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Abstract  
 

This paper presents four models developed for the prediction of the width and depth 

dimensions of CO2 laser formed micro-channels in glass. A 33 statistical design of 

experiments (DoE) model was built and conducted with the power (P), pulse repetition 

frequency (PRF), and traverse speed (U) of the laser machine as the selected parameters for 

investigation. Three feed-forward, back-propagation Artificial Neural Networks (ANNs) 

models were also generated. These ANN models were varied to investigate the influence of 

variations in the number and the selection of training data. Model A was constructed with 

24 data randomly selected from the experimental results, leaving three data points for 

model testing; Model B was constructed with the eight corner points of the experimental 

data space, and seven other randomly selected data, leaving 12 data points for testing; and 

Model C was constructed with 15 randomly selected data leaving 12 data points for testing. 

These models were developed separately for both micro-channel width and depth 

prediction. These ANN models were constructed in LabVIEW coding. The performance of 

these ANN models and the DoE model were compared. When compared with the actual 

results two of the ANN models showed greater average percentage error than the DoE 

model. The other ANN model showed an improved predictive capability that was 

approximately twice as good as that provided from the DoE model. 
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1. Introduction 
 

Laser micro-machining processes include the drilling, cutting, milling and engraving of 

materials with micro-dimensional tolerances. In spite of the fact that laser micro-machining 

is a technically complex manufacturing process, research work has enabled the fabrication 

of increasingly precise, smooth, and clean components at high speed [1-3]. Laser micro-

machining is used for micro-channel and micro-electromechanical system production 

within many applications. These include telecommunications, glass cutting, micro-sensors 

[4-6]; micro-via, ink jet printer nozzles, biomedical catheter drilling, thin-film scribing [7]; 

micro-fluidic channels for blood/protein analysis [8]; optical vibration sensors [9]; three-

dimensional binary data storage [10-12]; and novelty fabrications [13]. 

  

In order to find a set of laser processing parameters that provides the required micro-

channel dimensions for a specific application under particular processing constraints, 

predictive models can be used. Several statistical and numerical approaches have been 

utilised to predict and optimise various laser manufacturing processes including Artificial 

Neural Networks (ANN) [14]; genetic algorithms [15], design of experiments [3], finite 

elements analysis [16], ant colony optimisation [17], and fuzzy logic [18]. Due to their non-

linear, adaptive and learning ability using collected data, ANN models have been 

successfully applied to a large number of problems in several domain applications. Many 

researchers have for example applied DoE, evolutional algorithms and ANN techniques in 

the area of laser welding [19-21]. ANN mathematical models are a type of Artificial 

Intelligence (AI) originally designed to mimic the massively parallel operations of the 

human brain and aspects of how we believe the brain works. Neural network nodal 

functions can be evaluated simultaneously, thereby gaining enormous increases in 

processing speed [22]. A neural network can be considered as a black box that is able to 
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predict an output pattern when it recognizes a given input pattern. Once trained, the neural 

network is able to recognize similarities when presented with a new input pattern, resulting 

in a predicted output pattern [23]. Back-propagation neural network algorithms have been 

successfully applied by Drugos et al. to predict and improve the selection of the number of 

laser passes required for an automated laser sheet metal bending of aluminium and steel 

[24]. Lee et al. used ANN modelling to predict the process outputs from the 

stereolithography rapid prototyping process [14]. 

 

In recent work by Dhupal et al., these workers incorporated experimental observations of 

an Nd:YAG laser machining system into an ANN model for predicting parameter settings 

to achieve precise micro-grooving operations on Al2TiO5. In this model, a multilayered 

feed forward neural network was combined with DoE optimisation to enable prediction of 

the desired outputs of laser micro-grooves. Neurons in the input layer corresponded to air 

pressure, lamp current, pulse frequency, pulse width and cutting speed. The output layer 

corresponded to the responses such as the width at the bottom and top sections, and depth 

of the micro-groove. A maximum of 5% prediction error was observed between the results 

based on the ANN predictive model and the actual experimental observations [25]. 

