
Page 1 of 225

Best Software Test & Quality Assurance Practices in the

project Life-cycle

An approach to the creation of a process for improved test & quality assurance

practices in the project life-cycle of an SME.

Mark Kevitt, BSc

University: Dublin City University

Supervisor: Renaat Verbruggen

School Computer Applications

April 2008

Page 2 of 225

Abstract

The cost of software problems or errors is a significant problem to global industry, not

only to the producers of the software but also to their customers and end users of the

software.

There is a cost associated with the lack of quality of software to companies who

purchase a software product and also to the companies who produce the same piece of

software. The task of improving quality on a limited cost base is a difficult one.

The foundation of this thesis lies with the difficult task of evaluating software from its

inception through its development until its testing and subsequent release. The focus

of this thesis is on the improvement of the testing & quality assurance task in an Irish

SME company with software quality problems but with a limited budget.

Testing practices and quality assurance methods are outlined in the thesis explaining

what was used during the software quality improvement process in the company.

Projects conducted in the company are used for the research in the thesis. Following

the quality improvement process in the company a framework for improving software

quality was produced and subsequently used and evaluated in another company.

Page 3 of 225

Table of contents

1 Chapter One – Introduction ... 5

1.1 A software company with software quality problems 5

Aim .. 5

Objectives .. 6

2 Chapter Two - Methodology .. 7

2.1 Action Research ... 7

2.2 The type of Action research used in this thesis.. 9

3 Chapter Three - What is software testing .. 11

3.1.1 Principles of software testing ... 11

3.2 Principal testing methods ... 12

3.2.1 Functional testing (black box) ... 12

3.2.2 Structural testing (white box)... 14

3.2.3 Grey box testing ... 15

3.2.4 Thread Testing ... 16

3.2.5 System Testing ... 17

3.3 The Test Process .. 20

3.3.1 Test Planning ... 21

3.3.2 Manage Test Execution.. 24

3.4 Summary .. 35

4 Chapter Four – Quality Assurance ... 37

4.1 Complications with software and its quality assurance 37

4.1.1 Factors that impact Software Quality .. 39

4.2 Software Quality Assurance .. 43

4.2.1 Verification versus Validation ... 45

4.3 Software Quality measurement .. 46

4.3.1 Software Defects .. 48

4.3.2 Classification of Software Errors ... 49

4.4 Structure of Software Quality Assurance (SQA) ... 52

4.4.1 Planning from the project initiation and project planning stage 53

4.4.2 Management of the Project life-cycle activities and components 57

4.4.3 Defect Prevention process.. 65

4.4.4 Capturing and analysing defect metrics ... 67

4.4.5 Quality Management Models ... 72

4.4.6 In process metrics for software testing .. 74

4.5 Refactoring the Management of all SQA components 77

4.5.1 Software Quality Management .. 77

4.5.2 The SEI Process Capability Maturity model 79

4.5.3 Software Process Assessment .. 81

4.5.4 Software Quality Auditing ... 83

4.6 Summary .. 84

5 Chapter Five – Software Test and Quality Assurance Practice Improvement 85

5.1 The first steps to test and QA practice improvements 85

5.1.1 Industry background .. 86

5.1.2 Description of company X BMS system ... 87

5.1.3 Research and Development department description 90

5.2 The Quality problem that is to be tackled .. 93

5.2.1 The investigation .. 94

5.2.2 The investigation findings.. 95

Page 4 of 225

5.2.3 The proposal to the company ... 105

5.3 My proposed solution .. 106

5.3.1 The Principal design factors behind my proposed solution 106

5.3.2 An Initial model ... 109

5.4 Summary .. 114

6 Chapter Six - Implementation of improvements .. 115

6.1 Company X - HVAC Controller Project .. 117

6.1.1 HVAC Project description ... 117

6.1.2 HVAC Plan .. 118

6.1.3 HVAC Project Implementation (Execution and Observation) 127

6.1.4 HVAC controller project reflection ... 134

6.2 Company X CNET Project Repeat improvements 136

6.2.1 CNET Project description .. 136

6.2.2 CNET Plan ... 137

6.2.3 CNET Project Implementation (Execution and Observation) 139

6.2.4 CNET Controller Project Reflection .. 142

6.3 Company X – UEC8 Engineering Application .. 144

6.3.1 UEC8 Project description .. 144

6.3.2 UEC8 Plan ... 145

6.3.3 UEC8 Project Implementation (Execution and Observation) 146

6.3.4 UEC8 project reflection ... 149

7 Chapter Seven - Development of a Framework ... 151

7.1 Evolved quality assurance framework ... 154

7.2 Secondary Independent Assessment of my proposed Solution 160

7.3 Company Y - Project FIIS Application ... 162

7.3.1 FIIS Project description ... 162

7.3.2 FIIS Plan .. 163

7.3.3 FIIS Project Implementation (Execution and Observation)............... 166

7.3.4 FIIS project reflection .. 169

7.4 Summary .. 170

8 Chapter Eight - Conclusions and Further work ... 171

8.1 Conclusion ... 171

8.1.1 Limitations of research .. 173

8.1.2 Improvements to practices ... 174

8.2 Further Work .. 175

9 Appendices, Glossary and Bibliographies ... 176

9.1 Appendix A Company X process documentation 176

9.2 Appendix B – Glossary of terms .. 177

9.3 Bibliography .. 179

9.4 Web Bibliography .. 180

Page 5 of 225

1 Chapter One – Introduction

1.1 A software company with software quality problems

This thesis is focused on the creation and provision of a testing & quality assurance

(QA) process for software quality improvement in an Irish company (the company)

and also for the creation of a framework for similar quality improvements in the

process for other company‟s.

Employed in the company as a testing professional I have the responsibility to lead a

test department and to ensure that the software released to the customers is of the

highest standard. To raise the bar on this standard I decided to conduct research into

testing and QA practices and to implement improved practices within the company.

This thesis is a product of the research into test and QA practices and for the provision

of an improved test process in the company. This process will combine elements of

testing and QA into one process, this one process in turn will be inserted into the

company‟s development lifecycle.

 The research was agreed with academic representatives from DCU University and

with senior management from the company. I conducted this research on a part time

basis with the University while working full time in the company.

Aim

The aim of this thesis is to investigate the best test and QA practices in industry and to

design and evaluate a process for implementing best practices in the software lifecycle

of a small to medium enterprise (SME) over successive projects.

Page 6 of 225

Objectives

There are a number of objectives for this paper, the first is to define the principles of

software testing, describe the numerous testing methodologies and how to effectively

conduct this testing on projects in industry. This is covered in the third chapter.

The second objective is to evaluate what constitutes software quality and what factors

affect this quality and how, when and where QA can be used in the project life-cycle

for improving product quality. This is covered in the fourth chapter.

The third objective is to outline the test and QA effort during a project in a particular

company and to evaluate the adoption of improved practices during subsequent

projects in the same company. These two topics are covered in the fifth and sixth

chapters respectively.

The fourth objective is to develop the improved practices into a framework for

evaluation in other company‟s. This is covered in the seventh chapter.

Page 7 of 225

2 Chapter Two - Methodology

2.1 Action Research

The research methodology that was chosen for this project is action research. Action

research is a methodology which has the dual aims of action and research. The action

is to bring about change in some community or organisation, and the form of research

intended to have both action and research outcomes. The purpose of action research is

to learn from your experience, and apply that learning to bringing about change. “The

task of the practitioner researcher is to provide leadership and direction to other

participants or stakeholders in the research process” (Ernest Stringer. 1996)

Action research in the organisation (David Coughlan et al. 2005)

1. Review current practice

2. Identify an aspect that needs improvement

3. Plan an action

4. Act it out

5. Evaluate the result

6. Re-plan an additional cycle

7. Continue until complete

Page 8 of 225

Examples of Action Research

Action Research, as described by Lewin, proceeds in a spiral of steps composed of

planning, action and an evaluation of the result of the action.

Figure 2.1. The Action Research spiral model.

The advantages of action research are that it lends itself to use in work or community

situations. Practitioners, people who work as agents of change, can use it as part of

their normal activities. This means that in the course of researching best practices in

software quality improvements, it can also be applied during the operation of an

organisation.

The disadvantages to action research are that it is harder to do than conventional

research. There is a dual role of the researcher to conduct research but also to make

changes and record the results of these changes.

Page 9 of 225

2.2 The type of Action research used in this thesis

Holter and Schwartz-Barcott (1993:301) discuss three types of action research, that of

a technical collaborative approach, a mutual collaborative approach and an

enhancement approach. McKernan (1991:16 -27) lists three types of action research,

the three fall roughly into the same categories.

The type of action research that has been chosen for this thesis is that of type I,

Technical/Technical-Collaborative. The reason behind this choice is that it closely

matches the aims for the thesis. The research includes process improvement and the

derivation of a framework for best test and QA practices and to evaluate this

framework in a real software project life-cycle.

Type 1: Technical/Technical-Collaborative

(McKernan 1991:16) The underlying goal of the researcher in this approach is to test

a particular intervention based on a pre-specified theoretical framework, the nature of

the collaboration between the researcher and the practitioner is technical and

facilitatory.

Technical action research promotes more efficient and effective practice. It is product

directed but promotes personal participation by practitioners in the process of

improvement.

Data Collection Methods

Two different data collection methods will be implemented to conduct the research.

Both quantitative and qualitative styles are applied to corroborate the data collected.

A quantitative experimentation will be the primary method. This will provide

statistical data for evaluating the effectiveness of the test & QA practices.

Page 10 of 225

The data will be in the format of the time to complete the project and the cause of any

delays if any, the number of test cycles that had to be run and the number of defects

found during the testing of the project and their severity. In order to reduce the

influences of external dependent variables a secondary technique of interviewing will

be conducted.

Population

For this thesis the population will be the employed developers, testers, technical

support engineers and managers of the projects in which the experiments are being

conducted.

Page 11 of 225

3 Chapter Three - What is software testing

3.1.1 Principles of software testing

The purpose of software testing is to detect errors in the software. The tester should

ideally detect all errors before the software is released to the customer. Full test

coverage of a program is impossible. “Proving that a program is fault free is

equivalent to the famous halting problem of computer science, which is known to be

impossible” (Paul C. Jorgensen. 1995

The main principle of software testing “is the process of executing a program with the

intent of finding errors”. (Glenford J. Myers, 2004). To test the program more

thoroughly a tester would need to evaluate the program to detect both types of errors.

This principle is thus more detailed to “Test the program to see if it does what it is

supposed to and to see if it does what it is not supposed to do”. (Glenford J. Myers,

2004)

In order for the tester to find these errors, he will devise a number of tests to execute

on the software itself. Theses tests must be based on prior knowledge of the software.

The two main thrusts of testing are firstly based on the composition of the software,

i.e. its internal structure. Secondly based on the business or intended purpose of the

software, i.e. the functional aspect of the software.

Based on one of these box test paradigms the tester will write a series of tests (test

cases) to detect any errors and to evaluate if the outcome of the test meets with the

software design. “Invalid and unexpected input data are more effective at detecting

errors than valid and expected data” (Glenford J. Myers, 2004). The problem here is

determining whether or not the results of the tests are errors or actual expected results.

Where errors are detected, it is prudent to test this area of the program in more detail

as statistically more errors will be present in this area “The probability of the

existence of more errors in a section of a program is proportional to the number of

errors already found in that section” (Glenford J. Myers, 2004).

Page 12 of 225

3.2 Principal testing methods

3.2.1 Functional testing (black box)

Functional testing is “testing that ignores the internal mechanism of a system or

component and focuses solely on the outputs generated in response to selected inputs

and execution conditions” (Jerry Zeyu Gao et al, 2003). Functional testing is directed

at executing test cases on the functional requirements of software to determine if the

results are acceptable.

“The use of equivalence classes as the basis for functional testing has two

motivations: we would like to have the sense of complete testing, and at the same

time, we would hope that we are avoiding redundancy” (Paul C Jorgensen. 1995)

The method for equivalence classes / partitioning uses two rules:

1. A test case must reduce by more than 1 the number of other test cases that must be

developed to achieve some predefined goal of reasonable testing.

2. It covers a large set of other possible test cases, i.e. it tells us something about the

presence or absence of errors over and above this specific set of input values.

(Glenford J. Myers, 2004).

The second consideration is used to develop a set of challenging conditions to be

tested. The first consideration is then used to develop a minimal set of test cases

covering these conditions.

“For the partition testing, input domain will be classified into different disjointed

partitions. Ideally, every element in each partition has the same possibility to either

reveal or hide a fault. But based on programming experiences, this is usually not true.

Values that are close to the boundary of the partition are more likely to expose errors”

(Jerry Zeyu Gao et al, 2003).

Boundary value analysis explores test situations on and around the edges of

equivalence classes. The conditions are those situations directly on, above and below

Page 13 of 225

the edges of input equivalence classes. The two differences between Equivalent

partitioning and boundary analysis are:

1. Boundary value analysis requires that each edge requires a test case, equivalence

classes uses one input as one test case.

2. The test cases in boundary analysis require the output space to be considered also

for test cases. The output space of equivalence classes are not considered as test

cases.

Typically, a few rules of thumb can be applied so that both equivalent partitioning and

boundary analysis can both be applied for test cases that are more comprehensive. The

edges that are referred to are generally the upper and lower values permitted by an

applications input such as the first and last months of the year. The output domain

must also be considered so that the expected output is achieved and also to explore

each alternative unexpected output.

If an input condition requires a minimum and maximum range such as that above then use the valid

months 1 & 12, also use the invalid months of 0 and 13.

If an input condition specifies a range of values permitted such as between -1000.0 and +1000.0 then

use -1000.1, -1000.0, 0, 1000.0 and 1000.1.

If the output domain expects to calculate a person‟s age based on the input date of birth and the current

date then attempt to generate additional invalid output domains such as a 0 age, a negative age and an

age in excess of the maximum, 200 years old for example.

If the output domain expects more than one output, for example a date of birth, a current age and a

retirement age. Then generate an output domain with 0,1,2,3 and 4 valid and invalid output domains.

Fig 3.1 boundary value analysis examples.

A competent tester will however have the traits of wanting to excel at breaking an

application in the most unexpected manner and with increased experience will more

than likely be able to create additional test cases to accomplish just this. Error

guessing is “is likened to a natural intuition or skill to determine how things work and

how best to break them” (Glenford J. Myers, 2004) these additional error guessing

test cases can unearth the most unexpected outcomes from systems.

Page 14 of 225

3.2.2 Structural testing (white box)

There are two benefits of structural testing; the first is the creation of test cases based

on the logic of the application. The second is the detection of how successful tests are

by examining how many different paths through a program were executed.

“In path testing, a major difficulty is that there are too many feasible paths in a

program. Path-testing techniques use only structural information to derive a finite

subset of those paths, and often it is very difficult to derive an effective subset of

paths” (Jerry Zeyu GAO et al, 2003)

 The use of test cases based on the logic of programs would require a map of the

nodes and connecting paths. You would also need equivalent methodologies to

determine what test cases to create or to determine by some metrics how successful

the test cases were. To test and evaluate the program the tester should select test data

so that each path is covered at least once. This does not guarantee that all errors will

be detected since there may be a substantially large number of paths in the programs

logic. As each decision on a path has a subsequent decision on the same path the

magnitude of nodes and different paths increases from 2
2
 to 2

n
 where n is the number

of different paths through the code. To increase the rate of error detection a number of

metrics can be calculated to evaluate just how successful test cases are.

 Statement coverage

 Decision Coverage

 Condition Coverage

 Decision-condition coverage

The complexity of the logic is determined by the number of different nodes and the

number of different possible paths through the application. The use of the above

metrics would enable the tester to determine how much of the code has been

executed. The test case results demonstrate the likelihood of the future success of the

application.

Page 15 of 225

3.2.3 Grey box testing

Grey box testing is a blend of white and black box testing. In order to conduct white

box testing the code needs to be analysed and the paths through the logic mapped out.

This is a time consuming and expensive process which would typically require tool

support. It would be conducted in the more mission critical software systems such as

aeronautics, automotive and other mission critical systems. Not all software houses

have such tools or the time or need to go to such depths for analysing the code.

However ignoring structural testing and only conducting functional tests would leave

a large percentage of defects unnoticed until the system goes live. To circumvent this

grey box testing is used.

The design or architecture of the system would be used to map out the logic of certain

components in the system. The developers themselves would typically also be asked

for input into how certain modules were coded. This information is invaluable in

assisting the tester design intuitive positive and negative tests for the system. Test data

could also be created that would give best coverage of the system.

The data flow and business organisation of the application under test would also

greatly assist the tester to ensure that the test cases adequately cover all of the

functionality. The design of use cases that depict user scenarios help the tester to

appreciate the important business rules and to focus on these. The flow of data during

the business functionality is also critical for testing. “Use cases capture the system‟s

functional requirements from the user‟s perspective; they also serve as the foundation

for developing system test cases”. (William. E. Lewis. 2005)

Page 16 of 225

3.2.4 Thread Testing

 “An approach most suitable for real-time systems is that of thread testing. The

system is segmented into threads where software test and construction are

interwoven. The modules associated with each thread are coded and tested in the

order that is defined within the schedule. Integrating the builds will eventually

construct the entire system”. (De Millo et al. 1987).

The feasibility of thread testing is dependent on a sequential development process.

In a scheduled sequence the builds of software should deliver a certain component

of functionality. The testing is conducted on each successive build or thread, each

thread if successful is then integrated into the entire system. The test process is

intertwined with the development process more closely than with other

approaches. The most critical threads should be developed and tested first. The

schedule for both development and test would overlap on the same components

with development having a certain amount of lead time. A good visual

representation would be a staggered production line, where certain components

are assembled in a predefined order with one side of the line assembling the

components with the opposite member conducting quality control checks. By the

time that the product reaches the end of the line it should be fully complete and

approved by quality.

Fig 3.2 Example schedule for thread testing with 3 threads X, Y, and Z

Month March April May June July

Development

Test
X Y Z

X Y Z

Page 17 of 225

3.2.5 System Testing

Subsequent to integration testing a complete system or application has been

developed with working interfaces. This does not mean that the system is necessarily

complete. In order to be satisfied that a system is both entirely complete and correct,

you would need to be confident that all of its intended functionality exists and that it

performs each correctly under every foreseeable circumstance that is possible during

its operation. System testing is an attempt to demonstrate if the program as a whole

does meet its stated objective.

System testing is non trivial and is therefore broken down into many different test

types, sometimes referred to as higher order tests. Each of the higher order tests

targets a particular domain of the system. These domains are likely problem areas that

could potentially prevent the system performing some of its intended purpose. System

testing as its name suggests, means that each of the elected higher order tests are

executed on the system as a whole.

It is advantageous for an independent team to perform the system testing including

some end users, a representative of the development team and of course the testers

who have to know the system in its entirety and the target audience.

“When you finish module-testing a program, you have really only just begun the

testing process. This is especially true of large or complex programs. To complete

testing, then some form of further testing is necessary. We call this new form higher-

order testing. The need for higher-order testing increases as the size of the program

increases. The reason is that the ratio of design errors to coding errors is considerably

higher in large programs than in small programs.” (Glenford J. Myers, 2004).

Page 18 of 225

The main higher order tests are listed and 2 relevant for this thesis are outlined below:

Performance testing

Load/Volume testing

Stress testing

Security testing

Compatibility testing

Conversion Testing

Backup testing

Recovery testing

Installation testing

Reliability testing

Usability testing

Acceptance testing

Functional Testing

Fig 3.3 Higher order system tests

Two system tests that are pertinent to this thesis are explained below in more detail.

Usability Tests

The objective of usability testing is to determine how well the user will be able to use,

understand and navigate through the application. If the system has a UI that is

separate from the main thrust of the business rules and data then usability testing

should be performed on the UI as early as one is available. If the UI is integrated with

the entire application then changes to it are very costly and if possible as portions of

the UI are developed they should be evaluated for their usability. Without

consideration of the type of user interface employed there are a common number of

considerations that should be used when designing the user interface tests.

Page 19 of 225

 The tests should involve assessing the system to check if it has good human

compatible interface (HCI) features such as:

 Intuitive to use

 No overly complex prompts or choices

 No non standard UI elements that are unfamiliar to competent users

 Customisable global defaults and options for advanced users

 No poor error messages that are uninformative

 User is not required to remember too much information during navigation

 No difficult log in procedures

 No unclear defaults

 Positive feedback after input completion

 Effective feedback during lengthy processing

 No loss of data during navigation through items

 No unclear position and direction within the navigation through the system

 General Inconsistency

 Clarity of purpose, intentions

 Uniform style and abbreviations

Acceptance Testing

The objective of acceptance testing is for the user to verify that they are satisfied with

the system and that they are content that all of the requirements have been met. It is a

requirements based test performed by the customer or a subset of end users tests.

Depending on the customer the acceptance tests are designed by the QA department

or the customer themselves. It is ultimately executed by the customer. The tests are

devised to show that the program meet its contracted requirements.

The acceptance tests may be performed on a pre-production environment or on a

production environment or even both. Typically the software development contract

will state a time frame in which the customer may conduct their acceptance tests and

within this time frame the development house is liable for any defects encountered.

Outside of this time frame any defects fixes are charged to the customer.

Page 20 of 225

3.3 The Test Process

The creation of tests and the execution of tests is a process itself, it is also a sub

process for the entire development effort, “Planning, design and performance of

testing activities are carried out throughout the software development process. These

activies are divided in phases, beginning in the design stage and ending when the

software is installed at the customer‟s site”. (Daniel Galin, 2004).

The test process is broken down into activities by individual testers where the main

thrust of the test effort is concentrated. It is advisable to document the effort in an

evolving timeframe where the planning and preparations are conducted first with the

design and execution of test cases later. The management of the test process is crucial

for an effective test effort, for individual applications the test process is used on a per

project basis.

“Software testing focuses on test planning, test design, test development, and test

execution. Quality control is the process and methods used to monitor work and

observe whether requirements are met. It focuses on structured walkthroughs and

inspections to remove defects introduced during the software development lifecycle”

(William E. Lewis, 2004). The topic of quality control or quality assurance is covered

in the next chapter. It is noteworthy that in software development company‟s there is

frequent confusion over the definition of testing and that of quality assurance. The

team who perform testing are frequently titled quality assurance or QA, but are

responsible for testing only. If the company do not have a dedicated quality assurance

team then the testing team can bear this responsibility in addition to testing. It is

because of this reason that I would like to combine test and QA practices into one

process. This will be covered in chapter six. Currently the traditional testing only

process will be discussed.

