they are not available directly from the image. Some fully automatic segmentation

algorithms [Adamek and O’Connor, 2006, Adamek et al., 2005] have made use of

syntactic visual features [Bennstrom and Casas, 2004] at an intermittent stage in

the segmentation process to merge together image regions so as to produce objects

that have a lower overall complexity. For the interested reader, the book by Costa
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and Cesar [da F. Costa and Cesar, 2001] provides an excellent overview of shape

features.

2.4 Automatic Segmentation

This section examines four specific algorithms for automatic image segmentation:

segmentation that does not require any user interaction. There are many such

algorithms in the literature; we investigate a small subset that we believe to be

representative of the state-of-the-art.

We first discuss region adjacency graphs. This is not so much a segmentation

algorithm in itself, but a family of algorithms. A good deal of the segmentation

algorithms from the literature fall into this category (though this is not always

recognized in the papers describing them). Next we discuss the statistical region

merging algorithm, a recent instance of a region adjacency graph type algorithm.

Following this we describe two interesting algorithms that are not based on

region adjacency graphs: the normalized cuts algorithm, and the mean-shift

algorithm. In the final subsection we mention other noteworthy algorithms from

the literature, and some of the traditional algorithms that still enjoy popularity.

2.4.1 Region Adjacency Graphs

Image segmentation algorithms based on region adjacency graphs, also known

as region merging algorithms, have existed for some time (for instance, the al-

gorithm proposed by Brice and Fennema [Brice and Fennema, 1970]). Garrido

et al. [Garrido et al., 1998] noted that many image segmentation algorithms can

be reformulated using region adjacency graphs, and hence completely spec-

ified using three specific criteria: the merging order, the merging criteria, and

the region model. Examples of such algorithms include the statistical region

merging algorithm, which we will visit in the next section, the recursive short-
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Figure 2.8: A 4-connected region adjacency graph for a small section of an image.
The black dots are the nodes in the graph, and the colored squares beneath are
the pixels they represent. Each node is connected to its four neighboring nodes.

est spanning tree algorithm [Morris et al., 1986], the split and merge algorithm

[Horowitz and Pavlidis, 1974, Horowitz and Pavlidis, 1976], and the watershed

algorithm [Vincent and Soille, 1991].

In the remainder of this section we review the region adjacency graph formu-

lation of image segmentation, and discuss the three criteria that fully specify any

region adjacency graph algorithm. We also outline a specific instance of a region

adjacency graph algorithm, proposed by Garrido et al. in [Garrido et al., 1998].

Theory

An raster image is essentially a rectangular lattice of pixels. Each pixel repre-

senting a color. To transform an image into a region adjacency graph, we map

each pixel in the image onto a node in the graph, and connect each node to its

neighbors. More formally, given an image I with pixels pij ∈ I , we construct the

graph G = (V,E) to have vertices pij ∈ V . The set of edges are given by:

E = {(p, q) : p, q ∈ V ∧ q ∈ Np}
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where Np is the set of four or eight neighbors of pixel p. Figure 2.8 illustrates the

concept using a four connected neighbor system for a simple 5 row by 10 column

image.

Given this region adjacency graph, a region merging algorithm is then defined

as any algorithm that operates on this graph by iteratively removing edges and

merging the corresponding nodes, eventually terminating when the segmentation

is complete. Any such algorithm can be specified using three criteria:

1. The merging order. This defines the order in which the edges in the graph are

considered for merging. The merging order is usually given by a similarity

measure between two nodes. For example, the merging order might be

defined by color similarity: nodes that exhibit high color similarity should

be merged before those with low color similarity.

2. The merging criteria. When each edge is visited, the merging criteria decides

if it is to be merged or not. In essence, the merging criteria defines the

stopping criteria for the algorithm.

3. The region model. When two nodes are merged, the region model decides

how to represent their union. The region model might, for example, dictate

that when two nodes are merged, the average color of the two nodes should

represent the new node. Figure 2.9 illustrates the effect of merging two

nodes in a region adjacency graph algorithm.

The general region merging algorithm is specified in terms of the above criteria

as follows:

• Step 1. Initialize the region adjacency graph G from the image I using the

region model. Add all edges from the region adjacency graph to the edge

queue.
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Figure 2.9: Merging nodes in a region adjacency graph algorithm

• Step 2. If the edge queue is empty go to step 4. Otherwise order edge queue

according to the merging order.

• Step 3. Remove first edge from the edge queue and test it for merging using

the merging predicate. If the merging predicate succeeds, merge the regions

according to the region model. Return to step 2.

• Step 4. Stop the merging and output the segmentation.

Algorithm

What remains is to specify the three criteria: the merging order, the merging

predicate, and the region model. Garrido et al. focus on the segmentation of gray

level images and suggested a whole range of these criteria in [Garrido et al., 1998].

We discuss a few presently, refer to [Garrido et al., 1998] for more information.

Region Model: Let f(p) be the gray level at pixel p in the image. The region

adjacency graph is initialized so that the initial model for each node p equals the

gray level in the image: Mp = f(p). Two ways are suggested to update the model

when nodes are merged. The first is to combine the models using a weighted
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average; nodes p and q are combined as:

Mpq = (NpMp +NqMq)/(Np +Nq)

where Np is the number of pixels represented by node p. The other suggestion is

to use the median:

Mpq =


Mp Np > Nq

Mq Np < Nq

1
2
(Mp +Mq) Np = Nq

which they assert to be more robust than the mean.

Merging order: Garrido et al. define several potential merging orders. The

simplest is to order the edges using the average squared error between the models

of the regions. That is, the ordering is defined by a function O(p, q):

O(p, q) = ||Mp −Mq||2

Also suggested is ordering based on mean squared error. If R(p) is the set of all

pixels in node p then this is given by:

O(p, q) =
∑

x∈R(pq)

(f(x)−Mpq(x))2

Np +Nq

They note that in practice these orderings both produce a few large regions

surrounded by many small regions, and suggest the following ordering as a

compromise:

O(p, q) = Np(Mp −Mpq)
2 +Nq(Mq −Mpq)

2

which is the squared difference between the current model and the proposed

model, weighted by area.
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Merging criteria: The last thing to specify is the merging criteria C(p, q),

which will control when the algorithm terminates. Garrido et al. suggest two

merging criteria: area merging criteria, and contrast merging criteria. The area

merging criteria will merge two nodes if the number of pixels in either is below

a preset threshold: CA(p, q) = Np < TA ∨Nq < TA. This criteria ensures the final

segmentation only contains regions of area larger than TA. The contrast merging

criteria merges nodes if the square difference between the models is less than a

preset threshold: CC(p, q) = ||Mp −Mq||2 < TC .

Implementation

To efficiently implement a region adjacency graph algorithm the data structure

used to store the edge queue needs to be carefully chosen. In particular, it

must be possible to perform fast insertion and ordered removal. Garrido et

al. suggest the use of balanced binary partition trees (for example red-black trees

[Cormen et al., 2001]). Using such trees the complexity is O(n log n) for the initial

sort, and O(log n) for each update. Storing the edges in a heap data structure

[Cormen et al., 2001] gives similar complexity.

Analysis

A classification of the region adjacency graph algorithm according to the criteria

set forth in Section 2.2 is shown in Table 2.1. Note that the application-centric clas-

sification given here is specific to the instance described in [Garrido et al., 1998];

the region adjacency graph model of segmentation is quite general. It can

easily be applied to video, for example, or used for interactive segmentation

[Salembier and Garrido, 2000].

The algorithm has some disadvantages. First, using only luminance for seg-

mentation discards important color information. This can negatively impact
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Application-centric classification

Interaction: Automatic
Identification: Region

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Local

Table 2.1: Classification of the region adjacency graph algorithm

segmentation performance (see Section 2.3.2). Garrido et al. state that color infor-

mation can easily be incorporated into the scheme, using a linear combination of

the channel differences to define the merging order; in practice color perception is

not so straightforward.

Three issues need to be carefully considered to meaningfully incorporate color.

First, is how to determine the similarity between two colors. A reasonable solution

here would be to use an appropriate color space and color difference measure. The

CIELAB space and the CIEDE2000 difference measure are good candidates. These

only give meaningful results, however, for small color distances (see Section 2.3.2).

Second, it is necessary to determine how to represent the union of two regions.

This is not trivial: is the average of two colors perceptually meaningful? Finally,

it is necessary to determine the merging criteria. Since the human visual system

can only accurately compare small color differences, the saturation point at which

colors become “just different” would seem a reasonable choice. There are no

studies, however, that explicitly indicate this point.

In addition, the algorithm is a local scale algorithm. These tend to be more

sensitive to small variation and noise than their global scale counterparts. The

algorithm is also heuristic; no specific criteria is optimized.
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Finally, Garrido et al. make no attempt to formally evaluate the performance

of their region adjacency graph algorithm against the state-of-the-art. Anecdotal

evidence is given, but performance is difficult to judge. Nevertheless, the region

adjacency graph formalism is extremely useful: it provides a common framework

in which many other algorithms can be recast and analyzed.

2.4.2 Statistical Region Merging

The statistical region merging algorithm (SRM) is another region adjacency graph

based segmentation algorithm [Nock and Nielsen, 2004]. In their paper, Nock

and Nielson formulate image segmentation as a statistical inference problem, and

derive a simple merging order and merging predicate that can achieve, with high

probability, a low error in segmentation. There are two points of note about the

algorithm: First, unlike the previously described algorithm SRM incorporates (in

a limited way) color information. Second, it can be implemented to have a O(n)

computational complexity, making it one of the fastest color image segmentation

algorithms available.

Theory

The statistical region merging algorithm operates on a four connected region

adjacency graph. It suffices, therefore, to specify the merging criteria, the merging

order, and the region model in order to completely specify the segmentation. Note

that Nock and Nielson refer to the merging criteria as the merging predicate, and

define the region model implicitly. We will consider the region model explicitly,

since it is primarily what makes a linear time algorithm possible.

Let us first turn to the merging criteria. Nock and Nielson define the merging

criteria so as to provide a quantitative bound on the segmentation error as follows.
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Given a region R in an image I , let

b(R) = g

√
1

2Q|R|
ln

(
1 + |R|
δ

)
min (g, |R|) (2.1)

where g is the range of the color band (usually g = 256) and δ = 1/(6|I|2). The Q

parameter controls the scale of the segmentation: the size and number of regions

produced. The merging predicate is then defined as:

P(R,R′)⇔ |R̄′ − R̄| ≤
√
b2(R) + b2(R′) (2.2)

where R̄ is a the value of a color channel, and the predicate P(R,R′) must be true

for all color bands.

The merging order is specified by an invariant A, defined as follows: If a test

between any two true regions occurs, it implies that all tests between pairs of

regions contained within these regions has occurred previously. For RGB color

images the invariant is realized by sorting the links to be tested according to a

weight Wij equal the maximum absolute difference between each of the color

bands:

Wij = max(|Ri −Rj|, |Gi −Gj|, |Bi −Bj|) (2.3)

and testing the merging predicate on links in the implied order.

The merging order is defined in terms of the individual pixels; it does not

change after pixels have been merged to form regions. The region model is

therefore the set of all pixels that form the internal boundary of a region. Merging

two regions results in the region model being updated to be the internal boundary

of the union of these two regions.

The implication is that because the merging order is fixed it can be calculated

by sorting the edges between the nodes in the original region adjacency graph.
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This sort only needs to be performed once: a balanced binary tree is unnecessary,

implying each merge runs in constant time, as opposed to logarithmic.

Algorithm

The SRM algorithm proceeds as follows: The region adjacency graph is built in

the usual way and each edge is weighted according to Wij defined above. These

edges are then sorted according to their edge weight. A single pass through

the edges is then performed, merging the corresponding regions if the merging

predicate is satisfied.

Implementation

From the above discussion, it may appear that the algorithm still requiresO(n log n)

time; after all, the edges still need to be sorted, and the lower bound complexity

for comparative sorting is O(n log n). For the integral RGB color space, however, a

comparative sort can be neatly avoided by noting that Wij ∈ Z and 0 ≤ Wij ≤ 255,

and using the bucket sort algorithm [Cormen et al., 2001]. Bucket sort is O(n),

thus the complete algorithm runs in linear time.

The basic algorithm as described will often tend to produce a few large regions

and many small regions. As a workaround, a post-processing stage in which

regions with an area less than a prescribed threshold are merged with their nearest

neighbor is usually added.

Analysis

There are two major advantages of the statistical region merging algorithm. First,

since it requires only O(n) time, it is very fast. Second, it depends only upon

the single parameter Q in Equation (2.1) that controls the scale of the segmenta-
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Figure 2.10: Examples of the statistical region merging algorithm

tion. This can be beneficial if we wish to apply a machine learning algorithm to

determine the optimal Q for a given application.

There are, however, some limitations. The algorithm makes no attempt to be

perceptually accurate: it treats each color band separately. The separation of bands

also inhibits extending the algorithm to other color and feature spaces. If the

color space used is not composed of integral channels, the complexity degenerates

to O(n log n). As a region adjacency graph algorithm, the algorithm operates

on a local scale, and suffers the same problems as other local algorithms. Nock

and Neilson do, however, demonstrate the algorithm to be reasonably robust to

random noise.

Table 2.2 outlines the algorithmic properties and applicability of the algorithm.

Although the technique is classed as static with respect to the media it operates on,

extending the algorithm to temporal media appears possible, although this idea

was not explored in [Nock and Nielsen, 2004]. Figure 2.10 shows some sample

images and the corresponding output of the algorithm for these images.
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Application-centric classification

Interaction: Automatic
Identification: Region

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Local

Table 2.2: Classification of the statistical region merging algorithm

2.4.3 Normalized Cuts for Image Segmentation

The image segmentation algorithms we have discussed thus far have all been

based on performing bottom-up merging on region adjacency graphs. In their 2000

paper, Shi and Malik propose an entirely different approach [Shi and Malik, 2000].

Their algorithm is known as normalized cuts; like the previous algorithms, it is

graph based. The difference is that instead of performing bottom-up merging of

regions, the normalized cuts algorithm begins with a single region: the whole

image, and performs recursive top-down splitting to form the final segmentation.

The process used to split a region is known as spectral clustering, and is a global

scale algorithm.

Theory

Given a two dimensional image I, assume a function v = f(x) that maps each

location x ∈ Z2 in I to an n dimensional feature vector v ∈ Rn, which describes

local properties of I at x. We associate the image I with a weighted undirected

graph G = (V,E) such that each feature vector vi ∈ V is a node in the graph and

every pair of nodes is connected by an edge {i, j} ∈ E. Each edge is weighted
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with a weight wij equal to a function of the similarity between the feature vectors

vi and vj .

Using G we can construct a segmentation of I by recursively bipartitioning

the graph into disjoint subsets A,B such that A∪B = V , by removing edges from

the graph. The sum of weights of the removed edges in such a partitioning is

known as a cut of the graph.

cut(A,B) =
∑

vi∈A,vj∈B

wij

The optimal partitioning that minimizes this cut value is known as the mini-

mum cut, and there exist fast algorithms to compute it, such as max-flow algo-

rithms [Boykov and Kolmogorov, 2004]. However, as noted by Wu and Leahy

[Wu and Leahy, 1993], constructing a segmentation by recursively computing the

minimum cut of a graph usually leads to over-segmentation: that is, an excessive

number of regions in the segmentation. This is because if |A| is significantly

different to the |B| then there are less weights in the summation cut(A,B).

To inhibit the bias of the minimum cut for over-segmentation, Shi and Malik

proposed that the cost of the cut be normalized by the total edge weight between

nodes in A and B, and all other nodes in the V . The new normalized cut measure

is defined as:

ncut(A,B) =
cut(A,B)

assoc(A)
+
cut(A,B)

assoc(B)

where assoc(X) is the associativity between a subset of nodes X ⊂ V with all

nodes in V :

assoc(X) =
∑

vi∈X,vj∈V

wij

Although finding the exact minimum normalized cut is NP-complete (a com-

plete proof is given in [Shi and Malik, 2000]), it is possible to approximate a

solution in polynomial time. Let N = |V| be the number of pixels in the image.
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Let D be an N ×N diagonal matrix such that the diagonal elements Dii =
∑

j wij

equal the total connection between vi and all other nodes in V . Also, define W to

be an N ×N symmetric matrix where Wij = wij . The minimum normalized cut

value can then be approximated by solving the generalized eigenvalue problem:

(D−W)y = λDy (2.4)

The eigenvector y corresponding to the second lowest eigenvalue λ in the solution

to (2.4) contains N elements, and can then be used to bipartition G such that

vi ∈ A ⇐⇒ yi < 0. The proof of this result can be found in [Shi and Malik, 2000].

Algorithm

Using the above discussion, it is now possible to specify the recursive normalized

cuts segmentation algorithm as follows:

1. Given an image, construct a graph representation G = (V,E), where the

edge weights wij correspond to a measure of similarity between nodes vi

and vj . From this, derive the D and W matrices.

2. Solve the generalized eigensystem (D−W)y = λDy for the second smallest

eigenvalue λ.

3. Bi-partition the graph using the eigenvector y corresponding to the second

smallest eigenvalue as an indicator vector.

4. Check the stability of the cut to decide if the current partition should be

sub-divided. Recursively sub-divide if necessary.

Implementation

A few details need to be mentioned in order to make an implementation of the nor-

malized cuts algorithm practical. First, the matrix W above will be prohibitively
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large, even for moderately sized images. To avoid this we can define our feature

similarity function in such a way that, as the spatial distance between two feature

points increases, then wij → 0. Most of the elements of W are now very near zero

and can then be truncated. The resulting matrix is sparse and can be efficiently

stored and processed [Saad, 1992]. Allowing wij → 0 is reasonable, because it

reflects the gestalt proximity grouping principle.

We also need a way of efficiently solving the now sparse symmetric eigenvalue

problem in (2.4). Fortunately, several solvers exist for exactly this type of problem,

including the Implicitly Restarted Arnoldi/Lanczos Method [Sorensen, 1996].

However, even with such solvers, the eigenvalue computation is still signifi-

cant, typically requiring O(N
3
2 ) operations, which equates to approximately 2-3

minutes of computation time even for moderately sized images on a desktop

computer. If an approximation is acceptable, then a significant speedup can

be achieved using a multi-scale approach, such as the fast multi-grid inspired

optimization in [Sharon et al., 2000].

Because equation (2.4) only allows us to approximate the solution to finding

the minimum normalized cut, the elements of y will take continuous values,

instead of simply {−1,+1}. Thus, often the partitioning can be improved by

choosing a value other than zero as the split point, usually by computing the ncut

cost at several discrete intervals between {−1,+1} and choosing the optimal one

as the split point.

Of course, a similarity function is also required. Shi and Malik suggest using

the following joint exponential similarity function:

wij =


exp

−||vi−vj ||2
σ2

v
exp

−||xi−xj ||2
σ2

x
||xi − xj||2 < r

0 otherwise
(2.5)
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where r is some spatial neighborhood radius. The parameters σv and σx are

feature and spatial-distance bandwidth parameters, and are typically set to values

of between 10 and 20 percent of the maximum distance between any two features.

Note that both the neighborhood radius r and the bandwidth parameters have a

direct effect on the execution time of the method (by affecting the number of non

zeros in the sparse matrix W) as well as the coarseness and quality of the result.

Finally, we need to determine the stability of a cut, as this will act as the

stopping criteria. Given an eigenvector solution y from Equation (2.4), when the

values of the eigenvector resemble a continuous function rather than an discrete

indicator vector, it implies that a stable split point does not exist for the graph.

Thus, a simple way of determining the stability of the split involves computing a

histogram representation of the eigenvector, followed by determining the ratio

between the minimum and maximum values in the bins. A higher value of this

ratio, denotedR(y), indicates a stable cut. In their paper, Shi and Malik suggest

using a threshold ofR(y) > 0.06 in combination with a threshold on the cost of

the cut as a stopping criteria for the process.

Analysis

Table 2.3 classifies the normalized cuts algorithm according to the criteria dis-

cussed at the beginning of the chapter. From this, there are two notable advantages

of the normalized cuts algorithm. First, it is one of the few model-independent

region segmentation algorithms that is also global in scale. Global algorithms,

in general, are more robust and more resilient to noise: the optimization criteria

encapsulates information about the relationships among all pixels in the image

simultaneously. As such, decisions are based on the relationships among all pixels

in the image, rather than just the relationships among a small subset of the pixels.

Second, the normalized cuts algorithm can easily be extended to handle different

feature spaces and distance measures, simply by modifying the similarity function
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Application-centric classification

Interaction: Automatic
Identification: Region

Media: Static/temporal
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Global

Table 2.3: Classification of the normalized cuts algorithm

in Equation (2.5). Third, the method can be extended in a straightforward way to

video, although this significantly increases the complexity.

The algorithm also has some limitations. It has a tendency to over-balance

segments, a problem that is particularly visible in the first few partitions of natural

images. These partitions can appear unnatural and often conflict with human

intuition. The problem becomes less pronounced as the partitioning continues,

visible only as an over-segmentation of certain regions. This can be at least

partially alleviated by post-processing using an agglomerate clustering algorithm.

Another disadvantage of the normalized cuts method is computation time. As

mentioned earlier, a standard implementation using an Arnoldi/Lanczos eigen-

solver requires O(N
3
2 ) operations for each cut, making it very computationally

expensive. Even when using a optimized multi-scale version of the algorithm,

computation can take 20–30 seconds for a moderately sized image on a desktop

computer. In some applications this complexity may be unacceptable.

This high computational complexity can be somewhat avoided by reducing the

amount of data the algorithm has to process. A simple strategy is to subsample the

image before segmentation, and resample the region mask after. This optimization

will, however, result in loss of detail and diminish edge localization.
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(d) (e) (f)

Figure 2.11: Example output of the normalized cuts algorithm

Figure 2.11 provides some sample images and the corresponding output of

the normalized cuts algorithm; post-processing and agglomerate clustering were

not performed.

2.4.4 Mean-shift Analysis for Image Segmentation

Unlike the previously discussed algorithms, which are all graph-based, the

mean-shift algorithm [Comaniciu and Meer, 2002] is based upon determining

local modes in the joint spatio-feature space of an image, and clustering nearby

pixels to these modes. The technique is closely related to bilateral filtering

[Tomasi and Manduchi, 1998], in that it is based on filtering simultaneously in

the spatial and range domains. The method is general and robust; it has been

adapted to several other problems including video surveillance and temporal

image clustering.
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Figure 2.12: Two dimensional Gaussian and Epanechnikov kernels. The Gaussian
kernel shown has zero mean and unit standard deviation.

Theory

The idea behind mean-shift image segmentation is quite simple. The image

to be segmented is first processed to extract an d-dimensional feature vector

describing each pixel. Each of these feature vectors is then visited in turn, and a

d-dimensional kernel function is used to estimate the local density maxima at that

point. The kernel is then shifted toward this maxima and the kernel function is

used to re-evaluate the maxima at the new point in the feature space. This process

repeats until a stationary point, the local feature space mode, is reached. The

pixel that generated this mode is then clustered to the region defined by the mode.

When the process completes, all pixels with the same local density mode in the

feature space will belong to the same region in the segmentation.

If x1, ...,xn are vectors in a d-dimensional feature space, then the multivariate

kernel density estimator gives an estimation of the density at a given point in the
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space for a radial bandwidth parameter h, and is defined as:

f̂(x) =
1

nhd

n∑
i=1

K

(
x− xi
h

)

where K(x) is some kernel function. In practice a Gaussian or Epanechnikov

kernel is usually used (see Figure 2.12). If the kernel satisfies certain properties

(see [Comaniciu and Meer, 2002]) and is differentiable, the density of the gradient

at x can be estimated as:

∇f̂(x) =
1

nhd+1

n∑
i=1

∇K
(

x− xi
h

)
(2.6)

In some cases, the kernel can be expressed as K(x) = ck(‖x‖2) where k is

known as a profile function and c is a positive constant required to make K(x)

integrate to one. Both the Gaussian and Epanechnikov kernels can be expressed

in this form. For example, the d-dimensional Gaussian kernel,

KN(x) =
1

(2π)d/2
exp

(
−1

2
‖x‖2

)
(2.7)

has the following kernel profile:

kN(x) = exp(−1

2
x) (2.8)

Using this kernel profile notation Equation (2.6) can be expressed as:

∇f̂(x) =
2c

nhd+2

n∑
i=1

(x− xi)k
′

(∥∥∥∥x− xi
h

∥∥∥∥2
)

(2.9)
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Substituting h(xi) for k′(‖(x− xi)/h‖2) in Equation (2.9) produces

∇f̂(x) =
2c

nhd+2

n∑
i=1

(x− xi)h(xi) (2.10)

=
2c

nhd+2

[
x

n∑
i=1

h(xi)−
n∑
i=1

xih(xi)

]
(2.11)

=
2c

nhd+2

n∑
i=1

h(xi)

[
x−

∑n
i=1 xih(xi)∑n
i=1 h(xi)

]
(2.12)

The last bracketed term is called the mean-shift, and points in the direction of the

local density maxima. If Sh(x) is the set of points contained in a hypersphere with

radius h centered on x, substituting the derivative of the Epanechnikov kernel

profile leads to the following mean-shift expression:

mE(x) =
1

|Sh(x)|
∑

xi∈Sh(x)

xi − x (2.13)

while substituting the derivative of the normal kernel profile produces a weighted

summation:

mN(x) =

∑n
i=1 xi exp

(
−1

2

∥∥x−xi

h

∥∥2
)

∑n
i=1 exp

(
−1

2

∥∥x−xi

h

∥∥2
) − x (2.14)

Algorithm

Before segmentation, each pixel in the image is associated with a feature vector xi

in a joint spatial-feature space. That is, the feature vector xi is a vector composed

from the spatial coordinates xsi and a range (usually color) feature vector xri .

Letting m(x) be the mean-shift for either the normal (2.14) or Epanechnikov (2.13)

kernels, the segmentation algorithm proceeds as follows:

1. For each feature vector xi, perform the mean-shift procedure:

(a) Set y1 = xi.

(b) Repeat yi+1 = yi + m(yi) while |yi+1 − yi| > τ1.
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(c) Set xi to the converged value of y.

2. Identify clusters of feature vectors by grouping all converged points that are

closer than a prescribed threshold τ2.

3. Assign labels to clusters.

Implementation

Typically the spatial domain and the range domain are different in nature, so it

is often desirable to employ separate bandwidth parameters h = {hs, hr}. When

using the Epanechnikov kernel, this is not a problem: the hypersphere is simply

constructed to contain only feature points that have a spatial distance less than hs

and range distance less than hr. For the normal profile, we can define the kernel

as a product of two separate kernels in each domain, and the mean-shift becomes:

mN(x) =

∑n
i=1 xi exp

(
−1

2

∥∥∥xs−xs
i

hs

∥∥∥2
)

exp

(
−1

2

∥∥∥xr−xr
i

hr

∥∥∥2
)

∑n
i=1 exp

(
−1

2

∥∥∥xs−xs
i

hs

∥∥∥2
)

exp

(
−1

2

∥∥∥xr−xr
i

hr

∥∥∥2
) − x

In practice, summing over the entire domain for the normal kernel is inefficient,

so the kernel is truncated in the spatial domain, allowing the summation to be

carried out over a finite spatial window centered on the reference pixel.

There are several other optimizations that can be used to improve the ef-

ficiency of the mean-shift procedure; however, most of them involve approx-

imations that may effect the quality of the result. Carreira-Perpiñán reviews

several optimizations to the Gaussian kernel mean-shift algorithm and evaluates

their consequences [Carreira-Perpinán, 2006]. He concludes that, with careful

parameter selection, optimization based on spatial discretization produces the

most significant speedups (between 10× and 100×, depending on the image and

value of σ) and results in relatively low clustering error (< 3%). If desired, the
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.13: Examples of the mean-shift algorithm

clustering error can be further reduced at a small additional cost by varying the

discretization parameter.

Analysis

The mean-shift procedure has several favorable characteristics. It is a robust,

model-independent region-based segmentation and filtering operation, and can

therefore be widely applied. It extends itself naturally to multiple, possibly

heterogeneous, feature spaces. For segmentation operations this allows us to use

a perceptually uniform color space (CIELAB or CIELUV), or to incorporate texture

and discontinuity information. The algorithm can also be used in spatiotemporal

feature spaces: it can be used for video segmentation. The mean-shift algorithm

is quite general and has been applied to several diverse clustering tasks.

There are, however, some limitations of the mean-shift algorithm. The tech-

nique tends to lead to over-segmentation, especially when a small spatial kernel is
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used. The use of a small spatial kernel is often desirable for performance reasons:

it implies less features to be considered at each mean-shift step. Using even a

moderately sized spatial kernel can have a significant performance penalty, as

the number of feature points than need to be considered at each step increases

proportional to πr2, where r is the kernel radius.

Step 2 in the algorithm is quite loosely defined; it involves clustering together

feature points (modes) that are closer than a prescribed threshold. It may be useful

to replace this step with a region adjacency graph like clustering of the mode

points, or perhaps a top-down clustering using the normalized cuts algorithm.

We noted previously that the mean-shift algorithm can be used for video

segmentation. This is not as straightforward as it may first appear; several consid-

erations need to be addressed. The most important of these is to determine how

exactly to incorporate the temporal dimension into the procedure. A first attempt

might be to include it as a third spatial coordinate and cluster in 3-dimensional

space. This approach neglects the different nature of the temporal and spatial do-

main; usually a different temporal and spatial resolution is desirable. This requires

a prolate spheroid shaped kernel. Such a kernel not only increases algorithmic

complexity, but also requires more computational effort and memory to find and

buffer relevant feature points at each step. There has, nevertheless, been some

success in segmenting video using the mean-shift algorithm [Wang et al., 2004];

although these algorithms tend to be quite slow.

Despite some limitations, the mean-shift algorithm has many favorable prop-

erties and has been applied to a variety of tasks. As an image segmentation

algorithm, it is most useful when used as a low-level “first-step” in the overall

segmentation process; indeed, this is the stated intention of the algorithm by its

authors [Comaniciu and Meer, 2002].
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Application-centric classification

Interaction: Automatic
Identification: Region

Media: Static/temporal
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Local

Table 2.4: Classification of the mean-shift algorithm

Figure 2.13 presents some example images and corresponding segmentations

using the mean-shift algorithm. Table 2.4 classifies the algorithm according to our

application-centric and algorithm-centric criteria.