 

Yousef et al. used artificial neural networks ANNs to model and analyse the material 

removal process. In their work these authors wanted to develop a model which they could 

use to select the laser processing parameters which would result in the required ablation 

depth and width of a conical shaped crater. The test results showed that the ANN modelled 

level of pulse energy corresponding to specific depth and diameter was consistent with the 

actual level of pulse energy to a high degree of accuracy due to the adaptive properties of 

ANN [26]. 

 

Setia et al. used back-propagation ANNs to model micro-fluidic via formation using laser 

ablation. Genetic algorithms were utilized in conjunction with the ANN models to 

determine the input parameters for a specific channel dimensional requirement. 

Experimental verification demonstrated that the models produced allow for input parameter 

selection such that targeted dimensional accuracy of the ablation was improved by as much 
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as 40% for the ablated film thickness, 30% for via diameter, 9%for via wall angle, and 

more than 100% for via resistance [27]. 

 

Zurek et al. wrote a detailed ANN code in LabVIEW, called ANETka, and used it to 

investigate the magnetic properties of magnetic cores. This code allows the generation of 

ANN models that are fully interconnected and of feed-forward structure with error back-

propagation algorithm. This program allows a maximum of eight layers and 100 neurons 

per layer. Three activation functions (linear, sigmoid and tangent hyperbolic) are selectable 

with automatic data linear normalising between 0.05 and 0.95. This code effectively 

controls the training phase of the ANN in order to reach a selected Root Mean Square 

(RMS) error. This allows ANN models with very high degree of accuracy to be reached 

[28, 29]. ANETka is working according to error back-propagation learning. That consists of 

two passes through the different layers of the network: a forward pass and a backward pass. 

In the forward pass, an input vector is applied to the input layer of the network, and its 

effect propagates through the network layer by layer. Finally, a set of outputs is produced 

as the actual response of the network. During the forward pass the synaptic weights of the 

networks are all fixed. During the backward pass, on the other hand, the synaptic weights 

are all adjusted in accordance with an error-correction rule. Specifically, the actual response 

of the network is subtracted from a desired (target) response to produce an error signal. 

This error signal is then propagated backward through the network against the direction of 

synaptic connections-hence the name "error back-propagation.” The synaptic weights are 

adjusted to make the actual response of the network move closer to the desired response in 

a statistical sense [30].  

 

The prediction of the dimensions of the laser micro-machining channels is an important 

requirement for optimisation of the laser control parameters. A CO2 laser micro-machining 

system was used by the current authors for the production of micro-channels [3]. Based on 

the intensity range used in the experimental work presented in this paper, the induced laser 

absorption is of the laser supported combustion type. Energy is deposited into the material 

by the laser pulse and is transported out of the irradiated region by thermal diffusion. In this 

case, the relative rate of energy deposition and thermal diffusion determines the damage 
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threshold. Dependence of the breakdown threshold on the presence of impurity electrons in 

the conduction band also makes the threshold for optical breakdown and damage somewhat 

probabilistic or non-deterministic [31]. Plasma is initiated at the target’s surface, whose 

temperature can exceed 104 K, during the ablative interaction [32]. All of these factors 

combined make it difficult to produce models which accurately predict the geometry of 

channels produced during the laser micro-machining process. DoE and ANN models that 

were developed and implemented are presented below. These relate the input laser 

processing parameters (power, traverse speed and pulse repetition frequency) to the output 

responses (machined channel width and depth). The DoE and ANN models may be used to 

select the input parameters for required output dimensions or to predict the dimensions of 

the channels based on set inputs. Direct comparisons between the predictive accuracies of 

the ANN and DoE models are drawn.  

 

 

2. Experiments  
 

2.1 Laser micro-machining and DoE model setup 
 

A series of experiments were performed to determine the relationship between the main 

laser emission parameters of a CO2 laser and the dimensions of corresponding produced 

micro-channels. After initial screening experiments, a factorial design of experiments was 

conducted to analyse the outcomes of these laser processing parameters on the resulting 

micro-channels’ dimensions. Three process parameters analysed in this work were the laser 

power, pulse repetition frequency and translation speed of the glass sample. Each of these 

were analysed at three levels in the form of a 33 factorial design of experiments. The low, 

middle and high levels chosen for power, pulse repetition frequency and traverse speed are 

shown in Table 1. The low level is represented by -1, the middle by 0 and the high level by 

