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Characterisation and Modulation of Drug Resistance in 

Lung Cancer Cells 

Abstract

Chemotherapy drug resistance is a major obstacle in the treatment of cancer. It can 

result from an increase in levels of cellular drug efflux pumps such as P-glycoprotein 

(P-gp). Using cellular models, this thesis aimed to investigate resistance in lung 

cancer cells while developing siRNA and membrane proteomic techniques and to 

increase our knowledge of the effect of lapatinib, a newly developed targeted therapy, 

in these resistant cells.  

Lapatinib, a growth factor receptor tyrosine kinase inhibitor synergised with P-gp 

substrate cytotoxics in P-gp over-expressing resistant cells. However, lapatinib 

treatment, at clinically relevant concentrations, also increased levels of the P-gp drug 

transporter in a dose-responsive manner. Conversely, exposure to the epidermal 

growth factor (EGF), an endogenous growth factor receptor ligand, resulted in a 

decrease in P-gp expression. Using drug accumulation, efflux and toxicity assays we 

determined that alteration in P-gp levels by either lapatinib or EGF had little 

functional significance.  

P-gp is not the only resistance mechanism so siRNA-mediated gene silencing was 

exploited to investigate the role of additional proteins with potential roles in 

resistance. Firstly, P-gp knockdown by siRNA was coupled with toxicity and 

accumulation assays to determine the impact of silencing this protein in the chosen 

resistant lung cells. Additional putative targets were chosen from microarray data 

identifying genes associated with the development of paclitaxel resistance. Of the 

three genes investigated, ID3, CRYZ and CRIP1, ID3 emerged as having a potential 

role in contributing to resistance in one of the resistant lung carcinoma cell lines 

investigated. 

Many of the proteins important in resistance are membrane expressed but due to their 

size and hydrophobic nature, can be difficult to characterise. A 2D-LC-MS method 

was designed and employed to examine membrane proteins from the resistant lung 

cell models. Suitable parameters important in optimal identification of the proteins 

were determined. Large numbers of proteins were identified and comparisons made, 

highlighting those that were differentially expressed. 
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1.1. Cancer  

Cancer is a major worldwide health problem that results in a huge loss of life every 

year. In 2002 it was estimated that there were 10.9 million new cancer cases, 6.7 

million cancer associated deaths, and 24.6 million persons living with the disease, 

worldwide [1].  Cancer ultimately results from alterations in the control mechanisms 

that govern normal cell physiology. Some of the primary alterations contributing to 

malignancy are; a self-sufficiency in growth signalling; insensitivity to growth-

inhibitory signalling; evasion of apoptosis (programmed cell death); inexhaustible 

replicative potential; sustained angiogenesis; and tissue invasion and metastasis [2].  

Tumour formation interferes with the body’s normal physiology, causing damage to 

internal organs and systems, and in many cases, ultimately results in death.  

1.1.1. Lung cancer 

Lung cancer was reported to be the most frequently diagnosed of the major cancers 

and the most common cause of cancer mortality in males by the World Health 

Organisation in 2001 [3]. A decreased incidence in lung cancer was observed in 

males throughout Europe in the decade spanning from the mid 1990s to the mid 

2000s. However, an opposing effect was seen in females and ultimately this cancer is 

still very commonly diagnosed in Europe and associated with poor survival rates [4]. 

The majority of cases present with advanced disease and are typically associated with 

a less than 5 year survival duration. The disease can progress significantly before 

symptoms develop. However, there is generally an increase in occurrence of the 

common symptoms of expectoration and cough over time in clinical cases [5]. 

Cigarette smoke exposure is a major causative factor with approximately 87% of 

lung-cancer cases resulting from this single cause [6]. Lung cancers can be 

histologically classified into two main groups, non small cell lung cancer (NSCLC) 

and small cell lung cancer (SCLC) with 80% of cases falling into the first group and 

the remaining 20% into the second [7].  

The staging of lung cancers is carried out in order to determine treatment regimes and 

to compare efficacies of new treatments across clinical trials. This is generally based 

on the (TNM) classification, where T represents the scale of the primary tumour, N 

represents the lymph node involvement and M represents the presence metastasis [8, 

9]. 
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1.1.1.1. Small Cell Lung Cancer (SCLC) 

Small cell lung cancers are aggressive malignancies, with rapid growth and 

characterised by early metastasis. These tumours are normally centrally located and 

are strongly associated with smoking. Relapse is very common even after initial 

response to treatment [10, 11]. 

1.1.1.2. Non Small Cell Lung Cancer (NSCLC) 

NSCLC include adenocarcinomas, squamous cell, large cell and bronchoalveolar 

carcinomas. Around 30% of NSCLC are made up by adenocarcinomas, including the 

bronchoalveolar carcinomas. These are typically peripheral tumours. 

Adenocarcinomas are associated with early development of metastasis and often the 

primary site remains symptomless [11]. Squamous cell carcinomas account for 

approximately 30% of all lung cancers and they are typically centrally located [5, 9]. 

Squamous-cell carcinomas, which are very common in Europe, and can be 

accompanied with late development of distant metastasis [11]. NSCLC is associated 

with poor prognosis and despite surgery being first line treatment, approximately 

70% of patients present with unresectable disease [12]. 

 

1.1.2. Lung cancer treatments 

The objective in cancer treatment is to control or eradicate the neoplasm and prevent 

its spread. Methods employed in the treatment of cancer include, surgery, radiation 

and chemotherapy or a combination of the above. Despite huge developments in 

cancer treatment, the outcome for many patients with advanced disease is still not 

promising.  

Chemotherapy is the mainstay treatment for small cell lung cancer as surgery is often 

not an option due to most patients presenting with metastasis. Cisplatin, carboplatin, 

doxorubicin, vincristine, paclitaxel and docetaxel are among the active chemotherapy 

drugs approved in SCLC treatment. Single agent therapy produces a more short lived 

response and so combination therapy is the standard care. Although response rates 

are high (75-80%), most patients will suffer from relapsed disease [10, 11, 13]. 

Surgical resection is more commonly employed in non small cell lung cancer 

treatment and carried out where possible [11]. Many single anti-cancer agents have 

activity against NSCLC and these include cisplatin, carboplatin, paclitaxel, docetaxel, 
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vinorelbine and gemcitabine; however, a modest increase in response rates is seen 

with combinations and so platinum-based combinations form the standard care [14]. 

Paclitaxel or docetaxel in combination with cisplatin has been recommended as an 

option in first-line treatment of advanced NSCLC. More recently, targeted therapies 

have shown promise in the treatment of NSCLC. The epidermal growth factor 

receptor (EGFR) inhibitors erlotinib, gefitinib, and cetuximab have proved to have 

some clinical activity in non-small cell lung cancer [15]. Such agents will be 

discussed further in section 1.4. 

Despite progress in the development of drugs that target unique cancer-specific 

pathways, chemotherapeutics yield significant survival advantages in many cancer 

types and so continue to be used in the clinic. 

 

 

1.2. Chemotherapy

Cytotoxic drugs employed in the treatment of cancer include, anthracyclines, taxanes, 

vinca alkaloids and platinum compounds. These can be used as a monotherapy but 

are often administered in specific combinations. The discussion below focuses on 

agents employed in this study. 

1.2.1. Anthracyclines

Anthracyclines are cytotoxic antibiotics that produce their effects primarily by acting 

directly on DNA. They include doxorubicin (adriamycin), daunorubicin and 

epirubicin. These drugs are the semi-synthetic derivative of the fermentation product 

of Streptomyces pseucetius var. caesius. They are broad spectrum anti-cancer agents, 

having potent activity against a wide variety of cancer types [16]. These agents cause 

breaks to double- or single- stranded DNA. In addition, they produce free radicals 

that damage macro-molecules and lipid membranes and they also poison 

Topoisomerase II, resulting in DNA damage, since topoisomerases function in DNA 

replication, chromosome condensation and chromosome segregation. Anthracyclines 

are frequently used in the treatment of breast cancer, leukaemias, lymphomas and 

sarcomas [17]. Structures of doxorubicin and epirubicin are shown in figure 1.1. Both 

doxorubicin and epirubicin often form part of standard care in adjuvant treatment of 
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breast cancer, with cardiotoxicity being the main life-threatening side effect to 

contend with [18].   

 

Figure 1.1 Chemical structures of doxorubicin and epirubicin 

 

          
 

 

 

1.2.2. Antimitotics 

Anticancer drugs that target tubulin form a group of effective anticancer agents. 

These include taxanes and the vinca alkaloids. In the cellular cytoskeleton, tubulin 

polymerises to form microtubules and these are crucial in the development and 

maintenance of cell shape, in mediating intracellular transport, in cell signalling and 

in cell division and mitosis. The critical role of these proteins in cell division and 

mitosis makes them a good target for anticancer drugs. Taxanes are known as 

microtubule-stabilizing agents and vinca alkaloids as destabilizing agents [19]. 

1.2.2.1. Taxanes 

Taxanes bind to �-tubulin in the microtubles causing accelerated polymerisation of 

the tubulin. The resultant microtubules are in a stabilized state and fail to 

depolymerise. This disruption to the normal function of microtubules results in cell 

cycle arrest between the prophase and anaphase stages [20]. Paclitaxel (taxol) was 

first isolated in 1971 from the pacific yew (Taxus brevifolia) and this was followed 

by the more potent semi-synthetic derivative, docetaxel. These agents demonstrate 

broad spectrum anticancer activity on cancers of the breast, lung, ovary, bladder and 

prostate and their structures are shown in figure 1.2. Despite their structural 

similarity, paclitaxel and docetaxel exhibit differences in their activity and toxicity 

Doxorubicin       Epirubicin 
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profiles. Docetaxel has greater affinity for �-tubulin, affecting centromere 

organisation and acts on cells in the S, G2 and M phases of the cell cycle. Paclitaxel 

affects the mitotic spindle and so acts on cells in the G2 and M phases of the cell 

cycle. Docetaxel exhibits a greater uptake into tumour cells, which may explain its 

increased potency compared with paclitaxel [21, 22]. 

 

Figure 1.2 Chemical structures of paclitaxel and docetaxel 

       

                 
 

 

 

1.2.2.2. Vinca alkaloids 

The vinca alkaloids, vinblastine and vincristine were the first plant-derived anticancer 

agents to progress into clinical use. They were isolated from the Madagascar 

periwinkle plant Catharanthus roseus G.Don. [23]. Their cytotoxic effects are 

concentration dependent. At lower concentrations they bind to high affinity sites at 

the ends of microtubules and prevent microtubule polymerization. When present in 

higher concentrations they bind to low affinity, high capacity sites resulting in 

disintegration of formed microtubules [21]. Vinblastine has uses in the treatment of 

systemic Hodgkin’s disease and other lymphomas as well as in lung carcinoma and 

carcinoma of the testis [16]. Vincristine has also been included in treatment regimes 

for acute lymphoblastic leukaemia, hodgkin’s disease, non-hodgkin’s lymphoma and 

brain tumour and is frequently used in childhood malignancies. This drug has shown 

limited success in the treatment of lung cancer and breast cancer [24]. Vinorelbine is 

a newer vinca alkaloid and has shown much promise. In the USA it has been 

approved for treatment of non-small cell lung cancer (NSCLC) and has demonstrated 

considerable activity in breast cancer and squamous cell carcinoma of the head and 

Paclitaxel          Docetaxel 
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neck. In metastatic breast cancer studies, vinorelbine treatment has yielded promising 

results in combination with trastuzumab [21]. 

 

Figure 1.3 Chemical structures of vinblastine and vincristine 

             
 

 

1.2.3. Other cytotoxic agents 

There are many other chemotherapeutic agents also having clinical benefit as anti-

cancer agents, including; alkylating agents, such as procarbazine and cisplatin; 

antimetabolites, such as methotrexate and pyrimidine antagonists, such as 5-

fluorouracil (5-FU). Cisplatin, a platinum compound binds DNA through formation 

of interstrand cross-links and can kill cells at any stage of the cell cycle. Methotrexate 

is a folate antagonist that ultimately interferes with the formation of DNA, RNA and 

protein. 5-FU’s actions include inhibition of DNA synthesis and alteration of RNA 

processing and function [16].  

A lot of these drugs have been very successful in the treatment of many 

malignancies, they are, however, therapeutically limiting when faced with problems 

such as toxicity and resistance.  

 

1.3. Chemotherapy resistance 

Resistance to chemotherapy action has long been a problem in the treatment of 

cancer. This phenomenon is thought to account for treatment failure in over 90% of 

metastatic disease. Drug resistance may be intrinsic, occurring at the time of first line 

treatment, or acquired, developing after treatment with chemotherapeutics. There are 

Vinblastine       Vincristine 
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many mechanisms by which cancer cells can develop this resistance. These include; 

increased drug efflux and decreased drug uptake, drug inactivation, changes to drug 

target, handling of drug-induced damage and evasion of apoptosis [25]. Many 

different genes that contribute to various mechanisms of resistance have been 

identified. Their contribution includes; the amplification or over-expression of 

membrane drug transporters, such as P-gp; the altering of cellular proteins involved 

in detoxification, including glutathione S transferase; alteration of proteins involved 

in DNA repair, such as DNA topoisomerase II; and the activation or inactivation of 

oncogenes (HER-2, bcl-2, c-jun and ras) and tumour suppressor genes (p53), 

respectively [26]. Over-expression of growth factor receptors has been shown to play 

a role in resistance and this is discussed further in section 1.4.3.  

 

Ultimately, the presence of the drug, at its required intracellular concentration, is vital 

for chemotherapeutic drug efficacy and so, much research has focused on resistance 

associated with drug efflux. Tumours can often develop resistance to drugs other than 

that they were treated with and this is termed multi-drug resistance. 

1.3.1. Drug efflux pump-mediated resistance 

Over 30 years ago, Juliano and Ling described the nature of a cellular protein 

conferring drug resistance. They showed that Chinese Hamster Ovary cells displayed 

cross-resistance to a range of amphiphilic drugs after they were selected for 

resistance to colchicine. This drug resistant state was as a result of a reduced rate of 

drug permeation. A cell surface glycoprotein, named P-glycoprotein (P-gp), was 

described and its levels correlated with the degree of drug-resistance in the cross-

resistant ovary cells [27]. P-gp is said to be the product of the multi-drug resistance 

gene (MDR) and so is also known as MDR-1. This protein is an ATP-dependent 

transporter and a member of the ABC superfamily of transporter proteins.  

 

The family of ABC transporters all contain ATP-binding domains or nucleotide—

binding folds (NBF), which in turn contain characteristic motifs (Walker A and B 

motifs) separated by sequences of 90-120 amino acids found in all ATP-binding 

proteins. They use the energy from ATP binding to drive the transport of substances 

across the membrane. This transport occurs in a unidirectional manner and can be 

against substantial concentration gradients, ultimately moving drugs out of the cell. 
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Functional ABC proteins contain two NBFs which are located in the cytoplasm and 

two transmembrane domains. The transmembrane domains contain a number of 

membrane spanning �-helices which determine their substrate specificity [28, 29].  

 

Members of the ABC superfamily of transporter proteins function in transporting a 

wide range of substrates, such as ions, phospholipids, steroids, polysaccharides, 

amino acids and peptides across biological membrane [30]. Many chemotherapy 

drugs in current use, such as anthracyclines, vinca alkaloids and taxanes, are 

transported by one or more of these protein pumps (Table 1.1). Tumour over-

expression of these pumps can therefore greatly reduce treatment efficacy.  

1.3.1.1. P-glycoprotein 

P-gp, the product of the ABCB1/MDR1 gene, is a 170kDa transmembrane 

glycoprotein which belongs to the ABCB subfamily of the superfamily of ATP-

binding cassette (ABC) proteins. Like other ABC transporters, it contains two 

transmembrane domains and two ATP binding sites. The transmembrane domains 

each span the membrane six times as shown schematically in Figure 1.4. P-

glycoprotein can catalyse substrate-stimulated ATP hydrolysis at a rate comparable 

to other ion-translocating ATPases. Mutational analysis has shown that both ATP 

binding sites are needed for ATP hydrolysis and drug transport [31]. 
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Figure 1.4 Schematic of P-glycoprotein transmembrane drug efflux pump, 

illustration obtained from Sorrentino et al., (2002) [32]

P-gp plays an important protective role in normal tissues. It is capable of transporting 

drugs from the cytoplasm and is present on the surface of epithelial cells from 

excretory organs and in endothelial cells in the blood-brain barrier. Studies on P-gp-

knockout mice show a reduced body clearance of many drugs and so this protein acts 

to protect the host by reducing exposure to xenobiotics [33]. 

 

However, P-gp also plays an important role in multi-drug resistance and is the most 

studied and best characterised of all the drug transporter pumps. High levels of the 

MDR1 gene and protein have been found in cancers derived from the kidney, liver, 

colon, pancreas and adrenal glands. Some untreated cancers, including leukaemia, 

neuroblastoma and breast, show high levels of MDR1 mRNA and increased 

expression is often seen with chemotherapy treatments [34]. P-gp levels were shown 

to be positively correlated to levels of resistance in SKBR-3, MCF-7 and BT474 cell 

lines [35]. P-gp can transport a wide variety of anti-cancer agents. Substrates are 

usually organic molecules, containing aromatic groups, although they may be non-

aromatic. Uncharged molecules are the most efficient to be transported, with more 
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acidic compounds transported at a lower rate. All substrates are amphipathic in 

nature. The hydrophobic nature of most P-gp substrate drugs allows them to readily 

diffuse across membranes into tissues. Drugs of interest which are actively 

transported by P-gp include doxorubicin, daunorubicin, epirubicin, paclitaxel, 

docetaxel, vinblastine and vincristine [28, 36]. 

1.3.1.2. MRP1 

The discovery of P-gp led to more research into the phenomena of drug resistance; 

however, it was observed that several cell lines displayed the multi-drug phenotype in 

the absence of P-gp expression. This led to further investigations and a second pump 

was later described when the multi-drug resistance associated gene (ABCC1) was 

cloned in 1992. This gene encodes for multi-drug resistant protein 1 (MRP1) and is 

also a member of the ATP-binding cassette (ABC) superfamily of transporter 

proteins [37]. Subsequent members of the MRP (ABCC) family were identified. 

 

This MRP1 transporter has a similar structure to P-gp, thus containing two 

hydrophobic membrane spanning domains and two cytosolic ATP binding domains, 

in addition to an N-terminal extension containing five putative transmembrane 

segments. It is thought that MRP1 co-transports some natural product 

chemotherapeutic drugs with gluthatione hence this peptide plays an important role in 

MRP1-mediated drug resistance. Over-expression of MRP1 has been found in multi-

drug resistant cells lines from many different tissue and tumour types, including lung, 

colon, breast, bladder, prostate and thyroid carcinomas [29, 30]. 

1.3.1.3. BCRP 

The breast cancer resistant pump (BCRP), a product of the ABCG2 gene, also known 

as MXR and ABCP, was identified more recently and is believed to contribute to 

some cases of multidrug resistance [38]. This member of the ABC transporter 

proteins is referred to as a half transporter as it contains only one ATP binding site 

and one transmembrane domain within one polypeptide and must dimerise to 

function. However, it can still transport a variety of drugs including daunorubicin, 

doxorubicin, mitoxantrone and prazosin. It has been shown to be over-expressed in a 

range of cell types, such as those derived from breast cancer, ovarian carcinoma, 

colon cancer and leukaemia causing multidrug resistance in the absence of P-gp and 
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MRP [39]. Table 1.1 outlines substrate specificity for the three drug transporter 

pumps, P-gp, MRP1 and BCRP.  

 
Table 1.1 Substrates for ABC transporters, obtained from Sparreboom et

al., (2003) [28] 
 

ABC Transporter Gene Substrate 

ABCB1 (P-gp) Daunorubicin 

 Doxorubicin 

 Doxetaxel 

 Paclitaxel 

 Vinblastine 

 Vincristine 

 Mitoxantrone 

 Topotecan 

ABCC1 (MRP1) Daunorubicin 

 Doxorubicin 

 Vincristine 

 Methotrexate 

ABCG2 (BCRP) Daunorubicin 

 Epirubicin 

 Mitoxantrone 

 Topotecan 

 

1.3.2. Inhibitors of multidrug resistance

Due to their role in resistance, the drug transporter pumps present an attractive target 

for anti-resistance agents, and successful development of such drugs could lead to 

improved patient treatments. Modulators of the P-gp protein have been developed, 

however, with limited success. First-generation modulators include the calcium 

channel blocker verapamil and the immunosuppressant cyclosporin A. The problem 

with these agents is that, these drugs are required in high doses to achieve sufficient 

plasma concentrations needed to reverse MDR, and at these doses they are highly 

toxic. Their failure as P-gp modulators led to the development of second generation 
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agents which were stereoisomers or structural analogues of the first generation drugs. 

These did not work well in combination with anti-cancer drugs as they interfered 

with the pharmacokinetic and biodistribution properties of the chemotherapy drugs 

[40]. Third generation inhibitors of P-gp function were developed using structure-

activity relationships and combinatorial chemistry. These include tariquidar and 

elacridar and have demonstrated some potential in the preclinical setting [41].  In a 

phase II clinical trial tariquidar showed limited ability to restore sensitivity to 

anthracycline or taxane chemotherapy in patients with advanced breast cancer [42]. 

 

More recently other agents have been developed and shown to have the ability to 

reverse MDR. Curcumin, a constituent of tumeric, has been shown to reduce the 

expression of P-gp by inhibiting the PI3K/Akt/NF-�B signalling pathway, thereby 

reversing doxorubicin resistance in L1210/Adr cells [43]. Other non-steroidal anti-

inflammatory agents such as ibuprofen and NS-398 also have actions in over-coming 

P-gp mediated MDR in resistant cell lines [44]. A newly synthesized triaryl-

substituted imidazole derivative, FG020326, can potentiate the cytotoxicity of 

paclitaxel, doxorubicin and vincristine in two P-gp over-expressing cell lines [45]. 

Carnosic acid, dihydroptychantol A and sipholenol A are other newly identified 

agents which have MDR reversing abilities [46-48].  

 

Tyrosine kinase inhibitors have also recently emerged as agents with some activity in 

modulating multi-drug resistance ATP-binding cassette proteins and this is discussed 

further in section 1.4.5.  

1.3.3. Genes associated with development of paclitaxel resistance 

Microarray analysis carried out previously in our laboratory, identified genes 

associated with the development of paclitaxel resistance, by comparing genes present 

in three lung cell lines and those present in their paclitaxel selected resistant 

counterparts [49]. In this thesis, some of these genes were chosen for further 

investigation utilising siRNA mediated gene knockdown and are discussed below. 

Three genes were selected from the microarray data, ID3, CRYZ and CRIP1.  

 

ID3 is a member of the ID (inhibition of DNA binding/differentiation) helix-loop-

helix family of proteins whose main function is in regulating cell growth and 



 14

differentiation. They act as dominant-negative regulators of basic HLH transcription 

factors.  Altered expression of the ID3 has been observed in various cancer cell lines 

from the lung, colon, and pancreas with high expression reported as being associated 

with aggressive mammary epithelial tumours [50, 51].  

 

Zeta-crystallin (CRYZ) was first identified in guinea pig lenses and then in the lenses 

of other animals. It was later found in non-lenticular tissues of various species. It is a 

NADPH-dependent quinone reductase thereby amending oxidative damage in cells 

[52, 53].  

 

CRIP1 encodes for cysteine-rich intestinal protein 1 and is a member of the 

LIM/double zinc finger protein family. It contains the LIM motif, a conserved region 

of histidine and cysteine residues and so has metal binding properties and is thought 

to have a role in zinc transport [54, 55]. More recently it has been described as a 

novel cancer biomarker exhibiting high levels of expression in many cancer types 

[56].  

 

1.4. Targeted therapy 

As traditional chemotherapeutics face problems with toxicity and lack of selectivity 

there has been a huge surge in focus on developing targeted therapeutics. Unlike 

chemotherapeutic drugs which are directed at rapidly dividing cells, the newer agents 

take advantage of and target, signalling pathways more specific to cancer cells. 

Therapies have been developed to target; the BCR-ABL protein, which is present and 

causative in a huge majority of chronic myeloid leukaemia (CML) patients; the 

mammalian target of rapamycin (mTOR), which is involved in protein synthesis and 

cell survival; the Raf/MEK/ERK signalling cascade, which mediates tumour cell 

proliferation and angiogenesis; the ubiquitin-proteasome pathway, which plays a vital 

role in regulating the degradation of proteins involved in cell cycle control and 

tumour cell proliferation; cyclin-dependant kinases, which form core components of 

the cell cycle machinery allowing tumour cells a selective growth advantage; VEGF, 

which promotes the formation of new blood capillaries and BCL-2, which has anti-

apoptotic abilities [57].  The oncogenic activity of growth factors and their receptors 

makes their signalling an attractive pathway to manipulate with molecular-targeted 
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therapy and many agents have also been developed to target the epidermal growth 

factor receptors.  

1.4.1. ErbB receptors 

The Epidermal Growth Factor (EGF) receptor is a member of the ErbB family of 

transmembrane glycoprotein receptors that play an important role in managing 

cellular functions such as growth/proliferation, survival and differentiation [58]. 

EGFR is a 170kDa transmembrane glycoprotein containing an extracellular receptor 

domain and an intracellular domain with tyrosine kinase function [59].  The ErbB 

family of receptors has four members; EGFR also known as ErbB1/Her1, 

ErbB2/Her2, ErbB3/Her3 and ErbB4/Her4 to which many ligands bind [60].  

 

Ligand binding induces receptor homo- and hetero- dimerization which in turn 

activates intracellular tyrosine kinase activity. Autophosphorylation of the tyrosine 

residues triggers downstream signalling pathways. Such pathways include those 

involving phospholipase C (PLC�), ras, rho and rac, PI3 kinase (phosphatidylinositol 

3’ kinase), PLD (phospholipase D), some STAT (signal transducer and activator of 

transcription) isoforms and the proto-oncogene tyrosine kinase src [61]. PLC� 

generates two second messengers, inositol triphosphate and diacylglycerol from the 

hydrolysis of phosphatidylinositol 4,5- bisphosphate, which causes the release of 

intracellular calcium and activation of protein kinase C [62]. This PLC�-mediated 

signalling is required for ErbB-mediated motility. Ras activation leads to activation 

of erk MAP kinases which promotes proliferation and migration [61]. PI3K has an 

important role in mediating cell survival. PI3K activates the serine-threonine kinase 

c-AKT which promotes cell survival and blocks apoptosis. It is thought to do this 

through phosphorylation of the Bcl-2 family member BAD [63].  An overview of 

EGFR receptor signalling can be seen in figure 1.5. Dimerization is followed by 

internalisation which attenuates the signal. Cytosolic, ligand bound receptors are 

subsequently targeted for lysosomal degradation [64]. No ligands have been 

described for the ErbB2/HER-2 receptor and it is thought to act primarily as a co-

receptor. HER-2 therefore forms heterodimers with other ErbB receptors and it has 

been shown that this can potentiate the signal [60]. These receptors and their ligands 

which, under normal conditions are tightly controlled are subject to deregulation 

during cancer pathogenesis [2]. 
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Figure 1.5 Schematic of the epidermal growth factor receptor signalling 

pathway, illustration adapted from Herbst et al., (2004) [65] 
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1.4.2. Growth factor receptors in cancer 

EGFR is over-expressed in a large number of cancers including breast, lung, 

oropharyngeal and endometrial [66-69]. In a review by Nicholson et al., (2001), it 

was reported that in 74 studies of head and neck, ovarian, cervical, bladder and 

oesophageal cancers 70% showed a strong association between elevated levels of 

EGFR and poor patient outcome. In breast, endometrial, colorectal and gastric 

cancers, a more moderate association between EGFR levels and poor prognosis was 

reported [70].  

 

The tight regulation of EGFR signalling may be disrupted in a number of ways 

thereby contributing to a cancer phenotype. Such mechanisms include, increased 

ligand production, increased levels of the growth factor receptor, EGFR mutations, 
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leading to the formation of a constitutively active form of receptor, defective down-

regulation of EGFR and cross-talk with heterologous receptor system [71].  

 

EGFR over-expression in fibroblasts leads to cellular transformation and increased 

cell motility. This is believed to be as a result of spontaneous receptor dimerization 

due to the increased EGFR levels on the cell surface [72]. A number of cellular 

mechanisms can contribute to increased levels of the epidermal growth factor 

receptor and they include, EGFR gene amplification, increased promoter activity and 

deregulation at translational and post-translational levels. Mutations in the 

extracellular region of the EGFR can result in a constitutively active variant, while 

intracellular mutations can prolong the activity of ligand-bound receptors. Another 

mutation, affecting the cytosolic region allows the receptor escape degradation. 

Cross-talk between receptors often occurs and co-over-expression of multiple 

members of the ErbB family has been found in breast, brain, oral and ovarian cancer 

[71].    

 

HER-2 which plays an important role in normal development is often over-expressed 

in cancers due to gene amplification. The HER-2 gene is reported to be amplified in 

20-25% of primary tumours resulting in aggressive and deregulated signalling, 

ultimately causing a poorer prognosis for the patient  [73, 74]. Immortalised human 

mammary epithelial cells which over-express HER-2, comparable to that observed in 

breast cancer cells, display anchorage-independent growth and invasion capabilities 

[75].  In another study, stimulation of HER-2 expressing cells with EGF related 

ligands resulted in an increased invasion, whereas stimulation in cells devoid of 

functional HER-2 did not display this increased invasion [76].  

 

There are many ways in which normal growth factor signalling can be deregulated 

leading to an imbalance in cell proliferation motility and survival. Epidermal growth 

factors and their receptors have also been linked with chemotherapy resistance by 

promoting survival factors thus preventing cell apoptosis in the face of cytotoxic 

insults [77]. Taking all of this together ErbB receptors make attractive therapeutic 

targets in cancer cells.  
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1.4.3. Role and contribution of growth factor receptors in resistance 

The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signalling pathways, which have 

been shown to be activated by growth factor receptor activation, have been 

implicated in drug resistance. However, their anti-apoptotic and drug resistance 

actions appear to vary in different cell lines. Raf/MEK/ERK signalling can result in 

phosphorylation of the anti-apoptotic mediator BAD and this allows Bcl-2 to form 

homodimers resulting in an anti-apoptotic response. The PI3K pathway has been 

shown to be abnormally active in prostate cancer cells and various tumours, such as, 

breast, lung, melanoma and leukaemia. It has been demonstrated that the expression 

of AKT in the MCF-7 breast cancer cell line conferred resistance to 4HT (4-hydroxyl 

tamoxifen) and doxorubicin [78]. Further evidence to support a role for the growth 

factor receptors in resistance was shown in an adriamycin-resistant MCF-7 breast 

cancer cell line, which exhibited an 8-12 fold increase in EGFR expression compared 

with the parental cell line [79].  

 

It has been suggested that ErbB2 over-expression may have a role in resistance to 

chemotherapeutic agents. Chen et al. (2000),  carried out studies into this 

phenomenon and showed that SKBR3 and BT474 cells which are described as 

moderately resistant to anti cancer drugs, express high levels of EGFR, ErbB2 and 

ErbB3. The BT20 cell line, which is said to be more resistant, had very high 

expression levels of EGFR. They also undertook transfection studies using NIH 3T3 

cells, demonstrating that NIH 3T3-EGFR/ErbB2, co-expressing EGFR and ErbB2 

(HER-2) and NIH 3T3-ErbB2/ErbB3, co-expressing ErbB2 and ErbB3, cells were 

strongly resistant to 5-fluorouracil, cytoxan, doxorubincin, taxol (paclitaxel) and 

vinorelbine. On the other hand, NIH 3T3 cells transfected with ErbB2 and ErbB3 

alone were only slightly resistant and transfection with EGFR alone rendered cells 

moderately resistant, to the same agents. Co-expression of EGFR or ErbB3 with 

ErbB2 was therefore shown to enhance chemotherapy drug resistance in breast 

cancer cell lines [35]. One study suggests that the function of P-gp can be regulated 

by EGF through phospholipase C activity. EGF activation of its receptor was shown 

to transiently stimulate phosphorylation of P-gp which coincides with enhanced drug 

transport in MCF-7 drug resistant cells [80].  
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1.4.4. EGF-related growth factors 

The EGF family of ligands for the epidermal growth factor receptors consists of six-

structurally related proteins; EGF, TGF-�, amphiregulin (AR), heparin-binding EGF 

(HB-EGF), betacellulin (BTC) and epiregulin (EPR). They all contain a conserved 

EGF-like domain and their soluble forms are derived from their integral membrane 

precursors through proteolysis [81]. EGF and TGF-� both exhibit high expression 

levels in the nervous system and at the early stages of embryonic development and 

enhanced synthesis has been observed on several tumour types [82]. These growth 

factors exert their actions by binding to the cell surface growth factor receptors which 

have intrinsic tyrosine kinase activity. An experiment carried out in T47D cells by 

Beerli and Hynes (1995), demonstrated the activities of the individual growth factors 

to the different growth factor receptors and results are shown in Table 1.2 [83].  

 

Table 1.2 Activation of ErbB receptors by EGF-like growth factors in T47D, 

adapted from Beerli et al., (1996) [83]. 

 

Factor ErbB-1 ErbB-2 ErbB-3 ErbB-4 

EGF +++ ++ + - 

TGF-� +++ ++ + - 

HB-EGF +++ ++ ++ + 

AR + - + _ 

BTC +++ ++ +++ +++ 

 
 

1.4.5. Agents targeting growth factor receptors 

There has been a great deal of research into potential agents targeting ErbB receptors 

and this has resulted in two therapeutic approaches; monoclonal antibodies and 

tyrosine kinase inhibitors of EGFR function. Monoclonal antibodies against EGFR 

have been generated to target the ligand-binding extracellular domain and thus block 

the binding of ligands. Tyrosine kinase inhibitors, which generally have a molecular 

weight between 300 and 500Da, act on the intracellular tyrosine kinase domain. They 

were generated by screening small molecules from natural or synthetic compound 
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libraries which compete for the Mg-ATP binding of the catalytic domain of the 

EGFR tyrosine kinase domain [84]. 

1.4.5.1. Monoclonal antibodies 

Trastuzumab (Herceptin™, Genentech), a recombinant humanised anti-HER2 

antibody, exhibited positive preclinical and clinical data against HER-2 expressing 

breast cancer progression and has been approved for use in breast tumours over-

expressing HER2 [85]. Cetuximab is an anti-EGFR chimeric (human-murine) 

monoclonal antibody and has also shown promise in cancer treatment. In NSCLC 

studies, cetuximab has shown some benefit [86] and it has been approved for use in 

the treatment of EGFR-expressing metastatic colorectal cancer [87]. 

1.4.5.2. Tyrosine kinase inhibitors 

Tyrosine kinase inhibitors (TKIs) are largely synthetic compounds of low molecular 

weight that interfere with the receptors kinase activity, thus preventing recruitment of 

downstream signalling molecules. The first two natural tyrosine kinase inhibitors, 

quercetin and genistein were developed in the 1980s and currently there are 

approximately thirty inhibitors in clinical development for cancer. Receptor tyrosine 

kinases consist of an extracellular ligand binding domain, a hydrophobic 

transmembrane domain and a cytoplasmic domain containing a tyrosine kinase core. 

In addition to the epithelial growth factor receptors, they include insulin, platelet-

derived endothelial, vascular endothelial and fibroblast, growth factor receptors. The 

catalytic domain of the receptor tyrosine kinases has proved the promising target. 

Minor differences in the ATP-binding domain between the different receptors are 

taken advantage of to develop highly selective inhibitors [88].  Erlotinib, gefitinib 

and lapatinib are three of the major tyrosine kinase inhibitors that have been 

approved for use in cancer treatment and so the following discussion focuses on these 

agents.  

1.4.5.3. Gefitinib and erlotinib

Gefitinib (Iressa™, Astra Zeneca), a competitive inhibitor of ATP-binding which 

exhibits a high degree of selectivity for EGFR, was the first tyrosine kinase approved 

for second line treatment in NSCLC. It has been shown to inhibit EGFR tyrosine 

kinase activity and tumour growth inhibition was seen in mice with xenografts for 
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lung, breast, colon, and prostate tumours [89]. Anti-tumour responses were observed 

in advanced cancers of the lung in clinical trials and in 2003 and this formed the basis 

for an excelled approval for this drug for use in the treatment of patients with 

advanced NSCLC [90]. Exposure to this drug can arrest cells in the G1 phase of the 

cycle, and at increasing concentrations, it can induce apoptosis [91]. 