Page 21 of 225

In the context of testing only, the test process consists of the following elements:

1. Test planning

a. Test preparation – test strategy

b. Test planning – test plan

c. Test design – test scripts

2. Test execution

3. Defect management

4. Release management

3.3.1 Test Planning

It is imperative that proper test planning be conducted from the project outset rather

than beginning testing after the code has been completed. The test project planning

must conincide with the project plan and there are different stages of the planning

process. It is common to have the following test documents in the order below:

1. The test strategy

2. The test plan

3. The master test plan (Should a number of test plans be required)

4. The test cases

1. The test strategy

The test strategy is a document where the entire test approach is outlined and all key

people, activities and participants are listed in relation to their responsibilities. The

test strategy is written at the beginning of a project where the project stakeholders

have been assigned. The person responsible for this document is typically an

experienced tester, a leader or manager depending on the size of the project.

The activities associated with the test strategy include the folloing:

1. Information gathering

 Interview project stakeholders (role players)

Page 22 of 225

 Understand the project by reading documents e.g. end users, resources,

existing application documentation, budget, expected project duration.

2. Identify the project objectives (purpose, scope, benefits, strategy, constraints)

 understand the project plans (schedule, assignments – resources, project

breakdown – modules)

 understand the project development methodology (how is it being

developed, level of expertese)

 identify high level business requirements (minimum HW requirements,

performance requirements, design constraints, dB, platform)

 Perform risk analysis (compatability, data loss, user abilities, high risk

components, weighting areas of risk)

3. Document the strategy that defines how the project will be tested under a

number of headings.

Content Heading Purpose

Introduction Describe the project for the reader

Scope What is in scope for the test effort

References Reference external documents

Test Approach How the testing will be conducted

Test Types The testing types that will be used

Traceability How requirements will be tested

Schedule Identify at a high level the time frame for testing

Roles and Responsibilities Who will do what

Test Tools What tools will be needed

Test Environment What is required for the testing

Test Standards What standards need to be met

Entry and Exit Criteria Define what these are

Fig 3.4 Typical Test strategy headings

Page 23 of 225

The Test Plan

The test plan is a document that takes the test strategy and develops a workable plan

for the testing that will be executed for the project. The test plan is a lower level

document than strategy, the same principles are applied to its creation as a that of a

test strategy. It is a document which will change to meet with the projects execution.

There would be more project documentation available and more key participants in

the project available for information gathering and for the document‟s approval. The

typical headings and contents of the headings follow on the next page:

Content Heading Purpose

Introduction Describe the project for the reader

Risks, dependencies,

assumptions and constraints

Identify and mitigate against the risks for the testing

of the project

Testing Approach The test stages and test types for each stage

Entry and exit criteria The entry and exit criteria for each stage

Testing process Define what process will be carried out for the

testing stages

Deliverables The deliverables from the test stages

Milestones The milestones for each stage

Schedule Breakdown the testing milestones into their

respective schedules

Environmental The testing environment

Test Data Test data required

Responsibilities, staffing and

training

The resources and training required

Configuration Management /

Version Control

The management of requirement changes and

versions of code and builds

Test Case Design How the test cases will be designed

Change Control What must be followed if there is a change in

requirements or builds

Test Execution Management How test execution will be managed

Defect Tracking How defects are tracked with development and test

Page 24 of 225

Content Heading Purpose

Management process and

activities

Communication and escalation of issues and reports

with management

Fig 3.5 Typical test plan headings

Test case design and documentation

When the test plan has been completed the test cases are designed for each of the test

stages. The test case design should adhere to a standard that is outlined in the test

plan. It is important when test design is concerned that traceability to project

requirements and design documents is adhered to so that test coverage can be assured

when the tests are executed. The test stages should all have their suite of test cases.

The test cases should become more high level with each progressive stage of testing.

3.3.2 Manage Test Execution

The management of the test effort is a collaborative process primarily between the test

team and the development team but also with the business representative of the

product and with the customer. In order to ensure an effective test effort and that all

participants understand the activities it is worthwhile to document and publish a

process in addition to the project documents. The activities in a typical process are not

limited to, but may include the following:

 Preparations

1. Organise the team

2. Establish the test environment (tools, network, servers, client boxes)

3. Refactor the test schedule if required

4. Verify that any new requirements are refactored in the test plan/scripts

5. Refine tests and create a new test set

6. Verify the new build and conduct smoke tests

7. Regression test the fixes

8. Report initial test progress to verify that testing has commenced

Page 25 of 225

Test Stage Execution

9. Log defects into a database stating the test number if available for traceability

10. Manage the test execution progress and monitor the metrics

11. Manage the defects with testers and development managers

12. Report the weekly status of tests and defects to management

13. Document the defects and write a test summary report

 Post Test Stage Execution

14. Write a test summary report

15. Publish metric graphs

16. Evaluate if the exit criteria are met, if not then prepare for the next test

iteration

17. If the exit criteria have been met then continue to release management

Release Management

18. Conduct a project closedown meeting and write up the release notes

19. Document the defect metrics indicating quality

20. Bundle the release and distribute it

 Post Project review

21. Write a project summary report

22. Improve the test environment, test data and test procedures

Page 26 of 225

Test Project Management

It is crucial to ensure that the project is delivered as defect free as time and costs

permit. High profile business losses due to poor quality systems have increased the

profile for testing. The Test Manager and tester must be more focused on improving

the quality of deliverables at each stage of the development process. The complexity

of the system must be broken down into logical components that can be tackled with

ease and with accuracy. Armed with this knowledge the test manager must:

 Create complete and meaningful test plan and test cases.

 Be armed with enough business acumen to substantiate any arguments

between defects and the criticality of them if necessary

 Be in a position to offer assistance and guidance to other testers and role

holders

 Suggest valid improvements to the system

 Always test for full coverage

 Create a knowledge base that grows with each new project

Page 27 of 225

Test Estimation

Test Estimation effort should concern itself with the following resources:

 The number of testers required

 Cost of hardware necessary for testing

 Cost of software necessary for testing

 Break down the key test objectives into tasks that can have resources

assigned to them

 Determine the entry and exit criteria of each task

 Determine what tasks can run concurrently

 Enter the tasks into a project schedule grouping with appropriate time

frames

o Time frames that allow for concurrent activity should be assigned

to different testers to allow for early completion

o Time frames that are dependent on previous tasks should also be

scheduled on a finish to start basis, this ensures that the previous

task is completed before the subsequent task begins

 Enter in milestones for the end of key activities, e.g. test plan complete,

test cases complete

Defect monitoring and management

No software product can be produced with 100% perfection. The product will mature

over its life-cycle and the number of defects diminish as it improves with

enhancements and corrections, unless it outlives its effective life-cycle and becomes

unmaintainable.

Defect reporting and tracking are essential to the test management process. Defects

need to be reported as they are found with sufficient information for them to be

worthwhile reporting. The defects also need to be assessed after reporting, so that the

team can agree on the severity of the defect and its impact on the project.

Page 28 of 225

“An integral part of the tester‟s workbench is the quality control function which can

identify defects uncovered through testing as well as problems in the testing process

iteself. Appropriate recording and analysis of these defects is essential to improving

the testing process” (William E. Lewis, 2004).

The defect report should contain the following information during its initial report:

 Unique Defect number

 Date

 Tester name

 Product Name

 Component or Module ID

 Build number of product

 Unique Test case number

 Reference to test data used

 Steps for reproduction if different from test case

 Severity

 Defect Category

 Defect Status

 Responsibility for follow up

After follow up:

 Developer‟s comments

 Tester‟s Comments

 Resolution category

Defect meetings need to be conducted periodically. The test team and development

team need to attend to agree on the impact of the defects and on their scheduled

resolution. It may be advantageous for the test team to discuss their opinion on the

defects before holding the meeting. For a maintenance project it may be necessary for

the customer or some-customer facing team to be present for a customer‟s perpective

or business impact. Typical defect classification, descriptions and resolution priority

are listed below.

Page 29 of 225

Classification Description Action

Show stopper: Product cannot be used without this item being fixed,

potential data loss or corruption. Users and business

use is severely affected. The reputation of the

company would certainly be diminished.

Resolve immediately

Critical There is a workaround that allows for the system to

be used. Business use is affected but only minimally.

Would affect the reputation of the company.

Resolve as soon as

possible.

Normal If the defect does not fit into either of the above

category. Minimum affect on business use.

Resolve when working

on the next build.

Minor Very trivial defect that does not affect business use.

Typically a cosmetic issue or something that happens

very infrequently.

Resolve when time

permits.

Fig 3.6 Defect classification and resolution priorities.

Ideally there would be two methods of reporting the classification of a defect.

 The first is the perception of the defect by the discoverer: a tester,

customer or other user. This is considered the defect classification. The

impact on the test effort or the customer.

 The second is the agreed impact on the test team, the customer and for the

ability of the development team to resolve the defect. This can be

considered as the resolution priority.

When a defect state is changed for example by altering its classification or when it is

resolved then an entry should be made for it in the repository. The purpose of

changing its state should be documented along with the individual responsible for

altering its state. This aids traceability and for ensuring that the defects are handled

correctly. Defects change state on a few occasions and for different reasons. They

have their own life-cycle.

Page 30 of 225

The life-cycle of a defect loosely follows the states below:

Submit defect -> Assigned for fixing -> Fixed code -> Passed Test -> Closed.

Fig 3.7 Defect Lifecycle

Page 31 of 225

To aid with root cause analysis, when defects are resolved or closed they should be

given a category that describes the root cause of the defect. This root cause could be

one of a few items:

Root cause Resolution

Works as Intended: Not a defect, misunderstanding of the system by the tester.

Code Change A Code change was required to correct the defect.

Training Required Customer requires training to fully understand correct use of the system.

Data related Data anomoly caused the defect.

New Requirement: A change request for an enhancement or new feature.

Documentation The current documentation was erroneous, leading for the defect to be

created.

Fig 3.8 root cause and resolution

Page 32 of 225

Integrating testing into development life-cycle

Testing should not be considered as a separate process to that of development. It

should be an integral part of development, if not then testing will start later than it

should and defects will be discovered much later in a product‟s development. This

will have the double-sided effect of having more costly corrections and tardy release

of a product.

“Testing must be integrated into the systems development methodology. Considered

as a seperate function, it may not receive the appropriate resources and commitment.

Testing as an integrated function, however prevents development from proceeding

without testing” (William E. Lewis, 2004).

There are two fundamental parts to this process.

1. The testing steps must be selected and integrated into the development

methodology. For each development stage there must be a corresponding

testing stage. This may mean additional tasks for the developers at the

respective stage. ”The testing steps and tasks are integrated into the systems

development methodology through addition or modification of tasks for

developmental personnel to perform during the creation of an application

system” (William E. Lewis, 2004).

2. Defects must be recorded during the development stages (analysis, design,

coding, etc) as they are discovered. This is for the benefit of analysing where

defects occur and how to improve their detection. “The test manager must be

able to capture information about the problems or defects that occur; without

this information, it is difficult to improve testing” (William E. Lewis, 2004).

Page 33 of 225

The steps necessary in integrating testing into development:

 There needs to be a team with understanding of both the testing and

development process.

 The development team explain their perspective for each of the stages

 Identify the testing tasks that need to be performed for each development

stage

 Establish the overlap between testing and development for each stage

 Modify the development methodology for the new tasks that are required

 Modify the testing methodology for the tasks that are required

 Incorporate and document the defect management process

 Train both teams for the new integrated development methodology

Testing / development of offshore projects

On the occasion that a company requires additional resources to meet the needs of a

project team but do not have sufficient resources to do so, it is often more viable and

less expensive to outsource the work to an external company. If the external company

is located on foreign shores the term is frequently referred to as offshore.

The principal motive for offshore development or testing is financial. There are

additional operational overheads associated with offshore projects since the teams

conducting the work are working to a larger degree independently of each other.

Once the business proposal and costs have been agreed and the contract signed, in

effect the project has begun. It would be good practice for the technical teams to

establish a contract in addition to that of the business contract so that each technical

team knows what exactly is expected of them and what they can expect from the other

team. A good way of doing this is to conduct an audit of each other. To learn each

teams local operation is advantageous. This activity has the benefit of learning the

process for the other team and also for the indentification of commonality and the

building of bridges between both parties. A good source of such agreement between

both sides would be a project quality plan.

Page 34 of 225

Project Quality Plan

1. The requirements must be agreed before the project can begin

2. The roles and responsibilities of each team participant is defined

3. The quality standards that must be adhered to for each deliverable is stated

4. The methodologies for each team must be explained and agreed

5. The milestones during the project are outlined in a project schedule

6. The content of each deliverable must be clearly stated

7. The entrance and exit criteria for each stage must be defined

8. There should be business knowledge transfer during the discussion of the

project and when the project teams are assembled, including the supply of all

relevant documentation.

9. Establish the development and testing envioronment for the offshore team

(The hardware, software, tools, licences and data relevant to the project must

be agreed upon and if necessary transferred to the offshore team)

These quality principles would be defined after the documentation of each party has

been read. It is the precursor to a project plan and perhaps the test plan. When this

quality plan has been agreed the project manager draws up a schedule for the contract.

The project plan would come under the auspices of QA rather than testing, QA is

discussed in detail in the next chapter.

Page 35 of 225

3.4 Summary

In this chapter, the goal for software testing success – error detection was explained

and how this goal differs to that of software development. The basis for detecting

errors in the program lies with the creation and execution of test cases. The test cases

are derived in different manners dependent on the visibility of the internal structure of

the application under test (AUT), hence white, black and grey box testing. These three

different testing principles were explored and how each type would be typically used.

The system testing needs on the complete system was mentioned and why depending

on the objectives of the system that further specific testing is necessary. Two topical

types were explained and why they would be required. The combination of the test

types and stages are assembled into a test process.

The four elements to the test process were examined, the planning of tests and their

subsequent execution, the management of the defects that the test execution detects

and finally the release of the build to the end user. The testing process can be

independent to the development effort but the benefits and activities to integrate it

with the development process were discussed. The last topic that was mentioned was

in relation to conducting test process or development off shore. The main topic of this

chapter was in relation to the test process itself and its components.

“Software testing is a popular risk management strategy. It is used to verify that

functional requirements were met. The elimination of this approach, however, is that

by the time testing occurs it is too late to build quality into the product” (William E.

Lewis, 2004).

 The testing of a program alone does not guarantee that it will be error free or that it

will meet with its intended requirements, as these requirements are susceptible to

human error. It is a significant leap in the direction of being error free. A step further

toward being error free is to test or evaluate each stage the development effort to

ensure that the delivered program meets with its intended purpose and that it does this

Page 36 of 225

in a manner that bears well on its creators. A high quality program can not be

achieved by testing alone; further effort must be made to achieve this. The quality of

the completed program reflects on the efforts of all project parties, to this end, the

quality assurance of the program and indeed the part of each party in its creation must

be placed under scrutiny.

Page 37 of 225

4 Chapter Four – Quality Assurance

4.1 Complications with software and its quality assurance

Quality Assurance has its roots in assuring the quality of a manufactured physical

product; this is achieved by inspecting the product and evaluating its quality near its

completion or at various stages of production. Software however is not as tangible as

products that are more physical. Typically, a software product is its functionality and

not its use. There is no physical software product to evaluate; there is code and not

always accompanying documentation. This “invisible” nature of software adds to the

complications of assessing its quality. “Industrial products are visible, software

products are invisible. Most of the defects in an industrial product can be detected

during the manufacturing process, however defects in software products are invisible,

as in the fact that parts of a software package may be absent from the beginning”

(Daniel Galin, 2004)

There are further complications with assessing software quality; this is attributed to its

inherent complexity. Software systems have grown from standalone systems on a

single server to globally networked servers spanning multiple countries, and multiple

servers. There are now multiple layers to software, where each layer must interface

with the software layer above and that below before interfacing with other external

systems.

Software may be developed by a team of people who carry out specific roles; the roles

are played out during different stages of development. The teamwork driven

development life-cycle is open to a multitude of problems, particularly because of the

inter-dependence of people in the life-cycle. These problems come in many forms,

such as how well the team gel together. Poor relationships between individual team

members affect the productivity and creativity of the team. The experience of the

team can also have implications where experienced members are supporting

inexperienced members. If a project team member departs during the middle of the

life-cycle, the consequences of this departure can impact on the success of the project.

Page 38 of 225

These complications are present in other team orientated projects, but the invisible

and intangible nature of the software product compounds this further.

The software development team is also affected by external factors such as the

customer‟s documented requirements and how detailed and accurate they represent

the actual requirements. The schedule and budget allocated to the project will also

have an effect on the quality of the software. After a project has been completed and

installed in its target environment, the system must then be maintained for the

duration of its lifespan, the ease with which these changes are conducted successfully

can affect the quality of the system.

Software Quality is open to discussion and differing authors on the topic have

different views on the source of the quality attributes. Crosby (1979 quoted in Daniel

Galin, 2004, p.24) defines quality as both the 'conformance to requirements' and 'non-

conformance implies defects'. Juran and Gryna (1970 quoted in Daniel Galin, 2004,

p.24) refer to software quality as 'fitness for use' and 'customers impression' and later

'freedom of deficiencies'. A third view is that of Pressman (2000 quoted in Daniel

Galin, 2004, p.25) who states that there are three requirements for software quality,

namely 'Specific functional requirements', 'adhering to quality standards in the

contract' and lastly 'Good software engineering practices'.

Each of the three views on software quality has alluded to ways of measuring the

quality of the developed software. The whole process of developing the software is

best described as 'Software Engineering' and the measurement of the quality of the

software is done during the „Quality Assurance‟ activity. The software engineering

includes the development of the software from customer requirements to a delivered

software product, the product quality can then be described in terms of the number of

defects that arise in the software. The Software Quality Assurance (SQA) domain lies

in the quality management of software during the software engineering development

process, SQA defines and measures the inputs and outputs of the development

processes and quantifies the quality of the software in terms of defects. In order to

measure the software quality it is advantageous to know what to measure.

Page 39 of 225

4.1.1 Factors that impact Software Quality

McCall (1977 quoted in Daniel Galin, 2004, p.37) has identified three different

categories of factors that software quality can come under. The factors are spread over

the lifespan of the application and not only its original development.

The first set of factors is associated with the original operation of the software product

by a user. The second set of factors is directed towards the revision of the product

from an existing product to new or enhanced product and how the quality of the

original design and code allows for this revision. The last set of factors is concerned

with the transition of the product to another target environment, such as a new data

base or operating system.

The factors are outlined in each of the tables below:

Quality Factors for new software development

Product operational Product revision Product transition

 Correctness  Maintainability  Portability

 Reliability  Flexibility  Re-usability

 Efficiency  Testability  Interoperability

 Integrity

 Usability

Fig 4.1 Mc Calls Quality factors for new software development

Examples of each of these Quality factors are mentioned briefly overleaf:

Page 40 of 225

Mc Calls Software Quality Factors

Product operational

Correctness

The accuracy of the outputs.

Completeness of the output (If 20 chars are input, then 20 chars should be

displayed).

Timeliness of output (< 3 seconds response time for on-line trading).

Reliability

Mean time between failure (MTBF) - the average time between a number of

transactions that one can fail.

The allowable downtime for a server is 5 minutes per year of operation

Efficiency

The number of resources required to perform all functions of the software

within predefined time frames.

The response time for each transaction must be less than 3 seconds.

Data Integrity

Security of the system. Prevention of un-authorised users to gain access.

Prevention of critical data being transmitted over the network. Encryption is

used where necessary.

Usability

Ease of use for unfamiliar users to become acquainted with the UI.

Ease of navigation.

Intuitive to use, the user can very quickly learn how to use the application.

Fig 4.2 Mc Calls Product Operational Quality Factor examples

Page 41 of 225

Product revision

“According to Mc Call model of software quality factors, three quality factors

comprise the product revision category. These factors deal with those requirements

that affect the complete range of software maintenance activities: corrective

maintenance, adaptive maintenance and perfective maintenance” (Daniel Galin, 2004)

Product revision

Maintainability

This is determined by the amount maintenance effort that will be needed by users

and development teams to maintain the functionality of existing functionality and

to add in new functionality.

This is an indication of the modularity of the structure of the software.

Flexibility

The capability and efforts required to support adaptive maintenance on the

system. The easier it is to adapt the software to maintenance activities the more

flexible it is.

Testability

The ease with which the QA can be conducted on the system.

The amount of built in diagnostic support to facilitate the testing of the system for

end users, testers and system administrators.

Fig 4.3 Mc Calls Product Revision Quality Factor examples

Product transition

Portability Portability deals with a change in environment, e.g. Hardware or Operating

system.

Re usability Re usability requirements deal with the ease of the use of existing software

modules in another product or system.

Interoperability Interoperability requirements focus on the use of the product with other systems.

Fig 4.4 Mc Calls Product Transition Quality Factor examples

Where McCall‟s quality factors are used to calculate the quality of the product and

particularly the code and documentation they do not take into consideration other

quality factors such as the project size, complexity or the team of developers and

testers themselves. Other factors that influence greatly the quality of the software

produced include the following:

Page 42 of 225

Project factors

 Magnitude of the project

 Technical complexity and difficulty

 Extent of reuse of software components

 Severity of failure outcomes if the project fails

Team factors

 Professional qualifications of the team members

 Team acquaintance with the project and its experience of the subject

domain

 Availability of staff members who can support the team

 Familiarity within the team members, the ratio of new people versus

existing team members

Page 43 of 225

4.2 Software Quality Assurance

 A planned and systematic pattern of all actions necessary to provide adequate

confidence that a software work product conforms to established technical

requirements.

 A set of activities designed to evaluate the process by which software work

products are developed and/or maintained.

(IEEE quoted in Daniel Galin, 2004) also SEI Carnegie Mello University

Glossary of terms for CMM Key practices.

For the purpose of this thesis Software quality assurance (SQA) is considered a

process for the measurement of deliverables and activities during each stage of the

development lifecycle. The objective of SQA is to quantify the quality of the products

and the activities giving rise to them and also to guide a quality improvement effort. It

is advantageous to integrate it into the software development process. SQA should

also take into consideration the maintenance of a product, the technical solution,

product budget and scope. Quality assurance differs from quality control in that

quality control is a set of activities designed to evaluate the quality of a developed or

manufactured product. The evaluation is conducted during or after the production of

the product. Quality assurance however reduces the cost of guaranteeing quality by a

variety of activities performed throughout the development and manufacturing

process.