2.4.5 Other Approaches

The survey papers by Cheng et al. [Cheng et al., 2001] and by Skarbek and

Koschan [Skarbek and Koschan, 1994] provide a extensive overview of the chal-

lenges involved in color image segmentation. They also describe several specific

image segmentation techniques. The report by Lucchese and Mitra describes

various modern and traditional algorithms [Lucchese and Mitra, 2001].

Several traditional image segmentation techniques still enjoy popular use, due

to their speed, simplicity, and inclusion in common machine vision and image

processing toolkits. Many form the basis for more modern algorithms, and as

such, merit a brief discussion here.

The Watershed transform [Vincent and Soille, 1991] is a grayscale morphology

based image segmentation technique. It operates using a topological representa-

tion of the image gradient. The local minima of the gradient are selected as seed

points, and a simulated “flooding” operation produces the image regions such

54



that the troughs of the topology form the contours of the segmentation. Watershed

segmentation is included as part of the MATLABTM image processing toolbox.

Split and merge algorithms [Horowitz and Pavlidis, 1976] have been used as

the basis for various modern algorithms. The original algorithm operates in two

stages. The first stage is characterized by iteratively merging blocks of pixels in

a tree structure until a stopping criteria has been reached. In the second stage,

blocks are split if it is deemed appropriate, producing the final segmentation.

The recursive shortest spanning tree (RSST) algorithm, proposed by Morris

et al. [Morris et al., 1986], is one of the earliest graph theoretic formulations of

the image segmentation problem. In this method, the image is represented by a

graph such that the nodes of the graph represent regions (initially pixels) and the

links are functions of the dissimilarity between adjacent regions. The algorithm

proceeds by recursively finding the shortest spanning tree of the graph, cutting

the tree for the most costly links, followed by merging all nodes in the sub-tree

and averaging the node values. In practice, this is usually accomplished by

recursively merging adjacent nodes with minimal link cost. The RSST, Watershed,

and split and merge algorithms can all be recast as region adjacency graph based

algorithms.

The reader may wish to pursue other interesting algorithms not explored here.

The ratio-cut algorithm [Wang and Siskind, 2003] is another graph-cut/spectral

clustering based method, similar to the normalized cuts method we described.

There are several image segmentation algorithms based on k-means cluster-

ing [Kanungo et al., 2002]: including the k-means with connectivity constraint

algorithm, [Kompatsiaris and Strintzis, 1999] and the fuzzy c-means algorithm

[Lim and Lee, 1990].
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2.5 Interactive Segmentation

Automatic segmentation algorithms suffice for applications that require partition-

ing of an image into homogeneous regions. Other applications require high-level

semantic objects. Automatic segmentation algorithms are, in general, unable to

extract semantic objects without some high-level information about the scene. In

some restricted domains this high-level information can be provided in the form

of a prescribed model. For the more general application, like photo-editing, there

is no general model that can be used; we need to obtain high-level knowledge

about the scene in some other way.

Interactive segmentation algorithms provide the most obvious solution: the

high-level scene knowledge is provided by the user. This high-level knowledge

can be provided in many ways: dragging a slider to specify a threshold, drawing

a rough object outline, or marking the inside and outside of the object with a

mouse. The algorithms then use this knowledge to guide the segmentation, often

providing feedback to the user and allowing them to iteratively improve the

segmentation.

There are various different algorithms for performing interactive segmentation.

Most fall into the following categories:

1. Thresholding. This is the simplest form of interactive segmentation. Segmen-

tation by thresholding usually involves selecting a value that separates the

object and background pixel classes. This simple form of segmentation is

only effective if either all the pixels in the object region have a luminance

value greater than the background, or the converse. There are several vari-

ations on this basic thresholding scheme: mutli-band thresholding allows

selecting a threshold for each color channel, adaptive thresholding uses a

different threshold value for different parts of the image.
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2. Region Growing. Region growing techniques are characterized as being

initialized with one or more sets of seed pixels, then iteratively expanding

these seed pixels to include neighboring pixels according to some predefined

criteria, eventually forming regions. Usually two sets of seed pixels are used,

one for the object and one for the background.

3. Classifiers. Interactive segmentation using classifiers begins by building a

model of the known object and background pixels from the user interactions.

This is followed by applying statistical or machine learning techniques to

classify the remaining pixels in the image.

4. Graph based. Graph based interactive segmentation is similar to the region

adjacency graph methods used for automatic segmentation in the previous

section. A region adjacency graph is first built from the image pixels in the

same way as described in Section 2.4.1. This graph is then used to partition

the image by incorporating the image data and user interactions in some

way.

5. Deformable models. Deformable models, also known as active contours or

snakes, are a technique for delineating regions in an image by outlining the

region using a closed curve near the real object boundary. This curve is

then evolved toward the true object boundary using an iterative relaxation

process. Active contours have been used extensively in medical image

segmentation, where they have been shown to perform well.

In the remainder of this section we will investigate four specific algorithms

for interactive segmentation. We focus on interactive segmentation techniques

appropriate for object extraction from natural scenes. Specifically, we only discuss

algorithms whose interactions can be modeled by pictorial input on an image grid

[Olabarriaga and Smeulders, 2001]; we do not consider interactive segmentation
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algorithms based on parameter tuning or other forms of interaction. This shall

allow us evaluate and compare compatible algorithms in Chapter 5.

The first algorithm we discuss is a region growing algorithm: seeded region

growing. Following this, we discuss two graph-based algorithms: the interactive

graph cuts algorithm, and interactive segmentation using binary partition trees.

The final algorithm we discuss is a classifier based method called simple interac-

tive object extraction. It has been integrated into the popular open-source GIMP

imaging tool. We do not investigate deformable models; they tend to perform

better on medical images and do not lend themselves to iterative updates.

2.5.1 Seeded Region Growing

The seeded region growing algorithm was proposed by Adams and Bischof

in [Adams and Bischof, 1994]. It is a simple and computationally inexpensive

technique for interactive segmentation of images in which the relevant regions

are characterized by connected pixels with similar color values.

Algorithm

The algorithm requires as input a set of seed points that have been grouped into n

disjoint sets S = {Aj : 1 < j ≤ n}, where n is the number of desired regions in the

segmentation. Usually we select n = 2: one set of seeds denotes the object and

the other set denotes the background.

At each step in the process, the algorithm chooses a single pixel in the image

and appends it to one of the sets Aj according to the following procedure. Let

I = {x} be the set of pixels in an image and f(x) be a vector valued function

the gives the color (or intensity) of the pixel x. Also, define N (x) to be the set of

pixels that are neighbors of x (according to the usual four or eight connectivity

constraint).
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At each step, a set of candidate pixels T containing all pixels that are neighbors

of pixels in S but not contained in S itself are identified. Formally:

T =
{
y : y /∈

⋃
Aj ∧N (y) ∩

⋃
Aj 6= ∅

}

It is necessary to choose a single suitable pixel from the set of candidates y ∈ T to

add to one of the seed sets Aj ∈ S. The simplest way of doing this is to choose the

pixel that is nearest, in some way, to one of the seed sets. This requires a suitable

distance function. Adams and Bischof suggest the distance function:

δ(y, A) = ‖f(y)−meanz∈A[f(z)]‖

A pixel yi ∈ T is then selected to minimize δ(yi, Aj) for all j and appended to the

set Aj . The process is repeated until all pixels in I are contained in one of the sets

Aj .

Implementation

To efficiently realize the algorithm we need to be able to quickly find the nearest

candidate pixel at each step. Adams and Bischof suggest storing the candidate

pixels in a data structure they call a sequentially sorted list. We have found a heap

data structure [Cormen et al., 2001] to be more efficient. Denoting this heap H the

algorithm is then implemented as follows:

1. Compute set of neighboring pixels T . If T = ∅ finish.

2. Add pixels from T to H ordered by δ(y, A).

3. Add first pixel p from H to its corresponding seed set Aj .

4. Insert all neighbors of y ∈ N (p) not already in H or S to H .

5. Update the region average for Aj .
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Application-centric classification

Interaction: Semi-automatic
Identification: Region/object

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Local

Table 2.5: Classification of the seeded region growing algorithm

6. If H is not empty, return to step 3.

Note that the above algorithm implies that pixels which are already contained

in H are not re-arranged to reflect the new region averages that may result from

appending a pixel at the front of H to its corresponding set Aj . The authors claim

that this leads to a negligible difference in results, but greatly enhanced execution

speed.

Analysis

The seeded region growing algorithm has been successfully applied to a wide

range of image segmentation problems, including: medical image segmentation

[Olabarriaga and Smeulders, 2001], DNA microarray analysis [Yang et al., 2002],

and has been used as a building block for more sophisticated segmentation

algorithms such as [Fan et al., 2001]. Table 2.5 illustrates the properties of the

algorithm. Note that although seeded region growing is a interactive algorithm,

in some cases (e.g. [Yang et al., 2002]) it is possible to incorporate high-level

knowledge of the scene to automatically select appropriate image seeds before

applying the procedure. For example, if it is known in advance that the required
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.14: Examples output of the seeded region growing algorithm

foreground objects are brighter than the background, then local intensity maxima

may be selected as foreground seeds, and minima as background seeds.

The original seeded region growing algorithm used only the grayscale values

of the pixels to determine their distances from the seed sets, but it is straight-

forward to extend this to color. Figure 2.14 depicts several images and their

corresponding segmentations obtained using our implementation of the seeded

region growing algorithm, which uses the CIELUV color space. In fact, these

images were segmented by automatic seed selection: using the local minima and

maxima of a saliency map, computed using the Itti saliency model [Itti et al., 1998].

This strategy was successful for these particular images: they are quite simple

and have a single salient object. In general we found that it is impossible to

automatically and reliably select seeds for natural scenes using saliency maps.

There are several limitations of the algorithm. First, it is only reliable for

extracting objects that are reasonably consistent in color. If the average color of

the object and background are similar, the method is likely to perform poorly.

The algorithm also has difficulty with textured images. Second, the algorithm is

raster order dependent [Mehnert and Jackway, 1997]: it is sensitive to the order

in which the pixels are processed. By simply altering the orientation of the image,
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one may arrive at a different segmentation. [Mehnert and Jackway, 1997] propose

several improvements that eliminate this deficiency, at the cost of a more complex

algorithm.

2.5.2 Interactive Graph Cuts

The interactive graph cuts algorithm (IGC) is a graph-based interactive segmen-

tation algorithm proposed by Boykov and Jolly in [Boykov and Jolly, 2001]. It

formulates the interactive segmentation problem within a MAP-MRF framework

[Greig et al., 1989], subsequently determining a globally optimal solution using

a fast min-cut/max-flow algorithm. Due to the algorithm’s speed, stability, and

strong mathematical foundation, it has become popular and several variants and

extensions have been proposed. The “GrabCut” algorithm [Rother et al., 2004]

and the “Lazy Snapping” algorithm [Li et al., 2004] are two such variants devel-

oped by Microsoft. We discuss the original version of the algorithm here.

Algorithm

The algorithm operates by minimizing a cost function that captures both the hard

constraints provided by user interactions, and the soft constraints expressing the

relationships between pixels in the spatial and range domains of an image. If L =

{Lp | p ∈ P} is an object-background labeling of an image P (i.e. a segmentation),

the energy of the labeling can be expressed as the cost function:

E(L) =
∑
p∈P

Dp(Lp) +
∑

(p,q)∈N

Vp,q(Lp, Lq) (2.15)

where Dp() is a data penalty function, Vp,q() is an interaction potential, and N is

the set of all pairs of neighboring pixels. The data penalty function represents a set

of hard constraints that control which pixels belong to the object or background,
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(a) (b)

Figure 2.15: An illustration of the graph structure the IGC algorithm uses to
minimize Equation (2.15). The nodes in the center are represent the image pixels
in a simple 3×3 image. Each of these is connected to its neighbors in the same
way as a region adjacency graph. The weights on these connections reflect the
similarity between the pixels. Each node is also connected to the terminal nodes:
S and T . The weights on these connections reflect the user interactions. In (b) two
interactions have been added, illustrated by the solid lines connecting the corner
pixels to S and T . The thick line demonstrates the min-cut.

and is derived from the user interactions. The interaction potential is used to

encourage spatial coherence between similar neighboring pixels.

To minimize Equation (2.15), the image and user interactions are combined

to create a weighted undirected graph. The graph is constructed by adding

a node for each pixel in the image, then connecting each node to its neighbor

with a weighted edge reflecting the similarity between the pixels (the interaction

potential). This weight is usually chosen based on the color or intensity difference

between the pixels. Boykov and Jolly suggest the following weighting function:

wpq =
1

dist(p, q)
exp

(
−(Ip − Iq)2

2σ2

)
(2.16)
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where dist(p, q) is the spatial distance between nodes p and q, and Ip and Iq are

the intensity values for the pixels represented by p and q.

Each node in the graph is also connected to two special terminal nodes using

a weighted edge reflecting the user interactions (the data penalty function). These

special nodes represent the object and background regions, and are denoted S and

T . If a pixel p has been marked as object its connection to S is positively weighted

with a value K, otherwise it is weighted zero. The weights to T are similarly

selected. To ensure the pixels marked as object and background represent hard

constraints, the value ofK is chosen so that it is larger than the sum of all neighbor

weights for any pixel:

K = 1 + max
p∈P

∑
q∈N (p)

wpq (2.17)

Equation (2.15) can be minimized by finding the min-cut of this graph. Fig-

ure 2.15 illustrates the graph and the min-cut for a simple 3×3 image.

Implementation

The min-cut of the graph can be found efficiently using the min-cut/max-flow

algorithm described in [Boykov and Kolmogorov, 2004].

Analysis

A classification of the interactive graph cuts algorithm is shown in Table 2.6. Like

the normalized cuts algorithm for automatic region segmentation, the interactive

graph cuts algorithm optimizes a global criteria. Optimizing a specific function

has obvious benefits for mathematically analyzing the algorithm, and in practice

the global criteria leads to stable predictable behavior. Users prefer predictable

algorithms, as we shall demonstrate in Chapter 5.
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Application-centric classification

Interaction: Semi-automatic
Identification: Object

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Global

Table 2.6: Classification of the interactive graph cuts algorithm

(a) Original image (b) Interactions (c) Extracted object

Figure 2.16: Extracting an object using the interactive graph cuts algorithm

The interaction potential in Equation (2.16) is, as Boykov and Jolly admit,

ad-hoc. The interactive graph cuts algorithm is general enough to incorporate

arbitrary features and similarity measures. Color features may improve perfor-

mance here, as may texture features. Of course, we could modify the algorithm in

many different ways; but we believe such speculation is useless without a formal

way of comparing the results to the original algorithm to determine if, indeed, we

have improved it.

Figure 2.16 shows an example of the interactive graph cuts algorithm being

used to interactively extract an object. A comparative evaluation of the algorithm

is presented in Chapter 5.
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2.5.3 Interactive Segmentation using Binary Partition Trees

The binary partition tree algorithm is a graph-based interactive segmentation algo-

rithm proposed by Salembier and Garrido in [Salembier and Garrido, 2000], and

improved by Adamek in [Adamek, 2006]. The algorithm transforms a hierarchical

region segmentation into an object-background segmentation by using the user

interactions to split and merge regions in the tree. The algorithm can be adapted

to use any automatic segmentation technique that can be tailored to produce

hierarchical output in the form of a binary partition tree, in which the root node

represents the entire image, and nodes lower down the tree represent regions at

increasing levels of detail, with the leaf nodes being the individual image pixels.

In [Salembier and Garrido, 2000] the authors used the region adjacency graph

method discussed in Section 2.4.1 to create the initial hierarchical segmentation,

whereas [Adamek, 2006] used an RSST [Morris et al., 1986] based algorithm. In

this section we assume that a hierarchical region segmentation is available, and

discuss the procedure to transform it to an object-background segmentation based

on user interactions.

Algorithm

A hierarchical segmentation can be represented using a binary partition tree

structure. In this tree each node represents a region, and the depth of the node

in the tree indicates the level of detail of the region. The root node of the tree is

the region containing the entire image, and the leaf nodes of the tree comprise

the individual image pixels. Each non-leaf node has two child nodes, splitting its

parent region into two sub-regions.

To transform the tree into an object-background segmentation, the algorithm

proceeds as follows. In the first stage, the leaf nodes of the tree are assigned

labels according to the pixels marked by the user as object and background. The
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Application-centric classification

Interaction: Semi-automatic
Identification: Object

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Local*

Table 2.7: Classification of the binary partition tree algorithm

second stage involves propagating the labels upward toward the root of the

tree. Each marked leaf node is propagated toward the root node, labeling each

intermediate node with the same label, until a conflict occurs when a parent

node has already been labeled differently by the current node’s sibling during

a previous propagation stage. In this situation, the parent node is marked as

conflicting and the algorithm proceeds to the next leaf node. This is repeated

for every marked leaf in the tree. In the third stage of the algorithm, each non-

conflicting labeled node is visited, and its label propagated to any unlabeled child

nodes in the subtree.

At this stage in the algorithm, certain subtrees may yet remain unlabeled, being

judged “too different” with respect to the regions defined by the user markup.

The original technique for filling these unlabeled regions contains a flaw (see

[Adamek, 2006]). As an alternative approach [Adamek, 2006] proposes labeling

each unclassified region with the label of an adjacent but previously classified

region. If there are several such regions, the one with the shortest distance is

chosen. Adamek suggests using the Euclidean distance between the average

colors of the regions in CIELUV space to compute this distance.
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(a) Original image (b) Interactions (c) Extracted object

Figure 2.17: Extracting an object using the binary partition tree algorithm

Analysis

Table 2.7 classifies of the binary partition tree algorithm according to our criteria.

In our classification we have denoted it as a local scale algorithm only because

the implementations that we know of use local scale hierarchical segmentation

algorithms as their basis. If, for example, the normalized cuts algorithm was

used to create the hierarchical segmentation, then the overall algorithm could be

considered a global scale algorithm. In practice, however, the normalized cuts

algorithm is too computationally expensive for interactive segmentation.

The performance of the binary partition tree algorithm depends upon the

performance of the hierarchical region segmentation algorithm used to implement

it. In Chapter 5 we evaluate the implementation of the algorithm proposed in

[Adamek, 2006]. Figure 2.17 gives an example of segmenting an image using the

binary partition tree method.

2.5.4 Simple Interactive Object Extraction

Unlike the other interactive segmentation algorithms we have discussed, the

simple interactive object extraction algorithm [Friedland et al., 2005] is a classifier

based algorithm. The idea behind the algorithm is to use the pixels marked by

the user to build a color model of the object and background regions, then classify
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the pixels in the image as either object or background based on their distance

from this model. The algorithm has recently been integrated into the popular

open-source imaging program GIMP as the “Foreground Select Tool.”

Algorithm

The algorithm assumes a feature space that correlates well with human perception

of color distances with respect to the Euclidean metric. As such, the first step in

the method is to transform the image pixels to a perceptually uniform color space.

Friedland et al. recommend the CIELAB space [Wyszecki and Stiles, 2000].

Once the image has been transformed into an appropriate color space, the next

step is to generate a color signature [Rubner et al., 2000] for the known object and

background pixels indicated by the user markup. A color signature is a compact

description of the significant modes of a color distribution, represented as a set of

cluster centers together with a weight denoting the size of the cluster.

To efficiently generate the color signatures, the modified version of the k-d

tree optimization algorithm [Bentley, 1975], described in [Rubner et al., 2000] is

used. Assuming known cluster sizes based on the perceived diversity on each

color axis, the algorithm proceeds in two stages. In the first stage, given a single

starting cluster containing the entire sample, the cluster is recursively partitioned

into equal sized clusters until each cluster is within the prescribed cluster sizes.

After this, the clusters are recombined by running the same k-d algorithm on the

centroids found in the first stage. Clusters containing less than 1% of the pixels

are then discarded. The final cluster centroids constitute the color signatures for

the object and background regions.

Using the generated color signatures, the unknown image pixels are then

classified as foreground or background according to the minimum distance to any

mode in the foreground or background color signatures. The result is a confidence

matrix, consisting of a value between zero and one, zero denoting background,
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Application-centric classification

Interaction: Semi-automatic
Identification: Object

Media: Static
Generality: Model independent

Algorithm-centric classification

Perspective: Homogeneity
Model: Data driven

Scale: Global

Table 2.8: Classification of the simple interactive object extraction algorithm

one denoting foreground. In the final stage of the algorithm, the confidence matrix

is smoothed and regions disconnected from the largest object are removed.

Analysis

The algorithm has several advantages. It is simple and computationally inex-

pensive, allowing for a fast implementation. This is essential for an interactive

algorithm. The reference implementation of the algorithm is written in Java and is

responsive enough for most applications. The algorithm also uses a perceptually

uniform color space; it is more likely to group pixels that are perceptually similar

in color than an algorithm that only uses luminance, for instance.

The algorithm also has some limitations. It operates by building a color

signature of the object and background regions from the known pixels, then

labeling the unknown pixels based on their distances from these signatures. This

strategy implies that the algorithm will only succeed for images in which the

object and background regions have sufficiently different color signatures. When

the object and background do have sufficiently different color signatures, the

algorithm will succeed if enough pixels have been marked for it to recreate

appropriate signatures from the user interactions.
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(a) Original image (b) Interactions (c) Extracted object

Figure 2.18: Extracting an object using the simple interactive object extraction
algorithm

In practice, we have observed that if the object and background can be dif-

ferentiated effectively using color signatures, then a few interactions are usually

sufficient. Put another way, if the algorithm is indeed capable of separating the

object and background for a particular image, it does not require many inter-

actions. The corollary is that if the algorithm is unable to separate the object

and background after the first few interactions, additional interactions will not

improve the segmentation.

The above characteristic is interpreted by users as unresponsiveness and can

be very frustrating (see Chapter 5). Incorporating the spatial locations of the

marked pixels into the region signatures in some way could potentially resolve

this deficiency.

A classification of the algorithm according to our criteria is shown in Table 2.8.

Figure 2.18 demonstrates extracting an object with the simple interactive object

extraction algorithm.

2.5.5 Other Approaches

The above discussion focused on the most popular methods used for interactive

segmentation of natural images. There are some other well known algorithms for

interactive segmentation that we have not discussed.
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Algorithms based on active contours and other deformable models (for ex-

ample: [Kass et al., 1988], and [Caselles et al., 1995]) are especially popular in

medical image segmentation. We have found them to be less useful for natural

image segmentation and photo-editing applications for two reasons. First, they

are quite sensitive to initial parameterization. These parameters are, in general,

harder to specify for natural images: the domain is broader. Second, they require

interactions in the form of an object outline. This makes the segmentation more

difficult to refine by adding more interactions.

Another class of algorithms popular in medical image segmentation are the

“live-wire” algorithms [Falcão et al., 1998, Falcão et al., 2000]. These algorithms

are designed to assist the user outlining an object by “snapping” the line segment

currently being drawn to the object boundary. In essence, the user selects the

end points of a boundary segment, and the algorithm finds the shortest path

between these end points in a graph. The graph is constructed so that its nodes

lie between the individual image pixels, and its edges are weighted using the

image gradient. The shortest path connects the end points, and tends to lie along a

gradient discontinuity. It is not necessary to create closed contours when using the

live-wire algorithms, and as such, it may be more appropriate to consider them as

assisted drawing methods, rather than interactive segmentation algorithms.

A few other methods for interactive segmentation of natural images have very

recently been proposed. [Ning et al., 2009] propose an algorithm that uses the

user interactions to merge regions in an initial region based segmentation. The

algorithm is similar to the binary partition tree algorithm: it uses an automatic

region segmentation and merges regions based on the user interactions. It dif-

fers in that it does require a hierarchical segmentation; an initial fine-grained

segmentation is used instead. Ning et al. suggest using the mean-shift algorithm

for this purpose (see Section 2.4.4). Mean-shift is ideally suited as it tends to

over-segment objects. Also recently, [Protiere and Sapiro, 2007] propose a lin-
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ear time algorithm for interactive segmentation of natural images that is based

on adaptive weighted distances. Like the simple interactive object extraction

algorithm, this is a classifier based algorithm. Unlike simple interactive object

extraction, it uses adaptive texture features to model the object and background

regions. Neither [Ning et al., 2009] nor [Protiere and Sapiro, 2007] evaluate their

proposed approaches against the state-of-the-art.

2.6 Discussion

In this chapter we discussed and characterized eight state-of-the-art algorithms for

image segmentation: four automatic algorithms, and four interactive algorithms.

The algorithms were selected so as to be representative of the different classes of

approaches in the literature. It is clear from the discussion that there are many

different algorithms available, and that although there has been a lot of progress

in image segmentation, the problem is far from solved.

We discussed the strengths and limitations of each of the selected algorithms.

We also suggested some ways in which these algorithms could potentially be

improved. There is potential for improving the efficiency of the normalized cuts

algorithm by combining it with a bottom-up segmentation algorithm like mean-

shift. The interactive graph cuts algorithm might be improved by integrating

color and texture features. The simple interactive object extraction algorithm may

be more responsive if the spatial location of the known pixels was integrated into

the color signatures.

These enhancements may produce more effective algorithms. Then again, they

may not. It is prudent, therefore, before implementing any such enhancements

to have a reasonable way to compare segmentation results within the existing

state-of-the-art. Indeed, we believe that it is key to progress. There are many

algorithms for image segmentation; how are we to select the best one for a
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particular application? New algorithms are continuously proposed; how are we

to know if they actually constitute an improvement? Anecdotal examples are

insufficient. What is needed is a way to formally evaluate and compare image

segmentation algorithms. This is the subject of our next chapter.

74



Chapter 3

Segmentation Evaluation: A Review

3.1 Introduction

Segmentation evaluation research is concerned with the development of tools

and techniques that allow us to measure and compare the performance of seg-

mentation algorithms. What exactly is meant by performance ultimately depends

upon the application. In one application, a segmentation algorithm might be

considered to perform well if it closely mimics human perceptual grouping; in an-

other, computational efficiency or stability may be more important. Segmentation

evaluation techniques give us tools to measure and compare the characteristics of

segmentation algorithms, and thereby gauge their performance.

It is clear from the previous chapter that there exist many different algorithms

for image segmentation. It is important to be able to evaluate and compare these

algorithms. Evaluation is important not only for application developers, who

need to select the correct tool for the job, it is also important for researchers. Being

able to accurately gauge the performance of an algorithm gives insight into what

constitutes a good algorithm. It allows researchers to improve and justify new

methods via formal comparison with existing methods.
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Segmentation evaluation has recently been receiving more attention from

researchers [Jiang et al., 2006, Ge et al., 2007, Zhang et al., 2008]. Nevertheless, it

is still an emergent research area, and has received significantly less attention

than image segmentation itself.

In the remainder of this chapter we review and characterize the current state-

of-the-art in segmentation evaluation. Our first task is to develop a scheme

to classify segmentation evaluation techniques; this scheme will allow us to

characterize the existing evaluation techniques and identify areas that still need

to be addressed. Following this, we review various published techniques for

performing segmentation evaluation, and classify them according to our scheme.

The chapter concludes with a discussion, where we identify the limitations of the

state-of-the-art and the areas that need improvement.

3.2 Taxonomy

In this section we look at taxonomies for classifying segmentation evaluation tech-

niques. A few such taxonomies have previously been proposed [Zhang et al., 2008,

Jiang et al., 2006, Zhang, 1996]. Most of these classify algorithms based either on

what is being evaluated, or on how the evaluation is performed. These taxonomies

agree to a large extent conceptually, but differ in the terminology used.

Zhang [Zhang, 1996] classifies segmentation evaluation techniques into three

groups: analytical methods, empirical goodness methods, and empirical discrepancy

methods. By analytical methods, Zhang means methods that directly assess the

quality of a segmentation algorithm by analyzing its principles and mathematical

properties. Analytical evaluations are often given by the authors of a segmentation

algorithm in the form of a proof that the algorithm optimizes some criteria.

Analytical assessment is not, in general, based on properties of the output of
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an algorithm, but on the mathematical properties of the algorithm itself. It is

impossible to automate this kind of assessment.

The second group of methods identified by Zhang are the empirical methods.

These are computed based on the output of a segmentation algorithm. Empirical

discrepancy methods refer to techniques that compute a measure of agreement

between the output of a segmentation algorithm and an existing reference seg-

mentation. This reference segmentation is generally referred to as a ground truth.

Empirical goodness methods do not require a ground truth; they measure an

algorithm’s performance by examining the output for certain properties that are

assumed to be desirable.

Jiang et al. [Jiang et al., 2006] propose a different classification. They first

divide segmentation evaluation methods into two categories: theoretical evaluation,

and experimental evaluation. Theoretical evaluation methods generally correspond

to the analytical methods in Zhang’s classification, whereas Zhang’s empiri-

cal methods fall under experimental evaluation. The experimental evaluation

methods are subdivided into task-based and feature-based methods. Task-based

evaluation refers to methods that evaluate image segmentation in the context

of a particular application. Feature-based evaluation is further subdivided into

ground truth-based and non-ground truth-based methods, which roughly correspond

to Zhang’s empirical discrepancy and empirical goodness methods.

Other authors have given similar taxonomies, again using different termi-

nology. Yang et al. [Yang et al., 1995], Chabrier et al. [Chabrier et al., 2006], and

Zhang et al. [Zhang et al., 2008] all use the term supervised for approaches that

use ground truth, and unsupervised for those that do not. Correia and Pereira

[Correia and Pereira, 2003] refer to the same methods as standalone and relative.

The existing classification schemes have some limitations. The scheme due to

Jiang et al. assumes that task-based algorithms never use ground truth. The term

“feature-based” is not well defined. The authors appear to be trying to categorize
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(ground-truth)
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Automatic 
segmentation

Interactive 
segmentation

Figure 3.1: Taxonomy of segmentation evaluation algorithms

algorithms based on their objective. In this way, task-based algorithms evaluate a

segmentation algorithm’s suitability for a particular application. The objective

of feature-based algorithms is presumably to evaluate a how well a segmentation

algorithm emulates human perceptual grouping, though this is not explicitly

stated in their paper. The scheme of Zhang does not address the objective of

a segmentation evaluation technique whatsoever. Finally, none of the existing

taxonomies make a distinction between techniques designed to evaluate automatic

segmentation algorithms, and those designed to evaluate interactive segmentation

algorithms.
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To unify the existing taxonomies and address their limitations, we propose

the taxonomy shown in Figure 3.1. Under our new taxonomy, techniques for

evaluating segmentation algorithms are classified under three headings: objective,

reference, and target.