 

Erlotinib (Tarceva™, Genentech), a reversible inhibitor of EGFR tyrosine kinase 

activity, was approved for use in 2004 as a monotherapy in patients with advanced 

NSCLC after failure of at least one prior chemotherapy treatment program [92]. It 

exhibited promising anti-cancer actions in pre-clinical investigations where it 

inhibited the phosphorylation of the EGFR causing cell cycle arrest and induction of 

apoptosis and so progressed into clinical trials [93]. Erlotinib showed improvement in 

overall survival in the treatment of advanced and metastatic NSCLC after treatment 

failure of one or more chemotherapeutics and so was FDA approved for this purpose 

[94]. Further in vitro studies have shown it to induce inhibition of the cell growth and 

G1/S phase arrest in the NSCLC line H322. In these cells, erlotinib decreased cyclin 

–A and –E, and inhibited CDK-2 activity, all of which are proteins involved in the 

transition of cells from the G1 and S phase. It also was shown to induce p27KIP1 a 

cyclin- dependent kinase (CDK) inhibitor [95]. Erlotinib, in combination with 

chemotherapy drugs is also being clinically investigated and is discussed later in this 

section. The structures for these two tyrosine kinase inhibitors are shown in figure 

1.6. 
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Figure 1.6 Chemical structures of erlotinib and gefitinib 

 

 

      
 

 

 

       
 

 

 

 

1.4.5.4. Lapatinib 

Lapatinib (GW572016) is a reversible, dual tyrosine kinase inhibitor that inhibits 

both EGFR/ErbB1 and HER-2/ErbB2. It interferes with downstream activation of 

Erk1/2 and MAP kinases which are convergence points of most mitotic signalling 

pathways. This drug also inhibits the PI3K/AKT pathway which plays a role in 

survival. The presence of exogenous EGF does not reverse the anti-proliferative 

actions of this drug. These effects, which lead to growth arrest and/or apoptosis, have 

been demonstrated in vitro and in vivo in human tumour xenografts [96]. Konecny et

al. (2006), reported that lapatinib exhibited concentration-dependent anti-

proliferative effects on thirty-one characterised human breast cancer cell lines. This 

response correlated with HER-2 expression [97]. In clinical trials lapatinib has shown 

some promise in the treatment of refractory metastatic breast cancer and as a first line 

agent in metastatic breast cancer [98]. It was approved for use by the U.S food and 

drug administration in March 2007 in combination with capecitabine for the 

Erlotinib 

Gefitinib 
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treatment of patients with human HER-2-overexpressing metastatic breast cancer 

who had received prior therapy including an anthracycline, a taxane, and trastuzumab 

[99]. Lapatinib shares the quinaolzine core found in other tyrosine kinase inhibitors 

and is administered as the monohydrate ditosylate derivative. The parent structure is 

shown in Figure 1.7.  

 

Figure 1.7 Chemical structure of lapatinib 

 

   
 

 

 

1.4.6. Tyrosine kinase inhibitors and chemotherapy drug resistance 

Evidence indicates tyrosine kinase inhibitors have the ability to chemosensitize cells, 

however, the exact nature of this inhibition is not always clearly understood. Some 

tyrosine kinase inhibitors are also substrates for drug transporter pumps. In 1997 two 

tyrosine kinase inhibitors, staurosporine and its derivate, CGP41251, were shown to 

reverse the decreased accumulation of rhodamine-123 in P-gp-mediated drug 

resistant promyelocytic leukaemia HL-60 cells [100]. Hegedus et al. (2002) showed 

that several tyrosine kinase inhibitors interact with, and are substrates for, MRP-1 

and MDR1. This drug-pump interaction varied in transporter selectivity and 

specificity [101]. Increased intracellular accumulation of various drugs and agents, 

when combined with a tyrosine kinase inhibitor, therefore could be as a result of 

competition for transport by one or more of the transporter pumps. In this case, the 

small molecule targeted agent takes the place of the chemotherapy drug in the 

transporter system thereby leaving the cytotoxic to accumulate.  

Lapatinib 
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1.4.6.1. Gefitinib and erlotinib and chemotherapy resistance 

Gefitinib was originally shown to reverse drug resistance in P-gp over-expressing 

lung and breast cancer cell lines. The drugs presence resulted in an increased 

intracellular accumulation of the P-gp substrate rhodamine-123. Gefitinib also 

increased ATPase activity in a pure P-gp-expressing membrane, indicating that it 

interacts directly with the pump [102]. Further studies observed that gefitinib directly 

inhibits P-gp activity at clinically relevant concentrations [103]. In vivo studies 

carried out in abcg2-/- and mdr1(a/b)-/- mice, showed an increased apparent 

bioavailability of topotecan and a decreased drug clearance after a single  dose of 

gefitinib in these mice compared with untreated control animals [104]. Combinations 

of gefitinib with chemotherapeutics went on to be evaluated in the clinic and this is 

discussed further in section 1.4.7. 

 

Erlotinib also appears to have some actions in modulating ABC transporters. One 

study indicates how erlotinib reversed BCRP-mediated resistance through direct 

inhibition of BCRP drug efflux [105]. A tyrosine kinase inhibitor GW282974A, 

which is an analogue of lapatinib was shown to circumvent drug resistance in two 

EGFR over-expressing resistant ovarian cancer cell lines when given in combination 

with chemotherapy drugs and this was associated with a reduction in the downstream 

signalling molecule phosphorylated ERK [106]. More recently the BCR-ABL 

tyrosine kinase inhibitor, Nilotinib (AMN107, Tasigna®), has been reported to 

potentiate the cytotoxicity of BCRP and P-gp substrates mitoxantrone, doxorubicin, 

vincristine and paclitaxel and enhance the accumulation of paclitaxel in P-gp over-

expressing cell lines [107]. 

1.4.6.2. Lapatinib and chemotherapy resistance 

Lapatinib also has modulatory activity for some of the ABC binding cassette 

transporter proteins. It has been shown to potently enhance the accumulation of 

doxorubicin, docetaxel and epirubicin in P-gp- and BCRP- over-expressing lung and 

breast cell lines, but not in the P-gp negative cell lines. This, of course, resulted in 

greater toxicity of doxorubicin, docetaxel and epirubicin in the resistant cells. 

Lapatinib can stimulate P-gp and BCRP ATPase activity suggesting it may be a 

substrate. However, it was also shown to directly inhibit verapamil-induced P-gp 
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ATPase activity and so can also be described as an inhibitor of P-gp activity  [108-

110]. 

1.4.7. TKIs in combination therapy 

The above evidence would indicate that combination therapies with tyrosine kinase 

inhibitors and classical chemotherapy drugs may be a powerful tool in overcoming 

drug resistance. There is currently a major focus on research and clinical trials with 

tyrosine kinase inhibitors in combination with chemotherapy agents. Also, although 

these agents have shown promise in the clinic they are unlikely to substitute standard 

chemotherapy in first line treatments and they are more likely to be used for their 

additive and synergistic effects to existing therapies. There is much pre-clinical to 

phase III trials/research being carried out to see the benefits or downfalls of 

combination treatments with tyrosine kinase inhibitors and chemotherapeutic drugs. 

So far these studies have yielded both positive and negative results as outlined below.  

1.4.7.1. Combination therapy with gefitinib or erlotinib 

Pre-clinical studies investigating gefitinib combination therapies demonstrated an 

additive to synergistic effect with this TKI in combination with the topoisomerase 

inhibitor SN-38 in five out of seven lung cancer cell lines analysed. These five cell 

lines expressed wild type EGFR and the remaining two in which antagonistic effects 

were observed with the same treatment, expressed mutant EGFR. Interestingly, one 

of the EGFR mutant cell lines which had an acquired resistance to gefitinib after in 

vitro exposure responded to sequential treatment of the tyrosine kinase inhibitor and 

cytotoxic, whereby treatment with SN-38 followed by gefitinib resulted in a 

synergistic effect [111]. These finding indicate the potential for combination 

therapies with tyrosine kinase inhibitors and also highlight the importance of 

administration schedules. An in vivo study has illustrated that co-administration of 

gefitinib enhanced the efficacy of cytotoxic drugs in human tumour xenografts. The 

growth inhibitory actions of doxorubicin, taxanes and platinum agents were all 

improved when administered with gefitinib against A431 vulvar, A549 and LX-1 

lung and TSU-PR1 and PC-3 prostate tumour xenografts in mice [112]. Studies were 

also carried out in breast cell lines, where findings showed positive synergistic effects 

with the combination of gefitinib and either paclitaxel or docetaxel in the EGFR and 

HER-2 positive cell line MCF7/ADR, however, additive antagonist effects were 
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observed in the EGFR positive cell line MDA-MB-231. These results also carried 

through to xenograft studies [113].  

Positive pre-clinical data also supports the use of erlotinib in combination with 

chemotherapy agents in the clinic. It was shown to enhance the anti-tumour activity 

of irinotecan in a human colorectal tumour xenograft model [114]. Substantial anti-

tumour activities were also observed with combinations of cisplatin and erlotinib in 

non-small cell lung cancer xenograft models [115]. Additive cytotoxic effects were 

seen in head and neck squamous cell carcinomas with a combination of docetaxel and 

erlotinib, in a dose- and sequence- dependent manner [116].  

However positive, pre-clinical data has often failed to translate into the clinical 

setting. Clinical trials of gefitinib and erlotinib in combination with some 

chemotherapeutic agents in non small cell lung cancer have yielded disappointing 

results [117].  

 

The INTACT phase III trial was one of the first to investigate the efficacy of gefitinib 

in combination therapy. Gefitinib in combination with gemcitabine and cisplatin was 

compared to placebo in combination with the same chemotherapy agents and 

assessed for overall survival and time to progression in patients with advanced 

NSCLC. No survival benefit was observed with gefitinib over placebo when 

combined with gemcitabine and cisplatin in the large (1093) population of 

chemotherapy-naive patients with advanced NSCLC analysed [118]. A second phase 

III trial of identical design was also set up to investigate gefitinib in combination with 

paclitaxel and carboplatin in advanced NSCLC. Gefitinib again added no benefit in 

survival or time to progression compared with placebo in combination with paclitaxel 

and carboplatin, in the 1037 patients with advanced NSCLC [119]. One report 

suggests gefitinib may have been more efficacious as a neo-adjuvant therapy [120]. A 

clinical trial in patients with untreated advanced NSCLC who were administered 

either erlotinib or a placebo together with cisplatin, demonstrated no statistically 

significant difference between the two groups in overall survival or progression 

[121]. Another study on patients with the same disease status showed no 

improvement in survival, time to progression or response rate, between those 

administered erlotinib in combination with paclitaxel and carboplatin and those who 

received chemotherapy alone [122]. However, a positive outcome was observed in 

patients with advanced pancreatic cancer, where erlotinib in combination with 
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gemcitabine improved overall and progression-free survival compared to gemcitabine 

monotherapy [121].  

1.4.7.2. Combination therapy with lapatinib 

Given its actions on the drug transporter pumps, lapatinib also holds promise in 

combination therapies with chemotherapeutics. From the studies to date there have 

been some positive findings with lapatinib combinations, however, as with gefitinib 

and erlotinib, some studies have proved somewhat negative.  A study looking at the 

combination of lapatinib with capecitabine compared with capecitabine alone in 

patients with HER-2-positive, locally advanced or metastatic breast cancer resistant 

to trastuzumab was stopped early due to a significant improvement in the time to 

progression in patients receiving combination, and this treatment setting is now the 

approved use for lapatinib [123]. Lapatinib with paclitaxel has also shown promise in 

the breast cancer setting. This was shown in a phase II trial involving daily lapatinib 

and weekly paclitaxel administration in patients with inflammatory breast cancer 

[124]. A phase III trial was later carried out with this same combination. In the HER-

2-negative or HER-2-untested cohort of metastatic breast cancer no benefit from the 

addition of lapatinib to paclitaxel was observed. However, it was concluded that in 

HER-2-positive patients the first-line therapy with paclitaxel-lapatinib significantly 

improved clinical outcomes [125]. The reporting of the outcomes from this clinical 

trial has been criticised and Amir et al, (2009) suggest the results may not be as 

promising as the article indicates [126]. 

 

In pre-clinical studies, a synergistic toxic effect was observed in two bladder cancer 

cell lines when lapatinib was introduced into a treatment regimen of gemcitabine and 

cisplatin. In this same study dosing schedules were examined and the optimal 

sequence was found to be lapatinib treatment before and during chemotherapy cycles 

[127]. Oxaliplatin/leucovorin/5-fluorouracil (5-FU) (FOLFOX4) is an effective 

treatment regimen in patients with advanced colorectal cancer. A phase I trial showed 

that the addition of lapatinib to this treatment to be tolerable and also there was 

evidence of clinical activity [128]. Another phase I clinical trial was carried out to 

evaluate the safety of lapatinib and docetaxel with pegfilgrastim in patients with 

advanced solid tumours. This combination was well tolerated, however, little clinical 

activity was observed [129].  Evidence suggests topotecan with lapatinib is also well 
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tolerated in patients with advanced solid tumours and warrants further study in 

clinical trials [130].  

 

While a large number of clinical trials examining combination therapies have failed, 

it is important to keep in mind the potential impact of patient selection and of dosing 

schedules on results. The importance in choice of administration schedule has been 

demonstrated in a study involving the combination of gemcitabine and gefitinib in 

head and neck carcinoma. Chun and colleagues (2006) confirmed that gefitinib 

arrested cells in the G1 growth phase and gemcitabine arrested cells in S phase. The 

investigators therefore hypothesised that as gemcitabine requires entry to the S phase, 

administration of this chemotherapy drug followed by gefitinib would have greater 

synergy than the reverse or either agent alone. They demonstrated that when cells 

were treated with gemcitabine they entered S phase and after treatment with gefitinib 

they underwent apoptosis. Also, gemcitabine was shown to increase phosphorylated 

EGFR levels and subsequent gefitinib stopped this increase and was associated with 

decreased phosphorylated AKT levels, poly (ADP-ribose) polymerase cleavage and 

apoptosis [131]. Another study supporting these results was carried out using 

KYSE30 cells as a model of a human cancer cell line with EGFR expression. This 

study involved the anti-EGFR agents, gefitinib, ZD6474 and cetuximab given in 

different sequences with either a platinum derivative (cisplatin, carboplatin, 

oxaliplatin) or a taxane (docetaxel, paclitaxel). In the case of all drugs tested, only the 

schedules involving cytotoxic drug followed by inhibitor proved to be synergistic. In 

these cases an increased level of apoptosis and an accumulation of remaining cells in 

the G2/M phases of the cell cycle, were observed [132]. Conversely, if the tyrosine 

kinase inhibitor is enhancing the cytotoxicity of the chemotherapy drugs by 

competing as a substrate for the P-gp pump and thereby increasing accumulation of 

the drug, then it would seem co-administration of both agents would appear 

necessary.  

 

The clinical findings have not been as compelling as might have been expected and it 

is difficult to predict whether combinations of tyrosine kinase inhibitors with 

chemotherapeutics will form part of many typical cancer treatment regimens in the 

future. However, some of the clinical trials have yielded positive results and pre-

clinical data continues to produce many encouraging results. It therefore seems worth 
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while to maintain the research in this field to identify new and different combinations 

which may give better synergy and a greater understanding of how the drugs are 

acting together.  

 

1.5. Membrane proteomics 

Membrane proteomics encompasses the study and analysis of membrane proteins in 

the cell and is extremely useful in cancer research. It may prove particularly 

beneficial in the study of resistance due to the high number of important membrane 

proteins involved the various mechanisms of resistance.   

1.5.1. Membrane proteins 

Membrane proteins are a structurally and functionally diverse group of proteins and 

can be divided into two main groups; integral and peripheral. Integral membrane 

proteins are firmly associated with the membrane through hydrophobic interactions 

with them and the membrane lipids. Most integral membrane proteins span the entire 

phospholipid bilayer, containing one or more membrane spanning domains. The 

membrane spanning domains are usually found in �-helical bundle or �-barrel 

confirmation. The integral proteins containing membrane-spanning �-helical domains 

are embedded in membranes by hydrophobic interactions with the interior lipid 

component of the bilayer and most likely also by ionic interactions with the polar 

head groups of the phospholipids.  Peripheral membrane proteins are more loosely 

associated through electrostatic interactions and hydrogen bonds and do not interact 

with the hydrophobic core of the phospholipid [133, 134].  

 

The hypothesised structure of these membrane proteins in a biological membrane is 

shown in figure 1.8. The hydrophobic nature of the �-helical bundles common to 

integral membrane proteins makes these proteins difficult to isolate and analyse. 

Integral proteins require detergents, organic solvents or denaturants which interfere 

with the hydrophobic interactions to remove them from the membrane structure. 

Milder treatments can remove the peripheral membrane-associated proteins [133, 

135].  
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Membrane proteins are involved in key cellular functions including, transport, cell-

cell, cell-pathogen and cell-substrate interaction and recognition and cell 

communication and signalling [136]. They include growth factor receptors and ABC 

transporter proteins which have great relevance in cancer studies, as demonstrated 

above.  

 

Figure 1.8 Membrane proteins in a biological membrane, illustration 

obtained from Lodish et al., (2000) [134] 

 

 
 

1.5.2. Proteomics 

Proteomics describes the study and analysis of proteins expressed in cells or tissues, 

to which mass spectrometry now increasingly provides the analytical means. It is a 

hugely important tool in research and readily applied to studies of proteins involved 

in cancer. The process of proteomics combines separation techniques to separate 

proteins and peptides, analytical techniques for the identification and quantification, 

and bioinformatics for data management and analysis. Separation techniques include 

two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) and liquid 

chromatography. Mass spectrometry (MS), which is now the analytical technique of 

choice, has greatly improved utility over the last decade and advanced bioinformatic 

tools have also been developed  to complement equipment improvements and make 

sense of the increasingly complex data being generated [137, 138].  

 



 31

Large scale proteomic analysis of membrane proteins has proven difficult. 2-D 

PAGE is a capable and efficient separation method; it separates proteins based on 

mass and charge and can do this for thousands of proteins in one gel. However, 

separation of membrane proteins is a significant challenge and hydrophobic proteins 

such as membrane proteins are often under-represented in 2D-PAGE-based analysis. 

This may be due to the inability of detergents employed to efficiently solubilise 

hydrophobic proteins in the aqueous medium used for isoelectric focusing [138, 139]. 

Hydrophobic proteins are soluble in organic solvents and so the use of organic 

solvents to extract membrane proteins prior to electrophoresis has been investigated. 

This has offered some benefit with additional hydrophobic proteins being identified, 

however, proteins with predicted multi-transmembrane spanning domains are usually 

not found [140]. 

 

The shotgun proteomic approach has led to some advances in the area of membrane 

proteomics. In this case, proteins are dissolved in a surfactant medium or in an 

organic solvent, followed by enzymatic or chemical digestion and subsequent 

separation and analysis using liquid chromatography (LC) coupled with tandem mass 

spectrometry [141]. It has been reported that the presence of surfactants can suppress 

analyte ionization and hinder chromatographic separation hence the use of surfactant-

free organic solvent-assisted solubilisation is beneficial in this field [139]. A 

workflow of a shotgun proteomics strategy can be seen in figure 1.9. 
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Figure 1.9 Workflow of LC/MS/MS-based shotgun proteomics strategy,       

illustration obtained from Motoyama et al., (2008) [142] 

 

 
 

1.5.3. Liquid chromatography 

Liquid chromatography (LC), referring to a chromatographic procedure in which the 

moving phase is a liquid, is ideally suited for the separation of macromolecules and 

ionic species of biomedical interest, labile natural products, and a wide variety of 

other high molecular weight and/or less stable compounds [143]. Liquid 

chromatography (LC) can be used successfully to separate peptides and can 

overcome some of the problems encountered with 2D-PAGE. Reversed-phase liquid 

chromatography (RPLC), which is based on distribution of the sample between a 

polar mobile phase and a non-polar stationary phase, is a widely employed separation 

method.  In RP HPLC, compounds are separated based on their hydrophobic 

character. Ion-exchange LC is dependent on exchange of sample or buffer ions 

between the mobile phase buffer and charged groups on the stationary phase [144]. 

To deal with the increasing complexity of samples for analysis, multidimensional LC 

was developed and its use has increased immensely over the past number of years. 

This separation method combines two or more forms of LC, resulting in an increased 
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peak capacity thereby enhancing the resolving power to better fractionate peptides 

before being analysed by mass spectrometry [142].  

1.5.4. Tandem mass spectrometry 

Mass spectrometry analysis involves the separation of proteins and other analytes 

according to their mass-to-charge ratio (m/z). The mass spectrum is presented in 

Daltons (Da) per unit charge. This technique requires an ion source, a mass analyzer 

and a detector. A molecule is ionised and resulting gas-phase ions are propelled 

towards the mass analyzer by an electric field that resolves each ion according to its 

m/z ratio. The ions are then detected according to their abundance and the 

information is then forwarded to the computer for bioinformatic analysis [138, 145]. 

A variety of ionisation techniques can be employed including electron ionisation and 

chemical ionisation [145, 146].  

In tandem mass spectrometry, a particular ion formed from the ionisation of the 

mixture by the first analysis is further fragmented to generate characteristic 

secondary (daughter) fragment ions and hence is also denoted as MS/MS. Tandem 

MS instruments include the triple quadrupole, ion-trap and the hybrid quadrupole-

time-of-flight (Q-TOF) [147]. Tandem MS requires the fragmentation of precursor 

ions isolated by the first analyzer in order for the second analyzer to analyse the 

product ions. Collision-induced dissociation is the dissociation method almost 

universally used [145-147], although, electron transfer dissociation is a newer 

method also used in MS/MS. The tandem mass spectrometry (MS/MS) approach 

typically improves signal/noise ratio, giving increased sensitivity and accuracy and is 

a very useful for identifying proteins. Fragments are generated by cleavage of a bond 

in the peptide chain, where C�-C, C-N or N-C� bonds are cleaved to yield six types 

of fragments, namely an, bn, cn, xn, yn and zn. The first three of these are formed when 

a positive charged is maintained by the N-terminal side and the later three when the 

positive charged is maintained by the C-terminal side. Bn and yn fragments are 

favoured at low energy. The identity of consecutive amino acids can be determined 

using the mass difference between consecutive ions within a series [145].  
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Figure 1.10 Diagrammatic view of tandem mass spectrometry, illustration 

adapted from Glish et al., (2003) [146]. 

                   
 
 

1.5.4.1. Collision induced dissociation (CID) 

In CID, the parent ion collides with a neutral target (collision) gas and some of the 

kinetic energy of the parent ion can be converted to internal energy, which induces 

decomposition of the parent ion. This technique allows an increase in the number of 

precursor ions that fragment in the reaction region and also the number of 

fragmentation paths. CID involves two steps, the first step involves the initial 

collision between the ion and the target and the second step consists of the 

decomposition of the ion. A b- and y-type ion series is generated from this 

fragmentation [145, 146].  

1.5.4.2. Electron transfer dissociation (ETD) 

Electron transfer dissociation is a relatively new method of fragmentation. This 

method utilises ion/ion chemistry. It fragments peptides through the transferring of 

electrons from radical anions to protonated peptides. This induces fragmentation of 

the peptide backbone, causing cleavage of the C�-N bond. This creates 

complementary c- and z-type ions [148, 149]. 

 

CID and ETD are both extremely useful methods in MS/MS and it is thought now 

that they are best used together to achieve a broader range of peptide fragmentation 

and identification. CID has limitations in that it does not cleave all the required bonds 

to get the full information available from peptide. It also has limited efficiency in 
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sequencing polypeptides due to overlap of the masses of N-terminal and C-terminal 

fragments. ETD can complement the actions of CID as it preferentially cleaves at 

different residues and has been found to be particularly suitable for the fragmentation 

of large polypeptides. It is therefore thought the best use of these techniques is to use 

them together [150, 151].  

1.5.5. Applications of membrane proteomics 

The development of membrane proteomics has allowed for a greater scope of 

research into integral membrane proteins and their roles in disease. Techniques in 

membrane proteomics have been used to investigate heart disease-associated changes 

in the cardiac membrane subproteome as well as in examining the patho-physiology 

associated with red blood cells [152, 153]. Cancer studies has also benefited from 

developments in membrane proteomics. Various methods have been utilised to 

identify membrane proteins associated with metastasis and disease progression [154, 

155]. Membrane bound proteins such as receptors or ion channels are often ideal 

candidates for drug targeting which provides a further important application of 

membrane proteomics. Disease biomarkers, often prove to be membrane proteins and 

so these techniques are also relevant for biomarker discovery [156]. Large scale 

analysis of membrane proteins also has a role in research into multidrug resistance. 

Membrane proteomics therefore provides a vital tool in cancer research and could 

provide an alternative to Western blot if coupled with quantitative methods.  
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1.6. Aims 

The aims of the thesis were to: 

 

1) Investigate the therapeutic role of lapatinib in resistant lung cancer cell lines 

and examine its modulatory effect on drug-transporter levels in the cells. This 

was achieved through the examination of combination toxicity with lapatinib 

and chemotherapy drugs, and the close analysis of drug transporter levels in 

response to lapatinib treatment and the subsequent impact this may have on 

the cells.  

 

2) Develop and make use of siRNA-based gene silencing techniques to 

investigate targets associated with resistance. Previously identified targets 

with potential roles in resistance were chosen and analysed for their effects on 

chemotherapy sensitivity in the cells.  

 

3) Utilise a designed membrane proteomics method to establish its ability to 

successfully identify membrane proteins from complex samples. This method 

was then applied to other samples in order to identify potentially differentially 

expressed membrane proteins in resistant cells lines and their non-resistant 

variants.  
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2.1 Cell culture 

2.1.1. Cell lines 

Table 2.1 outlines details and sources of the lung and breast tumour cell lines used in 

this thesis. All cells were maintained under standard culture conditions, 5% CO2 at 

37oC and fed every 2-3 days. All cell lines were mycoplasma free; testing was carried 

out in-house every four months. 

 

Table 2.1 Cell lines used in this thesis 

Cell Line Details-Histology  Source 

A549 Lung adenocarcinoma ATCC 

A549-Taxol Taxol-selected variant of A549 selected by Dr. Laura 

Breen 

NICB 

[157] 

BT474 Breast carcinoma ATCC 

DLKP Lung squamous carcinoma NICB 

[158] 

DLKPA Adriamycin-selected variant of DLKP selected by Dr. 

Alice Redmond 

NICB 

[159] 

NCI- H1299 Lung large cell carcinoma ATCC 

H1299-Taxol Taxol-selected variant of H1299 selected by Dr. Laura 

Breen 

NICB 

[157] 

SKBR3 Breast adenocarcinoma ATCC 

 

NICB, National Institute for Cellular Biotechnology, DCU.  

ATCC, American Type Culture Collection, Rockville, MD, USA. 

 

2.1.2. Ultrapure water and sterilisation 

Ultrapure water (UHP) used in media preparation and many solutions, was purified to 

a standard of 12-18 M�/cm resistance by a reverse osmosis system (Millipore Milli-

RO 10 plus, Elgastat UHP). Sterile glassware was used for all cell culture related 
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work. This glassware was prepared by soaking in a 2% RBS-25 (AGB Scientific) for 

1 hour, followed by washing in an industrial dishwasher using Neodisher detergent. 

Finally, the glassware was rinsed twice with UHP and sterilised by autoclave (2.3). 

Along with glassware all thermostable solutions were sterilised by autoclaving at 

121°C for 20 minutes at 15 bar. Thermolabile solutions were sterilised by filtration 

through 0.22 μm sterile filters (Millipore, Millex-GV SLGV025BS). 

2.1.3. Preparation of cell culture media 

All 1X basal media for cell culture were prepared as follows: 10X media was added to 

sterile UHP water, buffered with HEPES (N-(2-Hydroxyethyl) piperazine-N-(2-

ethanesulfonic acid) and NaHCO3 as required and adjusted to pH 7.5 using sterile 1.5 

N NaOH or 1.5 N HCL. The media was then filtered through sterile 0.22 �m bell 

filters (Gelman, 12158) and stored in sterile 500 ml bottles at 4�C. Sterility checks 

were performed on each bottle of media for bacterial, yeast and fungal contamination 

by inoculating Colombia blood agar plates (Oxoid, CM217), Thioglycollate broths 

(Oxoid, CM173) and Sabauraud dextrose (Oxoid, CM217) and incubating the plates at 

37�C and 25�C. Basal media were stored at 4�C for up to three months. Supplements 

of 2 mM L-glutamine (Gibco, 11140-0350) were added to all basal media and 1ml 

100X non-essential amino acids (Gibco, 11140-035) and 100 mM sodium pyruvate 

(Gibco, 11360-035) added to MEM. Additional components were added as described 

in table 2.2. Complete media were maintained at 4�C for a maximum of 1 month. 

 

Table 2.2 Additional components in media. 

Cell Line Basal Media FCS (%)  Additions 

A549/A549-T ATCC 5 N/A 

DLKP/DLKP-A ATCC 5 N/A 

NCI H1299/H1299-T RMPI 1640 5 Sodium pyruvate 

SKBR3 RPMI 1640 10 Sodium pyruvate 

 

2.1.4. Aseptic techniques 

All cell culture work was carried out in a class II laminar airflow cabinet (Holten 

LaminAir). Experiments involving cytotoxic compounds were carried out in a 
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cytoguard (Holten LaminAir Maxisafe). Laminar flow cabinets were swabbed with 

70% industrial methylated spirits (IMS) before and after use, as were all items 

brought into the cabinet. Only one cell line was used in the laminar at a time and on 

completion of work, the laminar was allowed 15 minutes to clear, so as to eliminate 

the possibility of cross contamination. The laminar cabinets were cleaned weekly 

using the industrial disinfectant Virkon (Antech International, P0550).  

 

2.2. Basic culture techniques 

2.2.1. Subculturing of cell lines 

The cell culture medium was removed from the tissue culture flask and discarded into 

a sterile bottle. The flask was then rinsed out with 1 ml of trypsin/EDTA solution 

(0.25% trypsin (Gibco, 043-05090), 0.01% EDTA (Sigma, E9884) solution in PBS 

(Oxoid, BRI4a)) to ensure the removal of any residual media. Trypsin (1-5ml, 

depending on flask size) was added to the flask, which was then incubated at 37�C, 

for approximately 5 minutes, until all of the cells detached from the inside surface of 

the flask. The trypsin was deactivated by adding an equal volume of complete media 

to the flask. The cell suspension was removed from the flask and placed in a sterile 

universal container (Sterilin, 128a) and centrifuged at 1000 r.p.m. for 5 minutes. The 

supernatant was then discarded from the universal and the pellet was suspended in 

complete medium. A cell count was performed and an aliquot of cells was used to 

reseed a flask at the required density. 

2.2.2. Assessment of cell number and viability 

Cells were trypsinised, pelleted and resuspended in media. An aliquot of the cell 

suspension was then added to trypan blue (Gibco, 525) at a ratio of 5:1. After 3 

minutes incubation at room temperature, a 10 �l aliquot of the mixture was then 

applied to the chamber of a glass coverslip enclosed haemocytometer. Cells in the 16 

squares of the four grids of the chamber were counted. The average cell numbers per 

16 squares were multiplied by a factor of 104 and the relevant dilution factor to 

determine the number of cells per ml in the original cell suspension. Non-viable cells 

stained blue, while viable cells excluded the trypan blue dye as their membrane 
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remained intact, and remained unstained. On this basis, % viability could be 

calculated. 

2.2.3. Cryopreservation of cells 

Cells for cryopreservation were harvested in the log phase of growth and counted as 

described in Section 2.2.2. Cell pellets were resuspended in a suitable volume of 

serum. An equal volume of a 10 – 20% DMSO/serum solution was added dropwise 

to the cell suspension. A total volume of 1ml of this suspension (which should 

contain approximately 7x106 cells) was then placed in cryovials (Greiner, 122278) 

and immediately placed in the vapour phase of liquid nitrogen container (-80ºC). 

After three hours, the vials were removed from the vapour phase and transferred to 

the liquid phase for long-term storage (-196ºC). 

2.2.4. Thawing of cryopreserved cells  

5ml of fresh warmed medium was added to a sterile universal. The cryopreserved 

cells were removed from the liquid nitrogen and diluted with media using a Pasteur 

pipette. If required, the resulting cell suspension was centrifuged at 1,000 r.p.m. for 5 

minutes. The supernatant was removed and the pellet resuspended in fresh culture 

medium. An assessment of cell viability on thawing was carried out (Section 2.2.2). 

Thawed cells were then added to an appropriately sized tissue culture flask with a 

suitable volume of growth medium and allowed to attach overnight. The following 

day, flasks were fed with fresh media.  

2.2.5. Monitoring of sterility of cell culture solutions 

Sterility testing was performed in the case of all cell culture media and cell culture-

related solutions. Samples of prepared basal media were incubated at 37ºC for seven 

days. This facilitated the detection of bacteria, fungus and yeast contamination. 

 

2.3. In vitro proliferation assays 

Cells in the exponential phase of growth were harvested by trypsinisation. Cell 

suspensions containing 1 x 104 cells/ml were prepared in cell culture medium. 100 

�l/well of the cell suspension was added to 96-well plates (Costar, 3599). Plates were 

agitated gently in order to ensure even dispersion of cells over the surface of the 
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wells. Cells were then incubated overnight. Cytotoxic drug dilutions were prepared at 

2X their final concentration in cell culture medium. 100 �l of the drug dilutions were 

then added to each well. Plates were then mixed gently as above. Cells were 

incubated for a further 6-7 days until the control wells had reached approximately 80-

90% confluency. Assessment of cell survival in the presence of drug was determined 

by the acid phosphatase assay (section 2.3.2). The concentration of drug which 

caused 50% cell kill (IC50 of the drug) was determined from a plot of the % survival 

(relative to the control cells) versus cytotoxic drug concentration.  

 

Table 2.3 Drugs used in this thesis and their sources 

Drug MW (g/mol) Storage Source 

Lapatinib (Ditosylate 

Monohydrate) 

943.5 Room temperature 

in dark 

Sequoia 

Adriamycin 

(Doxorubicin)* 

543.5 4ºC in dark SVUH 

Epirubicin* 579.9 4ºC in dark SVUH 

Paclitaxel (Taxol)* 853.9 Room temperature 

in dark 

SVUH 

 

Docetaxel (Taxotere)* 807.8 Room temperature 

in dark 

SVUH 

 

Vinblastine* 909.1 4ºC in dark SVUH 

Vincristine* 923 4ºC in dark SVUH 

5-Fluorouracil 130.1 Room temperature 

in dark 

SVUH 

Elacridar (GF120918) 600.1 -20ºC Sequoia 

 

* = Clinical formulation 

SVUH = St. Vincents University Hospital 

 

2.3.1. Lapatinib combination toxicity assays 

Cells were set up as for in vitro proliferation assays (section 2.3).  Following 

overnight incubation, cytotoxic and lapatinib drug dilutions were prepared at 4X their 
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final concentration in media. Volumes of 50 �l of the 4X chemotherapeutic drug and 

lapatinib dilutions were added to appropriate wells. All wells contained a total final 

volume of 200 �l (including controls). All agents were dissolved in DMSO, ethanol 

or media. Cells were incubated for a further 6 days. Cell number was assessed using 

the acid phosphatase assay (section 2.3.2).  

2.3.2. Assessment of cell number - Acid phosphatase assay 

A. Acid Phosphatase in 96-well plate format. 

Following an incubation period of 6-7 days, media was removed from the plates. 

Each well on the plate was washed with 100 �l PBS. This was removed and 100 �l of 

freshly prepared phosphatase substrate (10 mM p-nitrophenol phosphate (Sigma 104-

0) in 0.1 M sodium acetate (Sigma, S8625), 0.1% triton X-100 (BDH, 30632), pH 

5.5) was added to each well. The plates were wrapped in tinfoil and incubated in the 

dark at 37�C for 1.5 hours. The enzymatic reaction was stopped by the addition of 50 

�l of 1 M NaOH to each well. The plate was read in a dual beam plate reader at 

405nm with a reference wavelength of 620nm (BIO-TEK®, Synergy HT).  

B. Acid Phosphatase in 6-well plate format. 

Following an incubation period of 72 hours, media was removed from the plates. 

Each well on the plate was washed with 1 ml PBS. This was removed and 2ml of 

freshly prepared phosphatase substrate (10 mM p-nitrophenol phosphate (Sigma 104-

0) in 0.1 M sodium acetate (Sigma, S8625), 0.1% triton X-100 (BDH, 30632), pH 

5.5) was added to each well. The plates were wrapped in tinfoil and incubated in the 

dark at 37�C for 2 hours. The enzymatic reaction was stopped by the addition of 1 ml 

of 1 M NaOH to each well. Plates were read in a dual beam plate reader at 405 nm 

with a reference wavelength of 620 nm. 

2.4. TUNEL apoptosis assay 

The apoptosis assay was carried out using the Guava® TUNEL kit (Guava 

Technologies). 
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2.4.1. Cell preparation 

Cells were seeded in 24 well plates at a density of 2.5 x 104 per ml. One well was 

allowed for each condition and 1 ml of media was added to each well on top of cell 

solution. Plates were incubated overnight.  

