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Abstract The Microsoft SenseCam is a small lightweight wearable camera used to

passively capture photos and other sensor readings from a user’s day-to-day activities.

It captures on average 3,000 images in a typical day, equating to almost 1 million images

per year. It can be used to aid memory by creating a personal multimedia lifelog, or

visual recording of the wearer’s life. However the sheer volume of image data captured

within a visual lifelog creates a number of challenges, particularly for locating relevant

content. Within this work, we explore the applicability of semantic concept detection, a

method often used within video retrieval, on the domain of visual lifelogs. Our concept

detector models the correspondence between low-level visual features and high-level

semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised

machine learning. By doing so it determines the probability of a concept’s presence.

We apply detection of 27 everyday semantic concepts on a lifelog collection composed

of 257,518 SenseCam images from 5 users. The results were evaluated on a subset of

95,907 images, to determine the accuracy for detection of each semantic concept. We

conducted further analysis on the temporal consistency, co-occurance and relationships
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within the detected concepts to more extensively investigate the robustness of the

detectors within this domain.

Keywords Microsoft SenseCam · lifelog · passive photos · concept detection ·
supervised learning

1 Introduction

Recording of personal life experiences through digital technology is a phenomenon we

are increasingly familiar with: music players, such as iTunes, remember the music we

listen to frequently; our web activity is recorded in web browsers’ history; and we cap-

ture important moments in our life-time through photos and video [1]. This notion of

digitally capturing our memories is known as lifelogging. While many steps have been

taken towards managing such ever-growing lifelogging collections [10,9,24], we are still

far from achieving on-demand, rapid and easy access. This is mainly due to the fact

that we cannot yet provide rapid, flexible access to content of interest from the collec-

tion.

The most obvious form of content retrieval is to offer refinement of the lifelog col-

lection based on temporal information. Retrieval may also be enabled based on the

low-level visual features of a query image. However, in order for such a search to be

effective the user must provide a visual example of the content they seek to retrieve

and there may be times when a user will not possess such an example, or that it may be

buried deep within the collection. Augmentation and annotation of the collection with

sources of context metadata is another method by which visual lifelogs may be made

searchable. Using sources of context such as location or weather conditions has been

demonstrated to be effective in this regard [4,12]. There are, however, limitations to

these approaches as well, most importantly any portion of the collection without asso-

ciated context metadata would not be searchable. Moreover, while information derived

from sensors such as Bluetooth and GPS [4] may cover the ‘who’ and the ‘where’ of

events in an individual’s lifelog, they do not allow for the retrieval of relevant content

based on the ‘what’ of an event.

An understanding of the ‘what’ or the semantics of an event would be invaluable

within the search process and would empower a user to rapidly locate relevant content.

Typically, such searching is enabled in image tools like Flickr through manual user con-

tributed annotations or ‘tags’, which are then used to retrieve visual content. Despite

being effective for retrieval, such a manual process could not be practical within the

domain of lifelogging, since it would be far too time and resource intensive given the

volume of the collection and the rate at which it grows. Therefore we should explore

methods for automatic annotation of visual lifelog collections.

One such method is concept detection, an often employed approach in video retrieval

[27,32,35], which aims to describe visual content with confidence values indicating the

presence or absence of object and scene categories. Although it is hard to bridge the

gap between low-level features that one can extract from visual data and the high-

level conceptual interpretation a user gives to this data, the video retrieval field has

made substantial progress by moving from specific single concept detection methods to

generic approaches. Such generic concept detection approaches are achieved by fusion

of colour-, texture-, and shape-invariant features [14,15,18,13], combined with super-

vised machine learning using support vector machines [5,34]. The emphasis on generic
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indexing by learning has opened up the possibility of moving to larger concept detector

sets [20,33,36]. Unfortunately these concept detector sets are optimized for the (broad-

cast) video domain only, and their applicability to other domains such as visual lifelog

collections is unclear but is the focus of this work.

Visual lifelog data, and in particular Microsoft SenseCam data - the source for our in-

vestigation - is markedly different from typical video or photographic data and presents

a significantly more challenging domain for visual analysis. SenseCam images tend to

be of low quality owing to: their lower visual resolution; their use of a fisheye lens

which distorts the image somewhat but increases the field of view; and the absence

of a lens aperture resulting in many images being much darker or brighter than de-

sired for optimal visual analysis. Also, almost half of the images are generally found to

contain non-desirable artefacts such as grain, noise, blurring or light saturation [16].

Thus we have conducted an investigation to determine if semantic concept detection

methods translate to the novel domain of lifelogs and to determine the degree of ro-

bustness, precision and reliability that can be achieved with these approaches on such

collections. This investigation, and the results as reported, build upon work previous

reported in Byrne et al. [3]. Further to this prior work, here we present extended results

and analysis on the reliability of concept detection within the domain of visual lifelogs.

Additionally, we explore some aspects of a lifelog, such as temporal consistency and

its spatiotemporal nature that may lead to further enhancements of the robustness of

concept detection within lifelog archives.

The rest of this paper is organised as follows: first we outline how we applied concept

detection to images captured by the SenseCam lifelogging device (Section 2); then we

quantitatively describes how accurate our models are in detecting concepts (Section 3);

we next examine the temporal consistency (Section 4) and co-occurences (Section 5);

finally we summarise this work and outline potentially interesting future endeavours

for concept detection within the domain of lifelogging (Sections 6 and 7).

2 Concept Detection Requirements in the Visual Lifelog Domain

The major requirements for semantic concept detection on visual lifelogs are as follows:

a) the identification of everyday concepts; b) the identification of positive and negative

examples; and c) reliable and accurate detection. We now discuss how we followed these

steps with respect to lifelog images captured by a SenseCam.