The term objective is used to specify what the segmentation evaluation tech-

nique aims to evaluate. Under this heading we can classify evaluation techniques

as either perception-based or application-based. Perception-based techniques are

designed to assess how well a segmentation algorithm approximates human

perceptual grouping. Application-based techniques are designed to assess the

performance and suitability of a segmentation algorithm in a particular applica-

tion domain. These two categories are assumed to map to the feature-based and

task-based categories in Jiang et al.’s scheme.

Our second heading, reference, characterizes the segmentation evaluation tech-

nique’s use of ground truth data. Under this heading, assessment strategies that

explicitly reference one or more ground truth segmentations for each image used

in the evaluation are classed as supervised. Assessment methods that do not re-

quire a ground truth are classed as unsupervised. Since we consider ground truth

use under a different heading, the implicit assumption in Jiang et al.’s scheme, that

application-based algorithms never make use of ground truth data, is dropped.

The above classification allows for unsupervised evaluation techniques to

have undergone a training phase. Unsupervised evaluation techniques are there-

fore subdivided into trained and empirical. Trained evaluation techniques aim to

automatically learn what properties make a segmentation result good from a set

of training data. Purely empirical evaluation techniques specify explicitly how to

determine a segmentation algorithm’s performance from its output; they do not

require a training phase.

Supervised evaluation techniques are divided into feature-based and discrepancy-

based methods. Discrepancy-based methods specify how to directly compute a
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measure of disparity between the segmented image and its corresponding ground

truth. Discrepancy-based methods are often defined using set theoretic operations

over the regions in the machine segmentation and the ground truth. Feature-based

methods compute some agglomerative features of the machine segmentation and

compare these with similar features computed from the corresponding ground

truth.

In our scheme, the empirical-goodness techniques described by Zhang cor-

respond to the unsupervised empirical methods. The empirical-discrepancy

techniques correspond to the supervised discrepancy methods.

The final heading in our scheme is target; it refers to the kind of segmentation

algorithm the evaluation technique is designed to evaluate. We specify two

types of target: automatic segmentation and interactive segmentation. Their

distinction is important because techniques for evaluating automatic segmentation

algorithms cannot be directly applied to evaluating interactive segmentation

algorithms; interactive segmentation algorithms depend on human intervention,

and accuracy must be measured over time. We discuss this in more detail in

Chapter 5.

Our classification scheme is different from existing schemes in three important

ways. First, we do not include analytical methods in our scheme: it is impossible

to automatically evaluate segmentation algorithms analytically. Second, unsuper-

vised methods are explicitly allowed a training phase. This implies an important

difference, from an application perspective, between supervised and unsuper-

vised methods: unsupervised techniques (even those that require training) can

be used to automatically find the optimal parameterization of a segmentation

algorithm for a particular image, whereas supervised techniques cannot.

The final difference is in considering the kind of segmentation algorithm

the evaluation technique is designed to evaluate. To our knowledge, no exist-

ing taxonomy distinguishes between techniques designed to evaluate automatic
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segmentation algorithms and techniques designed to evaluate interactive seg-

mentation algorithms. This lack of distinction is understandable, however, since

techniques for evaluating interactive segmentation algorithms had not yet been

considered at the time these taxonomies were proposed.

3.3 Supervised Evaluation

This section examines three popular methods for supervised evaluation of auto-

matic segmentation algorithms. Each of the examined techniques is discrepancy-

based; we do not know of any feature-based methods for supervised evaluation.

The described techniques are usually used to evaluate how well a segmentation

algorithm imitates human perceptual grouping; they are used in conjunction with

a ground truth dataset of human segmented images. When used in this way, all

the algorithms we examine can be considered perception-based. By changing the

dataset used, however, the same techniques could potentially be used to eval-

uate an algorithm for a particular application (i.e., be used for application-based

evaluation).

The first technique we discuss is based on considering the image segmentation

problem as a general clustering problem. Reinterpreting the evaluation problem

from this perspective makes available a host of well established measures that

were originally proposed for comparing pairs of clusterings. In this way, seg-

mentation error can be gauged by measuring the error between the clustering

represented by the ground truth and the clustering represented by the machine

segmentation.

The next method we discuss is more specifically tailored toward evaluating

perceptual grouping. The authors of this method observe that different people

tend to produce segmentations that are consistent overall, although they may be

at a different level of detail. To address this ambiguity, they propose two measures
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to quantify the error between a pair of segmentations, while remaining tolerant of

this kind of refinement.

The next measure we discuss is sensitive to refinement, and is therefore better

at measuring the degree of under or over segmentation; measures that are allow

refinement are, by definition, insensitive to such error. In some applications, error

due to under or over segmentation can affect the performance of a system as a

whole, and therefore need to be appropriately measured. For example, a system

whose overall computational complexity is a function of the number of regions

produced in the segmentation will clearly be slower if it uses a segmentation

algorithm that is prone to over segmentation. On the other hand, an object

recognition system may be able to handle a certain degree of over segmentation

by combining regions at a later stage in the processing, but may not be able to

handle two important objects being merged due to under segmentation. The

evaluation measure should reflect, as well as possible, the requirements of the

application; when the target application is sensitive to refinement error, it is

prudent to use an evaluation measure that is responsive to such error.

The final subsection briefly outlines a few of the other supervised segmentation

evaluation techniques that have been proposed, which are not discussed in this

section, and provides references to the relevant literature.

3.3.1 Evaluation Metrics Based on Clustering

Jiang et al. [Jiang et al., 2005, Jiang et al., 2006] consider image segmentation to be

a data clustering problem. This perspective opens the door to a host of established

measures developed in the statistics and the machine learning communities.

Jiang et al. propose a suite of measures, originally developed to compare data

clusterings, for use in comparing different segmentations of the same image. They

also introduce a new distance measure based on bipartite graph matching.
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Theory

Clustering is defined as the process of partitioning of a set of objects O =

{o1, . . . , on} into a set of k disjoint subsets C = {c1, . . . , ck} called clusters. If

the set of objects are pixels in an image, a clustering C may be interpreted as being

analogous to a segmentation of O. Evaluating the performance of a segmentation

algorithm against a ground truth can be thought of as comparing two separate

clusterings C1 = {c1, . . . , ck} and C2 = {c1, . . . , cl} of the same scene. There exist

several well known distance measures that can be used to compare two such

clusterings.

One set of distance measures used in clustering is based upon counting the

number of pairs of objects (oi, oj) that lie in the same or different clusters under

C1 and C2. Every pair of objects (oi, oj) falls into one of the following categories:

• T11 = {(oi, oj) : oi, oj are in the same cluster both in C1 and C2}

• T10 = {(oi, oj) : oi, oj are in the same cluster in C1 but not in C2}

• T01 = {(oi, oj) : oi, oj are in the same cluster in C2 but not in C1}

• T00 = {(oi, oj) : oi, oj are in different clusters in both C1 and C2}

Denoting nxx = |Txx| the number of items in each of the above sets, clearly

n00 + n10 + n01 + n11 = n(n− 1)/2 holds, where n is the number of objects (pixels).

Using these sets, the following distance measures can then be defined:

R(C1, C2) = 1− n11 + n00

n(n− 1)/2
(3.1)

J (C1, C2) = 1− n11

n11 + n01 + n10

(3.2)

F(C1, C2) = 1−
√
W1(C1, C2)W2(C1, C2) (3.3)
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where

W1(C1, C2) =
k∑
i=1

n11

|ci|(|ci| − 1)/2
(3.4)

W2(C1, C2) =
l∑

j=1

n11

|cj|(|cj| − 1)/2
(3.5)

The three measures are known as the Rand, Jaccard, and Fowlkes and Mallows

indices [Rand, 1971, Ben-Hur et al., 2002, Fowlkes and Mallows, 1983]. Each is a

measure of segmentation error and lies is in the range [0, 1], where a value of zero

indicates identical clusterings, and larger values indicate larger error.

Another way of measuring the similarity of two clusterings is by determining

how much information is shared between them. One method of computing this

is to employ a concept from information theory known as mutual information.

Consider the clusterings C1 and C2 as random variables that can take on the

discrete values ci ∈ C1 and cj ∈ C2. The probability that a given pixel ox ∈ ci is

given by the marginal distribution function p(ci), and the probability ox ∈ cj is

given by p(cj). The probability that a pixel is in both ci and cj is given by the joint

distribution function p(ci, cj). The mutual information for two clusterings is then

given by:

MI(C1, C2) =
∑
ci∈C1

∑
cj∈C2

p(ci, cj) log
p(ci, cj)

p(ci)p(cj)
(3.6)

To use mutual information as a performance indicator, two strategies have

been proposed for its normalization. The first, known as normalized mutual

information, is due to [Strehl et al., 2000], and is given by:

NMI(C1, C2) = 1− 1

log(k × l)
MI(C1, C2) (3.7)
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where k and l are the number of clusters in C1 and C2. The second, due to Meila

[Meila, 2003], is known as variation of information:

VI(C1, C2) = H(C1) + H(C2)− 2 MI(C1, C2) (3.8)

where H(C) is the entropy of C, H(C) = −
∑

c∈C p(c) log p(c). The NMI measure

is in the range [0, 1]; the VI is bounded by log n where n is the number of data

points, and is also a metric.

Performance indicators can also be derived based on measuring the intersec-

tion of sets from different clusterings. Van Dongen [van Dongen, 2000] proposes

the following index:

D(C1, C2) = 2n−DH(C1 ⇒ C2)−DH(C2 ⇒ C1) (3.9)

where DH(X ⇒ Y ) is the Hamming distance. This measure is closely related

to the Huang-Dom measure described in Section 3.3.3. In fact, the Van Dongen

index is a simple linear transformation of the Huang-Dom (HDI) index, given by:

2n(1−HDI).

Jiang et al. also propose a new index that uses bipartite graph matching to

obtain the best match for each region. Given two segmentations C1 = {ci}, and

C2 = {cj}, a weighted undirected bipartite graph G = (V,E) can be constructed

by adding an edge, weighted by wij = |ci ∩ cj|, for all wij 6= 0. A maximum

weight bipartite graph match is a sub-graph G′ of G constructed by removing edges,

such that each of the nodes ci and cj has at most one incident edge, and
∑
wij

is maximized. Such a graph can be found using a bipartite graph matching

algorithm. Given this graph, the new measure is defined as:

BGM(C1, C2) = 1−
∑
wij
n

(3.10)
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Implementation

The error measures outlined in the previous section can be efficiently computed

using a matrix known as the confusion, or association matrix. Given two segmen-

tations S1 having n regions, and S2 having m regions, then the confusion matrix

M is an n×m matrix such that Mij is equal to the area of intersection of region i

from S1 and region j from S2. Assuming that the regions in each segmentation are

labeled consecutively, then M can be computed efficiently by iterating over each

pixel in the segmentation masks, and incrementing Mij using the corresponding

region labels i and j.

For the Rand, Jaccard, and Fowlkes and Mallows indices, the numbers nxx can be

determined from a confusion matrix as follows:

n11 =
1

2

[
k∑
i=1

l∑
j=i

M2
ij − n

]
(3.11)

n10 =
1

2

[
k∑
i=1

|ci|2 −
k∑
i=1

l∑
j=i

M2
ij

]
(3.12)

n01 =
1

2

[
l∑

j=1

|cj|2 −
k∑
i=1

l∑
j=i

M2
ij

]
(3.13)

n00 =
n(n− 1)

2
− n11 − n10 − n01 (3.14)

When computing the BGMmeasure, the weights wij are given directly by Mij .

The bipartite graph matching problem can be solved efficiently in polynomial time

using the Kuhn-Monkres algorithm [Kuhn, 1955] (also known as the Hungarian

Method).

As the Van Dongen index can be computed directly from the Huang-Dom

measure (discussed later), only the mutual information based measures are con-

sidered here. All that is needed is the joint and marginal probability distribution
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R F J D BGM NMI VI

Esame (Accurate) 0.117 0.197 0.317 0.123 0.215 0.772 1.114
Ediff (Inaccurate) 0.378 0.622 0.792 0.446 0.645 0.943 3.424

Table 3.1: Indicative values for accurate and inaccurate segmentation. Esame is
the mean error found by comparing different segmentations of the same image.
Ediff is the mean error found by comparing different segmentations of different
images.

functions. Again, these can be computed directly from the confusion matrix:

p(ci, cj) = Mij/n (3.15)

p(ci) = |ci|/n (3.16)

p(cj) = |cj|/n (3.17)

Analysis

All of the measures discussed, except VI, are in the range [0, 1], and are defined

as error measures, i.e., values closer to one are inferior. VI is also an error

measure, but is bounded by log n. It is instructive to investigate typical values for

accurate segmentation versus typical values for inaccurate segmentation. Jiang

et al. present a table of these values that they computed experimentally. To find

typical values for accurate segmentation, they compare multiple segmentations

of the same image by different people using each of their error measures. To find

typical values for inaccurate segmentation, multiple segmentations from different

images are compared. Table 3.1 summarizes their findings.

The table indicates that mean error for accurate segmentation (pairs of segmen-

tations of the same scene by different subjects) is lower than the mean error for

inaccurate segmentation (pairs of segmentations of different scenes). Such a result

suggests that the measures can indeed be used to distinguish between accurate

87



and inaccurate segmentation, at least in the average case, and may therefore be

useful for evaluating image segmentation algorithms. To draw more definitive

conclusions requires examining the distribution of the error values. We exam-

ine the distributions of several supervised segmentation evaluation measures in

Chapter 4.

An important question to consider is what measures should be used for a par-

ticular evaluation task. This question is, of course, task-dependent, and measures

should be selected that have characteristics favorable for a given application. In

most cases, several aspects of a segmentation algorithm’s performance must be

considered, both for perception-based and application-based evaluation. Jiang

et al. suggest a linear combination using a selection of the measures to form an

overall performance indicator. There may, however, be significant correlation

between some of the measures, and care should be taken to minimize redundancy,

especially if the measures are being used by machine learning algorithms to find

an optimal parameterization. An appropriate weighting scheme for the linear

combination also warrants investigation.

All of the indices discussed are supervised discrepancy-based measures. They

may be used for either application- or perception-based evaluation. Care should

be taken when using the measures for evaluating perceptual grouping: they are

general measures for comparing two clusterings; they have not been designed

specifically to address what makes a segmentation “good” in a perceptual sense.

Gestalt principles like proximity and closure are not directly assessed by these

measures; a segmentation that appears inaccurate may score higher than expected.

3.3.2 Local and Global Consistency Error

Martin et al. propose two supervised discrepancy based performance measures,

designed to measure how accurately a segmentation algorithm emulates human
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perceptual grouping [Martin et al., 2001]. These error measures are called local

consistency error and global consistency error. They are designed so that when

comparing two different segmentations, if one is a refinement of the other, the

error value should be very small, or even zero. By refinement, they mean that

the segmentations are consistent, but one segmentation has a higher level of

detail than the other. The justification is that although humans do not, in general,

produce identical segmentations of the same scene, often these segmentations

differ only in the level of granularity the person decided to represent; they do

not imply a different perceptual organization of the scene. Martin et al. validate

their proposed measures by showing that the error values found when comparing

different human-generated segmentations of the same scene are lower, on average,

than the error values found when comparing human and machine-generated

segmentations.

Theory

The technique gives two such measures of segmentation error based on a defini-

tion of local refinement error. If R(S, pi) corresponds to the set of pixels (region)

containing pixel pi, then the local refinement error is defined as:

E(S1, S2, pi) =
|R(S1, pi) \R(S2, pi)|

|R(S1, pi)|
(3.18)

Observe that Equation (3.18) is zero only when S1 is a proper subset of S2 at pi,

indicating no refinement error. This measure is not symmetric, so a simple sum-

mation of Equation (3.18) over all pixels is insufficient. To rectify this asymmetry,

the global consistency error (GCE) and local (LCE) consistency error are defined

as:

GCE =
1

A
min

 ∑
all pixels pi

E(S1, S2, pi),
∑

all pixels pi

E(S2, S1, pi)

 (3.19)
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LCE =
1

A

∑
all pixels pi

min{E(S1, S2, pi), E(S1, S2, pi)} (3.20)

where A denotes the area of the segmentation masks, in pixels.

Both measures are in the range [0, 1], where values closer to zero denote a

better segmentation. Note that LCE ≤ GCE for any two segmentations, and that

LCE is tolerant of mutual refinement, whereas GCE is not.

Implementation

Both error measures can be efficiently computed from the confusion matrix (see

Section 3.3.1) as follows. Given a confusion matrix M , the areas of the regions Ri

from S1, and Rj from S2 are given by:

|Ri| =
∑
j

Mij (3.21)

|Rj| =
∑
i

Mij (3.22)

The confusion matrix M and the above region areas can be used to compute

the local refinement error for every pixel (Equation (3.18)); determining the local

and global consistency error from this is trivial.

Analysis

It is important to be able to interpret the local and global consistency errors if

they are to be useful performance indicators. Ideally, we would like to know the

range of values that imply a perceptually accurate segmentation, and the range of

values that imply an inaccurate segmentation.

One way to determine the values that indicate accurate segmentation is to mea-

sure segmentation error between pairs of segmentations of the same scene created

by different human participants (see Figure 3.2). The average of these values is an

indicator of best-case performance values; if a segmentation algorithm achieves
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this level of accuracy, it is effectively emulating human perceptual grouping, at

least as far as we can measure with local and global consistency. Experimental

evaluation by Martin et al. shows that the average error between pairs of segmen-

tations of the same scene created by different people is 11% for global consistency

error, and 7% for local consistency error. Ignoring degenerate cases (discussed at

the end of this section), an automatic segmentation algorithm that can achieve

values equal to or better than these can be considered perceptually accurate. Note

that our own experiments found the slightly different values of 8% and 5%; Jiang

et al. found similar values in [Jiang et al., 2006]. We further investigate the reason

for the discrepancy in Chapter 4.

We would also like to know the range of values that imply inaccurate segmen-

tation. A reasonable way to determine this range is to measure the average seg-

mentation error between segmentations of different scenes, since different scenes,

in general, imply different perceptual groupings. The average error between

segmentations of different scenes gives us an indicator of worst-case performance

values. We found average error values to be 37% for global consistency error, and

29% for local consistency error. Martin et al. found similar values: 39% and 30%.

An automatic segmentation algorithm that gives error values equal to or greater

than these must be considered perceptually inaccurate.

The above discussion begs the question: with respect to the local and global

consistency error, how well do state-of-the-art segmentation algorithms approx-

imate human perceptual grouping? We measured the mean error for several

algorithms and found values between 16% and 36% for global consistency error,

and between 11% and 27% for local consistency error. The figures demonstrate

that segmentation algorithms do indeed perform better than random, but have

yet to approach the 8% and 5% accuracies measured for humans. The results

can also be interpreted as validation that the local and global consistency error
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Figure 3.2: Measuring error-rates values for accurate and inaccurate segmentation.
The left panel shows two segmentations of the same scene by different users.
These are assumed to be mutually accurate. Comparing many such pairs gives a
baseline for accurate segmentation. The right panel shows two segmentations of
different scenes. These are assumed to be mutually inaccurate. Comparing many
such pairs gives a baseline for inaccurate segmentation. Chapter 4 discusses this
technique in more detail.

values are useful for measuring perceptual segmentation error. We discuss these

experiments further in Chapter 4.

The local and global consistency error benchmarks should be interpreted with

care. Both measures are tolerant of refinement, implying two degenerate cases:

1. a segmentation containing a region for each pixel is a refinement of every

segmentation, and

2. every segmentation is a refinement of a segmentation containing a single

region.
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Both cases achieve zero error. As such, the error measures are suited only to

comparing segmentations with a similar number of regions. Also note that

local and global consistency error are often highly correlated. This correlation is

especially significant if one intends to use these measures for automatic training

or parameterization of a segmentation algorithm.

3.3.3 The Huang-Dom Evaluation Measure

The local and global consistency error measures are designed to be tolerant of

refinement. Although this tolerance may be desirable in some circumstances,

especially in the context of perceptual evaluation, sometimes we do not want

to ignore refinement error. Huang and Dom [Huang and Dom, 1995] propose a

performance indicator based on directional Hamming distance that is not tolerant

of refinement; it is therefore more suitable for evaluation in applications when the

degree of under or over-segmentation are important.

Theory

Huang and Dom’s performance indicator, which we denote HD, is designed

to gauge the accuracy of a segmentation against ground truth in terms of the

number of regions, the region locations, and the region sizes. Let S and T be two

segmentations of the same image, and S = {S1, . . . , Sm} and T = {T1, . . . , Tn}

where Si corresponds to the set of pixels in region i from segmentation S. We

associate with each region Si a region Tk such that Si ∩ Tk is maximal. The

Hamming distance between two segmentations is defined as:

DH(T ⇒ S) =
∑
Si∈S

∑
Tj 6=Tk

|Si ∩ Tj| (3.23)

which corresponds to the sum of areas of intersection for all non-maximally

intersecting regions. To make Equation 3.23 symmetric and normalize it in the
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range [0, 1], we sum Hamming distances in both directions and divide by the

twice the image area. The resulting performance measure is defined as:

HD = 1− DH(T ⇒ S) + DH(S ⇒ T )

2A
(3.24)

Huang and Dom define their measure to be a performance indicator instead

of an error measure: values closer to one denote a better segmentation. It is easily

changed to an error measure by removing the subtraction from one in the above

equation, giving the Huang-Dom index:

HDI =
DH(T ⇒ S) + DH(S ⇒ T )

2A
(3.25)

Implementation

Similarly to the local and global consistency errors described in the last section,

the Huang-Dom measure can be efficiently computed using the confusion matrix

M . The directional Hamming distance DH(T ⇒ S) is obtained as follows:

DH(T ⇒ S) =
∑
i

∑
j 6=m(i)

Mij (3.26)

where m(i) is the index of the largest value of row i in M , i.e.

m(i) = arg max
j
Mij (3.27)

The Hamming distance in the other direction DH(S ⇒ T ) can be similarly

computed using MT .
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Analysis

When under or over-segmentation is a concern for an application, the Huang-

Dom measure is an excellent choice for evaluation. It is a stable measure and,

unlike the local and global consistency error measures, it does not suffer from

degenerate cases. If refinement is to be tolerated, however, then the local and

global consistency measures may be more appropriate. Arguably, using this

measure in combination with one of the local or global consistency measures

gives the most information; we take this approach in our evaluation experiment

in Chapter 4.

In the previous section we experimentally investigated some properties of the

local and global consistency error measures: the mean values that imply accurate

and inaccurate segmentation, and the range of values achieved by state-of-the-art

segmentation algorithms. We performed the same experimental investigation for

the Huang-Dom measure. We found that mean error for pairs of segmentations

of the same scene by different people is 12%; the mean error for comparing

segmentations of different scenes is 40%. The average error achieved by state-of-

the-art segmentation algorithms are between 23% and 37%. The experiments are

described in more detail in Chapter 4.

3.3.4 Other Approaches

A number of other supervised segmentation evaluation techniques have been

proposed. Mezaris et al. [Mezaris et al., 2003] propose a benchmark that combines

region boundary accuracy and the degree of over-segmentation. Two separate

measures, the first estimating boundary accuracy using weight functions, and

the second gauging the level of over-segmentation, are additively combined to

produce the final measure. However, the benchmark has some issues. Mezaris

et al. do not attempt to normalize the final measure to a particular range, nor
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do they justify the additive combination of the accuracy and over-segmentation

measures. A linear combination would at least allow the contribution of these

components to be weighted.

Correia and Pereira [Correia and Pereira, 2003, Correia and Pereira, 2006] de-

scribe a method for evaluating the quality of image or video segmentation based

on object similarity and object relevance. Object similarity is computed using a

variety of factors, including: shape fidelity (the number of misclassified pixels),

geometric similarity (the size, position, elongation, and compactness of objects),

internal edge similarity (the average difference of Sobel edges in the region), and

statistical data similarity (the differences in brightness and “redness” values).

In our classification scheme, their method is a hybrid evaluation technique: it

combines discrepancy-based and feature-based measures. Again, the method has

some problems. Their selection of measures, and how they are computed is not

well justified; the “brightness and redness” criteria are particularly conspicuous

in this regard. Furthermore, these values are combined to form the final metric

using an apparently arbitrary weighting scheme.

The segmentation evaluation technique proposed by Usamentiaga et al. is

different to the techniques we have discussed so far [Usamentiaga et al., 2006].

Instead of comparing a pair of segmentations by measuring, in some way, the

degree of overlap between regions, they use the degree of overlap between the

region boundaries. Usamentiaga et al. term this an “empirical edge discrepancy”

technique, to set it apart from the more common region-based discrepancy meth-

ods. The difficulty faced when developing an edge discrepancy error measure is

the inherent uncertainty in the edge positions: since the boundaries of a region

are very narrow, the overlap between two segmentations may be low, even if

the segmentations are perceptually very similar. Put another way, if a boundary

pixel in the machine segmentation lies a single pixel away from a boundary pixel

in the ground truth, then using classical methods we observe false positive and
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a true negative. We would prefer if the penalty for a misclassified boundary

pixel in the machine segmentation was in some way proportional to its distance

to a boundary pixel in the ground truth. Usamentiaga et al. address this by

generalizing some existing segmentation error measures using fuzzy set theory

[Zadeh, 1965]. The result is a set of measures that are robust to small spatial errors

in the boundary pixels. We take a similar approach when developing a boundary

accuracy measure for interactive segmentation evaluation in Chapter 5.

For the interested reader, the survey paper by Zhang [Zhang, 1996] provides an

excellent characterization and overview of several classical evaluation techniques.

A recent special issue of the EURASIP Journal on Applied Signal Processing focuses

on the evaluation of image processing techniques [Wirth et al., 2006], and contains

papers on several of the techniques that we discussed.

3.4 Unsupervised Evaluation

In the previous section we discussed supervised measures for segmentation eval-

uation; in this section we consider unsupervised measures. Supervised evaluation

measures operate by comparing the output of a segmentation with a reference

ground truth. Unsupervised evaluation measures do not use a reference ground

truth. The motivation for unsupervised evaluation is the hypothesis that there are

properties of a segmentation that we can measure to judge segmentation quality,

independent of how well the segmentation matches a specific ground truth. A

simple justification for this hypothesis is that we (human beings, that is) can

often intuitively infer some general properties of a segmentation algorithm by

observing the output, even without knowing the image that generated it. For

example, by observing that the output often has many regions, we may reason

that the algorithm is prone to over-segmentation. Other intuitive conclusions may

be formed by observing that the segmentations an algorithm produces are very
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jagged, or very symmetrical, or that there are usually a few large regions and

many small regions.

We are able to make such inferences by observing the results of the segmen-

tation process, without knowing the content of the images that produced these

results. This restriction is necessary for the justification we gave above: an innate

perceptual grouping is unavoidable if we actually observe the image. It implies

a kind-of mental ground truth, and it could therefore be argued that we are, in

fact, performing supervised evaluation. The restriction is unnecessary when

developing measures and algorithms for unsupervised segmentation evaluation;

an evaluation measure having access to the generating image does not imply a

ground truth.

The objective of an unsupervised evaluation technique is, therefore, to mea-

sure the quality of a segmentation given only the segmentation itself, and the

corresponding generating image. Since we have less information, the task is

harder. Unsupervised evaluation techniques do, however, have some distinct

advantages.

First, since perceptual grouping is inherently hierarchical, for a scene of rea-

sonable complexity, every ground truth is fundamentally ambiguous. Some

supervised evaluation measures, such as the local and global consistency error

measures discussed in Section 3.3.2, work around this using refinement tolerance.

Unsupervised techniques remove the need for ground truth completely, instead

focusing on general properties of the segmentation, as opposed to how well it

matches a particular reference.

Second, and more importantly, the capacity to measure the quality of a seg-

mentation without a reference implies an fundamental understanding of human

perceptual grouping. When developing practical segmentation algorithms, one is

constrained to find solutions in the context of what is computationally feasible.

We have a tendency to approach the problem bottom-up; to focus on workable
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solutions that use efficient algorithms; to focus effort on the means, rather than

the ends. When developing an unsupervised evaluation measure, however, we

are concerned with how we can assess segmentation quality. This shifts focus

toward formalizing the objective of the image segmentation problem, and away

from the details of how exactly it is to be implemented. It is, in essence, the core of

the image segmentation problem: if we can specify exactly what criteria make a

segmentation good, we can then turn our attention to finding specific algorithms

to optimize this criteria.

Finally, most segmentation algorithms have one or more parameters that influ-

ence the output; unsupervised evaluation measures can be used to automatically

select good values for these parameters. For instance, the statistical region merg-

ing algorithm discussed in Section 2.4.2 depends on a parameterQ, which controls

the scale of the segmentation. If we can compute a measure of segmentation qual-

ity M without a ground truth reference, then we can automatically choose a good

value of Q for a particular image by searching for the value of Q that optimizes

M .

From our discussion it is clear that an unsupervised segmentation evaluation

measure is a formal conjecture on the objective of image segmentation. In almost

all applications this objective is extremely difficult to formalize. This is particularly

true if the objective is perceptual grouping. It is unsurprising, therefore, that

unsupervised segmentation evaluation measures have achieved limited success.

In the remainder of this chapter we review some of the more successful measures.

3.4.1 Entropy Based Evaluation

Zhang et al. [Zhang et al., 2004] propose an unsupervised evaluation measure

based on information theory. The method uses entropy to measure both the

pixel uniformity within a region, and the complexity of the overall partitioning.
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Their method is appropriate either for comparing different parameterizations

of a segmentation algorithm, or for comparing the performance of different

segmentation algorithms.

Theory

The function of any unsupervised evaluation measure is to take image I and a

segmentation S = {R1, . . . Rn} and produce a measure M that indicates how good

the segmentation is. M is usually defined as a measure of segmentation error:

values closer to zero indicate good segmentation and larger values indicate the

opposite.

To produce a useful measure M it is necessary to formalize what makes a

segmentation good. The objective of image segmentation is usually informally

specified as partitioning an image into regions that are, in some sense, homoge-

neous. This definition is loose and problematic. In particular, the segmentation

that has a single pixel for each region is perfectly homogeneous, regardless of the

criteria. Most unsupervised evaluation measures therefore attempt to balance

region homogeneity with either (1) the number of regions, or (2) a measure of the

differences between adjacent regions.