The following day media was removed and a 1ml solution of each drug condition or 

media control was added to assigned wells. The plates were then incubated for a 

further 72hrs. 

2.4.2. Cell fixing 

Media was removed and transferred to labelled eppendorf tubes. Each well was 

washed with 500μl PBS after which 50μl of trypsin was added. When the cells were 

detached 150μl media was added and solution pipetted up and down. The 200μl from 

each well was then transferred to its corresponding eppendorf and all were 

centrifuged at 300 x g for 5 min. The resulting supernatant was removed, the pellets 

resuspended in 150μl PBS and transferred to a 96-well round-bottom plate. To each 

well 50μl of 4% paraformaldehyde was added and plates were then incubated at 4oC 

for 60 min.  

Following this incubation, the plate was centrifuged at 300 x g for 5 min. Leaving 10-

15μl the rest of the supernatant was discarded. The cells were resuspended in the 

remaining liquid and 200μl of ice-cold 70% ethanol was added. The plates were then 

incubated at -20oC for 12 hrs.  

2.4.3. Cell staining 

The DNA labelling mix and anti-BrdU staining mix were made up as per 

manufacturer’s specifications. 100μl of positive and negative controls were added to 

two wells on the round-bottom plate containing samples. The 24-well plate was 

centrifuged at 300 x g for 5-7 min. Supernatant was then aspirated and 200μl of 

Wash Buffer added. Again the plates were centrifuged as above and supernatant 

removed. This wash step was repeated a second time. Cells were then resuspended in 

25μl of the DNA labelling mix, covered and incubated at 37oC for 60 min. After this 

incubation cells were centrifuged again at 300 x g for 5-7 min and supernatant 

removed. 50μl of the anti-BrdU staining mix was added to resuspended cells and 

plates incubated for 30 min at room temperature in the dark. At the end of the 

incubation 150μl of Rinsing Buffer was added to each well and acquired on the 
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Guava® System. The Guava TUNEL Assay detects apoptosis-induced DNA 

fragmentation through a quantitative fluorescence assay. Terminal deoxynucleotidyl 

transferase (TdT) catalyzes the incorporation of bromo-deoxyuridine (BrdU) residues 

into the fragmented nuclear DNA at the 3’-hydroxyl ends. A TRITC-conjugated anti-

BrdU antibody then labels the DNA fragments. The assay distinguishes two 

populations:non-apoptotic cells (TUNEL-negative) and apoptotic cells (TUNEL-

positive). The guava uses flow cytometry and has six parameters (4 fluorescent 

colors, 2 light scatter) and has a blue laser (488nm excitation) for access to 

commonly used fluorescent dyes with absolute counting. 

2.5. Lapatinib and EGF treatments 

Cells were seeded at a density of 3 – 7 x 104 in 90mm tissue culture dishes and 

incubated over night. Medium was then removed and 1X lapatinib or EGF treatments 

added to dishes for as long as assay required and protein was then extracted as 

outlined in section 2.6.1. Lapatinib was diluted in DMSO to 1mM, with further 

dilutions being in media. A DMSO control, containing the same volume of DMSO as 

in lapatinib samples was also included. EGF treatments were made up in serum-free 

medium and the control cells for these treatments were therefore incubated with 

serum-free medium.  

 

2.6. Western blotting techniques 

2.6.1. Protein extraction 

Cells were grown to 80-90% confluency in cell culture grade petri dishes. Media was 

removed and cells were washed twice with ice cold PBS. All procedures from this 

point forward were performed on ice. Cells were lysed with 500μl of RIPA (R0278, 

Sigma) lysis buffer and incubated on ice for 20 minutes.  Table 2.4 below provides 

the details of the lysis buffer. Cells were then removed with a cell scraper and further 

homogenised by passing through a 21 G syringe. Sample lysates were centrifuged at 

14000 rpm for 10 minutes at 4oC. Supernatant containing extracted protein was 

transferred to a fresh chilled eppendorf tube. Protein concentration was quantified 

using the Biorad assay as detailed in Section 2.5.2. Samples were then stored in 

aliquots at -80�C. 
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Table 2.4 RIPA buffer components 

Component 

150 mM NaCl 

1% Igepal CA-630 

0.5% sodium deoxycholate 

0.1% SDS 

50 mM Tris, pH8.0 

 

Table 2.5 RIPA lysis buffer 1ml stock 

Volume Component Preparation 

955 μl RIPA buffer  

5 μl 100 mM PMSF 174 mg in 10ml ethanol 

40 μl 25X protease inhibitors 

(P2714, sigma) 

20 mM AEBSF, 10 mM EDTA, 1.3 mM 

Bestatin, 140 μM E-64, 10 μM 

Leupeptin, 3 μM Aprotinin 

 

2.6.2. Protein quantification  

Protein levels were determined using the Bio-Rad Quick Start™ Bradford Dye 

Reagent (Bio-Rad, 500-0205) as follows. A 2 mg/ml bovine serum albumin (BSA) 

solution (Sigma, A9543) was prepared freshly in lysis buffer. A protein standard 

curve (0, 0.2, 0.4, 0.6, 0.8 and 1.0 mg/ml) was prepared from the BSA stock with 

dilutions made in lysis buffer. The protein samples were diluted 1:10 with dH2O. 5 μl 

of standards and samples were added in triplicate onto a 96-well plate. 250 μl of the 

Bio-Rad solution was added to each well. After 5 minutes incubation, absorbance 

was assessed at 570 nm. The concentration of the protein samples was determined 

from the plot of the absorbance at 570 nm versus concentration of the protein 

standard. 

2.6.3. Gel electrophoresis 

Proteins for analysis by Western blotting were resolved using SDS-polyacrylamide 

gel electrophoresis (SDS-PAGE). The stacking and resolving gels were prepared as 

illustrated in table 2.7 or precast 7.5% gels were used (Lonza, 5950). 
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Table 2.6 Preparation protocol for SDS-PAGE gels (2 x 0.75mm gels) 

Components 7.5% Resolving Gel 5% Stacking Gel 

Acrylamide stock 3.8 ml 840 �l 

dH2O 7.3 ml 2.84 Ml 

1.875 M Tris-HCl pH 8.8 3.75 ml - 

1.25 M Tris-HCl pH 6.8 - 125 �l 

10% SDS 150 �l 50 �l 

10% NH4- persulfate 60 �l 20 �l 

TEMED 10 �l 5 �l 

 

The acrylamide stock in table 2.7 consists of a 30% (29:1) ratio of acrylamide:bis-

acrylamide (Sigma, A2792). In advance of samples being loaded in to the relevant 

sample wells, 20-40 �g of protein was diluted in 10x loading buffer. Molecular 

weight markers (Sigma, C4105) were loaded alongside samples. The gels were run at 

constant voltage (250V) and an amplitude of 20mA per gel until the bromophenol 

blue dye front reached the end of the gel, at which time sufficient resolution of the 

molecular weight markers was achieved. 

2.6.4. Western blotting 

Western blotting was performed by the method of Towbin et al. (1979) [160]. Once 

electrophoresis was complete, the SDS-PAGE gel was equilibrated in transfer buffer 

(25 mM Tris (Sigma, T8404), 192 mM glycine (Sigma, G7126), pH 8.3-8.5) for 

approximately 15 minutes. Five sheets of 3 mm filter paper (Whatman, 1001-824) 

were soaked in freshly prepared transfer buffer. These were then placed on the 

cathode plate of a semi-dry blotting apparatus (Bio-Rad, TransBlot®). Air pockets 

were removed from between the filter paper. Nitrocellulose membrane (GE 

Healthcare, RPN 3032D), which had been equilibrated in the same transfer buffer, 

was placed over the filter paper on the cathode plate. Air pockets were once again 

removed. The gels were then aligned on to the membrane. Five additional sheets of 

transfer buffer soaked filter paper were placed on top of the gel and all air pockets 

removed. The anode was carefully laid on top of the stack and the proteins were 

transferred from the gel to the membrane at a current of 300 mA at 15 V for 30-40 

minutes, until all colour markers had transferred. Following protein transfer, 
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membranes were stained using PonceauS (Sigma, P7170) to ensure efficient protein 

transfer. The membranes were then blocked for 2 hours using 5% skimmed milk 

powder (BioRad, 170-6404) in PBS at RT. Membranes were incubated with primary 

antibody over-night at 4 �C (table 2.7). Antibodies were prepared in 1% skimmed 

milk powder in PBS. Primary antibody was removed after this period and the 

membranes rinsed 3 times with PBS containing 0.5% Tween 20 (Sigma P1379) for a 

total of 15-30 minutes. Secondary antibody (1 in 1,000 dilution of anti-mouse IgG 

peroxidase conjugate (Sigma, A4914)) in PBS, was added for 1.5 hour at room 

temperature. The membranes were washed thoroughly in PBS containing 0.5% tween 

for 15 minutes. 

 

Table 2.7 List of primary, secondary antibodies and dilutions used 

Primary Antibody Dilution Source 

MDR-1/P-gp 1/250 ALX-801-002-C100, Alexis 

MRP-1 1/100 sc-59607, Santa Cruz Biotechnology 

BCRP 1/200 ALK-801-029-0250, Alexis 

AKT 1/1000 9272, Cell Signaling Technology 

MAPK 1/1000 9102, Cell Signaling Technology 

Phosphorylated AKT (Ser 473) 1/1000 9271, Cell Signaling Technology 

Phosphorylated MAPK (Tyr 204) 1/1000 9101, Cell Signaling Technology 

�-actin 1:10,000 A5441, Sigma 

Secondary Antibody Dilution Source 

Anti-mouse 1/1000 A6782, Sigma 

Anti-rabbit 1/500 A3574, Sigma 

 

2.6.5. Enhanced chemiluminescence (ECL) detection 

Immunoblots were developed using Luminol (Santa Cruz, sc-2048), which facilitated 

the detection of bound peroxidase-conjugated secondary antibody. Following the final 

washing membranes were incubated with the Luminol reagent (Santa Cruz, sc-2048). 

3 ml of a 50:50 mixture of Luminol reagents was used to cover the membrane. The 

membrane was wrapped in clingfilm. The membrane was then exposed to 

autoradiographic film (Kodak, X-OMATS) for various times (from 10 seconds to 30 
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minutes depending on the signal). The exposed autoradiographic film was developed for 

3 minutes in developer (Kodak, LX-24). The film was then washed in water for 15 

seconds and transferred to a fixative (Kodak, FX-40) for 5 minutes. The film was then 

washed with water for 5-10 minutes and left to dry at room temperature. 

 

2.7. RT-PCR analysis 

2.7.1. Total RNA extraction 

As with all RNA work, care was taken to reduce the impact of RNase enzymes. Gloves 

were changed regularly and RNase inhibitor (RNase Zap®, AM9780) was used to 

clean bench and instruments. Cells were seeded at 5 x 105 cells in a 6 well plate and 

incubated for 48 hours. Media was then removed and 750μl of TRI reagent (Sigma, 

T9424) was added to solubilise sample. Samples were allowed to stand at room 

temperature for 5-10 minutes. TRI reagent is a mixture of guanidine thiocyanate and 

phenol in a mono-phase solution. It effectively dissolves DNA, RNA and protein on 

lysis of cell culture samples.  

200μl of chloroform per ml of TRI reagent was added to cell lysate. The samples 

were covered tightly, shaken vigorously for 15 seconds and allowed to stand at room 

temperature for 15 minutes. The resultant mixtures were centrifuged at 13,000 rpm 

for 15 minutes at 4ºC. Centrifugation separated the mixture into 3 phases: an organic 

phase (containing protein), an interphase (containing DNA) and a colourless upper 

aqueous phase (containing RNA). The aqueous phase was transferred to a fresh tube 

and 0.5 ml of ice-cold isopropanol per ml of TRI reagent was added. Samples were 

then mixed and allowed to stand at room temperature for 5-10 minutes.  

The samples were centrifuged at 13,000 rpm for 30 minutes at 4ºC. The RNA 

precipitate formed a pellet. The supernatant was carefully removed and RNA pellet 

washed in 1 ml 75% ethanol. After removal of ethanol the RNA pellet was allowed to 

air-dry briefly. Depending on pellet size, it was resuspended in approximately 30μl 

DEPC-treated water and stored at -80ºC. 

2.7.2. RNA quantification using Nanodrop 

RNA was quantified spectrophotometrically at 260nm and 280nm using the 

NanoDrop®, (ND-1000 Spectrophotometer).  A 1μl aliquot of suitably diluted RNA 
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was placed on the nanodrop. The nanodrop software calculated the amount of RNA 

present using the fact that an optical density of 1 at 260nm is equivalent to 40mg/ml 

RNA. The ratio of A260/A280 was used to indicate the purity of the RNA in the 

sample.  

2.7.3. Reverse transcription of RNA isolated from cell lines 

A high-capacity cDNA reverse transcription kit was used (Applied biosystems, 

4374966). The master mix (table 2.8) was made up to necessary volume, allowing 

10μl per sample. 10μl of the master mix was added to PCR tubes, to which 10μl of 

RNA (1μg) sample was then added. The samples were briefly centrifuged to spin 

down contents and eliminate air bubbles. The samples were then subjected to the 

following PCR conditions: 25ºC for 10 minutes, 37ºC for 120 minutes and 85ºC for 5 

minutes.  

 

Table 2.8 Components of Master Mix for reverse transcription 

Component Volume (μl) per 20 μl 

reaction 

10X RT Buffer 2.0

25X dNTP Mix (100 mM) 0.8 

10X RT Random Primers 2.0 

Multiscribe ™ Reverse Transcription 1.0 

RNase Inhibitor  1.0 

Nuclease-free H2O 3.2 

 

2.7.4. Polymerase Chain Reaction (PCR) analysis of cDNA 

PCR reactions were set up as 50μl volumes. Each PCR reaction tube contained 45μl 

of the Platninum® PCR Supermix (Invitrogen, 11306-016); 1μl of cDNA and 2μl 

each of the forward and reverse target primers (table 2.9). The sequences of all 

primers used in this thesis are shown in table 2.8.  The mixture was heated to 94ºC for 
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2 minutes (denatures the template and activates the RT enzyme). The cDNA was then 

amplified by PCR using the following conditions: 

 

� 32 cycles: Denature 94ºC for 30 seconds 

Anneal  55ºC for 30 seconds 

Extend  72ºC for 1 minute 

� Final extension of 72ºC for 10 minutes 

� Hold temperature of 4ºC 

 

Table 2.9 Primer sequences for PCR 

Gene Length 

(bp) 

Tm (ºC) Size 

(bp) 

Sequence 

�-actin 

Forward 

Reverse 

 

20 

21 

55ºC 228 

CGGGAAATCGTGCGTGACAT 

GGAGTTGAAGGTAGTTTCGTG 

P-gp 

Forward 

Reverse 

 

20 

20 

55ºC 156  

GTTCAAACTTCTGCTCCTGA 

CCCATCATTGCAATAGCAGG 

MRP1 

Forward 

Reverse 

 

23 

23 

55ºC 551  

AGTGGAACCCCTCTCTGTTTAAG

CCTGATACGTCTTGGTCTTCATC 

 

2.7.5. DNA electrophoresis 

Gel electrophoresis was used to separate the amplified targets based on their size, 

which can then be identified using a DNA ladder. 5μl of a 10X loading buffer, 

consisting of 0.25% bromophenol blue (Sigma, B5525) and 30% glycerol in water, 

was added to each cDNA product. 10μl of target cDNA products and 2μl of 
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endogenous control cDNA were separated by electrophoresis at 100mV through a 2% 

agarose (Sigma, A9539) gel containing ethidium bromide (Sigma, E8751), using TAE 

(22.5 mM TRIS-HCL, 22.5 mM boric acid (Sigma, B7901) and 0.5 mM EDTA) as 

running buffer. Molecular weight markers (GeneRuler™, Fermentos, SM1333) were 

run, simultaneously. The resulting product bands were visualized when placed on a 

transilluminator (UVP Transilluminator) and images photographed. 

 

2.8. Enzyme-Linked Immunosorbant Assays (ELISAs) 

Protein lystates were extracted and quantified as for Western Blotting (Section 2.6.1, 

2.6.2).  Total EGFR and ErbB2 and phosphorylated EGFR and ErbB2 levels were 

measured using commercially available developmental sandwich ELISA assay kits 

(R&D Biosystems, DY1854, DY1129, DY1095, and DYC1768). 

2.8.1. Total EGFR/ErbB2 and phosphorylated EGFR/ErbB2 

In all cases the capture antibody was diluted to the working concentration specified in 

PBS without carrier protein. A treated 96-well plate (Nunc, 467466 F16 Maxisorp) 

was coated with 100 μl per well of the diluted capture antibody. The plate was sealed 

and incubated overnight at room temperature. The following day, each well was 

aspirated and washed with wash buffer (0.05% Tween in PBS, pH 7.2-7.4), repeating 

the process two times for a total of three washes. Complete removal of liquid at each 

step was essential for good performance. After the last wash, any remaining wash 

buffer was removed by inverting the plate and blotting it against clean paper towels. 

Plates were then blocked by adding 300 μl of blocking reagent to each well (1% BSA 

in PBS, pH 7.2 to 7.4). The plate was then incubated at room temperature for a 

minimum of 1 hour, followed by three washes. 

Samples were diluted as per table 2.10 in reagent diluent. In the case of total EGFR 

and ErbB2, a seven point standard curve using 2-fold serial dilutions with highs of 

2,000 and 4,000 pg/ml, respectively, was generated. For phosphorylated EGFR and 

ErbB2 a single standard/control of 10,000 and 3,000 pg/ml respectively, was made 

up. 100 μl of sample or standard was added in duplicate to plate. An adhesive strip 

was used to cover the plate and it was then incubated for 2 hours at room 

temperature. Three washes were then repeated as before. 100 μl of the detection 
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antibody diluted to specified working concentration in reagent diluent was then added 

to each well in all cases. The plate was covered again and incubated for 2 hours at 

room temperature. Three washes with were carried out as before.  

For total EGFR/ErbB2 plates 100 μl of the working dilution of Streptavidin-HRP was 

added to each well. The plate was covered again and left to incubate for 20 minutes at 

room temperature, avoiding direct light. Wash buffer was used to perform three 

washes as before. To all plates 100 μl of substrate solution (R&D Systems, DY999) 

was added to each well, followed by incubation for 20 minutes at room temperature 

avoiding direct light. To end the reaction, 50 μl of stop solution (R&D Systems, 

DY994) was dispensed to each well, again, in all cases. Gentle agitation mixed the 

solutions and the optical density of each well was read immediately, using a 

microplate reader set to 450 nm. Wavelength correction was set to 540 nm or 570 

nm. Total EGFR/ErbB2 levels were determined from a standard curve plotting 

absorbance versus concentration. Each level was then calculated as ng/mg total 

protein. For the phosphorylated proteins, values were expressed relative to 

standard/control sample.  

 

Table 2.10 Quantity of protein used 

Cell Line Protein μg/100μl 

EGFR ErbB2 Phospho-

EGFR 

Phospho-

ErbB2 

A549-T 7.5 20 20 50 

SKBR3 7.5 0.25 20 5 

H1299-T 7.5 20 20 50 

 

2.9. RNA interference (RNAi) 

RNAi using small interfering RNAs (siRNAs) was carried out to silence specific 

genes. The siRNAs used were chemically synthesised (Ambion Inc). These siRNAs 

were 21-23 bps in length and were introduced to the cells via reverse transfection 

with the transfection agent siPORTTM NeoFXTM (Ambion Inc., 4511).  
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2.9.1. Transfection optimisation 

In order to determine the optimal conditions for siRNA transfection, optimisation 

with kinesin siRNA (Ambion Inc., 16704) was carried out for each cell line. Cell 

suspensions were prepared at 1x105, 3x105 and 5x105 cells per ml. Solutions of 

negative control and kinesin siRNAs at a final concentration of 30 nM were prepared 

in optiMEM (GibcoTM, 31985). NeoFX solutions at a range of concentrations were 

prepared in optiMEM in duplicate and incubated at room temperature for 10 minutes.  

After incubation, either negative control or kinesin siRNA solution was added to each 

neoFX concentration. These solutions were mixed well and incubated for a further 10 

minutes at room temperature. Replicates of 10 �l of the siRNA/neoFX solutions were 

added to wells of a 96-well plate. 100μl of the relevant cell concentrations were 

added to each well. The plates were mixed gently and incubated at 37�C for 24 hours. 

After 24 hours, the transfection mixture was removed from the cells and the plates 

were fed with fresh medium.  The plates were assayed for changes in proliferation at 

72 hours using the acid phosphatase assay (section 2.3.2).  Optimal conditions for 

transfection were determined as the combination of conditions which gave the 

greatest reduction in cell number after kinesin siRNA transfection and also the least 

cell kill in the presence of transfection reagent alone.   

 

Table 2.11 Optimised conditions for siRNA transfection 

Cell line Seeding 

density per 96- 

well 

Seeding 

density per 

6-well 

Volume 

NeoFX per 96 

well (�l) 

Volume 

NeoFX per 6 

well (�l) 

A549/A549T 2.5 x 103 3 x 105 0.2 2 

DLKPA 2 x 103 3 x 105 0.25 2 

 

2.9.2. siRNA controls 

Two siRNAs were chosen for each of the protein/gene targets and transfected into 

cells.  For each set of siRNA transfections carried out, control, non-transfected (NT) 

cells and a scrambled (SCR) siRNA transfected control were used. Scrambled siRNA 
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are sequences that do not have homology to any genomic sequence. The scrambled 

non-targeting siRNA used in this study is commercially produced, and guarantees 

siRNA with a sequence that does not target known any gene product. It has also been 

functionally proven to have no significant effects on cell proliferation, morphology 

and viability. For each set of experiments investigating the effect of siRNA, the cells 

transfected with target-specific siRNAs were compared to cells transfected with 

scrambled siRNA. This took account of any effects due to the transfection procedure, 

reagents, and also any random effects of the scrambled siRNA. Kinesin was used as a 

control to assess the efficiency of the siRNA transfection. Kinesin plays an important 

role in cell division; facilitating cellular mitosis. Therefore, transfection of siRNA 

kinesin results in cell cycle arrest and efficient transfection is confirmed by 

significantly lower growth rates.  

 

Table 2.10 List of siRNAs used 

Target name Ambion Ids 

Scrambled 17010 

Kinesin 14851 

ABCB1 #1 4123 

ABCB1 #2 3933 

ID3 #1 122173 

ID3 #2 122294 

Crystallin-zeta #1 112817 

Crystallin-zeta #2 146128 

CRIP 1 #1 145761 

CRIP 1 #2 215088 

 

2.9.3. Confirmation of knockdown by Western blotting 

Cells were seeded as per conditions outlined in table 2.9 in a 6-well plate, using 2μl 

NeoFX per well to transfect 100μl of 30nM siRNA and incubated for 24hrs. Medium 
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was removed and replaced with fresh media.  At 72 hrs following transfection protein 

was extracted as per section 2.6.1 and analysed by Western blot (section 2.6).  

2.9.4. Proliferation assays on siRNA transfected cells 

As described in table 2.9, cells were seeded using 0.2 �l Neofx to transfect 30nM 

siRNA in a cell density of 2.5x103 per well of a 96-well plate. Plates were again 

incubated for 24 hrs, after which the transfection medium was replaced with fresh 

media. Cells were allowed to grow until they reached 80-90% confluency, a total of 5 

days. Cell number was assessed using the acid phosphatase assay (section 2.3.2).  

2.9.5. Chemosensitivity assay on siRNA-transfected cells 

Assays were set up as described above (section 2.9.3). 24 hrs after addition of fresh 

media, appropriate concentrations (2x) of chemotherapeutic drugs were added to the 

wells in replicates of 4 and incubated for 3 days. The plates were assayed for changes 

in proliferation at 96 hrs using the acid phosphatase assay (Section 2.3.2).  

2.9.6. Epirubicin accumulation assay on siRNA transfected cells 

Cells were seeded and transfected as per section 2.9.3 allowing 3 wells for each 

condition. 48hrs after transfection cells were trypsinised and re-seeded in triplicate at 

2.5 x 105 into 25 cm2 flasks. An accumulation assay as described in 2.10.1 was then 

carried out on these cells.  

 

2.10. Epirubicin transport assays 

2.10.1. Epirubicin accumulation assays 

Cells were seeded at a density of 2.5 x 105 in 25 cm2 flasks and incubated overnight. 

Medium was removed and fresh medium containing epirubicin (2 μM) was added. 

The flasks were then incubated with the drug for various time points up to 2 hours.  

2.10.2. Epirubicin efflux assays 

Cells were prepared in the same manner as for accumulation assay. Medium was 

removed, fresh medium containing epirubicin (2 μM) was added and the flasks 

incubated for 2 hours. At this point (Time 0) medium was removed from flasks and 
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they were washed with PBS. Medium was then replaced and flasks were incubated 

for various time points up to 2 hours.  

At relevant time points the media was removed from flasks and the flasks washed 

with PBS. Cells were trypsinised (Section 2.2.1) and counted (Section 2.2.2). Cell 

pellets were further washed in PBS and frozen at -20�C. 

2.10.3. Epirubicin quantification 

Epirubicin quantification was carried out using method previously developed in our 

laboratory [161]. 

 

Table 2.12 List of reagents for epirubicin extraction and quantification 

Reagent Preparation 

1M Ammonium 
Formate Buffer 
 

15.76 g of Formic acid ammonium salt was added to 200 ml of 

ultrapure (UP) water. The pH was adjusted to 8.5 with 

concentrated ammonium hydroxide (ammonia). The volume of 

the solution was brought to 250 ml with more water. The 

solution was aliquoted into 20 ml stocks and frozen at –200C in 

order to keep it fresh. 

33% Silver 

Nitrate (w/v) 

 

3.3 g of silver nitrate powder was added to a 10 ml universal. 

U.H.P water was then added to the 10 ml mark. The universal 

was covered in tin foil, as it is light sensitive and kept frozen at –

200C.  

Mobile Phase 720 μl of formic acid was added to 720 ml of UP water. The pH 

was brought to 3.2 using 1M ammonium formate. 280 ml of 

acetonitrile was added and the solution was mixed and left to 

settle and degas for a few hours with the lid tightly closed. 

 

2.10.4. Epirubicin extraction procedure 

The frozen pellets of cells were thawed and re-suspended in 200 �l of ultra pure 

water. The cells were transferred to a polypropylene extraction tube. For the 

epirubicin standards, 50 �l of blank cells and 200 �l of each epirubicin standard was 
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added to extraction tubes in triplicate. The usual range of standards used was 5, 25, 

50, 100, 250 and 500 ng/ml. 

To both samples and standards, 20 �l of silver nitrate solution, 100 �l of 

daunorubicin internal standard, 700 �l of ice-cold isopropanol, 100 �l of 1M 

ammonium formate buffer (pH 8.5) and 1400 �l of chloroform were added. 

The tubes were mixed on a blood mixer (Stuart scientific, UK) for 5 minutes. 

Following centrifugation at 2750xg for 5 minutes, the liquid clarified to two separate 

layers. The bottom organic layer contained the drug. 1.1 ml of the bottom layer from 

each tube was removed using a glass pasteur pipette to a conical bottomed glass LC 

autosampler vial (Chromacol). Samples were evaporated to dryness using Genevac 

EZ-2 (Ipswich, UK) evaporator. Each sample was reconstituted in 40 μl mobile 

phase. A system standard containing 2 μg/ml concentration of internal standard and 

epirubicin and a blank containing mobile phase were also made up. 

2.10.5. LC-MS analysis of epirubicin 

Chromatographic separation was achieved using a Prodigy reverse phase column 

(ODS3 100A, 150 X 2.0 mm, 5 micron), (Phenomenex, UK). The mobile phase was 

made up as in table 2.10 and used at a flow rate of 0.2ml/min. The column 

temperature was maintained at 45ºC and the temperature of the autosampler was 

maintained at 4ºC. The complete chromatographic run time of each sample was 

15min, which separated epirubicin and daunorubicin from each other with retention 

times of 3.5 and 9.1 minutes respectively. 

The mass spectrometer was operated using an ESI source in the positive ion detection 

mode. The ionisation temperature was 3000C, gas flow rate was 10L/min and 

nebulizer pressure was 50psi. Nitrogen was used as both the ionisation source gas 

and the collision cell gas. 

Analysis was performed using MRM mode with the following transitions: m/z 

544	m/z 397 and 86 for epirubicin, and m/z 528	m/z 363 and 321 for 

daunorubicin.   

2.10.6. LC-MS data analysis 

Quantification was based on the integrated peak area as determined by the 

Masshunter Quantification Analysis software which quantitates the peak areas of the 

MRM transitions of each analyte. A peak area ratio was generated by expressing the 
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peak area of analyte as a fraction of the peak area from the internal standard. A 

regression standard curve was generated using a log log plot. The log of peak area 

ratio was substituted into the equation of the line and the cell counts obtained during 

the assay were then used to express the result as ng of drug per million cells. 

 

2.11. Lapatinib quantification 

Lapatinib quantification was carried out using a method previously developed in our 

laboratory (Sandra Roche, currently in press). 

2.11.1. Lapatinib extraction procedure 

The frozen pellets of cells were thawed and transferred to a polypropylene extraction 

tube. For the lapatinib standards, 100 �l of blank cells and 100 �l of each lapatinib 

standard was added to extraction tubes in triplicate. The range of standards used was 

1 - 2,000 ng/ml. 

To both samples and standards 100 �l of dasatinib (500ng/ml) internal standard, 200 

�l of 1M ammonium formate buffer (pH 3.5) and 1.6 ml of tert-Butyl Methyl Ether 

(t-BME)/Acetonitrile (ACN) 3/1 (v/v) were added. The tubes were mixed on a blood 

mixer for 15 minutes. The samples were then centrifuged at 2750xg for 5 minutes. 

The organic layer containing the drug was removed with a glass pasteur pipette and 

1.1 ml of the solvent was transferred to a conical bottomed glass LC autosampler vial 

(Chromacol). Samples were evaporated to dryness using Genevac EZ-2 (Ipswich, 

UK) evaporator. The samples were reconstituted in 40�L of acetonitrile with 20�l 

injected automatically by the autosampler. A system standard containing 100ng/ml 

concentration of internal standard and lapatinib and a blank containing mobile phase 

were also made up. 

2.11.2. LC-MS analysis of lapatinib 

Chromatographic separation was achieved using a Hyperclone BDS C18 column 

(150mm×2.0mm i.d., 3
m) with a SecurityGuard C18 guard column (4mm×3.0mm 

i.d.) both from Phenomenex, UK. A mixture of acetonitrile–10mM ammonium 

formate pH 4 (54:46, v/v) was used as mobile phase at a flow rate of 0.2ml/min. The 

column temperature was maintained at 200C and the temperature of the autosampler 

was maintained 40C. The complete chromatographic run time of each sample was 
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10min, which separated dasatinib and lapatinib from each other with retention times 

of 2.3 and 5.1 minutes respectively. Peaks were quantified using Agilent Masshunter 

Software. 

The mass spectrometer was operated using an ESI source in the positive ion detection 

mode. The ionisation temperature was 3500C, gas flow rate was 11L/min and 

nebulizer pressure was 50psi. Nitrogen was used as both the ionisation source gas 

and the collision cell gas. Analysis was performed using MRM mode with the 

following transitions: m/z 581	m/z 365 for lapatinib, and m/z 488	m/z 231 and 

4021 for dasatinib, with a dwell time of 200ms. Data analysis was carried out as in 

2.10.3. 

 

2.12. Membrane proteomics 

2.12.1. Cell preparation 

Nine 75 cm2 flasks were seeded with approx 5 x 104 cells and allowed to grow until 

70-80% confluent (5 days) to generate sufficient sample for membrane protein 

extraction. The medium was removed and flasks washed with PBS. 1 ml of PBS was 

added to each flask and cell scrapers used to gently scrap cells from bottom of flasks. 

The cell suspension was centrifuged at 1,000xg for 5 minutes. The resulting pellet 

was washed in PBS, transferred to an eppendorf and centrifuged again at 1,000xg for 

5 minutes. The wet cell pellet was then stored at -80ºC.  

2.12.2. Complex membrane protein extraction 

The membrane proteins were extracted using the ReadyPrep™ Protein Extraction Kit 

(Membrane II), (Bio-Rad, 163-2084). The Lysis Buffer and Membrane Protein 

Concentrating Reagent supplied in the kit were resuspended in mass spectrometry-

grade water according to instructions provided. Both reagents were chilled on ice for 

10–15 min before proceeding. 

To 200mg of wet cell pellet 1ml of the Lysis Buffer was added on ice. The 

suspension was then sonicated with an ultrasonic probe to disrupt the cells and 

fragment the genomic DNA. This was done in 30 second bursts, typically 3–4 times 

and the sample was chilled on ice between each ultrasonic treatment. The sample was 
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then centrifuged for 10 min at approx 3,000 x g at 4°C to pellet insoluble material 

and unbroken cells. 

The supernatant was removed and diluted directly into a beaker containing 60 ml of 

the ice-cold Membrane Protein Concentrating Reagent. The suspension was stirred 

slowly on ice for 60 min. Following this, the sample was transferred to 

ultracentrifuge tubes and centrifuged (SW-28 rotor) at 100,000 x g for 60 min at 4°C 

to pellet the membranes and membrane proteins. The supernatant was carefully 

decanted and discarded. Each pellet was then washed with 3 ml of cold Lysis Buffer 

and left on ice for 1–2 min before decanting. This wash step was repeated once. 

2.12.3. Complex membrane protein digestion 

The isolated membrane sample of interest from 2.12.2, were dispersed using 40μl of 

50 mM NH4HCO3 pH 7.9 in a 1.5 ml microfuge tube. 60μl of methanol to make a 

final 60% v/v was added to sample. The sample was sonicated for 1 minute and 

vortexed for 2 minutes to solubilise the membrane proteins. This was carried out five 

times. Tubes were then incubated in a water bath at 90ºC for 5 minutes to denature 

proteins and transferred to ice cold water. Proteins were digested in the same tube 

and solubilising buffer and 6 μl trypsin (Promega, V528A) was added before 

incubating the sample at 37 °C overnight.  

After incubation, the resulting digestate was centrifuged for 5 minutes at 15,000xg 

and supernatant stored at -80ºC. The pellet was resuspended in 60% methanol, 

sonicated for 1 minute and then vortex for 2 minutes. Five to ten cycles are usually 

sufficient to achieve solubilisation. 4 μl of trypsin (promega, V528A) was added and 

left for 4-5 hrs at 37 °C. The sample was then centrifuged for 5 min at 15,000 x g and 

pooled with the supernatant that was at -80ºC. The combined supernatants were dried 

using a speed-vac (MAXI dry plus) and resuspended in 0.1% TFA. This was then 

briefly sonicated, vortexed and centrifuged for 2 min at 15,000 x g. The resulting 

supernatant was then ready for mass spec analysis and can be stored at -80ºC until 

ready to analyse. 

2.12.4.  Mass spectrometry analysis 

Tryptic digests were analyzed using the Ettan MDLC (GE Healthcare), which is a 

combination of an autosampler, HPLC, and 4-valve plumbing system in one 

instrument allowing for automated online LC/LC-MS/MS. The plumbing set-up on 
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the MDLC was in the “Online Salt Step” configuration, (see Ettan MDLC manual), 

except that the analytical columns were removed from the “column switching valve” 

and were replaced with a single nano-RPC column (Zorbax 300SB C18 0.075mm x 

100mm, Agilent Technologies). The sample flow path leads from the autosampler to 

the first dimension column, which consisted of a 50x0.3mm 5u BioBasic SCX Kappa 

capillary column. During loading, the flow through is collected on one of two trap 

columns (Zorbax 300SB C18, 0.3mm x 5mm). Ultimately, elution buffer is delivered 

from the autosampler over the first dimension column and eluted peptides are 

collected on the second trap column, while buffer goes to waste. Peptides bound to 

each trap column can then be eluted using a reversed phase gradient over the trap 

column and analytical column. After sample loading and elution, the above procedure 

was repeated prior to subsequent sample loading. 

MDLC buffers used for HPLC included Buffer A (0.1% formic acid) and Buffer B 

(98% acetonitrile and 0.1% formic acid). The MDLC method used for all 

multidimensional chromatography consisted of five steps. The first step loads a 

digested sample (10 
l) onto the first dimension SCX column via the autosampler 

with the flow through going to Trap Column 1. A five-salt step was performed using 

0, 10mM, 25 mM, 50 mM, 100 mM, and 500 mM ammonium acetate. At each step, a 

salt plug was loaded onto the SCX column for peptide elution. Peptide fractions were 

then captured by the RPC trap column for pre-concentration and desalting. The 

mobile phases A and B were 0% and 98% ACN containing 0.1% FA, respectively. 