2.1 Use Case: Concept Detection in SenseCam Images

To study the applicability of concept detection in the lifelog domain we make use of a

device known as the SenseCam. Microsoft Research in Cambridge, UK, have developed

the SenseCam as a small wearable device that passively captures a person’s day-to-

day activities, as a series of photographs and readings from in-built sensors [19]. It is

typically hung from a lanyard around the neck and, so it provides a ‘first person view’

on the activities that the wearer is engaged in. Anything in the view of the wearer

can be captured by the SenseCam owing to its fisheye lens. The SenseCam contains

several built-in sensors which are designed to monitor the environment of the wearer.

These are: a three-axis accelerometer - to detect movement of the wearer; a passive

infrared sensor - to detect bodies in front of the wearer; light sensor - to detect changes
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Fig. 1 The Microsoft SenseCam (Inset: right as worn by a user)

in light level such as when moving from indoors to outdoors; and an ambient tem-

perature sensor. At a minimum the SenseCam will automatically take a new image

approximately every 50 seconds, but sudden changes in the environment of the wearer,

detected by onboard sensors, triggers more frequent photo capture. It can capture a

typical day without interruption as the battery is sufficient to last for 18 hours and

can be recharged fully overnight. The SenseCam can take an average of 3,000 images

in a typical day and, as a result, a wearer can very quickly build large and rich photo

collections. Within a year, the lifelog photoset will grow to approximately 1 million

images.

Beyond simple triggering of capture by the onboard sensors, the device does not cur-

rently support more intelligent or efficient capture of images. As such, the device seeks

to capture as much detail about the activities in which a user engages by sampling them

at high frequency. With no external control over the decision to capture or the possi-

bility for more selective capture, we must consider means by which we can intelligently

determine which of the large number of images produced by this capture mechanism

will offer utility. In order to achieve this, we explore a post-processing step, semantic

concept detection, through which such understanding of the visual frames can be gar-

nered. We expect that semantic concept detection can ultimately be employed in order

to filter, reduce and retrieve the content contained within a visual lifelog. However the

motivation of this work is not to immediately offer such functionality but rather to

first establish that such techniques translate to this domain and these collections with

sufficient success to offer utility.

2.2 Collection Overview

In order to evaluate concept detection, we amassed a large and diverse dataset, com-

prised of 257,518 SenseCam images. These images were gathered by five individual

users during five distinct timeframes, and so there was no overlap between the peri-

ods captured across each user’s dataset. A breakdown of the collection is illustrated

in Table 1. It is worth noting that not all collections featured the same physical sur-

roundings. Often collections contained large changes resulting from shifts in location,

user behaviour, and/or environments.
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Table 1 An overview of the image collection used.

User Total Images Number of Positive Examples of Concepts Provided Days Covered

1 79,595 2,180 35
2 76,023 9,436 48
3 40,715 28,023 25
4 42,700 27,223 21
5 18,485 11,408 8

Total 257,518 78,270 137

2.3 Determining LifeLog Concepts

Current approaches to semantic concept detection require the provision of a set of pos-

itive and a set of negative labelled exemplar images for each concept. These are then

used by a classifier system to train and develop a model for the concept (see Section

2.4. As part of this investigation, we first had to identify the concepts present within

the collection for which we wanted to develop detection models, and for which a set

of training examples would be collected. In order to determine the typical concepts

within the collection, a subset of each user’s SenseCam images were visually inspected

by playing them sequentially at an accelerated speed. A list of concepts previously

used in video retrieval [27,33] and agreed upon as applicable to a SenseCam collection

were used as a starting point. As a new identifiable ‘concept’ was uncovered within

the collection it was added to this list. Each observed repetition of the concept gave it

additional weight and ranked it more highly for inclusion. Over 150 common concepts

were identified in this process. Next, it was decided that the most representative (i.e.

everyday) concepts should be selected and as such the candidates were then narrowed

to just 27 core concepts through iterative review and refinement. Criteria for this re-

finement included the generalisability of the concept across collections and users. For

example, the concepts ‘mountain’ and ‘snow’ occurred in User 1’s collection frequently

but could not be considered as an everyday concept as it was not present in the remain-

ing collections. The collection owners were involved throughout the review process and

were asked for feedback in negotiating the final selections. The 27 concepts represent

a set of everyday core concepts most likely to be collection-independent, which should

consequently be robust with respect to the user and setting. We were not motivated to

select those concepts which would offer most utility in filtering or retrieval, but rather

those which were most likely to occur in all collections and thereby enable robust eval-

uation of the applicability of semantic concept detection within the domain of visual

lifelogs, in which such techniques have not previously been explored. These core con-

cepts are outlined in Figure 2 using visual examples from the collection. Some concepts

are clearly related (e.g. it is logical to expect that ‘buildings’ and ‘outdoors’ would co-

occur) and as such it is important to note that each image may contain multiple (often

semantically related) concepts. This aspect of the collection and of semantic concepts

is further discussed in Section 5.

A large-scale manual annotation activity was undertaken to provide the required pos-

itive and negative labelled image examples. As annotating the entire collection was

impractical and given that SenseCam images tend to be temporally consistent, the

collection was skimmed by taking every fifth image. As by their nature lifelog images

are highly personal, it is important for privacy reasons that it was only the owner of

the lifelog images who labels his or her images. Therefore, collection owners annotated
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Table 2 An outline of the 27 concepts and the number of positive examples per concept and
per user.