Zhang et al. measure region homogeneity using the concept of entropy. Let

f(j) be a mapping from pixel j ∈ I to a feature point describing the pixel at j,

and let Vi be the set of all values that f(k) can take on for all k ∈ Ri. If Ni(x) is the

number of pixels in region i that have the value x, the entropy of region i is given

by:

H(Ri) = −
∑
x∈Vi

Ni(x)

|Ri|
log

Ni(x)

|Ri|
(3.28)
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From this we define the expected region entropy for an image I as a weighted

sum of the individual region entropies:

Hr(I) =
n∑
i=1

|Ri|
|I|

H(Ri) (3.29)

A region with a large number of equal feature points requires fewer bits to

encode: it has lower entropy. The value of expected region entropy will be smaller

for images that contain regions with many equal feature points. Consequently, if

an image contains many small regions, it is more likely to have a lower expected

region entropy; when each pixel is its own region, then expected entropy is zero. It

is therefore necessary to adjust expected region entropy using some other measure

to offset this over-segmentation bias.

While the expected region entropy decreases with the number of regions, the

number of bits required to specify the region to which each pixel belongs increases.

This is called the layout entropy, and is given by:

Hl(I) = −
n∑
i=1

|Ri|
|I|

log
|Ri|
|I|

(3.30)

The layout entropy is biased toward under-segmentation whereas the expected

region entropy is biased toward over-segmentation. Combining them can be used

to balance the evaluation measure. Zhang et al. propose an additive combination.

Their final entropy-based evaluation measure E is given by:

E = Hr(I) +Hl(I) (3.31)

Analysis

In their paper, Zhang et al. compare their proposed benchmark to its predecessors,

including the F measure by Liu and Yang [Liu and Yang, 1994], and the F ′ and Q
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measures by Borsotti et al. [Borsotti et al., 1998]. All of these measures are based

on balancing region homogeneity, determined using square color differences, with

the area and number of regions. All are based entirely on empirical analysis, and,

as demonstrated in [Zhang et al., 2004], all have strong bias. In contrast, Zhang et

al.’s measure has a solid theoretical foundation. It is also shown to be less biased

toward under or over-segmentation than the F , F ′, and Q measures.

Zhang et al. continue their examination of unsupervised segmentation evalua-

tion techniques in a later paper [Zhang et al., 2008]. In this work they compare

a range of unsupervised evaluation techniques, investigating measure bias for

under or over-segmentation, and evaluating how often each measure can differ-

entiate between machine segmentation and human perceptual grouping. In the

latter test, Zhang et al.’s measure significantly outperformed the other measures,

correctly determining whether a segmentation was due to a human or a machine

in 82.1% of tests.

In the same paper, Zhang et al. observe that when segmenting an image,

people often extracted objects composed of several smaller regions because of the

hierarchical nature of perceptual grouping. This often leads to a segmentation

in which regions have several color modes. Because their measure is based on

entropy, this is less problematic: a region composed of fewer colors requires less

bits to encode and will score better.

The method implies an interesting view of segmentation as a method of

simplification. In this context, simplification is to be understood in an information

theoretic sense: reducing the number of bits required to represent a segmentation.

This perspective agrees with the Gestalt principle of Pragn̈anz: human beings

perceive reality in its simplest possible form. It is also in line with Attneave’s

[Attneave, 1954] interpretation of the Gestalt grouping principles: that they are

used by the mind to eliminate the inherent redundancy in visual forms.
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Figure 3.3: Figures (a), (b), (c), and (d) each contain two regions of eight pixels.
Each has the same layout entropy.

Zhang et al.’s measure also has some limitations. First, the layout entropy

component does not place any restrictions on spatial layout of the segmentation;

every segmentation with regions of equal number and area will give the same

value for layout entropy. Figure 3.3 illustrates this problem; intuitively we would

think that Figure 3.3 (d) is more complex than Figure 3.3 (a). They both, however,

have the same layout entropy.

The second disadvantage is that entropy treats feature points as nominal

values. A luminance value of 200 is not considered any closer to a luminance value

of 201 than it is to 10; it is simply another value that needs to be encoded. This has

two ramifications. First, the measure depends on the number of luminance values

in an image, rather than how many luminance values are perceptually significant.

Second, the measure is difficult to extend to multichannel feature spaces or feature

spaces with real valued components, since the number of possible values a pixel

can assume increases dramatically. It is possible to handle such feature spaces by

quantizing or binning the feature values in advance, though such quantization is

likely to have a significant effect on the measure.
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3.4.2 Visible Color Distance Based Evaluation

Chen and Wang propose an unsupervised evaluation measure based on perceived

color distances. They define two measurements: intra-region visual error, and

inter-region visual error [Chen and Wang, 2004].

Intra-region visual error measures the average homogeneity of each region

in the image. It does this by counting the number of pixels whose color is per-

ceptually different from the mean color of the region to which the pixel belongs.

Whether two colors are perceptually different is determined by using Euclidean

distance in CIELAB space. Inter-region visual error measures the average differ-

ence between neighboring regions in a segmentation. It is measured by counting

the number of pixels on the boundary of each region that have an average region

color perceptually indistinguishable from the average region color of an adjacent

region. An additive combination of intra-region visual error and intra-region

visual error produces their final measure.

Theory

Chen and Wang define intra-region visual error as follows. Let f(x) be a function

that gives the CIELAB color of pixel x in the image I . Further, let f̂(x) to be

a function that gives the average CIELAB color of the region containing x in a

segmentation S of I . The intra-region visual error for the segmentation S of I is

defined as:

Eintra =
1

n

∑
x∈I

u
(
‖f(x)− f̂(x)‖ − t

)
(3.32)

where n is the number of pixels in I , and u(s) is a step function defined to be

one if s > 0, and zero otherwise. The t value is a tolerance threshold for color

differences; Chen and Wang suggest t = 6.
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Chen and Wang define inter-region visual error as:

Eintra =
1

cn

∑
r1∈S

∑
r2∈S\r1

wr1,r2u
(
t− ‖f̂(r1)− f̂(r2)‖

)
(3.33)

where r ∈ S is a region in the segmentation S and f̂(r) gives the average color of

region r. wr1,r2 is the length of the join between region r1 and region r2. The value

c is a normalization constant that Chen and Wang empirically set to 1/6.

Analysis

Chen and Wang attempt to introduce some perceptual significance into their un-

supervised evaluation measure by using visible color differences in a perceptually

uniform color space. This effort is commendable; perceptual significance had

been ignored by many previous measures.

The measures imply some questionable assumptions, however. First, the

measures assume that a region has a single color mode. This assumption is

probably not true; Zhang et al. observed that perceptual grouping often creates

regions that have several color modes [Zhang et al., 2008]. Second, the measures

assume that the average color of a region is perceptually significant, and that color

differences can be applied between these averages in a perceptually meaningful

way. Finally, the normalization constant in the inter-region visual error measure

is conspicuously unjustified; the authors state they determined it empirically, but

do not state how.

3.4.3 Other Approaches

A few other unsupervised segmentation evaluation techniques have been pro-

posed; for the interested reader, the recent survey paper by Zhang et al. provides

an excellent overview of the state-of-the-art [Zhang et al., 2008].
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3.5 Discussion

Although many algorithms for image segmentation have been proposed, it is by

no means a solved problem. To advance the state-of-the-art we must be able to

determine if a new algorithm, or a modification of an existing one, does indeed

constitute an improvement. Segmentation evaluation techniques help us to do

this by providing a means of comparing segmentation algorithms with each other,

and with human perceptual grouping.

An effective segmentation evaluation technique can have tremendous ben-

efits. It can potentially give insight into what constitutes a good segmentation

algorithm. It can allow researchers to add weight to an argument that a new seg-

mentation algorithm is better than the existing technology. It can allow application

developers to choose the best algorithm for their system.

Supervised segmentation evaluation methods operate by comparing a seg-

mentation with an existing reference segmentation known as a ground truth.

If the ground truth is created by a person, supervised evaluation can be used

to evaluate how well an image segmentation algorithm approximates human

perceptual grouping. The approach has limitations, however. Perceptual group-

ing is hierarchical; to evaluate a segmentation algorithm we must provide some

tolerance to refinement. Unfortunately, introducing such tolerance often means

we can no longer evaluate the level of under or over-segmentation.

A potentially better way to evaluate a machine segmentation against a percep-

tual grouping is to directly compare the grouping hierarchies. Most segmentation

algorithms can be modified to produce a tree representing the different levels of

detail in the segmentation. An interesting notion would be to compare this tree

with a similar tree created by a person. A hierarchical dataset for human percep-

tual grouping has not yet been investigated, nor have methods for measuring

similarity between grouping trees.
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Unsupervised methods evaluate segmentation without using a ground truth.

This is more difficult, but has many potential benefits. Since it does not use a

reference segmentation, it avoids the previously discussed issue of ambiguous

ground truth. It also means unsupervised evaluation can be used to automatically

select a good parameterization for an algorithm. It shifts focus from implementa-

tion and algorithmic concerns onto the objective of segmentation; the capacity to

measure the quality of a segmentation without a reference implies a fundamental

understanding of human perceptual grouping.

The survey paper by Zhang et al. [Zhang et al., 2008] demonstrates that

there is still much work to be done in defining useful unsupervised evalua-

tion measures. In particular, it shows that most existing measures are inca-

pable of reliably distinguishing between segmentations created by humans and

those created by machines. The paper further shows that existing unsupervised

measures often disagree with human judgement when comparing the perfor-

mance of different machine segmentations. Some unsupervised measures do,

however, appear to be useful for choosing a good parameterization of a seg-

mentation algorithm; the Q measure by Borsotti et al. [Borsotti et al., 1998] is

shown to be particularly effective. Recent efforts that combine unsupervised

segmentation evaluation measures using machine learning also appear promising

[Zhang et al., 2005, Zhang et al., 2006, Zhang et al., 2008].

In comparison to image segmentation, segmentation evaluation is in its in-

cipience. Nevertheless, it has recently seen some significant advances. There

are now several useful evaluation measures available for supervised segmen-

tation evaluation, such as the measures described in: [Huang and Dom, 1995],

[Martin et al., 2001], [Jiang et al., 2005], and [Jiang et al., 2006]. Measures for un-

supervised evaluation have also been developed (such as: [Liu and Yang, 1994],

[Borsotti et al., 1998], [Zhang et al., 2004], and [Chen and Wang, 2004]), and their

limitations have been investigated [Zhang et al., 2008]. Perhaps more signifi-
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cantly: datasets containing images and multiple ground truth segmentations of

these images by different people have been made publicly available. The dataset

due to Martin et al. [Martin et al., 2001] is ideal for supervised evaluation of

region segmentation algorithms.

In spite of these advances, there remains considerable work to be done. Un-

supervised measures need improvement; they cannot yet reliably distinguish

human from machine segmentation, and many exhibit strong bias to under or

over-segmentation. High quality datasets and measures for supervised evaluation

have been developed, but they have not yet been widely applied for evaluating the

state-of-the-art. Datasets and measures for evaluating interactive segmentation

have not been investigated.

In the remainder of this thesis we will address some of these issues. The next

chapter addresses evaluating well-known automatic segmentation algorithms

using existing evaluation measures. Chapter 5 and 6 investigate interactive

segmentation evaluation.
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Chapter 4

Evaluating Automatic Segmentation

4.1 Introduction

In this chapter we use supervised segmentation evaluation measures to evalu-

ate the performance of four popular automatic region segmentation algorithms.

Our objective is to use existing tools and datasets to determine how well these

algorithms approximate human perceptual grouping.

There are two reasons for carrying out this kind of evaluation. The first is

to gain a better understanding of existing supervised segmentation evaluation

measures. We would like to develop an understanding of the range of these

measures, in particular, values that indicate accurate segmentation, and values

that indicate inaccurate segmentation. We would also like to determine which, if

any, of the existing supervised segmentation evaluation measures are most effec-

tive at evaluating a segmentation algorithm’s ability to approximate perceptual

grouping.

The second reason to run this kind of evaluation is to determine how ac-

curately existing, but previously unevaluated, segmentation algorithms are at

approximating human perceptual grouping. Ideally, we would like to create a

ranked list of segmentation algorithms, ordered by performance. Knowing which
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algorithms perform best not only equips us better to choose an appropriate one

when developing a system, but also gives insight into which types of algorithms

and strategies give the best results for perceptual grouping.

The remainder of this chapter is organized as follows. Section 4.2 briefly de-

scribes each of the algorithms that we selected for the evaluation. Section 4.3

discusses the various supervised evaluation measures that we choose, and Sec-

tion 4.4 describes the ground truth dataset. Section 4.5 gives an overview of a

software framework for image and video segmentation that we developed and

used for the evaluation. Section 4.6 discusses the evaluation method, evaluation

objectives, and statistical considerations. Section 4.7 describes the experiments

and presents the results and implications of same. Finally, Section 4.8 discusses of

our findings and outlines some recommendations.

4.2 Algorithms

We selected four algorithms for the experiment. The algorithms are representative

of the state-of-the-art, yet had not previously been evaluated using supervised

evaluation techniques. Further, each is based on one of the techniques described

in Section 2.4. The following is a brief overview of the algorithms.

RSST with Syntactic Visual Features

The algorithm due to Adamek et al. [Adamek et al., 2005] is based on the recursive

shortest spanning tree (RSST) segmentation algorithm [Morris et al., 1986]. In-

stead of grouping pixels based only on intensity, the algorithm first groups pixels

using color differences in CIELUV space, then further groups these regions using

syntactic visual features [Bennstrom and Casas, 2004]. Since it is RSST-based, it

can be reformulated as a region adjacency graph algorithm (Section 2.4.1).
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MRSST RSST with syntactic visual features [Adamek et al., 2005]
SRAG Spatiotemporal region adjacency graphs [Galmar and Huet, 2006]
MSHIFT Optimized mean shift segmentation [Bailer et al., 2005]
SRM Statistical region merging [Nock and Nielsen, 2004]

Table 4.1: Evaluated algorithms and their abbreviated names

The syntactic features represent geometric properties of the regions and their

spatial configuration. They are used to model some of the more abstract principles

in the Gestalt theory of perceptual grouping. Adamek et al.’s algorithm uses three

syntactic features: compactness, regularity, and inclusion.

The algorithm begins by forming an initial over-segmentation using a merging

predicate based on Euclidean distance in CIELUV space. Next, the algorithm

switches to a color model designed to better handle larger regions. This color

model allows for outliers, and handles gradients using the boundary melting

approach [Sonka et al., 1998]. At this stage the syntactic visual features are also

incorporated. These are designed to favor smooth, convex regions, similar to

those found in natural scenes.

Spatiotemporal Region Adjacency Graphs

The spatiotemporal region adjacency graph algorithm, proposed by Galmar

and Huet [Galmar and Huet, 2006], is another variant of the region adjacency

graph algorithm. The algorithm includes several modifications of the basic

region adjacency graph strategy, mostly targeted at producing temporally co-

herent regions when segmenting video. The interested reader is referred to

[Galmar and Huet, 2006] for more details.
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Optimized Mean-shift Segmentation

This algorithm, proposed by Bailer et al. [Bailer et al., 2005], is based on the mean-

shift segmentation algorithm described in Section 2.4.4. It includes three specific

modifications, intended to reduce the algorithm’s computational complexity and

improve its temporal stability. We will only discuss one of these modifications;

the others pertain to using the algorithm on video.

The first modification improves the performance of the algorithm by perform-

ing a moderate quantization of the CIELUV color space before segmentation.

Bailer et al. state that this quantization does not significantly effect the quality of

the segmentation, and results in a sparse feature space in which nearby colors

have been grouped. The modified feature space effects a significant reduction

in computational complexity, as less values are processed when computing the

mean-shift vector.

The final algorithm we evaluate is the statistical region merging algorithm.

This is exactly the algorithm described in Section 2.4.2, so we will not discuss it

further here. Table 4.1 assigns more concise names to each of the algorithms. We

use these abbreviations in the remainder of this chapter.

4.3 Measures

We selected six supervised evaluation measures for the evaluation; each was

discussed in Section 3.3. The first two measures we chose are the local consistency

error and global consistency error; both were designed specifically for this kind of

evaluation. Neither measure is sensitive to refinement error. The next measure we

selected is the Huang-Dom index, as it is more sensitive to this type of error, thus

better at detecting under-segmentation and over-segmentation. The last three

measures we selected evaluate cluster similarity: the Jaccard index, the Rand
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LCE Global consistency error [Martin et al., 2001]
GCE Local consistency error [Martin et al., 2001]
HDI Huang-Dom index [Huang and Dom, 1995]
FMI Fowlkes and Mallows index [Fowlkes and Mallows, 1983]
JI Jaccard index [Ben-Hur et al., 2002]
RI Rand index [Rand, 1971]

Table 4.2: Evaluation measures and their abbreviated names

index, and the Fowlkes and Mallows index. All three are based on the notion of

counting pairs, which we discussed in Section 3.3. As they are fundamentally quite

similar, examining their statistical properties and the correlations between them

may provide insight into their usefulness. Table 4.2 assigns each of the measures

an abbreviated name.

4.4 Dataset

The next step is to select an appropriate dataset and ground truth for the evalua-

tion. We used the Berkeley segmentation dataset [Martin et al., 2001]. The dataset

comprises 300 images of natural scenes and multiple ground truth segmentations

per image. The ground truth segmentations were generated by 28 human partici-

pants, each image being segmented by between four and nine different people,

giving an average of 5.44 ground truths per image (σ = 0.7439, median = 5).

The images in the dataset are divided into two collections: test and train.

The test collection consists of 100 images, and the train collection comprises

the remaining 200. The train images are intended to be used for segmentation

algorithms that require a training phase, or require parameter tuning. Since we

do not perform any such training or parameter tuning, we use both collections

for evaluation.
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Ground-truth segmentations (4-9 per image)

User 15User 10User 7User 4User 3User 1

e

x 300

Figure 4.1: The Berkeley segmentation dataset.

The dataset contains a second set of ground truth based on grayscale ver-

sions of the images. All of the segmentation algorithms we evaluate use color

information in some way; we therefore use only the color ground truth in our

experiments.

Figure 4.1 shows an image from the Berkeley segmentation dataset, along with

graphical representations of the corresponding ground truth segmentations. The

dataset contains a total of 1633 full color segmentations; Figure 4.2 illustrates five

more example images and their corresponding segmentations.

4.5 Software

The experiment requires us to segment each image in the dataset using all four

of the algorithms being evaluated. Since we were also participating in TRECVid

[Wilkins et al., 2007] at the time, and intended to use segmentation in our multime-
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Figure 4.2: Sample images and segmentations from the Berkeley segmentation
dataset

dia retrieval engine, it made sense for us to develop a tool that would allow us to

more easily run large segmentation tasks, with multiple segmentation algorithms,

and visualize the results.

We developed the K-Space video region segmentation tool to provide a unified

interface for automatic segmentation of images and video sequences. Figure 4.3

shows a screenshot of the application’s graphical user interface. We now briefly

review the features and architecture of the software.

4.5.1 Features

The following are the main features of the platform:
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Figure 4.3: Screenshot of the K-Space video region segmentation tool.

Formats: The framework provides an interface for seek-able, frame accurate

video decoding. The built in video decoder supports many video formats, includ-

ing: MPEG-1, MPEG-2, and MPEG-4; Motion-JPEG; Quicktime; and WMV. Also

included is an image decoder capable of decoding both individual images and

sequences of video key-frames transparently. The image decoder supports a large

range of image formats, including: JPEG, PNG, PNM, GIF, and BMP.

Region maps: The framework encodes segmentations as region maps, using an

efficient, portable format, based on a subset of PNG. This allows segmentation of

video sequences with minimal storage overhead.

User interface: The user interface provides: automatic decoder selection, con-

current browsing of video frames and segmented images, range segmentation,

useful visualization methods, and a simple interface for selecting algorithms and

their parameters.
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Application Layer

External API

Plugins

Graphical User Interface Batch Processing Interface
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Segmenta"on Algorithm
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Region Codec
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Sequence 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Image 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Video 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Region CodecMRSST
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Segmenta"on Context U"li"es

Figure 4.4: Software architecture model for the K-Space segmentation tool

Batch processing: The batch processing interface facilitates command line seg-

mentation of large image or video collections. All the parameters that can be

selected in the graphical user interface can be written to a parameter file.

4.5.2 Architecture

The framework is arranged into three layers. The application layer hosts the

user interface, user preferences, batch processing interface, and integration logic.

The encoding and decoding of images and video sequences and segmentation

are all handled by the plugin layer. The application layer communicates with

these plugins using the middle later: the external API. Figure 4.4 illustrates the

architecture.
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Application: The application layer hosts the graphical user interface and the

batch processing interface. The user interface provides a convenient way to seg-

ment images and video, select algorithm parameters, browse video frames, and

visualize segmentation output. The batch interface is designed for off-line pro-

cessing of larger datasets; the segmentation operations are completely configured

using a parameter file. If desired, the output can be visualized using the user

interface after processing.

Segmentation: To integrate additional segmentation algorithms, developers

must implement a segmentation algorithm interface. The application uses this

interface to configure and run each segmentation algorithm. At runtime, a config-

uration file is read to determine which segmentation algorithm implementations

are available, and they are automatically added to the applications user interface.

The application carries out a segmentation of a video frame by frame. For

each frame, the selected segmentation algorithm is passed a segmentation context

object. This object contains all the information necessary to perform the segmen-

tation: the current frame and index, the frame decoder object, the region map

object, and an interface for retrieving previously segmented frames. If, instead of

a video sequence, a static image is being segmented, this image appears to the

segmentation algorithm as a video sequence consisting of a single frame. This

design allows each segmentation to be a single operation, while also providing

enough contextual information for segmentation algorithms that require previous

segmentations or frames. It simplifies the integration of static image segmentation

algorithms, but provides enough information for algorithms that operate in the

temporal domain.

Decoders: A single interface is provided for both image and video decoders.

This allows a segmentation algorithm to handle single images, multiple images,
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and video sequences in the same way. The application bundles a comprehensive

set of decoders; the plugin architecture ensures additional decoders can easily be

added.

The built-in video decoder provides frame-accurate seeking and decoding

of many video formats. It is based on the FFMPEG audio visual codec library,

which supports most popular video formats. Unfortunately, frame-accurate video

seeking and decoding from arbitrary frame indices is not natively supported by

the FFMPEG library. This functionality is essential for video segmentation. As

such, we added an additional layer to preprocess the video and index its frames

before decoding. The built-in image decoder is based on the JAI Image IO library

and also supports a comprehensive set of formats.

Segmentation Representation: We use the PNG format for encoding segmenta-

tions as region label maps. For segmentations containing fewer than 256 regions,

we use the 8-bit grayscale format; for segmentations containing more than 256

regions, we use the 16-bit grayscale format. The region storage codec therefore

supports a maximum of 216 regions.

Experiments demonstrated a high compression rate for most region maps. A

typical segmentation of 10 seconds of MPEG-1 video (resolution 352×240, frame

rate 29.97 fps) requires less than 500 KB of storage. Aside from high compression,

the format has some additional advantages: it can be directly opened in most

imaging applications, and easily visualized by stretching the contrast between

the regions. There are also various freely available software libraries for decoding

these images.
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4.6 Method

This section will consider in more detail the research questions we aim to answer,

and how we plan to answer them. The experiment has two objectives. The

first objective is to examine the characteristics of the evaluation measures. The

vital question to answer here is: which, if any, of the evaluation measures are

useful for evaluating a segmentation algorithm’s ability to emulate perceptual

grouping? To answer this question, we must first determine base rates for each

evaluation measure. Specifically, for each measure, we would like to estimate:

(1) the base rate for accurate segmentation, and (2) the base rate for inaccurate

segmentation. If both rates are reasonably stable (unimodal, with a small standard

deviation), and the difference between them is statistically significant, then there

is evidence to support the hypothesis that a measure can indeed differentiate

between accurate and inaccurate segmentation.

Of course, we must define precisely what is meant by accurate and inaccurate to

estimate these base rates. This is difficult; we avoid the problem by making some

reasonable assumptions. First, we assume that humans always create perceptually

accurate segmentations. This might not strictly be true, but the assumption is

justified for two reasons: (1) we must expect the ground truth to be reasonably

accurate, otherwise any form of supervised evaluation is spurious, and (2) av-

eraging over multiple ground truths should suppress exceptional inaccuracies.

Second, we assume that the images in the database are sufficiently different in

content to result in different perceptual groupings. Again, this might not be true

in every case, but we expect it is true on average.

Accepting the first assumption implies that two separate segmentations of

the same scene created by different people are mutually accurate. Accepting the

second implies that segmentations of different scenes are mutually inaccurate,

regardless of whether they are created by the same person. Therefore, given a
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large enough sample, we can estimate the base rate of accurate segmentation

for a given measure by comparing pairs of segmentations of the same scene by

different people. We can estimate the base rate for inaccurate segmentation by

comparing pairs of segmentations of different scenes.

Another question we would like to address is: how correlated are the evalua-

tion measures? If two measures are highly correlated, this suggests they measure

similar things, and therefore using both may be redundant. Determining the

redundancy among the measures is especially important if they are to be used

for training: significant redundancies cause bias in some machine learning algo-

rithms.

The second objective is to evaluate each of the four segmentation algorithms

and rank them according to how well they match human perceptual grouping.

This objective is dependent on the first: if none of the measures are demonstrated

to be effective for evaluating how well a segmentation corresponds to perceptual

grouping, then it makes little sense to use them for evaluation. Assuming useful

measures are found, we would like to answer the following questions:

1. How accurate, on average, are each of the algorithms at approximating

human perceptual grouping?

2. Are the algorithms significantly better than random? Are they significantly

worse than humans?

3. How do the algorithms compare with one another? Do any of the algorithms

significantly outperform the others?

To address these questions, we first need to segment each image in the dataset

using all four segmentation algorithms, then compare each segmentation with all

the available ground truth using the appropriate evaluation measures. For each

machine segmentation there are two potential ways to measure accuracy.
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The first assumes that a machine segmentation is accurate if it matches any

segmentation performed by a human. From this viewpoint, we measure accuracy

as follows. Let I be an image, M be a machine segmentation of this image, and G

be the set of ground truth segmentations for I . Assume a measure E(M,Gi) that

describes the error between M and Gi ∈ G. The accuracy of a segmentation is the

best match with any corresponding ground truth segmentation, i.e., the match

that gives the minimum error:

Ebest(M,G) = min
Gi∈G

E(M,Gi) (4.1)

The premise of the above measure appears reasonable, but there are some

subtleties. Recall that we plan to determine the base rate for accurate segmenta-

tion by finding the mean error between pairs of segmentations of the same scene

created by different subjects. Similarly, we shall determine the base rate for inac-

curate segmentation as the mean error over a sample of segmentations of different

scenes. Both base rates are therefore average error measures; comparing these

with a minimum (i.e., Equation (4.1)) overestimates the comparative accuracy of a

machine segmentation.

The second potential way to measure accuracy against multiple ground truths

is to use the mean. The mean gives a more conservative estimate, and is di-

rectly comparable to the base rates. It has the added advantage of being more

robust: adding additional ground truth for an image will not affect the estimate

as dramatically as the minimum potentially can. The mean error for a machine

segmentation is given by:

Emean(M,G) =
1

|G|
∑
Gi∈G

E(M,Gi) (4.2)
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In the above we define accuracy in terms of error: small error denotes high

accuracy. Since all our measures are in the range [0, 1], we can convert an error

measure to an accuracy measure, or an accuracy measure to an error measure, by

subtracting it from one. For consistency, in the remainder of this chapter we use

error measures.

4.7 Experiments

We carry out two separate experiments. The objective of the first experiment is to

examine the statistical properties of the six selected evaluation measures, and to

determine if they can differentiate between accurate and inaccurate segmentation.

The objective of the second experiment is to use these measures to evaluate how

accurately the four selected segmentation algorithms approximate perceptual

grouping.

4.7.1 Experiment 1: Examining the Evaluation Measures

Our first task is to determine the base rates for accurate and inaccurate segmenta-

tion. According to the assumptions we outlined in the previous section, we can

determine base rates for perceptually accurate segmentation by comparing pairs

of segmentations of the same scene created by different subjects. Similarly, we

can determine the base rates for inaccurate segmentation by comparing pairs of

segmentations of different scenes created by either the same or different subjects.

The Berkeley segmentation dataset contains 3711 pairs of segmentations of

the same scene created by different subjects. To guarantee maximally significant

results, we determine the base error rate for accurate segmentation by evaluating

each error measure over all of these pairs. We define the base error rate for
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E min max median mean sd skew kurtosis

GCE .00096 .42904 .05872 .07966 .06431 1.56270 2.62453
LCE .00095 .24805 .04089 .04995 .03386 1.46581 2.73997
HDI .00080 .42290 .10623 .12175 .08330 0.72115 -0.09587
FMI .00081 .78288 .15360 .19557 .15855 0.88897 0.08252
JI .00162 .95123 .27442 .31617 .22588 0.54253 -0.73274
RI .00160 .75883 .06872 .11892 .12988 2.04665 4.46706

Table 4.3: Statistical properties for pairs of segmentations of the same scene.

E min max median mean sd skew kurtosis

GCE .00782 .72880 .39262 .37548 .13624 -0.46685 -0.40064
LCE .00393 .66759 .30660 .29506 .11325 -0.30871 -0.34907
HDI .02826 .66046 .41059 .39953 .08546 -0.79052 1.27354
FMI .05585 .82944 .60239 .58616 .11629 -0.93181 1.48339
JI .10773 .96207 .76960 .75217 .10686 -1.57877 4.69401
RI .09187 .92665 .35596 .38018 .14555 0.73450 0.14005

Table 4.4: Statistical properties for pairs of segmentations of different scenes.

accurate segmentation as the average over all pairs. Table 4.3 gives the computed

means and other statistical properties of accurate segmentation for each measure.

The next step is to determine the base rates for inaccurate segmentation. We

compute these using a random sample of pairs of segmentations of different

scenes from the dataset. There are many more of these pairs than there are pairs

of segmentations of the same scene. To simplify the statistics, and ensure no

bias is introduced, we use a sample size equal to the sample size we used to

determine the base rates for accurate segmentation. The base rate for inaccurate

segmentation is then defined as the mean error over our random sample. Table

4.4 gives the computed means and other statistical properties for inaccurate

segmentation.