Page 44 of 225

For the purpose of this thesis I will focus on the following aspects to SQA. Each SQA

activity that I discuss is modular; the SQA activities take place at each developmental

stage of the development lifecycle. The stages are categorised into areas for

requirements capture, system design and coding and testing and finally release.

1. Verification – The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions

imposed at the start of that phase.

2. Validation – The process of evaluating a system or component during or at the

end of the development process to determine whether it satisfies specific

requirements

3. Qualification – The process used to determine whether a system or

component is suitable for operational use.

During the analysis, design and coding stages of product development the outputs of

each stage need to be measured, monitored and managed so that each output can be

verified against its predefined exit criteria. When the final product has completed the

coding and integration stages it must be validated against the original user

requirements and signed off by senior team members as passed validation testing. At

each stage of this product development the efforts during the development must be

improved upon where possible in order to cut costs and remain competitive.

This is not an easy task when what is being produced is a program, which in itself is

intangible. This is where the complications of software quality assurance lie.

Page 45 of 225

4.2.1 Verification versus Validation

Verification originated in the aerospace industry during the design of systems. There

are two criteria:

1. The software must perform all intended functions

2. The software must not perform any function itself or in combination with

other functions that can degrade the performance of the system.

An effective verification effort must show that all requirements have been carried out

correctly, this is done by testing the requirements against the product buring delivery.

These tests can be reexecuted to achieve the same results should the system be

changed at a later date.

Verification is showing that a product meet its specified requirements at predefined

milestones during the development life-cycle. Validation checks that the system meets

the customer‟s requirements at the completion of the development life cycle. An

example system of verification versus validation is depicted below:

Fig 4.5 V-model of verification versus validation

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

Page 46 of 225

4.3 Software Quality measurement

“Satisfaction with the overall quality of the product and its specific dimensions is

usually obtained through various methods of customer surveys. For example the

specific parameters of customer satisfaction in software monitored by IBM include

the CUPRIMDSO categories (Capability, usability, performance, reliability,

installability, maintainability, documentation, service and overall) for Hewlitt-Packard

they are FURPS (functionability, usability, reliability, performance and service”

(Stephen H. Kan 2003, p.98)

The quality of the software that is produced in each process or model is described in

terms of the number of defects that are created. Typically the most common metric

for defects is the number of defects per thousand lines of code, or there is another

slightly different metric for the defects rate in terms of function points analysis (FPA)

abbreviated to (FP).

Defect rate = Sum of Defects / KLOC

Defect rate = Sum of Defects / FP

A line of code is derived from the physical lines of code that the developers write that

constitutes the input to the compiled software. A function can be defined as a

collection of executable statements that performs a certain task, together with

declarations of the formal parameters and local variables manipulated by those

statements (Conte et al., 1986). The number of function points refers to the number of

functions that are in the software code.

A more recent version of FPA – Mark II is used “to measure the functional size of any

software application that can be described in terms of logical transactions, each

comprising an input, process and output component, it is a method for the quantitative

analysis and measurement of information processing applications. It quantifies the

information processing requirements specified by the user to provide a figure that

expresses a size of the resulting software product. This size is suitable for the

purposes of performance measurement and estimating in relation to the activity

Page 47 of 225

associated with the software product” (United Kingdom Software Metrics

Association, 1998, internet) The number of function points is derived by multiplying

the function count (FC) by the value adjustment factor (VAF). The FC is derived by

summing the grand total of the number of each of the five weighting factors

multiplied by the number of components.

FP = FC * VAF

FC = Σ wi * xi

 i = 1..n

w is the weighting factors and x is the

number of components.

VAF = 0.65 + 0.01 * Σ ci

c is the total of the scores of characteristics,

and i = 1 to 14.

For the Function Count (FC) there are

five weighting factors:

1. 4* Number of external inputs

2. 5* number of external outputs

3. 10* Number of logical files

4. 7* Number of external interface

files

5. 4* Number of external inquiries

The VAF is an assessment on the impact of

14 general system characteristics in terms

of their likely effect on the application. It is

scaled in the range of zero to five. The 14

general characteristics are:

1. Data Communications

2. Distributed functions

3. Performance

4. Heavily used configurations

5. Transaction rate

6. Online data entry

7. End user efficiency

8. Online update

9. Complex processing

10. Re-usability

11. Installation ease

12. Operational ease

13. Multiple sites

14. Facilitation of change

Defects can then be expressed in terms of KLOC's or FP's. The defect rate is defined

as the number of defects per function point or thousand lines of code.

Page 48 of 225

4.3.1 Software Defects

With respect to the software, there are three classifications of software defects or bugs

as they are more commonly referred as:

1. Software Error

2. Software Fault

3. Software Failure

A software error occurs during the development of the software. This error can be in

the form of a grammatical error, a logical error where the outcome of a sequence of

executions will not result in what was intended or a misinterpretation of the user

requirements in the actual written code. It may be in the form of user documentation

not matching the software applications operation. An error may or may not be

detected during the coding or testing of the program before it is released to a

customer.

A software fault occurs as a result of an error that remains in the executing program.

Not all faults however are detected and the software may continue executing without

any obvious problems. There are cases where software faults go undetected for many

years of a programs existence.

A software failure is a fault that results in a detectable problem; hence it is referred

to as a failure. A failure would cause the application to malfunction in an obvious

manner that warrants the attention of system maintenance.

Page 49 of 225

4.3.2 Classification of Software Errors

Software errors can be categorised according to the different stages in which they

occur in the development life-cycle. “Software errors are the cause of poor software

quality, it is important to investigate the causes of these errors in order to prevent

them. A software error can be a „code error‟, a „procedure error‟, a „documentation

error‟, or a „software data error‟. (Daniel Galin, 2004). It should be emphasised that

the causes of all these errors are human, made by systems analysts, programmers

software testers, documentation experts, managers and sometimes clients and their

representatives. The causes of software errors can be classified further according to

the stages of the software development process.

For each development process stage a number of possible errors are mentioned:

Development Stage Possible errors

Business Requirements:

The errors are caused by human interaction

problems. At this stage it is the Business analyst

and customer involved in capturing the business

requirements.

 Faulty definition of requirements

 Absence of important requirements

 Inclusion of unnecessary

requirements

Systems Analysis:

Analysis of the system based on the business

requirements by the lead developers. The

interpretation of the requirements is a risk of

causing an error

 Misunderstanding of original

requirements

 Misunderstanding of change requests

 Misunderstanding of reported

problems

Design:

● During the system design stage deviations from the

requirements are possible where errors can be

made.

 Software reuse that is not 100%

compatible

 Leaving out some requirements due to

time constraints

 Deviations from requirements as a

result of creativity

Coding of modules:

During the coding the developers may make a

 Algorithms

 Sequence of component execution

 Boundary conditions

Page 50 of 225

Development Stage Possible errors

number of code errors.  Error handling

 Interfacing

 Improper use of the software

language

 Poor programming practice

 Unit Testing

Coding integration:

When integrating the different modules together, a

number of errors can occur.

 Integration problems when integrating

the code modules

 Overly complex code

 Interfacing problems

 Maintenance problems

 Interface testing problems

Testing:

There are a number of errors that the Test Engineer

can make during the testing stage:

 incomplete test plans

 failure to document detected errors

 failure to promptly correct detected

errors due to insufficient defect

descriptions

 incomplete testing due to time

pressure

Delivery and documentation:  Design documentation not kept up to

date

 User manual errors – out of date

descriptions for use

 Delivery of incomplete

documentation for maintenance teams

Fig 4.6 Classification of software errors

Page 51 of 225

The number of defects that enter in the project (termed defect injection, see fig 4.7)

increases with the continuation of the phases of software development. “Phase defect

removal effectiveness and related metrics associated with effectiveness analyses are

useful for quality planning and quality management. These measurements clearly

indicate which phase of the development process we should focus on for

improvement”. (Stephen H. Kan 2003, p.172)

Defect injection per development stage

0

5

10

15

20

25

30

35

40

45

50

Requirements Systems analysis Systems Design Coding

Number of defects

Fig 4.7 Defect injection Rate per development stage

Page 52 of 225

4.4 Structure of Software Quality Assurance (SQA)

In order to derive a plan for SQA, we must revisit the elements of software quality

assurance. The fundamentals of SQA deal with a planned activity to evaluate the

development process during its progress. This plan or architecture must be placed

around the entry to and the output from each stage of the development effort.

If the location and cause of the software defects or errors are taken into consideration

during the software development, then there is a starting point for assuring the quality

of each stage. These defects can also be considered in relation to the factors that affect

the software quality. The classification of the causes of the defects can be addressed

by SQA.

These combined factors that concern software quality, are the building blocks of an

SQA Architecture as per figure 4.5 (V-model of verification versus validation). SQA

is a continuously evolving entity with an emphasis on improving. There are three

parts to this architecture; they are listed below in figure 4.8.

The Architecture of SQA

SQA Component Activities

1. Planning from the project initiation

and planning stage

 Review and plan the project in its

entirety

 Create the QA plan

2. Management of the Project life-cycle

activities and components

 Create a defect removal and defect

injection prevention

3. Refactoring the Management of all

SQA components

 Instigate Software Quality

improvement

Fig 4.8 Structure of SQA

Page 53 of 225

4.4.1 Planning from the project initiation and project planning
stage

Projects that are carried out „in house‟ are more susceptible to failure than projects

which go under the more formal external contract route. For this reason the schedule

and budget failures are accompanied by lower than acceptable software quality, this is

largely due to a more casual attitude to meet deadlines. Contract review can alleviate

this by ensuring that the correct measures are put in place for the project. Following

the contract review, the project plans and schedule should be documented. Any risks

that are envisaged at this stage should also be documented with a probability of

occurrence and a mitigation plan identified should the risk occur.

Contract Review

Purpose of the contract review:

 Clarification and documentation of customers requirements

 Formal aspects of the business relationship and identification of

responsibilities

 Communication hierarchy, deliverables, acceptance criteria, formal phase

approval process, design and test follow up process, change request

procedure

 Estimation of project resources and timetable

 Estimation of company‟s exposure with respect to the project

 Estimation of the customer‟s capacity to meet commitments

 Definition of intellectual property rights

The „failure to review‟ can leave the project open to errors in relation to inadequate

definition of requirements, poor estimates of required resources, overrun of the

schedule or budget which impacts the team effort and hence quality. To alleviate this,

output from the review can be used as an input to the documentation of plans for both

development and quality assurance

Documentation of Development and Quality plans

Page 54 of 225

“Development and quality plans are major elements needed for project compliance

with 9000.3 standards. It is also an important element in the Capability Maturity

Model (CMM) for assessment of software development organisation maturity”

(Daniel Galin, 2004). For a project to be successful, a number of project plans need to

be prepared. The following tasks need to be performed following the contract review:

 Scheduling of development activities.

 Estimation of resources and budget.

 Recruitment and allocating of resources

 Identifying and risk assessment

 Providing reporting structure for project control

In addition to the elements mentioned in Galin 2004, a Development plan ideally

would contain the following elements:

Elements of a development plan

1. Project products  Design documents with dates of completion

 Set of deliverables

 Software products with completion and

installation site.

 Training tasks

2. Project interfaces  Interfaces with existing SW packages

 Interfaces with other software (dev teams)

 Interfaces with HW

3. Project methodology &

development tools

 UML

 Case Tools

4. Software development standards

and procedures

 e.g. Coding conventions

5. Mapping of project phases  Estimate of phase duration

 Logical sequence of phase completion

 Estimate of external resources required.

 Presentation using Gantt chart e.g. MS project,

critical path analysis. Start time, end time &

Page 55 of 225

Elements of a development plan

dependencies.

6. Project milestones  Completion dates

7. Staff Organisation  Roles and responsibilities

8. Development facilities  Tools

 Equipment

9. Development risks  Language

 Tool experience

 Staff shortages

 Independence of external suppliers

10. Risk Management Action  Risk identification

 Risk evaluation

 Mitigation planning

 Risk weighting

11. Control methods  Reports

 Meetings

12. Project cost estimation  Contract

 Schedule

 Estimates

Fig 4.9 Elements of a development plan

Risk Management is a contributing factor to software quality should the risks

materialise. It is worthwhile for SQA to independently evaluate that risk analysis and

planning has been performed. “Identification of software risk items (SRI) should

begin with the actual start of the project (pre-software stage) and be repeated

periodically throughout the project until its completion”. (Daniel Galin, 2004)

The evaluation of the identified SRI should be conducted for contingency plans to be

put in place. A list of the SRI‟s should be compiled and a priority assigned to each

risk in terms of determining the risk exposure.

Risk exposure = Probability of materializing * Estimate damage

A typical quality plan should contain the following items:

Page 56 of 225

Elements of the Quality plan

1. List of Quality Goals ● Quantitative – error severities

● Qualitative measurements (Downtime,

response time, throughput etc)

2. Review Activities ● Design review, test case reviews, etc

3. Software tests ● Test strategy, plan, test design,

environment etc

4. Acceptance tests ● Test strategy, plan, test design,

environment etc

5. Configuration management ● Change control, version control etc.

Fig 4.10 Elements of a Quality Plan

Page 57 of 225

4.4.2 Management of the Project life-cycle activities and
components

Software Quality Assurance Defect Removal

Considering that there are several factors that affect software quality there are a

number of activities that can be followed to improve the development stages in terms

of software quality. The activities are discussed below.

1. Reviews

2. Inspections

3. Walk through

4. Testing

5. Configuration management

“An inspection and walkthrough is an improvement over the desk-checking process

(the process of a programmer reading his or her own program before testing it).

Inspections and walkthroughs are more effective, again because people other than the

programs author are involved in the process. These methods generally are effective in

finding from 30 to 70% of the logic-design and coding errors in typical programs”

(Glenford J. Myers, 2004).

Procedural order and teamwork lie at the heart of formal design reviews, inspections

or walk-through. Each participant is expected to emphasise his or her area of

expertise. The knowledge that the work item will be reviewed stimulates the team to

work to their upper end of productivity.

For different stages of the development process, there are different defects that get

injected into the software. The rate of defect injection differs for each stage of

development. The QA activities must match the defect injection rate and type to be

effective at their removal. Fig 4.11 demonstrates the distribution of defect injection

for each of the four phases of the development process. Fig 4.12 identifies the

effectiveness at defect removal by QA activity and development phase. Lastly the cost

Page 58 of 225

associated with the QA activities are listed in Fig 4.13

“Defect origins (the phase in which defects were introduced) are distributed

throughout the development process, from the projects initiation to its completion” A

characteristic distribution of software defect origins based on Boehm (1981) and

Jones (1996), is shown below”. (Daniel Galin, 2004)

Characteristic Distribution of software defects origin

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Requirements

specifications

Analysis and

Design

Coding Documentation

Development Phase

P
e
rc

e
n

ta
g

e
 o

f
d

e
fe

c
t

in
je

c
ti

o
n

Fig 4.11 Characteristic Distribution of software defects origin (Daniel Galin, 2004)

Average defect filtering effectiveness by QA

0%

10%

20%

30%

40%

50%

60%

70%

C
o
d
e
 I

n
s
p
e
c
ti
o
n

D
e
s
ig

n
 R

e
v
ie

w

In
te

g
ra

ti
o
n
 T

e
s
t

S
y
s
te

m

T
e
s
ts

/A
c
c
e
p
ta

n
c
e

te
s
ts

U
n
it
 T

e
s
t

a
ft

e
r

c
o
d
e
 i
n
s
p
e
c
ti
o
n

QA Activity

P
e
rc

e
n

ta
g

e
 f

il
te

ri
n

g
 e

ff
e
c
ti

v
e
n

e
s
s

Fig 4.12 Average defect filtering effectiveness by QA (Daniel Galin, 2004)

Page 59 of 225

Average Defect filtering effectiveness cost

0

20

40

60

80

100

120

R
e
q
u
ir
e
m

e
n
ts

s
p
e
c
if
ic

a
ti
o
n

D
e
s
ig

n

U
n
it
 T

e
s
ts

In
te

g
ra

ti
o
n
 t

e
s
ts

S
y
s
te

m

te
s
ts

/a
c
c
e
p
ta

n
c
e

te
s
ts

C
u
s
to

m
e
r

Quality assurance activity

D
e
fe

c
t

fi
lt

e
ri

n
g

 e
ff

e
c
ti

v
e
n

e
s
s
 c

o
s
t

Fig 4.13 Representative average relative defect removal costs (Daniel Galin, 2004)

Reviews

The foundation of reviews is based on the human disposition to produce errors. The

author of a document or code is unlikely to discover their own errors irrespective of

the number of checks that they conduct. It is necessary for independent peers, experts,

superiors or customers to conduct a review of the artefact in question.

“Only others - those having different experiences and points of view, yet not directly

involved in creating the document are capable of reviewing the product and detecting

the errors unnoticed by the development team”. (Daniel Galin, 2004. pp. 150)

These reviews provide early detection and prevent passing of design and analysis

errors downstream. It can also detect defects in the coding phase.

Direct objectives of reviews: Indirect objectives of reviews :

Detect analysis and design errors Exchange of professional knowledge –

tools, techniques etc

Identify new risks likely to affect the completion of the

project

Record analysis and design errors for

future references

Approval of the work under review Collaboration between teams

Fig 4.14 Objectives of reviews (Daniel Galin, 2004)

Page 60 of 225

Formal design review:

Without the approval of this review the project may not continue on to the next stage.

“Because the appointment of an appropriate review leader is a major factor affecting

the DR‟s success, certain characteristics are to be looked for in a candidate for this

position”.

1. Review leader should have experience in development projects of this type.

2. Seniority at a level similar to the project leader

3. Have a good relationship with the project lead and the team.

4. A position external to the project team.

(Daniel Galin, 2004)

Galin also mentions the review process in detail and explains what is required for the

successful execution of design reviews.

The design review (DR) process consists of the following items:

 Preparation

 DR Session

 DR Report

Inspections

Inspections are more formal than reviews.

1. Inspections should contain professional participants who are acquainted with

the language and technology being used on the project.

2. An architect who is responsible for the analysis and design of the system

under review.

3. A coder who is familiar with the code language and who can spot errors.

4. A Tester who can give a QA perspective who can spot defects that would

normally be discovered at testing.

Page 61 of 225

Walk-through

“The code walkthrough, like the inspection, is a set of procedures and error-detection

techniques for group code reading. It shares much in common with the inspection

process, but the procedures are slightly different, and a different error-detection

technique is employed” (Glenford J. Myers, 2004). It is less formal than reviews and

should contain professional participants who are acquainted with the language and

technology being used on the project:

1. A standard enforcer who is familiar with the coding standards and procedures.

2. A maintenance expert who can focus on maintainability, testability,

performance and other areas of concern for maintainability.

3. A user representative who can focus on the user‟s perspective.

It is advantageous to have a presenter who is not the author so that any anomalies can

not be glossed over. It is also beneficial to have a scribe to take notes.

During the walkthrough not all work is mandatory for review. What should and

should not be subjected to a walkthrough is listed in fig 4.15 below:

In Out

Complicated logic Straightforward logic

Critical sections Familiar sections

New sections Low severity sections

Inexperienced

developers

Reused code / sections

Fig 4.15 Comparison of items subjected to a walkthrough

Page 62 of 225

Testing Process

Testing has been discussed in great length in chapter three. It is worth mentioning that

the testing must be planned with the project risks and quality attributes in mind. These

will have been identified in the quality plan.

Software Configuration management.

Software configuration management (SCM) is concerned with labelling, tracking, and

controlling changes in the software elements of a system. The purpose of software

configuration management is to control code and its associated documentation so that

final code and its descriptions are consistent and represent those items that were

actually reviewed and tested.

Software configuration management identifies a system configuration in order to

systematically control changes, maintain integrity, and enforce traceability of the

configuration throughout its life-cycle.

Components to be controlled include plans, analysis, design documentation, source

code, executables, test plans, test cases and reports. The SCM process typically

consists of five elements:

1. Software component identification

2. Software version control

3. Configuration building

4. Change control

5. Templates and Checklists

Page 63 of 225

Component Identification

Identification of components that make up a deliverable at each point in its

development. A component would typically consist of a certain amount of code that

collectively contains a number of functionality. Each component should be identified

by a meaningful name and version number, such that new revisions contain enhanced

functionality. The ability to roll back to previous revisions should be available.

Version control

This is the organised process to manage the changes in the software components and

their relationships. This creates the ability to support parallel component development

and maintenance. A component is identified and labeled to differentiate it from all

other software versions and components.

Change Control:

“Change control is the process by which a modification to a software component is

proposed, evaluated, approved or rejected, scheduled and tracked. Its basic foundation

is a change control process, a component status reporting process and an auditing

process” (William E. Lewis, 2004. pp. 15 - 16). There should also be an impact

analysis conducted to determine the dependencies of components. Change control

consists of a change request, an impact analysis, a set of modifications and new

components and a method for reliably installing the modifications as a new baseline.

Page 64 of 225

Templates and Checklists

Templates

“A template refers to a format created by units or organisations, to be applied when

compiling a report or some other type of document” (Daniel Galin, 2004. p 326). It is

a format that is created which is intended to be reproduced several times. The

template document can be designed as a starting point for the reproduction of similar

documents. The purpose of a template is to facilitate copying with outline generic

contents which will act as a prompt to future authors. The templates can be written for

every document on projects including, plans, tests and code. Templates will save time

on future projects as they represent a part complete new document. Other benefits to

templates include training material for new team members

Checklists

“The checklists used by software developers refer to the list of items specifically

constructed for each type of document, or a menu of preparations to be completed

prior to performing an activity” (Daniel Galin, 2004. p. 329) Checklists serve two

purposes, they are a list of items specifically constructed that act as a concise list of

items to be verified as complete and also provide a record of items that have been

verified as complete. Checklists can be applied to any activity or document to serve as

a verification record of completion. The dual benefits to checklists are that they serve

as a preparation material for an individual preparing for a review and also as a method

for the action and record of a review activity. Checklists should be compiled during

review activities and updated wherever necessary to keep apace with change.

Page 65 of 225

4.4.3 Defect Prevention process

“The defect prevention process (DPP) is not itself a software development process.