Flow rates used in the MDLC separations were as follows: 10 
l/min for loading of 

sample, wash buffer, and elution buffers onto the first dimension column, 15 
l/min 

for desalting (using Buffer A) of Trap columns after previously mentioned steps, 150 


l/min for the reversed phase gradient (due to split-flow within the MDLC and length 

of column, flow rate out of the analytical column tip was ~300 nl/min). The MDLC 

was interfaced with an LTQ_XL with ETD ion trap mass spectrometer (Thermo 

Electron) as described above. Data-dependent MS/MS (MS2) acquisition with a 

combination of CID and ETD was coupled with the above MDLC analyses. 

BioWorks software was utilised for data analysis. BioWorks uses the SEQUEST 

protein search algorithm, which automatically identifies proteins by comparing 

experimental tandem mass spectrometry (MS/MS) data with standard protein and 

DNA databases. It can analyse a single spectrum or an entire LC/MS/MS data set 

containing spectra from a mixture of proteins. The ‘cross-correlation’ identification 
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algorithm within SEQUEST extracts information and correctly identifies proteins 

even at low concentrations.  

 

2.13. Statistical analysis  

Analysis of the difference of comparisons, as well as untreated versus siRNA treated 

mean invasion counts, apoptosis and percentage survival calculated, were performed 

using a student t-test (two-tailed with unequal variance), on Microsoft Excel. The 

student t-test was employed as it establishes whether the means of two groups are 

significantly different from each other.  

 

*, A p value of � 0.05 was deemed significant 

**, A p value � 0.01 was deemed more significant 

***, A p value � 0.005 was deemed highly significant 

 

The term "synergy" used when describing combination assays findings refers to a 

toxic effect greater than anticipated from summating the effect from each agent 

alone. 

 

2.14. Experimental replication 

Where possible, experiments were carried out in experimental triplicate. Biological 

replication refers to the complete experimental repetition of an assay and hence 

measures the full biological variation of the experimental phenomenon being 

measured. Technical replication refers to repeated quantification of a specific assay 

(or biological sample) and hence measures the variation associated with the 

measurement alone. 
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3.1 Effect of lapatinib in lung cancer cell models 

Lapatinib is a potent anti-cancer agent approved for use in metastatic breast cancer 

[99]. It has been shown to have alternative cellular activity in addition to HER-2 and 

EGFR kinase inhibition and so it is possible that lapatinib may have uses outside its 

current realm. Lapatinib can interact with, and inhibit, transmembrane drug 

transporters, therefore potentially antagonising the phenomenon of multidrug 

resistance [45, 109, 110]. This body of work investigated the uses of lapatinib as a 

therapy in lung cancer and also examined its effects on several important drug 

transporters.  

Two different paired resistant lung cancer cell models were chosen to examine the 

activities of lapatinib. The resistant models were, A549 and its resistant variant, 

A549-T, and DLKP and its resistant variant, DLKP-A. Additional work was carried 

out in the breast cell line SKBR3 as it is sensitive to lapatinib and in the lung cell 

line, H1299-T, as it has a similar resistance profile to A549-T.  
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3.1.1. Chemotherapy toxicity profile in chosen cell lines 

DLKP is a squamous lung cell line which was established from a lymph node biopsy 

of a 52 year old male. DLKP-A, is a drug-selected variant of DLKP which was 

developed by exposure to increasing concentrations of adriamycin (doxorubicin). P-

glycoprotein was shown to be over-expressed in the resistant cell line [159]. The 

adenomcarcinoma, A549, was pulse-selected with clinically relevant levels of the 

chemotherapy drug paclitaxel, to generate the resistant variant, A549-T [157].  

Sensitivity to a panel of chemotherapy drugs (epirubicin, doxorubicin, paclitaxel, 

docetaxel, vinblastine and vincristine) and the tyrosine kinase inhibitor lapatinib was 

determined in these cell lines by analysing their IC50 values (table 3.1.1.1). The IC50 

is the concentration required to kill 50% of cells. Toxicity profiles demonstrated an 

increased resistance to a variety of chemotherapy drugs in the drug-selected resistant 

cell lines DLKP-A and A549-T compared with their respective parent cell lines, 

DLKP and A549. 

DLKP-A exhibited the greatest fold resistance over its parent, with A549-T having a 

more modest fold resistance compared with its parent cell line. Significant resistance 

was seen in DLKP-A to adriamycin, epirubicin, paclitaxel, docetaxel, vinblastine and 

vincristine. Of the drugs tested in A549-T, paclitaxel was the only agent that it was 

significantly resistant to compared with A549. As work was also carried out in the 

breast cell line SKBR3 and the resistant lung cell line H1299T, IC50 values were also 

obtained in these cell lines for several drugs. Lapatinib exhibited a similar toxicity 

profile in the entire panel of lung cell lines used, whereas it is significantly more 

toxic in the breast cell line SKBR3. IC50 values were not obtained if no further work 

was carried out with a drug in a particular cell line.  

 

 

 

 



 
67

  

T
ox

ic
ity

 p
ro

fil
es

 in
 D

L
K

P,
 D

L
K

P-
A

, A
54

9,
 A

54
9-

T
 a

nd
 S

K
B

R
3 

D
ru

g 
D

L
K

P 
D

L
K

P-
A

 
A

54
9 

A
54

9-
T

 
SK

B
R

3 
H

12
99

T
 

La
pa

tin
ib

 (μ
M

) 
4.

2 
+/

- 0
.0

5 
 

3.
6 

+/
- 0

.4
  

4.
8 

+/
- 0

.2
  

4.
9 

+/
- 0

.7
  

23
.3

 +
/- 

5 
(n

M
) 

4.
2 

+/
- 0

.4
  

Ep
iru

bi
ci

n 
(n

M
) 

9.
6 

+/
- 0

.8
 

1.
9 

+/
- 0

.1
 (μ

M
) 

17
.8

 +
/- 

1 
18

.3
 +

/- 
3 

 
8.

7 
+/

- 1
.6

  
N

D
 

A
dr

ia
m

yc
in

 (n
M

) 
24

 +
/- 

2 
 

4.
9 

+/
- 0

.3
 (μ

M
) 

N
D

 
N

D
 

N
D

 
N

D
 

Ta
xo

l (
nM

) 
1.

2 
+/

- 0
.5

 
31

0 
+/

- 2
5 

2.
9 

+/
- 0

.8
 

9.
4 

+/
- 1

.5
 

1.
6 

+/
- 0

.3
 

21
 +

/- 
6 

Ta
xo

te
re

 (n
M

) 
0.

15
 +

/- 
0.

04
 

38
 +

/- 
3 

N
D

 
1 

+/
- 0

.2
 

N
/D

 
N

D
 

V
in

bl
as

tin
e 

(n
M

) 
0.

6 
+/

- 0
.0

2 
76

 +
/- 

 1
0 

0.
65

 +
/- 

0.
1 

0.
 8

 +
/- 

0.
2 

0.
6 

+/
- 0

.0
5 

N
D

 

V
in

cr
is

tin
e 

(n
M

) 
0.

91
 +

/- 
0.

1 
62

9 
+/

- 1
60

 
N

D
 

N
D

 
N

D
 

N
D

 

 T
ab

le
 3

.1
.1

.1
 I

C
50

 v
al

ue
s 

de
te

rm
in

ed
 f

ro
m

 7
-d

ay
 p

ro
lif

er
at

io
n 

as
sa

ys
. 

R
es

ul
ts

 a
re

 e
xp

re
ss

ed
 a

s 
IC

50
 +

/- 
SD

, 
n 

= 
3.

 N
D

, 
no

t 

de
te

rm
in

ed
 in

di
ca

te
s I

C
50

 v
al

ue
s w

hi
ch

 w
er

e 
no

t d
on

e.
 

 



 68

3.1.2. Activity of lapatinib in combination therapy toxicity assays 

Lapatinib has been shown to have therapeutic use in combination with cytotoxic 

drugs [127, 130]. The toxicity of lapatinib in combination with a panel of traditional 

chemotherapy drugs was assessed in DLKP, DLKP-A, A549 and A549-T cell lines. 

Co-treatment with lapatinib greatly sensitised the resistant cells to chemotherapy 

drugs. Synergistic toxicity was observed with lapatinib when combined with P-gp 

substrate drugs epirubicin, paclitaxel, docetaxel and vinblastine in DLKP-A and 

A549-T (figures 3.1.2.1 – 3.1.2.9). This synergy was statistically significant in all 

cases at one or more chemotherapy drug concentration with the exception of 

epirubicin in A549-T although this is likely due to the large standard deviations 

observed with this result. No synergy was observed in DLKP-A with the non-P-gp 

substrate drug, 5-fluorouracil. While a trend in decreased survival was evident with 

combinations of lapatinib with epirubicin or taxol in the parent cell line DLKP this 

was not statistically significant (figures 3.1.2.10-3.1.2.11). Combinations with 

vinblastine exhibited only additive toxicity in DLKP (figure 3.1.2.12). In the 

sensitive parent cell line A549 no synergistic toxicity was observed with lapatinib in 

combination with taxol or vinblastine, while a slight decrease in survival was 

observed with epirubicin (figures 3.1.2.13 – 3.1.2.15). As lapatinib is dissolved in 

DMSO, a 0.1% solution (same volume as highest lapatinib concentration) was used 

as a control. Statistics was carried out on all data with significant results displayed. 
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Figure 3.1.2.1 % cell survival in DLKP-A as determined by acid phosphatase assay 

in response to a six day treatment of lapatinib in combination with epirubicin. Data 

are mean +/- SD of triplicate experiments. *** significant, P<0.005 compared with 

epirubicin alone.  
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Proliferation assay in DLKP-A 
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Figure 3.1.2.2 % cell survival in DLKP-A as determined by acid phosphatase assay 

in response to a six day treatment of lapatinib in combination with paclitaxel. Data 

are mean +/- SD of triplicate experiments. *** significant, P<0.005 compared with 

paclitaxel alone. 
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Proliferation assay in DLKP-A 
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Figure 3.1.2.3 % cell survival in DLKP-A as determined by acid phosphatase assay 

in response to a six day treatment of lapatinib in combination with docetaxel. Data 

are mean +/- SD of triplicate experiments. *,*** significant, P<0.05, P<0.005 

compared with docetaxel alone. 
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Proliferation assay in DLKP-A 
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Figure 3.1.2.4 % cell survival in DLKP-A as determined by acid phosphatase assay 

in response to a six day treatment of lapatinib in combination with vinblastine. Data 

are mean +/- SD of triplicate experiments. *** significant, P<0.005 compared with 

vinblastine alone. 
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Proliferation assay in DLKP-A 
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Figure 3.1.2.5 % cell survival in DLKP-A as determined by acid phosphatase assay 

in response to a six day treatment of lapatinib in combination with 5-fluoruracil. Data 

are mean +/- SD of triplicate experiments. 
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Proliferation assay in A549-T 
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Figure 3.1.2.6 % cell survival in A549-T as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with epirubicin. Data are 

mean +/- SD of triplicate experiments. 
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Proliferation assay in A549-T 
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Figure 3.1.2.7 % cell survival in A549-T as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with paclitaxel. Data are 

mean +/- SD of triplicate experiments. *,** significant, P<0.05, P<0.01 compared 

with paclitaxel alone. 
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Proliferation assay in A549-T 
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Figure 3.1.2.8 % cell survival in A549-T as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with docetaxel. Data are 

mean +/- SD of triplicate experiments. *** significant, P<0.005 compared with 

taxotere alone. 
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Proliferation assay in A549-T 
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Figure 3.1.2.9 % cell survival in A549-T as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with vinblastine. Data are 

mean +/- SD of triplicate experiments. **,*** significant, P<0.01, P<0.005 compared 

with vinblastine alone. 
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Proliferation assay in DLKP 
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Figure 3.1.2.10 % cell survival in DLKP as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with epirubicin. Data are 

mean +/- SD of triplicate experiments. 



 79

 

Proliferation assay in DLKP 
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Figure 3.1.2.11 % cell survival in DLKP as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with paclitaxel. Data are 

mean +/- SD of triplicate experiments. 
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Proliferation assay in DLKP 
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Figure 3.1.2.12 % cell survival in DLKP as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with vinblastine. Data are 

mean +/- SD of triplicate experiments. 
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Proliferation assay in A549 
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Figure 3.1.2.13 % cell survival in A549 as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with epirubicin. Data are 

mean +/- SD of triplicate experiments. * significant, P<0.05 compared with 

epirubicin control.  
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Proliferation assay in A549 
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Figure 3.1.2.14 % cell survival in A549 as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with paclitaxel. Data are 

mean +/- SD of triplicate experiments. 
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Proliferation assay in A549 
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Figure 3.1.2.15 % cell survival in A549 as determined by acid phosphatase assay in 

response to a six day treatment of lapatinib in combination with vinblastine. Data are 

mean +/- SD of triplicate experiments. 

  

 

 

 



 84

3.1.3. Apoptotic response to combination therapy 

As the acid phosphatase assay determines cell proliferation over a period of time, it is 

difficult to ascertain if decreased cell count at the end of assay is due to cytostatic or 

cytotoxic effects. In order to address this, apoptosis, as determined by TUNEL assay, 

was assessed in DLKP-A and A549-T cells treated with combinations of lapatinib 

with various chemotherapy agents. The Guava® TUNEL assay determines mid- to 

late- stage apoptosis when DNA fragmentation is occurring in cells. The DNA 

degradation generates DNA strands with exposed 3'-hydroxyl ends and terminal 

deoxynucleotidyl transferase (TdT) catalyzes the incorporation of bromo-

deoxyuridine (BrdU) residues into the fragmenting nuclear DNA at the 3'-hydroxyl 

ends by nicked end labeling. A TRITC-conjugated anti-BrdU antibody can then label 

the 3'-hydroxyl ends for detection by a Guava System. [162]. In DLKP-A, 

combinations of lapatinib with paclitaxel, docetaxel or vinblastine resulted in 

increased apoptosis compared with either agent alone (figure 3.1.3.1). The difference 

in apoptosis was significant in the case of docetaxel. The trend was also seen with 

lapatinib and vinblastine, paclitaxel or docetaxel in A549-T, although the increase 

was not as pronounced (figure 3.1.3.1). Large standard deviations evident in these 

results are likely due to reagent constraints and the inability to repeat a further time. 

The results follow a trend and so are likely to be representative.  
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3.1.4. Transporter expression in panel of cell lines 

ABC drug transporter proteins have been found to be over-expressed in a number of 

cancers [30, 34, 163] and this generally correlates with increased drug resistance 

[163, 164]. Expression levels of the drug transporters P-gp, MRP1 and BCRP were 

determined in the parental and resistant lung cell lines. This was undertaken in order 

to determine base protein levels for the panel of cell lines. A549-T was shown to 

express P-gp as seen in figure 3.1.4.1, whereas its parent cell line, A549, had no 

detectable level of P-gp. DLKP-A cells express large amounts of P-gp and again no 

P-gp protein expression was detected in its parent, DLKP. MRP1 expression was 

observed in both A549 and A549-T with the greater expression in the parental variant 

(figure 3.1.4.1). Neither DLKP nor DLKP-A appeared to express the MRP1 

transporter. BCRP was only detected at a low level in A549-T (figure 3.1.4.1).
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3.1.5. Effect of lapatinib on drug transporter expression 

As mentioned previously, lapatinib has been shown to interact with and inhibit P-gp 

[109, 110]. The synergy observed in the combination assays in P-gp expressing cell 

lines DLKP-A and A549-T would support these findings. Initial findings from a 

previous study in our laboratory suggest lapatinib has the ability to alter the 

expression levels of P-gp [165]. This potential element of lapatinib behaviour has not 

been reported previously, and so the effect of varying levels of lapatinib on P-pg and 

MRP1 expression was investigated.  

Lapatinib treatments of 2.5, 5 and 10 μM for 24 hrs in A549-T cells caused an 

increase in P-gp protein levels compared with the untreated control. Densitometric 

analysis indicated a greater than 3-fold increase in P-gp expression in response to the 

2.5 μM lapatinib treatment, which was maintained with 5 μM lapatinib treatment; 

although the P-gp levels measured in response to 10 μM lapatinib treatment were 

comparable to control levels (figure 3.1.5.1). Similar lapatinib-induced changes in P-

gp expression were observed with 48 and 72 hour treatments of 2.5 μM, 5 μM and 10 

μM lapatinib.  Densitometric analysis showed the 48 hour 2.5 μM  lapatinib 

treatment caused a similar 3-fold increase in P-gp expression and this level reduced 

to a 1.5-fold increase with the two higher concentrations (5 μM and 10 μM ) (figure 

3.1.5.2). The increase in P-gp levels following 72 hour 2.5 μM and 5 μM lapatinib 

treatments was in the region of 1.8-fold with the 10 μM treatment again exhibiting 

comparable levels to the control, as determined by densitometry. As lapatinib is 

dissolved in DMSO, a control for this was also used. Although the P-gp level in cells 

treated with DMSO altered slightly it was comparable to the control in most cases. 

The effect of lapatinib on P-gp expression in the sensitive cell line SKBR3 was also 

determined; however, as can be seen in figure 3.1.5.4, no P-gp protein was detected 

in this cell line and its expression was not induced with lapatinib.  

To examine the dose dependency of the increase in P-gp in A549-T, P-gp levels were 

assessed in this cell line following 48 hour treatments with a concentration range of 

0.1, 0.25, 0.5, 1, 2.5 and 10 μM lapatinib. An increase in P-gp expression was evident 

from as low as 0.25 μM lapatinib, as can be seen in figure 3.1.5.5. By way of 

validation a 48 hour lapatinib (2.5 μM, 5 μM and 10 μM) treatment was also carried 

out in the multi- drug resistant lung cell line H1299-T. P-gp levels detected following 
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incubation with lapatinib in this cell line showed a similar trend as seen in A549-T as 

P-gp levels increased compared with control (figure 3.1.5.6). 

MRP1 levels were also assessed following treatment with 2.5, 5 and 10 μM lapatinib. 

In this case the level of drug pump was seen to decrease with lapatinib exposure as 

shown in figure 3.1.5.7. This decrease in P-gp expression was up to 5-fold with the 

highest concentration of lapatinib. The effect of lapatinib on P-gp and MRP1 levels 

was also determined in the non-resistant parent cell line A549. As no detectable 

levels of P-gp were found in A549, it was investigated if lapatinib treatments had the 

ability to induce P-gp expression in the parent cell line. As shown in figure 3.1.5.8, 

lapatinib did not induce P-gp expression in A549. It was sought to establish if 

lapatinib had a similar effect on MRP1 in A549 as observed in A549-T. Figure 

3.1.5.9 shows a reduction in MRP1 level with lapatinib treatments comparable to that 

observed in A549-T. Again a DMSO control was included and did not prove to 

greatly alter MRP1 level. All densitometry analysis is normalised to corresponding �-

actin control. 
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P-gp expression in A549-T 
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Figure 3.1.5.1 (a) Western blot of P-gp expression with (b) densitometry following 

24 hour 2.5 μM, 5 μM and 10 μM lapatinib treatments in A549-T. Control was 

A549-T cells incubated with growth medium for 24 hours. A DMSO control 

containing the same quantity of DMSO as in highest lapatinib concentration was 

included. Western blot was carried out in duplicate and densitometry is of a 

representative blot. 
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P-gp expression in A549-T 
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Figure 3.1.5.2 (a) Western blot of P-gp expression with (b) densitometry following 

48 hour 2.5 μM, 5 μM and 10 μM lapatinib treatments in A549-T. Control was 

A549-T cells incubated with growth medium for 48 hours. A DMSO control 

containing the same quantity of DMSO as in highest lapatinib concentration was 

included. Western blot was carried out in duplicate and densitometry is of a 

representative blot. 
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P-gp expression in A549-T 
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Figure 3.1.5.3 (a) Western blot of P-gp expression with (b) densitometry following 

72 hour 2.5 μM, 5 μM and 10 μM lapatinib treatments in A549-T. Control was 

A549-T cells incubated with growth medium for 72 hours. A DMSO control 

containing the same quantity of DMSO as in highest lapatinib concentration was 

included.  
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P-gp expression in SKBR3 

 

 

 

 

 

 
 

 

Figure 3.1.5.4 Western blot of P-gp expression following 48 hour 25 nM, 50 nM and 

100 nM lapatinib treatments in SKBR3. Control was SKBR3 cells incubated with 

growth medium for 48 hours. A DMSO control containing the same quantity of 

DMSO as in highest lapatinib concentration was included.  
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P-gp expression in A549-T 
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Figure 3.1.5.5 (a) Western blot of P-gp expression with (b) densitometry following 

48 hour 0.1 μM, 0.25 μM, 0.5 μM, 1 μM, 2.5 μM, and 10 μM lapatinib treatments in 

A549-T. Control was A549-T cells incubated with growth medium for 48 hours. 

Western blot was carried out in duplicate. 

 

 

 

 

 

 

 

 

                      Lapatinib μM   
0 0.1 0.25 0.5 1 2.5 10

P-gp 

�-Actin 



 95

 

P-gp expression in H1299-T 
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Figure 3.1.5.6 (a) Western blot of P-gp expression with (b) densitometry following 

48 hour 2.5 μM, 5 μM and 10 μM lapatinib treatments in H1299-T. Control was 

H1299-T cells incubated with growth medium for 48 hours. A DMSO control 

containing the same quantity of DMSO as in highest lapatinib concentration was 

included. Western blot was carried out in duplicate and densitometry is of a 

representative blot. 
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MRP1 expression in A549-T 
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Figure 3.1.5.7 (a) Western blot of MRP1 expression with (b) densitometry following 

48 hour 2.5 μM, 5 μM and 10 μM lapatinib treatments in A549-T. Control was 

A549-T cells incubated with growth medium for 48 hours. A DMSO control 

containing the same quantity of DMSO as in highest lapatinib concentration was 

included. Western blot was carried out in duplicate and densitometry is of a 

representative blot. 
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P-gp expression in A549 

 

 

 

 

  

     
 

 

Figure 3.1.5.8 Western blot of P-gp expression following 48 hour 5 μM and 10 μM 

lapatinib treatments in A549. Control was A549 cells incubated with growth medium 

for 48 hours. A DMSO control containing the same quantity of DMSO as in highest 

lapatinib concentration was included.  
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MRP1 expression in A549 
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Figure 3.1.5.9 (a) Western blot of MRP1 expression with (b) densitometry following 

48 hour 5 μM and 10 μM lapatinib treatments in A549. Control was A549 cells 

incubated with growth medium for 48 hours. A DMSO control containing the same 

quantity of DMSO as in highest lapatinib concentration was included. Western blot 

was carried out in duplicate and densitometry is of a representative blot. 
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3.1.6. Effect of EGF on drug transporter expression 

Lapatinib antagonises the actions of the growth factor receptors due to its inhibition 

of their kinase domain. EGF on the other hand, is the endogenous ligand and agonist 

for several growth factor receptors and so it was also examined for its effect on drug 

pump expression. Incubation in the presence of EGF at varying concentrations 

decreased the expression of P-gp and MRP1 (figures 3.1.6.1, 3.1.6.2, 3.1.6.3 and 

3.1.6.5) compared with the control which in this case was serum free media. 

However, there was one exception to this, as the 48 hour 10 ng/ml EGF treatment 

appeared to increase P-gp expression in A549-T. A 2-fold decrease was observed in 

P-gp expression with 24 and 72 hour EGF treatments, and in MRP1 expression with 

48 hours EGF treatment.  The lower concentration of 2 ng/ml EGF was also analysed 

for effect on P-gp level and figure 3.1.6.4 indicates EGF was active at decreasing P-

gp protein expression at this concentration.  
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P-gp expression in A549-T 
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Figure 3.1.6.1 (a) Western blot of P-gp expression with (b) densitometry following 

24 hour 10 ng/ml, 50 ng/ml and 100 ng/ml EGF treatments in A549-T. EGF 

treatments were in serum-free growth medium and control was A549-T cells 

incubated with serum-free growth medium for 24 hours. Western blot was carried out 

in duplicate and densitometry is of a representative blot. 
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P-gp expression in A549-T 
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Figure 3.1.6.2 (a) Western blot of P-gp expression with (b) densitometry following 

48 hour 10, 50 and 100 ng/ml EGF treatments in A549-T. EGF treatments were in 

serum-free growth medium and control was A549-T cells incubated with serum-free 

growth medium for 48 hours. Western blot was carried out in duplicate and 

densitometry is of a representative blot. 
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P-gp expression in A549-T 
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Figure 3.1.6.3 (a) Western blot of P-gp expression with (b) densitometry following 

72 hour 10, 50 and 100 ng/ml EGF treatments in A549-T. EGF treatments were in 

serum-free growth medium and control was A549-T cells incubated with serum-free 

growth medium for 72 hours.  
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P-gp expression in A549-T 
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Figure 3.1.6.4 (a) Western blot of P-gp expression with (b) densitometry following 

48 hour 2 ng/ml and 10 ng/ml EGF treatments in A549-T. EGF treatments were in 

serum-free growth medium and control was A549-T cells incubated with serum-free 

growth medium for 48 hours.  
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MRP1 expression in A549-T 
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Figure 3.1.6.5 (a) Western blot of MRP1 expression with (b) densitometry following 

48 hour 10 ng/ml, 50 ng/ml and 100 ng/ml EGF treatments in A549-T. EGF 

treatments were in serum-free growth medium and control was A549-T cells 

incubated with serum-free growth medium for 48 hours. Western blot was carried out 

in duplicate and densitometry is of a representative blot. 
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3.1.7. Effect of lapatinib and EGF on P-gp and MRP1 mRNA expression 

From section 3.1.5 it can be seen that lapatinib treatment led to an increase in 

expression of the drug transporter P-gp and a decrease in expression of MRP1. In 

many cases where drugs induce an increase in P-gp expression, it is as a result of an 

increase in gene transcription and so an increase in the mRNA expression level 

accompanies this [166]. To investigate if this was the case following lapatinib 

treatment, RT-PCR analysis was carried to observe changes in ABCB1 (P-gp) and 

ABCC1 (MRP1) mRNA levels in A549-T cells following 24 hour treatments with 

2.5 μM and 5μM lapatinib. Again as the lapatinib was dissolved in DMSO a control 

for this was included. 24 hour EGF treatments were also examined to see if they had 

any effect on P-gp and MRP1 mRNA level. The 2.5 μM lapatinib treatment which 

effected protein levels of the drug transporters did not have any major effect on P-gp 

or MRP1 mRNA level as shown in figure 3.1.7.1, while analysis of the densitometric 

data showed that the 5μM treatment did appear to have an effect on mRNA levels of 

both P-gp and MRP1. No substantial changes were observed in P-gp or MRP1 

mRNA levels in response to EGF treatments either. 
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3.1.8. Effect of lapatinib treatments on total and phosphorylated EGFR 

and HER-2 

As EGFR and HER-2 are the targets for lapatinib, its effect on their total and 

phosphorylated levels was also determined. This was examined in A549-T, SKBR3 

and H1299-T cells. Lapatinib treatments in A549-T resulted in a slight reduction in 

total EGFR whereas, in SKBR3 (a lower concentration), a slight increase in total 

EGFR was observed (figure 3.1.8.1 and 3.1.8.2). Changes in total EGFR were 

observed in H1299-T, with a decrease after 12 hours and an increase after 24 hours 

induced by lapatinib, as seen in figure 3.1.8.3. In the case of phosphorylated EGFR 

no major change was observed with 12 and 24 hour lapatinib treatments in A549-T 

whereas after 48 hour treatments there was an increase in levels compared with 

control (figure 3.1.8.4).  Although an increase in phosphorylated EGFR was also 

observed in SKBR3 after both 12 and 24 hour lapatinib treatments and in H1299-T 

after 24 hour treatments, it must be noted that the standard errors were very large 

(figures 3.1.8.5 and 3.1.8.6). 

Total HER-2 levels increased in response to 48 hour 2.5 μM lapatinib treatments in 

A549-T (figure 3.1.8.7). This trend was also evident in SKBR3 at all time points, 

however, again standard errors overlapped (figure 3.1.8.8). Lapatinib also induced an 

increase in phosphorylated HER-2 in both A549-T and SKBR3 as shown in figures 

3.1.8.9 and 3.1.8.10. It is of importance to note that the DMSO controls included 

appeared to have an effect in altering the protein levels in some cases, rendering these 

particular results somewhat inconclusive. Statistics were not carried out as only 

duplicate data was available.  
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EGFR expression in A549-T 
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Figure 3.1.8.1 ELISA of total EGFR expression in A549-T, following 12 and 24 

hour 2.5 μM lapatinib treatments. Control for lapatinib treated samples was A549-T 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 
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EGFR expression in SKBR3 

0

2

4

6

8

10

12

14

16

18

20

12 hour 24 hour

E
G

F
R

 p
g/

ug
 p

ro
te

in

Control

25 nM
Lapatinib

DMSO

 
 

Figure 3.1.8.2 ELISA of total EGFR expression in SKBR3, following 12 and 24 

hour 25 nM lapatinib treatments. Control for lapatinib treated samples was SKBR3 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 
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EGFR expression in H1299-T 
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Figure 3.1.8.3 ELISA of total EGFR expression in H1299-T, following 12 and 24 

hour 2.5 μM lapatinib treatments. Control for lapatinib treated samples was H1299-T 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 
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Phosphorylated EGFR expression in A549-T 
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Figure 3.1.8.4 ELISA of phosphorylated EGFR expression in A549-T, following 12, 

24 and 48 hour 2.5 μM lapatinib treatments. Units were expressed in terms of a 

quantified control. Control for lapatinib treated samples was A549-T incubated with 

growth medium for 12, 24 and 48 hours. A DMSO control containing the same 

quantity of DMSO as in highest lapatinib concentration was included. Experiments 

were performed in duplicate on separate samples and data represents the mean +/- 

range. 
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Phosphorylated EGFR expression in SKBR3 

 

 
0

5

10

15

20

25

30

12 hours 24 hours

R
el

at
iv

e 
le

ve
ls

 o
f p

ho
sp

ho
ry

la
tio

n
Control

25 nM
Lapatinib

DMSO

 
Figure 3.1.8.5 ELISA of phosphorylated EGFR expression in SKBR3, following 12 

and 24 hour 2.5 μM lapatinib treatments. Units are arbitrary and were expressed in 

terms of a quantified control. Control for lapatinib treated samples was SKBR3 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate and data represents the mean +/- range. 
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Phosphorylated EGFR expression in H1299-T 
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Figure 3.1.8.6 ELISA of phosphorylated EGFR expression in H1299-T, following 12 

and 24 hour 2.5 μM lapatinib treatments. Units are arbitrary and were expressed in 

terms of a quantified control. Control for lapatinib treated samples was H1299-T 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate and data represents the mean +/- range. 
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HER-2 expression in A549-T 
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Figure 3.1.8.7 ELISA of total HER-2 expression in A549-T, following 12, 24 and 48 

hour 2.5 μM lapatinib treatments. Control for lapatinib treated samples was A549-T 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on separate samples and data represents the 

mean +/- range. 
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HER-2 expression in SKBR3 
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Figure 3.1.8.8 ELISA of total HER-2 expression in SKBR3, following 12 and 24 

hour 2.5 μM lapatinib treatments. Control for lapatinib treated samples was SKBR3 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on separate samples and data represents the 

mean +/- range. 
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Phosphorylated HER-2 expression in A549-T 
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Figure 3.1.8.9 ELISA of phosphorylated HER-2 expression in A549-T, following 12, 

24 and 48 hour 2.5 μM lapatinib treatments. Units are arbitrary and were expressed in 

terms of a quantified control. Control for lapatinib treated samples was A549-T 

incubated with growth medium for 12, 24 and 48 hours. A DMSO control containing 

the same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on separate samples and data represents the 

mean +/- range. 
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Phosphorylated HER-2 expression in SKBR3 
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Figure 3.1.8.10 ELISA of phosphorylated HER-2 expression in SKBR3, following 

12 and 24 hour 2.5 μM lapatinib treatments. Units are arbitrary and were expressed in 

terms of a quantified control. Control for lapatinib treated samples was SKBR3 

incubated with growth medium for 12 and 24 hours. A DMSO control containing the 

same quantity of DMSO as in highest lapatinib concentration was included. 

Experiments were performed in duplicate on separate samples and data represents the 

mean +/- range. 
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3.1.9. Effect of EGF treatments on total and phosphorylated EGFR and 

HER-2 

EGF treatments were analysed for their effects on the growth factor receptor total and 

phosphorylated levels. A reduction in total EGFR level was observed following 12 

and 24 hour EGF treatments in A549-T as shown in figure 3.1.9.1. A downward trend 

was also observed in SKBR3 (figure 3.1.9.2). Due to large standard errors results 

cannot be drawn from phosphorylated EGFR in response to EGF treatment in A549-

T or SKBR3 (figures 3.1.9.3 and 3.1.9.4).  

The trend in HER-2 expression was downward in A549-T from 24 hours and in 

SKBR3 after 12 hours treatment with lapatinib, however, large standard errors were 

present (figure 3.1.9.5 and 3.1.9.6). Little change was observed in phosphorylated 

HER-2 in response to lapatinib (figure 3.1.9.7 and 3.1.9.8). Statistics were not carried 

out as data only available in duplicate. 
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Figure 3.1.9.1 ELISA of total EGFR expression in A549-T, following 12 and 24 

hour 10 ng/ml EGF treatments. EGF treatments were in serum-free medium and 

control was A549-T incubated with serum-free growth medium for 12 and 24 hours. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 
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EGFR expression in SKBR3 
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Figure 3.1.9.2 ELISA of total EGFR expression in SKBR3, following 12 and 24 

hour 10 ng/ml EGF treatments. EGF treatments were in serum-free medium and 

control was SKBR3 incubated with serum-free growth medium for 12 and 24 hours. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 
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Phosphorylated EGFR expression in A549-T 
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Figure 3.1.9.3 ELISA of phosphorylated EGFR expression in A549-T, following 12 

and 24 hour 10 ng/ml EGF treatments. Units were expressed in terms of a quantified 

control. EGF treatments were in serum-free medium and control was A549-T 

incubated with serum-free growth medium for 12 and 24 hours. Experiments were 

performed in duplicate and data represents the mean +/- range. 
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Phosphorylated EGFR expression in SKBR3 

0

2

4

6

8

10

12

14

16

18

20

12 hours 24 hours

R
el

at
iv

e 
le

ve
ls

 o
f p

ho
sp

ho
ry

la
tio

n

Control 

10 ng/ml
EGF

 
 

Figure 3.1.9.4 ELISA of phosphorylated EGFR expression in SKBR3, following 12 

and 24 hour 10 ng/ml EGF treatments. Units were expressed in terms of a quantified 

control. EGF treatments were in serum-free medium and control was SKBR3 

incubated with serum-free growth medium for 12 and 24 hours. Experiments were 

performed in duplicate and data represents the mean +/- range. 
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HER-2 expression in A549-T 
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Figure 3.1.9.5 ELISA of total HER-2 expression in A549-T, following 12, 24 and 48 

hour 10 ng/ml EGF treatments. EGF treatments were in serum-free medium and 

control was A549-T incubated with serum-free growth medium for 12, 24 and 48 

hours. Experiments were performed in duplicate on biological duplicates and data 

represents the mean +/- range. 
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HER-2 expression in SKBR3 

0

100

200

300

400

500

600

12 hours 24 hours

H
E

R
-2

 p
g/

ug
 p

ro
te

in

Control

10 ng/ml
EGF

 
 

Figure 3.1.9.6 ELISA of total HER-2 expression in SKBR3, following 12 and 24 

hour 10 ng/ml EGF treatments. Units are arbitrary and were expressed in terms of a 

quantified control. EGF treatments were in serum-free medium and control was 

SKBR3 incubated with serum-free growth medium for 12 and 24 hours. Experiments 

were performed in duplicate on biological duplicates and data represents the mean +/- 

range. 
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Phosphorylated HER-2 expression in A549-T 
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Figure 3.1.9.7 ELISA of phosphorylated HER-2 expression in A549-T, following 12, 

24 and 48 hour 10 ng/ml EGF treatments. Units were expressed in terms of a 

quantified control. EGF treatments were in serum-free medium and control was 

A549-T incubated with serum-free growth medium for 12, 24 and 48 hours. 