Histogram plots for accurate and inaccurate segmentation are shown in Fig-

ure 4.5. The green bars correspond to pairs of segmentations of the same scene
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Figure 4.5: Histogram plots of accurate and inaccurate segmentation for the six
evaluation measures. The green bars represent accurate segmentation: pairs of
segmentations of the same scene by different subjects. The red bars represent
inaccurate segmentation: pairs of segmentations of different scenes by the same or
different subjects. The sample size for both accurate and inaccurate segmentation
was 3711.
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accurate segmentation inaccurate segmentation

µlow mean µhigh µlow mean µhigh

GCE 0.0777 0.0797 0.0818 0.3699 0.3738 0.3775
LCE 0.0489 0.0500 0.0511 0.2908 0.2941 0.2972
HDI 0.1191 0.1217 0.1244 0.3971 0.3996 0.4019
FMI 0.1905 0.1956 0.2006 0.5831 0.5865 0.5897
JI 0.3089 0.3162 0.3233 0.7496 0.7527 0.7556
RI 0.1148 0.1189 0.1232 0.3770 0.3811 0.3852
LHE 0.0842 0.0859 0.0875 0.3442 0.3468 0.3494

Table 4.5: Confidence intervals for the mean error of accurate and inaccurate
segmentation, computed using bootstrapping (BCa method, 5,000 samples, p =
0.05).

by different subjects (accurate segmentation); the red bars correspond to pairs

of segmentations of different scenes (inaccurate segmentation). The dashed blue

lines depict the mean error for accurate and inaccurate segmentation.

It is clear from the histograms in Figure 4.5, and the values in Table 4.3 and 4.4,

that all the measures have distinct distributions for accurate segmentation versus

inaccurate segmentation. We confirmed this using the Kolmogorov-Smirnov test,

which rejects the null-hypothesis (i.e. the distributions are the same) in each case

with high probability (p < 10−12).

To determine if the mean values for accurate and inaccurate are significantly

different, we need to estimate the confidence intervals. Unfortunately, the values

of the error measures are not normally distributed, for either accurate or inaccurate

segmentation. We tested this using the Shapiro-Wilks test, which rejects the null

hypothesis with p < 10−8 for all the measures: an unsurprising result given the

skewness and kurtosis values. This non-normality implies we cannot use the

standard parametric tests to determine the confidence intervals about the mean.

Bootstrapping [Chernick, 1999] provides a means of estimating confidence

intervals for non-normal data. We estimated the mean confidence intervals for ac-
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Figure 4.6: Means and confidence intervals for each of the measures. The red bars
represent inaccurate segmentation; the green bars represent accurate segmenta-
tion.

curate and inaccurate segmentation with 95% confidence using 5,000 replications

and BCa intervals [Moore and McCabe, 2005] to adjust for bias and skewness.

Table 4.5 shows the resulting confidence intervals. The intervals for accurate and

inaccurate segmentation are non-overlapping for all of the measures tested (see

Figure 4.6). We therefore conclude that the mean error given by each measure for

accurate segmentation is significantly different from mean error for inaccurate,

or random, segmentation. This answers the question as to whether any of the

measures are useful for determining the perceptual accuracy of a segmentation:

given enough samples, all of the measures are able to differentiate between a set

of segmentations created by a human and a set of random segmentations.

We next investigate the inter-measure correlation. To compute the correla-

tion among the measures we first concatenate the set of samples for accurate

and inaccurate segmentation, and then compute the correlation between the con-

catenated samples. A non-parametric correlation statistic must be used as the

measures are not normally distributed; we used Spearman’s rank correlation

coefficient. Table 4.6 shows the inter-measure correlation (for clarity, we omit the

lower triangular).

The correlation between many of the measures is very high, an indication

that there is significant redundancy. High correlation is, however, expected;
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GCE LCE HDI FMI JI RI

GCE — 0.965 0.839 0.789 0.726 0.501
LCE — — 0.856 0.793 0.739 0.507
HDI — — — 0.978 0.961 0.736
FMI — — — — 0.992 0.765

JI — — — — — 0.789
RI — — — — — —

Table 4.6: Inter-measure correlation.

all the measures have the same purpose: to estimate accuracy. The correlation

is particularly high between GCE and LCE, and among HDI, FMI, and JI. The

correlation of 99.2% between FMI and JI is especially conspicuous; the scattergram

in Figure 4.7 shows that the relationship between the measures can be modeled

with reasonable accuracy by a quadratic polynomial. Further investigation reveals

that we can rewrite the Fowlkes and Mallows index as:

F =
√
W1(C1, C2)W2(C1, C2) (4.3)

=
n11√

(n11 + n10)(n11 + n01)
(4.4)

since using Equation (3.11), (3.12), and (3.13) W1(C1, C2) and W2(C1, C2) can be

rewritten as,

W1(C1, C2) =
k∑
i=1

n11

ni(ni − 1)/2
=

n11

1
2
[
∑k

i=1 n
2
i − n]

(4.5)

=
n11

n11 + n01

(4.6)

W2(C1, C2) =
l∑
i=j

n11

nj(nj − 1)/2
=

n11

1
2
[
∑l

j=1 n
2
j − n]

(4.7)

=
n11

n11 + n10

(4.8)

Comparing Equation (4.4) with the Jaccard index from Equation (3.2), we see that

the indices have equal numerators, and that the denominator in both indices is a
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Figure 4.7: Scattergram showing the correlation between the Fowlkes-Mallows
index and the Jaccard index. The orange line is the least squares quadratic fit
(y = −0.938x2 + 1.859x+ 0.008).

combination of the same three terms: n11, n10, and n01, which explains the high

correlation observed.

Using all six measures for evaluating automatic segmentation is probably

unnecessary. If possible, we would like to select one or two of the most effec-

tive measures. There are two reasons for this: the measures that exhibit high

correlation give us very similar information, so using them all is redundant; the

measures that exhibit low correlation disagree a lot, so are likely to be a source of

contention in the analysis.

To select the most useful measures we must first define what makes a measure

useful. Intuitively, we can reason that one measure is more useful than another

if it is better at distinguishing between accurate and inaccurate segmentation.

Following this reasoning, we could select the most useful measures to be those

that have minimal intersection area between the probability distribution func-

tions for accurate and inaccurate segmentation. Since these functions are not

explicitly known, we would have to either (1) measure histogram overlap for ac-
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curate and inaccurate segmentation from our sample sets, or (2) estimate the true

distribution functions from our sample set and compute their intersection. The

first approach is, unfortunately, sensitive to histogram quantization; the second

approach involves approximations in both fitting the true distribution function

and in computing the intersection.

Because of these issues, we take a different approach to determining the best

measure. Any segmentation error measure E can be turned into a binary classifier

for segmentation accuracy by selecting an arbitrary threshold τ , and judging

any segmentation with error E < τ as accurate, and any with error E ≥ τ as

inaccurate. The optimal τ for the sample set is the value that minimizes the

error rate, which we define as the number of misclassifications. The number

of misclassifications is equal to the number of false positives plus the number

of false negatives. False positives are accurate segmentations that are classified

as inaccurate; false negatives are inaccurate segmentations that are classified as

accurate.

Since we penalize equally for false positives and false negatives, the error rate

as defined above is equivalent to using a symmetrical zero-one loss function in

Bayesian decision theory [Duda et al., 2001], and we seek the decision boundary

that gives the minimum error rate for our sample. Because we selected the same

sample size for accurate and inaccurate segmentation, we can measure the error

rate directly for a given τ by adding the number of false positives to the number

of false negatives—normalizing by sample sizes is unnecessary.

From our previous investigation we know the range of values for τ is bounded

by the sample means. To determine the optimal τ we use a simple grid-search

method: we test a large number (10,000) of equally spaced values between the

sample means to find the one that gives the minimum error. Table 4.7 shows the

resulting threshold values and the corresponding error for each of the measures.

It is clear from the table that the measure with the lowest overall error is the HDI

130



FP % FN % E % τ

GCE 250 6.74 427 11.51 677 9.12 0.194346
LCE 140 3.77 360 9.70 500 6.74 0.126437
HDI 192 5.17 267 7.19 459 6.18 0.275044
FMI 486 13.10 233 6.28 719 9.69 0.398542
JI 575 15.49 208 5.60 783 10.55 0.576078
RI 733 19.75 185 4.99 918 12.37 0.187306

Table 4.7: Accurate/Inaccurate thresholds discovered using grid-search. FP is the
number of false positives; FN is the number of false negatives; E is the sum of FP
and FN. The thresholds τ are found by searching for the value that minimizes the
error E.

measure; the LCE measure gives the second lowest error. The measure with the

highest overall error is RI.

Based on the table, we select the measures with the lowest overall error for

the evaluation, namely the HDI and the LCE measures. Tables 4.3 and 4.4 show

that the selected measures have the smallest variance out of the set: the sum of

standard deviations is 0.14711 for LCE and 0.16876 for HDI. The LCE measure has

the lowest variance of the set for accurate segmentation; the HDI measure has

the lowest variance of the set of inaccurate segmentation. The HDI measure is

the only measure that has no significant difference between variance for accurate

and inaccurate segmentation: the ratio of variance (Fisher’s F ) is 1.0527. It is also

the measure that best balances false positives and false negatives in Table 4.7:

FP
FN

= 0.7191. The LCE measure has the narrowest confidence interval for accurate

segmentation, and gives the least false positives. The measures are also comple-

mentary: HDI penalizes refinement error but does not suffer from degenerate

cases, LCE tolerates refinement error but is susceptible to two degenerate cases

(see Section 3.3.2).

The above discussion begs the question as to whether it is possible to combine

the LCE and HDI measure to produce a measure that is better at differentiating

131



γ FP % FN % E % τ

0.4735 105 2.83% 193 5.20% 298 4.02% 0.195153
0.5000 102 2.75% 202 5.44% 304 4.10% 0.191318

Table 4.8: Prediction error using a linear combination of the LCE and the HDI
measures. The optimal weighting for our sample is 0.473 < γ < 0.474; the
difference in error for γ = 0.5 is negligible.

between accurate and inaccurate segmentation. We found that it is indeed pos-

sible to improve on the values in Table 4.7 using a linear combination of the

measures. To keep the resulting measure in the range [0, 1], we investigated linear

combinations of the form:

M = γM1 + (1− γ)M2 (4.9)

where M1 and M2 are the LCE and HDI measures, and 0 < γ < 1.

We used grid-search to determine the γ that gives the lowest prediction error

for our sample, and found that 0.473 < γ < 0.474 is optimal, giving an error

E = 298 (4.02%). This value is very close to the error of 304 (4.1%) attained at

γ = 0.5, which corresponds to the simple average of LCE and HDI (see Table 4.8).

The difference is potentially due to the variation in the data; parsimony dictates

that we select the simplest model. We therefore propose a new measure that is a

simple average of the LCE and the HDI measures. We denote this new measure

LHE, which stands for combined LCE HDI error:

LHE =
1

2
(LCE + HDI) (4.10)

The histogram plot in Figure 4.8 illustrates the distribution of this measure. Ta-

ble 4.9 summarizes the properties of the three measures we use for evaluating

automatic segmentation in the next section.
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Figure 4.8: Histogram plots of accurate and inaccurate segmentation using the
proposed LHE measure. The dashed blue lines are the means; the solid line in the
center depicts the optimal classifier threshold τ .

Martin et al. also investigated the base rates for the GCE and LCE measures

in their paper on the Berkeley segmentation dataset [Martin et al., 2001]. They

found values for accurate segmentation that are slightly higher than the values we

tested: they found the mean error for accurate segmentation to be 0.11 for GCE and

0.07 for LCE. We found the same values to be 0.08 (c.i. (0.0776, 0.0819), p = 0.05)

for GCE, and 0.05 (c.i. (0.0487, 0.0511), p = 0.05). The apparent discrepancy is

due to an important experimental difference. When establishing the mean error

for accurate segmentation, Martin et al. compared pairs of segmentations that

were created using grayscale versions of the images in the database; we used

segmentations based on color images. In addition, Martin et al. used only a subset

of the images in the dataset: at the time the dataset was incomplete.

The difference in mean error rates suggests that the use of color may improve

the mutual consistency of segmentations created by different subjects. To check
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accurate segmentation inaccurate segmentation

sd µlow mean µhigh τ µlow mean µhigh sd

LCE .0339 .0487 .0500 .0511 .1264 .2908 .2941 .2973 .1133
HDI .0833 .1190 .1217 .1244 .2750 .3971 .3996 .4020 .0855
LHE .0506 .0841 .0859 .0875 .1913 .3442 .3468 .3495 .0918

Table 4.9: Properties of selected measures

this hypothesis, we ran the evaluation against all pairs of segmentations of the

same scene by different subjects in the grayscale version of the database (3726

pairs). We found the mean error to be 0.083 (c.i. (0.0798, 0.0861), p = 0.05) for

GCE, and 0.052 for LCE (c.i. (0.0492, 0.0626), p = 0.05). There is a small increase

in mean error, but it is not significant. The Kolmogorov-Smirnov test also shows

that the difference in the distribution of the error values is insignificant (the null

hypothesis, that the distributions are the same, cannot be rejected: LCE: p = 0.23;

GCE: p = 0.071; HDI: p = 0.175; LHE: p = 0.203). We therefore conclude that the

mutual consistency for segmentations of the same scene by different subjects is

not significantly affected when color is discarded.

The discrepancy between our findings and those in Martin et al. is likely due

to the difference in sample size. Martin et al. state that they used 50 images with

approximately 3 ground truth segmentations per image to establish the base rates

for accurate and inaccurate segmentation. Assuming exactly three ground truth

gives us
(

3
2

)
× 50 = 150 pairs of segmentations of the same scene by different

subjects, compared with the 3711 samples we used. Fewer samples generally

produce wider confidence intervals that potentially explain the discrepancy. Un-

fortunately, we are unable to verify this as Martin et al. did not give confidence

intervals in their paper. Martin et al.’s mean error rates for inaccurate segmen-

tation do, however, agree with ours, and it is clear from the histograms in their

paper that a larger sample size was used to establish the mean error for inaccurate

segmentation.
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4.7.2 Experiment 2: Evaluating the Algorithms

We now turn to evaluating the automatic segmentation algorithms. All of the

images in the dataset were segmented by each of the four segmentation algo-

rithms in turn, producing 300 machine segmentations per algorithm. We used

the default algorithm parameters proposed by the original authors to perform

the segmentations. Figure 4.9 gives some examples of the segmentations that

the segmentation algorithms produced. Each of these segmentations was then

compared with all of the corresponding ground truth segmentations using the

evaluation measures we selected in the last section. There are an average of 5.443

ground truth segmentations per image, giving a total of 1633 comparisons per

algorithm.

The first step in the analysis is to determine, for each of the four segmenta-

tion algorithms, the mean segmentation error corresponding to each image in

the dataset (see Equation (4.2)). We can then compare the distribution of these

error values with the distribution of the same values for accurate and inaccurate

segmentation.

There is a subtle difference from the previous experiment in how we compare

distributions. Previously, we compared the distribution of error values for every

available pair of accurate segmentations with a random sample of the same

number of pairs of inaccurate segmentation. This approach is appropriate in the

context of the previous experiment: we are comparing the error distributions, not

the mean error per image. When evaluating machine segmentation it is more

appropriate to first determine average error for each image across the available

ground truth for that image, then examine the distribution of these values. First

determining the mean error for each image is more robust to outliers, and more

sensitive to consensus, within the set of ground truth for that image.
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Figure 4.9: Sample images and machine segmentations. The leftmost image is the
original. The algorithms that were used to create the segmentations are, from left
to right: MRSST, SRAG, SRM, and MSHIFT.
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In effect, the above implies that a direct comparison of the pre-averaged error

distributions for machine segmentation with the error distributions for accurate or

inaccurate segmentation from the previous experiment is inappropriate. Instead,

we first average across all ground truth segmentations of the same image to

create a compatible distribution for accurate segmentation. The distribution for

inaccurate segmentation we found in the last section was based on a uniform

random sample of pairs of segmentations of different images. We can therefore

create a compatible distribution of inaccurate segmentation in a similar way

as for accurate segmentation; for each pair of segmentations from our sample

containing a segmentation of image x, we average across all other pairs containing

a segmentation of image x. The result is, for each image in the dataset, one

mean error value that corresponds to accurate segmentation, and one mean

error value that corresponds to inaccurate segmentation. These error values will

be distributed slightly differently to those from the previous section, but the

distributions are very similar overall, and are directly comparable with the error

values for each segmentation algorithm.

Figure 4.10 graphically depicts the distribution of error for each of the seg-

mentation algorithms evaluated. For each of the algorithms, the plots on the left

depict the maximum, minimum, median, and inter-quartile ranges of each of the

error measures. The plots on the right use jitter to depict the distribution of these

same values. The error values from the four machine segmentation algorithms

are centered in the plots; the leftmost and rightmost parts depict the distribution

of error values for accurate and inaccurate segmentation. Table 4.10 describes the

evaluation results in more detail.

Our first task is to determine whether any of the segmentation algorithms per-

form significantly better than random. Table 4.10 shows that all of the algorithms

give a lower mean error, and a lower median error, than inaccurate segmenta-
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Figure 4.10: Boxplots (left) and jitter plots (right) of segmentation error for each
algorithm. In the boxplots, the black line inside each of the boxes represents
the median. The hinges depict the first and third quartiles. The lines and dots
represent the range and outliers. The dashed black lines in the jitter plots are the
prediction thresholds from the previous section.
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min max med mean sd skew kurt

LCE accurate 0.0022 0.1505 0.0442 0.0501 0.0269 1.0049 0.9834
MRSST 0.0034 0.2855 0.1043 0.1110 0.0576 0.4738 -0.1074
SRAG 0.0103 0.3541 0.1366 0.1417 0.0658 0.4686 0.0347
SRM 0.0048 0.3549 0.1427 0.1509 0.0742 0.3596 -0.4598
MSHIFT 0.0011 0.6066 0.2669 0.2644 0.1186 0.1939 -0.3156
inaccurate 0.0168 0.4740 0.3073 0.2983 0.0670 -0.9541 2.0760

HDI accurate 0.0057 0.2973 0.1178 0.1226 0.0619 0.4061 -0.3059
MRSST 0.0056 0.4953 0.2479 0.2431 0.1052 -0.0289 -0.6889
SRAG 0.0181 0.4673 0.2515 0.2548 0.0913 -0.1663 -0.3203
SRM 0.0085 0.4395 0.2653 0.2570 0.0858 -0.3173 -0.2349
MSHIFT 0.0067 0.6409 0.3688 0.3627 0.1083 -0.5207 0.3856
inaccurate 0.2488 0.5252 0.4067 0.4028 0.0472 -0.3673 0.2791

LHE accurate 0.0055 0.1966 0.0824 0.0863 0.0404 0.4442 -0.2258
MRSST 0.0059 0.3390 0.1754 0.1770 0.0751 -0.0453 -0.6544
SRAG 0.0142 0.4039 0.1944 0.1983 0.0742 0.0675 -0.1184
SRM 0.0075 0.3868 0.2025 0.2040 0.0755 0.0108 -0.4660
MSHIFT 0.0065 0.5937 0.3180 0.3135 0.1089 -0.0755 -0.0988
inaccurate 0.1355 0.4996 0.3560 0.3505 0.0552 -0.7523 1.3304

Table 4.10: Results of evaluating the algorithms using the three evaluation mea-
sures (med=median, kurt=kurtosis).

tion. To determine whether this difference is significant, we first establish the

confidence intervals for each of the mean error rates. If the confidence intervals

for two mean error rates do not overlap then the difference in the mean error

rate is significant. More precisely, assuming that our dataset is representative

of the segmentation problem (the population), if we establish the confidence

intervals using the standard significance level of p = 0.05, then the probability

that two means with non-overlapping confidence intervals are actually the same

is p < 0.025. If, however, the confidence intervals do overlap, then further testing

is required to establish if the difference in the means is significant.

As with the previous section, we use bootstrap resampling to establish con-

fidence intervals for the means. We determine the confidence intervals using a

significance of p = 0.05, 10,000 replications, and BCa intervals. Figure 4.11 depicts
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Figure 4.11: Mean error and confidence intervals for each of the algorithms. The
black points represent the means and the bars represent the confidence intervals.
The confidence intervals were established using bootstrapping (BCa method,
replication = 10,000, p = 0.05).

the resulting confidence intervals. The following conclusions apply to all of the

measures used:

• Segmentations from all four machine segmentation algorithms have signifi-

cantly lower mean error than random.

• Segmentations from all four machine segmentation algorithms have signifi-

cantly higher mean error than segmentations created by humans.

• Segmentations from the MRSST, SRAG, and SRM algorithms have significantly

lower mean error than segmentations from the MSHIFT algorithm.

In addition, the LCE and the LHE measures show the mean error for MRSST to be

significantly lower than the mean error for SRAG and SRM.
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We next turn to examining the error means for algorithms with overlapping

confidence intervals, namely: MRSST, SRAG, and SRM. To establish whether two

means are significantly different, we use the two sample t-test. We use the paired

version of test: mean error is determined on a per image basis using the same

ground truth, so the samples are dependent and paired for each image. The

t-test assumes that the data are normally distributed. The error measures for the

three algorithms under consideration are approximately, but not exactly, normally

distributed (see Figure 4.12). However, we have enough samples to assume

the standard error of the mean is normally distributed, therefore the t-test is

appropriate.

The t-test shows that the difference in mean error between SRAG and SRM

for the HDI measure is not significant (p = 0.6149). The difference in mean error

between MRSST and SRAG is significant (p = 0.004), as is the difference in mean

error between MRSST and SRM (p = 0.0025). For the LCE measure the difference

in means is significant among all three algorithms (in every case p < 0.009).

For the LHE measure the difference is not significant between SRAG and SRM

(p = 0.1041), but significant between MRSST and SRAG, and between MRSST and

SRM (p < 1.6× 10−12).

The only contention in the above is with the LCE measure: it indicates a

significant difference in mean error between SRAG and SRM algorithms; the HDI

and LCE measures indicate the difference is not significant. The difference in error

is very small (< 1%), and so we accept the consensus of the other two measures:

that the two algorithms perform equally well on average. We therefore conclude

that, with regard to mean error:

• The MRSST algorithm significantly outperforms the SRAG and SRM algo-

rithms;

• There is no significant difference between the SRAG and SRM algorithms.
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Figure 4.12: Estimated error distribution density for each algorithm. Density was
estimated using the Epanechnikov kernel. The dashed black line is the prediction
threshold from the previous section.

We conclude the analysis by ranking the algorithms according to the number

of accurate segmentations they produce as judged by a simple binary classifier. We

use the LHE measure and the corresponding prediction threshold we established

in the previous experiment as the classifier. A segmentation is predicted to be

accurate if the error when compared against a ground truth is below the prediction

threshold. We perform two variants of the experiment. In the first, we measure

each segmentation’s error against all corresponding ground truth and average

the result. The segmentation is judged to be accurate if this average is less
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Figure 4.13: Prediction accuracy for each of the four segmentation algorithms.
The values inside the bars are the total counts. For variant one, this value is the
total number of images (out of 300); for variant two, it is the number of ground
truth (out of 1633).

than the prediction threshold. The ranking is given by the number of machine

segmentations deemed accurate.

In the second variant, each ground truth segmentation is compared against

the corresponding machine segmentation. The ground truth is judged to be

an accurate representation of the machine segmentation if the error is less than

the prediction threshold. In other words, the first variant counts the number of

machine segmentations whose average error over all corresponding ground truth

is less than the prediction threshold; the second variant counts the total number of

ground truth segmentations that, when compared to the machine segmentation,

give an error below the prediction threshold.

Figure 4.13 shows the proportion of segmentations judged to be accurate for

both variants. Ranking by either variant gives the same ordering: MRSST, SRAG,

SRM, and MSHIFT. The ranked order from the classifier agrees also agrees with
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the order that would be given if the algorithms were ranked by mean error, or

median error.

Martin et al. evaluate the normalized cuts algorithm using the LCE measure

in [Martin et al., 2001], and report that the mean error for the algorithm is 0.22.

This indicates that the normalized cuts algorithm performs worse than the MRSST,

SRAG, and SRM algorithms, but better than the MSHIFT algorithm. Note, however,

that Martin et al. used grayscale images in their evaluation.

4.8 Discussion

In this chapter we investigated automatic segmentation evaluation by perform-

ing two separate, but complementary, experiments. In the first experiment we

analyzed the characteristics of six supervised segmentation evaluation measures.

For the analysis, we assumed that segmentations of the same scene by differ-

ent subjects are mutually accurate, and that segmentations of different scenes

are mutually inaccurate. These assumptions provided a means to estimate the

distribution of the six measures for accurate and inaccurate segmentation. The

distributions showed that, given enough samples, each of the measures can be

used to distinguish between perceptually accurate segmentation and “random”

segmentation. Our analysis also revealed that the measures are highly corre-

lated; the Jaccard index and the Fowlkes and Mallows index exhibit particularly

strong correlation. The high correlation indicates that using all of the measures

for an evaluation is unnecessary; we therefore selected the two measures that

were best able to distinguish between accurate and inaccurate segmentation: the

local consistency error measure (LCE) and the Huang-Dom index (HDI). We then

investigated if a linear combination of these measures (LHE) could produce a

measure better able to distinguish accurate from inaccurate segmentation; we
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found that a simple average of the two measures resulted in a new measure that

is 2% better at distinguishing accurate from inaccurate segmentation.

The second experiment focused on using the selected measures to evaluate

four modern segmentation algorithms. We used the measures to compare the seg-

mentations created by each of the algorithms against a human generated ground

truth. The analysis revealed that all of the algorithms produce segmentations

that correspond better to the ground truth on average than do randomly selected

segmentations: the algorithms perform significantly better than random. We also

showed that, with regard to our measures, the mutual consistency among seg-

mentations of the same scene by different human subjects is significantly higher

on average than the consistency between human and machine segmentations;

that is, all of the algorithms performed significantly worse than humans. The

MRSST algorithm was shown to be significantly more accurate on average than

the other algorithms; the MSHIFT algorithm was shown to be significantly less

accurate. The SRAG and SRM algorithms demonstrated no significant difference in

average accuracy. Ranking the algorithms by mean error, median error, or binary

classifier accuracy all produced the same result: the best performing algorithm

is MRSST, followed by SRAG, SRM, and MSHIFT. The rankings given by all three

measures are consistent.

Based on these experiments we have several recommendations. First, for

future segmentation evaluation tasks, it not necessary to use all three of the

evaluation measures we used in Section 4.7.2: the experiment shows that the

measures, in general, give very similar results. For general purpose segmentation

evaluation tasks we recommend using the combined local consistency error-

Huang-Dom index (LHE) measure: it gives the lowest prediction error when used

as a classifier of segmentation accuracy, does not suffer from degenerate cases

like the LCE measure, and provides moderate refinement tolerance. If, however,

refinement tolerance is a priority, and degenerate cases are explicitly checked,
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then we recommend using the LCE measure. If, on the other hand, the target

application is particularly sensitive to over or under segmentation, we recommend

using the HDI measure, as it penalizes refinement more severely.

Our second recommendation is for system designers that need to select an

appropriate segmentation algorithm for a particular application. If the system

requires a segmentation algorithm that closely approximates human perceptual

grouping then, based on the experiments, we believe the MRSST algorithm to

be a sound choice: it performed significantly better than the other algorithms

in the experiment. This recommendation only applies to systems that handle

images of which the Berkeley segmentation dataset is representative; our experi-

ments assumed the dataset to be representative of the population: violating this

assumption renders our conclusions inapplicable.
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Chapter 5

Evaluating Interactive Segmentation

5.1 Introduction

In the previous chapter we focused on evaluating automatic segmentation algo-

rithms; in this chapter we turn our attention to evaluating interactive segmen-

tation algorithms. Our objective is to develop measures, tools, and techniques

that allow us to effectively gauge the performance of scribble driven interactive

segmentation algorithms.

At first glance, one might consider simply taking methods and measures from

automatic segmentation evaluation and applying them to evaluating interactive

segmentation. Closer inspection, however, reveals that automatic and interactive

segmentation have quite different objectives. Automatic segmentation usually

generates regions; methods for judging accuracy are complicated by issues like

overlapping regions and refinement tolerance. Interactive segmentation usually

generates semantic objects; compensating for overlapping regions or refinement

tolerance is therefore unnecessary, and measures used to evaluate interactive

segmentation should reflect this. Accuracy, on the other hand, is expected to be

higher for interactive segmentation; measures for evaluating interactive segmen-

tation require greater sensitivity. Automatic segmentation evaluation is primarily
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concerned with judging how accurate a segmentation is. Interactive segmentation

is concerned not only with accuracy, but also with efficiency: the time and effort

necessary to achieve a particular level of accuracy in a segmentation. Furthermore,

the interactions themselves may have a pronounced effect on the result, and so the

sensitivity of the algorithm to these interactions is also of concern in an evaluation.

Interactive segmentation evaluation has received scant attention in the liter-

ature to date; almost all evaluation techniques and studies have focused exclu-

sively on automatic segmentation. The few studies that have been undertaken

focus on evaluating interactive segmentation in medical imaging (for example:

[Mao et al., 1999]); however, to our knowledge there has been no research to

date targeted specifically at evaluating general purpose interactive segmentation

techniques.

In the remainder of this chapter we take the initial steps toward developing a

complete system for supervised evaluation of interactive segmentation. We focus

on four interactive segmentation algorithms suitable for extracting objects from

natural scenes, carrying out the evaluation via a series of user experiments. The

main contributions of this research are as follows: first, a software platform de-

signed for hosting and evaluating different segmentation algorithms in a uniform

environment. The platform includes four state-of-the-art interactive segmentation

algorithms at present, and is available for public download from our website1.

Second, a ground truth dataset created specifically for evaluating interactive

segmentation. The dataset comprises 100 objects from natural images with ac-

companying descriptions, and is also available on-line. Third, we propose and

investigate two measures appropriate for evaluating interactive segmentation,

including a new benchmark specifically designed to measure boundary accuracy

against a ground truth. We compare the suggested measures with other mea-

sures that could potentially be used for interactive segmentation evaluation, and

1http://kspace.cdvp.dcu.ie/public/interactive-segmentation/
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demonstrate their relative effectiveness. Finally, we evaluate and compare four

popular interactive segmentation algorithms using the proposed methodology,

and thus demonstrate their performance and characteristics.