Concept / User 1 2 3 4 5 All

Indoors 1,093 1,439 6,790 6,485 3,480 19,287
Hands 1 17 4,727 3,502 2,402 10,649
Screen (computer/laptop) 7 1,101 4,699 2,628 2,166 10,601
Office 7 78 4,759 2,603 336 7,783
People 0 1,775 573 3,396 889 6,633
Outdoors 250 915 1,248 812 67 3,292
Faces 0 553 101 1,702 662 3,018
Meeting 0 808 0 1,233 355 2,396
Inside of vehicle, not driving (e.g.
airplane, car, bus)

257 1,326 420 223 0 2,226

Food (eating) 0 795 349 870 129 2,143
Buildings 140 49 981 621 62 1,853
Sky 0 202 720 525 66 1,513
Road 125 0 231 648 4 1,008
Tree 24 44 378 469 42 957
Newspaper/Book (reading) 0 85 13 520 309 927
Vegetation 0 3 255 468 52 778
Door 28 0 279 128 144 579
Vehicles (external view) 33 0 322 121 4 480
Grass 0 122 99 190 33 444
Holding a cup/glass 0 0 21 353 44 418
Giving Presentation / Teaching 0 43 0 309 0 352
Holding a mobile phone 0 4 54 28 147 233
Shopping 0 75 102 48 3 228
Steering wheel (driving) 208 0 0 0 0 208
Toilet/Bathroom 6 0 75 93 0 174
Staircase 0 2 26 48 11 87
View of Horizon 1 0 1 0 1 3
Total Annotated 16,111 14,787 8,593 8,208 3,697 51,396

their own SenseCam images for the presence of each of the 27 concepts and this pro-

vided them an opportunity to remove any portion of their collection they did not wish

to have included as part of this study. All users covered their entire skimmed collection

with the exception of User 1, who only partially completed the annotation process on

a subset of his collection. The number of positive examples for each concept and for

each user is presented in Table 2.

2.4 Concept Detection Process

Our everyday concept detection process is composed of three stages: 1) supervised

learning, 2) visual feature extraction, and 3) feature and classifier fusion. Each of these

stages uses the implementation detailed below.

Supervised Learner : We perceive concept detection in lifelogs as a pattern recognition

problem. Given pattern x, part of an image i, the aim is to obtain a probability mea-

sure, which indicates whether semantic concept ωj is present in image i. Similar to [20,

32,35,36], we use the Support Vector Machine (SVM) framework [34] for supervised

learning of concepts. Here we use the LIBSVM implementation [5] with radial basis

function and probabilistic output [25]. We obtain good SVM settings by using an iter-

ative search on a large number of parameter combinations.

Visual Feature Extraction: For visual feature extraction we adopt the well-known code-

book model, see e.g. [21], which represents an image as a distribution over codewords.

We follow [13] to build this distribution by dividing an image in several overlapping
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Fig. 2 Visual examples of each of the 27 everyday concepts as detected and validated for the
lifelog domain in this paper
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rectangular regions. We employ two visual feature extraction methods to obtain two

separate codebook models, namely: 1) Wiccest features, which rely on natural image

statistics and are therefore well suited to detect natural sceneries, and 2) Gabor fea-

tures, which are sensitive to regular textures and colour planes, and therefore well

suited for the detection of man-made structures. Both these image features measure

coloured texture.

Wiccest features [14] utilise natural image statistics to model texture information.

Texture is described by the distribution of edges in a certain image region. Hence, a

histogram of a Gaussian derivative filter is used to represent the edge statistics. It was

shown in [15] that the complete range of image statistics in natural textures can be well

modeled with an integrated Weibull distribution, which in turn can be characterised

by just 2 parameters. Thus, 2 Weibull parameter values for the x-edges and y-edges of

the three colour channels yields a 12-dimensional descriptor. We construct a codebook

model from this low-level region description by computing the similarity between each

region and a set of 15 predefined semantic colour-texture patches (including e.g. sand,

brick, and water), using the accumulated fraction between their Weibull parameters as

a similarity measure [13]. We perform this procedure for two region segmentations, two

scales, the x- and the y-derivatives, yielding a codebook feature vector of 120 elements

we term w.

Gabor filters may be used to measure perceptual surface texture in an image [2]. Specif-

ically, Gabor filters respond to regular patterns in a given orientation on a given scale

and frequency. In order to obtain an image region descriptor with Gabor filters we

follow these three steps: 1) parameterise the Gabor filters, 2) incorporate colour in-

variance, and 3) construct a histogram. First, the parameters of a Gabor filter consist

of orientation, scale and frequency. We use four orientations, 0◦, 45◦, 90◦, 135◦, and

two (scale, frequency) pairs: (2.828, 0.720), (1.414, 2.094). Second, colour responses

are measured by filtering each colour channel with a Gabor filter. The W colour in-

variant is obtained by normalizing each Gabor filtered colour channel by the intensity

[18]. Finally, a histogram is constructed for each Gabor filtered colour channel. We

construct a codebook model from this low-level region description by again computing

the similarity between each region and a set of 15 predefined semantic colour-texture

patches, where we use histogram intersection as the similarity measure. Similar to the

procedure for w, this yields a codebook feature vector of 120 elements we term g.

Feature and Classifier Fusion: As the visual features w and g emphasise different vi-

sual properties, we consider them independent. Hence, much is to be expected from

their fusion. We employ fusion both at the feature level as well as the classifier level.

Although the vectors w and g rely on different low-level feature spaces, their codebook

model is defined in the same codeword space. Hence, for feature fusion we can con-

catenate the vectors w and g without the need to use normalisation or transformation

methods. This concatenation yields feature vector f .