Experiments were performed in duplicate on biological duplicates and data represents 

the mean +/- range. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 126
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Figure 3.1.9.8 ELISA of phosphorylated HER-2 expression in SKBR3, following 12 

and 24 hour 10 ng/ml EGF treatments. Units were expressed in terms of a quantified 

control. EGF treatments were in serum-free medium and control was SKBR3 

incubated with serum-free growth medium for 12 and 24 hours. Experiments were 

performed in duplicate on biological duplicates and data represents the mean +/- 

range. 
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3.1.10. Persistence of lapatinib-induced increase in P-gp expression 

Further assays were carried out in order to establish if the increase in P-gp protein 

expression caused by lapatinib was of a transient or more persistent nature. A549-T 

cells were treated for 48 hours with 2.5 μM and 5 μM lapatinib, following which the 

drug was removed and replaced with growth medium. Protein samples were taken 

and analysed for P-gp expression at various time points after lapatinib removal. A 

similar assay was also set up with 1 μM lapatinib treatments. In both of these assays 

P-gp remained up regulated up to 120 hours following P-gp removal as seen in 

figures 3.1.10.1 and 3.1.10.2. A clear increase in lapatinib was observed in response 

to 2.5 μM and 5 μM treatments at 24, 48, 72 and 120 hours with the exception of the 

5 μM treatment at 72 hours. Increased P-gp expression also remained constant at 24, 

96 and 120 hours following the removal of 1 μM lapatinib. This would indicate the 

effect lapatinib is having on P-gp expression is not transient.  

Levels of lapatinib in the A549-T cells were also quantified by mass spectrometry at 

the various time points following the removal of 1μM treatments, in order to evaluate 

if lapatinib was remaining in the cells and therefore continuing to cause the increase 

in P-gp expression by presence alone. Figure 3.1.10.3 shows how the levels of 

lapatinib were below 500 ng per million cells 120 hours following the removal of a 

48 hour 1 μM lapatinib treatment in the A549-T cells. It is difficult, however, to 

translate this to a concentration and decipher if this level is biologically active in 

these cells.  
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Quantification of lapatinib in A549-T cells 
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Figure 3.1.10.3 Lapatinib quantification in A549-T subsequent to 48 hour exposure 

to 1 μM lapatinib. 0 hours represents the time at which lapatinib was removed and 

samples were analysed at 24, 96 and 120 hours after this. The quantification was 

carried out using an LC-MS method on single samples. 
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3.1.11. Effect of lapatinib-induced increase and EGF-induced decrease of 

P-gp expression on chemotherapy accumulation and efflux 

The increased expression of P-gp induced by lapatinib has the potential to have a 

negative impact on chemotherapy drug sensitivity. This was investigated firstly by 

carrying out accumulation and efflux assays. Epirubicin accumulation and efflux was 

determined in the A549-T cells, following a 48 hour treatment with 2.5 μM lapatinib. 

Epirubicin was quantified using an LCMS method. The accumulation data show a 

decrease in accumulation in epirubicin after 120 mins in the cells treated with 

lapatinib (figure 3.1.11.1). No great difference in epirubicin efflux was observed in 

lapatinib-treated cells compared with control and after 120 minutes the quantity of 

drug in the cells across all conditions was of a similar level (figure 3.1.11.2). To 

examine if any effect was observed in a cell line with a greater expression of P-gp, an 

efflux assay was carried out in DLKP-A. Again, although there was a difference in 

initial accumulation, after 120 minutes the levels of epirubicin were similar in the 

lapatinib treated DLKP-A cells as in control (figure 3.1.11.3). Following the same 

logic, the decrease in expression of P-gp observed with EGF might result in a 

decreased efflux of chemotherapy drugs. This was analysed in DLKP-A, and results 

demonstrated that the 50ng/ml EGF treatment had little bearing on the efflux of 

epirubicin as shown in figure 3.1.11.4.  
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Epirubicin accumulation in A549-T 
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Figure 3.1.11.1 Epirubicin accumulation in A549-T cells following 48 hour 

treatment with 2.5 μM lapatinib. A549-T cells were incubated with 2 μM epirubicin 

and samples were analysed at 30, 60, 90 and 120 minutes for epirubicin 

accumulation. A DMSO control containing the same quantity of DMSO as in highest 

lapatinib concentration was included. Data are mean +/- SD of triplicate experiments. 
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Epirubicin efflux in A549-T 
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Figure 3.1.11.2 Epirubicin efflux in A549-T cells following 48 hour treatment with 

2.5 μM lapatinib. A549-T cells were incubated with 2 μM epirubicin for 2 hours at 

which time drug was removed. Samples were analysed at 30, 60, 90 and 120 minutes 

after removal of drug for epirubicin efflux. A DMSO control containing the same 

quantity of DMSO as in highest lapatinib concentration was included. Data are mean 

+/- SD of triplicate experiments. 
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Epirubicin efflux in DLKP-A 
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Figure 3.1.11.3 Epirubicin efflux in DLKP-A cells following 48 hour treatment with 

2.5 μM lapatinib. DLKP-A cells were incubated with 2 μM epirubicin for 2 hours at 

which time drug was removed. Samples were analysed at 30, 60, 90 and 120 minutes 

after removal of drug for epirubicin efflux. A DMSO control containing the same 

quantity of DMSO as in highest lapatinib concentration was included. Data are mean 

+/- SD of triplicate experiments. 
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Epirubicin efflux in DLKP-A 
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Figure 3.1.11.4 Epirubicin efflux in DLKP-A cells following 48 hour treatment with 

50 ng/ml EGF. DLKP-A cells were incubated with 2 μM epirubicin for 2 hours at 

which time drug was removed. Samples were analysed at 30, 60, 90 and 120 minutes 

after removal of drug for epirubicin efflux. A DMSO control containing the same 

quantity of DMSO as in highest lapatinib concentration was included. Data are mean 

+/- SD of triplicate experiments. 
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3.1.12. Effect of lapatinib-induced increase and EGF-induced decrease in 

P-gp expression on chemotherapy sensitivity 

To examine if the increased P-gp expression observed in response to lapatinib 

affected chemotherapy drug sensitivity, toxicity assays were carried out in A549-T. 

Cells were treated for 48 hours with 2.5 μM lapatinib after which a 72 hour toxicity 

assay was carried with either, paclitaxel, docetaxel or the non-P-gp substrate drug, 5-

fluorouracil. No major change in sensitivity was observed in these toxicity assays. A 

decrease in survival was observed in lapatinib pre-treated cells, however, this also 

occurred in the control and so the effect was classed as additive (figure 3.1.12.1 – 

3.1.12.3). To further investigate this additional toxicity assays were carried out under 

slightly different conditions.  

In order to reduce the chances of residual lapatinib, from the pre-treatment, having an 

effect on the cell drug sensitivity, the concentration of lapatinib used was reduced to 

1 μM and a washout period of 24 hours was included in the assay. A combination of 

the chemotherapy drug with 1 μM lapatinib was also carried out alongside the pre-

treatments so that a direct comparison could be made between pre- and co-treatments 

with lapatinib. These results again showed that pre-treatment with lapatinib had no 

negative impact on chemotherapy drug sensitivity with paclitaxel and epirubicin 

showing an additive effect on toxicity (figure 3.1.12.4 – 3.1.12.5). The results also 

showed that co-treatment achieved synergistic toxicity in line with earlier data.  

EGF treatments were shown to decrease levels of the drug pumps P-gp and MRP1 in 

A549-T and so toxicity assays investigating the effect of this reduction on 

chemotherapy drug sensitivity were also carried out. The EGF treatments indicate a 

downward trend in toxicity to paclitaxel and docetaxel in the A549-T (figures 

3.1.12.6 – 3.1.12.9). 
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Figure 3.1.12.1 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of paclitaxel in lapatinib pre-treated A549-T 

cells. The pre-treated cells were exposed to 2.5 μM lapatinib for 48 hours. Data are 

mean +/- SD of triplicate experiments.  
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Figure 3.1.12.2 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of docetaxel in lapatinib pre-treated A549-T 

cells. The pre-treated cells were exposed to 2.5 μM lapatinib for 48 hours. Data are 

mean +/- SD of triplicate experiments.  
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Proliferation assay in A549-T 

0

20

40

60

80

100

120

0 1.5 1.9 2.3 2.5

5-fluorouracil µM

%
 S

ur
vi

va
l

Control

2.5�μM�lapatinib
pre�treated

 
 

Figure 3.1.12.3 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of 5-fluorouracil in lapatinib pre-treated A549-T 

cells. The pre-treated cells were exposed to 2.5 μM lapatinib for 48 hours. Data are 

mean +/- SD of triplicate experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 140

 

Proliferation assay in A549-T 
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Figure 3.1.12.4 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of paclitaxel either, in lapatinib pre-treated A549-

T cells or in combination with 1 μM lapatinib in A549-T. The pre-treated cells were 

exposed to 1 μM lapatinib for 48 hours and a 24 hour washout period is allowed 

before chemotherapy drug is added. Data are mean +/- SD of triplicate experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 141

 

Proliferation assay in A549-T 
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Figure 3.1.12.5 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of epirubicin, either, in lapatinib pre-treated 

A549-T cells or in combination with 1 μM lapatinib in A549-T. The pre-treated cells 

were exposed to 1 μM lapatinib for 48 hours and a 24 hour washout period is allowed 

before chemotherapy drug is added. Data are mean +/- SD of triplicate experiments.  
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Figure 3.1.12.6 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of 5-fluorouracil in EGF pre-treated A549-T 

cells. The pre-treated cells were exposed to 10 ng/ml EGF for 48 hours. Data are 

mean +/- SD of triplicate experiments.  
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Proliferation assay in A549-T 
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Figure 3.1.12.7 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of paclitaxel in EGF pre-treated A549-T cells. 

The pre-treated cells were exposed to 50 ng/ml EGF for 48 hours. Data are mean +/- 

SD of triplicate experiments.  
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Figure 3.1.12.8 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of docetaxel in EGF pre-treated A549-T cells. 

The pre-treated cells were exposed to 10 ng/ml EGF for 48 hours. Data are mean +/- 

SD of triplicate experiments.  
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Proliferation assay in A549-T 
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Figure 3.1.12.9 % cell survival in A549-T as determined by acid phosphatase assay 

in response to a three day treatment of docetaxel in EGF pre-treated A549-T cells. 

The pre-treated cells were exposed to 50 ng/ml EGF for 48 hours. Data are mean +/- 

SD of triplicate experiments.  
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3.1.13. Investigating the nature of lapatinib induction of P-gp expression 

The data from section 3.1.9 indicate that the up-regulated P-gp may have no 

toxicological consequences. Further experiments were therefore carried out to check 

that the increased expression was a real phenomenon. The effect of lapatinib 

treatment on P-gp expression when added to A549-T cell lysates was determined. As 

can be seen in figure 3.1.13.1 no change in P-gp levels were observed across all of 

the time points and conditions. An early time course of 2.5 μM treatments was 

carried out and results are shown in figure 3.1.13.2. This was to determine if the 

increase in P-gp expression compared with control was observed at a time 

unreasonable to the process of protein turnover. An increase is observed at 8 hours 

and to a lesser extent at 12 hours, however, the largest increase was seen at 24 hours. 

Protein synthesis and degradation is substantially reduced at 4º C and so the activity 

of lapatinib on P-gp expression was examined at this temperature compared with 

controls at 37º C [167]. An increase in P-gp expression compared with control was 

observed in response to 2.5 μM lapatinib as expected at 37º C but not at 4º C (figure 

3.1.13.3). 
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Figure 3.1.13.1 (a) Western blot of P-gp expression with (b) densitometry following 

treatments with 2.5 μM lapatinib in A549-T cell lysates. The lysates which were on 

ice during treatment were frozen to -80ºC at 30 minutes, 60 minutes, 2 hours and 4 

hours to terminate treatment. Controls were A549-T cell lysates, allowed to sit on ice 

for the corresponding duration to the lapatinib samples.  

 

 

 

 

 

 

 

 

P-gp 

�-Actin 

0 2.5 0 2.5 0 2.5 0 2.5
      Lapatinib μM 

30 mins          60 mins            2 hrs               4hrs  



 148

 

P-gp expression in A549-T 
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Figure 3.1.13.2 (a) Western blot of P-gp expression with (b) densitometry following 

4, 8, 12 and 24 hours treatments with 2.5 μM lapatinib in A549-T. Control was 

A549-T cells incubated with growth medium for each time point. 
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P-gp expression in A549-T 
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Figure 3.1.13.3 (a) Western blot of P-gp expression with (b) densitometry following 

24 hours treatments of 2.5 μM lapatinib in A549-T incubated at 4ºC and 37 ºC. 

Control was A549-T cells incubated with growth medium at 4 ºC and 37 ºC. 
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3.1.14. Examination of the mechanism involved in lapatinib-induced 

increase in P-gp protein 

RT-PCR analysis demonstrated little change in ABCB1 levels with lapatinib 

treatment, indicating the lapatinib effect on P-gp expression is post-translational. 

Western blot analysis examined P-gp expression, following co-treatment with 

lapatinib and either the protein synthesis inhibitor cycloheximide or degradation 

inhibitor bortezomib [168, 169].  Figure 3.1.14.1 illustrates how bortezomib 

treatment alone caused an increase in P-gp level and the co-treatment with lapatinib 

and bortezomib resulted in an even greater increase in the P-gp expression. 

Cycloheximide treatment did not alter the P-gp protein level and the co-treatment 

with lapatinib and cycloheximide abolished the increase in P-gp observed with 

lapatinib treatment alone as shown in figure 3.1.14.2. 

Experiments were carried out to investigate if the lapatinib-induced increase and 

EGF-induced decrease of P-gp expression were dependent on growth factor receptor 

signalling. Previously it was determined in section 3.1.5 that lapatinib starts to induce 

P-gp expression from concentrations of 0.25 μM and EGF exerts its effects from 

2ng/ml. In this section it was established if the increase in P-gp seen with this 

lapatinib concentration coincided with an increase or decrease in downstream 

signalling intermediates in the EGFR/HER-2 signalling pathway. Western blots were 

carried out to determine AKT and MAPK expression following lapatinib and EGF 

treatments.  Lapatinib treatments caused little alteration in AKT expression with the 

exception of the 10 μM concentration which induced a 1.4-fold increase as 

determined by densitometry (figure 3.1.14.4). Alterations were observed in MAPK 

levels with lapatinib, however, the trend was not consistent with the P-gp protein 

expression increase observed. An increase in MAPK was observed with 0.1 μM, 0.25 

μM, 1 μM and 10 μM, with no changes observed at 0.5 μM and 2.5 μM lapatinib 

(figure 3.1.14.5). Phosphorylated AKT appeared to be up-regulated by lapatinib 

treatment; however, similarly this did not correlate to the changes observed in P-gp 

protein levels (3.1.14.7). Phosphorylated MAPK was not detected in any of the 

A549-T samples. 10 ng/ml EGF treatments resulted in a decreased expression of both 

AKT and MAPK, however, no change in either of these proteins was observed at 2 

ng/ml. Levels of phosphorylated AKT, in addition to phosphorylated MAPK, were 

not detected in any of the EGF treated samples.  
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Figure 3.1.14.1 (a) Western blot of P-gp expression with (b) densitometry following 

24 hour 2.5 μM lapatinib treatments in A549-T with and without 25nM bortezomib. 

Control was A549-T cells incubated with growth medium for 24 hours. A bortezomib 

control of A549-T cells incubated with 25nM bortezomib for 24 hours was also 

included. 
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P-gp expression in A549-T 
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Figure 3.1.14.2 (a) Western blot of P-gp expression with (b) densitometry following 

24 hour 2.5 μM lapatinib treatments in A549-T with and without 1 μM 

cycloheximide. Control was A549-T cells incubated with growth medium for 24 

hours. A cycloheximide control of A549-T cells incubated with 1 μM cycloheximide 

for 24 hours was also included. 
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AKT expression in A549-T 
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Figure 3.1.14.3 (a) Western blot of AKT expression with (b) densitometry following 

48 hour 0.1 μM, 0.25 μM, 0.5 μM, 1 μM, 2.5 μM and 10 μM lapatinib treatments in 

A549-T. Control was A549-T cells incubated with growth medium for 48 hours. 
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AKT expression in A549-T 
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Figure 3.1.14.4 (a) Western blot of AKT expression with (b) densitometry following 

48 hour 2 ng/ml and 10 ng/ml EGF treatments in A549-T. EGF treatments were in 

serum-free growth medium and control was A549-T cells incubated with serum-free 

growth medium for 48 hours.  
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MAPK expression in A549-T 
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Figure 3.1.14.5 (a) Western blot of MAPK expression with (b) densitometry 

following 48 hour 0.1 μM, 0.25 μM, 0.5 μM, 1 μM, 2.5 μM and 10 μM lapatinib 

treatments in A549-T. Control was A549-T cells incubated with growth medium for 

48 hours. 
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MAPK expression in A549-T 
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Figure 3.1.14.6 (a) Western blot of AKT expression with (b) densitometry following 

48 hour 2 ng/ml and 10 ng/ml EGF treatments in A549-T. EGF treatments were in 

serum-free growth medium and control was A549-T cells incubated with serum-free 

growth medium for 48 hours.  
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Phosphorylated AKT expression in A549-T 
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Figure 3.1.14.7 Western blot of phosphorylated AKT expression following 48 hour 

0.1 μM, 0.25 μM, 0.5 μM, 1 μM, 2.5 μM and 10 μM lapatinib and 2 ng/ml and 10 

ng/ml EGF treatments in A549-T. Control for lapatinib treatments was A549-T cells 

incubated with growth medium for 48 hours. EGF treatments were in serum-free 

growth medium and control was A549-T cells incubated with serum-free growth 

medium for 72 hours.  
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Phosphorylated MAPK expression in A549-T 

 

 

                               

 

 
 

Figure 3.1.14.8 Western blot of phosphorylated MAPK expression following 48 hour 

0.1 μM, 0.25 μM, 0.5 μM, 1 μM, 2.5 μM and 10 μM lapatinib and 2 ng/ml and 10 

ng/ml EGF treatments in A549-T. Control for lapatinib treatments was A549-T cells 

incubated with growth medium for 48 hours. EGF treatments were in serum-free 

growth medium and control was A549-T cells incubated with serum-free growth 

medium for 48 hours.  

 

 

 

 

 

 

 

 

 

 

 

 

 

phospho- 
MAPK 
42/44 KDa 

�-Actin 

    0      0.1    0.25   0.5     1      2.5    10       0       2      10 
             Lapatinib μM                            EGF ng/ml 



 159

3.2. Use of siRNA gene silencing techniques to investigate targets 

with potential roles in drug resistance 

SiRNA-mediated RNA interference is a useful technique which can be employed to 

explore the contribution of certain proteins to the phenomenon of multidrug 

resistance. P-gp has been shown to be up regulated in the resistant lung cell lines 

DLKP-A and A549-T (figure 3.1.4.1) and so siRNA-induced alterations in the 

expression of P-gp were used to develop and test the applicability of this technology.  

 

3.2.1. SiRNA transfection coupled with toxicity and accumulation assays 

Toxicity and accumulation assays were coupled with siRNA transfection techniques 

in order to examine the effects of knocking down certain genes and reducing 

associated protein expression on chemotherapy sensitivity and accumulation. Firstly, 

a Western blot was carried out to confirm that the P-gp siRNAs being used were, in 

fact, reducing the expression of P-gp present in the cells. A reduced amount of the 

protein was observed with both siRNAs and this is shown in figure 3.2.1.1. Toxicity 

assays were then carried out on cells in which P-gp expression was silenced.  

When P-gp was silenced in A549-T cells, an increase in sensitivity to paclitaxel was 

observed at the higher concentration and to epirubicin across all concentrations 

(figure 3.2.1.2 and 3.2.1.3), however, this increase was not statistically significant. In 

DLKP-A, a significant increase in toxicity with paclitaxel and epirubicin was 

observed in the cells transfected with P-gp siRNA as shown in figures 3.2.1.4 and 

3.2.1.5. The paclitaxel treatment exhibited greater toxicity in the P-gp knocked down 

DLKP-A cells than was observed with epirubicin. Elacridar, which is a potent 

inhibitor of P-gp, was included in these toxicity assays as a control for total P-gp 

inhibition [41].  

It would be expected that knocking down P-gp expression should increase the 

amount of P-gp substrate drugs in the cells. SiRNA techniques were coupled with an 

accumulation assay in order to investigate this. An assay measuring epirubicin 

accumulation 72 hours after P-gp knockdown in DLKP-A cells was carried out to 

address this. This accumulation data from DLKP-A cells transfected with P-gp 

siRNA showed a great increase in epirubicin level compared with control cells 

transfected with scrambled siRNA (figure 3.2.1.6). This was particularly evident 
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from the P-gp siRNA 1 and so further analysis carried out utilises this particular 

siRNA. 
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Western blot of P-gp in DLKP-A 
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Figure 3.2.1.1 (a) Western blot of P-gp expression with (b) densitometry 72 hours 

after transfection with P-gp siRNA in DLKP-A. Scrambled siRNA was included as 

control.  
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Figure 3.2.1.2 Paclitaxel toxicity as determined by acid phosphatase assay in A549-T 

cells transfected with P-gp siRNA. Data are mean +/- SD of triplicate experiments. 
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Figure 3.2.1.3 Epirubicin toxicity as determined by acid phosphatase assay in A549-

T cells transfected with P-gp siRNA. Data are mean +/- SD of triplicate experiments. 
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Figure 3.2.1.4 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells transfected with P-gp siRNA. Data are mean +/- SD of triplicate experiments. 

*, **, *** significant P<0.05, <0.01, <0.005 compared with control. 
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Figure 3.2.1.5 Epirubicin toxicity as determined by acid phosphatase assay in 

DLKP-A cells transfected with P-gp siRNA. Data are mean +/- SD of triplicate 

experiments. *,**,*** significant P<0.05, <0.01, <0.005 compared with control. 
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Figure 3.2.1.6 Epirubicin accumulation in DLKP-A cells over two hours, transfected 

with P-gp siRNA as determined from quantification by mass spectrometry. Assay 

was carried out in triplicate flasks on duplicate days and data are mean +/- SD.  

 

 

 

 

 

 

 

 

 

 

 



 167

3.2.2. SiRNA transfection of targets in A549-T and A549  

P-gp appears to account for a large proportion of the resistance in the resistant lung 

cell lines tested, in particular DLKP-A. However, other mechanisms may also have a 

potential role in this chemotherapy drug resistance and these were investigated as 

outlined in the next two sections. Targets were chosen from analysis of 

transcriptomic experiments on resistant cell lines carried out previously in our 

laboratory [49]. This work generated a list of differentially expressed genes in 

resistant cell lines, including A549-T and H1299-T, compared with their respective 

parental cell lines, from which a few targets were chosen. Inhibitor of DNA binding 

3, ID3 and Crystallin-zeta were shown to have a higher expression and Cysteine-rich 

protein 1, a lower expression in resistant cell lines compared with parent in these 

micro-array studies. Toxicity assays were undertaken to investigate if knocking down 

these targets had any effect on chemotherapy drug sensitivity.  

Transfection with ID3 siRNA in A549-T increased sensitivity to paclitaxel but not to 

a significant degree, as shown in figure 3.2.2.1. This trend was also seen in DLKP-A, 

but to a greater extent, with significant differences in toxicity observed at all 

concentrations (figure 3.2.2.2). In both cell lines ID3 siRNA reduced cell survival 

even with no drug present. Figure 3.2.2.2 (b) displays the same data as in figure 

3.2.2.2 (a) but it is graphed to allow all control levels with no chemotherapy drug to 

equal 100%. This discounts the initial drop in survival seen with ID3 siRNA to 

determine if the increased toxicity was due to some element of sensitization and not 

just the initial reduction in survival. This graph does in fact indicate an increase in 

paclitaxel toxicity in DLKP-A cells transfected with ID3 siRNA. 

 Transfection of Crystallin-zeta siRNA in A549-T and DLKP-A appeared to 

moderately sensitize the cells to paclitaxel, and in this case, in the absence of drug, it 

did not greatly effect cell survival (figure 3.2.2.3 and figure 3.2.2.4). As Cysteine-

rich protein 1 (CRIP1) was down regulated in the resistant cell lines, the parent cell 

line was chosen as the vehicle to examine the effects of CRIP1 siRNA. Transfection 

of CRIP1 siRNA in A549 had no great effect on the lower paclitaxel concentrations, 

but at the highest paclitaxel concentration an opposing effect to that expected with a 

slight increase in paclitaxel toxicity was observed (figure 3.2.2.5).  
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Proliferation assay in A549-T 
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Figure 3.2.2.1 Paclitaxel toxicity as determined by acid phosphatase assay in A549-T 

cells transfected with ID3 siRNA. Data are mean +/- SD of triplicate experiments.  
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Proliferation assay in DLKP-A 
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Figure 3.2.2.2 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells transfected with ID3 siRNA. (a) Expressed in terms of untreated control (b) 

Expressed in terms of each conditioned control. Data are mean +/- SD of triplicate 

experiments. * significant P<0.05 compared with un-transfected control. 
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Proliferation assay in A549-T 
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Figure 3.2.2.3 Paclitaxel toxicity as determined by acid phosphatase assay in A549-T 

cells transfected with CRYZ siRNA. Data are mean +/- SD of triplicate experiments.  
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Proliferation assay in DLKP-A 
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Figure 3.2.2.4 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells transfected with CRYZ siRNA. Data are mean +/- SD calculated on 

experiments performed in triplicate.  
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Proliferation assay in A549 
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Figure 3.2.2.5 Paclitaxel toxicity as determined by acid phosphatase assay in A549 

cells transfected with CRIP1 siRNA. Data are mean +/- SD of duplicate experiments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3. Transfection of siRNA for targets of interest with P-gp and 
subsequent effect on resistance 

As P-gp expression appears to generate resistance in A549-T and more so in DLKP-

A, it was hypothesised that silencing P-gp as well as the protein of interest might 
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allow dissection of the individual contribution of the protein of interest to the total 

resistance phenotype. SiRNAs for the chosen targets were co-transfected with P-gp 

siRNA in A549-T cells to see if this increased chemotherapy sensitivity compared 

with knocking P-gp down alone. 

Cells were transfected with siRNA for targets of interest and drug treated in the 

presence of the P-gp inhibitor elacridar. Chemotherapy drugs exhibited a similar 

level of kill in the cells with target siRNA and elacridar as with elacridar alone. In 

both A549-T and DLKP-A, transfection with ID3 siRNA with elacridar slightly 

increases paclitaxel toxicity compared with elacridar alone (figures 3.2.3.2 and 

3.2.3.3). It must be noted that the scrambled siRNA control with the elacridar also 

appeared to show increase toxicity to paclitaxel and so these result should be viewed 

bearing this in mind.  Figure 3.2.3.3 shows that taking the initial decrease in survival 

caused by transfection with ID3 siRNA out of the equation, no difference existed in 

sensitivities to paclitaxel between elacridar control and ID3 transfected cells with 

elacridar. In DLKP-A, co-transfection with both P-gp and ID3 siRNA resulted in a 

non-significant increase in paclitaxel toxicity, as shown in figure 3.2.3.1.   

In A549-T, co-transfection of CRYZ siRNA with P-gp siRNA exhibited a trend 

towards increased paclitaxel sensitivity although this was not significant degree, 

whereas an opposing effect was observed in DLKP-A (figures 3.2.3.4 and 3.2.3.5).  
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Proliferation assay in DLKP-A 
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Figure 3.2.3.1 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells co-transfected with ID3 and P-gp siRNA. Data are mean +/- SD of triplicate 

experiments.  
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Proliferation in A549-T 
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Figure 3.2.3.2 Paclitaxel toxicity as determined by acid phosphatase assay in A549-T 

cells transfected with ID3 siRNA in the presence of elacridar. Data are mean +/- SD 

of triplicate experiments.  
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Proliferation assay in DLKP-A 
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Figure 3.2.3.3 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells transfected with ID3 siRNA in the presence of elacridar. (a) Expressed in 

terms of untreated control (b) Expressed in terms of each conditioned control. Data 

are mean +/- SD of triplicate experiments. 
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Figure 3.2.3.4 Paclitaxel toxicity as determined by acid phosphatase assay in A549-T 

cells co-transfected with CRYZ and P-gp siRNA. Data are mean +/- SD of triplicate 

experiments.  
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Figure 3.2.3.5 Paclitaxel toxicity as determined by acid phosphatase assay in DLKP-

A cells co-transfected with CRYZ and P-gp siRNA. Data are mean +/- SD of 

triplicate experiments.  
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3.3. Membrane Protein Analysis 

Much of the drug resistance research carried out in this project related to proteins 

expressed in the cell membrane and involved extensive use of the Western Blot 

assays. To examine technology which might make such research easier, membrane 

protein extraction coupled with LC-MS identification was explored. The membrane 

proteins were isolated and solubilised in an organic solvent as this methodology has 

been shown to be compatible with LC and provide good conditions for tryptic 

digestion [141]. Trypsin, which cleaves at arginine and lysine, was the enzyme of 

choice for digestion of the membrane proteins. Tandem mass spectrometry was 

chosen and the MS/MS methods utilised were collision-induced dissociation (CID) 

and electron transfer dissociation (ETD). The database-searching algorithm 

SEQUEST was then used to identify the isolated membrane proteins. There are 

inherent challenges with a technique like this. Aside from biological variances, there 

are a number of areas in which issues may arise when dealing with such a complex 

sample, namely; separation by LC, detection and analysis by MS and identification 

by bioinformatics and data analysis. The separation method of multidimensional 

chromatography was briefly examined for quality and consistency. A quick 

evaluation of the level and quality of detection from the mass spectrometer was also 

carried out. The main focus of this body of work was to investigate the impact of 

statistical parameters employed in the protein identification process. When suitable 

parameters were determined they were then applied to the remaining samples, 

allowing comparisons of parent versus resistant cells and treated versus untreated.  

This work was carried out on data generated from a sample from the resistant cell 

line DLKP-A (DLKP-A 1) and a re-analysis of this same sample on a different date 

(technical repeat) (DLKP-A 2). 
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3.3.1. Assessment of liquid chromatography 

To achieve a valuable end result, each aspect of this method needs to be performing 

to an adequate standard.  A small representative number of peptides were chosen 

from 10mM fraction generated using CID from each DLKP-A 1 and DLKP-A 2. The 

retention times (RT) for these peptides were obtained and compared and the visual 

aspect of the chromatography also analysed. Table 3.3.1.1 displays data relevant to 

the six representative peptides chosen. It shows the retention times to be of a 

reasonable consistency across all peptides from sample 1 to sample 2, with the 

differences all falling around 1 minute. This indicates the separation technique is 

robust and reproducible when applied to complex samples of this nature. The quality 

of the LC was evaluated also. This was done through analyses of chromatograms and 

mass spectra, corresponding to peptides from MDR1 and ANAX1, from both DLKP-

A 1 and DLKP-A 2. Figures 3.3.1.1-3.3.1.4 display; base peak chromatograms, 

encompassing both MS and MS/MS therefore showing all of the ions within that 

fraction; an ion extraction of the specific peptide of interest; and the full mass 

spectrum showing the peptide of interest.  
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Peptide retention times from DLKP-A 1 and 2 

 

Peptide ID and 

Sequence 

Isotopic Mass 

[M+H]+ 

DLKP-A 1 

RT (min) 

DLKP-A 2 

RT (min) 

Difference 

in RT 

MDR1 
K.SEIDALEMSSNDSR.S 

778 33.7 32.4 1.3 

GRP78 
R.IEIESFYEGEDFSETLTR.A 

1083 41.7 40.7 1 

ANAX1 
K.GLGTDEDTLIEKASR.T 

852 46.5 45.6 0.9 

LAP2B 
RIDGPVISESTPIAET 

978 44.1 42.9 1.2 

LYRIC 
R.EEAAAVPAAAPD 

883 38.8 37.8 1 

SCAM1 
K.TVQTAAANAAS 

718 36.5 35.4 1.1 

 

 

Table 3.3.1.1 Comparison of retention times (RT) of peptides from proteins 

identified in the 10mM fraction of DLKP-A 1 and 2.  
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Peptide of mass 777 from MDR1 identified in DLKP-A 1 

 

(a) 

 
(b) 

 
(c) 

 
 

 

Figure 3.3.1.1 Base peak chromatogram (a), ion extraction (b), and full mass 

spectrum (c), corresponding to the peptide with mass 778 and retention time of 33.7 

minutes, from MDR1 identified in DLKP-A 1. Peptide highlighted in each view. 
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Peptide of mass 777 from MDR1 identified in DLKP-A 2 

 

(a) 

 
(b) 

 
(c) 

 
 

 

Figure 3.3.1.2 Base peak chromatogram (a), ion extraction (b) and full mass 

spectrum (c), corresponding to the peptide with mass 777 and retention time of 32.4 

minutes, from MDR1 identified in DLKP-A 2. Peptide highlighted in each view. 
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Peptide of mass 852 from ANAX1 identified in DLKP-A 1 

 

(a) 

 
(b) 

 
(c) 

 
 

 

Figure 3.3.1.3 Base peak chromatogram (a), ion extraction (b) and full mass 

spectrum (c), corresponding to the peptide with mass 852 and retention time of 46.5 

minutes, from ANAX1 identified in DLKP-A 1. Peptide highlighted in each view. 
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Peptide of mass 852 from ANAX1 identified in DLKP-A 2 

 

(a) 

 
(b) 

 
(c) 

 
 

 

Figure 3.3.1.4 Base peak chromatogram (a), ion extraction (b) and full mass 

spectrum (c), corresponding to the peptide with mass 852 and retention time of 45.6 

minutes, from ANAX1 identified in DLKP-A 2. Peptide highlighted in each view. 
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3.3.2. Analysis of DLKP-A 1 and 2 tandem mass spectrometry data with 

standard statistical parameters 

The MS identification process is governed largely by statistics, and different 

parameters can be applied in such analysis so work was carried out to determine the 

parameters which yielded the ‘best’ representation of proteins. This was based on 

protein number, overlap between technical repeats and the quality of the mass 

spectra. SEQUEST, the database-searching algorithm, uses a cross-correlation 

(XCorr) function to assess the quality of the match between a tandem mass spectrum 

and amino acid sequence information from the database. This value represents an 

absolute measure of spectral quality and closeness of fit to the model spectrum [170].  

Initial standard parameters for the identification of proteins were selected based on 

evidence found in the literature. These were then applied to both combined CID and 

ETD data of the DLKP-A membrane protein sample (DLKP-A 1) and its technical 

repeat (DLKP-A 2) [171-173]. The criteria consisted of the following conditions: 

 

1) 2 peptides; a minimum of two peptides required for identification  

2) Distinct peptides; the two peptides had to be distinct from each other 

3) XCorr values of 1.9 for singly charged peptides, 2.2 for doubly charged peptides, 

3.0 for triply charged peptides and 3.5 for quadruple charged peptides 

 

Two lists of proteins were generated after the application of these parameters. An 

outline of the findings is shown in table 3.3.2.1., with a diagrammatic view shown in 

figure 3.3.2.1. 42% of the total number of identified proteins, were found in both the 

original sample and the repeat. However, quite a high number of the total combined 

proteins (41%) were identified in the first sample only, with just 17% found in the 

repeat sample only.  

A number of the proteins identified with lower x-correlation scores were manually 

validated, in order to assess the quality and stringency of parameters employed. This 

was done according to criteria similar to that outlined by others [171], whereby the 

MS/MS spectrum must be of good quality with the fragmented ions showing distinct 

fragmentation and being observed clearly above baseline noise. There also must be 

some continuity observed in the b and y (CID) and the c and z (ETD) ion series. All 

ten proteins which were manually analysed and listed in table 3.3.2.2 were deemed 
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valid by these criteria and by way of representation mass spectra and ion series data 

for two of the peptides are shown in figure 3.3.2.1 and 3.3.2.2. Figure 3.3.2.1 

displays data representing a peptide with a mass of 2019.5 for N-acetyltransferase 10 

which is an activator for up-regulating telomerase activity that was identified in 

DLKP-A 1 [174]. In figure 3.3.2.2, diagrams representing a peptide with a mass of 

973.6 from fatty acid desaturase 1, a component of the plasma membrane that 

catalyzes the transformation of saturated to monounsaturated fatty acids which was 

identified in DLKP-A 2 are shown [175].  