The remainder of the chapter is organized as follows. Section 5.2 discusses the

four segmentation algorithms that we selected for the evaluation, and the reasons

why we chose these particular algorithms. Section 5.3 outlines the objectives of

the evaluation and the various considerations that need to be addressed. Hav-

ing outlined these issues and objectives, we look at selecting a set of measures

suitable for evaluating interactive segmentation, and formulate a new bench-

mark for measuring object boundary accuracy. Section 5.4 discusses the user

experiments, including details of the participants involved and the software and

tools used. In particular, this section describes the interactive segmentation tool

developed to host the various algorithms, the dataset and ground truth used for

the experiment, and the experiment setup and deployment strategy. Section 5.5

analyzes the results of the experiment, validates the selected evaluation measures,

and demonstrates the relative performance of the four segmentation algorithms.

Finally, Section 5.6 summarizes the work and presents our conclusions.

5.2 Algorithms

Different segmentation algorithms are often created with different application

domains in mind, and are thus suited to different tasks. For example, some algo-

rithms, such as active contours [Kass et al., 1988] and other similar approaches

[Liang et al., 1999], are most effective at extracting regions of interest from medi-

cal images. Other algorithms, such as GrabCut [Rother et al., 2004], are designed

for photo-editing applications and extracting objects from photographs of natural

scenes. Due to the disparity of intended application, one cannot expect an algo-

149



Abbreviated Name Algorithm

SRG Seeded Region Growing
IGC Interactive Graph Cuts
SIOX Simple Interactive Object Extraction
BPT Interactive Segmentation using Binary Partition Trees

Table 5.1: The evaluated algorithms and their abbreviated names

rithm designed for, say, biomedical image analysis to be equally effective when

applied to a different domain, such as photo-manipulation.

Our evaluation focuses on interactive segmentation techniques appropriate

for object extraction from photographs and natural scenes. Specifically, we only

evaluate algorithms whose interactions can be modeled by pictorial input on

an image grid [Olabarriaga and Smeulders, 2001]; we do not consider interactive

segmentation algorithms based on parameter tuning or other forms of interaction.

By narrowing our focus thus, we evaluate algorithms that are more directly

comparable; the intention being a consistent and fair evaluation, albeit on a

smaller subset of the available algorithms.

We chose four algorithms for the evaluation. The algorithms we selected

provide good coverage of the various underlying algorithmic approaches used

by current methods in the literature for object extraction from natural scenes.

Table 5.1 lists the selected algorithms and assigns them abbreviated names that,

for brevity, are used in the subsequent sections. Each of these algorithms was

discussed in detail in Chapter 2. Note that we do not consider algorithms based

on thresholding or deformable models, as the former cannot be adapted in a

straightforward way to pictorial input, and the latter tends to perform better on

medical images than on natural scenes.
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5.3 Evaluation

In this section we discuss the methods and measures used for the evaluation. To

effectively evaluate interactive segmentation, we need to consider three criteria

[Olabarriaga and Smeulders, 2001]:

Accuracy: the degree to which the delineation of the object corresponds to the

truth;

Efficiency: the amount of time or effort required to perform the segmentation;

and

Repeatability: the extent to which the same result would be produced over

different segmentation sessions when the user has the same intention.

This section is concerned with measuring accuracy; efficiency and repeatability

are considered in Section 5.4 and 5.5. Nevertheless, it is important to note that

for interactive segmentation the criteria are highly related. In particular, accuracy

and efficiency are interdependent: given more time users can usually produce

more accurate segmentations.

5.3.1 Human Factors

As we noted in the introduction, interactive segmentation is sufficiently different

from automatic segmentation to warrant a distinct approach to its evaluation.

The most important difference between automatic and interactive segmentation

algorithms is, of course, that interactive segmentation algorithms require a human

operator. The interactions provided by this operator usually have a pronounced

affect on the resulting segmentation: good markup is usually needed to find a

good segmentation. Clearly this is to be expected—if the interactions did not have

such a profound affect on the result, they could be provided automatically, thus

eliminating the need for human supervision.
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The introduction of this human operator in the segmentation procedure re-

quires several considerations. The nature of the image regions that human op-

erators typically extract is different from those extracted by automatic methods.

Humans typically desire more complex and meaningful semantic objects: a tree,

a car, a person, or a face. Fully automatic algorithms, however, typically only

parse images into regions of homogeneous color or texture, which may or may

not correspond to a semantic object. Also, for many applications, such as photo-

editing, people require very precise objects. For instance, if we wish to replace the

background in an image, the segmented boundary of the object of interest needs

to be highly accurate for the effect to be convincing. The required accuracy for

this kind of application is higher than that usually required by applications that

use automatic segmentation, such as multimedia indexing and retrieval.

The necessity for accurate semantic objects has direct consequences for eval-

uation. The accuracy requirement means that the measures we use to gauge

performance must be sufficiently sensitive to any noticeable variation in object

boundary precision. The need for semantic objects means unsupervised eval-

uation techniques [Zhang et al., 2008] and measures of empirical goodness are

inappropriate: the features that characterize good semantic objects are decidedly

more difficult to measure without ground truth than those that characterize good

homogeneous regions.

5.3.2 Evaluation Measures

As unsupervised evaluation techniques are inappropriate for interactive seg-

mentation, we will use supervised evaluation. This necessitates the creation of

a ground truth dataset for the evaluation. Further details of the ground truth

dataset we developed are discussed in Section 5.4.2, however, we will discuss one

aspect in this section, as it is pertinent to the evaluation measures we develop.
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The creation of a pixel accurate ground truth is, in general, impossible for natural

images; alpha blending of pixels along the edges of objects make the true border

position unattainable with absolute certainty. Our performance measures there-

fore need to balance the need for sensitivity to border variation with the inherent

uncertainty in the boundary pixels of objects in the ground truth.

Aside from the imprecise nature of the object border pixels, it is also intuitively

desirable for any measure we use to penalize a small imprecision near the object

border less than, say, a large hole or missing piece of the object. Furthermore, as

the objective of interactive segmentation is typically to extract some perceived

object from a scene, our evaluation measures should reflect in some sense, the

perceived accuracy of the segmentation i.e., there should be a correlation between

measured accuracy and perceived accuracy.

It is also valuable to have an evaluation measure that is easy to interpret and

compare. As such, it is desirable for any measure we use to be appropriately

normalized in the interval [0..1]. For consistency, we define all employed measures

as similarity functions (performance indicators): values closer to 1 indicate a better

segmentation.

5.3.3 Boundary Accuracy

We now develop a means of measuring object boundary accuracy against a ground

truth. Let v ∈ Z2 be any pixel inside the ground truth object, and GO = {v} be

the set of all of these pixels. Similarly, define MO to be the set of all pixels in

the machine-segmented object. GB and MB denote the complements of these

sets. Let Nx be the standard set of 8-neighbors of any x ∈ Z2. The internal

border pixels for the ground truth object are defined as the set BG, and for the
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(a) (b) (c)

Figure 5.1: The internal border pixels of two similar objects (a), (b), and the pixels
they have in common (c). The binary Jaccard accuracy measure AB is only 0.1.
The fuzzy Jaccard measure for the same objects ÃB is 0.85 when the bandwidth
parameter σ = 4.

machine-segmentation, the set BM , as follows:

BG = {x : x ∈ GO ∧Nx ∩GB 6= ∅} (5.1)

BM = {x : x ∈MO ∧Nx ∩MB 6= ∅} (5.2)

Given the above definition of the border pixels, we could compute a measure

of the accuracy of the border pixels as follows:

AB =
|BG ∩BM |
|BG ∪BM |

(5.3)

Note that the value AB is equivalent to the Jaccard index [Ge et al., 2007].

Unfortunately, due to the previously discussed ambiguity in the positions of the

boundary pixels in the ground truth, the value of AB will typically be excessively

low. This is demonstrated in Figure 5.1. The object borders in 5.1(a) and 5.1(b)

seem to be reasonably similar. Nevertheless, Figure 5.1(c) shows that the binary

overlap between the pixels is quite small, resulting in a Jaccard index AB = 0.1.

An additional problem is that small imprecisions near the object borders are

penalized in equal measure to holes or missing pieces of the object.
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To adapt the Jaccard index so that it is more appropriate for our purposes, we

need to introduce some tolerance to error near the border pixels. A natural way of

accomplishing this is to extend the definition of our sets of border pixels BG and

BM using fuzzy-set theory [Zadeh, 1965] so as to capture the intrinsic uncertainty

in the edge positions.

Of course, the degree of uncertainty, or tolerance, needs to be specified. Hence,

it is necessary to introduce a parameter that quantifies the uncertainty, which we

denote σ. Using this parameter, we propose to “fuzzify” the border pixel sets

using the following Gaussian form:

B̃G(x) = exp

(
−‖x− x̂‖2

2σ2

)
(5.4)

x̂ = arg min
y∈BG

‖x− y‖ (5.5)

The fuzzy set for the border of the machine segmentation B̃M is similarly

defined. The above definition effectively sets B̃G(x) = 1 for all x ∈ BG with

values decreasing with the Euclidean distance of x from BG at a rate controlled by

the tolerance parameter σ. Moreover, the exponential function causes the value

of B̃G(x) to approach zero for pixels that are a large distance from the border.

This effect can be interpreted to mirror the saturation that has been observed in

the human visual system: often it is easier for us to quantify small errors, but

more difficult to quantify larger ones (for an example of this principle, see the

discussion on color in 2.3.2). A representation of the function for different values

of σ is shown in Figure 5.2.

Given the above fuzzy sets of border pixels B̃G and B̃M , we can reformulate

the Jaccard index using fuzzy set theory as follows:
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(a) σ = 1 (b) σ = 2

(c) σ = 4 (d) σ = 6

Figure 5.2: Representation of the fuzzy membership function for different toler-
ance parameters σ = {1, 2, 4, 6}

ÃB =

∑
x min(B̃G(x), B̃M(x))∑
x max(B̃G(x), B̃M(x))

(5.6)

The above formulation is already normalized in the desired range [0..1], and

takes the value 1 only for an exact match. Like the binary Jaccard index, the

measure is symmetric, however, in contrast to the binary set formulation, close

matches are now penalized proportional to the tolerance parameter σ. Also as σ

approaches zero, ÃB approaches the binary Jaccard index.

5.3.4 Object Accuracy

When considering the entire region accuracy, as opposed to the accuracy of the

border, it is less important to “fuzzify” the evaluated sets. For regions, small

inaccuracies around the border tend to be offset by larger overlapping areas,

whereas for borders, the sets, even those very nearby spatially, may not strictly

overlap at all. As such, we employ the previously described binary Jaccard
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index to measure the object accuracy. This is consistent with our border accuracy

measure, and also has the advantage of allowing the results presented herein to be

directly compared with previous work in object-background based segmentation

evaluation, such as [Ge et al., 2006, Ge et al., 2007]. The object accuracy measure

is given by:

AO =
|GO ∩MO|
|GO ∪MO|

(5.7)

5.3.5 Choosing Sigma

The fuzzy boundary accuracy measure requires appropriate selection of the tol-

erance parameter σ to regulate its sensitivity to error. The parameter should

be chosen to reflect the degree of uncertainty of the object border pixels in the

ground truth. If the parameter is too small, the measure becomes over-sensitive

to inaccuracies in the ground truth, and will not reflect the perceived border

accuracy. If the parameter is too large, the measure will not be sensitive enough

to capture noticeable differences in precision.

For our experiments we chose a tolerance parameter of σ = 4. Using this value,

pixels with a Euclidean distance less than 3 from the boundary are considered

over 75% inside the boundary set, and pixels with a distance greater than 8 are less

than 15% inside. The value was chosen empirically, based on a simple experiment.

In the experiment, two different segmentations of the same object were chosen,

one with a higher perceived accuracy than the other. For the two segmentations,

the fuzzy boundary accuracy measure was computed using increasing values of

sigma. From the resulting series, σ was chosen such that the difference between

the computed values was consistent with the perceived difference in accuracy. The

experiment was repeated fifteen times with the value 4 giving the most consistent

result.
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AO Object accuracy (Jaccard index)
ÃB Boundary accuracy (Fuzzy Jaccard index on border pixels)

AB Binary boundary accuracy (Binary Jaccard index on border pixels)
Pr Precision
Re Recall
RI Rand Index

Table 5.2: Evaluation measures and their symbols

5.3.6 Other Measures

To validate the effectiveness of the selected measures, we also computed some

other popular measures for comparison, including precision, recall, and the Rand

index [Rand, 1971]. The computed evaluation measures and the corresponding

symbols that will be used in the remainder of the text are shown in Table 5.2.

5.4 Experiment

In this section we discuss the evaluation experiment, detailing information about

the participants involved, the software and ground truth used, and the experiment

setup and deployment strategy. To create an effective experiment plan, we refer

again to the three evaluation criteria from the beginning of Section 5.3: accuracy,

efficiency, and repeatability; all three have implications for the experiment setup.

To effectively measure accuracy, the ground truth must be as precise as pos-

sible; errors in the ground truth directly affect the accuracy benchmarks. To

effectively measure efficiency, changes to the segmentation need to be recorded

as new refinements are added by the user over time. Accuracy and time are

dependent; accuracy needs to be viewed as a function of time. Furthermore, it is

prudent to prevent users spending too much time refining a segmentation. We

consider this to be justified since the primary purpose of interactive segmentation

is to provide an accurate segmentation faster than it would take to produce it by
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(a) A combined view of the image, markup,
and the segmented object. The segmenta-
tion mask is overlaid semi-transparently.

(b) A view displaying the segmented ob-
ject only; the background region (gray) is
suppressed.

Figure 5.3: Screenshots of the interactive segmentation tool (running on the Linux
platform)

hand. To effectively measure repeatability, we need to ensure we have a sufficient

number of participants; if we use enough participants to segment each image

several times, then algorithms with good repeatability will benchmark higher on

average than algorithms with poor repeatability.

5.4.1 Software

It is important to provide a single user interface with consistent capabilities for

the experiment, allowing participants to segment the relevant objects in a uniform

way using different algorithms. To this end, we developed a standalone scribble-

based interactive segmentation application. The tool supports any segmentation

technique that can be adapted to use a scribble driven interaction paradigm

for providing iterative updates. All four algorithms from Section 5.2 are fully

integrated. Figure 5.3 shows screenshots of the tool, demonstrating two of the six

available view modes.

To extract an object from an image, users mark foreground pixels using the left

mouse-button, and background pixels using the right mouse button, or by using

the left-button while depressing the Ctrl key. As each interaction is provided,
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the corresponding segmentation mask is updated. The segmentation can be

visualized within the tool by switching between six different view modes. These

view modes consists of: (1) a mode displaying the only the original image; (2) a

mode showing the user markings; (3) a mode showing the current segmentation

mask; (4) a mode showing the original image with the user markup and the

segmentation mask transparently overlaid; (5) a mode showing the object borders;

and (6) a mode showing the segmented object with the background elements

removed.

The tool itself was developed as a general purpose application—we envisioned

its utility would go beyond the experiment described in this chapter. To support

the constraints of the experiment an experiment mode was included. In this mode

the relevant algorithm is selected and locked automatically for the participant.

The participant is shown an image and a short description of the object they

are required to extract. When the participant clicks on Start, a timer begins a

countdown, giving the user a finite period to extract the required object as best

they can using the current algorithm. The tool stores each segmentation mask and

a corresponding time-stamp as new refinements are added, forming a progressive

collection of segmentations over time. When the user finishes, or the time elapses,

the next image and object description are displayed. The process repeats until

the experiment is completed. Figure 5.4 shows an example of the application in

experiment mode.

In addition to the base functionality required for the experiment, we also con-

sidered it important in a realistic evaluation to provide features that are typically

found in other modern graphics packages. As such, several other features were

included, including zooming, undo/redo support, and altering the markup brush

size. The application also supports exporting segmentations as HTML image

maps, and can therefore be used to generate dynamic object-aware content for the
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Figure 5.4: Screenshot of the interactive segmentation tool in experiment mode

web. This allows, for example, objects in images to be hyperlinked, and allows

mouse-over effects to be applied to these objects.

The interactive segmentation tool, complete with the four algorithms evaluated

in this chapter, is available for public download from our website2. It is compatible

with Linux, Windows, and Mac OS X.

5.4.2 Ground Truth

The images we used to compile the dataset for the experiments were taken from

the publicly available Berkeley Segmentation Dataset [Martin et al., 2001]. The

compiled dataset consists of 100 distinct objects selected from 96 of the 300 images

in the Berkeley set. These images were chosen so that each image had one or

more objects that could be unambiguously described to participants for extraction.

Care was also taken to select images that were representative of a large variety

of segmentation challenges, such as texture, camouflage, and various lighting

conditions.
2http://kspace.cdvp.dcu.ie/public/interactive-segmentation/
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To ensure the highest possible accuracy, the ground truth was created entirely

by hand; no semi-automatic technique was used. This was also important to avoid

potential bias to any algorithmic facet of the procedure used to create it. The

object extraction was performed by marking pixels on the object border using a

graphics tablet, and subsequently filling the object interior. The result is a series of

binary masks, one for each object in the dataset, where zero valued pixels denote

the background and non-zero valued pixels denote the object.

As noted in Section 5.3, creating a 100% pixel accurate ground truth is, in

general, impossible, due to the ambiguity in the true positions of the border pixels.

It is necessary, however, when creating a binary ground truth to decide which

pixels belong to the object and which pixels belong to the background. To handle

this ambiguity in the object border pixels, a simple heuristic was applied: retain

pixels that appear to contain some of the objects color along the object border,

and that do not appear to be image compression artifacts. This heuristic was

chosen so that each pixel along the border would be, on average, half-inside and

half-outside the true form of the foreground object.

Each object mask was annotated with a description of the object in the image

to which it relates. The full ground truth dataset, including object masks and

descriptions, is publicly available for download from our website. For refer-

ence, thumbnails and task descriptions for the complete dataset are also given in

Appendix A.

5.4.3 Setup

A total of 20 volunteers participated in the experiment. Most of the participants

were computer science or engineering graduates. Some of the participants were

familiar with image processing and information retrieval techniques; however,

none had any particular expertise in interactive segmentation. Each participant
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Variant Ground truth set

A S1 S2 S3 S4

B S2 S3 S4 S1

C S3 S4 S1 S2

D S4 S1 S2 S3

Algorithm A1 A2 A3 A4

Table 5.3: Experiment variants with ground truth set and algorithm assignments.
Variant B uses ground truth set S2 with algorithm A1, ground truth set S3 with
algorithm A2, S4 with A3, and S1 with A4.

was given a user guide and sufficient time to familiarize themselves and become

proficient with the software that would be used for the experiment. Sample

images were provided for training, but participants were not given access to the

experiment dataset.

We considered it overly demanding to ask each participant to extract the

entire set of 100 objects using all four segmentation algorithms. We therefore

divided the ground truth randomly into four equally sized sets {S1, S2, S3, S4}

each containing 25 tasks. Each participant was given the task of segmenting

the sets using a different algorithm for each set, resulting in a total of 100 tasks

(as opposed to 400). Denoting the algorithms {A1, A2, A3, A4}, this gives four

experiment variants, as shown in Table 5.3.

By distributing experiment variants to participants equally, we ensure that

every image is segmented at least five times by each algorithm. Thus, we can

minimize the affect of an individual’s markup skills and other human influenced

variation by computing the average of the resulting benchmarks across segmenta-

tions of the same image with the same algorithm by different users. Repeatability

is therefore implicitly evaluated: if a good segmentation is not repeatable by

multiple users, the average evaluation measure will be lower.
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(a) Task Image (b) Expected object

Figure 5.5: Sample task image and the expected object. The task description is
“Extract the person, hat, and bucket from the background.”

The experiment proceeds as follows. Each task is presented to the user in

the form of an image and task description. The image, of course, contains the

relevant object, and the task description expresses as unambiguously as possi-

ble the part of the image to be extracted. Figure 5.5 presents a typical task, the

corresponding description, and the expected object. Users are required to study

the image and description and when ready, click on a Start button, and begin to

extract the object as accurately as they can by marking areas of the image as fore-

ground or background with the mouse. Since it is possible to achieve near perfect

accuracy by manually segmenting an object (i.e. without the aid of interactive

segmentation algorithms) when given an arbitrary amount of time, the usefulness

of an interactive segmentation algorithm is in its ability to create a reasonably

accurate segmentation in a significantly shorter time-span. For this reason, and to

prevent some participants expending much more effort in improving their final

segmentation than others, it is important to impose a reasonable time limit. We

therefore restrict users to a maximum of 2 minutes per object. They may, however,

proceed to the next task earlier if satisfied with their segmentation.

After the participant has finished extracting an object, they are asked to fill

out a short questionnaire. The questionnaire was designed to coarsely assess,

in subjective terms, how difficult the users found the segmentation, what they
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considered to be the primary causes of any difficulties, and how accurate they

perceived their final segmentation to be. Users are asked to rate how difficult

they considered the task on a scale of 1 to 5, rate how accurate they considered

their segmentation on a scale of 1 to 5, and to check a series of boxes indicating

what they perceived to be the primary causes of any difficulty encountered. These

checkboxes corresponded to low-level image features, such as color, texture, and

object size.

When the entire set of 25 objects are extracted, participants are requested to

rate the segmentation algorithm that they just used, again on a scale of 1 to 5. Once

completed, the software automatically selects the next algorithm and participants

proceed to extracting the next 25 objects. The experiment continues thus until all

objects are extracted.

5.4.4 Deployment

The experiments were carried out by each user independently, and in their own

time. Experiments took about 3 hours each to complete. Participants were permit-

ted to take breaks between tasks: a continuous sitting was not required.

To ease deployment of the experiment, and efficiently collect the results, a

deployment tool was created. When executed the tool prepares the user’s system

for the experiment as follows:

1. Information identifying the participant is collected.

2. The image and ground truth data files are automatically downloaded from

a central server. These are placed in a known location on the participant’s

machine.

3. The deployment tool contacts a web-service running on the server, which

assigns a particular experiment variant to the user. The web service main-

tains a database of participant-variant pairs, and assigns the variant using a
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round-robin system, to ensure equal coverage of each of the four task sets

with all corresponding algorithms.

4. Experiment files compatible with the segmentation tool are generated and

the user is instructed to begin the experiment.

The deployment tool also displays the relevant questionnaire pages to the user

at each stage of the experiment, and stores the answers. When the experiment is

complete, all data generated by the segmentation tool and the deployment tool is

automatically compressed and uploaded to the server for analysis.

5.5 Results and Analysis

All 20 participants completed the experiment in full, resulting in over 40,000

segmentation masks being collected for evaluation. In this section we present

the results of the evaluation, and discuss their implications. To give a high-

level idea of the accuracy and efficiency of the algorithms, we first describe

the overall average accuracy (with respect to the measures discussed in Section

5.3) and the overall average time required to perform the segmentation with

each algorithm. We then present average accuracy as a function of time, to

attain a better understanding of the characteristics of each algorithm. Next we

discuss perceived accuracy, as specified by participants in the questionnaires, and

its significance. Finally, we investigate the correlation between the computed

evaluation benchmarks and perceived accuracy.

5.5.1 Object and Border Accuracy

Using the object and boundary accuracy measures discussed in Section 5.3, for

each algorithm evaluated we measured:
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Boundary accuracy ÃB Object accuracy AO
Algorithm Best Final Best Final

BPT 0.78 0.78 0.93 0.92
IGC 0.78 0.77 0.93 0.92
SRG 0.70 0.70 0.88 0.88
SIOX 0.64 0.64 0.85 0.85

Table 5.4: Overall average boundary accuracy and object accuracy.

• The average final segmentation accuracy: the object and boundary accuracy

measured when the participant was finished the segmentation or the allo-

cated time elapsed, averaged over all objects from the same segmentation

algorithm.

• The average best segmentation accuracy: the best object and boundary

accuracy achieved per object, averaged over all objects from the same seg-

mentation algorithm.

The resulting values are shown in Table 5.4. It is clear from the table that the

best performing algorithms, in terms of measured accuracy, are the BPT and IGC

algorithms, which perform equally well on average. The SIOX algorithm is the

poorest; this is perhaps due to the difficulty, noted by some participants in the

questionnaires, of producing any reasonably accurate segmentation for some

images in the dataset.

In addition to accuracy, it is also critical to measure time when evaluating

interactive segmentation: given enough time, arbitrary precision can be achieved

manually. Table 5.5 shows, for each algorithm, the average time required until a

user attains their best object and boundary accuracy for an image, and the average

total time spent per image. From this, we can see that users spent the least amount

of time with the BPT algorithm, and the most with the SRG algorithm.
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Algorithm Best ÃB Best AO Final/total

BPT 59.76 59.09 64.25
IGC 62.93 62.53 66.43
SIOX 69.88 68.90 73.08
SRG 80.77 80.73 85.32

Table 5.5: Average time required for users to achieve their best accuracies and
average total time used to complete a task (seconds).

The times given in Table 5.5 are, however, likely achieved at varying accuracies

for each individual algorithm. Thus, the table only gives an overview of the

typical time required to achieve the best possible result with each algorithm.

Gauging accuracy over time gives a more complete picture of each algorithm’s

performance.

Time Series

We now consider measuring how accuracy varies over time for each segmen-

tation algorithm. Figure 5.6 shows a scatterplot of the raw boundary accuracy

measurements and the times they were recorded for a single participant. The mea-

surements are grouped by algorithm; the color of the points on the plot represents

the image being segmented. Clearly there is a considerable amount of data. The

nature of the experiment means that measurements are taken at different times.

Also, because people are allowed to finish the segmentation before the allotted

time, the time series for each task may have different durations.

Having each segmentation task produce compatible time series data greatly

simplifies analysis. Our first task, therefore, is to process the raw experiment data

to produce time series measurements that are (1) equally spaced, and (2) equal in

duration. To do this, we extend all time series to the full duration (120 seconds)

by duplicating the final accuracy measurement. The extended time series is then
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Figure 5.6: Scatterplot of accuracy measurements against time. The plot shows
the raw boundary accuracy measurements for a single participant.

resampled at regularly spaced intervals. We chose to resample every two seconds;

this rate halves the number of samples with negligible information loss.

The above procedure results in time series measurements from each task

that are evenly spaced and have equal duration. We can therefore determine,

at each point in time, the mean accuracy per object, per user, or per algorithm

by averaging across the remaining dimensions. For example, to find the mean

time series for segmenting object o using algorithm a, we average across each

participant that segmented o using a. Figure 5.7 shows the resulting mean time

series for 40 (of 100) objects in the dataset. The time series shown is for boundary

accuracy. Each panel represents a different object; each line represents a different

segmentation algorithm.

The overall mean accuracy time series for each algorithm can be similarly

computed: by finding the average of all time series over the user and object

dimensions. Since time and precision are dependent, this provides one of the

most useful illustration of an algorithms performance. The result for both object

accuracy and boundary accuracy is shown in Figure 5.8.

Several observations can be drawn from the figure. On average, the BPT and

IGC algorithms consistently outperform the SIOX and SRG algorithms for both
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Figure 5.7: Mean boundary accuracy time series per image. The time series values
are first extended to the full range, and the spacing is equalized using linear
interpolation. The resulting series are then averaged across users. Each panel in
the figure represents a segmentation task, and is labeled with the task identifier.
The corresponding task definitions are given in Appendix A.
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Figure 5.8: Mean accuracy time series for both object and boundary accuracy.

measures. The BPT and IGC algorithms have comparable performance through-

out; after approximately 50 seconds the difference in average precision between

the two is negligible. The SIOX and SRG algorithms also have comparable perfor-

mance. The SIOX algorithm performs marginally better than SRG early on, but

is surpassed by SRG after about a minute. This SIOX algorithm has the flattest

time series curve, implying is one of the least responsive algorithms and tends to

inhibit iterative improvement.

The mean time series is a concise and effective way of visualizing the perfor-

mance of an interactive segmentation algorithm. Although averaging across all
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Figure 5.9: Proportion of segmentations attaining at least the given boundary
accuracy, plotted over time. Each panel represents a different minimum accu-
racy. The y-values are the proportion of the collection segmented to at least this
accuracy; the x-values represent the corresponding elapsed time.

participants and images results in a robust time series, it discards a lot of informa-

tion. Plotting the mean time series for each image (Figure 5.7), on the other hand,

gives substantially more information, but the result is convoluted and difficult

to interpret. Our final analysis retains more information than the overall mean

time series, but affords simpler interpretation. The plots in Figures 5.9 and 5.10

show the proportion of segmentations that exceed varying degrees of accuracy
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Figure 5.10: Proportion of segmentations attaining at least the given object accu-
racy, plotted over time. Each panel represents a different minimum accuracy. The
y-values are the proportion of the collection segmented to at least this accuracy;
the x-values represent the corresponding elapsed time.

over time. The plots are generated by measuring the number of segmentations

that have an accuracy exceeding α at time τ for discrete values of α and τ . The

result is a three-dimensional plane, illustrated in slices in Figures 5.9 and 5.10.

The figures essentially afford the same conclusions as Figure 5.8: that overall BPT

and IGC are comparable and outperform SRG and SIOX.
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It is also worth noting that the two accuracy measures are well correlated. The

Pearson correlation coefficient for the two measures, computed over all recorded

measurements, is 0.834. The measures also demonstrate high rank correlation:

Spearman’s ρ coefficient over all recorded measurements is 0.823.

5.5.2 Perceived Accuracy

To measure perceived accuracy, participants were asked to rank how accurate

they perceived their final segmentation on a scale of 1 to 5: 5 meaning highly

accurate, and 1 meaning highly inaccurate. We also asked users to rank the

performance of each algorithm on a scale of 1 to 5, again higher ranks indicating

better performance. Figure 5.11 uses histograms to illustrate the distribution of

user responses. The mean perceived accuracy and the mean performance ranks

are shown in Figure 5.12. Clearly, participants felt that, on average, the BPT and

IGC algorithms produced significantly more accurate final segmentations than

SRG and SIOX. On average, participants also perceived that the BPT and IGC

algorithms out-perform the SRG and SIOX algorithms. The results agree with the

average measured accuracies from Table 5.4.

There is no significant difference between the mean perceived performance

of the BPT and IGC algorithms. The histograms in Figure 5.11, however, clearly

show that most users assigned a higher performance rank to the IGC than the

BPT algorithm, despite them having comparable performance for the time period

shown in Figure 5.8. Potential reasons for this are explored in the next section.