For each of the feature vectors in the set {w,g, f} we learn a supervised classifier. Thus

for a given image i and a concept ωj , we obtain three probabilities, namely: p(ωj |wi),

p(ωj |gi), and p(ωj |fi), based on the same set of labelled examples. To maximize the

impact of our labelled examples, we do not rely on supervised learning in the classi-

fier fusion stage. Instead, we employ average fusion of classifier probability scores, as

used in many visual concept detection methods [20,32,35,36]. After classifier fusion we

obtain our final concept detection score, which we denote p(ωij).
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3 Validation of Everyday Concept Detection

The concept detection process yielded for each frame in the corpus and for each se-

mantic concept, a probability of its presence in the range of 0..1. Although we have

trained the detectors using known examples of a given concept, this does not guar-

antee its reliability, particularly given the variable quality of images in this domain.

As such we undertook an evaluation and groundtruthing effort on the system outputs

to determine the precision and recall of the developed detectors and additionally to

assess the applicability and utility of semantic concept detection within this domain.

We now outline the steps taken to manually judge the outputs and then we discuss the

outcomes.

3.1 Manual Judgements of System Outputs

In order to validate the probabilities of a concept’s presence, we manually judged a

subset of the collection. To facilitate this manual judgement we converted the proba-

bilities in the range of 0..1 into a binary decision of its presence. To make this binary

determination, we employed the Kapur automatic thresholding technique [22] which

simultaneously selects a threshold value for each concept and divides the collection

into those images considered to contain the concept and those which do not. Since this

entropy based non-parametric method does not require any training, it can be applied

easily to such a broad collection. We consider any images above the threshold value to

be positive and those below as negative examples of that concept. Nine participants

manually judged a subset of system positive and negative examples for each concept.

In order to judge the intercoder reliability - the consistency, and accuracy of each anno-

tator’s performance - 50 positive and 50 negative examples per concept were randomly

selected for judgment by all of the 9 annotators. Additionally, per concept, another

150 system-judged positive and negative frames were randomly selected and assigned

to every annotator. This resulted in almost 1400 positive and negative unique images

per concept to be judged by the 9 annotators (50 to be judged by all 9 plus 9×150

individual judgments).

To support this judgment process a custom annotation tool was developed. Partic-

ipants were presented with a tiled list of images and given instructions on how to

appropriately judge them against each concept. Users simply clicked an image to mark

it as a positive match to the provided concept. For each concept both system-judged

positive and negative images were presented in tandem and were randomly selected

from the total pool of judgments to be made. Annotating in this fashion allowed a

total of 95,907 judgments made across all users on 70,659 unique concept validation

judgments (which used 58,785 unique images). This yielded a detailed validation of

both the images considered positive and negative for each concept.

An understanding of this ‘intercoder agreement’ is important as it validates the reliabil-

ity of the overall annotation process and the performance of the annotators in general.

This allows us to ensure that the outcome of the validation process is wholly reliable.

The intercoder reliability was determined to be 0.68 for all judgments completed us-

ing Fleiss’s Kappa [11]. As such the annotations provided by these participants are

consistent and demonstrate high intercoder agreement. Examination at the concept

level shows 18 of the 27 concepts had at minimum 0.6 agreement which is substantial

according to Landis and Koch [23]. While examination of individual concepts reveals
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Table 3 Accuracy of detection for each concept (Sorted by ‘System Positive Accuracy’)

Concept Examples Number of System Positive System Negative
Provided Judgements Accuracy Accuracy

Indoor 19,287 3,271 82% 45%
Sky 1,513 4,099 79% 90%
Screen 10,601 3,761 78% 85%
Shopping 228 3,500 75% 99%
Office 7,783 3,436 72% 77%
steeringWheel 208 3,936 72% 99%
Door 579 3,512 69% 86%
Hands 10,649 3,399 68% 68%
Vegetation 778 3,336 64% 97%
Tree 957 3,736 63% 98%
Outdoor 3,292 3,807 62% 97%
Face 3,018 3,452 61% 91%
Grass 444 3,765 61% 99%
insideVehicle 2,226 3,604 60% 93%
Buildings 1,853 3,654 59% 98%
Reading 927 3,420 58% 94%
Toilet 174 3,683 58% 99%
Stairs 87 2,927 48% 100%
Road 1,008 3,548 47% 96%
VehiclesExternal 480 3,851 46% 98%
People 6,633 3,024 45% 90%
Eating 2,143 3,530 41% 97%
HoldingPhone 233 3,570 39% 99%
HoldingCup 418 3,605 35% 99%
Meeting 2,396 3,534 34% 94%
Presentation 352 3,779 29% 99%
ViewHorizon 3 3,168 23% 98%

some variability in inter-rater reliability and a lower than anticipated agreement for

a minority of the concepts (k=0.64 average overall; minimum 0.37 (view of horizon);

maximum 0.86 (steering wheel)), given that the number of judgments made per anno-

tator was large, this may have had the effect of reducing the overall magnitude of the

value. We believe that the agreement between the annotators is sufficiently reliable to

use these judgments to validate the automatically detected concepts.

3.2 Analysis of System Results

From the 95,907 judged results, 72,143 (75%) were determined to be correctly classified

by the system. This figure, however, includes both positive and negative images for a

concept as determined by the system. Of all those judgments, the system correctly

identified 57% of true positives overall. 93% of system negatives were correct, meaning

that only 7% of true positives were missed across all the concepts in the dataset.