Rather, it is a process to continually improve the development process”. (Stephen H.

Kan 2003, p.35) This is a lighter process that is again concentrating on continually

improving the software quality output from an arbitrary development process. It is

based on the following three steps and is in agreement with Deming‟s principles.

1. Analyse defects or errors to trace root causes.

2. Suggest preventative actions to eliminate the defect root causes.

3. Implement the preventative actions

The formal process was first used at IBM Communications Programming Laboratory

at research Triangle Park, North Carolina (Jones, 1985 Mays et al 1990). It consists of

the following four key elements

1. Causal analysis meetings:

After a development stage the technical people analyse defects for that stage

and determine the root cause. The defects are updated with suggested actions

by the meeting leader. Career managers do not attend this meeting.

2. Action Team:

The course of action team is responsible for screening, prioritising and

implementing the actions to prevent the re-occurrence of the same or similar

defects. The team reports back their findings to management.

3. Stage kick-off meeting:

The technical team conducts these meetings at the beginning of each

development stage. The emphasis is on the technical aspect of the

development process and quality. The topics for discussion include the

Page 66 of 225

process, efficiency, tools and methods. Items such as likely pitfalls are

discussed. The meeting has two purposes firstly as a feedback mechanism of

the defect prevention process and secondly as a preventative measure.

4. Action tracking and data collection:

A database is used for tracking actions, their status and for communicating the

findings to a broader audience.

DPP is a real time process and occurs at each development stage. It is incorporated

into every process and sub process. It helps focus the entire team towards defect

prevention. It requires the support of management.

IBM's Network Communications Program had a 54% reduction in error injection

during development and a 60% reduction in field defects after implementation. IBM

in Houston, Texas, developed the space shuttle onboard software control system with

DPP and achieved zero defects since the late 1980's. Causal analysis of defects along

with actions aimed at eliminating the cause of defects is credited as the key factors in

these successes (Mays et al 1990).

DPP can be applied to any development process as long as the defects are recorded,

causal analysis can be performed and preventative actions mapped and implemented.

In the SEI software process maturity assessment model (Humphrey, 1989) the

element of defect prevention is necessary for a process to achieve the highest maturity

level – level 5.

It is worth mentioning that there are national awards for quality achievement in

countries across the globe. The Malcolm Bridge Assessment National Quality Award

is the most prestigious award in the US. The award is given to US company‟s that

excel in quality achievement. In 1992 the European Foundation for Quality

management published the European Quality Award. It is similar to the Malcolm

Bridge award.

Page 67 of 225

4.4.4 Capturing and analysing defect metrics

Reliability Models

Software reliability models are used to assess software product reliability or to

estimate the number of latent defects when it is available to customers. There are two

direct benefits for using reliability models:

1. As an objective statement of the quality of the product

2. Resource planning for the maintenance effort

Reliability models typically capture the number of defects per KLOC or the number

of defects/FP (Function Points).

Rayleigh Model:

The Rayleigh model is a member of the family of the Weibull distribution. “The

Weibull distribution is an extension of the two-parameter exponential distribution to

three parameters. This model is quite popular as a life-testing distribution and for

many other applications where a skewed distribution is required.” (Bain, J. Lee,

1978). “It is has been used for decades in various fields of engineering for reliability

analysis, ranging from the fatigue life of deep-groove ball bearings to electron tube

failures and the overflow incidence of rivers. It is one of the three known extreme-

value distributions” (Tobias, 1986, quoted in Kan 2003).

Page 68 of 225

Its cumulative distribution function (CDF) and probability density function (PDF) are:

CDF: F (t) = 1 – e
– (-t/c) m

Cumulative defect arrival pattern

Where m is the shape parameter, c is the scale parameter, and t is time.

PDF: f (t) = m (t)
 m

 e
-(t/c) m

 T (c)

PDF = Defect Density rate or defect arrival pattern.

In both formulas m is the shape parameter, c is the scale parameter and t is time.

It has been empirically well established that large software projects follow a life-cycle

pattern described by the Rayleigh density curve (Norden, 1963; Putnam 1978). Using

this knowledge past projects and current projects can be compared to each other to

determine the state of a project at a number of different stages using graphs of each

project as a tool for comparison.

In 1984 Gaffney of the IBM Federal Systems Division developed a model based on

defect counts at six phases of the development life-cycle; High level design

inspections, low level design inspections, code inspections, unit test, integration test

and system test. The defect pattern followed the Rayleigh curve. The model can be

used to estimate defects, or project size and resource requirements. By validating the

model with systems for which defect data are available (including the space shuttle

development) Putnam and Myers (1992) found that the total number of defects was

within 5% to 10% of the defects predicted from the model.

Curves that peak earlier have smaller areas at the tail, the release phase. A value of

1.8 for the value of m might be best for software. “Three cases of Rayleigh

underestimation discussed are from different software development organisations, and

the time frame spans sixteen years from 1984 to 2000. We recommend the use of

Weibull with m = 1.8 in Rayleigh applications when estimation accuracy at the tail

end is critical” (Stephen H. Kan 2003, p. 204)

Page 69 of 225

Fig 4.16 Rayleigh model of defect rate versus development phase (Stephen H. Kan

2003 p. 193)

Fig 4.16 indicates two projects with similar time frames but one has a higher defect

injection rate and will have a higher defect rate in the field (GA phase).

Exponential Distribution and reliability growth models

In the case of defect distribution, the graph indicates defect arrival or failure patterns

during testing and is a good indicator of the products reliability when it is used by

customers. They can be classified into two classes:

Fault between failure models (time)

Fault count models (number of faults)

As defects are detected and removed from the software, it is expected that the

observed number of failures per unit time will decrease.

The Exponential, Delayed S and Inflection S models

The exponential model is another special case of the Weibull family, with the shape

parameter m equal to 1. It is best used for statistical processes that decline

monotonically to an asymptote. Its cumulative distribution function (CDF) and

probability density function (PDF) are:

CDF: F (t) = 1 – e
– (t/c)

Page 70 of 225

 = 1 – e
λt

PDF: f (t) = 1 e
-(t/c)

 C

 = λ e

- λt

Where c is the scale parameter, t is time and λ = 1/c. Applied to software reliability, λ

is referred to as the error detection rate or instantaneous failure rate. (Stephen H. Kan

2003 p.208)

The exponential distribution is the simplest and most important distribution in

reliability and survival studies. Misra (1983) used the exponential model to estimate

the defect- arrival rates for the space shuttles ground system software for NASA. A

testing process consists not only of a defect detection process but also a defect

isolation process. Because of the time needed for failure analysis, significant delay

can occur between the time of the first failure observation and the time of reporting.

Yamada et al (1983) offers the delayed S-shaped reliability growth model for such a

process, in which the observed growth curve of the cumulative number of detected

defects is S shaped. (Based on the non-homogeneous Poisson process)

S-Type Cumulative defect detections

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Weeks in test

T
o

ta
l

n
u

m
b

e
r

o
f

d
e
fe

c
ts

d
e
te

c
te

d Cumulative defect

detections

Defects detected per

week

Figure 4.17 S-Type Cumulative defect detections and defects per week

M (t) =k [1 – (1 + λt) e
–λt

]

Where t is time, λ is the error detection rate,

k is the total number of defects or the cumulative defect rate. (Stephen H. Kan 2003 p.

Page 71 of 225

215)

Page 72 of 225

4.4.5 Quality Management Models

Rayleigh Curve for Development Quality

The typical use of reliability models for quality management is to predict the end date

to testing given a level of defect detection. If the level of detected defects is low then

a greater testing effort will be required. The goal of quality management is to shift the

peak of the number of defects to the left while also lowering the severity of the peak.

The defects for each stage of the development life-cycle are plotted and the resulting

curve gives an indication of the phase of greatest defect injection and defect removal.

“The relationship between formal machine-testing defects and field defects, as

described by the model (Raleigh) is congruent with the famous counter intuitive

principle in software testing by Myers (1979), which basically states that the more

defects found during formal testing the more that remained to be found later on. The

reason is that at the late stage of formal testing, error injection of the development

process is basically determined. High testing defect rates indicates that the error

injection is high, if no extra effort is exerted, more defects will escape to the field”

Stephen H. Kan 2003, p. 236)

Fig 4.18 Rayleigh model of defect rate versus development phase (Stephen H. Kan

2003 p. 193)

Page 73 of 225

The ultimate target of IBM Rochester‟s strategy is to achieve the defect

injection/removal pattern represented by the lowest curve, one with an error injection

rate similar to that of IBM Houston‟s space shuttle software projects. The

development phases are represented by the X-axis and are listed in Fig 4.19.

Review Stage IBM Rochester abbreviation

1. High level design review (IO)

2. Low level design review (I1)

3. Code Inspections (I2)

4. Unit Test (UT)

5. Component Test (CT)

6. System Test (ST)

7. General availability (GA)

Fig 4.19 Review stages for concentration

The best curve to have is an early peaking of defects which lowers the total number of

defects, and a lower overall curve. However lower actual defect detection and

removal could be the result of lower error injection or poor reviews and inspections

and in contrast higher defect detection and removal could be the result of higher

injection or better reviews. To better gauge which scenario is the case additional

metrics are needed. Items such as the number of hours spent in reviews, inspections

and testing would assist with identifying which is the case.

The effort / outcome indicator is used for this purpose; the number of hours spent in

preparation for and in conducting reviews/inspections is measured with the number of

defects per thousand lines of code. This is recorded for each project and can then be

used as an indicator for the effectiveness of the defect detection and removal actions.

The purpose of both of these metrics are to determine the in process escape rate and

percentage of interface defects. From these metrics the total number of defects found

in a phase can be graphed against defects found by previous phases. This graph assists

with identifying the effectiveness of the defect removal versus effort.

Page 74 of 225

4.4.6 In process metrics for software testing

Test Progress S curve

The purpose of this metric is to track test progress and compare it to the plan, and

therefore to be able to take action upon early indications that testing activity is falling

behind. The Test progress S curve is an accumulative growth curve where the planned

number of test cases is measured alongside the actual executed number of test cases.

The curve is the accumulated number of planned test cases. It is also beneficial to

score the more important test cases, so that there is more meaning to those that are

completed. This weighting can be determined at the test plan stage so the implications

of any drop off in the curve or test progress is immediately obvious.

Testing Defects Arrival time

The purpose of this model is to model the defects as they are logged in a defect

tracking tool. It is important to track the defects over different test phases. Important

information can be gleaned from this model such as:

● At what stage do defect peak?

● How does this pattern compare to previous patterns?

● How do they peak?

● Do they decline to a low and stable number?

A positive pattern of defect arrivals is one with higher arrivals earlier. As was

mentioned previously this left sided or early peak is an indicator of a good quality

process and product. The early peak will also lead to a smaller and earlier tail which

indicates less remaining defects in the field for customers. This is visible in a weekly

defect arrival pattern. If the curve is plotted as a cumulative defect arrivals curve, the

residual number of field defects can be calculated or estimated over time.

Page 75 of 225

S-Type Cumulative defect detections

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12

Weeks in test

T
o

ta
l

n
u

m
b

e
r

o
f

d
e
fe

c
ts

d
e
te

c
te

d Cumulative defect

detections

Defects detected per

week

6

Fig 4.20 Cumulative defect curve for the arrival of defects over time

Testing Defect Backlog over time

The testing defect backlog is the accumulated difference between defect arrivals and

defects that were closed. A large number of outstanding defects during the

development cycle will impede test progress.

Test Effort and Defect Outcome model

When measuring the test effort in terms of test cases completed versus those planned,

the percentage completion is used as the indicator of effort. When evaluating the

outcome of the testing effort, it is best to think along the lines of the number of

defects found, the arrival of defects is a good indicator of outcome.

Page 76 of 225

 Effort (Test effectiveness) / Outcome (defects found)

 Higher Outcome Lower Outcome

Better

Effort

1. Good / Not

Bad

2. Best-Case

Worse

Effort

3. Worst-Case 4. Unsure

Fig 4.21 Effectiveness of test effort and outcome (Stephen H. Kan. 2003)

1. This cell indicates good test effort in relation to a number of latent defects

found by testing that was injected in the design and code stage.

2. This is the best case scenario where there was less defect injection during the

design and code stage, yet the test effort was effective, just less defects were

found during testing.

3. This is the worst case scenario where there was a high degree of defect

injection in the design and code stages of development and that it took

minimal test effort to discover a high number of defects.

4. This is the unsure category where it is inconclusive that the lower number of

defects is a result of the testing effort or poor design and coding.

Page 77 of 225

4.5 Refactoring the Management of all SQA components

4.5.1 Software Quality Management

The ground work for a professional approach to assurance of software quality has

been established. The complications and factors that act on the software effort have

been discussed. The question is how does a quality assurance professional manage an

engineered strategy to counter the quality impediments and develop a quality

improvement initiative? There are a few different management approaches to

answering this question; once again there are similar traits and characteristics to each

one.

One such approach is Total Quality Management (TQM); it is derived from a

Japanese-style of management where quality assurance was implemented at all levels

of the company to improve customer satisfaction. The Principles are management of

product quality with customer quality via process improvement and monitoring. The

key elements to TQM are:

1. A Customer Focus to achieve total customer satisfaction

2. Process improvement on business and product processes

3. The Human Element to quality, to advocate a company wide quality culture

4. Measurement and analysis of quality metrics to achieve the goal of improved

quality

5. There is also a need for Executive leadership in the corporation

To differing degrees TQM has been included in the works of Crosby (1979),

Feigenbaum (1961, 1991), Ishikawa (1985) and Juran and Gryna (1970).

Deming (1986) also describes a feedback cycle that optimises a single process for

statistical quality improvement. This quality management process involves a Plan-Do-

Check and Act philosophy. Experimentation is important with this process and

improvement is made based on the analysis of the feedback received.

Page 78 of 225

The Quality Improvement Paradigm (Basili 1985, 1989, Basili and Rombach 1987,

1988, Basili et al 1992) aims at building a continually improving organisation based

on evolving goals and an assessment of its status relative to these goals. The approach

uses internal assessments and techniques such as Goal/Quality/Metric GQM, model

building and Qualitative / Qualitative analysis to improve the product through the

process.

The six fundamental steps of the quality improvement paradigm are

1. Characterise the project audits environment

2. Set the goals

3. Choose the appropriate process

4. Execute the process

5. Analyse the data

6. Package the experience for reuse

The Software Engineering Institute (SEI) Capability Maturity model (Humphrey

1989, Radice et al 1985) is a staged process improvement based on the assessment of

key process areas until you reach level 5 which represents a continuous process

improvement. The improvement is based on organisational and quality management

maturity models developed by Likert (1967) and Crosby (1979) respectively.

The goal of this approach is to achieve continuous process improvement via defect

prevention, technology innovation and process change management

Based on this approach a five level process maturity model is defined based on

repeated assessments of an organisations capability in key areas. Improvement is

achieved by action plans for poor process areas. Basic to this approach is the idea that

there are key process areas and attending to them will improve your software

development.

Page 79 of 225

4.5.2 The SEI Process Capability Maturity model

The Process Capability Maturity Model (CMM) was developed by the SEI at

Carnegie-Mellon University. “CMM is a conceptual framework that represents

process management of software development. CMM contains five maturity levels or

stages” (Joseph Raynus, 1998. p 9)

Level 1: Initial

Level 2: Repeatable

Level 3: Defined

Level 4: Managed

Level 5: Optimising

Level 1: Initial

The characteristics for this stage include chaotic and unpredictable cost, schedule and

quality.

Level 2: Repeatable

Characteristics: Intuitive – cost and quality highly variable, reasonable control of

schedules, informal and ad hoc methods and procedures. The key process areas

(KPA's) to achieve level 2 maturities follow:

● Requirements management

● Software project planning

● Software project tracking and oversight

● Software subcontract management

● Software quality assurance

● Software configuration management

Page 80 of 225

Level 3: Defined

Characteristics: Qualitative – reliable costs and schedules, improving but

unpredictable quality performance. The key elements to achieve this level of maturity

follow:

● Organisational process improvement

● Organisational process definition

● Training program

● Integrated software management

● Software product engineering

● Intergroup co-ordination

● peer reviews

Level 4: Managed

Characteristics: Qualitative – reasonable statistical control over product quality. The

key elements to achieve this level of maturity follow:

● Process measurement and analysis

● Quality Management

Level 5: Optimising

Characteristics: Qualitative basis for continued capital investment in process

automation and improvement. The key elements to achieve this highest level of

maturity follow:

● Defect prevention

● Technology innovation

● Process change management

The CMMI was developed by integrating practices from four CMMS for software

engineering, systems engineering, for integrated product and process development

and for acquisition.

Page 81 of 225

4.5.3 Software Process Assessment

“There are two methods suggested by SEI for the software process appraisal: software

process assessment and software capability evaluation (SCE). The objective is to

evaluate the organisation in the same manner, using CMM‟s criteria” (Joseph Raynus,

1998. p33)

SEI developed and published the Capability Maturity Model (CMM) Based Appraisal

for Internal Process Improvement (CBA IPI) (Dunaway and Masters, 1986). The data

collected for CBA IPI is based on key process areas of CMM as well as non CMM

issues.

The standard CMMI Appraisal Method for Process Improvement (SCAMPI, 2001,

internet) developed to satisfy CMMI is more stringent than CBA IPI. Both SCAMPI

and CBA IPI consist of three phases; planning, assessment and reporting. These

phases are outlined below.

Planning:

 Develop the plan

 Prepare and train the team

 Make a brief assessment of participants

 Administer the CMMI appraisal questionnaire

 Examine Questionnaire responses

 Conduct initial document review

Page 82 of 225

Assessment:

1. Conduct the opening meeting

2. Conduct interviews

3. Consolidate information

4. Prepare presentation of draft findings

5. Present draft findings

6. Consolidate, rate and prepare final findings

Reporting:

 Present final findings

 Conduct executive session

 Wrap up assessment

Where the CMM assessments are aimed at CMM derived models, a similar approach

can be adopted for assessments in other company‟s adopted models. A quality

assessment is concerned with the quality status of the project rather than the state of

process practices although there is likely to be correlation among the two. To achieve

an effective quality assessment, the development process, environment and the project

plan must be well understood.

Page 83 of 225

4.5.4 Software Quality Auditing

“The concept of auditing is central and is applied at two levels: process and project”

(Joc Sanders et al. 1994, p72).

Process level

In Software Quality, Sanders and Curran (1994) discuss that software quality audits

are conducted on two levels, that of process and project. Despite the lack of a quality

process certification in an organisation there is still a process for developing and

maintaining software. This “process may not be formally defined or understood and

may even be chaotic, but it is still a process” (Joc Sanders et al. 1994, p72). Other

organisations may have a defined standard process which consists of documented

standards and procedures that define an environment for developing software, enable

discussion of project issues in a common vocabulary, and allow staff to collect and

apply experience consistently. Both processes may be audited in a structured manner.

Either the SEI or CMM approach to software assessment or a software quality audit

may be conducted to assess the process in place, defined or chaotic. Process

improvements may be made on the findings of such assessments on a process level.

Project level

“Quality is not imposed on a project, but is controlled and managed from within by

project staff. All staff members bear responsibility for the quality of their own work,

and the project manager bears overall responsibility for project quality” (Joc Sanders

et al. 1994, p72) The project level assessment or audit gives a better understanding

and assessment of the process itself since it is not a process but an actual project with

people, documentation from all participants and deliverables that provide concrete

information pertaining to the project and the process itself.

The purpose of an audit or assessment of a project is twofold: “to determine if

activities are being carried out in accordance with the standards and procedures laid

down by the quality process and whether those standards and procedures are adequate

to ensure the quality of the project in general” (Joc Sanders et al. 1994, p73).

Page 84 of 225

4.6 Summary

In this chapter, the concept of software quality was explained. The factors that affect

software quality were discussed, and how these factors are used so that software

quality can be assessed. The assessment of software quality is determined by the

number of defects in the software. The classification of defects was outlined in terms

of faults, failures and errors.

The discipline of software quality assurance was mentioned in relation to the

evaluation of software quality and defects. The methods for SQA - verification,

validation and qualification were discussed.

The architecture of SQA was described in terms of quality planning from the outset

and the assessment and measurement of quality in terms of defects and metrics. The

purpose and contents of plans for both development and quality of a maturing

organisation were mentioned and their purpose explained. The tools for the prevention

of defects were explained and what their benefits are. Lastly quality management was

discussed in relation to the activities available for software quality improvement. The

final topic of the chapter was in relation to software process assessment and process

maturity.

Page 85 of 225

5 Chapter Five – Software Test and Quality Assurance

Practice Improvement

5.1 The first steps to test and QA practice improvements

In this chapter the path to testing and QA practice improvement in an Irish small to

medium enterprise (SME) is explored, for the purpose of this thesis the identity of the

company is withheld. This thesis is focused on the projects from the R&D department

and on the improvements to the testing and quality assurance of its products.

I will introduce the industry that the company operates in; I will also describe their

products from a software engineering / Research and Development department

perspective. I will then outline what quality problems the company faced and lastly

outline my proposal to the company to address these problems. The organisation

structure of the company is depicted below in figure 5.1.

Fig 5.1 Company X Org chart

MD

Company X Structure Chart

Finance Dir Sales Dir Operations Dir

Chairman

Sales Dept

Support Mgr

Order
Processing

Dept

Finance Tech

QA Mgr

Final
Assembly

R & D Dept

Support Dept

Page 86 of 225

5.1.1 Industry background

This Irish small to medium enterprise is in the building control industry, providing

building management systems (BMS) software and hardware solutions. The company

will be referred to as company X. Company X produces hardware, firmware and

software that controls HVAC – heating, ventilation and air conditioning (HVAC). The

target markets that it sells to are predominantly European. It commands 70% of the

Irish market and between 2 – 6% for the UK and mainland European countries. The

company produces and sells building control hardware solutions and BMS software.

The solution comprises of Input / Output electronic controllers and proprietary

software. The software interfaces with the controllers and also programs them. The

controllers can work standalone and control a building but initially they must be

programmed using the PC based software. The controller‟s consist of printed circuit

boards with communications interfaces and electronic input and output sensors and

controlling devices. They are housed in plastic and powered by external 24 volts

alternating current. The controllers function is based on data collection from the

building environment and output calculation to control the environment. The BMS

software is installed and executes on a designated PC in the building to be monitored.

The software and controllers are typically accessible on the local Ethernet network.