1. A slightly off centre value of 228 Hz was chosen for the pulse repetition frequency. This 

is coded as -0.433 for the design of experiments which represents the degree of shift from 

the central position for this parameter. This shift from the central position was due to 

hardware capabilities of the laser machine. There are 27 possible combinations of the three 
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process parameters at the three levels. Table 2 shows a list of these 27 combinations of the 

laser control parameters that were used in the conducted experiments. The width and depth 

of every channel were measured. Each of these experiments was performed three times to 

get an average value of these surface topography characteristics and an indication of the 

degree of repeatability. 

  

Table 1: Control parameters levels and their corresponding DoE coding 

 Actual Coded 

 Low  Mid High Low  Mid High 
P (W) 18 24 30 -1 0 1 

PRF (Hz) 160 228 400 -1 -0.433 1 
U (mm/min) 100 300 500 -1 0 1 

 

Table 2: List of laser control parameter of the experiments performed. Experiment number 

14 represents the experimental conditions repeated five times for repeatability analysis 

# P  PRF  U  # P  PRF  U  # P  PRF  U  
1 18 160 100 10 24 160 100 19 30 160 100 
2 18 160 300 11 24 160 300 20 30 160 300 
3 18 160 500 12 24 160 500 21 30 160 500 
4 18 228 100 13 24 228 100 22 30 228 100 
5 18 228 300 14 24 228 300 23 30 228 300 
6 18 228 500 15 24 228 500 24 30 228 500 
7 18 400 100 16 24 400 100 25 30 400 100 
8 18 400 300 17 24 400 300 26 30 400 300 
9 18 400 500 18 24 400 500 27 30 400 500 

 

For variability analysis, five additional experiments were repeated at the middle point of the 

investigated ranges, such that the total number of experiments conducted was 32 (=33
+5). 

Fig. 1 shows the distribution of process control parameter data in 3D data space. 
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The width and depth dimensions of the micro-channels for each experiment were measured 

at three different locations along the produced channel. The measurement system used was 

an in-house built laser profilometer that had a 1.95 µm resolution in the x and y direction 

and a 0.5 µm resolution in the z-direction [3]. Average values and 95% confidence intervals 

for these were determined. Fig. 2 shows a schematic of a micro-channel depicting the 

studied outcomes. 

 

 
 

Fig. 1: 3D representation of the process control parameters’ points investigated. 

 indicates where five additional experiments were repeated. 

 

The point pair, between which the width was measured, was picked using the cursors and 

by looking at all views of the channel. In some channel scans, the build up zone was higher 

than the unprocessed glass surface. Generally, the unprocessed glass surface was first found 

by moving the cursors in the z-direction when viewing the scanned surface edge in the 

direction of the x-axis. Then the channel’s isometric view was examined and the cursors 
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moved again in the x and y-direction until the locations defining the highest points on 

opposite edges of the channel were found. This pair of points was recorded and the 

displacement between them was recorded as the channel width. This procedure was 

repeated for three different locations along the channel axis and the average was calculated. 

A similar procedure was followed to record the channel depth. 

 

 
Fig. 2: Micro-channel schematic indicating the measured micro channel’s width and depth. 
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2.2 Setup of ANN models  
 

The average dimensional measurement results (27 for width and 27 for depth) provided the 

data from which training sets were chosen. Three ANN models (A, B and C) were 

developed for the width and the depth. All ANN models had the three inputs P, U and PRF. 

In order to determine the effect of training data on model predictive capability, each of 

these three models was based on different sets of training and testing data as follows. 

- Model A: 24 randomly selected experiments (from the total of 27) were used as a data set 

to train the network and the other three experiments were used as test data;  

- Model B: the experiments from the eight corner points from the experimental data space 

and seven randomly selected experiments (15 in total) were used to train the network and 

the other 12 experiments were used as test data;  

- Model C: 15 randomly selected experiments were used as the data set to train the network 

and the other 12 experiments were used as test data.  