Given the variation in complexity of the concepts and in the level of semantic knowl-

edge they attempt to extract, it is unsurprising that there is notable differences in their

performance and accuracy. Furthermore, the quality, variance and number of training

examples will impact on the performance of an individual concept detector and as

such these may be factors in their differing performances. This is outlined in Table 3

where rows are ordered by concept performance. From this it is clear that the ‘indoor’

detector worked best, with several other concepts providing similarly high degrees of

accuracy. These include the ‘steeringWheel’, ‘office’, ‘shopping’, and ‘screen’ concepts.

It is also interesting to note from Table 3, that with the exception of the ‘indoor’
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concept, there are very few missed true positive examples in our large set of judged

images. As the images were collected from 5 separate users it is interesting to explore

the degree of variance in the performance between concepts (in terms of true positives).

The performance ranged from 46% to 72%, but as illustrated in Figure 5, the deviation

in performance is not so large when the number of concept training samples provided

to the system is considered (the blue dashed line at the bottom of Figure 5).

There exists a strong correlation of 0.75 between the number of examples provided

by each user to the system and the actual system classification results on the set of

95,907 judged results. We can explore this point further by examining the bottom 5

performing concepts, namely; ‘holdingPhone’; ‘holdingCup’; ‘meeting’; ‘presentation;

and ‘viewHorizon’. The reason for ‘viewHorizon’s poor performance is evident from the

low number of positive exemplars provided, just three in total. ‘HoldingPhone’, ‘hold-

ingCup’ and ‘presentation’ also perform poorly. At a cursorary level this performance

might be attributed to the detector being trained on a relatively low number of visual

examples, however, ‘toilet’ and ‘stairs’ have lower positive examples yet outperform

these concepts. Comparing the sources of the positive examples for these concepts we

are provided a cue as to what may be impacting on the detectors’ performance. Within

the case of ‘holdingPhone’ and ‘holdingCup’ we notice that there is a dominance of

one user’s collection in the provision of positive examples. User 5 provides 63% of the

positive examples for the ‘holdingPhone’ concept, while user 4 provides 84% of the

‘holdingCup’ examples. ‘Toilet’ and ‘stairs’ are less unevenly distributed however they

additionally differ significantly from ‘holdingPhone’, ‘holdingCup’ and ‘presentation’ in

their temporal distribution. The positive examples provided for ‘holdingPhone’, ‘hold-

ingCup’ and ‘presentation’ tended to be highly contiguous. A large number of these

positive examples represented a sequence of the very visually similar frames, for ex-

ample, the examples provided for ‘presentation’ could be aggregated into less than 10

distinct and contiguous groups. Conversely, the samples provided for ‘stairs’ and ‘toilet’

were more diverse in visual appearance and distribution across the user’s collections.

This is further illustrated by Figures 3 and 4. Finally, the ‘meeting’ concept was em-

blematic of this issue having a large number of highly contiguous examples, i.e. a large

number of examples came from a small number of meetings, and as such this may have

yielded a detector more specifically trained to these instances rather than a general

case. In summary, we would attribute poor performance of an everyday detector to one

or more of the the following issues: a sub-optimal number of positive examples provided

for training; a sub-optimal distribution of examples across the user’s collection; and/or

a sub-optimal diversity in the visual distinctiveness of the provided positive examples

(i.e. many highly visually similar examples).

17 of the 27 concepts are at least 58% accurate in correctly identifying positive image

examples for a given concept. Apart from the ‘people’ concept we argue that the per-

formance of the other concepts can be improved by providing more positive labelled

image examples for each concept. We believe the concept detection results on SenseCam

images are reliable and the results as presented here demonstrate that the outputs of

semantic concept detectors can be safely applied within this domain. We now examine

other aspects of semantic concept detection with respect to lifelog collections.
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Fig. 3 Visual examples provided for the stairs concept. It can be seen that these examples do
not tend to exist in temporally contiguous groups and are visually diverse

Fig. 4 Visual examples provided for the presentation concept. It can be seen that these
examples exist in several temporally contiguous groups and are more homogenous as a result,
despite their greater numbers

4 Temporal Consistency of Concepts

In our previous work which explored keyframe selection techniques for SenseCam im-

ages, we found that sequences of SenseCam frames can be broadly classified based on

their low-level features into one of two groups: visually consistent and visually varied

[9]. This property of SenseCam image sequences is illustrated in Figure 6. Visually

consistent frames are present when the user is engaged in one prolonged activity in a

fixed location, for example when working at a computer (as illustrated by A), when at

a meeting or when watching television. In such instances, we can see that not only do

the low-level features remain consistent from frame to frame but the concepts present

within each frame are not prone to change either. In sequence A, all of the frames con-
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Fig. 5 Performance of all concepts on users’ collections.

Fig. 6 Visual Variance within Sensecam Image Sequences.

tain the concepts, ‘indoor’, ‘outdoor’ and ‘screen’, while the final four frames contain

‘hands’ as the user begins typing. Although, the visual features of the images change

more significantly from frame-to-frame in visually-varied sequences, concept stability

is also present, albeit to a lesser extent. In such sequences, the set of visual concepts

present within the frame are much more likely to change in the progression to the

next frame. In sequence B, we see a user leave a building and walk across campus.

While in the visually consistent sequences the same concepts will be present across the

series, concepts here are present only for short bursts e.g. door is present for the first

two frames, grass is present for the second and third last frames, etc. Consequently,

both visually consistent and visually varied sequences are likely to exhibit some degree
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of temporal coherence, with respect to the concepts they contain. As the individual

concepts within a collection will display different levels of temporal coherence, it is im-

portant to quantify the extent to which it is present and by implication the usefulness

of this property within such collections.