5.5.3 User Feedback

In addition to asking participants to rank the accuracy of their final segmentations

in the questionnaires, we also asked participants to comment on each of the
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Figure 5.11: Histogram plots of segmentation accuracy (per image), and algorithm
performance (per algorithm) as judged by the participants.

evaluated algorithms. This included asking participants: which algorithm they

preferred, what they believed were the strengths and weaknesses of each, and

if they had any other general remarks or comments. Figure 5.13 shows the

distribution of votes given by users for their preferred algorithm.

From Figure 5.11 and Figure 5.13, it is clear that most users preferred the IGC

algorithm, despite their comparable performance in terms of their time accuracy

profiles (Figure 5.8). Analysis of the user comments revealed an interesting

explanation for the discrepancy—the algorithm’s behavioral predictability. The IGC

algorithm tends to behave more conservatively than BPT: additional interactions

tend to produce small predictable changes, whereas larger more unpredictable

changes can sometimes occur with BPT. This gives the BPT algorithm the potential

to improve its segmentation faster than IGC, but may also induce the perception

of erratic behavior.
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Figure 5.12: Mean results from user feedback. (a) shows the mean segmentation
accuracy as judged by participants; (b) shows mean algorithm performance as
judged by participants. The error bars represent the confidence intervals assuming
a normal distribution for p = 0.05 (±1.96 · SEx̄).

From the comments it was clear that participants strongly preferred more con-

servative algorithms. For the IGC algorithm, users remarked that the algorithm

“reacted well to local changes, without causing too much global deformation.”

They liked that “small localized scribbles only have a local effect.” Conversely,

users disliked algorithms in which small additions to the markup could cause

large differences to the segmentation. Commenting on the SRG algorithm one

user complained that “adding one scribble can completely change the segmenta-

tion.” This apparently erratic behavior was also noted by participants with regard

to the BPT and SIOX algorithm, and is likely the reason why more participants

preferred the IGC algorithm to the BPT algorithm.

Another issue commonly indicated as important in the feedback was algorithm

responsiveness. Participants, in general, disliked algorithms that made it difficult

for them to refine their segmentation. This was the most common reason that

users cited for disliking the SIOX algorithm: although it was sometimes “very

quick to capture initial object,” “if it doesn’t find the correct boundary in the

beginning, then it is simply impossible to refine.” The comments revealed that
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many users become quickly frustrated with algorithms that make it difficult to

add iterative refinements to their segmentation. This is further reinforced by

comparing the time spent on each task with the rankings given: users prefer

using algorithms that require longer to segment an object, but allow iterative

improvements (SRG), than using algorithms that make a better initial guess, but

make improvement more difficult (SIOX).

Similar observations have also been made when evaluating other interactive

systems. Koenemann and Belkin [Koenemann and Belkin, 1996] showed that

users perform better when using information retrieval systems if they understand

the underlying relevance-feedback mechanism. They also point out that users

subjectively preferred more transparent systems. This is related to behavioral

predictability—systems that are easier to understand are easier to predict. As a

design principle for creating semi-automatic annotation interfaces, Suh and Beder-

son [Suh and Bederson, 2007] propose that users should be in control at all times,

and that systems should not hamper a user’s freedom to make manual annota-

tions. This proposition is supported by the comments made by our users when

the algorithms provided inadequate response to their attempted refinements.
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In the feedback, participants not only identified properties of interactive seg-

mentation algorithms that they felt were important, but also identified specific

image features that appeared to cause difficulties. Two image features in particular

were recognized as a source of difficulty for all of the algorithms evaluated: texture

and object-detail. Users commented that the algorithms were often “confused by

texture,” and had “difficulty with very fine details.” The problems with texture

are expected: none of the algorithms explicitly use texture features. The problems

with segmenting edge detail are often related to contour smoothing performed by

algorithms to prevent jagged object boundaries, which tend to be visually disturb-

ing. Interestingly, one participant recognized this link between object detail and

boundary jaggedness, suggesting that “there could be a boundary smoothness

tool to control the jaggedness of a region.”

5.5.4 Validation

To demonstrate the benefits of the proposed measures we compare our sug-

gested benchmarks, and several other popular measures, with perceived accuracy

as indicated by the participants. For the comparison, we computed two mea-

sures of correlation between measured accuracy and perceived accuracy, specif-

ically: the (Pearson product-moment) correlation coefficient, and Kendall’s tau

[Kendall, 1938] rank correlation coefficient. Kendall’s tau is a measure of the

strength of association of cross tabulations, and has values in the interval [−1, 1],

where 1 indicates perfect agreement and -1 perfect disagreement.

Instead of computing the correlation coefficients directly against all the per-

ceived and measured accuracies for all final segmentations, we first average the

values for the each segmentation with the same algorithm, and of the same object,

for different users. This pre-averaging helps to mitigate outliers, and is moti-

178



Correlation Coefficient Kendall’s τ

ÃB 0.679 0.494
AO 0.669 0.516

AB (binary) 0.606 0.445
Pr 0.564 0.448
Re 0.469 0.382
RI 0.375 0.350

Table 5.6: Correlation of measured and perceived accuracy

vated by participants expressing that they had either made some errors in the

questionnaires, or had misread some of the task descriptions.

The resulting correlation values are shown in Table 5.6. The values show that

the suggested object and boundary accuracy measures are more closely correlated

with human perception than are the other tested measures, with boundary accu-

racy ÃB having a higher correlation coefficient and object accuracy AO having

a higher value of Kendall’s tau. Furthermore, the proposed fuzzy version of

boundary accuracy is also better correlated with perceived accuracy than the

binary case AB for both coefficients.

5.6 Conclusion

In this chapter we presented a comparative evaluation of four interactive seg-

mentation techniques. This evaluation was carried out in the form of a user

experiment in which 20 participants were asked to segment objects using different

interactive segmentation algorithms. To support the experiment, we developed

a consistent user interface for hosting scribble driven interactive segmentation

algorithms, that also supports the most important features of other image editing

tools. We selected a set of 100 objects from a publicly available dataset, containing

a good cross-section of segmentation challenges. These images were then man-

ually segmented, and annotated with unambiguous descriptions of the desired
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objects. The interactive segmentation tool, complete with the four algorithms that

were evaluated, and the ground truth dataset are available from our website.

We selected two measures for evaluation: the Jaccard index to measure object

accuracy, and a new fuzzy Jaccard index to evaluate boundary accuracy. Object

segmentation masks were stored after each participant performed a new inter-

action, and the accuracy benchmarks were computed against each stored mask.

The resulting plots of average accuracy over time demonstrated that the two most

effective techniques were the interactive graph cuts algorithm and the binary

partition tree algorithm.

In addition to measuring accuracy against a ground truth, participants were

asked to rank the accuracy of each final segmentation. The results of this ranking

were shown to correspond well with the average measured accuracy. Furthermore,

the correlation between perceived accuracy and measured accuracy was shown

to be higher for the proposed measures than for other commonly used measures,

including precision, recall, and the Rand index.
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Chapter 6

Automating Interactive

Segmentation Evaluation

6.1 Introduction

In the previous chapter we focused on supervised evaluation of interactive seg-

mentation by means of user experiments. In practice, carrying out user exper-

iments every time a new algorithm, or new variation of an algorithm, is to be

evaluated can be prohibitively time consuming and labor intensive. In this chapter

we aim to develop a method for supervised evaluation of interactive segmentation

algorithms that eliminates the need for user experiments.

Automating the evaluation of interactive segmentation involves replacing the

human operator with an algorithmic process designed to emulate the behavior

of an operator as closely as possible. To achieve this, we propose driving the

interactive segmentation by automatically deriving the user interactions from the

current segmentation error and ground truth data. In this chapter we explore

four strategies for deriving these interactions. The first of these strategies is

deterministic, needing only to be run once to obtain a rough evaluation. The

remaining three are probabilistic: they aim to more realistically approximate an
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actual user. We evaluate the four interactive segmentation algorithms from the

previous chapter using each of these strategies, and compare the results with the

user experiments.

The remainder of this chapter is organized as follows. Section 6.2 discusses the

objective of automating the evaluation. We first outline some general considera-

tions, then develop four different strategies for automating the user interactions,

beginning with the simplest strategy and iteratively developing more complex

ones. Section 6.3 discusses the parameters of the experiment and outlines the

software and tools that we developed for automated evaluation. Section 6.4 ana-

lyzes the results of the experiment and compares them with the results of the user

experiments from the previous chapter. Section 6.5 presents our conclusions and

outlines some recommendations for using the proposed system.

6.2 Automation

The previous chapter described evaluating interactive segmentation by means

of user experiments. In these experiments, the participant is required to provide

seed pixels for the object and background regions by marking the image with the

mouse. The segmentation algorithm builds an initial segmentation using these

seed pixels as priors, and provides feedback to the participant. The participant

may then iteratively refine this segmentation by marking additional pixels until

either a satisfactory segmentation is obtained, or the allotted time expires. This

kind of experiment, while invaluable for establishing the usability of an algorithm,

is often prohibitively difficult and time-consuming, especially considering that it

needs to be repeated each time a new algorithm is evaluated. The idea behind

automating the evaluation is to devise an algorithmic process that can simulate,

in some reasonable way, all the actions that are usually performed by the human

operator, thereby eliminating the need for user experiments.
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Figure 6.1: Flow chart of user activity when performing a segmentation task

When first considering this problem, one might initially reason that since we

have already performed the user experiments, we can simply record each inter-

action performed by the participants and automate the procedure by replaying

these interactions. Inspection reveals this reasoning to be flawed: although the

first set of foreground and background seeds supplied by the user could indeed

be used by an automation algorithm, all subsequent interactions are reactive. That

is, at each step, the user is attempting to correct the current segmentation error.

This error depends on the algorithm being evaluated, and on the interactions

from previous steps.

Automating the evaluation requires us to identify each decision that is made

by the user, so that it can be replaced by an automated action. Figure 6.1 depicts a

high-level view of the flow of activity for a user during a segmentation task. From

this we can identify the following user responsibilities:

1. Identify the object to be extracted from the task description;

2. Select initial foreground and background seed pixels;
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3. Correct errors in the segmentation by selecting additional foreground or

background seed pixels; and

4. Decide after each interaction if the segmentation is satisfactory.

Identifying the object to be extracted from the task description is, undoubtably,

the most difficult of these tasks to automate. It is, however, possible to bypass

this step: we are performing a supervised evaluation, so the object to be extracted

is coded exactly in the ground truth. Step 2 can be accomplished by selecting,

in some way, the initial seed pixels from the object and background regions in

the ground truth. After an initial segmentation has been found, we can find the

mislabeled pixels by comparing this initial segmentation against the ground truth.

This gives us the means to automate Step 3: by selecting the additional object or

background seed pixels from the set of mislabeled pixels.

The final step is to decide if the segmentation is satisfactory, and if so, termi-

nate the process. A straightforward criterion is to declare a segmentation to be

satisfactory if and only if it exactly matches the ground truth. In our experiments,

however, we observed that this strategy often results in a great deal of time toward

the end of the segmentation process being spent correcting insignificant errors

along the boundary of the object. Since, as noted in the previous chapter, the

true boundary of an object is inherently ill-defined, and since human operators

do not normally notice such slight error, much less spend time correcting it, we

recommend terminating the segmentation if the only remaining error pixels lie

on the inner or outer boundary of the object.

We have not yet specified how to select the seed pixels in the initialization stage

or correction stage. Furthermore, we have made some important assumptions

in the above discussion that warrant further consideration. We address both

these issues shortly. First, let us outline the general automation algorithm by
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drawing on the above discussion. Recall the notation we created in Section 5.3.2

for important sets of pixels in the machine segmentation and ground truth:

• GO: the set of all pixels inside the ground truth object;

• GB: the set of all pixels outside the ground truth object;

• MO: the set of all pixels inside the machine segmented object;

• MB: the set of all pixels outside the machine segmented object;

• BG: the set of internal border pixels for the ground truth object;

• BM : the set of internal border pixels for the ground truth background region.

Note that the set of internal border pixels for the background region equals the

set of external border pixels for the object region, and similarly, the set of internal

border pixels for the object region equals the set of external border pixels for the

background region.

In addition to the above definitions, we denote the initialization seeds, the

update seeds, and the current segmentation error as follows:

• IO and IB are the sets of object and background seeds used by the automation

algorithm to initialize the segmentation;

• UO and UB are the sets of object and background seeds used to update

(refine) the segmentation;

• EO and EB are the sets of object and background pixels that have been

misclassified by the segmentation algorithm (the error).

Using this notation, our proposed general automation algorithm proceeds as

follows:
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1. Initialize: Select the initial object seed points IO, and the initial background

seed points IB, such that IO ⊆ GO and IB ⊆ GB. Mark these points as object

and background and update the segmentation.

2. Compute error: Determine the set of misclassified object pixels EO, and the

set of misclassified background pixels EB, as:

EO = MB ∩GO (6.1)

EB = MO ∩GB (6.2)

3. Check for termination: If the sets of misclassified pixels above contain only

pixels from the object’s internal or external border, terminate the algorithm.

More formally, the algorithm terminates if:

EO ⊆ BG ∧ EB ⊆ BM

Note that the above holds when both EO and EB are the empty set.

4. Correct: Update the segmentation by selecting either additional object seeds

UO ⊆ EO, or additional background seeds UB ⊆ EB, and return to Step 2.

There are two important, and related, implications of the above algorithm

that need to be addressed. First, if the interactive segmentation algorithm being

evaluated is not “well-behaved” the algorithm may never halt. By well-behaved,

we mean that if we mark a pixel as object, the algorithm will always classify it as

object, and if we mark it as background, the algorithm will always classify it as

background. We believe that it is justified to assume such behavior, as we explain

shortly. It is straightforward to modify an existing segmentation algorithm to

conform to this behavior by post-processing the output.
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The second implication is that since the automation algorithm only ever

chooses object seeds that are inside the ground truth object, and background

seeds that are outside the ground truth object, it is impossible for our automation

algorithm to ever make a mistake—i.e., to incorrectly mark an object pixel as

background or vice versa. Our experiments have shown that users, in general,

are not so diligent.

However, we believe that both these assumptions are sensible design decisions.

In our user experiments, participants universally agreed that they preferred

algorithms with predictable behavior. So although it is possible for an interactive

segmentation algorithm to compensate for inaccurate interactions, we do not

necessarily believe that they should: such compensation is a direct violation of

the user’s instructions, however imprecise. This kind of behavior may be helpful

in a few cases, but more often than not, is an endless source of frustration to users

[Spolsky, 2001]. The desire for predictable behavior justifies the requirement that

algorithms must be well-behaved; well-behaved algorithms are, by definition,

incapable of compensating for user errors.

What remains is to decide a suitable way of selecting the initialization seeds

IO and IB, and the update seeds UO and UB. We now explore four strategies for

their selection.

6.2.1 Strategy 1

We begin by investigating a very simple deterministic strategy for choosing the

initialization and update seed pixels. We do so to set up a baseline approach

against which we can compare our more sophisticated strategies, which attempt

to more closely approximate real user interactions.

The basis of this strategy is the observation that users tend to begin extracting

objects by marking as foreground some pixels in the middle of the object, and
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marking as background some pixels well outside the object. They then proceed

to refine the initial segmentation by marking pixels that lie inside large areas of

misclassified pixels. To emulate this behavior, strategy 1 initializes the segmen-

tation by selecting pixels that are near the center of the ground truth object as

object seeds, and selecting pixels that are distant from the ground truth object as

background seeds. Similarly, to update the segmentation, the strategy chooses

pixels that are farthest from the correctly classified pixels as the update seeds.

Let D(x, R) be the minimum distance from a pixel x to any pixel in the set R:

D(x, R) = min
y∈R
‖x− y‖ (6.3)

and let the Z(Q,R) be the set of all points in Q that are are maximally distant to

their nearest points in R:

Z(Q,R) = arg max
x∈Q

D(x, R) (6.4)

We choose the initial seed points IO and IB as:

IO = {x : x ∈ Br(y, GB),y ∈ Z(GO, GB)} (6.5)

IB = {x : x ∈ Br(y, GO),y ∈ Z(GB, GO)} (6.6)

where Br(y, R) is a brush function that returns all pixels within a fixed radius of

y:

Br(y, R) = {x : ‖x− y‖ ≤ r(y, R)} (6.7)

The brush radius is given by the r(y, R) function. It is chosen proportional to

the minimum distance from the center seed points y to the object boundary, within

the constraints of the interactive segmentation tool. Note that all such points

y ∈ Z(GO, GB) are equidistant from the background, and similarly all points
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y ∈ Z(GB, GO) are equidistance from the object. The interactive segmentation tool

has a maximum brush radius of 20 pixels, so we define our brush radius function

as:

r(y, R) = min

(
1

2
D(y, R), 20

)
(6.8)

Our reasoning here is simple: users tend to use larger brush sizes to correct larger

errors, and smaller brush sizes to correct minor details; they cannot set the brush

to a size larger than 20 because our tool does not support it.

To update the segmentation we follow a similar strategy, this time taking our

update seeds UO and UB from the sets of misclassified object and background

pixels EO and EB:

UO = {x : x ∈ Br(y, EC
O),y ∈ Z(EO, E

C
O)} (6.9)

UB = {x : x ∈ Br(y, EC
B ),y ∈ Z(EB, E

C
B )} (6.10)

where EC denotes the complement of the set E. In the interactive segmentation

tool, the segmentation is updated after each interaction. It is impossible for users

to simultaneously mark object and background pixels in a single interaction. We

therefore update the segmentation using only one of the above sets: UO or UB. We

select the set of update pixels U to be the set that has larger minimum distance

between its center and the external border of the set of misclassified pixels it is

drawn from:

U =


UO maxy∈UO D(y, EC

O) > maxz∈UB D(z, EC
B )

UB otherwise
(6.11)

Figure 6.2 shows the first few steps of this strategy when evaluating the IGC

algorithm. As can be seen, the strategy begins by placing one or more circular
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(a) Initialization (b) Update 1 (c) Update 2 (d) Update 9

Figure 6.2: An illustration of the first few the steps of automation strategy 1. The
segmentation algorithm being evaluated is IGC. Each update adds one or more
circular blobs of seed pixels to correct errors in either the object or background
regions.

blobs of seed pixels in the center of the object to be extracted, and one or more

blobs of seed pixels well outside the object. Each update then corrects errors in

the segmentation by placing seed pixels in the center of the largest regions of

misclassified pixels.

The strategy can be efficiently implemented using a fast 2D Euclidean dis-

tance transform algorithm. Our implementation uses the linear time algorithm

proposed by Meijster et al. [Meijster et al., 2000], which was demonstrated in

[Fabbri et al., 2008] to be one of the fastest 2D Euclidean distance transform algo-

rithms available. This allows us to evaluate Eq. (6.3) for all values of x in a region

in linear time, and therefore initialization and each update also run in linear time.

This strategy has some advantages; it is relatively quick to compute, and since

it is deterministic, it will produce the same sets of seed points given the same

segmentation algorithm and ground truth each time it is run (provided, of course,

that the segmentation algorithm is also deterministic). It therefore needs to be run

only once for each algorithm being evaluated.

There are, however, two distinct disadvantages of this approach. First, since it

is deterministic, it does not evaluate repeatability. The strategy gives no indication
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of how robust the algorithm being evaluated is to small variations in markup:

it always produces the same markup given the same algorithm and input. This

behavior is in direct contrast to real users, who are unlikely to produce the

same sets of markings when extracting a given object. Second, the strategy

produces pixel blobs instead of lines and curves, similar to a user repeatedly

clicking the mouse on the misclassified regions each time they wish to correct

the segmentation. Although this is a perfectly valid way of extracting objects,

observation indicates that users prefer to draw lines or curves.

We address both of these issues as we investigate more complex automation

strategies. Strategy 1 is a useful baseline against which we can compare more

sophisticated approaches.

6.2.2 Strategy 2

Recall that choosing our initialization and update seeds requires selecting a set of

seed pixels S from a set of candidate pixels C. For strategy 1, we selected the set

of pixels from C that were maximally distant from their nearest neighbors in Cc,

then expanded our selection using a brush function. We do the same for strategy

2, except this time we select pixels from C non-deterministically. We propose

selecting pixels from C such that the probability of selecting x ∈ C is proportional

to the spatial distance from x to Cc. This way we are more likely to select pixels

that are nearer to the center of the object on initialization, and nearer to the center

of groups of misclassified pixels on update.

To achieve this, we need to define a discrete probability distribution for select-

ing pixels from C based on their spatial distances to their nearest neighbors in Cc.

Such a distribution could be defined in various ways; for simplicity, we opted

to design our distribution using the sum normalized distances. This gives the
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following discrete probability mass function:

Pr[X = x] =
D(x, Cc)∑

y∈C D(y, Cc)
(6.12)

The above mass function can be used to select seeds with the desired probabil-

ities using the inversion method [Hörmann et al., 2004] as follows:

1. First, compute a discrete estimation of the cumulative distribution function

for Eq. (6.12) as:

F(X) =
∑
Y≤X

Pr[Y ] (6.13)

2. Generate a random number u ∈ (0, 1) from the standard uniform distribu-

tion.

3. Find the smallest value xi such that F(xi) ≥ u. Binary search on F can be

used to find xi in O(log n) time.

The brush function is then applied as before to expand the selection. Since

we now have a non-deterministic method of selecting the initialization and up-

date pixels, we can evaluate repeatability by using multiple runs of the method,

simulating multiple users.

6.2.3 Strategy 3

We noted previously that users tend to draw lines and curves to mark up objects,

rather than simply pointing and clicking. To make the evaluation more realistic,

we would prefer if our automation strategy provided similar interactions.

Our goal here is to select a sequence of seed points P = (x1,x2,x3, ...,xn) from

our candidate points C, such that each seed point is a neighbor of a previously
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selected point:

xi ∈ P =⇒ xi ∈ C (6.14)

xi ∈ P ∧ i > 1 =⇒ xi−1 ∈ N (xi) (6.15)

where N (xi) is the set of 8-neighbors of xi.

There are typically many sequences P which satisfy the above predicates.

Most of these, however, are not usually what we would (intuitively) consider

realistic for a user to draw when marking up objects. Our experiments suggest

that users tend to draw smooth, simple curves; we would ideally like to devise a

strategy that emulates this behavior.

The path P = (x1,x2,x3, ...,xn), has a start point x1, and an end point xn.

A logical way to create such a path is to select the start and end point using

the strategy outlined in Section 6.2.2, and find a sequence of adjacent pixels

joining the start and end points. The simplest and shortest path of pixels joining

x1 and xn is a straight line rasterized on the pixel grid. Unfortunately, since

the required objects are not always convex, a straight line is not guaranteed to

fall entirely within the region we are marking. Figure 6.3 illustrates this issue.

Figure 6.3(a) shows a synthetic non-convex object; 6.3(a) illustrates its distance

transform. Figure 6.3(c) shows the maxima of the distance transform. These

are also the two most likely points to be selected as endpoints by the method

described in Section 6.2.2. Figure 6.3(d) shows that the line joining these two

points lies outside the object. The ideal solution we would like to approximate is

shown in Figure 6.3(e).

Our first attempt at approximating the kind of lines and curves generated by

human operators uses the shortest spatial path on the image grid between points

x1 and xn that lies completely inside the candidate region. To compute this path,
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(a) Object (b) Distance transform (c) Maxima

(d) Line segment (e) Ideal solution

Figure 6.3: Extracting a non-convex object with straight line segments: (a) is a
synthetic, non-convex object, designed so that it has two distinct maxima that
cannot be joined using a straight line. (b) is the distance transform of (a). (c) is
the maxima of the distance transform overlaid on the object. (d) shows a dashed
line segment joining the maxima points. (e) is the ideal solution we would like to
approximate.

we construct a graph G = (V,E) from the candidate pixels C, such that each pixel

x ∈ C is a vertex in the graph, and each vertex is connected to all of its eight

neighbors also in C. That is:

G = (V,E) (6.16)

V = {x : x ∈ C} (6.17)

E = {(x,y) : x ∈ C,y ∈ Nx ∩ C} (6.18)

Each edge in E is then given a weight equal to the spatial distance between the

vertices it joins. Since we are operating on an 8-connected graph, these weights are

equal to 1 for horizontal and vertical edges, and
√

2 for diagonal edges. Having

constructed G, we can now use Dijkstra’s algorithm [Cormen et al., 2001] to find
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(a) Ideal solution (b) Strategy 3 path (c) Strategy 4 path

Figure 6.4: Paths found between the maxima points of Figure 6.3 using automation
strategies 3 and 4.

the shortest path between x1 and xn. Figure 6.4(b) shows the path found using

this approach on the example in Figure 6.3.

The algorithm, as specified thus far, will fail if x1 and xn lie in regions that are

spatially disjoint. We must, therefore, avoid this situation and only choose our

endpoints so that there always exists a path between them. The final strategy 3

algorithm is as follows:

1. Construct the candidate graph G.

2. Select an initial point x1 using the non-deterministic strategy in Section 6.2.2.

3. Determine which other vertices in G are connected to x1 using Dijkstra’s

algorithm. This also gives us the shortest path from x1 to every other

connected vertex in G.

4. Remove x1 and all vertices not connected to x1 in G from the candidate

pixels C.

5. Select a second point xn, again using the non-deterministic strategy in

Section 6.2.2.

6. Set P equal to the shortest path between x1 and xn as found in step 3.

The set of seed pixels P ′ is then chosen by expanding the path P using a brush

function similar to that in Equation (6.7). In this instance, the brush radius is
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(a) Initialization (b) Update 1 (c) Update 2 (d) Update 13

Figure 6.5: An illustration of the first few the steps of automation strategy 4. The
segmentation algorithm being evaluated is IGC.

chosen relative to the minimum distance from any pixel on the path P to one of

the non-candidate pixels Cc as follows:

P ′ = Br′(P,Cc) (6.19)

Br′(P,R) = {y : ‖x− y‖ ≤ r′(P,R),x ∈ P} (6.20)

r′(P,R) = min
x∈P

r(x, R) (6.21)

6.2.4 Strategy 4

The paths found by strategy 3 are the shortest possible. They will, therefore, often

yield paths that pass very close to the boundary of the candidate region (see

Figure 6.4(b)). We would prefer to generate paths that stay closer to the center of

the region, as in Figure 6.4(a).

To achieve this, we propose adjusting the weights on the candidate graph G,

so that paths that move toward the center of the object are preferred over the

shortest possible path. Previously we set the weight for the edge between vertex
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x and y equal to the spatial distance between them:

wx→y = ‖x− y‖

Modulating the above by the exponent of the normalized distance from y to the

boundary introduces a preference to move toward the center of the object. Our

modified distance function is:

w′x→y = ‖x− y‖ exp

(
D(y, Cc)

maxz∈C D(z, Cc)

)

which, for our previous example, yields the path in Figure 6.4(c). The path is

again expanded using the brush function to form the set of seed pixels. Figure 6.5

shows a more realistic example of this strategy in action.

6.3 Evaluation

To run the automated evaluation we developed the automator tool, shown in

Figure 6.6. The tool allows configuration of all aspects of the evaluation, including:

the algorithm being evaluated, the automation strategy, the input and ground

truth files, and the evaluation measures to use. When the evaluation is run, the

tool processes each input image and corresponding ground truth with the selected

automation strategy. After each automation step is taken, the segmentation is

updated, and accuracy is computed against the ground truth using the selected

accuracy measures. For the non-deterministic automation strategies, the process

is repeated the desired number of times.

We set an upper limit of 100 steps for each automation strategy. This limit is

imposed not only to ensure that the automation strategies terminate in a reason-

able amount of time, it is also important during the analysis of the results, as we
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Figure 6.6: The configuration window for our automator tool.

shall see in the next section. To effectively evaluate repeatability, evaluation using

the non-deterministic strategies needs to be repeated several times; we used five

repetitions for our experiments.

The time required to run the automated experiments depends on the automa-

tion strategy used, on the algorithm being evaluated, on the number of images

in the dataset, and on the number of repetitions when using a non-deterministic

automation strategy. Strategy 1 is the least computationally intensive automation

strategy, and strategy 4 is the most intensive. To give an idea of the typical time

required to run an automated evaluation, Table 6.1 shows the approximate run-

times of two automation tasks on our server machine (3 GHz Intel Xeon CPU,

Linux kernel 2.6.20 x86 64).
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Strategy Algorithm Repetitions Max Steps Objects Time

1 IGC 1 100 100 25 min
4 IGC 5 100 100 2 hr 30 min

Table 6.1: Indicative runtimes of the automation strategies.

6.4 Analysis

The objective of our analysis is twofold. First, since there is a large amount of data

generated by the experiments, we need to develop a effective means to reduce

and interpret this data. We can then apply this to each evaluation strategy to

investigate the characteristics of the evaluated algorithms. Second, we want to

compare each of the evaluation strategies, and determine which best approximates

full user experiments.

Every ground truth object evaluated results in a time series of object accuracy

and boundary accuracy values. Figure 6.7 shows two such time series from our

experiments. Each interactive segmentation algorithm evaluated produces 100 of

these time series (one for each ground truth object). This is increased to 500 for

the non-deterministic strategies, since the evaluation is run five times. To allow

us to more easily interpret these data, we aggregate it in two ways.

The first way is to examine the average accuracy over all images as a function of

time. We refer to this as the time-accuracy profile curve. The aim is to determine

how, on average, accuracy varies over time for each evaluated algorithm. To

compute time-accuracy profile curves, we first need to expand the time series data

to the maximum number of steps. This is done by duplicating the final accuracy

measured (i.e. the accuracy when the automation terminates) for each subsequent

step up to the maximum. Once the time series data have been expanded to equal

length, they are sampled at regular intervals using a fixed sampling window.

These samples are then averaged to produce the time-accuracy profiles.
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Figure 6.7: Sample time series data for individual images. The time series were
created by evaluating the IGC algorithm (left) and the SIOX algorithm (right) with
automation strategy 1 against the same ground truth image.

The second way we aggregate the data is by computing scalar features of the

individual time series, and averaging these features across the collected data.

We use two scalar features. The first is final accuracy, defined as the accuracy

measured when the automation terminates; it gives an indication of the accuracy

that can be achieved in a reasonable amount of time using a given segmentation

algorithm. In Figure 6.7 this is simply the last value on the right hand side of the

curves.