See figure 5.2 for a basic BMS system.

Fig 5.2 Example BMS system

Page 87 of 225

5.1.2 Description of company X BMS system

To further explain the operation of the BMS and controllers, I have extracted the

principal components, and offered a description which builds up the working model

of a typical BMS system.

There are three levels of the BMS, principally the BMS PC, communications

controllers and field controllers. The BMS PC would interface with one designated

communications controller. A building may contain many hundreds of

communications controllers and a multitude more field controllers (perhaps 10 or 20

times more). The communications controllers are accessible on the Ethernet network

of the building. Each communications controller has its own unique address, and

share the same network. A number of field controllers (e.g. 15) are in turn controlled

by one communications controller. The field controllers operate on their own sub

network, each having a unique address. See figure 5.3 for a network of controllers and

BMS PC.

Fig 5.3 High level architecture diagram of accompany X‟s solution

The field controllers are those controllers which directly control the building

environment or system (e.g. Lighting, Heating). The field controllers receive data in

both analogue and digital formats. The data is received directly from input signals

Page 88 of 225

from sensors in the building environment or indirectly from another field controller.

The controller calculates an output operation based on these inputs. The output

operation is determined by the controller‟s strategy, the strategy is a program

executing on the controller itself. This output was used to regulate the building

environment. The output signal is sent to actuators which operate the plant machinery

which in turn regulate the building environment e.g. heating.

Each field controller must be programmed directly for each building environment;

this program is referred to as an engineering strategy. This programming is achieved

via a PC based computer aided software engineering (CASE) tool. This engineering

strategy must be downloaded to each controller via the PC and controller

communications network. The field controller‟s strategy is devised by an engineer

specialising in the HVAC industry. The strategy is fundamentally a program of

mathematical calculations that the controller executes. In the example of a heating

system the calculations are based on the input sensors plugged into the controller (e.g.

heat sensors) and output actuators (ignition circuits for gas boilers, water pumps, fan

coils). The goal is to control the heating system based on the temperature of a room,

and the necessity of heating or cooling the room via a fan coil or other heat device.

The strategy creation is graphical for the engineer on the engineering application and

BMS PC. See figure 5.4 for a small strategy example.

The Engineering strategy has 5 principle components:

1. It is a graphical representation of input and output points connected to a

mathematical module.

2. The points are unique for each field controller.

3. Points may be virtual and broadcast from one field controller to another

via a communications controller.

4. The modules and points can be edited and saved multiple times.

5. The strategy is saved in a format that can be downloaded and executed on

the controllers.

Page 89 of 225

~

Fig 5.4 engineering strategy example

When the strategy has been completed and downloaded to each field controller, the

controllers are monitored in situ via a suite of applications on the buildings Ethernet

network. An interfacing communications application typically would control

communications between the controller‟s proprietary protocol and that of the IT

network e.g. using Ethernet or other network protocol (e.g. BACnet or Modbus).

The controller hardware, firmware and all other supporting software are designed and

written in the company‟s R&D department. It is the responsibility of the QA

department to test the firmware and all software before release to customers.

Technical support offers training and support to the customers. The customers are

represented by two sectors of the industry. The end users are those that ultimately

monitor the buildings and plant installations. The installers are those customers who

purchase from the company and act as intermediaries and install the system solution

for the end user.

Page 90 of 225

5.1.3 Research and Development department description

There are four teams in the R&D department. Each reports to the Operations Director.

The Hardware team design the controller circuit boards and input and output

interfacing devices. The Firmware team design and code the firmware for each

controller. The Software team are responsible for testing and the QA of all releases

from the R&D department. See figure 5.5 for an organisation chart for the R&D

department. My role is within the test team as its leader. I am directly responsible for

all releases from R&D.

Fig 5.5 Company X R&D Department Org

The QA department have two software releases and one firmware release per annum.

The software consists of three principal and twelve ancillary applications. The

principal applications consist of a database server, a communications interface

application (Port handler) and an engineering application. The port handler allows the

controllers to communicate with the software in real-time. The engineering

application facilitates the controllers to be programmed for each target building plant

and associated sensors which the controllers control. The ancillary applications assist

with the monitoring of the controllers. The releases consist of those applications

which are modified in the form of maintenance / enhancements with bug fixes and are

bundled with a windows installer on a CD. The firmware is shipped embedded in

ROM chips for replacement. The QA department are responsible for testing and

certain QA functions for R&D, it is best to group both functions into this one

department.

Operations Dir

Company X
-R&D Department

Software Mgr Hardware Mgr Firmware Mgr QA Manager

Technical Writer

HW Engr X2

Dev Engr X2

Snr Developer
Test Leader

Test Engr X3
Dev Engr X6

Snr Developer

Page 91 of 225

The diagram below outlines at a low level the architecture of the software suite for

company X. The diagram consists of a small controller network and the structure of

the main applications which comprise the BMS suite.

In the centre is a communications bus, this DDE communications bus facilitates

application communication with each other and also the controllers via the port-

handler. The port-handler communicates directly with the communications

controllers, the other applications communicate via DDE with the port-handler. The

flat files and databases associated with each application are also pictured.

Fig 5.6 Low level software suite and architecture diagram

Page 92 of 225

The building control industry has in the past been slower to evolve than other areas of

commerce. However this has changed dramatically in the last few years. The pace at

which information technology has spread to every area of commerce has resulted in

broad industry requirements to keep apace of this ever-changing sector. The HVAC

industry has also been quick to embrace the benefits that the latest IT solutions can

provide. As a result there has been quite a heavy demand for innovative software and

more efficient yet complex systems for this industry.

To meet these industry requirements the company undertook the development of a

new Engineering Tool application and two new controller types to replace all existing

controllers and for the development of supporting firmware and software. The

expected lifespan of these new products was expected to be ten to fifteen years.

At the time of conducting this research, a new engineering application was released to

customers. This was the first new product of a scheduled three major releases. It did

not meet with customers expectations. The next product to be released was falling

behind schedule. As a result of these problems it was necessary to conduct research

into best industry test and QA practices with the intention of making changes to the

Quality Assurance effort of R&D.

Page 93 of 225

5.2 The Quality problem that is to be tackled

At the time of this thesis there were two main issues in the company. The immediate

concern was in respect of the quality of released software; the engineering tool

application and ancillary applications. The secondary concern was the rate of progress

of the first of the two new controllers in development.

The engineering application was the fundamental software required for the

programming and operation of the controllers. The controllers and indeed the

company were dependent on this application for operation and success. Following

from its release customers had reported a worrying number of failures of the software.

The company had a quality system in place and this was certified to ISO9000

standard, “ISO 9000-3, the guidelines offered by the International Organisations for

Standardisation (ISO), represent implementation of the general methodology of

Quality Management ISO 9000 Standards to the special case of software development

and maintenance” (Daniel Galin, 2004. p 477).The company was also audited

annually by an external consultancy firm to retain its certification. This certification

related to the company quality procedures and their execution and not to the quality of

its products. My responsibility was to ensure that a quality product was released to all

customers. I found that the ISO Quality System was failing in this regard. In my

opinion, action was required and a better understanding of the problem was necessary.

An analysis of the problems lay with working with the customer‟s issues and tracking

their cause backwards from release back through the quality system to the project

inception.

Page 94 of 225

5.2.1 The investigation

A proposal for improvements was made to the company directors in relation to testing

practice improvements and on quality process changes. The proposal was based on an

assessment of the company‟s software quality process and on the engineering

application project. The assessment was conducted in a similar format to the

principles of the SEI and CMM processes assessment and also in line with the

company internal audit process. The assessment was conducted to investigate the

nature of the quality problems and what process improvements were required. The

company documents listing the assessment and changes can be found in Appendix A.

The assessment was conducted in three phases:

Planning of assessment

Identify what departments / teams are to be assessed.

Assess the participants of each department.

Solicit customer feedback for the engineering application from the

marketing department.

Prepare for the review of department process documentation.

Prepare for the review of department project documentation.

Prepare for an interview with each department manager.

Schedule a time for the assessments for each department.

Assessment of each department Assess each participant manager before assessing their department

and interviewing them.

Review process documentation.

Review project documentation.

Conduct the interview of team members and managers .

Document the findings of each team assessment.

Agree with each team manager the findings and ratings of the

assessment and obtain sign off from team managers.

Reporting of findings

Compile and present the findings of the assessment.

Act on the findings and plan quality process improvements.

Page 95 of 225

5.2.2 The investigation findings

The assessment was conducted following the three stages outlined earlier. The initial

assessment findings are grouped into five distinct areas:

1. The overall defect statistics for the released engineering application project

from all departments

2. A quality report from customer support based on customer feedback on the

released engineering application project

3. Test case design and test planning for the engineering application project

4. An internal audit of both software, test, support and firmware departments in

terms of the engineering application project and processes

5. An assessment of the development life-cycle and quality system process in

general following from the previous 4 assessment areas.

Each of the five areas is discussed in detail over the next few pages followed with the

proposed solution.

1. Defect statistics for the engineering application

The engineering application took approximately 960 man days of development effort

and 360 man days of testing. It was two years late to market and its reception by

customers was not positive. This application had approximately 61,254 Lines of code

and approximately 59 Function Points per KLOC (FP/KLOC) which is above the

median (53) for a Visual C++ application (Quantitative Software Management, 2005,

internet). Defect analysis revealed that it had a defect rate of 1.5 per Function Point.

This is twice the defect rate for a CMM level 1 company (0.75) and thirty times that

of a CMM level 5 company‟s (0.05). The function point analysis matrix (see chapter 4

for more details) and defect breakdown are listed overleaf.

Page 96 of 225

Fig 5.7 function point analysis findings

Σ w FC = Σ w * x

General

Characteristics ©

Weight c

(0-5)

VAF = 0.65 +

.01 Σ c

FP = FC *

VAF

12 168

1. Data

Communications 5 0.7 113

18 252

2. Distributed

functions 1 0.66 171

50 700 3. Performance 1 0.66 472

35 490

4. Heavily used

configurations 2 0.67 330

8 112 5. Transaction rate 2 0.67 75

 0

6. Online data

entry 3 0.68 0

 0

7. End user

efficiency 2 0.67 0

 0 8. Online update 2 0.67 0

 0

9. Complex

processing 2 0.67 0

 0 10. Re-usability 2 0.67 0

 0

11. Installation

ease 1 0.66 0

 0

12. Operational

ease 4 0.69 0

 0 13. Multiple sites 3 0.68 0

 0

14. Facilitation of

change 4 0.69 0

123 1722 0 34 0.674285714 1161

Fig 5.8 defect metrics for

engineering application in terms of

FP and KLOC

KLOC 61

Number of

defects 1772

Number of FP 1161

FP per KLOC 19

Defects / FP 1.526112719

Average LOC/FP 52.53548298

Defects /KLOC 29.04918033

After 18 months of in house testing, there were 1772 defects recorded, only 55% had

a recorded severity rating. There were over 164 defects found during the Beta testing

of the application by customers. There were another 62 latent defects found by

customers after the full release. The in house defects yield a ratio of 1.46 defects per

function point or 29 defects per KLOC.

The new HVAC controller in development was already 6 months behind schedule and

early testing results were not positive. The firmware for these controllers was a

migration of existing code to a new embedded chip. The HVAC controller had

approximately 23 FP/LOC. Since this was a migration of existing code it was not

evaluated in as much detail.

Page 97 of 225

2. Customer Questionnaire Feedback

Twenty one customers were contacted for their feedback on their experiences of the

Engineering application. Out of those customers contacted eleven or 67% responded

with serious problems during usage. 15% of customers refused to continue use the

application based on their bad experiences. 67% of customers who had serious defects

in the first six months of use reported a total of 62 defects. There were five common

functions of the application all the respondents made reference to. The main areas are

listed below:

a) The set up and use of broadcast points across the controllers communications

network

b) The use of macros for reusing engineering strategies

c) The use of virtual points to reuse existing points in the engineering strategy

d) The use of Printer Scaling to print out a copy of the strategy

e) The occurrence of duplicate points in the engineering strategy

a) Broadcast points

The purpose of the broadcast points in the engineering strategy is to facilitate multiple

uses of a single point across the building environmental control. There may be several

hundred Net controllers with each one having upwards of 64 HVAC controllers. A

single point may be broadcast to hundreds of controllers on the network.

The setup and use of broadcast points from the engineering strategy was working

correctly but the editing of existing points was causing the corruption of existing

points. Existing points were being over written in the „.cmn‟ file. When this file was

downloaded to the controllers, the building environment could not be controlled

properly. The result of this was that the strategy and building environment were in an

unstable state, it was also very costly for engineers to troubleshoot and to rectify this

problem.

Page 98 of 225

b) Use of Macros

The purpose of Macros in the engineering centre is to facilitate the reuse of more

common strategy elements. A macro can be thought of as a copy of a small strategy.

The problem with the macros in the engineering centre lay with the number of

combinations of sub components which could be created; there were certain

combinations of components and the order in which they were used which caused the

macro to become corrupt and unworkable. The problem was not noticeable during the

macro creation or edition; it only became apparent after macros were used in the

strategies at a later stage. The problem left strategies in a corrupt state and unusable

when downloaded to the controllers. Once again this was a costly problem to rectify

for engineers.

c) Virtual Points

Virtual points were created to allow engineers have the flexibility of using additional

points during the creation of the engineering strategy. Virtual points themselves in the

strategy meant that there may not necessarily be actual physical inputs or output

points on the controller itself, they would later be broadcast from another controller.

The benefit of virtual points in a strategy allowed a one to many and a many to one

connection between strategy modules.

The problem with the virtual points was that when they were edited or used in a

certain way the one to many combinations of the point numbers were changed from

their original state to that of a new state. The problem for the engineers was that extra

care was needed with their use to prevent the change of existing strategy work, and

for them to come up with a new way to allow for their strategies to work as they

expected. Once again it was a costly and time consuming exercise for the engineers.

Page 99 of 225

d) Printer Scaling

The engineering strategy was created on a graphical CASE tool and the strategy was

stored in a format that was communicated to the controllers but also visible in a

graphical environment. Printer Scaling allowed the completed engineering strategy to

be resized to a visible level in the graphical environment that was both legible to users

on screen and printable on single sheets of paper. The printer scaling function didn‟t

work effectively (it was in a MS bmp format) to allow both of these requirements.

The result of this oversight left engineers being unable to print out the strategies for

their customers records. The printed strategy was a record of completed work and

then used for calculating maintenance work. The printout served as a blueprint of the

completed HVAC system. If it was not available or legible the engineering firm who

commissioned the building were then liable for additional maintenance effort and

cost.

e) Duplicate points

One of the most critical problems with the engineering tool was the occurrence of

duplicate points appearing in the strategy. During the course of editing a strategy

under certain circumstances, the occurrence of duplicate points arose. The changes to

the original strategy files were downloaded to the controllers via the port handler and

caused the malfunction of the building management HVAC system. These duplicate

points were not obvious during the graphical editing of the strategy; they were not

also obvious once the strategy was downloaded to the controllers. It was only when a

problem manifested itself and investigations were underway that they were detected.

The principle reason behind the existence of duplicate points arose when an existing

point number was changed to another number, or the point removed and reinserted.

The point would take up a number that was already allocated on the strategy and thus

corrupt the strategy. This corrupt strategy was then downloaded, the consequences

were that the HVAC system was not in a stable state, the time and cost to identify and

rectify the number of strategies was considerable.

Page 100 of 225

3. Test case design and test planning

Following on from analysing the defect statistics and customers questionnaire

responses for the Engineering application, the test cases and test planning were placed

under scrutiny. The major areas of concern were evaluated with respect to the test

cases to ascertain if the tests would have been adequate to detect the defects in those

areas. The test planning was also examined to see if the plans took into consideration

a systematic approach to the testing of the application.

The test cases for the released Engineering application were found to be inadequate.

Out of 128 pages of tests, 32 pages were functional tests to validate the correct

operation of the user interface. There were no boundary tests or explorative testing of

functionality. The remaining tests were regression tests for the defects that were

detected during the course of testing to ensure that all defects were fixed.

In terms of test coverage of the functionality of the engineering application the

existing test cases did not cover any white or grey box testing. There were no higher

order tests such as performance tests or usability tests.

In relation to test planning there was no consideration of integration testing with other

elements of the ancillary applications or the firmware communications. There were no

system tests. There was no test data or an environment that matched that of customers

in which to execute the tests. The result of this analysis was that the tests were not

adequate in terms of how the application was structured and how it would be used by

engineers on a daily basis. The existing test plan meant that the average time taken to

execute these test cases was approximately 40 man days of testing for a complete test

of a build with the existing test cases. The test environment and test data were also not

reusable and added to the overhead of each test cycle.

In terms of quality, there were a total of 81 builds and an unknown number of test

cycles executed before the release of the application to Beta customers. The quality of

the application before it was released was not known in any degree of certainty.

Page 101 of 225

4. Internal audit departmental findings

Three of the R&D department teams and one of the customer teams were audited by

an ISO and Tick-IT certified internal auditor. The audit was carried out in accordance

with the company ISO 9000-3 guidelines for internal audits and as part of the

investigation for the proposal for QA improvement. The teams audited were software,

firmware, test and customer support. These teams were audited specifically on three

topics:

1. For the team compliance with existing company quality standards in terms of the

Engineering application project documentation.

2. On the effectiveness of the existing company quality procedures for successful

project execution for this team

3. For suggested improvements for improved quality from other team to this team

An internal auditor (the author of this thesis) audited each of the departments to

identify problems; the audit was followed in accordance with ISO guidelines. During

the audit each team manager was interviewed so that the project documentation non

conformances could be discussed and agreed. During the interview the effectiveness

of the existing quality procedures for the respective team was discussed with each

manager. The managers were also asked for suggested improvements in terms of

project quality of the project deliverables that they received from other teams and on

improvements that they could make as team deliverables. The findings of the audits

regarding compliance with existing company quality standards for each team are

listed overleaf.

Page 102 of 225

Software Low priority defects were not fixed

There were no design documents for some of the engineering applications

functionality.

There were no customer requirements for some the engineering applications

functionality.

Firmware Specification documents were not kept up to date resulting in a number of latent

defects.

A number of customer requirements were not implemented in the firmware for

the HVAC controller project.

The project schedules were not tracked or updated with project progress.

Test The test procedures were unsatisfactory for a real-time embedded systems

software company since the testing failed to detect numerous serious defects in

the engineering application

Customer

Support

There was no beta test plan put in place for the testing of the engineering

application.

There was no record kept of beta customer‟s details and defects.

5. Assessment of the development lifecycle and quality system

An assessment of the overall procedures of the software, firmware, customer support

and test departments was conducted from the perspective of an interdepartmental and

enveloping software development process. The findings for this assessment of the

development process were as follows:

1. The current waterfall development life-cycle that is implemented fails

to include the test department and customer support until after the code

has been complete.

2. The test process is inadequate to test the functionality of the software

and firmware at a detailed functional level and structural perspective.

The test process does not allow sufficient time or resources for system

testing or testing that is representative of customer‟s expectations of a

quality product.

3. There is no review or sign off of requirements or design documents by

departments other than the software and firmware departments.

Page 103 of 225

The assessment was conducted to identify the root causes of the problems that the

company was facing with the engineering application and current projects in

development. The original problems with the software and their root causes are

outlined below.

a) Late release of the software

b) Software not meeting customer‟s requirements

c) Latent defects still present in the software

d) Technical support and customers are not aware of all new features present

a) Late release of the software

● New features are requested from customers during the development of the

software. These change requests require rework and are not rescheduled. This

activity puts increased pressure on the developers to meet the deadline and the

consequence is a late release.

● Priorities change on other projects and a developer or tester may be required to

work on a different project.

● There is no formal handover of products for release to technical support. They

do not start their acceptance testing at the time of handover.

● There is insufficient time allowed for testing. The estimated time for testing in

the schedule is inaccurate.

 The test cases were inadequately designed for detecting low level defects. No

analysis was conducted on the components of the applications or how they

interacted. There was no testing of the internal logic of the application.

 The test planning was inadequate to prepare sufficient inputs to the test

process. There was no planning for a realistic test environment or for the

creation of test data.

 The defect tracking didn‟t capture the history of any defect changes which

would give information for future test planning and defect root cause analysis.

● The lack of version control was also a factor contributing to delaying the

release of products.

Page 104 of 225

b) Software not meeting customer’s requirements

● The customer‟s requirements are not fulfilled because they are not captured

accurately in the user requirements documentation.

● Another reason for the customer‟s requirements not being met is that some

features are not being implemented, because the team discovered that the work

required is more substantial than originally estimated.

● There is no research conducted into likely customers needs, when feature

requests are made there is no scope for the seamless accommodation of the

requests. The software is modified in any way possible to meet new

requirements without consideration for possible side effects.

c) Latent defects still present in the software

● There are bugs still present in the software after a release either because it was

decided to release the software and fix the bugs at a later date or because they

were not detected in time during testing.

● There was inadequate time and resources planned for the full testing of the

software.

● The test cases were not thorough in testing certain components of the

software. This was not evident until after the release of the software with

customers on live sites.

● The testing was not thorough enough in capturing how a user uses the

application. Hence the user detects bugs that the tester overlooked.

● There is insufficient system testing done.

d) Technical support and customers are not aware of all new features

present.

● The handover to technical support is not scheduled; as a result the technical

support team does not have enough time to prepare support or training for the

new software.

● The customer may not have received enough training. The customer may not

read the manual or may not consult the help file.

Page 105 of 225

While these problems are specific to one company, they are prevalent in the software

industry where similar problems affect the global software industry. According to

Robert N. Charette in „Why software fails‟ in an article in IEEE the main reasons for

software project failures are: (Robert N.Charette 2005, internet)

 Unrealistic or unarticulated project goals

 Inaccurate estimates of needed resources

 Badly defined system requirements

 Poor reporting of the project's status

 Unmanaged risks

 Poor communication among customers, developers, and users

 Inability to handle the project's complexity

 Sloppy development practices

 Poor project management

 Stakeholder politics

 Commercial pressures

5.2.3 The proposal to the company

The main issues from the assessment were reported to the directors of the company

with recommendations for changes to processes and practices. A report was compiled

which outlined an approach as to how the testing process should be addressed for

improved testing in future projects (SW Test Department requirements.doc, Appendix

A). The suggested improvements were reported in the form of an official company

project documented Engineering Change Request (ECR) for company X (ECR100,

Appendix A). The test report and ECR were submitted for approval to the company

directors, following the director‟s approval the changes were scheduled for

implementation.