 

Test data were used for verification purposes in order to evaluate the predictive capabilities 

of the ANN models. Fig. 3 shows a representation of the training data distribution in 3D 

space, for (a) model A, (b) model B and (c) model C. The number of data available for 

training and testing was limited in this work to the 27 data points which were available. The 

selection of the production parameters, fabrication of the channels and the measurement of 

the channels dimensions took approximately three months [3, 33]. The percentage of test 

data to overall data was set to a low level for model A compared to model B and C. This 

number of test data is much less than would normally be used for generating ANN models. 

This data was however chosen from the limited data available in order to compare the 

predication capability of the Design of Experiments model to various possible settings in 

the ANN models.  
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Fig. 3: Representation of the training data for (a) model A, (b) model B and (c) model C. 

 

2.3 Configuration of ANN 
 

The models examined in this work were designed and run with the ANETka software in 

feed-forward back-propagation ANN mode. Due to the absence of a quantifiable method 

for a priori evaluation of the best network architecture, intensive trial and error examination 

was carried out in order to optimise the configuration of the ANN. Two ASCII text 

spreadsheet input files were used for each model. The first one contained the training data 

inputs and corresponding outputs for the training stage. The second one contained the test 

data inputs and their outputs for the verification stage. As indicated in last paragraph of the 

introduction, laser micro-machining process is a very complicated process for which to 

(a) 

(c) (b) 



  

11 

 

produce an accurate predictive model. Therefore the number of hidden layers were varied 

between one and three in order to investigate the number of layers required to model the 

process.  The number of nodes (neurons) in each of hidden layers was varied between four 

to 80 neurons. A schematic description of these investigation schema layers are shown in 

Fig. 4. 

 

 
Fig. 4: Architecture of feed-forward ANN schema developed  

with three inputs and one output. 

 

Inputs and outputs were normalized in the range of 0.05–0.95. A transfer sigmoid function 

was used in all layers except the input layer as this nonlinear function has good 

generalisation capability. The learning rate parameter was set during simulation to control 

the magnitude of weight and bias updates. The selection of this value significantly affected 

the training time of the ANN. The programme iteratively presented the training data one by 

one to the ANN, and the weights automatically corrected after each case. Another 

parameter, the momentum value was used to decrease the likeliness of the simulation 

becoming stuck in local optima. Experimentally the learning rate was manually set at a 

value between 0.0001 and 6.0000 depending on the simulation during training process and 

the momentum was fixed at a medium value of 0.8 for all ANN models. In an effort to 
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minimise the training error and avoid over training, the training process was supervised 

during the ANN model formulation. During this training process, the ANETka software 

was used to provide a graphical record of the past and current RMS error value. This was 

continuously monitored so that good prediction capability of the models could be achieved. 

Models for which the RMS error increased during training were discarded. The process of 

model generation was then re-initialised to produce the final ANN model. Only models 

with RMS error below 0.001% were accepted. The number of iterations was kept as low as 

possible during formulation of the ANN model.  

 

 

3. Results 
 

3.1. Micrographs of produced channels 
 

Micrographs highlighting the width of the produced micro-channels are shown in Fig. 5. 

Fig. 5 a, b and c show channels produced at 18 W, 24 W and 30 W respectively. The 

corresponding and increasing channel widths were respectively 222, 267 and 310 mm. The 

PRF and U were fixed at 228 Hz and 500 mm/min for production of these channels. 

Increasing power results in an increase of pulse energy and fluence which lead to an 

increased channel width and depth. 

 

Fig. 5 d, e and f show channels produced at 160, 228 and 400 Hz respectively. The 

corresponding and decreasing channel widths were 314, 267 and 187 mm. The P and U 

were fixed at 24 W and 500 mm/min for production of these channels. Pulse energy is 

calculated as the average power divided by the pulse repetition frequency, PRF. This 

inverse relationship shows that higher PRF produced lower pulse energy and fluence which 

in turn resulted in decreased channel width and depth.  
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(a) (d) 

(b) (e) 

(c) (f) 

 

Fig. 5: Micrographs of top down view showing width of micro-channels produced with 

increasing power (a) channel number 6 at 18 W, (b) channel number 15 at 24W, (c) channel 

number 24 at 30 W, and increasing PRF (d) channel number 12 at 160 Hz, (e) channel 

number 15 at 228 Hz, and (f) channel number 18 at 400 Hz.  
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3.2. ANN vs DoE for predicting width and depth dimensions 
 

After testing a large variety of hidden layer variations it was found that the most accurate 

ANN model schemas in this work were achieved with one hidden layer. This may be 

expected as multiple hidden layers are used for models of a deeply complex nature where 

response surfaces are of a higher order non-linear response [30]. Table 3 shows the number 

of nodes in the hidden layer that achieved the most accurate predictions of width and depth 

for models A, B and C.   