Temporal coherence is not unique to lifelog collections. Yang and Hauptmann [37] have

explored the use of temporal consistency within the TRECVid video collection [30] fo-

cusing on broadcast news footage. They define this consistency as “the tendency that

the relevant shots ... appear in temporal proximity” for a given semantic concept or

query. They note that while the degree to which relevant items are temporally proxi-

mal is dependent on the topic (or concept), temporal context is nevertheless extremely

useful in the prediction of relevance. If a semantic concept or query is known to be

highly temporally consistent, then by consulting the prediction on the previous shot,

the overall performance of concept detection can be boosted.

In their work, Yang and Hauptman [37] additionally provide three measures to calculate

the temporal coherence of a collection for a given concept.

1. Transitional probability : is the probability that for a given semantic concept a frame

is relevant to the previous frame if its preceding frame is relevant. It is calculated

simply as the ratio of the number of consecutive frame pairs to the total number

of relevant frames for a given concept. This provides a quantitative measure of the

temporal consistency for a given semantic concept.

2. Marginal probability : is a comparative measure of the probability of any frame in the

collection being relevant for a given semantic concept. It is calculated as the ratio

of frames relevant to a concept to the size of the collection. By comparing it with

the transitional probability the impact of temporal consistency can be assessed i.e.

how much does the transitional probability improve the prediction of a semantics

concept’s presence within a given frame.

3. Pointwise mutual information (PMI): It is increasingly probable that relevant frame

pairs will occur as the number of relevant frames within the collection increases.

The transitional probability is biased towards frequently occurring concepts, and

PMI provides a fairer metric of temporal consistency. It is calculated as the log of

the ratio of transitional probability against marginal probability.

Using a binary relevance score as calculated previously with Kapur Thresholding (see

Section 3) the transitional probability and marginal probabilities for each of the 27 se-

mantic concepts were calculated. We did not remove infrequent concepts as Yang and

Hauptmann did given the small set of concepts being used. The distribution of these

probabilities was plotted and is presented in Figure 7. From this we observe that the

marginal probability for most of the concepts is below 0.1 with an average of 0.07 while

the transitional probability demonstrates distribution in much higher ranges, averag-

ing 0.68. For comparative purposes Yang and Hauptman found the TRECVid news

video corpus to contain an average marginal probability of 0.038 and a transitional

probability averaging at 0.452 for the LSCOM concepts [37]. While this indicates that

visual lifelogs may be much more temporally consistent than broadcast video, it should

be remembered that Yang and Hauptmann surveyed a far wider range of concepts and

additionally filtered to remove infrequently occurring concepts. 194 of 370 LSCOM

semantic concepts were used in their evaluation. Additionally, they conducted their

evaluation at the shot level while we conduct ours at the image level.

However, for many of the ‘everyday’ concepts, the temporal consistency is extremely

high. Six of the concepts show a transitional probability of over 0.85. These include:
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hands (0.854); indoor (0.903); insideVehicle (0.868); office (0.889); screen (0.886) and

steeringWheel (0.966). Only three of the concepts presented a transitional probability

poorer than coinflip chance (0.5): holdingPhone (0.398); stairs (0.338); and viewHorizon

(0.183). It is interesting to note that these are also the concepts with the lowest num-

ber of relevant frames within the corpus, and that they also represent short-duration

activities. This is not the case with the maximum values with ‘steeringWheel’ hav-

ing an average number of relevant frames. This concept had the largest transitional

probability and for it almost all relevant frames were transitional pairs. The marginal

probability for this concept was 0.027 demonstrating that temporal consistency can

aid prediction by almost 36 times. While ‘viewHorizon’ offers the lowest temporal con-

sistency, its marginal probability is almost zero and as such the temporal coherence

can also offer it a significant boost in the prediction of relevance.

On average the transitional probability is 94 times larger than the marginal proba-

bility. This is reflected in the pointwise mutual information displayed in Table 4. We

see that the majority of concepts have a PMI of above 1.5. However, these findings

demonstrate that the majority of the 27 everyday concepts display extremely strong

temporal consistency. Given the significant difference between the transitional and

marginal probabilities, concepts within lifelogs are demonstrated to be highly visually

consistent. This is likely to be an inherent trait of this type of collection. There is the

possibility to augment and improve the prediction of a concept’s presence within a

frame by leveraging temporal consistency.

Fig. 7 The distribution of transitional probability (left) and marginal probability (right) of
27 everyday concepts. Please note the different scales

5 Co-occurance and Relationships between Concepts

In the previous section we saw that the images in a lifelog are related to those they

are temporally aligned with and the concepts they contain exhibit a tendency to be

consistent across images. However, within lifelog collections, there is not only a re-

lationship between images but also within the individual images given that concepts

may be semantically related to one another. If we examine the exemplar images for

each concept (see Figure 2) we see that the concepts do not occur in isolation but co-

occur within images. For example, it would be expected that an image containing either

‘plant’, ‘tree’, ‘grass’ or ‘vegetation’ should also contain the ‘outdoor’ concept; the pres-

ence of ‘hands’ should have a strong relationship with the presence of ‘holdingCup’ or
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Table 4 The Transitional Probability, Marginal Probability and Pointwise Mutual Informa-
tion (PMI) for each of the 27 Concepts