Page 106 of 225

5.3 My proposed solution

Addressing the immediate problems

Following on from the investigation a number of areas in terms of quality needed to

be addressed. These included the engineering application defect metrics, addressing

the customer‟s feedback, improving the testing process and the development lifecycle.

“A quality improvement programme leading to the establishment of a quality system

must have both technical and cultural aspects, each being equally important. It is easy

to see the reason for this: the entity to be improved consists of both technology and

people” (Joc Sanders et al. 1994, p19)

5.3.1 The Principal design factors behind my proposed solution

i. Designing a quality focused project team with the sharing of knowledge

and evaluation of each members work with inspections and peer reviews

ii. Developing and reusing template documents and checklists where possible

to improve technical and customer knowledge artefacts

iii. Assessing Quality from the start and then at each stage of the project with

effective defect removal and planned systematic testing.

iv. Continuous Improvement where possible

Effective use of Team and project knowledge

It is a more efficient use of resources on any project when the experience of an

individual is used in a collaborative manner. The ideal is to build up a collaborative

team from the start of the project so that the identities and responsibilities of all

stakeholders from each department or domain are known at the outset. This will

increase the internal communications among the team with a lesser requirement for a

manager or mediator.

Where there are differing perspectives and priorities from each team domain at

Page 107 of 225

different stages of development, the project goal is success throughout each stage.

Having attendance by each domain representative at meetings should allow for a

smooth transition from stage to stage.

By having team participants review and inspect the work of their domain colleagues

they learn more about the project from other perspectives while also contributing their

experience to the project and improving the quality by removing defects and by

reducing defect injection.

A collaborative team assessment at each project stage allows for the input of different

perspectives on the same subject matter. When the responsibilities of each team

member have been defined early on and each member knows that they must sign off

on particular article of work outside of their domain they will then review it with due

care and attention. The documents evolve and improve over time with successive

inputs from project participants. Ultimately the documents will become more

company focused and of a very high standard.

Developing and reusing formal documents and checklists

The development of „best in class‟ documents by all domains will assist with ensuring

that each domain can understand what is being developed by the other domains and

can contribute to the dissemination of project information at each stage. The use of

checklists will assist with the review of each development stage and ensure that

nothing gets missed in reviews. The documents can be appended to, used for

reference by new team members and then reused for other projects.

By developing best in class documents they will over time become templates for later

projects and also act as a motivator for participants. The standard in documentation

will improve over successive revisions and increase the standard for all team

members. Having each domain formally sign off on a document, it increases the

attention paid to the documents content and also focuses the team on their respective

roles.

Page 108 of 225

The reuse of documents will reduce the project timeframe by having templates

already in place. It also acts as a source of information for future project revisions and

training material. The documents when used with a process model can act as an

interface to external organisations or teams when broader projects are embarked on.

Assessing Quality at each stage

The method of quality assessment should include the review of a team member‟s

work by their peers before its external review and/or inspection by other members of

the project team or external experts. This assessment includes the verification of

design documentation and the validation of software builds followed by a

qualification for the builds release. The record of metrics at each stage places a value

on the quality of the project outputs.

Having independent verification and validation at each stage of the project increases

the defect detection rate and reduces the defect injection rate. Integrating an

independent and quality conscientious team adds an emphasis to quality assessment in

each domain. An independent test team which is provided with sufficient application

design and business knowledge can plan detailed testing. This knowledge can be used

in the design of structured, methodical and reusable test cases for the detection of

defects in each stage of the software lifecycle. To guarantee their independence a

reporting structure which allows the team to escalate issues outside of the project

development team is required.

Continuous improvement

The notion of formal sign off, reviews and assessment may seem to impede the

creativity of the individual team members. However creative individuals will always

prevail and the framework is open to interpretation. The human element on a project

will inevitably lead to mistakes. The collection of metrics in repositories and the

generation of reports will allow individuals to learn from their mistakes and for

continuous improvement in projects and software development. Failure to record

errors will allow them to be forgotten and repeated.

Page 109 of 225

5.3.2 An Initial model

In order to improve the software in the areas of testing and software quality, it was

necessary to develop a model that could be used effectively to verify and validate the

software at each stage of its development by all parties involved with the project. The

first concern was to address the present problems and then to develop the solution

model further, by evolving and maturing it over successive projects. The long term

solution was directed at producing a framework that could be used repeatedly both in

house and in other software company‟s. This initial model was directed at addressing

the immediate concerns of each department in the company

Firmware and

Software

Development

Write a user requirement document (URD).

Document both a high level design (system specification document)

and a low level design (technical specification) solution.

Document and execute Unit tests.

Maintain proper version control of builds and code.

Test

Implement a quality policy for the team

Implement a checklist for the review of each document from

development to QA.

Participate at all documentation reviews for the early stages of the

project and log issues in a repository raised during the reviews

Produce a test strategy and plan for the project and seek peer and

project approval for each test artefact.

Insist on effective configuration management of the builds that are

tested and released to QA.

Manage and report the tests executed and defects detected during

test execution to the project manager.

Conduct defect triage meetings to prioritise defect fixing with

development

Customer

Support

Review the user requirements document and proposed design

solutions at an early stage of the life-cycle.

Collaborate with the development lead during use cases creation.

Document acceptance tests and have these reviewed by QA before

Page 110 of 225

accepting a release.

Report accurately all defects during beta or acceptance testing of

beta software.

Report accurately all defects detected by customers on released

software.

Testing improvements

To address the immediate problems with testing, a test process was developed which

included template documents for the effective planning of testing. The test process

documents were designed in addition to new process documents from the

development departments. Each document was to be peer reviewed by the author‟s

colleagues before being subjected to an interdepartmental review. Following on from

the review, any open topics raised at the review would be followed up by the author

as action points. The author would follow up on those action points with a second

review or send out an updated document with amendments as appropriate.

The initial documents from development would be a user requirements document

(URD) and system specifications document (SDS). The URD would record what was

required from a software solution and the SDS how that solution was going to be

implemented.

The information contained in the URD, SDS would be used to create the test strategy

document. The test strategy documents purpose would be to describe at a high level

what the test approach to the project will be. The test strategy would also be used as a

matrix to map user requirements and design specification points to tests. The test

strategy would also allow the test lead to make preparations for a test environment

and to source requirements for adequate test data.

Page 111 of 225

The test plan would be a more detailed explanation of the testing approach and act as

a test schedule for the project. It would expand on each of the areas of the test strategy

but also set out in more detail each of the points from the URD and SDS in terms of

what will be tested and when. The test data and test environment details would also be

documented in advance of their configuration in the test plan.

The test execution process would follow the test planning process. The first part of

this process would be a formal handover of builds from development to test. This

handover would maintain the requirement for version control of both code and builds.

The details of defect fixes would form part of this handover form. This would assist

with the defect management and regression testing and maintain the test status of

different builds. Bug fix reports were to be completed and compiled together and form

part of the handover of builds to QA. This configuration management practice

assisted with the quality assurance of individual builds. The test results would be

documented with defect states so that progress reports could be compiled with an

assessment of software quality. Metrics for test case completion and defects per

component and build would be recorded to assist with the identification of the root

cause of defects. This information would be factored in for quality improvement in

successive projects.

Following QA test execution completion and signoff, the application was handed to

the customer support department to conduct user acceptance tests either on site with

approved Beta customers and or in house.

The processes were documented and included in the company‟s‟ quality system. The

company documentation for this process can be found in appendix A. A diagram of

the test process and test execution procedures is depicted below in figure 5.9.

Page 112 of 225

Fig 5.9 improved test and QA process

Fig 5.10 Defect Lifecycle

Page 113 of 225

The company‟s quality system was changed to reflect the new test process and

supporting development documentation. The documents that were changed to the

company quality system are included in the appendix A. The documents are listed

below:

ECR – 0100 Testing Research Plan

Procedure 0029 writing test documents

Procedure 0056 software testing procedure

Work instruction 0032 test script creation

Work instruction 0005 dealing with an incident in released software

Work instruction 0081 use of Bugzilla for defect tracking

Form 0105 software handover form

Form 0123 firmware handover form

Form 0127 SW test report form

Page 114 of 225

5.4 Summary

In this chapter the industry sector that the company operates in was explored.

Elements of the company, specifically the R&D department, were described in full.

The function of the R&D teams and the company products were described in terms of

the BMS architecture. The architecture and operation was explained in depth. In

relation to the BMS system, the fundamental of the engineering application was

explained and its role in the BMS system put into context.

The fact that the company was experiencing quality problems was mentioned.

Investigations into the quality problem were conducted in an assessment. The

assessment findings were explained in detail. Details of the findings included

feedback from customers, internal departmental and company quality process audits.

The root causes of the assessment findings was compiled into an engineering change

request / report which outlined a proposed solution to the problem. The proposed

solution was described and depicted in a graphical process. The process included

testing and quality assurance practice improvements. These improvements were to be

implemented and evaluated over forthcoming company projects. This implementation

is described in the next chapter.

Page 115 of 225

6 Chapter Six - Implementation of improvements

In chapter five, I outlined the quality problem in the company; I also described the

proposed solution to improve the quality problem. In this chapter the proposed

solution is implemented and evaluated over three successive projects, each project is

executed in succession. The test & QA practices during each project were further

improved following each project as per the action research spiral (See chapter 2 for

details). The projects were executed over a three year time frame. To recap the seven

phases in the action research cycle „Action Research in the Organisation‟ are:

1. Review the current practice

2. Identify an aspect that needs to be improved

3. Plan an improved practice

4. Act / Execution of the practice over the course of the project

5. Observe the effects of the practice

6. Reflect on the success or failure of the practice and re plan accordingly

7. Repeat the practice improvements until complete

The first three phases were performed prior to the proposed solution implementation.

They are described in chapter 5, this chapter deals with the remaining phases (4 – 7).

Each project is described under the following headings:

 Description

 Plan

 Implementation (Execution and Observation)

 Reflection

The first three projects were conducted for company X with different development

teams on projects of similar size and complexity. There were approximately 500

function points per firmware product and 1500 function points per engineering

application and the number of lines of code was 22K for firmware and between 50K

and 70K for the different engineering application versions.

Page 116 of 225

The table below gives an indication as to the different size and complexities of the

three different projects for company X.

Project

1

Project

2

Project

3

FP ~1200 ~600 ~1600

KLOC 60K 22K 225K

Fig 6.1 project size and complexities

The duration of the projects differed with varying numbers of resources on each

project with different skill levels. Since the projects were tested at various stages of

development and were roughly equal in size the number of defects are not divided by

the KLOC as this was indeterminate at the stage of testing.

Page 117 of 225

6.1 Company X - HVAC Controller Project

6.1.1 HVAC Project description

To address the immediate problems facing the software in the HVAC Company, the

released engineering tool application code which was most problematic as identified

by the customers had to be re-developed or „re-factored‟ to address the outstanding

defects. The HVAC firmware was also behind schedule and needed to be completed.

It was decided that the next release of software had to be a defect-free engineering

application, the new HVAC firmware and all of the ancillary applications modified to

support the new HVAC firmware. This effort was to be included in the HVAC project

with an eighteen month timeframe.

In all, there were 11 ancillary applications to be enhanced with one major application

rewrite, one new application and the completion of the HVAC firmware. There were

eight developers and four QA resources assigned to the project. This consisted of a

total of 4500 man day‟s work. There was approximately 3KLOC to be developed for

each ancillary application to allow for them to be used with the HVAC controller.

This equated to close on 24KLOC. This was maintenance development which was

more time consuming and expensive than new developments. The engineering

application which needed re-factoring would require its existing 61KLOC to be re-

factored with an additional 8KLOC for HVAC support. The new keypad application

would require 162FP and 19KLOC. The controlling firmware were developed in C

and the windows applications in Visual C++.

Project 1

Developers 8

Testers 4

Man Hours 4500

Ancillary apps 24KLOC

Eng App 8KLOC

Keypad 19KLOC

Fig 6.2 Project 1 resources

Page 118 of 225

The HVAC project was the first project to be subjected to the new testing practices.

Initially the testing of the engineering application and HVAC firmware was to be the

first partial project to undergo the new practices.

6.1.2 HVAC Plan

The purpose of the initial changes was twofold, primarily to test the applications more

effectively and secondly to determine the effectiveness of the improved testing

practices.

The main changes to the testing practices included

1. Detailed test planning to identify the application components and then

determining the test types to be executed for each component.

2. A risk based approach was taken to the priority of the functionality for customers

and the complexity of the code that was being added.

3. A thread testing approach was taken where testing would be scheduled for the

earlier modules that completed development. This was synchronised with

firmware and software so that both could be tested close to the same time.

4. These tests were scheduled with milestone releases from development.

5. The tests were designed for more effective test coverage of the functionality.

6. The tests were also supplemented with detailed test data and an environment that

simulated a customer‟s site.

7. A purposeful defect tracking tool was installed for the recording of defects.

8. The team members were assigned to the project in roles and assigned

responsibilities on a par with their experience.

9. Team meetings were planned at milestone intervals to discuss project progress and

for the discussion of problems from respective department perspectives.

10. Documents were devised which formalized the interaction between departments

and acted as records for project progress.

11. The documentation supporting these new practices was written, circulated and

approved before being placed in the company‟s Quality System.

Page 119 of 225

Test Planning

In accordance with the new process the testing strategy and plan were documented;

these consisted of listing the items that required testing and prioritising the

applications under test in terms of risk with the higher risk items scheduled to be

completed first. The test effort for this project were quite substantial; the test phases

identified included the testing of the HVAC firmware, integration, systems testing

each application with the new HVAC controller and a regression test of the software

with the legacy controllers. The integration testing included serviceability testing each

application for correct operation with the HVAC protocol. The system testing

included performance testing the HVAC controllers for data throughput and the

engineering application for multiple strategy operation.

A project schedule was compiled indicating the roles and responsibilities of the test

team. The applications delivery to test and the testing dates were milestones in the

schedule. A thread testing approach was taken with a 3 week lag of testing behind

development, see chapter 3 the section on „integration testing‟. The reason for this

choice was that it was imperative that the high risk items be completed for a release;

the ancillary applications could wait for a second release if necessary. The adoption of

thread testing meant that some features that were coded could be tested on Alpha

builds before the completion of all coding. This over lap of testing and development

efforts would allow for defects to be fixed while the developer was still in the middle

of coding on the same application. There would be three stages of testing the suite of

software.

The phase I testing consisted of integration testing the firmware, communications

application (port-handler) and the engineering application. The reason for this initial

phase was that the controller had its own proprietary communications protocol. This

protocol had to be verified before any other applications could be developed or tested.

The phase II testing was the integration testing of the ancillary applications with the

modifications for the HVAC protocol and additional functionality. The third phase of

testing would be system testing the entire software suite in a simulated customer

environment.

Page 120 of 225

To complete this project the engineering application was the central focus for the new

processes and practices. The engineering application needed to be rewritten to address

the customer‟s outstanding concerns. Since the test cases for the existing engineering

application were inadequate a new set of tests needed to be designed in addition to

detailed test data and a test environment.

A stage progress meeting was held to discuss the current state of the project and what

the next phases were going to be. The schedule was reviewed and imposed upon all

departments, before the testing was scheduled to begin.

Test Environment

A purpose built test area was necessary to incorporate the new HVAC protocol along

side the existing UC16 protocol. The test area would need to be large enough to have

sufficient communications throughput to match that of a large customer‟s site. The

configuration of the test area also had to combine the different protocol

communications of both old and new protocols. This required different controller

types to be set up in a variety of combinations. Each of the propriety HVAC protocols

also had to be tested in each of RS232 Serial and TCP/IP transmission formats to

validate the communications functionality in the firmware. Figure 6.3 displays the

basic configuration required to test each combination.

The number of controllers and their address ranges were determined to simulate a

larger site of full address ranges. The site was configured to include the testing of the

communications application protocol and ancillary applications over serial RS232 and

TCP/IP transmission protocols.

Page 121 of 225

Figure 6.3 Test Area topology

Page 122 of 225

Test Case Design

The previous user interface style of test cases for the engineering application and

indeed other applications proved that they were inadequate to test effectively, refer to

chapter 5 „root causes of the problems‟. Since none of the existing applications had

detailed design documents; the existing documentation was in the form of

requirements. A new approach to test case design was taken; this approach was based

on a combination of black box and grey box testing where the user requirements were

supplemented with a system design document of the application provided by the

developer. The description of the application was combined with the requirements to

list key components of the application. These components were identified as items

that could be tested independently of each other as much as possible. The applications

were to be component tested to allow for easier regression testing and for better test

case maintenance. It was planned that there would be thread testing of the applications

with firmware. There was an anticipation of an overlap of certain components being

tested while other components were either still in development or defective

components were being fixed. The benefits to this component based testing were

twofold. Newly completed components could be tested while development of others

was still ongoing. Subsequent builds could contain fixes to defective components and

also contain newly developed components. This facilitated partial component testing

and for testing defect fixes. It was intended that this would improve the efficiency of

the development – testing cycles.

The components were identified and listed for inclusion in the test plan. Following on

from the test plan the test cases began with all identified components and expanded

each component with a number of tests. The tests were designed with boundary value

analysis to ensure that the code functioned correctly in likely scenarios and also that it

handled unlikely events. Equivalent partitioning was used to reduce the number of

tests to a minimum - yet providing for maximum test coverage. A backup of the test

data and environment required for the test cases was saved so that the same test

conditions could be easily reproduced.

The test cases were designed with efficient defect tracking in mind. If any defects

were found they were to be recorded in a defect repository and the defect number

Page 123 of 225

recorded adjacent to the tests. This assisted with retesting the functionality in a

subsequent build with the defect fixed. The unique naming convention for the tests

was also listed in the defect description. The purpose of this traceability was that

when the defect was submitted for fixing the developer could reproduce the exact

same test with the same steps and test data.

The test cases were also designed with maintenance of the software in mind. It was

expected that they would be reused multiple times and on subsequent builds that only

required regression testing. The test cases were subjected to a walkthrough and review

with the developers to ensure that the test coverage and test data was adequate. The

test cases were subjected to a peer review by the test team to ensure that all areas were

sufficiently covered.

While the test cases were designed with intended maximum test coverage it was

imperative that they achieve this aim as the existing application was poorly received

by customers. To this end they were to be executed on a build with code coverage

included. This tool would provide detailed information on the number of code

statements and functions executed by the test cases. See „Project Implementation

(Execution and Observation)‟ later on in this chapter.

Test Data

The test data requirements for testing the project, especially the engineering

application were quite complex. The suite of software, while consisting of numerous

different applications was interoperable with the information flowing between the

controllers to the respective applications. The engineering application was the core

application where the information originated and is transmitted to the controllers. Its

function was to program the controllers. The ancillary applications are used for the

monitoring and maintenance of the controllers in a building.

Page 124 of 225

Figure 6.4 temperature control strategy

The controllers could use a maximum of 1024 input and output (I/O) points so each of

these blocks had to be tested with connections between the minimum and maximum.

The controller also supported 32 Input and Output points, hence the name „UC32‟.

The first 8 Input points were configured to accept sensor types of Voltage, Resistance

or Current. The remaining 24 I/O points are programmable to operate with either

analogue or digital sensors. These programmable points, named „Uniputs‟ could also

operate as either input or output points. The controller could support a total number of

1024 blocks. Some of the blocks had a maximum amount that could be used in any

one strategy. Strategies had to be created that allowed for the connection of each of

the 61 strategy blocks, each connection point had to have a connection between the

acceptable range of 1 and 1024, with the maximum supported number of blocks in the

strategy. Using boundary analysis values of between 1 and 1024 were selected as

connection points, with negative tests evaluating point numbers less than 1 and

greater than 1024. The strategies also had to test the hardware point configurations

with a combination of analogue, digital input and output points. With the different

number of input points, strategy modules and combinations of connectivity there were

approximately 524,288 possible connections that had to be tested. The strategy

modules and points used for positive testing in the strategy are listed below. The

different points used in the strategies for testing use the boundary values available and

use some of the available combinations possible that yields the most test coverage of

all possible combinations.

Page 125 of 225

 analog points digital points

HW inputs 1,3,5,7 2,4,6,8

Uniputs 9,11,13,15 10,12,14,16

Relay Uniputs 17,18,19,20,21,22,23,24

64 Strategy

modules 1,5,16,24,32,100,500,1024 2,6,17,31,101,501,1023

Set points 2,6,15,33,99,499,1022 3,7,14,30,98,498,1022

Figure 6.5 strategy module connection point details

Initially single strategies were devised which would test each of the modules. These

strategies contained several modules of the same type with each of the different

possible connections. These strategies were used to verify that the correct point

number was saved in the strategy file which was to be transmitted to the controller.

Single strategies were devised which would test the hardware points in their different

configurations. There were 24 hardware points that were tested in each of their

Analogue or digital formats as either input or output points. These single strategies

were then reused to create larger strategies which incorporated each module up to the

maximum of 1024. Equivalent partitioning was used to devise these larger strategies

with as many combinations of connection points as possible.

 The strategies were also designed with reuse in mind. The test cases were

modularised under different application components. There was functionality overlap

between these components and that of the test data. The data could be reused or

copied and altered for testing the different components. The test data was also

scalable; in this regard it could be used for testing each component but also for testing

large components together. The integration tests were formed by adding a large

number of individual strategies into one large strategy and used on a network of a

large number of controllers. This facilitated system testing the applications and

controller firmware.

Page 126 of 225

Defect Repository

The defect repository was prepared for the application under test. It had each

application component and version entered into the database, so that they could be

selected during the entry of each defect entered. Standards were laid down for the

entry of the defects so that the reproduction of the defect would be simpler for the

developer to facilitate a quick turnaround. The repository allowed the entry of defects

with two sets of priorities, one for the impact of the defect on the testing and also for

the severity of the defect on customers. The repository also allowed for the history of

defects to be recorded as the defect moves between states during its lifecycle, the

individual who changed the state was required under the standards to enter in the

reasons for the state change.

Testing Execution Management and Team Dynamics

With grey box test case design and thread testing planned there was good team co-

operation. The test effort had to be managed in relation to the number and severity of

defects. This was organized during team meetings and defect triage meetings. Any

outstanding defects were discussed in relation to their impact on the customer and on

the test effort. High severity defects were prioritized with development for fixing in

subsequent builds. This allowed for early correction of high impact defects.