The second feature we compute is termed integrated accuracy. Consider again

the time series in Figure 6.7. The time series on the left clearly indicates better

performance than the time series on the right: it achieves a higher accuracy in less

steps. Observe that algorithms that are performing well tend to produce curves

that increase quickly at first and then gradually level-off (similar to a cumulative

exponential distribution); algorithms that are performing poorly tend to have

more gradual, “choppy” curves. One useful way to reduce these curves to a scalar

value is to examine the area under the curves.
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If we expand each time series data so that they are of equal length (in the

same way as when computing the time-accuracy profile curves) then the area

under the time series curve is a good indication of the overall performance of

an algorithm. A large area relative to another indicates that one segmentation

algorithm maintains a higher average accuracy the other, usually as a result

of achieving an accurate segmentation faster and subsequently maintaining, or

slowly improving upon, this segmentation. Furthermore, this area is bounded by

the area of the unit height rectangle that is the same width as the expanded time

series, and can therefore be easily normalized to the range [0, 1].

It is possible to approximate the area under a time series by summation

when the data points for the time series are unit spaced. The data points collected

during an automated evaluation experiment are unit spaced: accuracy is measured

after each step in the automation process. The area beneath this time series can,

therefore, be approximated by the sum of all data points in the series.

We also need to calculate the integrated accuracy feature for the user exper-

iments so that we can determine how well they correlate with the automated

experiments. This again necessitates determining the area beneath the time series

curves. However, the data points from the user experiments are non-unit spaced:

accuracy is measured at different points in real time, i.e., every time the user

refines the segmentation by marking additional pixels as object or background. To

approximate the area under these time series using summation, linear resampling

can be used to coerce the series to one that is unit spaced. It is also possible to

approximate the area under non-unit spaced points using the trapezoid rule for

numeric integration [Atkinson, 1989].

Denoting A(a) the area under the expanded time series a = (a1, a2, . . . , ak), as

computed using one of the above procedures, we define the integrated accuracy

feature as this area A(a) normalized by the area of the minimal unit height

rectangle that encloses these points. For our experiments, we resample each time
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series so that all data points are unit spaced, then approximate the area under the

curves using the summation method. In this case, the integrated accuracy feature

I(a) is equivalent to the area under the expanded time series normalized by the

number of data points (i.e., it is the mean of the expanded time series):

I(a) =
1

k

k∑
i=1

ai (6.22)

Once the final accuracy and integrated accuracy features for each image have

been computed, they can be averaged across all objects in the dataset to obtain an

indication of the overall performance of the evaluated algorithm. Furthermore,

they can be used to compare the output of the automation strategies with the user

experiments. Section 6.4.2 uses these scalar features to investigate how well the

four automation strategies approximate a real user.

6.4.1 Experiments

We evaluated each interactive segmentation algorithm using all four evaluation

strategies. When computing the time-accuracy profiles and the aggregate features,

each time series is expanded to the maximum number of steps by duplicating

the final accuracy value. In addition, the time series values for each of the non-

deterministic automation strategies (strategies 2, 3, and 4) is averaged across all

the repetitions. Figure 6.8 shows the time-accuracy profiles for each of the four

automation strategies. Figures 6.9 and 6.10 show the average final accuracy and

integrated accuracy features.

It is difficult to formally compare the time-accuracy profiles from the user

experiments (Figure 5.8) with those from the automated experiments. This is

due to the difficulty in aligning the time series—such alignment would require
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Figure 6.8: Mean accuracy over time for each of the evaluation strategies.
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Figure 6.9: Mean final accuracy after 100 steps for each of the evaluation strategies
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Figure 6.10: Mean integrated accuracy for 100 steps for each of the evaluation
strategies

equating effort spent by an automated algorithm with effort spent by human

user in a meaningful way. The y-axis on the time-accuracy profiles is designed

to quantify this effort. For the user experiments, the actual elapsed time, in

seconds, is a meaningful indicator of effort. For the automated experiments,

however, the number of steps is more appropriate, as each step invokes the same
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procedure. To compute a direct correlation between the time-accuracy profiles

for the user experiments and the same profiles for the automated experiments

necessitates aligning the data in some way. It is, however, possible to compute

a more meaningful rank correlation using the aggregate features. Section 6.4.2

examines the correlation between aggregate features.

Despite the difficulty in performing a formal comparison between the time-

accuracy profile curves in the user experiment and the time-accuracy profile

curves for each of the automation strategies, a visual comparison is informative.

Visually comparing the profile curves from strategy 1 with the profile curves for

the user experiment indicate that strategy 1 does indeed give similar results to

the user experiments. Furthermore, we can draw similar conclusions from the

profile curves from strategy 1 as we did from the user experiments. The strategy

1 profile curves again indicate that the BPT and IGC algorithms are comparable,

both demonstrating the best overall performance. The SIOX algorithm initially

performs better the SRG algorithm. After about 60 steps the performance of the

SIOX and SRG algorithms are comparable. The SRG algorithm surpasses the SIOX

algorithm in terms of boundary accuracy after about 60 steps, again indicating

that the SRG algorithm is more receptive to iterative refinement.

Visual comparison shows that strategy 2 is less effective that strategy 1 at

approximating the results of the user experiments. In particular, the time-accuracy

profile for strategy 2 suggests that the SIOX algorithm consistently outperforms

that SRG algorithm, a conclusion not supported by the user experiments. Strategy

3 and 4 rectify this, giving the most satisfactory visual correspondence with the

profile curves from the user experiments. The same conclusions can be drawn

from these profile curves as were found in the user experiments.

Figure 6.9 shows the final accuracy values for each of the strategies. The results

from strategy 1, 3, and 4 largely agree. The final accuracy values for the BPT

and IGC algorithms are comparable. The BPT and IGC algorithms give higher
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final accuracy than the SIOX and SRG algorithms. For strategy 3 and 4 the SRG

algorithm gives higher final accuracy than the SIOX algorithm. Again, strategy 2

gives different results, showing the SIOX algorithm to have higher final accuracy

than SRG. The integrated accuracy features in Figure 6.10 give similar rankings to

the final accuracy features.

6.4.2 Correlation and Validation

The objective of the automation strategies is to simulate the interactions that

a user would produce when given a particular segmentation task. Suppose a

user is tasked with extracting two separate objects from different images using

a particular segmentation algorithm. Usually, one of these objects will be more

difficult to extract than the other; extracting it will require more time and more

interactions. If an automation strategy is effective at emulating user behavior,

then we would expect the same objects to be proportionately difficult for the

automation strategy.

If a user finds object x more difficult to extract than object y, this will be

reflected in the time-accuracy series produced during the segmentation. There-

fore, if an automation strategy is effective, we expect there to be a correlation

between the time-accuracy series produced by the user and the time-accuracy

series produced by the automation strategy.

We discussed in the previous section the difficulty in performing a direct

correlation between the time-accuracy series from the user experiments and the

automated experiments. We can, however, examine the correlation between

the aggregate time series features: the integrated accuracy and final accuracy

values. These features can be interpreted as being indicative of the difficulty of a

segmentation. High integrated accuracy and final accuracy values indicate that

segmenting a particular image is easier, low values indicate that it is more difficult.
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Figure 6.11: Rank correlation between the user experiments and each of the
automation strategies.

Therefore, the rank correlation over all images between the features produced by

an automation strategy and the user experiments should be relatively high if the

automation strategy is successfully emulating user interactions.

To perform the comparison, we proceed as follows. First, we compute the

integrated score and final accuracy features for each time series generated from

the user experiments. When several users have segmented the same image with

the same segmentation algorithm, we average the features across the different

users. This gives us two integrated score values (one for boundary accuracy

and one for object accuracy) and two final accuracy values for each image and

algorithm evaluated. We follow a similar procedure for each automation strategy,

this time averaging over runs for the non-deterministic strategies.

For each algorithm and image pair, the result is a set of four feature values

for each of the automation strategies: mean final boundary accuracy, mean final

object accuracy, mean integrated boundary accuracy, and mean integrated object

accuracy. From this we calculate the rank correlation between the automation

207



accuracy − user experiments

ac
cu

ra
cy

 −
 a

ut
om

at
ed

 e
xp

er
im

en
ts

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Strategy 1

0.0

0.2

0.4

0.6

0.8

1.0

Strategy 2

0.0

0.2

0.4

0.6

0.8

1.0

Strategy 3

0.0

0.2

0.4

0.6

0.8

1.0

Strategy 4

0.0

0.2

0.4

0.6

0.8

1.0

boundary −
 m

ean
object −

 m
ean

boundary −
 final

object −
 final

Algorithm

BPT

IGC

SIOX

SRG

Figure 6.12: Accuracy features for the user experiments plotted against the same
features from the automated experiments. The panels depict the automation
strategies from left to right, and the accuracy features from top to bottom.

strategies and the user experiments, for the two integrated score values and

the two final accuracy values. We computed two rank correlation coefficients:

Spearman’s ρ, and Kendall’s τ , shown in Figure 6.11. Both Spearman’s ρ and

Kendall’s τ coefficients range from -1 to 1, where 1 indicates perfect correlation, -1

indicates perfect negative correlation and 0 indicates no correlation.

Figure 6.11 demonstrates that there is a high rank correlation between final

accuracy and integrated score from the user experiments and the automated

experiments, indicating that the time-accuracy series from the user experiments

are similar to those of the automated experiments. Specifically, if we rank seg-
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1 - 35008 (0.876) 2 - 12003 (0.847) 3 - 188063 (0.840) 4 - 388016 (0.830) 5 - 189011 (0.829)

6 - 293029 (0.816) 7 - 175043 (0.810) 8 - 208001 (0.797) 9 - 118035 (0.796) 10 - 198023 (0.792)

(a) User experiments

1 - 118035 (0.915) 2 - 293029 (0.894) 3 - 35008 (0.890) 4 - 310007 (0.879) 5 - 25098 (0.876)

6 - 12003 (0.873) 7 - 175043 (0.871) 8 - 188063 (0.869) 9 - 86016 (0.859) 10 - 388016 (0.852)

(b) Automated experiments (strategy 4)

Figure 6.13: Top ten “easiest” images to segment with the SIOX algorithm as
judged using final boundary accuracy. These are the ten images from the dataset
that gave the highest final accuracy values. The images are ranked left to right,
top to bottom. The panel strips show the image tags and final boundary accuracy
values.

mentation task difficulty based on the average final accuracy and integrated score

measures, then the resulting segmentation task ranking from the user experiments

exhibits high correlation with those from the automated experiments: they agree

on how difficult a segmentation task is. This is a good indication that the au-

tomation strategies are, indeed, approximating user behavior in some useful way.

The correlation values are very similar for each of the strategies. Strategy 4 gives
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1 - 302008 (0.328) 2 - 271031 (0.345) 3 - 101087 (0.417) 4 - 253027 (0.436) 5 - 106024 (0.438)

6 - 102061 (0.449) 7 - 42078 (0.451) 8 - 109053 (0.452) 9 - 41033 (0.460) 10 - 101085 (0.471)

(a) User experiments

1 - 41033 (0.157) 2 - 302008 (0.183) 3 - 109053 (0.272) 4 - 108070 (0.323) 5 - 209070 (0.351)

6 - 42078 (0.355) 7 - 42012 (0.365) 8 - 24077 (0.368) 9 - 92059 (0.404) 10 - 101085 (0.406)

(b) Automated experiments (strategy 4)

Figure 6.14: Top ten “most difficult” images to segment with the SIOX algorithm
as judged using final boundary accuracy. The images are ranked left to right, top
to bottom. The panel strips show the image tags and final boundary accuracy
values.

the best overall correlation with the user experiments for integrated boundary

accuracy, integrated object accuracy, and final boundary accuracy.

Figure 6.12 shows a scatterplot of the accuracy features from the user ex-

periments plotted against the same features from the automated experiments.

Systematic deviations from the regression line (dashed black) indicate disagree-

ment between the accuracy values produced by the user experiments and those
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produced by the automated experiments. The figure clearly shows there are fewer

such deviations for strategies 3 and 4 than there are for strategies 1 and 2: further

evidence that the more complex strategies better approximate real users.

As a final illustrative example, Figure 6.13 shows the top ten “easiest” images

to segment using the SIOX algorithm, as judged using the final boundary feature.

Figure 6.13(a) shows the top images from the user experiments, and Figure 6.13(b)

shows the top images from strategy 4 of the automated experiments. The groups

share seven out of ten images, suggesting that the user experiments and the

automated strategies agree on which images in the dataset are the easiest to

segment using this particular segmentation algorithm. Similarly, Figure 6.14

shows the top ten most difficult objects to extract using the SIOX algorithm. In

this case the sets share only five of the ten images; however, there is clearly strong

visual similarity between the two sets.

6.5 Conclusion

When introducing a new interactive segmentation algorithm it is important to

be able to compare its performance with the state-of-the-art. In the previous

chapter we developed a set of benchmarks and software for supervised evaluation

of interactive segmentation using user experiments. Carrying out these user

experiments is, however, a time consuming and labor intensive exercise, often

prohibitively so.

This chapter focused on eliminating the need for user experiments. To this

end, we investigated four strategies for automating the evaluation of interac-

tive segmentation algorithms. The objective of these strategies is to simulate

interactions that would normally be provided by a human operator using the

ground truth and current segmentation error. The first of these strategies is a

simple, deterministic strategy: it always produces the same set of interactions
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given the same segmentation algorithm and input. The remaining three strategies

are non-deterministic, and therefore also allow evaluating the repeatability of an

algorithm. Strategies 3 and 4 produce lines and curves instead of simple point

interactions, aiming to more closely approximate the kinds of interactions usually

produced by humans.

The experiments demonstrated that the results of the automated experiments

are very similar to those of the user experiments. Evaluating the four segmen-

tation algorithms using strategies 1, 3, and 4 all produced similar conclusions

about the evaluated algorithms, and these conclusions agreed with the previously

conducted user experiments. Validation using the rank correlation of aggregate

features between the automation strategies and the user experiments indicated

that strategy 4 is the most effective at approximating real user input.

Based on this analysis, we recommend using automation strategy 4 for prac-

tical experiments; of the four strategies, strategy 4 produced the time-accuracy

profile curve that had the closest visual correspondence with the profile curves

from the user experiments, and it produced the aggregate features that had the

highest rank correlation with the user experiments. We recommend using a maxi-

mum of 100 steps or less; overall accuracy does not vary much after this point,

and using too many steps can result in a rather unrealistic evaluation, since users

rarely spend a lot of time correcting minor errors near the boundary of objects.

Averaging over five repetitions of the experiment should be sufficient to evaluate

repeatability.

If user experiments are feasible, then they are certainly the most effective way

to evaluate interactive segmentation: it is difficult to evaluate any interactive

system without getting feedback from real users. The automation strategies

presented in this chapter are perhaps most useful when used as a preliminary step

in an evaluation process. They allow algorithm developers to experiment with

different variants of an algorithm to determine which is the most effective, without
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having to re-conduct an entire set of user experiments each time. Automated

evaluation also provides a means for researchers to determine if a particular

approach to interactive segmentation appears to have practical merit, if it requires

further consideration, if it needs modification, or if it should be abandoned, before

expensive user-experiments are undertaken.

Of course, if they are feasible, user experiments should be performed for the

final evaluation of an algorithm when comparing it against the state-of-the-art. In

their absence, however, an automated evaluation, even if it is imperfect, will be

more informative than no evaluation whatsoever. The system described in this

chapter enables researchers to perform a useful and informative evaluation of

their algorithms, even when full user experiments are impracticable.
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Chapter 7

Conclusion

This thesis has focused on advancing image segmentation research by developing

robust means for evaluating image segmentation algorithms. We reviewed the

literature in image segmentation and segmentation evaluation, classified existing

techniques, and identified areas that suggested further research. We applied

existing evaluation measures to examine their properties and evaluate several

segmentation algorithms, and developed new techniques to address gaps in

the current research. This conclusion summarizes the research, outlines the key

contributions, suggests potential directions for future research, and notes our

related publications to date.

The following is a summary of the research that has been described in this

thesis. Chapter 1 discussed the purpose and definition of image segmentation,

described the motivations for the thesis, and outlined its structure. Chapter 2 and

3 reviewed the literature in image segmentation and segmentation evaluation.

Chapter 2 described the state-of-the-art in image segmentation algorithms. We

began by creating a taxonomy of the different approaches to image segmentation.

Our taxonomy classified segmentation algorithms using two perspectives: the

application-centric perspective, and the algorithm-centric perspective. These

perspectives comprised several facets: from the application-centric perspective
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we classified algorithms by interaction, identification, media, and generality; from

the algorithm-centric perspective we classified algorithms by perspective, model,

and scale. We then discussed the grouping cues upon which image segmentation

algorithms are either explicitly or implicitly based. We then proceeded to de-

scribe in detail four specific algorithms for automatic image segmentation: region

adjacency graphs, statistical region merging, normalized cuts, and mean shift

segmentation; and four specific algorithms for interactive image segmentation:

seeded region growing, interactive graph cuts, interactive segmentation using

binary partition trees, and simple interactive object extraction.

Chapter 3 reviewed the state-of-the-art in evaluating image segmentation algo-

rithms. Again, we began our discussion by creating a taxonomy of segmentation

evaluation techniques; the objective was to create a taxonomy that encompassed

other taxonomies in the literature, and addressed their limitations. Our taxon-

omy classified segmentation evaluation techniques using three facets: objective,

reference, and target. Objective referred to what the technique aims to evaluate;

reference referred to an evaluation technique’s use of ground truth; target referred

to the type of algorithm that the algorithm is intended to evaluate. We then

discussed several specific methods for segmentation evaluation, both supervised

and unsupervised.

Chapter 4 focused on an experiment that we carried out for evaluating auto-

matic segmentation algorithms. The objective of the experiment was twofold. Our

first aim was to determine the characteristics of several supervised segmentation

evaluation measures, and in particular, to establish which of these methods is the

most effective for evaluating an image segmentation algorithm’s performance at

emulating human perceptual grouping. Our second objective was to use the best

of these measures to evaluate four different image segmentation algorithms, and

to determine how well the algorithms approximate perceptual grouping.
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Chapter 5 focused on evaluating interactive segmentation algorithms. Since

interactive segmentation evaluation had not yet been addressed in the literature, it

was necessary to develop new techniques. We began by selecting four interactive

segmentation algorithms for evaluation. Following this, we considered what the

objectives of the evaluation were, and what we were required to evaluate. We then

proposed two measures for the evaluation: one to measure object accuracy, and

another to measure boundary accuracy. The object accuracy measure is simply

the Jaccard index applied to the segmented object pixels; the advantage being

that the values it gives can be directly compared with the existing literature (for

example, [Ge et al., 2007]). The boundary accuracy measure is a fuzzy measure

designed to gauge the accuracy of the object contour. After discussing these

measures, we outlined the experiment itself, including: the software used, the

ground truth, and the experiment setup and deployment. We then analyzed the

results of the experiment and discussed their implications. We validated our

proposed measures against perceived accuracy as gauged using questionnaires,

and demonstrated that they correlate better with perceived accuracy than other

benchmarks. We found that the best performing algorithms were the binary

partition tree algorithm and the interactive graph cuts algorithm. Our experiment

also suggested that people prefer predictable algorithms, even if this means the

algorithm converges on the correct segmentation more slowly.

The methodology developed in Chapter 5 for evaluating interactive segmen-

tation requires user experiments. While this is natural (and some might argue,

necessary) for evaluating an interactive process, the time and effort required is

often prohibitively costly. Chapter 6 addressed this by investigating whether

user interactions can be satisfactorily simulated using an algorithmic process.

We investigated four different strategies for simulating the user interactions and

showed that the best of these produces results very similar to the results found by

the user experiments in Chapter 5.
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The key contributions of the work are: (1) a review of the state-of-the-art in

image segmentation and image segmentation evaluation; (2) an investigation

into the properties of existing automatic segmentation evaluation techniques; (3)

an evaluation of four well-known algorithms using existing automatic segmen-

tation evaluation techniques; (4) a complete framework for evaluating interac-

tive segmentation algorithms by means of user experiments, including software,

benchmarks, and ground truth; (5) an evaluation of four popular interactive

segmentation algorithms using this framework; (6) a method for evaluating inter-

active segmentation algorithms that does not require user experiments.

There are several potential directions for future work based on what we have

discussed. The review in Chapter 2 suggests several potential enhancements

for existing segmentation algorithms, and our evaluation in Chapter 4 gives a

baseline against which new algorithms can be compared. A straightforward

direction for future research could, therefore, be to implement some of the pro-

posed enhancements and evaluate them using the measures from Chapter 4 to

determine if performance has been significantly enhanced as a result. Another

similar direction for future research could be to use the technique and measures

described in Chapters 5 and 6 to evaluate possible enhancements to existing

interactive segmentation algorithms. This direction may give answers to many

interesting research questions, for example: whether the introduction of color or

texture features into the interactive graph cuts algorithm improves performance,

or whether introducing a spatial bias into the simple interactive object extraction

algorithm improves performance. Finally, the strategies we investigated for eval-

uating interactive segmentation in Chapter 6 are based on empirical observation

and are, therefore, somewhat ad-hoc; another future research direction could be

to investigate new ways to simulate the user interactions.

Parts of the research in this thesis have been published elsewhere. In partic-

ular, the following publications relate to the work described herein. The image
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and video segmentation software framework that we used for the experiments

in Chapter 4 was described in a publication for the SAMT conference in 2006

[McGuinness et al., 2006]. The preliminary investigation that formed the basis of

Chapter 4 was published at the VIE conference in 2007 [McGuinness et al., 2007].

A paper at the 2008 SAMT conference describes the interactive segmentation

software that we used in Chapter 5, and a web-based version of the automatic seg-

mentation software that we used in Chapter 4 [McGuinness and O’Connor, 2008].

The interactive segmentation evaluation framework and the experiments de-

scribed in Chapter 5 were published in the Pattern Recognition Journal in 2009

[McGuinness and O’Connor, 2009].
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Appendix A

Evaluation Dataset

The table on the following pages shows the full dataset that we developed for

evaluating interactive segmentation. The table contains the task descriptions,

thumbnails of the images, and thumbnails of the object masks. The object masks

were created manually using a graphics tablet and the GNU image manipulation

program (GIMP). The full dataset comprises 100 tasks, and can be downloaded

from the interactive segmentation website: http://kspace.cdvp.dcu.ie/

public/interactive-segmentation.

The images in the dataset were selected from the Berkeley segmentation

dataset. The full Berkeley set is available from: http://www.eecs.berkeley.

edu/Research/Projects/CS/vision/bsds. The task numbers shown in

the table correspond to the image identifiers used in the Berkeley set. The aspect

ratio of the images has been altered for presentation purposes.
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Image Object Task description

Task #101085: Extract the statue on the left hand side of the
image.

Task #101087: Extract the person. Include all the clothing
and decorative wear. If possible, also include the long object
the person is holding.

Task #102061: Extract the building, roof and roof structures.
Do not include the walls on the left and right hand sides of
the building. Do not include any water or trees.

Task #106024: Extract the penguin. Include feet and tail.

Task #108005: Extract the tiger.

Task #108070: Extract the tiger. The overlapping fore-
ground twig can be ignored.

Task #108082: Extract the tiger.

Task #109053: Extract the wolf.

Task #118035: Extract the entire building. Background ca-
bles etc. can be ignored. Remember to exclude the sky area
beneath the bell, if possible.

Task #12003: Extract the starfish.

Task #123074: Extract the mouse. Include the tail.

Task #124084: Extract both flowers (red and yellow).

220



Image Object Task description

Task #126007: Extract the building. Try to include the spire
structures on the rooftops, if possible.

Task #130026: Extract the crocodile.

Task #134035: Extract the leopard.

Task #135037: Extract the eagle. Include the wing feathers.

Task #138078: Extract the boat. Include the rope. Do not
include the oar.

Task #151087: Extract the man in the center with the base-
ball bat. Include the bat.

Task #153077: Extract the swimmer.

Task #157055: Extract the man on the left of the image. In-
clude the glass that he is holding.

Task #160068: Extract the jaguar. Include feet and tail. Do
not include the branch.

Task #163014: Extract the upper bird (black and yellow).
Include the birds feet.

Task #163062: Extract the bird (in flight). Include wings,
beak, tail and feet.

Task #167062: Extract the wolf.
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Image Object Task description

Task #170057: Extract the visible parts of the soldier on the
right hand side of the image. Do not include the gun or
strap.

Task #175043: Extract the green snake. Do not include what
the snake is eating.

Task #181079: Extract the woman from the image. Include
her hair.

Task #187029: Extract the child from the image.

Task #188063: Extract the visible parts of the tent.

Task #189011: Extract the person, hat and bucket from the
background.

Task #189011a: Extract the person and bucket from the
background. Do not include the hat.

Task #189011b: Extract the hat from the image. Do not in-
clude the person.

Task #189080: Extract the person. Include the hat, head and
shoulders.

Task #196015: Extract the bird, including feet and tail, from
the image.

Task #196073: Extract the snake from the image.
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Image Object Task description

Task #198023: Extract the face and hair of the woman from
the image. Include the visible part of her neck. Do not in-
clude any of her clothing or hands.

Task #208001: Extract the visible parts of the mushroom
from the image. Avoid occluding foreground objects.

Task #209070: Extract the fish.

Task #21077: Extract the white car. Include the driver,
wheels and all other visible parts of the car. Try not to in-
clude any of the road or the red car

Task #216053: Extract the woman in blue from the image.
Include her umbrella and the bag she is holding.

Task #216066: Extract the visible parts of the stone sign
from the image.

Task #227092: Extract the urn and handles.

Task #229036: Extract both persons and the objects they are
holding (drum, batons etc.) from the background.

Task #23080: Extract the man painting. Include all visible
parts of the man. Include the paint brush. Do not include
the paint can.

Task #239007: Extract both the girl and the black object on
the bottom left from the background.

Task #239007a: Extract the black object on the lower left
from the image.
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Image Object Task description

Task #239007b: Extract the girl from the image.

Task #24077: Extract the statue on the left hand side of the
image.

Task #25098: Extract the sign that says “Sweet Red Peppers
- $1.99”. Include the wooden handle on the sign.

Task #253027: Extract the rightmost zebra from the image.
Include visible parts of it’s legs and tail.

Task #253036: Extract visible parts of the tree in the center
of the image from the background. Try to include as much
of the tree and as little of the sky as possible.

Task #253055: Extract the leftmost giraffe from the image.

Task #268002: Extract the visible parts of the bird from the
image. Include feet and tail.

Task #271031: Extract the camel from the background.

Task #271035: Extract the person from the image. Include
visible parts of the hands head and torso. Do not include
the items the person is carrying.

Task #285079: Extract the visible parts of the fireman from
the image. Include his helmet. Do not include the object he
is holding. The helmet visor can be ignored.

Task #286092: Extract the golfer on the left from the image.
Include his golf club, if possible.

224



Image Object Task description

Task #291000: Extract the horse from the image. Include the
object in the horses mouth. Try and avoid the overlapping
fence in the foreground, if possible.

Task #293029: Extract just the man’s hat. Do not include the
rest of the man or any or any other objects.

Task #296059: Extract all visible parts of both elephants
from the image.

Task #299091: Extract the pyramid from the image. Do not
include any of the sand or sky.

Task #300091: Extract the visible parts of the surfer from the
image. Include his surf board.

Task #302008: Extract the man’s face, ears, hair and neck
from the image. Do not include his shirt or shoulders.

Task #304034: Extract visible parts of the black panther
from the image. Try to avoid any significant occluding ob-
jects, such as twigs and leaves.

Task #304074: Extract the ram.

Task #3096: Extract the airplane. Include the visible pro-
pellers, if possible.

Task #310007: Extract the person in red on the left from the
background.

Task #35008: Extract the white flower in the upper part of
the image. Do not include the stem.
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Image Object Task description

Task #35010: Extract the butterfly. Include the legs and an-
tenna if possible.

Task #35058: Extract the ladybird (ladybug).

Task #37073: Extract the airplane. Include the front wheel.
Do not include the ground, shadow, or person.

Task #372047: Extract the guard from the image. Include
the rifle and sword.

Task #376020: Extract the man in orange from the image.
Avoid including the yellow item on the left.

Task #376043: Extract the visible parts of the man from the
image. Include his helmet, helmet-straps and boots. Avoid
the grass and background wall.

Task #38082: Extract the deer. Include the antlers, if pos-
sible. Try to avoid including as much of the obstructing
bushes etc. as possible.

Task #38092: Extract the central bison (at position [285,165])

Task #388016: Extract the woman from the image. Include
her hair.

Task #41033: Extract the calf on the left hand side of the
image.

Task #42012: Extract as much as is visable of the cougar
from the image.
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Image Object Task description

Task #42049: Extract the eagle. Include the feet, wings and
and tail. Try to avoid including any of the branch.

Task #42078: Extract the wolf.

Task #43070: Extract the leftmost swan.

Task #43074: Extract as much of the pheasant as is visible.
Small pieces of overlapping grass can be ignored.

Task #56028: Include the painted Nepalese symbol (Buddist
wisdom eyes) from the image.

Task #58060: Extract the corn from the bag in the image. Do
not include the bag itself.

Task #62096: Extract the windsurfer, including board and
sail, from the image. The transparent portion of the sail,
and it’s handles should also be included.

Task #65019: Extract the full person from the image. In-
clude his hat.

Task #65074: Extract the woman and musical instrument
from the image. Include all visible parts of the woman and
instrument. Do not include the sheet music in front of her.

Task #65132: Extract the topmost fish on the center-right of
the image.

Task #66053: Extract the visible parts of leftmost pig.
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Image Object Task description

Task #69020: Extract the kangaroo. Include the legs and tail.

Task #69040: Extract the kangaroo. Include all visible parts
of the kangaroo. Try to avoid the occluding branches.

Task #78004: Extract the white boat.

Task #8023: Extract the bird from the image. Include all
visible parts of the bird.

Task #85048: Extract the person. Include the hat and ham-
mer. Avoid any obscuring slabs and the block of wood be-
tween the hammer and the man’s leg.

Task #86016: Extract the circluar area in the center of the
picture from the rest of the image.

Task #89072: Extract the man from the image. Include the
camera and helmet. Do not include the sign that the man is
holding on the left hand side.

Task #90076: Extract the boy from the image. Include what
he is holding.

Task #92059: Extract the boat from the image. Include the
oars.

Task #97033: Extract the house structure on the left hand
side of the image. Include the roof. Omit the shelter area in
the center and any areas obscured by foreground snow.
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