Table 3: Number of nodes in the hidden layer for width and depth  

models in A, B, and C models 
 

Model A B C 
Width 6 20 80 
Depth 6 10 4 

 

The actual and predicted values of width and depth are shown in Table 4. The bold 

numbers indicate accurately predicted values. In the penultimate row of Table 4, average 

percentage errors are shown. The percentage error (ei) was calculated according to the 

formula: 

 
 

The last row in Table 4 shows the absolute maximum percentage error, E∞, which indicates 

the worst prediction error for each model. In this case, E∞ is very beneficial as the largest 

deviation allowable in laser micro-machining applications is often limited to a maximum 

allowable amount of error. 

 
 

It can be seen from the last two rows in Table 4 that model B produced the lowest average 

percentage error and model A produced the smallest absolute maximum percentage error. 

In Table 4, the ability of the models to predict the training data as well as the test data is 

shown. The ability of the models to predict the test data indicates the generalisation of the 
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models as these test data were not used in the formation of these models. The generalisation 

of model B can be seen to be better than model A or model C in that it has predicted more 

accurately the actual channels’ widths and depths. This can be seen by comparing the 

individual predictions and more clearly by comparing the overall percentage errors in the 

penultimate last row of this Table.  

Table 4: Actual vs. predicted from width and depth models in A, B, C, and DoE models 

# 
Width Depth 

Actual A B C DoE Actual A B C DoE 
1 315 315.00 315.00 309.03 314.57 213 213.00 213.00 199.59 210.95 
2 308 308.00 308.00 308.00 308.28 135 135.00 135.00 135.00 132.09 
3 302 294.79 302.00 297.82 302.00 74 71.34 74.00 73.18 72.71 
4 248 248.00 242.47 248.00 249.76 120 120.00 118.38 120.00 123.51 
5 231 231.00 240.04 251.14 234.28 45 45.00 54.47 68.71 61.34 
6 222 222.00 222.00 248.21 218.80 21 21.00 21.00 34.00 18.66 
7 163 163.00 163.00 163.00 158.84 26 26.00 26.00 26.00 23.70 
8 118 118.00 116.21 162.96 120.10 13 13.00 9.65 12.48 3.75 
9 81 81.00 81.00 162.82 81.36 3 3.00 3.00 8.69 3.29 
10 320 320.00 335.67 320.00 318.63 279 279.00 306.44 279.00 283.97 
11 324 324.00 322.53 324.00 319.52 202 202.00 205.53 202.00 201.34 
12 314 314.00 314.00 314.00 320.42 130 130.00 130.00 130.00 138.20 
13 271 267.03 271.00 271.00 269.97 225 193.45 225.00 225.00 217.13 
14 266 266.00 266.00 282.60 266.19 146 146.00 146.00 154.87 141.94 
15 267 267.00 259.42 279.63 262.41 89 89.00 73.06 92.92 86.22 
16 213 213.00 234.58 213.00 219.91 120 120.00 116.96 120.00 123.41 
17 209 209.00 209.00 209.00 204.30 48 48.00 48.00 48.00 67.01 
18 187 187.00 147.10 205.00 188.69 30 30.00 18.60 23.16 30.10 
19 365 365.00 365.00 365.00 364.45 379 379.00 379.00 379.00 378.48 
20 351 351.00 354.90 357.23 353.19 296 296.00 315.22 314.42 292.09 
21 345 345.00 345.00 345.00 341.94 227 227.00 227.00 227.00 225.17 
22 332 332.00 332.00 332.00 331.96 320 320.00 320.00 320.00 332.24 
23 316 316.00 322.97 326.87 320.54 248 248.00 258.44 236.90 244.01 
24 310 310.00 316.14 310.00 309.12 166 166.00 191.61 166.00 175.27 
25 327 327.00 327.00 327.00 322.76 256 256.00 256.00 256.00 244.61 
26 308 309.18 321.37 308.00 310.93 142 129.77 176.97 142.00 151.75 
27 300 300.00 300.00 288.98 299.11 88 88.00 88.00 79.45 78.38 