Concept Transition Probability Marginal Probability PMI

buildings 0.758 0.044 1.233
door 0.469 0.007 1.801
eating 0.799 0.048 1.218
face 0.750 0.056 1.124
grass 0.680 0.012 1.741
hands 0.854 0.239 0.552
holdingCup 0.596 0.005 2.041
holdingPhone 0.398 0.002 2.252
indoor 0.903 0.491 0.264
insideVehicle 0.868 0.056 1.192
meeting 0.780 0.051 1.183
office 0.889 0.205 0.637
outdoor 0.818 0.082 0.999
people 0.768 0.138 0.745
presentation 0.745 0.008 1.990
reading 0.666 0.016 1.626
road 0.593 0.014 1.630
screen 0.886 0.263 0.527
shopping 0.408 0.004 2.056
sky 0.753 0.039 1.289
stairs 0.338 0.001 2.743
steeringWheel 0.966 0.027 1.551
toilet 0.476 0.002 2.331
tree 0.719 0.026 1.442
vegetation 0.696 0.020 1.532
vehiclesExternal 0.507 0.008 1.787
viewHorizon 0.183 0.000 2.896

the ‘holdingPhone’ concepts; we would also anticipate ‘faces’ would be found where

‘people’ occur and vice versa. It seems sensible to assume that the implicit semantic

relationships between concepts should be preserved by the concept detection process

and that these relationships should then be present in the lifelog collections, providing

the detection process is reliable. This, of course, is not a new idea and was proposed

by Naphade and Huang [26] among others. Within this section, we explore this as a

means by which we can further evaluate the reliability of the detection process.

We examined the occurrences of the 27 concepts within each image in the collection.

Again using Kapur thresholding to yield a binary decision for the presence or absence

of a given semantic concept within an individual image, we determined the concepts

present for each image. Then for each image, we were able to determine concepts which

were co-occurrent. Relationships between concepts are bi-directional and this must be

considered when calculating the measure of the relationships between them. For exam-

ple, the relationship of ‘outdoors’ to ‘grass’ is distinct from the relationship of ‘grass’ to

‘outdoors’. To account for this bidirectional relationship, the strength of a relationship

from Concept A to Concept B is measured as the ratio of the sum of co-occurances

against the total instances of Concept A in the collection. This was calculated for all

concept pairs and is presented as a matrix in Table 5.

By examining the co-occurrences and relationships for indoor concepts we can see that

they are stable and as expected. We would expect that certain concepts such as ‘office’,

‘presentation’, ‘screen’, ‘stairs’ and ‘toilet’ would have a strong association with ‘in-

doors’. This is indeed the case with them having a relationship strength to the ‘indoor’

concept of 0.93; 0.83; 0.85; 0.94; and 0.93 respectively. In these cases we can assert

that the presence of these concepts in an image is contingent upon the presence of the
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‘indoor’ concept. However, the presence of the ‘indoors’ concept does not predicate the

appearance of these concepts, with ‘indoors’ having a low-scoring association for them.

This is particularly true of stairs for which ‘indoors’ approaches zero association. It is

interesting to note the associations between ‘screen’, ‘hands’ and ‘indoor’, each display

a high affinity for each other (hands-indoor, 0.94; indoor-hands: 0.45; indoor-screen,

0.45; screen-indoor: 0.85; hands-screen: 0.73; screen-hands: 0.67). This suggests that

a large majority of the time spent indoors is in the presence of a screen with hands

visible and would indicate that for a large part of the day the users were working with

their computer and typing. This demonstrates the potential, as suggested by Naphade

and Huang [26], to utilise the relationships displayed between two or more detected

concepts to abstract to higher level semantic concepts and infer actions being under-

taken within the images.

The co-occurrences are also as expected for outdoor concepts, where again the pres-

ence of the ‘outdoor’ concept does not predicate the appearance of ‘grass’, ‘trees’ or

‘vegetation’. However, the appearance of ‘road’ (road-outdoor, 0.97), ‘grass’ (grass-

outdoor, 0.88), ‘vegetation’ (vegetation-outdoor, 0.92) or ‘trees’ (trees-outdoor, 0.94)

is virtually contingent upon the wearer being outdoors. Additionally, ‘tree’ and ‘veg-

atation’ also display association to one another (tree-veg, 0.68; veg-tree 0.87). Unlike

the other ‘outdoor’ concepts, the presence of sky is conditional upon the presence of

‘outdoor’ (sky-outdoor, 0.93), but ‘outdoors’ also displays a reasonably high affinity to

‘sky’ (outdoor-sky, 0.44) or there is almost a 50-50 chance of ‘sky’ being present where

‘outdoors’ is detected. Other relationships of note include the co-occurences of ‘people’

and ‘faces’ where faces infers that people are present (face-people, 0.93) but the fact

that people are present does not necessarily mean faces will be visible (people-faces,

0.38).

The co-occurences also highlight some unexpected relationships within the collections.

For example, logically we know that a road will never be found indoors, however, within

the corpus ‘road’ was seen have a 0.15 association with ‘indoors’ or put in other words

for every 100 images detected to contain road, in 15 of those the image was also de-

termined to be ‘indoors’. Also ‘toilet’ was found to have a relationship to ‘road’ in 9

out of every 100 images. However, only a minor number of these logical fallacies exist

in the relationships formed by concept co-occurence. While it is likely likely that these

incorrect attributions are the result of a thresholding issue, they offer us additional

utility by allowing the poorly-performing detectors or thresholds to be identified and

corrected.