Version Control

Since the testing was going to be conducted during development in threads of

releases, there had to be tight version control. The builds that were released to test

were formally handed over with documentation stating the implemented features and

what defects were fixed. In turn the cycles of tests that were executed were recorded

against the versions of software with the severity and number of defects detected.

These metrics defined the state of the quality of the software at any given time. Any

versions of software that were above the minimum predefined quality criteria were

assessed for release. Any builds that were intended for release to customers had their

versions altered so that they could be identified as release builds.

Page 127 of 225

6.1.3 HVAC Project Implementation (Execution and Observation)

The test planning was effective in that test cases and test data were designed well in

advance of testing an application; this assisted in reducing the overall time frame of

testing. The reuse of test data and the facility of a dedicated test environment also

contributed with this reduction of the time for system testing.

The integration and component based testing combined with thread testing improved

resource utilisation and efficiency but it brought a lot of test execution tracking

problems, where items were tested in previous builds but were subsequently found to

be not working in later builds. There were also multiple builds of both software and

firmware where different builds supported different features. The version control or

configuration management was improved but needed stricter enforcement.

The different test phases that were planned were executed in succession; this assisted

with building confidence in the system and highlighting areas that required further

attention. The delivery of the applications to test was not punctual. To improve the

test execution, the number of builds delivered to test and the number of test cycles

executed on them were tracked to improve quality and an emphasis placed on

development to ensure that defects were fixed first time around.

Overall the project was completed six months behind schedule, with almost 73% of

delivery milestones to test being missed; this in turn led to the delay of test missing

their milestones. The over run was in the region of 33% of overall scheduled man

days. The controller was released to customers but some features were not

implemented. The engineering application (the new version was named ETV6) was

also released with some components not modified. It was discovered during testing

that certain components of both the firmware and software would need a complete

redesign. The root cause analysis of defects revealed that some design solutions were

not feasible. If these features were documented properly and a design review held

these defects would have been identified much earlier in the project lifecycle. See

Chapter 4 „Software quality assurance defect removal‟ and figure 4.11 „Characteristic

distribution of software defect origin‟ where 33% of defects are injected at the design

stage. The likelihood is that these defects would have been detected at a design

Page 128 of 225

review, in figure 4.12 „Average defect filtering effectiveness by QA‟ 50% of defects

at the design stage are detected at a design review. What is startling is that the cost of

detecting these defects at the testing stage is approximately 10 times more costly than

at a design review, see figure 4.13 „Average defect effectiveness cost‟.

Despite these setbacks the release was a success for a number of reasons, during

testing certain defects that were detected during thread testing were able to be dealt

with during development which saved overall development time. There was a 73%

delay in development milestones but only a 33% project overrun, in figure 6.4 the

number of defects rose sharply, this was the build that QA received that had all the

engineering application available for testing. The defects were identified by

components and features in components that were not satisfactory were omitted from

the release. The release was issued with all priority one and priority two defects fixed

but with over a hundred priority 3, 4 and 5 defects still open in the Windows software.

The HVAC Firmware testing was successful from a project perspective. As can be

seen in figure 6.4 there were a large number of builds, 13 in total, it wasn‟t until build

5.51, or midway through its testing that the engineering application was available to

test the firmware, the evidence of the delay in the number of defects can be seen in

figure 6.4, where the number of defects detected rose sharply. The advantage of

thread testing the firmware was that it was possible to continue testing despite not

having all the software available.

HVac Firmware Defect Analysis

0

5

10

15

20

25

30

35

40

45

5.
29

5.
34

n
5.

37
5.

39

5.
50

sl

5.
51

5.
71

5.
73

5.
74

5.
75

5.
76

5.
79

6.
01

Builds

N
u

m
b

e
r

o
f

D
e
fe

c
ts

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

Figure 6.6 HVAC Firmware Defect analysis

Page 129 of 225

In figure 6.7 the tail end of the cumulative defect curve indicates the slowing down of

the defect detection rate at the end of testing. This is indicative of test burnout, see

chapter 4 „Capturing and analysing defect metrics‟. In the first 6 months of release, 4

defects were reported by customers. This represents a 3.8% defect escape rate or a

96.2% detection rate which is high. This validates that the testing effort was in the

high effort / high outcome bracket for firmware testing, see chapter 4 „Capturing and

analysing defect metrics‟.

HVac Firmware Cumulative Defects

0

20

40

60

80

100

120

140

5.
29

5.
34

n
5.

37
5.

39

5.
50

sl

5.
51

5.
71

5.
73

5.
74

5.
75

5.
76

5.
79

6.
01

Builds

D
e
fe

c
t

T
o

ta
l

Figure 6.7 HVAC firmware Cumulative defects

The new testing approach demonstrated its effectiveness at reducing the testing time

while still yielding a high defect detection rate. The number of different builds that

had to be tested was quite demanding on the test team members. The emphasis on

quality was to be directed towards the leading edge of the cumulative defect curve and

to insist on less defective quality builds. Any defective builds were to be returned to

development with a record kept on the number of defects reopened.

The previous release of the engineering application had 1772 defects in total which

were tested over 72 different builds, the next version had additional HVAC support

and existing functionality re-factored. During the testing of ETV6, some 673 defects

were detected over 17 successive builds. The builds and defect severities are

displayed in figure 6.9. This represented a five fold reduction in the number of builds

required for testing. The duration of the second engineering application project was

also significantly reduced with ETV5 taking 960 man days and ETV6 only 430 man

Page 130 of 225

days. The later ETV6 project took only 45% of the time taken for ETV5. This

indicates that the efficiency of all testing techniques was beneficial in reducing the

overall development time.

During the testing of the engineering application a full regression rest was performed

on a build which was compiled with code coverage. This build was compiled with a

code coverage development tool Devpartner (Compuware corporation, 2005, internet)

which provided statement and method coverage of the effectiveness of the test cases.

This tool allows the number of source lines of code (and other metrics) to be recorded

when the tests are executed; the purpose of this tool is to report back the effectiveness

of the test. The test scripts were executed completely using the component based test

cases and test data and were completed over a period of 6 days.

The results of the coverage of the test cases were as follows:

Percent of Lines Executed: 61.3

Number of Lines: 68640

Number of Lines Executed: 42070

Number of Lines Not Executed: 26570

Percent of Methods Called: 64.6

Number of Methods: 5403

Number of Methods Called: 3488

Number of Methods Not Called: 1915

Fig 6.8 Test case and code coverage for project 1.

This represents a 65% method call of the entire application over 6 days and 61%

statement coverage. The previous test cases took 30 man days to execute. The use of

revised test cases, test data and the test environment assisted with an 80% reduction in

the effort for regression testing.

The 65% was considered a high level since third party libraries that were compiled in

with the source code could not be called by manual testing.

Page 131 of 225

ETV6 Defect Analysis

0

20

40

60

80

100

120

6
.0

.0
.3

5

6
.0

.0
.3

7

6
.0

.0
.3

9

6
.0

.0
.5

3

6
.0

.0
.5

8

6
.0

.0
.6

2

6
.0

.0
.6

8

6
.0

.0
.7

0

6
.0

1
.2

1

6
.0

2
.2

8

6
.0

3
.0

5

6
.0

3
.0

6

6
.0

3
.0

7

6
.0

4
.1

7

6
.0

5
.1

0

6
.0

5
.1

1

6
.0

6
.0

1

Builds

N
u

m
b

e
r

o
f

D
e
fe

c
ts

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

Figure 6.9 Defects per build analyses for the Engineering application ETV6

While the test coverage was considered sufficient, the number of defects that were

detected was also of importance. Despite the fact that this application was revised

heavily, the number of defects found was a cause for concern. It was good that the test

effort detected a high number of defects but it was an indication that the software was

of a poor standard.

ETV6 Cumulative Defects

0

100

200

300

400

500

600

700

6.
0.

0.
35

6.
0.

0.
37

6.
0.

0.
39

6.
0.

0.
53

6.
0.

0.
58

6.
0.

0.
62

6.
0.

0.
68

6.
0.

0.
70

6.
01

.2
1

6.
02

.2
8

6.
03

.0
5

6.
03

.0
6

6.
03

.0
7

6.
04

.1
7

6.
05

.1
0

6.
05

.1
1

6.
06

.0
1

Number of defects

S
u

c
c
e
s
s
iv

e
 B

u
li

d
s

Figure 6.10 Cumulative Number of defects for ETV6

The tail end of the curve in figure 6.10 indicates an upward trend towards an increase

in the number of defects despite successive builds.

Page 132 of 225

Analysis of the engineering applications defects per component (in figure 6.11)

highlighted the weak areas of the engineering application for further development

work. The number of defects detected in the globals and points components

reinforced the problematic areas that the customers had experienced with ETV5, the

earlier release. The user interface (UI) was particularly weak with many minor defects

highlighting a poorly designed application.

Defects Per Component

0

50

100

150

200

250

300

C
om

m
unu

ic
atio

ns

C
opy

 &
 P

as
te

D
ata

lo
g

G
lo
bal

s

K
ey

pad

M
ac

ro
s

P
oi
nt

s

P
rin

tin
g

S
tra

te
gy

U
C
32 U

I

V
irt

ua
l

Components

N
u

m
b

e
r

o
f

d
e
fe

c
ts

Figure 6.11 ETV6 Defects per component

The component based testing approach allowed most defective areas to be regression

tested without a complete retest of all functionality which contributed to a reduction

in test time.

The defects for the UI were evaluated and the common causes were used for input

into future UI test case design. These tests could be executed on mock up user

interfaces to save development costs in future. The most beneficial use of such UI

testing would be on prototypes so that any issues would be corrected before costly

backend development was undertaken.

The ancillary applications were not as high a risk as the HVAC firmware and ETV6

as they played a supporting role. These applications were tested when time became

available during a turnaround in between the firmware and engineering application

Page 133 of 225

testing. After testing any of these applications the higher priority defects were

addressed at the project meetings. There were 229 defects found in total for all of the

ancillary applications, this is a rate of 9.5/KLOC. When the engineering application

and firmware were suitable for release the most stable versions of the ancillary

applications were system tested and then install tested before a full release was sent to

customers on Beta testing.

Page 134 of 225

6.1.4 HVAC controller project reflection

The benefits for the new practices during the project execution were a high end

efficient test effort for both the software and firmware. The phased test plan approach

was conducive to tracking the progress of the test effort while also identifying weak

areas of the project. The risk based testing approach and the prioritising of defects

allowed high risk areas to be completed first and also ensured that in-complete

functionality was of a low risk and could be postponed until a later release.

The new test practices had so far proved their benefits in detecting defects and

reducing the timeframe for testing. Further improvements would have to be made

with co-coordinating the software and firmware builds so that their release would co-

inside with each other and also to reduce the overall testing time and allow for prompt

releases and for deadlines to be met.

The team interaction increased as a result of attendance at peer reviews and project

stage meetings and defect triage meetings. The relationships that were developed

helped resolve understandings which contributed to increased productivity. The

attendance at meetings was sporadic however and was largely dependent on the free

time of individuals rather than on a will to attend. The peer review of documents

provided additional insight into the application under test and improved the quality of

the test cases and data.

The number of builds and resulting testing cycles was proving time-consuming for

testing, test automation was considered as a way to alleviate this problem. Either the

number of builds or the number of test cycles would have to be reduced to reduce the

workload on the test team on future projects. It was estimated that three cycles of

testing should be sufficient based on the three large peaks of defects for ETV6, in

figure 6.9.

During the testing there were serious design flaws detected in both the firmware and

software that should have been detected earlier in the development phase. These flaws

Page 135 of 225

could be averted with improved design and design documentation; the reviews of both

of these activities should prevent such defects arising at a late stage in the

development cycle in the future. The software User Interface was also quite poor with

a significant number of defects; it was proving too costly in terms of development and

testing time to maintain. Suggestions were put forward for prototypes to be designed

for future projects to assess their suitability and to be evaluated by customers prior to

full development.

After the project was released to customers there were an additional 10 medium

priority UI defects detected, the customer provided steps to reproduce the defects.

There were a number of different steps involved in using the UI to develop a strategy.

Following up on the defects that the customers logged, there were different

engineering customers following different sequences of steps to develop the same

strategy module. Extra effort would need to be placed around either the testing of the

different combinations of steps or to have the number of combinations reduced in the

UI itself. There were workarounds for the defects, but it was an insight into how

differently the UI was being used by different customers. It was an indication of the

need to get customer involvement in UI prototypes or user acceptance testing.

Page 136 of 225

6.2 Company X CNET Project Repeat improvements

6.2.1 CNET Project description

The UCX32Net was the next replacement controller. It was a network controller that

was responsible for controlling the communication between all HVAC controllers.

The UCX32Net project was a smaller project than that of the previous Hvac. The

reason for this was that there was less modifications to the ancillary applications.

There were 3 applications to be modified with CNet support. It was a project that

required 1000 man days effort. There was 6KLOC for the engineering application and

2KLOC for each of the ancillary applications. The CNet had approximately 404

function points. There were three developers and two test engineer on the project,

over its duration. Only one of the developers had experience on this work before. The

other members of the team were inexperienced. A new web based User interface was

planned for the controller, which was to be embedded in an onboard web server.

The engineering application also required further re-factoring to incorporate the CNet

protocol support and to complete the components that were not released with the

HVAC release (ETV6). These two components were areas of the application that

customers reported as defective in the customer survey. The components were the

Globals and the strategy screen zooming and printing feature.

Page 137 of 225

6.2.2 CNET Plan

The same test plan layout for the HVAC project was reused as a template for the

UCX32Net project with the content updated where necessary. The existing test

environment and test data were leveraged for the testing of this controller. There were

slight modifications required for the replacement of old controllers for the new CNet

controllers but the infrastructure was already in place. The test data that were created

for the HVAC firmware testing could be reused without modification.

The test phases identified included the testing of the HVAC firmware, integration,

systems testing each application with the new CNet controllers and a regression test

of the software with the legacy controllers. The integration testing included

serviceability testing each application for correct operation with the HVAC protocol.

The system testing included performance testing the CNet controllers for data

throughput and the engineering application for multiple strategy operation.

The Hvac test plan was used as a baseline plan, it was estimated that the existing test

strategies could be leveraged and that it would take 15 days to execute a complete test

of the CNet. This estimate was based on records kept during the previous projects test

cycles. Emphasis was placed on the number of builds that were to be given for testing.

To assist with reducing the number of test cycles that was required, three iterations of

full Integration and System testing cycles were planned, no matter how many builds

were given for testing see Figure 6.12 for the project baseline. To ensure that the all

defects were fixed, tight control of versions was put in place to ensure that the three

cycles could be executed and to cover all test cases and to regression test all defects.

The thread testing had been successful on the HVAC controller so it would continue

on the CNet project but with all high priority functionality delivered on the first build.

The HVAC firmware test cases were used as a template for test case design for the

UCX32Net. The defect repository was updated in preparation for the CNet project

defects.

Page 138 of 225

Figure 6.12 CNet project testing timeline with 3 Cycles of testing

The number of defects that were detected in the ETV6 application was a cause for

concern and highlighted as a risk. As a precautionary measure the existing code would

not be altered in so far as was possible and the new functionality would be developed

in a separate UI; a separate windows dynamic linked library ('.dll') which would be

called from the existing application.

It was intended that a prototype for the web based user interface was going to be

developed and assessed by a selection of customers to verify its use before

development was to be completed.

Page 139 of 225

6.2.3 CNET Project Implementation (Execution and Observation)

Project Execution

The test planning was effective in that test cases and test data were designed well in

advance of testing the application. The high risk items were tested first and defects

were addressed appropriately. The components that were carried over from the HVAC

project were implemented and tested thoroughly. The same grey-black box test types

were implemented and improved upon in the CNet project which led to improved test

estimation and test effort. A prototype for the new web UI was reviewed by customers

before the complete UI was developed and embedded on the CNet. This review

allowed for functionality that was superfluous to customer‟s requirements to be

omitted from the final UI and for the inclusion of additional functionality which

customers desired.

The revised and enhanced test and development practices ensured that the CNet

project was completed on time with only two delayed delivery project milestones to

test; these did delay the detection of defects in the test cycles, as can be seen in figure

6.13 where it was 6 weeks before a significant number of defects were detected. It

was release week +11 that the first significant build was handed over to test. There

was one test milestone not met where the final build was released one day late. In

figure 6.14 the cumulative defects for the project is a more elongated curve indicating

that the time to achieve test burnout was lengthened. The planned three test cycles

were completed in cycles of 15, 15 and 10 days respectively. The test case design and

existing data and environment had proved beneficial in reducing the test effort and

allowing the test effort to bring the project back on schedule.

Note that the since 3 builds were anticipated from development, the defect metrics are

graphed on a weekly bases to provide results.

Page 140 of 225

CNet Firmware Weekly Defects

0

2

4

6

8

10

12

14

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Weeks to release
N

u
m

b
e
r

o
f

D
e
fe

c
ts

Priority 4

Priority 3

Priority 2

Priority 1

Figure 6.13 CNet defect analysis

CNet Firmware Cumulative Defects

0

10

20

30

40

50

60

70

80

90

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Weeks to release

T
o

ta
l

D
e
fe

c
ts

Figure 6.14 CNet Cumulative Defects

The outstanding components in the engineering application were addressed with a

new UI. There were only 66 defects detected in UEC6 between the new UI, (see

figure 6.15) and its addition to the existing code. There were 7 defects detected by

customers after 6 months of release. This was a lower 90% detection ratio than before.

The inclusion of the UI as a separate entity was beneficial as that there were not

several hundred defects in the HVAC version as a result of code changes.

UEC6 Defect Analysis

0

5

10

15

20

25

30

35

40

6.10.08 6.10.12 6.10.16 6.10.18 6.10.20 6.10.24 6.10.30 6.10.31

Builds

N
u

m
b

e
r

o
f

d
e
fe

c
ts

Priority 5

Priority 4

Priority 3

Priority 2

Priority 1

Figure 6.15 UEC6 Defect analysis

Page 141 of 225

UEC6 Cumulative defects

0

10

20

30

40

50

60

6.
10

.0
2

6.
10

.0
8

6.
10

.1
2

6.
10

.1
6

6.
10

.1
8

6.
10

.2
0

6.
10

.2
4

Builds

N
u

m
b

e
r

o
f

d
e
fe

c
ts

Cumulative Defects

Figure 6.16 UEC6 Cumulative defects

The three peaks of defects in Figure 6.15 for the Engineering Centre are indicative of

the three cycles for testing and how full testing can be achieved in this time frame.

However in figure 6.15 there is a continued increase in the number of defects detected

per build, it is more apparent in the cumulative number of defects in figure 6.11.

There is no levelling off at the tail end of the curve. This is indicative of a number of

outstanding latent defects in the application. The trend of the graph indicates a

continued increase of defects in successive builds. This has been the case for each

maintenance release of the engineering application. This is the worst case scenario for

testing where there was a high degree of defect injection in the design and code stages

of development and where it took minimal test effort to discover a high number of

defects. This release required 250 man days which was costly. This cost was a factor

in the decision to outsource a replacement application to a low cost development

offshore location.

Page 142 of 225

6.2.4 CNET Controller Project Reflection

The successful and timely completion of the CNet project was demonstrative of the

improvements in the testing practices of software and firmware for the company. The

defect analysis of the CNet testing was indicative of an effective approach to the

testing of projects for the company over future projects. The defect analysis for the

UEC engineering application however demonstrated that testing alone was not a cost

effective solution in providing quality software; it could not alleviate the effects of

poor software design. The root cause of the high number of defects per component

from the HVAC project and the continued increase of defects for the CNet project

justified a rethink of the design of the engineering application.

The data gained and experience gathered during the testing of the HVAC and CNet

project would be used to determine the expected quality of future projects. The three

iterations of testing software and firmware were found to be an effective benchmark

for future project testing requirements.

The defect detection rate for defects per KLOC over the course of the two projects for

the engineering centre went from the original version of ETV5 from 29/KLOC to

35/KLOC and againto 35 defects/KLOC. This represents a higher defect detection

rate while reducing the overall test time and bringing projects on target. The defect

rate is unusually high when compared with the firmware testing defect rate of

3/KLOC. The engineering application rate would indicate a poor quality software

application.

Page 143 of 225

Project Size

KLOC

Number

of

Defects

Defects

/

KLOC

ETV5 61 1772 29

ETV6 69 (61

+ 8)

673 35

UEC6 72 (69

+ 3)

66 35

HVAC 22 125 3.5

CNet 26 81 3

Figure 6.17 Projects 1 & 2 quality in terms of KLOC and defects

The statistics were brought to the attention of the board of directors with a

recommendation for a redesign of the engineering application; the new design was to

be inspected by the test department prior to application development to ensure that

software quality could be assessed before costly coding was begun. A design

document for the existing application was retrospectively produced in order to gain an

understanding of the current applications design.

Page 144 of 225

6.3 Company X – UEC8 Engineering Application

6.3.1 UEC8 Project description

The engineering application was to be re-developed offshore in India. The existing

application design was used as a template for the requirements of the new version.

The components that were problematic were considered overly complex and more

simple requirements were drawn up. Use Cases were written to capture the complex

user scenarios that were the cause of a high number of defects in the previous

application.

The application was expected to be of a similar size to the existing engineering

application with approximately 70KLOC with support for the new HVAC and CNet

controllers in addition to the existing controllers and applications. The project team

consisted of 12 developers and 4 testers (offshore) over an 11 month period. This was

a total resource estimate of 3840 man days. There was one test lead and one

development lead in Ireland to evaluate the deliverables from India.

Page 145 of 225

6.3.2 UEC8 Plan

The testing practices, test cases and test data of the previous engineering applications

projects were to be used as templates to test the UEC8 application but in the form of

User Acceptance testing since the offshore development house had to conduct their

own Unit and integration testing. The defect analysis of the earlier previous projects

demonstrated that the UI and certain components were quite complex and would need

to be delivered to the company in three deliveries.

The three deliverables were representative of the three cycles of testing that were

successful in the past. The high risk areas were to be delivered first. Since this was an

application heavily dependent on the UI, a prototype was to be delivered to Ireland in

addition to the three staged deliveries for assessment and testing. The testing schedule

was risk based with high risk areas being tested first.

The static testing of the design documents was also planned in order to shift the focus

of quality assessments to earlier in the development lifecycle.