           Average ei -0.13% 0.01% 6.61% 0.02% - -0.97% -0.08% 10.09% -0.33% 
E∞ 

 
2.4% 21.3% 101% 3.3% - 14.0% 38.0% 189.6% 71.1% 
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3.3 Predicting the effect of control parameters on the outputs using ANN 
 

In order to predict the interactive effect of the laser control parameters on the dimensions of 

the micro-channels, the list of laser control parameters’ levels shown in Table 5 was used. 

Using all possible combinations of these data (2197 = 133) as input data to model B, the 

dimensions for the width and depth of the micro-channels were predicted. As an example of 

the output from the ANN model, Fig. 6 and Fig. 7 show the relation PRF and P, U and P, 

and PRF and U for the mid levels of the other parameters which were U=300 mm/min, 

PRF=280 Hz, and P=24W respectively. The results of this prediction demonstrate 

graphically the effect of changing two selected parameters on the dimensions of the micro-

channels, while the third parameter was held constant at its average value. These figures 

offer a visual aid to select parameters or parameter ranges for a required output or output 

range. These graphs show simultaneously the combined effect of two parameters on the 

resulting dimension when the third parameter is held constant. Fig. 6 (a), for example, 

shows the effect of PRF and P on channel width. From this figure it can be seen that these 

two parameters interact with each other. The level of PRF selected for example, has an 

different effective output channel width response profile which is dependent on the input 

power setting. It can also be seen that as PRF decreases and P increases the resulting 

channel width increases. On the other hand, from Fig. 6 (b) it can be seen that there is no 

appreciable interaction between the traverse speed and the input power. This is due to the 

negligible effect of the speed in this case on the width of the channel.  

 
 

Table 5: Laser control parameters’ levels used to predict the interactive effect of the laser 

control parameters on the dimensions of the laser machined micro-channel 

 

# 1 2 3 4 5 6 7 8 9 10 11 12 13 
P (W) 18 19 20 21 22 23 24 25 26 27 28 29 30 

PRF (Hz) 160 180 200 220 240 260 280 300 320 340 360 380 400 
U (mm/min) 100 133 167 200 233 267 300 333 367 400 433 467 500 
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Fig. 6: Showing interactive effect on width level for (a) PRF and P with U=300 mm/min; 

(b) U and P with PRF=280 Hz; (c) PRF and U with P=24W; and (d) scale bar for 

dimensions. 

 

(a) (b) 

(c) (d) 
µm 

µm 

µm 

µm 

µm 
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Fig. 7: Showing interactive effect on depth level for (a) PRF and P with U=300 mm/min; 

(b) U and P with PRF=280 Hz; (c) PRF and U with P=24W; and (d) scale bar for 

dimensions. 
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4. Discussion 
 

Tests were performed using multilayered feed-forward, back-propagation ANNs to 

construct predictive models in order to predict the laser machined micro-channel 

geometrical parameters. Experiments designed by factorial DoE were used to develop three 

sets of training data and test data for three ANNs predictive models. The ANN architecture 

that achieved the lowest average percentage error for the test data set was chosen for each 

ANN predictive model, see Table 3. The predicted dimensions from the three ANN models 

and the DoE model were compared with the actual experimental data in terms of the 

average percentage error and the absolute maximum percentage error. 

 

ANN models over time may not work as well as when they were first implemented due to 

deterioration of the equipment. Experimental data points can be re-captured for the chosen 

model in this case and used to re-train this ANN model structure with the same number of 

nodes and layers. In considering the range of capability and limitations, ANN predictive 

models are effective in predicting the process outputs for the specific materials and other 

input parameters used to generate the model. Furthermore, the model can be used to 

selected inputs for required process outputs that are within the range of the original input 

data used during the training phase [41]. It was found that ANNs have the inherent ability 

to model a nonlinear, dynamic and complicated system, such as a laser micro-machining 

system. In the work presented in this paper factorial DoE was an aid to the selection of 

training data sets for the ANN models. This was found in the works of other workers [34, 

35]. 