A list of membrane proteins previously shown to be expressed either by Western blot 

or 2-D DIGE in DLKP-A was generated from data in this body of work and from 

other work carried out in this institute [176]. This includes P-gp, the glucose 

transporters GLUT’s 1 and 3, HSP 70 variant 6, lamin B1, aldehyde dehydrogenase 1 

(ALDH 1) and annexin A1. The DLKP-A 1 and DLKP-A 2 membrane protein 

identifications with the above standard parameters were observed for inclusion of 

these proteins and the results are shown in table 3.3.2.3. P-gp was found in both 

DLKP-A 1 and 2 as was annexin A1 and GLUT 3. GLUT 1, HSP 70 variant 6 and 

lamin B1 were found in DLKP-A 1 but not its technical repeat and ALDH A1 was 

not identified from either set of MS data.  
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Protein numbers identified in DLKP-A 1 and 2 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP-A 1 Total Proteins 635  

DLKP-A 2 Total Proteins 447  

DLKP-A 1 + 

DLKP-A 2 

Total Proteins 761  

DLKP-A 1 + 

DLKP-A 2 

Commonly 

Expressed Proteins 

321 42 % 

DLKP-A 1 In DLKP-A 1 only 314 41 % 

DLKP-A 2 In DLKP-A 2 only 126 17 % 

 

 

 

(b) 

 
 

 

Figure 3.3.2.1 Comparison of numbers of proteins identified in DLKP-A MS 

samples 1 and 2 with the application of standard parameters in table format (a) or as a 

Venn diagram (b).  
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Validated proteins identified in DLKP-A 1 and 2 

 

DLKP-A 1 DLKP-A 2 

N-acetyltransferase 10 (NAT10) Fatty acid desaturase 1 (FADS1) 

MAGUK p55 subfamily member 5 

(MMP5) 

Zinc finger protein 622 (ZN622) 

Structural maintenance of 

chromosome protein 2 (SMC2) 

Myosin Va (MYO5A) 

Tyrosine-protein kinase 

transmembrane receptor (ROR2) 

A-kinase anchor protein 9 (AKAP9) 

Integrin beta-5 (ITB5) Ubiquitin carboxyl-terminal hydrolase 

1 (UBP1) 

 

 

Table 3.3.2.2 Proteins which were manually validated and deemed acceptable from 

the identified proteins in DLKP-A 1 and 2 MS samples with the application of 

standard parameters.  
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B and y ion series and mass spectrum from peptide in DLKP-A 1 

(a) 

 
 

(b) 

 
 

Figure 3.3.2.2 B and y ion series (a), and mass spectrum (b), corresponding to a 

peptide from N-acetyltransferase 10, identified in DLKP-A 1 with the application of 

standard parameters. 
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B and y ion series and mass spectrum from peptide in DLKP-A 2 

(a) 

 
 

(b) 

 
 

 

Figure 3.3.2.3 B and y ion series (a), and mass spectrum (b), corresponding to a 

peptide from fatty acid desaturase 1 (FADS1), identified in DLKP-A 2 with the 

application of standard parameters. 
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Proteins identified in DLKP-A 1 and 2 

 

Protein DLKP-A 1 DLKP-A 2 

P-glycoprotein Yes Yes 

Annexin A1 Yes Yes 

GLUT 1 Yes No 

GLUT 3 Yes Yes 

HSP 70 variant 6 Yes No 

Lamin B1 Yes No 

ALDH A1 No No 

 

 

Table 3.3.2.3 The presence of membrane proteins known to be expressed in DLKP-

A, in proteins identified in DLKP-A 1 and 2 with the application of standard 

parameters. 
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3.3.3. Analysis of DLKP-A tandem MS data with peptide probability 

applied to CID data 

Using the ETD tandem mass spectrometry method enhances our data as it gives 

better fragmentation of larger peptides and so the combination of CID and ETD 

enables a greater identification of a wide variety of peptide types [150, 177]. CID 

data can, however, be analysed slightly differently to ETD data, by including an extra 

parameter namely the Mascot algorithm. This method incorporates probability-based 

scoring and is described as advantageous as a simple rule can be used to judge 

whether a result is significant or not [178]. It was determined if applying this 

algorithm to CID data was beneficial to protein identifications in our samples. In 

order to carry out this analysis the ETD MS datasets were subjected to the standard 

parameters outlined in section 3.3.2, whereas identifications from CID MS datasets 

were determined by these same initial criteria with the addition of a peptide 

probability of 0.05.  

Table 3.3.3.1 illustrates the findings which resulted in the total number of proteins 

identified reduced to 432 of which 51% were found in both sample’s, 34% in DLKP-

A 1 only and 15% in DLKP-A 2 only. The higher percentage of proteins observed in 

DLKP-A 1 only and lower observed in DLKP-A 2 only are likely to be reflective of 

the respective higher and lower total proteins identified for each sample. The 

inclusion of a peptide probability of 0.05 rendered the parameters more stringent and 

so no manual validation was carried out. The list of membrane proteins known to be 

expressed in DLKP-A, outlined in section 3.3.2 were again analysed for inclusion in 

the new membrane protein lists generated (table 3.3.3.2). The results were similar to 

previous findings with P-gp, annexin A1 and GLUT 3 being identified in both 

samples, ALDH 1 found in neither and HSP 70 variant 6 only observed in DLKP-A 

1. This time, however, GLUT 1 and lamin B1 were not identified in the DLKP-A 1 

sample. Although a larger number of the identified proteins over-lapped between 

samples, a smaller number of total proteins were identified and several more of the 

proteins known to be expressed in the DLKP-A membrane were not identified in the 

samples. For this reason this criteria will not be used for future analyses.  
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Protein numbers identified in DLKP-A 1 and 2 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP-A 1 Total Proteins 367  

DLKP-A 2 Total Proteins 286  

DLKP-A 1 + 

DLKP-A 2 

Total Proteins 432  

DLKP-A 1 + 

DLKP-A 2 

Commonly 

Expressed Proteins 

221 51% 

DLKP-A 1 In DLKP-A 1 only 146 34% 

DLKP-A 2 In DLKP-A 2 only 65 15% 

 

 

(b) 

 

 
 

 

Figure 3.3.3.1 Comparison of numbers proteins identified in DLKP-A MS samples 1 

and 2 with the additional application of a peptide probability of 0.05 on CID data, in 

table format (a) or as a Venn diagram (b). 
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Proteins identified in DLKP-A 1 and 2 

 

Protein DLKP-A 1 DLKP-A 2 

P-glycoprotein Yes Yes 

Annexin A1 Yes Yes 

GLUT 1 No No 

GLUT 3 Yes Yes 

HSP 70 variant 6 Yes No 

Lamin B1 No No 

ALDH A1 No No 

 

 

Table 3.3.3.3 The presence of membrane proteins known to be expressed in DLKP-

A, identified in DLKP-A 1 and 2 with the additional application of a peptide 

probability of 0.05 on CID data. 
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3.3.4. Investigating the benefits of using both CID and ETD tandem MS 

methods 

As mentioned previously, ETD adds another dimension to the fragmentation of 

peptides and subsequent identification of proteins. Where CID is good at fragmenting 

doubly charged peptides, ETD is superior at fragmenting triply charged peptides 

[150]. Analysing the data together also has benefits when including the criteria of 2 

distinct peptides, as one peptide may be generated from CID with the other from 

ETD data. Also, the analysis outlined in section 3.3.3 indicated there was no added 

advantage of analysing the data separately to include a peptide probability of 0.05, as 

it proved unnecessarily stringent with the overall number of identifications greatly 

reduced. In this section, a more in depth analysis of the benefits of using both CID 

and ETD methods and an investigation into the impact of analysing them together 

was examined.  

This work focused on the 50mM fraction from DLKP-A 1, as it was easier to work 

with a smaller number of proteins and it was representative of all the proteins 

identified from each fraction. The parameters outlined in section 3.3.2 were used. 

Firstly, the ETD and CID data was analysed separately. It can be observed from the 

data, that 38% of the total proteins were identified in both data generated from CID 

and ETD tandem MS, whereas 51% were found from CID and 11% from ETD (table 

3.3.4.1). Thirteen extra proteins were identified with ETD (figure 3.4.1.1).  

Next the CID and ETD MS data was pooled before analysis and results from this can 

be seen in table 3.3.4.2 and figure 3.3.4.2. This generated a higher number of protein 

identifications (table 3.3.4.2). The 139 proteins identified included all 117 of the 

proteins found in the previous CID and ETD data which had been analysed separately 

as well as 22 newly identified as shown in figure 3.3.4.2. The 22 proteins represent 

16% of the total number identified which is a large enough proportion to warrant 

carrying all further analysis containing the criteria of 2 distinct peptides together.  
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Protein numbers identified in DLKP-A 1 50mM fraction 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

CID Only Total Proteins 104  

ETD Only Total Proteins 57  

CID Only + ETD 

Only 

Total Proteins 117  

CID Only + ETD 

Only 

Commonly 

Expressed Proteins 

44 38 % 

CID Only In CID only not 

ETD 

60 51 % 

ETD Only In ETD only not 

CID 

13 11 % 

 

 

(b) 

 
 

 

Figure 3.3.4.1 Comparison of numbers proteins identified in DLKP-A 50mM 

fraction from either CID or ETD tandem MS, in table format (a) or as a venn diagram 

(b). 
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Proteins identified in DLKP-A 1 50mM fraction 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

CID + ETD 

Combined Analysis 

Total Proteins 139  

ETD + CID 

Combined Analysis 

In ETD + CID 

Combined Only 

22 16% 

CID Separate 

Analysis 

In CID only and not 

in ETD + CID 

Combined 

0  

ETD Separate 

Analysis 

In ETD only and not 

CID + ETD 

Combined 

0  

 

 

(b) 

 
 

Figure 3.3.4.1 Comparison of numbers proteins identified in DLKP-A 50mM 

fraction from either CID or ETD tandem MS analysed together or separately, in table 

format (a) or as a Venn diagram (b). 

+ 
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3.3.5. Analysis of DLKP-A 1 and 2 tandem MS data with less stringent 

statistics; lower cross-correlation scores 

As seen in section 3.3.2, the standard parameters appear to yield protein 

identifications with a good degree of confidence based on quality of fragmentation 

and continuity of b and y ion series. This sub-section investigated whether credible 

protein identifications were missed by the standard parameters set. Analysis was 

carried out on the combination of ETD and CID data from DLKP-A samples 1 and 2 

with new less stringent XCorr scores. Two distinct peptides were still required; 

however, the cross-correlation scores assigned were lowered to the following; 1.5 for 

single charge, 1.9 for double charge, 2.5 for triple charge and 3 for quadruple charge.  

Applying these parameters had a big impact on the number of proteins identified, 

with the total number rising to 1755. Although the number of overlapping proteins 

increased to 455 the % decreased to 26% compared with the standard parameters 

outlined in section 3.3.2. A large number of proteins were identified from the DLKP-

A 2 sample only whereas a much smaller number were found in DLKP-A 1 only 

(table 3.3.5.1 and figure 3.3.5.1).   

Again, five of the proteins with lower XCorr scores from each dataset were manually 

validated as described in section 3.3.2. Again all the proteins were deemed to be 

acceptable identifications and a list is shown in table 3.3.5.2. Ion series and mass 

spectrum data for two representative peptides from the validated proteins are 

displayed in figures 3.1.5.2 and 3.1.5.3. The zinc finger protein 749, a member of the 

zinc finger proteins whose functions are of a highly diverse nature and include, 

protein folding and assembly, DNA recognition and transcriptional activity, was 

identified in DLKP-A 1 and the b and y ion series and mass spectrum for one of its 

peptides with a mass of 1681.9 is shown in figure 3.1.5.2 [179]. In figure 3.3.5.3, the 

b and y ion series and mass spectrum for one of the peptides with a mass of 1662.7 

from the tyrosine-protein phosphatase non-receptor type 14 also known as pez, is 

shown. This protein is involved in the cytoskeleton and cell adhesion and was 

previously identified in DLKP-A [180].  

The identified protein lists were then checked for the presence of the 6 proteins 

known to be expressed in DLKP-A (section 3.3.2). In this case P-gp, annexin A1, 

GLUT 1 and 3, HSP 70 variant 6 and lamin B1 were all identified in both DLKP-A 1 
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and DLKP-A 2 with ALDH 1 being the only protein not identified in either (table 

3.3.5.3). 
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Protein numbers identified in DLKP-A 1 and 2 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP-A 1 Total Proteins 1559  

DLKP-A 2 Total Proteins 651  

DLKP-A 1 + 

DLKP-A 2 

Total Proteins 1755  

DLKP-A 1 + 

DLKP-A 2 

Commonly 

Expressed Proteins 

455 26% 

DLKP-A 1 In DLKP-A 1 only 196 11% 

DLKP-A 2 In DLKP-A 2 only 1104 63% 

 
 
(b) 
 

 
 
 
 
Figure 3.3.5.1 Comparison of numbers of proteins identified in DLKP-A MS 

samples 1 and 2 with the application of less stringent XCorr scores, in table format 

(a) or as a Venn diagram (b). 
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Validated proteins identified in DLKP-A 1 and DLKP-A 2 

 

DLKP-A 1 DLKP-A 2 

Zinc finger protein 749 (ZN749) Tyrosine-protein phosphatase non-

receptor type 14 (PTN14) 

Ephexin-1 (NGEF) Microtubule-associated protein 2 

(MAP2) 

Hydroxyacid oxidase (HAOX1) Leucine-rich repeat-containing protein 

45 (LRC45) 

N-acetlygalactosaminyltransferase- 

like 4 (GLTL4) 

Complement receptor type 2 (CR2) 

DNA J homolog subfamily C member 

11 (DJC11) 

R3H domain-containing protein 1 

(R3HD1) 

 

 

Table 3.3.5.2 Proteins which were manually validated and deemed acceptable from 

the identified proteins in DLKP-A 1 and 2 MS samples with the application of less 

stringent XCorr scores.  
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B and y ion series and mass spectrum from peptide in DLKP-A 1 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.5.3 B and y ion series (a), and mass spectrum (b), corresponding to a 

peptide from zinc finger protein 749 (ZN 749), identified in DLKP-A 1 with the 

application of less stringent XCorr scores. 
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B and y ion series and mass spectrum from peptide in DLKP-A 2 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.5.4 B and y ion series (a), and mass spectrum (b), corresponding to a 

peptide from tyrosine-protein phosphatase non-receptor type 14 identified in DLKP-

A 2 with the application of less stringent XCorr scores. 
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Proteins identified in DLKP-A 1 and 2 

 

Protein DLKP-A 1 DLKP-A 2 

P-glycoprotein Yes Yes 

Annexin A1 Yes Yes 

GLUT 1 Yes Yes 

GLUT 3 Yes Yes 

HSP 70 variant 6 Yes Yes 

Lamin B1 Yes Yes 

ALDH A1 No No 

 

 

Table 3.3.5.3 The presence of membrane proteins known to be expressed in DLKP-

A, identified in DLKP-A 1 and 2 with the application of more stringent XCorr scores. 
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3.3.6. Analysis of DLKP-A 1 and 2 tandem MS data with less stringent 

statistics; 1 distinct peptide 

In section 3.3.5 less stringent parameters were applied to DLKP-A 1 and 2 MS data 

by increasing the XCorr scores and therefore accepting more protein identifications. 

Another aspect of the analysis which had been kept constant was the requirement of 2 

distinct peptides for a positive identification. In this reanalysis, the parameters were 

altered to allow single peptides to be accepted, however, in order address quality 

control, the XCorr scores were increased to 2 for singly charged, 2.5 for doubly 

charged, 3.2 for triply charged and 3.5 for quadruple charged peptides. 

Table and figure 3.3.5.1 shows how 1420 proteins were identified between both 

DLKP-A 1 and 2 samples. 40% of these were common to both with 452 (32%) 

identified in DLKP-A 1 only and 403 (28%) in DLKP-A 2 only. 

As previously, ten proteins identified with lower x-correlation scores were validated 

(figure 3.3.6.2). Of the ten proteins manually analysed there was a lower degree of 

confidence in the identifications than previously seen, especially when taking into 

account that a second distinct peptide was not required. C and z, and b and y ion 

series and mass spectrums for two representative proteins are displayed in figures 

3.3.6.2 and 3.3.6.3. The first of these figures shows the c and z ion series and mass 

spectrum for a peptide with a mass of 1553.57 from the arylsulfatase G protein, 

identified in DLKP-A 1. This protein hydrolyses sulfate esters in a wide variety of 

substrates such as glycosaminoglycans, steroid sulfates, or sulfolipids [181]. The 

second figure shows the b and y ion series and mass spectrum for the peptide of mass 

2212.11 from the cadherin-4 protein, which is a transmembrane glycoprotein with 

roles in proliferation, differentiation and cell transformation, identified in DLKP-A 2 

[182]. 

The proteins identified in DLKP-A 1 and 2 with the criteria of one peptide were 

checked for inclusion of the list of known membrane proteins expressed in DLKP-A 

(section 3.3.2). P-gp, annexin A1, GLUT 1 and 3 and HSP 70 variant 6 were 

identified in both DLKP-A 1 and 2, with lamin B1 and ALDH 1 not found in either 

DLKP-A 1 or 2 (table 3.3.6.3). 
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Protein numbers identified in DLKP-A 1 and 2 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP-A 1 Total Proteins 1017  

DLKP-A 2 Total Proteins 968  

DLKP-A 1 + 

DLKP-A 2 

Total Proteins 1420  

DLKP-A 1 + 

DLKP-A 2 

Commonly 

Expressed Proteins 

565 40% 

DLKP-A 1 In DLKP-A 1 only 452 32% 

DLKP-A 2 In DLKP-A 2 only 403 28% 

 

 

 

(b) 

 
 

 

 

 

Figure 3.3.6.1 Comparison of numbers of proteins identified in DLKP-A MS 

samples 1 and 2, with the abolishment of the requirement for 2 distinct peptides, in 

table format (a) or as a Venn diagram (b). 
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Validated proteins identified in DLKP-A 1 and DLKP-A 2 

 

DLKP-A 1 DLKP-A 2 

Arylsulfatase G (ARSG) Cadherin-4 (CADH4) 

Gamma-taxilin (TXLNG) Zinc finger protein 292 (ZN292) 

Nuclear pore complex protein 

(Nup205) 

S-phase kinase-associated protein 1 

(SKP1) 

Phosphatidlyinositol-4,5 bisphosphate 

phosphodiesterase (PLCG2) 

Rap guanine nucleotide exchange 

factor 1 (RPGF1) 

Zinc finger B-box domain containing 

protein 1 (ZBBX) 

ALK tyrosine kinase receptor (ALK) 

 

 

Table 3.3.6.2 Proteins which were manually validated and from the identified 

proteins in DLKP-A 1 and 2 MS samples with the abolishment of the requirement for 

2 distinct peptides.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 209

 

C and z ion series and mass spectrum from peptide in DLKP-A 1 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.6.3 C and z ion series (a), and mass spectrum (b), corresponding to a 

peptide from arylsulfatase G identified in DLKP-A 1 with the abolishment of the 

requirement for 2 distinct peptides. 
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B and y ion series and mass spectrum from peptide in DLKP-A 2 

 

(a) 

 
 

(b) 

 
 

 

Figure 3.3.6.3 B and y ion series (a), and mass spectrum (b), corresponding to a 

peptide from cadherin-4 identified in DLKP-A 2 with the abolishment of the 

requirement for 2 distinct peptides. 
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Proteins identified in DLKP-A 1 and 2 

 

Protein DLKP-A 1 DLKP-A 2 

P-glycoprotein Yes Yes 

Annexin A1 Yes Yes 

GLUT 1 Yes Yes 

GLUT 3 Yes Yes 

HSP 70 variant 6 Yes Yes 

Lamin B1 No No 

ALDH A1 No No 

 

 

Table 3.3.6.3 The presence of membrane proteins known to be expressed in DLKP-

A, identified in DLKP-A 1 and 2 with the abolishment of the requirement for 2 

distinct peptides. 
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3.3.7. Assessment of mass spectrometry 

The mass spectrometry data also provided a challenge when analysing a sample with 

such complexity. The repetition of identified proteins between DLKP-A sample 1 

and its technical repeat was disappointing. Section 3.3.1 outlines the various aspects 

associated with liquid chromatography and it was determined to be of adequate 

quality, indicating that some issues may lie with the MS. This section aims to 

investigate this. Two proteins that were considered to be strong identifications in one 

DLKP-A sample and not identified in the other were chosen. These proteins were 

ADAM 10, identified in DLKP-A 2 and not in DLKP-A 1 and MRP1, identified in 

DLKP-A 1 and not DLKP-A 2.  

Figure 3.3.7.1 and 3.3.7.2 show the mass spectra and b and y or c and z ion series for 

two peptides with isotopic masses of 449 and 419 from the ADAM 10 protein and 

indicate the excellent quality of the fragmentation and continuity with the ion series. 

A closer look was taken at the peptide of mass 420 from ADAM 10 with a retention 

time of 29.6 minutes, identified by ETD in the 500 mM fraction in DLKP-A 2 and an 

extraction of its ion and full MS is shown in figure 3.3.7.3. The mass spectrum from 

the corresponding fraction and area in DLKP-A 1 was then analysed for a peptide of 

this mass. Figure 3.3.7.4 shows from the ion extraction and full MS, a peak was 

generated for a peptide of this mass at a similar retention time of 30.5 min in DLKP-

A 1. After this full MS, MS/MS was carried out on peptides with masses of 528.6 and 

666.9 and when full MS was carried out the next time, the peptide of interest with 

mass 419.9 could no longer be seen as shown in figure 3.3.7.5. 

A similar analysis was carried out for the MRP1 protein which was identified in 

DLKP-A 1 and not 2. Figures 3.3.7.6 and 3.3.7.7 show the quality of two of the 

peptides of masses 440.6 and 748.8 that lead to the identification of MRP1 in DLKP-

A 1. The peptide of mass 440.6 with a retention time of 25.7, found in the 100mM 

ETD fraction of DLKP-A 1 was further analysed and the extracted ion and full MS 

corresponding to this peptide are displayed in figure 3.3.7.8. The equivalent fraction 

in DLPK-A 2 was scanned for peptides of this mass. Figure 3.3.7.9 shows the 

extracted ion and full MS corresponding to a peptide with the same mass that has a 

similar retention time as the 440.6 peptide for MRP1 in DLKP-A 2. The next full MS 

is shown in figure 3.3.7.10, and the peptide can no longer be seen.  
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B and y ion series and mass spectrum from peptide in DLKP-A 2 

(a) 

 
(b) 

 
 

 

Figure 3.3.7.1 B and y ion series (a) and mass spectrum (b) corresponding to peptide 

of mass 449 for the ADAM 10 protein identified in DLKP-A 2.  
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C and z ion series and mass spectrum from peptide in DLKP-A 2 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.7.2 C and z ion series (a) and mass spectrum (b) corresponding to peptide 

of mass 420 for the ADAM 10 protein identified in DLKP-A 2.  
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Ion extraction and full MS from peptide in DLKP-A 2 

 

(a) 

 
 

(b) 

 
 

 

Figure 3.3.7.3 Ion extraction (a) and full mass spectrum (b) corresponding to peptide 

of mass 419 from ADAM 10 identified in DLKP-A 2. Peptide highlighted in each 

view. 
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Ion extraction and full MS from DLKP-A 1 

 

(a) 

 
 

(b) 

 
 

 

Figure 3.3.7.4 Ion extraction (a) and full mass spectrum (b) corresponding to same 

area in 500 mM fraction in DLKP-A 1 where peptide of mass 419 from ADAM 10 

was identified in DLKP-A 2. Peptide highlighted in each view.  
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Full MS from DLKP-A 1 

 

 
 

 

Figure 3.3.7.5 Full mass spectrum from 500mM fraction in DLKP-A 1 directly 

following the full MS in which the peptide of mass 420 was identified in DLKP-A 1. 

This peptide can no longer be seen and the area in which it would be expected is 

highlighted. 
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C and z ion series and mass spectrum from peptide in DLKP-A 1 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.7.6 C and z ion series (a) and mass spectrum (b) corresponding to peptide 

of mass 440.6 for the MRP1 protein identified in DLKP-A 1. 
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B and y ion series and mass spectrum from peptide in DLKP-A 1 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.7.7 B and y ion series (a) and mass spectrum (b) corresponding to peptide 

of mass 748.8 for the MRP1 protein identified in DLKP-A 1. 
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Ion extraction and full MS from peptide in DLKP-A 1 

 

(a) 

 
(b) 

 
 

 

Figure 3.3.7.8 Ion extraction (a) and full mass spectrum (b) corresponding to peptide 

of mass 440.6 from MRP1 identified in DLKP-A 1. Peptide is highlighted in each 

view.  
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Ion extraction and full MS from DLKP-A 2 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 3.3.7.9 Ion extraction (a) and full mass spectrum (b) corresponding to same 

area in 100 mM ETD fraction in DLKP-A 2 where peptide of mass 440.6 from 

MRP1 was identified in DLKP-A 1. Peptide is highlighted in each view.  
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Full MS from DLKP-A 2 

 

 
 

 

 

Figure 3.3.7.10 Full mass spectrum from 100mM ETD fraction in DLKP-A 1, 

directly following the full MS in which the peptide of mass 420 was identified in 

DLKP-A 1. This peptide can no longer be seen and the area in which it would be 

expected is highlighted. 
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3.3.8. Analysis of DLKP tandem MS data 

Based on the findings outlined in sections 3.3.2 – 3.3.6, the most suitable parameters 

to identify membrane proteins from MS data were determined to be those employed 

in section 3.3.4. This was due to a large number of proteins identified with good 

quality mass spectrometry observed in the validated proteins and the inclusion of five 

out of the six proteins from the list of known membrane proteins to be expressed in 

DLKP-A. 

Membrane protein isolation was also carried out on a DLKP cell preparation and it 

was subjected to 2D LC MS and analysed with the most suitable parameters (section 

3.3.5). A technical repeat was also carried out of this sample and so analysis was 

carried out on that also (DLKP 2). 

In total, for DLKP 1 and 2 2444 proteins were identified. 775 proteins which 

represented 32% of the total proteins were identified in both sample 1 and 2, with 

1081 found in DLKP 1 only and 588 in DLKP 2 only (table 3.3.8.1 and figure 

3.3.8.1) 
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Protein numbers in DLKP 1 and 2 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP 1 Total Proteins 1856  

DLKP 2 Total Proteins 1363  

DLKP 1 + 

DLKP 2 

Total Proteins 2444  

DLKP 1 + 

DLKP 2 

Commonly 

Expressed Proteins 

775 32% 

DLKP 1 In DLKP 1 only 1081 44% 

DLKP 2 In DLKP 2 only 588 24% 

 
 
 
 
(b) 
 

 
 

Figure 3.3.8.1 Comparison of numbers of proteins identified in DLKP MS samples 1 

and 2 with the application of the parameters in section 3.3.5, in table format (a) or as 

a Venn diagram (b). 
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3.3.9. Differentially detected membrane proteins in parent DLKP and 

resistant variant DLKP-A 

A comparison was made between proteins found in the parent cell line DLKP and its 

resistant variant DLKP-A, so as to potentially determine proteins with a role in drug 

resistance. In order to determine proteins which were differentially identified, 

proteins that were common to the original DLKP and DLKP-A samples (1) and their 

repeats (2) were compared.  

590 proteins were observed to be differentially detected with 455 identified in DLKP 

and not in DLKP-A and 135 identified in DLKP-A and not DLKP (table 3.3.9.1 and 

figure 3.3.9.1). Multidrug resistant proteins 1 (P-gp) and 3, which are known to have 

a role in resistance were identified in the resistant variant but not the parent [183]. 

Other proteins which may have a role in resistance were also identified and outlined 

in table 3.3.9.2.  
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Protein numbers in DLKP and DLKP-A 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP Total Proteins 775  

DLKP-A Total Proteins 455  

DLKP + 

DLKP-A 

Total Proteins 910  

DLKP + 

DLKP-A 

Commonly 

Expressed Proteins 

320 35% 

DLKP In DLKP only 455 50% 

DLKP-A In DLKP-A only 135 15% 

 

 

(b) 

 

 
 

 

Figure 3.3.9.1 Comparison of numbers of proteins identified in DLKP and its 

resistant variant DLKP-A MS sample with the application of the parameters in 

section 3.3.5, in table format (a) or as a Venn diagram (b). 
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      Differentially detected proteins in resistant DLKP-A 

 

Proteins identified in DLKP-A but absent from DLKP 

Protein Function 

P-glycoprotein (MDR1) Transport 

Multidrug resistant protein 3 

(MDR3) 

Transport 

Heat shock protein 70 

(HSP71) 

Stress response 

Lamin B1 Cytoskeleton 

Vimentin Cytoskeleton 

Cadherin 2 Signalling/Adhesion 

Integrin beta-4 Cytoskeleton 

 

 

Table 3.3.9.2 List of possible resistance-related proteins identified in DLKP-A and 

not its sensitive parent cell line, DLKP.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 228

3.3.10. Differentially detected membrane proteins in parent A549 and 

resistant variant A549-T 

Membrane proteins were also isolated from cell preparations of A549 and A549-T 

and these were analysed as above. As in section 3.3.8 proteins identified in the parent 

cell line A549 were compared with those identified in its resistant variant A549-T. 

35% of the total identifications were found in both A549 and its resistant variant 

A549T. Proteins which were identified in A549-T and not A549 and have a potential 

role in resistance add up to 979 (table and figure 3.3.10.1). Four proteins of interest 

were found to be differentially detected between A549-T and A549 are outlined in 

table 3.3.10.2. 
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Protein numbers identified in A549 and A549-T 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

A549 Total Proteins 1969  

A549-T Total Proteins 2003  

A549 + 

A549-T 

Total Proteins 2848  

A549 + 

A549-T 

Commonly 

Expressed Proteins 

1024 35% 

A549 In A549 only 945 32% 

A549-T In A549-T only 979 33% 

 

 

(b) 

 
 

 

 

 

Figure 3.3.10.1 Comparison of numbers of proteins identified in A549 and its 

resistant variant A549-T MS sample with the application of the parameters in section 

3.3.5, in table format (a) or as a Venn diagram (b). 

 



 230

 

       Differentially detected proteins in resistant A549-T 

 

Proteins identified in A549-T but absent from A549 

Protein Function 

ABCA3 Transport 

ABCB5 Transport 

ADAM-17 Stress response 

ATP7B Transport 

 

 

Table 3.3.10.2 List of possible resistance-related proteins identified in A549-T and 

not its sensitive parent cell line, A549. 
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3.3.11. Comparison of proteins expressed only in resistant DLKP-A   and 

A549-T 

In section 3.3.10 and 3.3.11, lists of proteins detected in DLKP-A only and A549-T 

only compared with their parent cell lines DLKP and A549, respectively, were 

established. It was of interest to see if any of the proteins potentially associated with 

resistance were commonly expressed in these two very different resistant cell lines. 

18 proteins were common to both resistant cell lines, indicating these proteins may 

have a robust role in resistance, regardless of the how the resistance is developed 

(table 3.3.11.1 and figure 3.3.11.1). Two of the 18 proteins commonly identified were 

interesting and they are outlined in table 3.3.11.2. 
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Protein numbers identified in DLKP-A and A549-T 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

DLKP-A Total Proteins 134  

A549-T Total Proteins 978  

DLKP-A + 

A549-T 

Total Proteins 1095  

DLKP-A + 

A549-T 

Commonly 

Expressed Proteins 

18 2% 

DLKP-A In DLKP-A only 116 11% 

A549-T In A549-T only 961 87% 

 

 

(b) 

 
 

 

Figure 3.3.11.1 Comparison of numbers of proteins identified in the resistant DLKP-

A and A549-T only compared with parental cell lines, MS samples with the 

application of the parameters in section 3.3.5, in table format (a) or as a Venn 

diagram (b). 
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   Differentially detected proteins in resistant DLKP-A and A549-T 

 

Proteins identified in A549-T and DLKP-A but absent from A549 

and DLKP 

Protein Function 

Coxsackievirus and adenovirus 

receptor 

Signalling 

Integrin beta-4 Cytoskeleton 

 

 

Table 3.3.11.2 List of possible resistance-related proteins identified in DLKP-A and 

A549-T and not their sensitive parent cell lines, DLKP and A549. 
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3.3.12. Differentially detected membrane proteins in A549-T and A549-T 

treated with lapatinib 

In section 3.1 it was shown how lapatinib had the ability to alter levels of some of the 

membrane proteins. In order to investigate this using membrane proteomics, 

membrane proteins were also isolated from A549-T cells that had been treated for 48 

hours with 2.5 μM lapatinib. This time point and concentration of lapatinib were 

chosen as a clear change in P-gp and MRP1 proteins were observed at these 

conditions as outlined in section 3.1. 

It can be observed from table 3.3.12.1 and figure 3.3.12.1 that of the 2926 proteins 

identified 1924 were differentially identified, with 963 found only in A549-T and 923 

found only in A549-T treated with lapatinib. Table 3.3.12.2 outlines three of the 

interesting proteins identified in the lapatinib treated A549-T sample.  
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Protein numbers identified in A549-T and A549-T lapatinib treated 

 

(a) 

Sample Condition No. Of 

Proteins 

% Of Total 

Proteins 

A549-T Total Proteins 2003  

A549-T + L Total Proteins 1963  

A549-T + 

A549-T + L 

Total Proteins 2926  

A549-T + 

A549-T + L 

Commonly 

Expressed Proteins 

1040 35% 

A549-T In A549-T only 963 33% 

A549-T + L In A549-T + L only 923 32% 

 

 

(b) 

 
 

 

Figure 3.3.12.1 Comparison of numbers of proteins identified in A549-T and A549-

T lapatinib treated, MS samples with the application of the parameters in section 

3.3.5, in table format (a) or as a Venn diagram (b) 
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Differentially detected proteins in lapatinib treated A549-T 

 

Proteins identified in lapatinib treated A549-T but 

absent from untreated A549-T 

Protein Function 

ABCC3 (MRP3) Transport 

ABCA5 Transport 

Calrecticulin Stress response 

 

 

Table 3.3.12.2 List of proteins of interest identified in A549-T treated with lapatinib 

and not in untreated A549-T.  
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Chapter 4  Discussion 
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The work carried out in this thesis aimed to increase our understanding of various 

aspects of multidrug resistance, using the following approaches: 

 

1. Investigating the role of lapatinib in multidrug resistant cell lines and further 

examining its modulatory effects on drug transporter pumps. 

2. Determining the involvement of proteins of interest in multi-drug resistance 

using siRNA mediated knock-down.  

3. Utilising and optimising a proteomic method to successfully identify 

membrane proteins involved in multidrug resistance.  

 

4.1. The role and effects of lapatinib in drug resistant cancers 

The following body of work utilised two different paired models of lung cancer 

resistance in order to evaluate the potential therapeutic contribution of lapatinib in 

resistant cancers and the potential effects of such treatments. Multidrug resistance, 

characterised by an increase in drug efflux ATP binding cassette transporters, 

remains a challenge in many current cancer therapies. Strategies to overcome 

multidrug resistance are therefore currently sought after [184]. Targeted therapies 

aimed at more cancer-specific pathways are being developed in order to address 

issues of toxicity associated with current less specific chemotherapy drugs. One 

group of targeted agents namely, the tyrosine kinase inhibitors, appear to have the 

qualities of a double edged sword, in that they may be able to tackle both issues of 

resistance and toxicity [103, 108, 185]. Lapatinib, a recently approved EGFR and 

HER-2 tyrosine kinase inhibitor, has shown much promise in its clinically approved 

use in combination with capecitabine in patients with advanced metastatic breast 

cancer. It has proved a more potent in vitro inhibitor of kinase activity compared with 

previously developed gefitinib and erlotinib which only inhibit the tyrosine kinase 

domain of EGFR and so it is likely that it may have a role outside of its current 

approved use [89, 186, 187]. There has been some investigation into lapatinib anti-

tumour actions outside of breast cancer and the evidence to date indicates some clear 

activity in bladder, gastric and ovarian carcinomas as well as in NSCLC [127, 188-

190]. As outlined previously, lapatinib has the ability to modulate and inhibit P-

glycoprotein (P-gp) functions [108, 109]. This thesis focuses on establishing if it has 

other resistance modulatory activity.   
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4.1.1. Lapatinib as a potential therapy in resistant lung cancer 

The lung cell lines chosen to carry out these studies, DLKP-A and A549-T, represent 

good models of multidrug resistance, having 300-fold and 5-fold resistance 

respectively to adriamycin (doxorubicin) and taxol (paclitaxel). They both display 

cross resistance to a number of other chemotherapy drugs and over-express the drug 

efflux transporter P-gp, thereby attempting to mirror the phenomenon of resistance 

found in the clinic [34]. As mentioned in the results section, DLKP is a cell line 

established from a lymph node biopsy of a 52 year old male diagnosed with a poorly 

differentiated squamous cell carcinoma of the lung. DLKP-A is a drug-selected 

variant generated from exposure of DLKP cells to increasing concentrations of 

doxorubicin. DLKP-A demonstrated a 254-fold resistant to adriamycin, as well as 

displaying cross-resistance to VP-16, VM-26, colchicine, vincristine and cisplatin 

due to significant P-gp over-expression [159]. The adenocarcinoma cell line, A549, 

was pulse-selected with clinically relevant levels of the chemotherapeutic, paclitaxel, 

to generate the resistant variant A549-T. In this case, the selected cell line displayed a 

more modest resistance to taxol and cross-resistance to VP-16, vincristine, 

carboplatin and doxorubicin is also evident with a moderate over-expression of P-gp 

[49, 109, 157]. The initial establishment of IC50 values in this project found the fold 

differences in resistance to doxorubicin in DLKP-A, and to paclitaxel in A549-T to 

be 204 and 3, respectively. Of note, the reduced resistance from 300-fold to 204-fold 

in DLKP-A and 5-fold to 3-fold in A549-T is likely to be due to instability of 

resistance over time.  