From the calculated strengths of co-occurences among the concepts we can see that the

concept detection process does in fact preserve implicit semantic relationships among

the concepts it attributes to an individual image. Most importantly, this finding lends

further support to the findings of Section 3 and points to the reliability and robustness

of such techniques within the domain of lifelogs. Furthermore, the fact that relation-

ships between the semantic concepts present themselves quite obviously within the

collections offers great potential for added value. First, the co-occurance relationships

may be used to further enhance the robustness by weighting the probability of a given

concept’s occurance based on the occurrences of other concepts within that image. Sec-

ond, it offers us the potential to abstract and infer higher level semantic concepts based

on co-occurences and known relationships, e.g. ‘typing’ from the presence of ‘screen’,

‘hands’ and ‘office’. Finally, and perhaps most usefully, it offers us the ability to au-

tomatically extract ontological structures from the collections. The ability to ‘learn’
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such structures from the actual occurrences would offer great utility within retrieval

applications.

6 Future Work

The study reported here was designed to investigate the feasibility of applying auto-

matic concept detection methods in the domain of visual lifelogs. With the reliability

of such techniques now validated, a number of explorations are possible.

First the set of concepts presented here represents a very limited set of ‘everyday’ con-

cepts. These are selected as they were generic and expected to be user- and collection-

independent. While this is true, the set is highly constrained and does not afford a

high degree of utility in practical applications. We must extend this set of concepts

to one which is more realistic and covers a more broad range of day-to-day semantic

concepts. The number of such concepts needed is an open question. In video retrieval

systems, between 100 and 500 concepts are often employed [31,28,6]. This upper bound

has been established, not as a result of completeness or as effective retrieval is enabled

by such numbers, but rather as this is the maximum number of detectors for which

annotations are available. For effective retrieval, many more concept detectors may be

required. For example, Hauptmann estimates 5,000 detectors would be required [17].

There is also scope to enhance the robustness of concept detection approaches within

lifelog archives. As outlined, the images which compose a lifelog collection tend to be

temporally consistent in their visual properties and in the concepts they contain. Both

prior work [37] and our assertions support the conclusion that this property can be

leveraged to further validate the presence of a concept. Likewise and as suggested by

Naphade and Huang [26], the expected semantic relations (perhaps formalised within

an ontological structure) and the observed semantic relations (as presented in Section

5) offer another means by which the outputs of the semantic detection process can be

further enhanced. These relations can be used to upweight the probability of a con-

cept’s presence in a image depending on the presence of other concepts or be employed

to downweight or remove concepts which are unlikely or non-relevant based on the

presence of other concepts.

In addition to the photos the SenseCam captures, it also continually records readings

from its onboard sensors (light, temperature and accelerometer sensors.) The measure-

ments taken from these sensors could be useful to augment and enhance the detection

of concepts from visual features or to detect wholly new ‘activity-centric’ concepts as in

[7]. Other contextual sources such as nearby Bluetooth devices and GPS location could

also be used in augmentation [4]. With a knowledge of location, as in the MediAssist

system [29], context-aware concepts may be applied. For example, with a given loca-

tion, and having detected an image as ‘outdoors’, weather conditions such as ‘windy’,

‘overcast’, or ‘raining’ may be applied to a image in order to supplement the detected

semantic concepts.

Concept-based retrieval has been extremely effective in the domain of digital video

[32,31]. As in video retrieval, these concepts offer the ability to bridge semantic un-

derstanding to enable search and location of images relevant to an information need.

Retrieval using automatically detected concepts within visual lifelogs should be ex-

plored. We plan to undertake evaluations on lifelog collections to assess the utility

of such retrieval methods. The performance and utility of concept-based retrieval ap-

proaches should also be compared and/or augmented with other methods such as the
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use of social context [4].

Another area for exploration would be the use of semantic concepts to determine the

relative importance of various events. In previous work, the presence of face-to-face

conversations and the visual novelty of a given event has been used to automatically

determine event importance [8]. We intend to investigate the viability and accuracy of

determining event importance through extracted semantic concepts.

Finally, we believe that the exploration of active learning approaches which would

combine user-contributed tagging (or folksonomies) with concept detection training,

could be undertaken. This would offer a means by which users could create and train

new concept detectors as they explore and annotate their collections, allowing efficient

and automatic annotation of new content with any available concepts while providing

scope and flexibility for a user to personalise their set of concepts.

7 Conclusions

Rapid and flexible access to the contents of a visual lifelog is essential to its utility and

usability. However, as such collections are large and ever-growing, this is particularly

challenging. Manual browsing or annotation of the collection to enable retrieval is im-

practical and we should seek automatic methods to provide reliable annotations to the

contents of a visual lifelog. We have documented the process of applying automatic

detection for 27 everyday semantic concepts to a collection of SenseCam images, and

validated the outcomes. Nine annotators manually judged the accuracy of the output

for these 27 concepts on a subset of 95,507 lifelog images spanning five users. We found

that while the concepts’ accuracy is varied, depending on the complexity and level of

semantics the detector tried to extract from an image, they are largely reliable and

offer on average a precision of 57% for positive matches and 93% for negative matches

within such a collection.

Using the output of the concept detection process, we have also explored the temporal

consistency, relationships and co-occurences among the detected concepts. On average

the transitional probability is 94 times larger than the marginal probability and six of

the concepts displayed a transitional probability of over 0.85. Given the magnitude of

the transitional probability and the significant difference between it and the marginal

probability, we found the ‘everyday’ semantic concepts within lifelog collections to be

highly temporally consistent and coherent. Furthermore, we highlight that concepts

may be semantically related to one another. These relationships between the semantic

concepts were found to be as expected and this illustrates that the detection process

does preserve the implicit semantic relationships among the concepts. Given that the

relationships between the semantic concepts present themselves quite obviously within

the collections, there is great potential to infer ontological structure, to abstract new

or higher-level concepts and to weight the probabilities of occurrence based on these

relationships.

These results are particularly encouraging and suggest that automatic concept detec-

tion methods translate well to the domain of visual lifelogs.
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