 

Ranking the models (A, B, C and DoE) according to their average percentage error, model 

B produced the lowest average percentage error. The DoE model was next best in terms of 

having lowest average percentage error. Model B was better than model A, even though a 

larger number of training data was used for model A (24 for model A compared to 15 for 

model B). This may be due to the fact that one of the corner points from the experimental 

data space was missing from the training data for model A whereas model B had all the 

corner data points in its training data set. This indicates that the training data for model B 
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was the most useful training data to include and highlights the importance of including the 

corner points in the model. On the other hand, from Table 4, model A can be seen to have 

produced the lowest maximum percentage error which can be explained by the fact that this 

ANN model had the highest number of training data (24 from the 27 available data). This 

was a larger amount of training data compared to the other models and enabled this model 

to predict the test data set values with a smaller margin of error. The DoE model ranked 

second with respect to the width prediction, while model B was second regarding depth 

prediction. The worse prediction from model C can be understood when it is considered 

that four of the eight corner points from the experimental data space were excluded from 

training, so the prediction within the data space will not be sufficiently precise from this 

model. 

 

Investigation of the combined effects of the laser control parameters is shown in the 

intensity plots of Fig. 6 and Fig. 7 for width and depth respectively. From these it can be 

seen that within the range investigated, the power has a large positive effect on the channel 

widths and depths. On the other hand, the PRF has a negative effect on the channel widths 

and depths. Traverse speed however has little effect for channel widths but some negative 

relation on channel depths. 

 

Modelling all the important factors that affect the resulting dimensions of laser micro-

machined components by conventional analytical or numerical methods is not currently 

possible. In practice when starting a new machining operation with requirement for specific 

part dimensions and new materials, the operator performs a set of experiments to set the 

process control parameters related to the laser power, PRF, motion control and work piece 

material. This trial-and-error approach can be costly and time consuming especially for 

small batch production or prototyping, and does not ensure optimal process conditions for 

given manufacturing objectives [26]. The results presented here allow the processing 

parameters to be directly selected for future work. When a particular dimension is required 

within the range of dimensions that have been investigated, the input parameters to achieve 

these can be directly selected by using model B where the minimum average error is 

required and model A where the minimum absolute error is required.  
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There are many other modelling and optimisation techniques such as genetic algorithms, 

ant colony optimisation, grammatical evolution, simulated annealing, tabu search, 

stochastic tunnelling, differential evolution, particle swarm optimization and fuzzy logic 

which could also be applied to such a problem. Many of these techniques are more recently 

developed than the ANN or DoE modelling methods. This gives some confidence in the use 

of ANN and DoE for problem solving as presented in this paper. However, it also opens the 

possibility for further research to investigate if any of these other techniques can be more 

easily or more successfully applied to solve such problems. ANN models can be used to 

predict results that were not found from experimental work. By utilisation of any of the 

aforementioned optimisation techniques in conjunction with the ANN models, optimised 

process control parameter could be found for achieving target responses, boost the process 

performance and improve the final product quality.   

 

5. Conclusion 
 

Micro-channel formation using laser micro-machining was characterised using factorial 

DoE. This process was modelled using feed-forward, back-propagation ANNs. The effect 

of different sets of training data and test data were examined. The ANN models, DoE 

model and experimental results were compared in terms of the average percentage error and 

absolute maximum percentage error. The results from this comparison showed that the 

ANN modelling technique can be readily applied to predict the laser machined micro-

channel dimensions accurately.  

 

Control of automated systems may require lower part absolute error or reduced overall 

average error. ANN models for achieving each of these requirements were established in 

this work. Where a small amount of scarp is acceptable or where the absolute maximum 

error does not stop a micro-machined part from operating in an acceptable manner, a model 

that produces a lower overall average error would generally be preferred. It was found that 

the developed ANN models are efficient predictive tool for selection of laser micro-

grooving parameters. 
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