 

Although several targeted therapies have proved successful in the clinic, it is unlikely 

in the near future that they will completely replace chemotherapy drugs. Despite the 

toxicity profile associated with chemotherapy agents, they remain a successful 

treatment, and so it is more likely that targeted agents will more generally be 

employed in combination with these more traditional drugs. In this project it was 

sought to establish if lapatinib could add synergistically, to the toxic effects of a 

panel of chemotherapy drugs in our two paired MDR cell models. Lapatinib proved 

successful in both resistant cell lines, DLKP-A and A549-T, enhancing the cytotoxic 

actions of a variety of chemotherapy agents (epirubicin, paclitaxel, docetaxel and 

vinblastine) (figure 3.1.2.1-3.1.2.9). The large decrease in cell survival, associated 
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with the addition of lapatinib in DLKP-A and A549-T was significant in all cases 

with the exception of epirubicin in A549-T. A considerable decrease in cell survival 

was observed with the combination of lapatinib and epirubicin in A549-T, and the 

lack of significance was most likely owed to the larger standard deviations associated 

with this data. These larger standard deviations are more than likely associated with 

experimental error related to chemotherapy drug concentrations which is not all that 

uncommon with the very toxic drugs. This increased toxicity proved concentration-

dependent on the part of lapatinib with 1μM of the TKI producing the most 

pronounced effect on cell survival. A decrease in survival were observed in DLKP 

and A549 with the addition of lapatinib to epirubicin or paclitaxel and epirubicin or 

vinblastine, respectively (figure 3.1.2.10-3.1.2.14), although this was not significant. 

Although in some cases it was an additive effect, synergy was observed with 

epirubicin and vinblastine in A549 and epirubicin and paclitaxel in DLKP. The 

increase in toxicity in these non-P-gp over-expressing cell lines was, considerably 

less than that observed in DLKP-A and A549-T. One of the major cellular features, 

distinguishing the resistant from the parent cell lines is the over-expression of P-gp, 

and so it is conceivable that this contributes to the differences in toxicity observed 

with lapatinib combinations.   

Based on literature evidence, it is hypothesised that the synergistic toxic actions of 

lapatinib with the chemotherapy drugs, is due to its P-gp-inhibitory activity, thereby 

allowing more of the chemotherapy drug to accumulate [109]. This is a very 

plausible explanation, as the same level of synergy was not observed in the parental 

cell lines as in their resistant P-gp over-expressing counterparts. Apoptosis levels in 

the DLKP-A and A549-T cells, increased with the addition of lapatinib which is 

consistent with an increased accumulation of cytotoxic drug in the cells. In support of 

this also, the addition of lapatinib in combination with the non-P-gp substrate 

chemotherapy agent, 5-fluorouracil, in DLKP-A produced no increase in toxicity. 

The synergistic toxicity seen in the parent cell lines with lapatinib combinations, 

were unanticipated and would suggest an alternative mechanism for the synergistic 

behaviour of the TKI. It is unlikely to be associated with EGFR or HER-2 signalling, 

as these cell lines express relatively low levels of these growth factor receptors [109]. 

Lapatinib may be affecting another element of the transport of these drugs, but the 

mechanism as yet remains unknown. 
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The increased toxicity observed with lapatinib-P-gp substrate combinations, in the P-

gp over-expressing cell lines, is consistent with other findings in the literature 

whereby, lapatinib has been shown to enhance the accumulation of chemotherapy 

agents in drug-resistant P-gp-expressing cell lines [108, 109]. These findings 

demonstrate a potential use for lapatinib in the clinic outside its approved use in 

HER-2-over-expressing metastatic breast cancer.  DLKP-A and A549-T cell lines 

have relatively low levels of EGFR and HER-2, the primary targets for lapatinib 

[109]. It may therefore have a role as a P-gp modulating agent, and be given in 

combination with chemotherapy agents in patients with advanced cancers, so as to 

decrease the clearance of chemotherapy drugs. Unlike other P-gp inhibitors which 

have been developed, lapatinib has been established to have an acceptable toxicity 

profile. However, it is important to note, greater accumulation of chemotherapy drugs 

might occur in all P-gp over-expressing tissues in the body as a result of this, and 

may increase toxicity in these normal tissues. High P-gp expression is found in the 

biliary canaliculi of the liver, the proximal tubules of the kidneys, and the small 

intestine, colon, and adrenal cortex [191, 192]. A report by Sikic et al., (1997), 

summed up some of the potential toxicities associated with reduced P-gp activities in 

these tissues. They indicated gastrointestinal toxicity was not an issue with P-gp 

inhibition. No additional toxicity on the central nervous system was reported in 

clinical trials despite it being observed in MDR-knockout mice [193]. A reduction in 

the amount of drug administered may balance out any of the potential toxicities. 

Several, more recent, clinical trials investigating the efficacy of lapatinib with 

chemotherapy drugs have indicated increased toxicity not to be major problem and 

combinations have proved tolerable. Phase I/II trials of lapatinib with various 

chemotherapy agents such as topotecan, docetaxel and paclitaxel indicated favourable 

results, with the combinations being well tolerated [125, 129, 130, 194].  

4.1.2. Lapatinib-induced alterations in drug transporter expression 

It is clear that lapatinib can interact with and inhibit the energy-dependent pumping 

mechanism of P-gp [109, 110]. Preliminary results in our laboratory showed that 

lapatinib has the ability to increase P-gp protein levels [165]. The ability of the drug 

to interact with the P-gp protein in this way is unusual, and in effect it is having 

somewhat conflicting actions; up-regulation of the protein might be anticipated to 

increase resistance through the efflux of substrate drugs, although, it has the ability to 
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inhibit this proteins’ efflux mechanism. Ultimately due to the ability of P-gp to 

confer multidrug resistance, this could have devastating effects in the clinic. This 

project therefore, sought to examine the nature of this lapatinib-induced alteration in 

drug transporter level and any potential impact it may have on treatment. 

In A549-T, lapatinib treatment did in fact; induce an increase in P-gp expression. 

This was determined to be in a dose-dependent manner and was induced with 

concentrations of lapatinib as low as 0.1 μM. These findings were robust, with an 

increase in P-gp observed across a variety of time points (24, 48 and 72 hours). By 

way of validation, the effect of lapatinib on P-gp expression was also analysed in 

H1299-T, a cell line with moderate P-gp over-expression, and an increase in the drug 

transporter expression was also observed (section 3.1.5).  

 

MRP1 is another well established drug transporter with a role in mediating MDR, 

therefore alterations in its levels were also examined following lapatinib treatment. 

Of interest and perhaps somewhat unexpected, lapatinib treatment had an opposing 

effect on MRP1 expression than that seen on P-gp levels. Treatment with lapatinib in 

A549-T cells, at various time points and concentrations, resulted in a decrease in 

MRP1 expression as shown in section 3.1.5. MRP1 levels were also analysed in the 

parent cell line, A549, and they were also decreased with lapatinib treatment. At this 

point it should be noted that BCRP expression was also analysed for expression 

changes with lapatinib, however, no detectable levels were observed in control 

samples and so no conclusive results were obtained. To our knowledge lapatinib has 

not previously been shown to alter levels of this drug transporter, and so these novel 

findings warranted further work to investigate the potential mechanism and any 

further implications of this protein alteration.  

 

The induction of P-glycoprotein and other drug transporters is largely governed by a 

small number of nuclear hormone receptors, called ‘xenosensors’ [166]. The 

pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two 

transcription factors which detect xenobiotics and stimulate genes encoding proteins 

involved in their detoxification and elimination [195]. In order to establish if 

lapatinib may be exerting its actions on P-gp protein level through these 

‘xenosensors’, P-gp mRNA levels were determined in response to lapatinib. RT-PCR 

analysis carried out, indicated no corresponding change in mRNA levels of the drug 
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transporter P-gp and so the increase in protein level is likely to be a post 

transcriptional effect and not due to transcriptional activity from PXR or CAR 

receptor (figure 3.1.7.1 and 3.1.7.2). In support of this, lapatinib could not induce the 

expression of P-gp in A549 which had no detectable levels of the protein initially. 

These findings suggest its actions are occurring at the protein level and its does not 

have the ability to drive transcription of the ABCB1 gene.  

The MRP1 alteration in expression did not occur at a transcriptional level either, as 

RT-PCR results indicate no lapatinib-induced change in ABCC1 mRNA levels. As 

lapatinib had an opposing effect on MRP1 levels to P-gp, it is possible that the effect 

on MRP1 levels is directly as a result of alterations in P-gp levels. There is evidence 

to suggest that mechanisms of resistance conferred by the drug transporters are 

linked. Liver cells exposed to the toxic insult of endotoxin exhibited an increase in 

MRP1 and MDR1b whereas a marked decrease in MRP2 was observed [196]. In a 

doxorubicin resistant lung cell line, the over-expression of P-gp was accompanied 

with a decrease in expression of BCRP when in a drug free state [197]. A relationship 

between P-gp and MRP1 has also been reported. In AML cell lines, lower 

concentrations of doxorubicin-induced MRP expression but higher concentrations 

resulted in an over-expression of P-gp. Across a number of AML (Acute Myeloid 

Leukaemia) cell lines this research also showed that increasing P-gp expression 

decreased amounts of MRP, suggesting P-gp can negatively regulate MRP expression 

[198]. It may therefore be possible that altered expression of one ABC transporter 

may be compensated by another, in this case up-regulation of P-gp resulting in down-

regulation of MRP1.  

 

As P-gp appears to be the primary mediator of MDR in the resistant lung cell models 

chosen for this study, further work was carried out to investigate the nature of the P-

gp increase. Of great interest, the increase in P-gp induced by this TKI was sustained 

up to 120 hours following removal of lapatinib (section 3.1.10). There is however, a 

level of uncertainty with these conclusions as quantification studies showed residual 

levels of lapatinib were present at 120 hours after its removal. It is difficult to 

determine if lapatinib was active in the cells at these concentrations and if so whether 

it had an effect on P-gp or if the increased protein is of a sustained nature.  

The residual nature of the increased expression of P-gp seemed unusual and further 

investigations were carried out to gain a greater insight into the nature of the 
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lapatinib-induced increase in this protein level and to determine if a real increase 

being observed. The addition of lapatinib to A549-T cell lysates, had no effect on P-

gp protein level, indicating normal cellular functions are necessary for the process. 

Protein synthesis and degradation are greatly reduced in animal cells at temperatures 

of 4ºC and so the lapatinib effect in A549-T cells was compared at this temperature 

and normal 37 ºC incubation [167]. Treatment of the A549-T cells with lapatinib for 

24 hours at 4ºC had no effect on P-gp level whereas the control at 37ºC displayed the 

expected increase in P-gp (figure 3.1.13.3). These findings indicate the increase in P-

gp observed with lapatinib treatment is reliant on the basic cellular functions of 

protein synthesis and degradation. 

 

From the above, it was deduced that the changes in the expression level of P-gp by 

lapatinib are post-translational. Protein levels are maintained in the cell through a 

balance of de novo protein synthesis and protein degradation. To examine if the 

lapatinib actions observed on the P-gp protein are due to alterations in protein 

turnover, observations in protein level of the transporter pump were made in the 

presence of cycloheximide and bortezomib (figure 3.1.14.1 and 3.1.14.2). The protein 

synthesis inhibitor cycloheximide has been shown to reduce the levels of total P-gp 

present in cells [168]. Cycloheximide treatment alone had little effect on P-gp levels 

in the A549-T cells. The lapatinib-induced increase in P-gp expression observed in 

control cells was abolished in the presence of cycloheximide; implying lapatinib is 

exerting its effects on P-gp protein level through increased P-gp protein synthesis. 

Bortezomib, a proteasome inhibitor, prevents protein degradation by inhibiting the 

proteolysis of long lived proteins [169]. Bortezomib treatment in A549-T cells 

resulted in an increased level of P-gp and the addition of lapatinib to these treatments 

led to an even greater increase in P-gp. This indicates P-gp degradation is mediated 

through the proteasomal pathway which is consistent with previous literature 

evidence [199]. Agents that modulate and antagonise P-gp activity, such as nifedipine 

and cyclosporin A have previously been reported to have the ability to increase this 

transporters protein level [200, 201]. However, these increases were accompanied 

with increased mdr1 mRNA which is not observed with the lapatinib-induced 

increase in P-gp in A549-T, indicating a different mechanism of induction.  

Although, the results suggest the increase in P-gp observed with lapatinib treatment is 

due to an increase in protein synthesis, it does not rule out the possibility that 
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lapatinib may also have an effect on the degradation of the protein. Ubiquitination is 

a process which plays a great part in the regulation of protein turnover [199]. P-gp 

stability has been shown to be regulated by this process. In its steady state, this drug 

pump is located in the plasma membrane and after time it is subjected to endocytosis 

and recycling. Transfection with wild-type ubiquitin resulted in an increased level of 

ubiquitinated P-gp which was accompanied by a reciprocal decrease in P-gp. 

Proteasome inhibitors can also contribute to decreased activity as they prevent the 

maturation of P-gp and its localisation in the plasma membrane [199]. The epidermal 

growth factor receptors have also been shown to be regulated by the ubiquitination 

pathway [202]. A recent paper investigated if lapatinib could affect ubiquitination of 

HER-2. Scaltriti et al (2009) transiently expressed hemaglutinin (HA)-tagged 

ubiquitin in MCF-7HER-2 cells and examined HER-2 ubiquitination in the presence 

of lapatinib. This showed levels of ubiquitinated HER-2 to be barely present when 

the cells were treated with lapatinib. They also examined the HER-2 protein turnover 

rate and showed that lapatinib caused a marked reduction in receptor degradation. 

This was accompanied by a substantial accumulation of inactive HER-2 receptors at 

the cytoplasmic membrane [203]. Although there is no direct evidence as yet to 

support this, a possible hypothesis to explain the increase in P-gp levels could be that 

lapatinib has a similar action on this transmembrane drug transporter protein as the 

transmembrane growth factor receptor HER-2. It is also conceivable that EGFR 

signalling is linked to P-gp regulation in some way and this is discussed further in 

section 4.1.4.  

4.1.3. EGF-induced alterations in drug transporter expression 

Lapatinib antagonises the EGFR and HER-2 receptors and it was of interest to 

determine if an agonist for these receptors could also alter P-gp levels. EGF, an 

EGFR and HER-2 ligand, was analysed for its ability to alter P-gp and MRP1 

expression. EGF has been shown to interact with the P-gp protein and alter its 

phosphorylation [80]. A report by Wartenberg et al. (2001) showed that treatment 

with this growth factor can down-regulate P-gp expression in a process that may be 

mediated by reactive oxygen species. They suggest that the expression of P-gp may 

be associated with cell quiescence and can be down-regulated by mitogenic 

stimulation [204]. Of note, this could explain the altered levels in P-gp observed 

between different control A549-T cells, throughout all Western blots, which may 
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have had fresh medium at varying time points. The findings in this thesis are 

consistent with this evidence, as EGF treatment in A549-T cells had an opposing 

effect to lapatinib, resulting in a decreased P-gp expression (section 3.1.6). This was 

also determined to be a robust change in protein level, and was observed from 

concentration of 2 ng/ml across a variety of time points with the shortest being 24 

hours. To put this in perspective, the circulating serum concentrations of EGF is 

approximately 700 pg/ml [205]. The effect on P-gp protein levels was considerable, 

with EGF treatments resulting in levels of P-gp that were barely detectable in some 

cases. The EGF effect on MRP1 levels was comparable to that observed with P-gp, 

whereby the growth factor receptor induced a decreased expression of the protein. 

Similar to that of the lapatinib, the alterations in P-gp and MRP1 levels were not 

observed at the mRNA level and changes were determined to be post-translational 

(figure 3.1.7.1 and 3.1.7.2).     

4.1.4. Potential link between EGFR signalling and P-gp 

As both lapatinib and EGF had opposing effects on P-gp expression in the A549-T 

cells, it would seem possible that their actions are mediated by EGFR signalling and 

there is a link between the EGFR and P-gp. Many cell lines over-express both of 

these membrane proteins. A study carried out in actinomycin D-resistant Chinese 

hamster lung cells, first introduced the idea of crosstalk between the EGFR and P-gp, 

whereby by EGF treatment resulted in a significant reduction in P-gp 

phosphorylation in these cells [206].  EGF was later shown to have the ability to 

regulate the phosphorylation and hence the activity of P-gp in a human MDR breast 

cell line (MCF-7/AdrR)  and this is likely to be mediated by phospholipase C (PLC) 

[80]. Evidence suggests a link between signalling from the phosphatidylinositol 3-

kinase/Akt pathway and P-gp, with inhibition of phosphorylated AKT expression 

resulting in the down-regulation of P-gp expression in gastric cancer cells [207]. We 

therefore examined (section 3.1.14) if the lapatinib- or EGF- induced effect on P-gp 

expression was associated with altered EGFR or HER-2 signalling. A549-T cells, 

which were shown to express increased levels of P-gp when treated with certain 

concentrations of lapatinib, were analysed for changes in the two main downstream 

EGFR/HER-2 signalling molecules, MAPK and AKT. Slight variances were 

observed in MAPK levels; however, these did not correspond to the changes seen in 

P-gp expression. AKT and MAPK levels decreased slightly in response to 10 ng/ml 
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EGF, but very little change was observed with 2 ng/ml EGF treatment, a 

concentration which down-regulated of P-gp. Phosphorylated levels of these 

signalling molecules were also analysed. Phosphorylated MAPK was not detected in 

any of the samples examined. Phosphorylated AKT showed varying levels in 

response to lapatinib treatment but again these did not directly correspond to changes 

observed in P-gp expression. These results indicate clearly that the lapatinib-induced 

increase or EGF-induced decrease of P-gp expression is not related to signalling from 

the epidermal growth factor receptors EGFR and HER-2 through MAPK or AKT. 

4.1.5. Changes in EGFR and HER-2 expression  

As outlined above, lapatinib has the ability to alter the levels of the transmembrane 

drug transporter proteins. It has also been reported that lapatinib can increase HER-2 

levels and the tyrosine kinase inhibitor, AG1478, has been shown to have the ability 

to increase inactive EGFR levels [203, 208]. It was therefore of interest to determine 

if lapatinib could alter the expression levels of its target transmembrane growth factor 

receptor proteins EGFR and HER-2 in the cell models used in this thesis. EGF was 

analysed for its ability to induce a change in EGFR and HER-2 levels. The 

phosphorylated levels of these target proteins were also examined for change. 

Analysis was also carried out in H1299-T, a resistant lung cell line generated in the 

same fashion as A549-T, however, both of these lung cell lines are not considered as 

being sensitive to lapatinib and so the lapatinib-sensitive breast cell line SKBR3 was 

also observed for changes in EGFR and HER-2 levels following lapatinib treatment 

(section 3.1.8). 

Firstly, it is of importance to note, the two resistant lung cell lines expressed 

reasonably low levels of EGFR and HER-2 receptors. SKBR3 exhibited similar 

levels of EGFR but had much higher levels of HER-2. Relatively few changes in total 

levels of EGFR were observed over various time points with lapatinib or EGF 

treatments. This was not the case with total HER-2 levels, which were up-regulated 

to varying degrees in A549-T and SKBR3 after treatment with lapatinib. This finding 

supports evidence in the literature, whereby lapatinib was shown to cause a marked 

accumulation of inactive HER-2 receptors in MCF7-HER-2, through alterations of 

the ubiquitination process [203]. 

It would be expected that a reduction in phosphorylation of these growth factor 

receptors would be observed with lapatinib as it blocks the tyrosine kinase domain 
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and autophosphorylation of the receptors [96]. However, the opposite effect was 

observed in phosphorylated EGFR in A549-T and H1299-T following 48 and 24 hour 

lapatinib treatments respectively. These phosphorylation results may not be so 

surprising due to the relatively small amounts of growth factor receptors and the 

nature of sensitivity of these cell lines to lapatinib. The changes are also minor in 

nature and it must also be noted several points had reasonably large deviations. 

Statistics were not performed as data was only available in duplicate. 

An increase in phosphorylated HER-2 levels was observed after 24 hour lapatinib 

treatment in A549-T, although this was small in nature, with no change seen in 

SKBR3. No substantial changes were observed in phosphorylated EGFR with 

lapatinib treatment in SKBR3 and experimental error was considerable so it was 

difficult to draw any conclusions. 

 

Ligand binding and activation of epidermal growth factor receptors is followed 

rapidly by internalisation of the receptor-ligand complex and evidence suggests that 

receptor dimerisation is vital for this process [209]. The internalised receptors either 

undergo lysosomal degradation or recycling back to the cell surface and so the 

regulation of growth factor receptor expression does appear to be somewhat complex 

[209]. A considerable reduction in total EGFR levels was observed in A549-T with 

EGF treatment. EGF treatment in SKBR3 also led to a decrease in EGFR, but to a 

much lesser extent. Although not observed across all of the time points, this was also 

the general trend seen with total HER-2 expression as a result of EGF treatment. 

These results are consistent with evidence in the literature, with EGF proving to 

negatively regulate the expression of the growth factor receptors. This ligand has 

been previously shown to reduce the expression of HER-2 protein without altering 

mRNA levels in the breast tumour cell lines T47D and ZR75.1 [210].  One study 

demonstrated that prostate cancer cells with EGF stimulation caused an increase in 

EGFR mRNA and de novo EGFR protein synthesis; however, overall it led to a 

significant decrease in total EGFR. In these cells, EGF treatment was also associated 

with a decrease in the EGFR protein half-life and therefore stability. This indicates 

that although this growth factor induces mRNA and an increase in the rate of EGFR 

protein synthesis, its induction of protein degradation ultimately leads to reduced 

expression at the cell surface [211].  An earlier report, in fact, demonstrated that 

under normal conditions, EGF receptors were diffusely distributed along the cell 
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surface and upon the addition of EGF a rapid internalisation of the receptor-ligand 

occurred. This EGF-EGFR complex was transported internally to lysosomes where 

the receptor was degraded [212]. 

4.1.6. Implications of modifications in P-gp expression 

It has been well established that increased P-gp expression leads to a decreased 

accumulation of a wide variety of cancer drugs across many cell lines, ultimately 

reducing substrate drug efficacy [213-216]. This can result in treatment failure, 

ultimately causing problems in the clinic. It was therefore important to establish if the 

lapatinib-induced increase in P-gp levels seen in A549-T interfered with 

chemotherapy toxicity. This was examined with accumulation, efflux and toxicity 

assays (section 3.1.11). Lapatinib treatments proved to have no major negative effect 

on the accumulation or efflux of epirubicin in A549-T. Although initial volumes 

differed slightly, after 120 minutes in each assay, drug levels were the same in the 

lapatinib treated cells as that seen in the control. Epirubicin efflux was also analysed 

in the greater P-gp expressing cell line DLKP-A. A lower amount of drug was 

observed in the lapatinib-treated cells, after 120 minutes of epirubicin accumulation. 

However, efflux data demonstrated similar levels of epirubicin across all conditions 

after 120 minutes, indicating that over time any possible differences in P-gp levels in 

the A549-T cells has little impact intracellular drug levels over time.  

Lapatinib pre-treatment in A549-T resulted in an additive toxicity with paclitaxel and 

docetaxel treatments, thereby displaying no negative effects on chemotherapy 

sensitivity. Further analysis was carried out to directly compare pre- and co- 

treatment of lapatinib and in this instance a 24 hour wash out period was included to 

attempt to remove remnants of lapatinib. This direct comparison of pre-treatment and 

co-treatment with lapatinib in A549-T cells indicated little difference in toxic 

response, however, lapatinib pre-treatment caused a substantial reduction in cell 

survival prior to chemotherapy. The combination therapy is likely to be the better 

treatment option in order to take advantage of possible extra toxicity with synergistic 

interaction. 

As this assay involves a pre-treatment it is a challenge to remove all molecules of 

lapatinib and to be sure if this is achieved. It is therefore important to view these 

findings with an air of caution, as although no immediate impact on chemotherapy 

drug sensitivity was observed, if small active levels of lapatinib are present, this in 
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turn could be inhibiting the effects of the increased P-gp protein. It is possible that 

the increased P-gp expression seen with lapatinib treatment compared with controls is 

of a non-functional nature. Immature core-glycosylated P-gp that is prevented from 

travelling to the cell surface is inactive and so would have no effects on drug 

sensitivity. However, it is unlikely that this is the case here as lapatinib is a substrate, 

and the presence of a substrate drug was shown to induce the transporter to adopt its 

mature conformation and undergo trafficking to the cell surface where it exhibited 

drug-stimulated ATPase activity [217]. From the findings carried out in this thesis it 

is difficult to ascertain if P-gp protein up-regulated in response to lapatinib is fully 

functional. Regardless of these initial results, indicating no negative implications 

with the increased drug transporter expression, it is possible the increase in P-gp may 

have longer term implications that are not seen here which may warrant further study. 

 

The consequences of the EGF effect on P-gp expression were also analysed. 

Epirubicin efflux would be expected to be reduced and a greater accumulation of the 

drug seen. However, this was not the case, although an initial difference was 

observed after 30 minutes, the levels of drug were the same after 2 hours. In toxicity 

assays EGF treatments only slightly sensitized the A549-T cells to paclitaxel and 

docetaxel. The observed effect was small and as the taxanes primarily act on cells in 

the G2 and M phase of the cell cycle, it seems possible the EGF is pushing more cells 

into this phase and the decreased cell survival is not due to reduced P-gp [22]. EGF 

has been shown to stimulate the phosphorylation of P-gp and enhance its transport 

activity. If this is happening here, it would suggest the small amount of P-gp in the 

cells may be working harder and so in effect cancelling out the expected 

consequences of reduced P-gp expression [80].  

 

Lapatinib seems promising as an agent in the treatment of resistant lung cancer in the 

role as a P-gp modulator, although cytotoxic drug concentrations will have to be 

taken into consideration to counteract potential toxicity. The observation that 

lapatinib can induce an increase in P-gp expression is novel and requires further 

study to fully investigate what exactly is happening in the cell. Although it did not 

increase resistance in our models, this alteration may have long term clinical 

implications and so it would be important to address these with future work. As a 

relatively new drug on the market it is important that it remains the focus of 
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continuing research. This study indicated probable expansions for its use while also 

highlighting potential problematic activity.  
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4.2.   SiRNA techniques and multidrug resistance 

As explained previously, the cell lines used in this thesis represent good in vitro 

models of multidrug resistance, and so siRNA techniques were utilised in order to 

examine, more closely, proteins which may be contributing to the resistant 

phenotype. SiRNAs which mediate RNA interference, involving the double-stranded 

RNA silencing of homologous genes, are a valuable and useful technique when 

studying multidrug resistance. Previous work in our laboratory highlighted proteins 

with roles in the development of paclitaxel resistance through microarray studies 

[49]. In this thesis several of these proteins were chosen for further study in the 

resistant cell lines A549-T and DLKP-A.  The siRNAs were primarily coupled with 

toxicity assays, with the protein of interests’ effects on drug sensitivity ultimately 

being analysed. This technique was also coupled with drug accumulation assays and 

so the effects of gene silencing on drug transport can be analysed in the cell. 

4.2.1. Knocking down of ABCB1 in DLKP-A and A549-T 

The drug transporter protein P-gp has already proved to have an important role in 

drug resistance and was up-regulated along with the other proteins of interest in the 

paclitaxel resistant cell lines, and so it was the first focus of this work [49]. Western 

blots confirmed the knockdown of P-gp protein in the DLKP-A cells (figure 3.2.1). 

Silencing of ABCB1 with siRNA rendered DLKP-A cells significantly more 

sensitive to paclitaxel and epirubicin (figure 3.2.1.4 and 3.2.1.5). The increased 

toxicity in siRNA-transfected cells, observed with paclitaxel was comparable to that 

achieved with elacridar, a potent P-gp inhibitor [218]. These results are as expected 

as P-gp has been shown to be up-regulated in these resistant cells and paclitaxel and 

epirubicin are substrates for this transmembrane pump [219, 220]. Such a substantial 

effect, however, was not observed in the resistant cell line A549-T (figure 3.2.1.2 and 

3.2.1.3). Knocking down P-gp expression resulted in a reduced increase in sensitivity 

in A549-T to paclitaxel, nonetheless the trend does remain. High standard deviations 

were an issue in these assays and these were likely due to experimental error relating 

to chemotherapy drug concentrations. The physical consistency of paclitaxel, can 

make it difficult to measure consistently accurately. Although not significant, a trend 

towards an increase in sensitivity was observed to epirubicin, in A549-T cells 

transfected with P-gp siRNA. It is not surprising that the silencing of P-gp in A549-T 
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did not have the same effect as in DLKP-A as their relative P-gp levels differ greatly 

with substantially more P-gp being expressed in DLKP-A. These results were 

expected, as silencing P-gp expression leading to decreased function, allows more 

drug to accumulate in the cells, thereby increasing their toxic effects. A study in 

colon cancer cells, showed the siRNA mediated knockdown of P-gp increased the 

cytotoxicity associated with adriamycin and vincristine [221]. Daunorubicin 

sensitivity was restored in leukaemia cells which were transfected with P-gp siRNA 

[222]. The findings observed here are also consistent with the literature, whereby 

inhibition of P-gp function led to increased toxicity associated with paclitaxel and 

epirubicin [45, 109]. 

 

The employment of siRNA transfection with other techniques is extremely useful in 

cancer studies. In order to establish the effect of P-gp knockdown on drug transport, 

siRNA mediated gene knockdown was coupled with an accumulation assay. 72 hours 

following siRNA treatment of DLKP-A cells, an accumulation assay was carried out 

and epirubicin levels quantified (figure 3.2.1.6). This method proved very successful 

and epirubicin levels were significantly increased in the cells treated with ABCB1 

siRNA. These results are very encouraging, as due to the substantial levels of P-gp in 

DLKP-A, it was difficult to predict if the P-gp siRNA would be powerful enough in 

having an impact on epirubicin accumulation. Previous studies have shown 

knockdown of P-gp expression through siRNA, reduced intracellular accumulation of 

daunorubicin in leukaemia cells [222]. Consistent with these findings are results from 

another study carried out in MCF-7/Adr whereby paclitaxel accumulation was 

significantly enhanced in cells transfected with P-gp siRNA [223]. This method 

should be suitable for investigating the accumulation of drugs with the silencing of 

other drug transporters and could also be applied to the determination of substrates 

for the pumps. This result also served to further validate the ABCB1 siRNAs being 

used.  

4.2.2. The role of proteins identified from microarrays in resistance 

As mentioned previously (section 1.3.1), three genes were chosen from analysis of 

micro-array data of genes associated with the development of paclitaxel resistance 

[49]. These particular genes were chosen as their expression was altered in three 

resistant lung cancer cell lines compared with sensitive parental cell lines. Two of 
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these genes, Inhibitor of DNA binding 3 (ID3) and Crystallin, zeta (CRYZ) were up-

regulated in three paclitaxel resistant lung cell lines, A549-T, H1299-T and H460-T.  

Cysteine-rich protein 1 (CRIP1) the third gene, was down-regulated in these same 

cell lines. ID3 was 1.3, 2.7 and 2.3 fold up-regulated in resistant cells compared with 

A549, H1299 and H460, respectively. In the same three resistant cells lines CRYZ 

was up-regulated 1.6, 1.5 and 1.2, respectively. CRIP1 on the other hand was down-

regulated 2.6, 30.9 and 3.4 fold in A549-T, H1299-T and H460-T, compared with 

parental cells, respectively. Although these genes were chosen from data from the 

A549/A549-T cell lines, transfections were also carried out in DLKP-A to determine 

if expressed, their possible contributions to resistance in a different model of 

resistance. In order to establish if ID3 or CRYZ have direct roles in resistance, cells 

were transfected with their corresponding siRNAs and analysed for sensitivity to the 

chemotherapeutic, paclitaxel. CRIP1 was down-regulated in the resistant cell lines, 

and so A549 cells were transfected with siRNA corresponding to it and paclitaxel 

sensitivity determined. 

  

A small increase in toxicity with paclitaxel was observed in A549-T cells transfected 

with inhibitor of DNA binding 3 (ID3) siRNA (figure 3.2.2.1). This protein has 

previously been shown to be up-regulated in small cell lung cancer tissue [224]. The 

ID proteins neutralize the transcriptional activity of basic helix-loop-helix (bHLH) 

proteins, negatively regulating differentiation and promoting proliferation [225]. This 

would explain the decreased cell survival observed in A549-T cells transfected with 

ID3 siRNA in the absence of paclitaxel. A similar result was observed in DLKP-A 

cells, however, considerably higher toxicity was observed with ID3 siRNA in these 

cells, with approximately 40% survival observed in the absence of paclitaxel. In the 

presence of paclitaxel an increased toxicity was observed in the DLKP-A cells 

transfected with ID3 siRNA compared with control (figure 3.2.2.2). It is important 

not to disregard the effect the ID3 siRNA transfection alone is having on the cells. 

This effect renders the results difficult to analyse, and causes difficulties in 

ascertaining if there is a synergistic or additive effect on paclitaxel sensitivity. The 

results were graphed allowing all control conditions with no chemotherapy drug to 

equal 100%, and from this data it would certainly appear that the ID3 siRNA is 

playing some role in re-sensitising the cells to paclitaxel. To investigate this further 

and examine if the P-gp-mediated resistance was masking a more subtle mechanism 
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of resistance, elacridar, the potent P-gp inhibitor, and P-gp siRNA was used in 

combination with ID3 siRNA and chemotherapy sensitivity analysed (figure 3.2.3.2 

and 3.2.3.3).  In A549-T, there was no siginificant difference in paclitaxel toxicity 

between the cells transfected with ID3 siRNA in the presence of elacridar and those 

treated with elacridar alone. In DLKP-A on the other hand, there was a significant 

difference in paclitaxel toxicity with the two higher concentrations in ID3 siRNA 

transfected cells with elacridar and those with elacridar alone. However, again the 

transfection with ID3 siRNA in the absence of paclitaxel gave rise to a large decrease 

in cell survival compared with elacridar control. When graphed allowing all of the 

controls to equal 100% it was shown that there was no added increase in sensitivity to 

paclitaxel in the ID3 siRNA transfected cells with elacridar compared with elacridar 

only. Co-transfection of ID3 and P-gp siRNA in DLKP-A was consistent with the 

elacridar data as no added sensitization was observed with the ID3 siRNA (figure 

3.2.3.1).   

The transfection of ID3 siRNA did appear to slightly re-sensitize the cells to 

paclitaxel in DLKP-A, suggesting that it plays a small part in resistance in this cell 

line. In A549-T, the same effect was not observed and so this protein does not 

therefore appear to have a direct role in resistance in this cell line but may be 

contributing in a small way by driving proliferation in the face of toxic insult. Also of 

note, this gene exhibited a modest 1.3 fold up-regulated in this resistant cell line and 

so perhaps this is why no great effect was observed with ID3 siRNA transfection. 

There is no evidence in the literature to suggest a role for ID3 in resistance, however, 

this work suggests a minor role, secondary to P-gp in our DLKP-A model and it is 

conceivable that it is contributing to the cells defence by promoting growth. The role 

of ID proteins in the cell is a complex and cell specific one and so it is difficult to 

hypothesis what is happening in the resistant cells [226]. 

 

Although a slight increase in paclitaxel toxicity was observed in A549-T cells 

transfected with Crystallin-zeta (CRYZ) siRNA, it was not of significance (figure 

3.2.3.4). A greater increase in paclitaxel sensitivity was observed in DLKP-A (figure 

3.2.3.5). As above, co-transfection of CRYZ siRNA with P-gp siRNA was carried 

out. The small increase in paclitaxel toxicity, observed with transfection of both 

CRYZ and P-gp resulted in A549-T is to be interpreted with caution as the error bars 

overlapped (figure 3.2.3.6). The opposite trend is observed in DLKP-A, but to no 
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significant level (figure 3.2.3.7). This protein is a NADPH-dependent quinone 

reductase and can repair oxidative damage in cells [53]. The role of this protein is 

still unclear but it is thought to have trans-acting activities that can regulate the turn-

over of certain mRNAs [227]. The results here indicate it is unlikely to have a direct 

contribution to chemotherapy resistance. 

 

Cysteine-rich protein 1 (CRIP1) was down-regulated in the resistant cell lines 

compared with parental cell lines and so A549 was transfected with siRNA in this 

case to ascertain the potential role of CRIP 1 in resistance. It would be expected that 

transfection with siRNA against Cysteine-rich protein 1 in A549, might mimic 

resistance seen in A549-T if this protein has a role in the resistance. However, it was 

not observed in this cell line and down-regulation of this LIM/double zinc finger 

protein family member is unlikely to contribute to resistance in this model (figure 

3.2.2.5). 

 

The body of work produced mixed data with regards to resistance mechanisms in our 

lung cancer models. Drug resistance is unlikely to be caused by one factor and so 

these genes still may prove to be important in drug resistance. SiRNA mediated gene 

knockdown coupled with toxicity assays does not provide enough information to 

fully examine this. Further work with ID3 may reveal an definite role for it in some 

mechanisms of resistance, however, P-gp proved to be the main mediator of 

resistance in these models, in particular in DLKP-A. However, it does indicate the 

great potential for the use of siRNA mediated gene knockdown together with toxicity 

and transport assays. Using siRNA together with toxicity assays gives an efficient 

indication of the contribution of a protein to chemotherapy resistance in a cell line. 

The coupling of siRNA P-gp knockdown with accumulation and efflux assays 

revealed much information about the transport of chemotherapy drugs in our cell line. 

This could be expanded further to investigate a range of transport or transport related 

proteins and various drugs. These are simple but effective techniques and this section 

of work highlighted their effectiveness. 
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4.3. Membrane proteomics and multidrug resistance 

As mentioned previously, a large portion of the research in this project focused on 

membrane proteins, such as the drug transporters and growth factor receptors, and 

was reliant on the technique of Western blotting. Despite being a very powerful 

technique, Western blotting is hugely dependent on the quality of the antibody and 

remains a semi-quantitative low through-put technique. Proteomics, and more 

specifically membrane proteomics, may be utilised to provide an alternative to this 

technique. Studying membrane proteins is, however, problematic in itself due to the 

hydrophobic nature and size of these proteins. 

As part of this thesis an initial examination of a chosen membrane proteomic method 

involving membrane protein isolation, organic solvent solubilisation and tryptic 

digestion followed by multidimensional liquid chromatography coupled to tandem 

mass spectrometry, was carried out to see if this was in fact a useful technique in 

analysing membrane proteins. It is anticipated that in time this method could be used 

in conjunction with a quantitative method and provide an alternative reliable 

technique to Western blotting with the added advantage of being able to analyse 

greater numbers of proteins.  

4.3.1. Development of membrane proteomic method 

Membrane proteins are problematic to analyse by mass spectrometry due to their 

hydrophobic nature which makes them difficult to solubilise. Detergents which are 

commonly used for solubilisation can suppress ionisation and affect the performance 

of liquid chromatography. Organic solvents have proved to be a possible alternative 

to these detergents  [135, 139, 141]. Membrane proteins solubilise well in organic 

solvents and also these solvents can be readily removed after protein digestion [135, 

139, 141]. Trypsin, the enzyme of choice, which cleaves exclusively after arginine 

and lysine, has also been reported to remain functional in solutions of up to 65% 

methanol and there have been reports suggesting an increase in protein digestion in 

organic solvents [228, 229]. For these reasons, organic solvent solubilisation 

followed by tryptic digestion was employed to allow LC-MS based protein 

identification in this project. 
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The appropriate separation strategy was then identified. 2-D PAGE has limited 

application for membrane proteins as its does not resolve these proteins well, leaving 

them under-represented in research using this method [135]. Liquid chromatography 

has proved very useful in the separation of more problematic membrane proteins 

subsequent to digestion and so this was chosen for the separation technique. 

Multidimensional LC (MDLC) combines two or more types of LC, thereby 

subjecting each part of the sample to two different separation dimensions. This 

substantially increases the peak capacity and thus the resolving power. The peak 

capacity refers to a measure of the maximum number of components that can be 

resolved during a single chromatographic analysis and should be significantly larger 

than the number of sample constituents. Highly complex mixtures require methods 

with increased resolving power for separation. Due to this increase in peak capacity 

and resolving power MDLC results in better fractionation of the peptides before 

being analysed by the mass spectrometer [142, 230]. It is therefore more capable of 

separating complex samples and so an MDLC system coupling the first dimensional 

strong cation exchange (SCX) chromatography with the second dimensional reverse 

phase (RP) liquid chromatography (LC) was employed in this work. 

 

The MDLC method was then coupled with tandem mass spectrometry (MS/MS). 

MS/MS, which involves peptide ion fragmentation with subsequent m/z 

measurement, is a capable method in the identification of large numbers of proteins. 

Parent ions, which are generated as the mass spectrometer records the mass/charge 

(m/z) of each peptide ion (MS1), are selected for further fragmentation to obtain 

sequence information (MS2) [231, 232]. There are several fragmentation methods 

which can be employed for MS2. Collision induced dissociation (CID) is a well 

established and successful fragmentation method. It yields an increase in the number 

of precursor ions that fragment in the reaction region and also the number of 

fragmentation paths. Electron transfer dissociation (ETD) is a relatively new method 

of fragmentation but has proved a very robust method and has been shown to out-

perform CID with peptides of charge states more than 2. ETD fragments peptides 

through the transferring of electrons from radical anions to protonated peptides. In 

our method it was decided to use both CID and ETD modes of fragmentation as 

literature has shown benefits of employing both of these methods together to achieve 

better fragmentation of a wider variety of peptide types [150, 233].  
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Due to the complexity of the mixtures to be analysed, there are inherent challenges 

with this LC-MS technique and this body of work set out to address these to varying 

degrees. Taking the biological side out of the equation, there are three major 

components to this method; separation by liquid chromatography, detection by mass 

spectrometry and identification of proteins by software and data analysis. Challenges 

lie with all of these aspects, in terms of separation, detection and analysis. The ability 

of the multidimensional liquid chromatography method employed to separate 

peptides was assessed. The capabilities of the mass spectrometer to detect ions from 

separated and fragmented peptides were also examined. A more in depth examination 

was carried out of the data analysis and the impact of different statistical filters. It is 

hoped this body of work will give a clear indication if this membrane protein analysis 

is sufficient for dealing with complex membrane protein samples, and address some 

important issues with the three main components contributing to this method.  

4.3.2. Assessment of liquid chromatography

Good peptide separation is vital for the LC-MS and so the MDLC method used was 

analysed for this. The MDLC separation method, which utilised strong cation 

exchange chromatography coupled with reverse phase chromatography, proved to be 

reproducible between samples run on different days, indicating reasonable levels of 

consistency with the method. The retention times, of six peptides chosen at random in 

order to assess chromatography, all only differed by approximately a minute from 

DLKP-A 1 (first sample analysed) and DLKP-A 2 (technical repeat) (table 3.3.1.1). 

This separation technique is therefore quite reliable and reproducible. The quality of 

separation from the liquid chromatography was also analysed. Clear peaks were 

evident for each ion investigated, and the peak width was around 20/30 seconds for 

these peaks, indicating a nice distinct peak with good intensity (figure 3.3.1.1-

3.3.1.4). This data showed the liquid chromatography separation of the samples to be 

satisfactory and any issues are most likely due to mass spectrometry or data analysis.  

4.3.3. Assessment of data analysis and statistical filters 

Both the resistant DLKP-A and its parent DLKP samples were analysed on a second 

occasion, thus generating technical repeat data. Membrane proteins isolated from 

A549, A549-T and A549-T-lapatinib treated cells, were also analysed. This 
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membrane proteomic method proved successful in that large quantities of proteins 

were identified. The identifications were made by employing the use of the 

SEQUEST and Mascot algorithms. SEQUEST employs the use of a cross-correlation 

(XCorr) function to assess the quality of the match between a tandem mass spectrum 

and amino acid sequence information from the database [170]. The Mascot algorithm 

is a multiple alignment system for protein sequences based on three-way dynamic 

programming and is probability based [178, 234]. Due to the complex nature of the 

samples, it was difficult to assign statistical parameters governing the protein 

identification process. One of the main purposes of this particular body of work was 

to investigate and identify appropriate statistical settings yielding the best 

representation of protein identifications. All of this work was carried out on the first 

DLKP-A (DLKP-A 1) sample run and its technical repeat (DLKP-A 2).  

4.3.3.1. The determination of suitable parameters 

Firstly, a ‘standard’ set of statistical parameters (settings/filters) were selected from 

researching the literature. These were based on cross-correlation (XCorr) scores that 

were chosen based on their acceptance to yield true identifications in published 

literature. The XCorr function assesses the quality of the match between a tandem 

mass spectrum and the amino acid sequence from a database, and in this instance 

were chosen to be 1.9 for singly charged, 2.2 for doubly charged, 3.0 for triply 

charged and 3.5 for quadruple charged [170]. The standard filter also included the 

requirement of at least two distinct peptides being recognised for any given protein 

identified. These were applied to the combined CID and ETD datasets from the 

DLKP-A membrane protein preparation (DLKP-A 1) and its technical repeat DLKP-

A 2. The resulting protein lists were then critically analysed through examination of; 

protein number and overlap between samples, peptide quality and the identification 

of several membrane proteins previously shown to be expressed in this cell line 

(section 3.3.2). The list of proteins previously shown to be expressed in DLKP-A 

were identified using 2D-DIGE or in the case of P-gp Western blot [176].    

This standard filter yielded a good number of protein identifications from DLKP-A 1 

and 2, 635 and 447 respectively. The quality of peptide fragmentation was good, as 

determined by clear distinct peaks with good continuity of b and y and c and z ion 

series. However, the number of proteins commonly expressed between DLKP-A 1 

and 2 were a disappointing 42% and only three out of the seven membrane proteins 
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known to be expressed in DLKP-A were identified in both datasets. It is unclear as to 

why less than half the proteins were commonly expressed between the first run 

sample and its technical repeat or why the number of proteins known to be expressed 

was so low, although as the liquid chromatography was shown to be of good quality 

it is likely this is due to the detection by the mass spectrum. To further analyse the 

contribution of the governing statistics on protein identifications a number of changes 

were applied to these standard filters and again protein lists critically analysed like 

above. 

4.3.3.2. Benefits of analysing ETD and CID data together 

As explained, the tandem mass spectrometry method employed for these samples 

included fragmentation from both ETD and CID. When CID is used in isolation, the 

resulting data is analysed with an extra parameter, namely the Mascot algorithm of 

peptide probability. This provides an extra level of stringency, while allowing looser 

XCorr scores to be applied and so it would further reduce the amount of potential 

false positives. However, maintaining continuity across ETD and CID data presents 

disadvantages with Mascot, as the same XCorr scores and filters should be applied to 

both. This could render the CID data unnecessarily stringent with peptide probability 

and would lead to the loss of some true protein identifications. The other issue with 

analysing the data separately is regarding the minimum requirement of two distinct 

peptides. If this parameter is in place and the data is analysed together, a protein may 

be identified based on one peptide from ETD and one from CID. However, if they are 

analysed separately, all of the single peptide protein identifications in ETD with a 

matching single peptide protein identification in CID, or vice versa will be lost. This 

point was proved when a loss of 16% of protein identifications was observed when 

separate analysis of ETD and CID datasets took place. Therefore, it was concluded 

from this section of work that the use of both CID and ETD methods of 

fragmentation greatly improves the number of protein identifications. Evidence in the 

literature supports this, suggesting the use of both CID in conjunction with ETD to be 

most beneficial, as they complement each other and significantly improve yield of 

proteins identified  [150, 151, 235]. In addition, although the parameter of peptide 

probability is useful when analysing CID data, it was determined of greater benefit to 

analyse the CID and ETD data together (section 3.3.3 and 3.3.4). 
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4.3.3.3. Impact of reducing cross-correlation scores 

The next step taken was to address the stringency of the ‘standard’ XCorr scores 

(section 3.3.5). As four out of the seven membrane proteins which were known to be 

expressed in DLKP-A, were not identified using the first standard set of parameters, 

false negatives were highlighted as an issue. The impact of lowering the XCorr 

scores was analysed. The XCorr scores were set to 1.5 for singly charged, 1.9 for 

doubly charged, 2.5 for triply charged and 3 for quadruple charged and the minimum 

requirement for two distinct peptides remained. As expected, this yielded far greater 

numbers of proteins. Surprisingly though 1559 proteins were identified from DLKP-

A 1’s sample with only 651 from DLKP-A 2. This was not consistent with all the 

previous filters where the protein numbers were reasonably similar and no 

explanation was found for this discrepancy. Despite this, the validation of several 

proteins which just made the cut in terms of XCorr scores, determined them to be of 

acceptable quality. Of great encouragement, both sets of identifications included six 

out of the seven membrane proteins known to be expressed in this cell line. 

Disappointingly, only a 26% overlap in proteins was observed between DLKP-A 1 

and 2 samples, although it is felt that the difference in protein identifications to begin 

with, contributed to this small number. 

There are certain drawbacks with these particular criteria; however, they did yield the 

best representation of proteins while maintaining quality and keeping the number of 

false positives and false negatives low. These parameters appear to achieve a balance 

between quality and number which is the required outcome for identifications. 

4.3.3.4. Impact of abolishment of requirement for two distinct peptides 

One parameter which remained constant throughout the above investigations was the 

minimum requirement for two distinct peptides for protein identification. The impact 

of abolishing this requirement was analysed (section 3.3.6). In order to maintain a 

certain level of stringency, the XCorr scores were increased to 2 for singly charged, 

2.5 for doubly, 3.2 for triply and 3.5 for quadruple charged. A large number of 

proteins were identified with these parameters. Although on whole, most of the 

peptides chosen for closer analysis were validated as true identifications, a number of 

the peptides were not as convincing. In these cases, the lack of security of having a 

second peptide was far from ideal, leaving the possibility of too many false positives 

in the list of identified proteins. It is also widely accepted that proteins identified 
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from a single peptide are dubious identifications and are discouraged, as reported in a 

published article regarding the rules governing protein identifications by mass 

spectrometry [236]. In keeping with this, the requirement of two distinct peptides was 

maintained.    

 

A balance needs to be achieved between the number of proteins identified and the 

quality of the protein identifications, in particular with samples of such complexity. 

False positives, whereby proteins not present in the sample are identified, and false 

negatives, whereby proteins present in the sample are not detected, lead to 

misrepresentation of data. It is imperative that a minimum amount of false positive 

and false negative identifications are made. This section determined the filter with 

slightly less stringent XCorr scores of 1.5, 1.9, 2.5 and 3 and the requirement of two 

distinct peptides to provide a good balance between protein number and potential 

false positives or negatives and was chosen to apply to other samples analysed. 

 

As a repeat was carried out on the exact same sample, no biological variances come 

in to play and it was purely the LC-MS side of the method that was being tested for 

reproducibility. Along with the DLKP-A samples a DLKP sample was also run 

initially and again at a later date. Based on the criteria chosen, the reproducibility as 

determined by commonly expressed proteins was 26% and 32% in DLKP-A and 

DLKP, respectively. This was disappointing as although the outcomes were of an 

unpredictable nature, it would have been expected that with no biological variances 

involved that a much higher overlap of commonly expressed proteins would have 

been observed. Firstly, it is important to note there was a two month gap between the 

analysis of the first and second samples. The samples were stored at the correct 

temperature of -80ºC and so this would not have been expected to have too much 

impact but nonetheless slight alterations in the mass spectrometer may account for a 

small portion of the inconsistency.  

 

Section 4.3.1 has already addressed the issue of chromatography and the data verified 

this to be consistent. The data analysis clearly has a large bearing on protein 

identifications, however, the levels of reproducibility never reached higher than 51% 

and so it would appear the main issue lies with the mass spectrometry and this is 

dealt with in more detail in the next section. 
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4.3.4. Assessment of mass spectrometry in complex protein identification

The mass spectrometry analysis appears to be the most limiting of the three 

components to the method, which is not so surprising due to the extremely complex 

nature of the sample. It is hypothesised that the low overlap in proteins identified 

from DLKP-A sample 1 and 2 may be due to the mass spectrometer having too much 

data to handle at any given time leading to proteins being missed in one or other of 

the samples. Issues with the mass spectrometry were examined to a small degree by 

choosing a number of proteins that were expressed in DLKP-A 1 and not 2 and vice 

versa and taking a closer look at the chromatography and mass spectrums to see why 

they have not appeared in their alternative sample. Two proteins with strong 

identifications were chosen in order to carry out this analysis (section 3.3.7).  

This analysis implicated the mass spectrometry as the weakest link in this method. 

Two peptides for the proteins, ADAM 10 and MRP1 identified in DLKP-A 2 and 

DLKP-A 1, respectively were shown to be true identifications based on mass spectra 

and continuity in their b and y or c and z ion series. One peptide from each ADAM 

10 and MRP1 was further examined, and their isotopic mass, retention time and what 

fraction they were in, were determined. The mass spectrum from the corresponding 

sample, in which each protein was not identified, was analysed around the 

appropriate retention time for a peptide of the same mass. In the case of ADAM 10, a 

clear peak corresponding to a peptide with the same mass was observed in the full 

MS with a retention time differing in approximately one minute, which is consistent 

with previous data examining the retention times. However, following this full MS, 

the fragmentation by CID and ETD was carried out on two peptides with different 

masses. In the next full mass spectrum, the peptide of interest was no longer visible. 

The very same sequence of events was observed for the MRP1 peptide, although it 

must be noted that the chromatogram of the ion extraction did not show a distinct 

peak and so the quality of chromatography may have contributed in this case. These 

findings indicate that, the sample is too complex for the mass spectrometer. Too 

many peptide ions were present at any given time and the mass spectrometer was 

unable to process them all.  

 

The chromatography method involved five-step salt solutions to generate fractions of 

peptides. An increased number of salt steps may give the peptides a better chance to 
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elute distinctly and also lead to the creation of potentially smaller fractions which in 

turn may help with the MS. However, there is a danger that with a longer salt 

gradient, that peak definition can be lost. Digestion with chymotrypsin in 

combination with trypsin could also be investigated to see if it produces more 

peptides, ultimately giving the mass spectrometry a greater chance to detect a number 

of peptides for a given protein. This is a less specific enzyme but effectively cleaves 

bonds made up of amino acids with aromatic or large hydrophobic side chains thus 

enabling the generation of more hydrophobic peptides [135].  Another approach to 

improve detection by the mass spectrometry could involve the employment of 

dynamic exclusion lists, that contain molecular masses of already fragmented 

peptides in association with a fixed or flexible retention time window, whereby 

peptides are excluded in replicate analysis of a sample leading to a greater number of 

unique peptide identifications in replicate runs [237, 238].  

4.3.5. Potentially differentially expressed proteins in parent and 

resistant cell lines 

Although, further work is required to optimise this method, samples which were run 

were analysed for differences in protein expression between parent and resistant cell 

lines. Some observations of proteins identified in the resistant variants are discussed 

below. It is important to bear in mind, no validation was carried out and so extensive 

investigations on the lists of proteins were not performed. 

 

Proteins which were commonly identified in DLKP-A samples 1 and 2 and DLKP 

samples 1 and 2 were compared against each other. 320 (35%) of the total 910 

proteins were expressed in both parent (DLKP) and resistant (DLKP-A) cell lines. 

135 proteins were found in DLKP-A only. This is valuable data and may identify 

proteins with a role in chemotherapy drug resistance. It is promising that many 

proteins identified which have known roles in resistance were found to be expressed 

in DLKP-A only and several of these are discussed here. More repeats would be 

necessary before an in depth analysis of the data could be done, with the potential for 

identifying novel proteins with roles in multidrug resistance.  

 

Consistent with earlier data in this thesis (figure 3.1.4.1), P-gp (MDR1) was present 

only in the resistant DLKP-A cell line. Not surprisingly, MDR3 or multidrug 
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resistant protein 3, which is often over-expressed with MDR1 and has itself a minor 

role in resistance, was identified in DLKP-A and not DLKP [239, 240]. Also 

identified in the resistant variant only was HSP71, a member of the heat shock 

protein 70 family of chaperone proteins which has been shown to be expressed in 

cancer cells in response to stress including anti-cancer agents. This chaperone, has 

protective properties in the cell, allowing survival in normally lethal conditions and 

hence this protein has a role in chemotherapy resistance [241]. Lamin B1, a 

cytoskeletal protein which has been previously shown to be expressed in 

chemotherapy resistant cell lines, was found to be expressed in DLKP-A but not in 

the sensitive parent. It is thought that the up-regulation of Lamin B1 may contribute 

to resistance by inhibiting or delaying the onset of apoptosis [176, 242]. Another 

protein, found in the resistant variant, DLKP-A, and not in its parent was integrin 

beta-4. Evidence suggests it also contributes to resistance to chemotherapy agents as 

it promotes stable interactions between cells and so has a role in the evasion of 

apoptosis [243-246]. Vimentin and cadherin 2, also found in the resistant DLKP-A 

and not DLKP, are associated with epithelial to mesenchymal transitions (EMT), a 

process which has an established role in resistance to chemotherapeutics. EMT refers 

to the altering of a cells epithelial phenotype to one of a mesenchymal nature which 

results in cancer cells adapting an enhanced survival status [247-249].   

Confirmation and validation by Western blot would of course strengthen these 

findings, although due to time constraints this was not carried out. However, the 

results do indicate the huge potential for this technique in the study of membrane 

proteins involved in the highly complex and important process of drug resistance. 

 

A549 and A549-T membrane protein samples were also analysed in the same manner 

and compared for differences in protein expression. These samples were only 

analysed once and so greater numbers of proteins were compared yielding a greater 

number of differences. However, several proteins involved in, and some with 

established roles in resistance were identified in the resistant variant A549-T only.  

 

The members of the ABC transporter family ABCA3 and ABCB5 were found 

exclusively in A549-T. Although ABCA3 is not said to confer ‘classical’ MDR, 

nonetheless, evidence suggests a role in resistance and an association with poor 

response has been demonstrated in AML [183]. Blocking the activity of ABCB5, has 
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been shown to reverse resistance to doxorubicin in melanoma cells due to increased 

accumulation of the drug [250]. Filamin A, a cytoskeletal protein which has been 

shown to be up-regulated in other resistant models, was identified in A549-T cell line 

only [251, 252]. The ADAM family of proteins are involved in regulating cell 

phenotype via their effects on cell adhesion, migration, proteolysis and signalling. 

Altered expression of members of this family has been implicated in cancer 

progression. ADAM-17, which was found in A549-T, is required for generation of 

the active forms of EGFR ligands, and so its expression may have been triggered to 

enforce a protective role and promote cell growth in the face of toxic insult [253, 

254]. The copper transporter ATP7B was identified in A549-T and not its parent. 

This protein has been shown to confer resistance to platinum-containing agents. As 

A549-T displays cross resistance to carboplatin and to a lesser extent cisplatin, this is 

a interesting result and suggests the resistance to these agents could be mediated 

through ATP7B [255-257]. Again, although only a few of the proteins found to be 

differentially expressed in the resistant compared with the parent are described here it 

does however indicate the major potential for this technique.  

DLKP and A549 resistant variants were selected under different conditions and so 

display different resistance profiles. It was of interest to see if any of the proteins 

found to be differentially expressed in the resistant cell lines compared with parents 

overlapped between DLKP-A and A549-T. One of these proteins, the coxsackievirus 

and adenovirus receptor, has recently been identified as having a significantly higher 

level of expression in NSCLC patient samples compared with normal tissues [258]. It 

functions as an important receptor for entry of coxsackie B viruses and adenoviruses 

into the cell and high levels of staining has been associated with an increased 

proliferative activity of the tumour in an endometrial adenocarcinoma. Although 

evidence of its up-regulation in chemotherapy resistance has not been previously 

reported and these results are preliminary, it is important to note if this were to hold 

true it could present an opportunity in the face of resistance as it renders the cells 

more sensitive to potential adenoviral mediated gene therapy [259]. Integrin beta-4 

which was mentioned previously to contribute to chemotherapy resistance by 

protecting the cell from apoptosis with cell-cell interactions was also found in both 

DLKP-A and A549-T only.  
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While these results are of a preliminary nature, they offer a taste of the great potential 

of this technique and its potential ability to identify membrane proteins with 

important roles in resistance that were previously difficult to detect by other methods.  

4.3.6. Differentially expressed proteins with lapatinib treatment 

Previously in this thesis, lapatinib has been shown to induce alterations in membrane 

proteins and so using the same method described above membrane proteins identified 

from lapatinib treated A549-T cells were compared with those found in the A549-T 

sample. Again, it is important to note that these samples were only analysed by mass 

spectrometry once, leading to the identification of large quantities of proteins and 

thus to a large number of differentially expressed proteins.  

 

It was unexpected that the P-gp protein was not detected in the lapatinib-treated 

A549-T MS-analysed sample as it was shown to be induced in this cell line by 

Western blot (figure 3.1.5.2). This raises questions over the sensitivity of the method. 

On a similar note it is also important to bear in mind that this protein spans the 

membrane several times and so is difficult to analyse particularly when in low 

abundance. MRP3 (ABCC3) was detected in the lapatinib treated sample. It functions 

in the transport of organic compounds conjugated to glutathione, sulfate, or 

glucuronate and can eliminate xenobiotics after their conjugation with glucoronic 

acid [260]. Another ATP-binding cassette transporter identified after lapatinib 

treatment in A549-T was ABCA5 and although its function remains poorly 

understood it has been detected in various tumour types [261]. Calrecticulin, which 

can be found on the surface of cells under stress, is a crucial determinant of the 

phagocytosis of the dying cell by macrophages and was found in the proteins 

identified from lapatinib treated A549-T sample. This protein has been shown to 

travel to the cell surface in response to some cell death inducers and so maybe the 

expression of this protein is in response to the toxic insults of lapatinib [262]. As 

mentioned before, it would be preferable to do repeats and some validation before 

any hard conclusions are drawn from these data.  

 

There are many different aspects of this method that require optimisation and further 

analysis but, time constraints did not allow this to be carried out for this thesis. 

However, these findings suggest; the MDLC method employed is adequate in 
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separating the peptides, the MS method is unable to fully deal with the complexity of 

the sample and ETD and CID should both be used and data analysed in unison. When 

fully validated and optimised this method should provide a very powerful tool for 

studying membrane proteins. 
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Chapter 5  Conclusions and Future Work 
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5.1. Conclusions 
 

5.1.1. Lapatinib and EGF in resistant lung cancer 
 

1. Lapatinib has a potential clinical role in combination with chemotherapy drugs in 

P-gp positive, non EGFR/HER-2 over-expressing cancers. This is based on 

results from combination toxicity assays in the resistant cell lines DLKP-A and 

A549-T which have little or no growth factor receptor expression and high to 

moderate expression of P-gp, respectively. Combinations of lapatinib with 

epirubicin, paclitaxel, docetaxel and vinblastine resulted in an increased toxicity 

compared with chemotherapy agents alone. This decrease in cell survival was 

associated with an increase in apoptosis, and so lapatinib increased the cytotoxic 

effects of the chemotherapy drugs. Synergistic toxicity was not observed with the 

non P-gp substrate drug 5-fluorouracil.  

 

2. Lapatinib has the ability to alter transmembrane drug transporter expression 

levels which might be thought to have substantial implications in the clinic. It 

induced an increase in P-gp expression in a dose-responsive manner and this 

effect was residual in nature. RT-PCR analysis concluded this change in P-gp 

protein level was not occurring at a transcriptional level. Assays investigating 

the effect of lapatinib in combination with a chemically induced reduction in 

protein synthesis indicated that lapatinib is most likely causing an increase in 

P-gp levels by inducing synthesis of the protein, although does not rule out 

the possibility of preventing its degradation 

 

 

3. Lapatinib was shown to have an effect on the P-gp protein level; however, it 

is entirely possible that this P-gp was non-functional for some reason as 

toxicity assays indicated. The lapatinib-induced change in P-gp expression 

had little or no negative impact on chemotherapy sensitivity. Pre-treating the 

cells with lapatinib did not alter chemotherapy drug accumulation or efflux or 

sensitivity to any great extent. Of note also, the positive synergistic effects 

were only observed with simultaneous combinations as opposed to pre-

treatment with lapatinib.  
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4. Lapatinib has the ability to alter the MRP1 transporter pump expression. 

Lapatinib caused a reduction in MRP1 levels in both cells lines tested and 

RT-PCR results confirmed this alteration was not occurring at a 

transcriptional level. 

 

5. The ability of lapatinib to alter the growth factor receptors EGFR and HER-2 

and their phosphorylated counterparts was analysed and the findings 

suggested that lapatinib can slightly alter the levels of total EGFR and HER-2 

and phosphorylated EGFR and HER-2 although this did not reach 

significance.  

 

6. The EGFR and HER-2 ligand, EGF, was shown to reduce the expression 

levels of the drug transporter pumps P-gp and MRP1. This had little impact 

on chemotherapy sensitivity in the cell models.  

 

7. EGF had more potent actions on the levels of growth factor receptors, causing 

a reduction in total levels of EGFR and HER-2.  

 

8. Lapatinib and EGF actions on drug transporter expression levels were 

determined to be unlikely due to signalling through the EGFR or HER-2 

pathways.  

 

5.1.2. SiRNA techniques and chemotherapy resistance 

 
1. SiRNA-mediated gene knockdown was coupled successfully with drug 

accumulation assays and it proved a very useful technique to study resistance 

in our cell models. 

 

2. The inhibitor of DNA binding protein 3 may play a small role in 

chemotherapy resistance. 
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5.1.3. Membrane proteomic technique 

 
1. Overall this technique proved a powerful one, resulting in the identification of 

many membrane proteins in cancer cell lines. 

 

2. Although, not directly investigated, the extraction of membrane proteins and 

subsequent solubilisation and digestion proved successful based on the large 

numbers of membrane proteins identified from all the samples. 

 

3. Multidimensional liquid chromatography was determined to be consistent, 

yield good separation, and led to the successful separation of proteins. 

 

4. Mass spectrometry proved to be the limiting factor in the handling of such a 

complex sample and this may have contributed to the relatively small overlap 

in protein identifications in technical repeats was largely due to this.  

 

5. The statistical parameters employed in the analyses have huge implications 

for the identifications of proteins. Analysing ETD and CID data together 

proved an important approach to ensure identifications were not over-looked.  

 

6. The optimal XCorr scores in analysing our samples were 1.5 for single, 1.9 

for double, 2.5 for triple and 3 for quadruple charged peptides. These settings 

may be altered further, in order to improve the detection of samples by the 

mass spectrometry.  

 

7. Many comparisons were made between resistant and sensitive cell lines, 

implicating potential roles for many proteins in resistance. Further 

optimisation is required before hard conclusions can be drawn from these 

results. It does however provide a good insight to the capabilities of such a 

technique.  
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5.2. Future work 
 

1. Literature evidence and findings in this thesis suggest there is a possibility 

that lapatinib-induced alterations of P-gp expression may be related to the 

proteasome-ubiquitination pathway and so further work to establish this is 

necessary.  

 

2. The findings in this thesis indicate that the increase in P-gp level, in response 

to lapatinib has no effect in altering chemotherapy sensitivity. It is likely there 

is a complex relationship between lapatinib and P-gp, and work to expand 

this, such as longer treatments and continuous exposure mimicking therapy in 

the clinics and examining in vivo bioavailability of drugs following lapatinib 

treatment could be beneficial. 

 

3. This thesis established that lapatinib can alter levels of the P-gp and MRP1 

drug pumps. However, it does not clarify if this TKI can alter BCRP levels 

and so utilising a BCRP expressing cell line it should be established if it has 

modulatory actions on the expression of this drug transporter also. 

 

4. Findings in this research suggest a possible role of ID3 in chemotherapy 

resistance and this warrant further study. This could be further explored by 

generating a stable transfection of ID3 cDNA in the parental cell line to see if 

this confers resistance to chemotherapy.  

 

5. Time constraints did not allow sufficient repeats of the membrane proteomic 

samples and so this should be carried out so more substantial conclusions can 

be drawn from the data. 

 

6. The membrane proteomic work showed huge promise but could be expanded 

much further. Firstly, validation by Western blot is vital in order to confirm 

some of the findings. Also, in order to achieve better resolution of the 

peptides, the inclusion of more salt fractions and a longer run time would also 

be beneficial. 
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7. Chymotrypsin, which allows the generation of more hydrophobic peptides, 

should be tried with trypsin to give more complex digestion, making peptides 

easier to separate and detect. 

 

8. Ideally this technique could be progressed to a quantitative method when 

coupled with a quantitative technique such as SILAC (Stable isotope labeling 

with amino acids in cell culture). 
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Output generated from thesis 
 
 

Publications – Manuscript in preparation 

Title: Modulation of P-glycoprotein expression by Lapatinib. 

Authors: Gráinne Dunne, Laura Breen, Denis M Collins, Sandra Roche, Martin 

Clynes and Robert O’Connor.  

 

Poster Presentations 

Irish Association for Cancer Research (IACR) – 2009 Annual Meeting, Athlone, 5th – 

6th March 2009 

Title: Modulation of Drug Transporters by Lapatinib 

Authors: Gráinne Dunne, Denis M Collins, Sandra Roche, Martin Clynes and Robert 

O’Connor. 

 

Oral Presentations 

The Centre for Applied Science for Health Postgraduate Day – June 5th 2009 

Title: Investigating the Effects of Lapatinib in Resistant Cancer Cell Models 

Authors: Gráinne Dunne, Denis M Collins, Sandra Roche, Martin Clynes and Robert 

O’Connor.  
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Abbreviations 
 
 
5-Fu   5-Fluorouracil 

ABC   ATP-binding Cassette 

ADP   Adenosine Diphosphate 

AR  Amphiregulin 

ATCC  American Tissue Culture Collection 

ATP   Adenosine Triphosphate 

BCRP   Breast Cancer Resistance Protein 

BSA   Bovine Serum Albumin 

BTC  Betacellulin 

cDNA   Complementary DNA 

CID  Collision Induced Dissociation 

CML  Chronic Myeloid Leukaemia 

CRIP  Cysteine-Rich Protein 

CRYZ  Crystallin-Zeta 

DMEM  Dulbecco’s Minimum Essential Medium 

DMSO  Dimethyl Sulfoxide 

DNA   Deoxyribonucleic Acid 

EDTA  Ethylene diamine tetracetic acid 

EGF  Epidermal Growth Factor 

EGFR  Epidermal Growth Factor Receptor 

ELISA  Enzyme-linked Immunosorbant Assay 

EPR  Epiregulin 

ERK   Extracellular signal-Regulated Kinase 

ETD  Electron Transfer Dissociation 

FCS   Fetal Calf Serum 

GSH   Glutathione 

HB-EGF Heparin-Binding EGF 

HER-2 Human Epidermal Growth Factor Receptor 2 

HCL   Hydrochloric Acid 

HEPES  4-(2-hydroxyethyl)-piperazine ethane sulphonic acid 

HPLC  High Performance Liquid Chromatography 
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IC50   Inhibitory Concentration 50% 

ID3  Inhibitor of DNA Binding 3 

IgG   Immunoglobulin 

IMS   Industrial Methylated Spirits 

kDa   Kilo Daltons 

LC  Liquid Chromatograpy 

MAPK  Mitogen Activated Protein Kinase 

MDLC Multi-Dimensional Liquid Chromatography 

MDR   Multi-Drug Resistance 

MEM   Minimum Essential Medium 

MRP   Multidrug Resistance-associated Protein 

mRNA  Messenger RNA 

MS  Mass Spectrometry 

mTOR Mammalian Target of Rapamycin 

MW   Molecular Weight 

NaCl   Sodium Chloride 

NaHCO3  Sodium Bicarbonate 

NaOH  Sodium Hydroxide 

NFB  Nucleotide Binding Folds 

NSAID  Nonsteroidal anti-inflammatory drug 

NSCLC  Non-small cell lung cancer 

PAGE  Polyacrylamide Gel Electrophoresis 

PBS   Phosphate Buffered Saline 

PCR   Polymerase Chain Reaction 

P-gp   P-glycoprotein 

PI3K  Phosphatidylinositol 3 Kinase 

PLD  Phospholipase D 

PMSF   Phenylmethanesulphonyl Fluoride 

RNA   Ribonucleic Acid 

RT-PCR  Reverse Transcriptase-PCR 

SCLC   Small cell lung cancer 

SD   Standard Deviation 

SDS   Sodium Dodecyl Sulphate 

siRNA  Small interfering RNA 
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STAT  Signal Transducer and Activator of Transcription 

TEMED  N, N, N’, N’-Tetramethyl-Ethylenediamine 

TGF-�  Transforming Growth Factor-� 

TKI  Tyrosine Kinase Inhibitor 

TNM  Tumour Node Metastasis 

TRIS   Tris(hydroxymethyl)aminomethane 

VEGF  Vascular Endothelial Growth Factor 

UHP   Ultra high purity water 
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