The quality documents and procedures of both companies‟ were assessed and an

interface match was conducted between both development and test life cycles so that

there was expectation placed in the contract of the project in terms of quality. A

quality plan was outlined and agreed upon. In the quality plan the defect severities

were outlined and only a certain number of defect severities were allowed before the

application was returned for re - development. The System requirements specification

and both the high level and low level design documents were to be static tested before

the coding section was to be started. This inspection required the leads in Ireland to

inspect the documentation with the intention to gain an understanding of what was

proposed from India, and to use their experience to evaluate the strengths and

weaknesses of the documentation and to report their findings to management in

Ireland and India.

Page 146 of 225

6.3.3 UEC8 Project Implementation (Execution and Observation)

The development process for the offshore contractors followed that of the waterfall

development model where a system requirements specifications (SRS) document was

written and delivered followed by both high level and low level design documents

(HLD – LLD) before a UI prototype and three phased deliveries of the application

itself. The contractors own test department was responsible for testing the application

before each delivery to the company for UAT. A schedule was developed where each

of the projects staged deliverables was broken down by resource and estimated

timeframe. The delivery dates were set as milestones in the schedule. Independent

testing of the deliverables was scheduled in the company in Ireland.

Figure 6.18 UEC8 Project timelines and milestones

The SRS document was the only project milestone that was delivered on target. The

high level design documentation was delivered to the company by the contractors

three weeks late which was the first milestone missed. The static testing of the design

documentation revealed that the design documents did not provide a logical design

solution to each of the main components of the application.

Page 147 of 225

The initial UI prototype (phase I delivery) which was delivered was 30 days behind

the milestone delivery date. The limited testing that was possible on this prototype

revealed that the UI did not offer the functionality that was required for the

application. The first application build with functionality available (phase 1 delivery

second attempt) which included some of the functionality that was expected as per the

schedule in the prototype, failed testing with twenty one defects recorded in testing.

It was not until build (V2.1) that a sufficient level of functionality was present that

independent testing could be conducted and the quality plan contract could come into

effect in order to reject a build with eighty three defects detected (the contract

prevented payment of development until this build was accepted). The prototype

functionality and the functionality of the first release were not present in the build

until the second release V2.1. With this build the first iteration of functional testing

was able to commence. This build and two subsequent builds were rejected on the

grounds that the severity and number of defects was below the permitted quality level.

There were 34 and 36 defects detected per build. The number of serious defects was

increasing with each successive build (4, 5 and 12 respectively). In Fig 6.19 the

number of defects increased with each successive build from the contractors. The

quality of the software produced was below the expected standard for the software.

The test effort was in the low effort and high output bracket where a large number of

defects were detected with minimal effort. This is the worst case scenario for software

quality. The test effort in the company was user acceptance testing. The Unit,

integration and systems testing performed by the contractor was below an acceptable

level.

The contractor explained that there was a learning curve associated with the software

application and that the quality would improve with subsequent builds and that the

contract schedule would need revising, however at the request of the test team; a code

review was conducted on the delivered code to provide secondary evidence on the

standard of software. The code review corroborated with the findings of the testing,

that the standard of code was poor. Based on the test results and code review a

decision was made to terminate the contract and cancel the development project. This

early termination saved both time and money for the company.

Page 148 of 225

Defect Analysis for UEC8

0

10

20

30

40

50

60

70

Build Prototype V1 V2.1 V2.2 V2.3

Builds
N

u
m

b
e
r

o
f

D
e
fe

c
ts

Priority 4

Priority 3

Priority 2

Priority 1

Fig 6.19 UEC8 Defect analysis

Fig 6.20 UEC8 Cumulative defects

Cumulative UEC8 defects

0

20

40

60

80

100

120

140

160

180

Prototype V1 V2.1 V2.2 V2.3

Number of defects

S
u

c
c
e
s
s
iv

e
 B

u
li

d
s

Page 149 of 225

6.3.4 UEC8 project reflection

Independent testing with a formal contract or quality plan provides more leverage for

a test team to be effective at voicing their concerns as to the quality of software

produced. This forms the basis of entrance or exit criteria for the continuation of the

development effort on to the next stage. The standard of the design documents was an

immediate concern; as such it reinforces the need for the independent static testing of

design documentation before development commences.

The code review solidified the findings of the test effort and should be used early on

in the development effort to determine the quality of the code produced before

dynamic testing commences.

Page 150 of 225

Summary

As a result of the projects completion, the company launched the new products on the

market (except UEC8). The three projects were completed, but with varying amounts

of successes and failure. The test process improvements were successful, evidence

can be seen with the reduction in test execution time and the artefacts reuse. The

defect metrics allowed what the test team experienced to be demonstrated in an

effective manner to management. The team interaction was successful; the best

example of this was with the successful implementation of thread testing, this

required good teamwork and cooperation from all teams. Some areas that require

further improvements included the policing of development stage progression,

improved reviews at earlier stages would have prevented bad designs to be allowed

proceed to coding. The demand by external teams (e.g. sales) on delivery times are

sometimes counter productive, the „rush‟ to start coding can mean poor quality

products are produced which can not be sold. More Quality Assurance involvement

at earlier stages can save cost and prevent poor quality products being sold to

customer, the UEC 8 project is an example of early QA intervention.

To capture the practices that were successful and to strengthen the weaker practices

further, a framework was created. This framework is evaluated in detail in the next

chapter.

Page 151 of 225

7 Chapter Seven - Development of a Framework

In chapter six quality problem changes were implemented and evaluated in the

company. These practices were evaluated over a number of successive projects. The

process was updated with each project until a final model was developed as a

framework. The resulting test and QA Framework is intended to be adopted in any

development lifecycle model. The framework is wrapped around the five most typical

phases of any project lifecycle, see Fig 7.1. These five development phases are broken

into two distinct project activities, see Fig 7.2.

Fig 7.1 five development phases of a project lifecycle.

Quality Assurance Framework

Planning and design

Requirements and

systems analysis

System design

Implementation

Coding & test case

scripting

Test execution & defect

removal

Release & Closure

Fig 7.2 Quality Assurance Framework

Page 152 of 225

The QA framework is split into two distinct phases, the „planning and design phase‟

and „the implementation phase‟; these two phases have a number of project stages. In

total there are 5 project stages which encompass the entire project lifecycle, see Fig

7.2 for the phase and stage breakdown. During the planning and design phase there is

a lot of effort in preparation for the software in terms of user requirements, technical

and system specifications. This is a stage in the project that is crucial for getting the

project quality on track and is the least expensive stage for removing defects and for

preventing further defect injections, 40% of the defects are injected into the project at

this stage. See Chapter 4, Fig 4.13 „Representative average relative defect removal

costs‟ and Fig 4.11 „Characteristic Distribution of software defects origin‟. For this

reason it is advantageous for QA to be involved in defect prevention and information

gathering prior to testing in the implementation phase. The information gathering

assists with the test preparation in terms of test data, test environment and with

identifying how to test the solution.

The QA framework has elements of Team Software Process and Rational‟s Unified

Process where the key project team participants are identified and for each stage there

are a number of activities or processes that these key team members have

responsibility for. The key members should contribute to the process and produce a

number of deliverable artefacts at each process output. The processes are defined in a

sequential manner for each project stage so that the output of one process is

considered as an input to another. At the output for each process there is a review and

a sign off. The purpose of this is to assign responsibility to the key members to

prevent defect injection and to ensure defect removal. These items are elements of the

Defect Prevention Process and Defect Removal Process (see chapter 4 Defect

Prevention Process and Software Quality Assurance Defect Removal Process). The

review may take the form of an inspection, peer review or a walk through. There is a

sub activity associated with each review to record the metrics of the review and to

generate a report to facilitate the documentation of the quality of the software at each

phase and also to provide data for the process improvement activities at the end of the

project.

Page 153 of 225

The sequence of activities, team participants and documentation associated with each

activity is listed for each development phase. Where there is more than one activity or

document an associated review must take place and signoff obtained before

proceeding on to the next activity. Delays may occur in obtaining sign off in projects

but a development phase may not proceed until the next phase without first passing a

Go / No go meeting with all domain participants present. This ensures that the quality

is assessed and action is taken where necessary. A legend describes the elements to

the framework diagram itself in Figure 7.3

Fig 7.3 The legend for the QA Framework diagrams

Page 154 of 225

7.1 Evolved quality assurance framework

During the course of the evaluation of the process additional documents and

modifications to the process were developed. Some enhancements to the process are

listed below:

1. The adoption of use cases to document and explain typical customer scenarios.

2. Application prototypes for proof of concept were introduced to facilitate

getting sign off of previous documents. A prototype is not a completed

software solution but a portion of the solution that indicates the direction that

the solution is taking.

3. A template repository for project documentation was also developed to assist

with the discovery and retrieval of present and previous project

documentation. The repository would be version controlled to assist with

configuration management.

4. The addition of a resource plan and schedule for the project so that all team

participants regardless of the project stage would have visibility on their

inclusion on the project. This facilitated their attendance at review meetings. It

also provided a cause and effect indicator if resources were not available to

complete certain items of project material. The impact to other departments

was more obvious.

5. A separate traceability matrix was created which allowed for the mapping of

each user requirement and functional point through analysis, design, coding

and test. This matrix was used to supplement the project schedule.

6. A Quality policy that outlines the roles and responsibilities for the project

participants in terms of acceptable standards, guidelines and quality criteria for

deliverables.

7. A more detailed company technical architecture plan that facilitated discussion

at review meetings.

8. Enhancements to the existing URD, SDS, test strategy, test plan documents to

cover issues that arose over previous projects.

9. The inclusion of stage meetings (Go – No – Go meeting), as review meetings

were not attended by all project participants. It gave an opportunity for a

Page 155 of 225

dependent department to hold the project up pending items to be completed.

The benefit was to facilitate outstanding items that were „lost‟ during the

project to be aired and to have relevant stake holders present to make

decisions on the continuation of the project.

10. The inclusion of change control practices to ensure that change requests to the

project are recorded and that their impact to the project and participants is

assessed before the changes are made. The dissemination of information

pertaining to the change requests is handled effectively to reduce the impact

on the project.

11. The identification and inclusion into the test process all artefacts of the project

lifecycle including those from development for visibility to all project

participants.

12. The identification and inclusion of all software and test tools for the project

into the process for greater team understanding of deliverables and

responsibilities from all team participants. Checklists would be created to

ensure that all deliverables were complete before the project would move from

one stage to another.

13. The inclusion of a post project review meeting to discuss issues that arose

during the project and to address these issues. This review ensures that

continuous process improvement is adhered to by making changes as

appropriate to the relevant artefacts and processes.

For the purpose of explanation the tools and deliverables that have not been

mentioned earlier are listed below.

Defect repository / tool

This is a data store where the details of software defects are recorded. The repository

would allow for the status of defects to be identified and for the production of metrics

in relation to the defect. E.g. length of time the defect was open and what build it was

fixed in.

Reports

This is a report that records information relevant for presentation to management with

regards the status of the project for a particular team or stage.

Page 156 of 225

Development tools

This item relates to the software tools that the developers require to fulfil their role on

the project. It is included to highlight the responsibility of the developers to ensure

that they have the correct tools for the tasks assigned to them. E.g. Code editor and

compiler

Development environment

This item relates to the software environment that is necessary for the developer to

fulfil their role on the project. It is included to highlight the responsibility of the

developers to ensure that they have the correct environment for the tasks assigned to

them

Code repository

This is a data store where the software source code is maintained. The repository

would allow for the source code to be checked out to individual developers to

maintain control over builds.

Test data

This item relates to the generation and maintenance of data that is used during the test

process. The data would be versioned and maintained for repeated use. The data

would be created to meet with test coverage expectations to ensure as much of the

functionality is tested as possible.

Test case repository

This is a data store where the test cases are stored. It is also used to record what the

status of the test cases are to report on what tests have been executed, what tests have

passed and failed etc. The repository would allow for the status of the software to be

assessed at defined intervals, e.g. weekly. The metrics from the test case repository

and defect repository should give a good indicator as to what the status of the project

software is.

Page 157 of 225

QA environment

This item relates to the software environment that is necessary for the tester to fulfil

their role on the project. It is included to highlight the responsibility of the testers to

ensure that they have the correct environment for the tasks assigned to them

Build

The build is a version of software that has been released from the code repository. The

build may come from development to QA for testing or from QA to customer. The

version of the build should be unique so that the contents can be verified with

supporting documentation. E.g. handover documents, defect fix reports.

 The QA framework is depicted on the next two pages in figures 7.4 and 7.5

respectively. Figure 7.4 depicts the Analysis and design phases and figure 7.5 depicts

the Implementation phases.

Page 158 of 225

Fig 7.4 the QA Framework Planning and Design Phase

Page 159 of 225

Fig 7.5 The QA framework Implementation Phase

Page 160 of 225

7.2 Secondary Independent Assessment of my proposed
Solution

To verify the benefits of the framework, it was deemed necessary to evaluate it in an

independent environment in a second company on projects of equal size. The second

company agreed to be subjected to QA process improvements and project evaluations

over an 18 month period on two projects. The company‟s Senior President explicitly

requested that the company not to be named in this thesis. For this reason the project

names and company identity remain absent.

The second company is a large financial institute with a local software site operating

in Ireland. The framework was used to design local project process improvements. It

was originally targeted on two projects on one of the Irish development teams.

However some of the development resources for each project were located off shore.

The project documentation headings from the earlier projects were re-used as

templates for the evaluation.

Both projects were approximately 225 man days in duration successive to each other

with a period of 3 months overlap. For project FIIS there were 4 developers in Ireland

with one off shore. The project provided a web user interface which interacted with a

financial backend database via web services which allowed customers to get updated

information on their accounts and to conduct online transactions on their accounts.

The application was rated „AA‟ in priority with „A‟ being the lowest and „AAA‟

being the highest rating to be available 24 by 7 with no downtime. There were

approximately 52 KLOC and one FP per 63 LOC. The project was developed

primarily in Java, JavaScript and Xml with a web type XML UI and http

communications with multiple backend Oracle dB„s. The second project, B had 3

developers in Ireland and 2 off shore. It was 58KLOC project and one FP

approximately per 72 LOC. It was a very similar project for a different financial

customer. Both projects had one QA resource in Ireland and one offshore for UAT.

The development team had developed an „A‟ rated application before process

improvements were conducted. This project CSC, had 73KLOC and one FP per 129

Page 161 of 225

LOC. It was very similar to the project FIIS in its design and execution but had no

financial content. There were only 2 developers that were on both project CSC and

project FIIS.

The improvements were discussed with other project teams and improvements were

then made to other development teams. The results of the project and QA

improvements are discussed in the next section.

The improved practices were deduced by conducting action research in one company

on two projects and subsequently a third project, and lastly on another two projects in

another organisation. In company X there were three projects evaluated against each

other and in company Y there was 1 project evaluated with data from a previous

project. At the start of each project a plan was devised for improving test practices.

These improved practices were carried out during the course of the projects and

quantitative and qualitative data recorded during the project‟s progress. The effects of

the practice changes were observed during the project‟s progress.

When the projects were completed the data was assessed and comparisons made to

identify the effectiveness of the practice changes.

Page 162 of 225

7.3 Company Y - Project FIIS Application

To obtain an independent assessment of the Test practices and process to date the

practices were evaluated in a different company to assess their effectiveness. The

company is an Investment financial institution which develops and maintains its own

software. Both projects were developed and evaluated in the same financial software

company but with different teams of developers. There was a previous project (CSC)

conducted in the company prior to the introduction of the new practices and hence

provided a yardstick with which to measure the enhanced test practices.

7.3.1 FIIS Project description

The project that was undertaken to evaluate the test practices was to facilitate

customers to get updated information on their accounts and to conduct online

transactions. The project code base was approximately 52 KLOC in size with one FP

per 63 LOC, see figure 7.6. The project was developed primarily in Java J2EE, with a

JavaScript and Xml web type User Interface. The UI communicated with the backend

system using Web services which interfaced with multiple Oracle dB„s. There were 4

developers in Ireland with one offshore in the US and one QA resource in Ireland and

one more in the US for User Acceptance testing. The project was scheduled for 1125

man days. The project was part of a larger overall project but this application was

considered independently of the rest of the development effort but with interfaces to

the other projects systems.

Page 163 of 225

Project Number

of FP

Size

KLOC

FP/

LOC

CSC 565 68 120

FIIS 819 52 63

Fig 7.6 Project size and complexity in terms of FP / LOC

7.3.2 FIIS Plan

The plan for the testing practices on the next two projects was a continuation of the

existing testing practices that were successful to date (e.g. test planning, test

environment, traceability, test cases, test data, defect tracking, test execution

management, team interaction, version control, iterative test cycles, component based

testing and risk approach to test cycles) and to evaluate the benefits for the review of

all design documentation, independent user acceptance testing and to facilitate regular

code reviews to assess the quality of the code early on in the development life cycle.

The development process was based on the Unified Software Development model see

chapter 4 „Management of the Project life-cycle activities and components‟ with

elements from the extreme programming see chapter 4 „Extreme programming‟ and

defect prevention process see chapter 4 „Defect prevention process‟ interleaved. The

objective was to embed quality assurance into the development process with emphasis

on quality assessments at each stage of the development process. The Team

development process was also a factor using the team‟s knowledge and experience to

its best advantage during reviews and walkthroughs. The lead developer would

document and later develop one of the most complex sections of the application.

These document and code bases were walked-through with the team and used as

templates for the remaining development team. The entrance and exit criteria were

determined before each development stage with a team approval required before

transitioning to the next stage of development.

Page 164 of 225

The development process is split into two phases, the first phase being to analyse the

business requirements and to design a technical solution with both high and low level

design documents. The second phase is the actual coding and release of completed

builds for testing and deployment. The components to the application were developed

into a technical solution in both the system design and technical design documents

(SDS & TSD).

Conducting the review of design documentation and the facilitation of code reviews

would allow for more knowledge to be obtained on the application and for more

effective test case design and test planning. The regular attendance of team members

at design reviews was intended to allow project knowledge and domain experience of

individuals to be shared with other team members.

The QA and test process lays its foundation with the verification and validation and

qualification paradigms where each development stage is verified with its intended

efforts against the previous stage deliverables. The test effort is estimated and

determined based on the reviewed project requirements and design documentation.

The test strategy formulation and test planning follow on from the design reviews

where the test types and schedule can be calculated.

The test planning was conducted over two phases, the initial phase was the test

strategy where the test approach, test techniques, test cycles, test data, test

environment, risks, dependencies, milestones and reports were identified and

documented for the project. The application components were identified from the

design documents and recorded in a traceability matrix. The purpose of the matrix

was for tracking the completion of the code reviews and test case creation

The test strategy was reviewed by all participants before the test plan was

documented. This ensured that no item was being overlooked. The test types were

identified from the design documents and the unit, integration, system and

performance tests were planned. The system and integration testing was againto be

executed over three cycles to maximize test coverage. The test data requirements were

captured quite early during the test case design. The defects captured during the code

reviews were recorded and would be used for analysis of quality.

Page 165 of 225

The actual testing was split between Systems Integration testing and independent user

acceptance testing to ensure that anything that was over looked by one test team

would be captured by the other team. The Unit test cases were designed with

conditional coverage where a tool Junit (Object Mentor, 2006, internet), was adopted

for testing the java code before integration testing.

The test cases were designed with positive and negative testing of each component of

the application. A test data matrix was compiled with boundary value analysis to

cover each of the possible numeric values uses during transactions.

Funds available Account

PIN

Status

$1 IP Active

$1 IP Inactive

$1 IP Presetup

$1 IP Brs

$0 IP Active

$-4,4324,876 IP Inactive

$0.32165465436 IP Presetup

$-0.321 IP Brs

$999 SH Active

$534 SH Inactive

$1287 SH Presetup

$6898 SH Brs

$-4,4324,876 SH Active

$0.32165465436 SH Inactive

$-0.321 SH Presetup

$0 SH Brs

$1,353,654 IP Active

$9,545,345,543 IP Active

$4,234,643,654,654 IP Active

$3,546,234 SH Active

$7,654,523,764 SH Active

$3,663,234,753 SH Active

$1,353,654 IP Active

$3,546,234 SH Active

Fig 7.7 Example test data matrix of account types and fund amounts

There was a lack of domain expertise on the team which was perceived as a risk

during the test strategy formulation so a business analyst was added as a resource to

the project to provide business domain knowledge that was lacking in the team.

Page 166 of 225

7.3.3 FIIS Project Implementation (Execution and Observation)

The project was completed on time with the testing delayed due to offshore

development problems where the application interfaced with other web services. This

delay can be seen as a spike in the SIT defects analysis diagram in figure 7.8 during

the week of release and again in figure 7.9 in the Cumulative defect diagram. This

delay extended the completion of the release by two weeks but had no impact on the

overall project. The delay blocked the test case execution and allowed for additional

defects to be discovered at a later stage of testing.

Project FIIS Weekly Defects

0

5

10

15

20

25

30

35

14 12 10 8 6 4 2 0 +2

Weeks to release

N
u

m
b

e
r

o
f

D
e
fe

c
ts

Severity 4

Severity 3

Severity 2

Severity 1

Fig 7.8 Project FIIS weekly defect analysis

Project FIIS Cumulative Defects

0

20

40

60

80

100

120

140

Week 13 10 7 4 1 +2

Weeks to release

T
o

ta
l

D
e
fe

c
ts

Fig 7.9 Project FIIS Cumulative defects

Defects per stage

0

20

40

60

80

100

120

140

Code

Review

SIT UAT HotFix

Stage

N
u

m
b

e
r

o
f

d
e
fe

c
ts

 d
e
te

c
te

d

Severity 4

Severity 3

Severity 2

Severity 1

Figure 7.10 Project FIIS defects by stage

FIIS Defects per component

0

10

20

30

40

50

60

UI Middle ware

Defect Severity

N
u

m
b

e
r

o
f

D
e
fe

c
ts

Severity 1

Severity 2

Severity 3

Fig 7.11 Comparison of UI to middleware

defect distribution

Page 167 of 225

The review of the design documentation before development prevented any features

not being implemented or design flaws detected during testing. The code reviews

detected 60% of the total number of defects for the project (see fig 7.10), which had

the effect of early detection and removal thereby allowing for the project to be

completed on time and without any milestones being missed.

The success of the test practices can be seen through the lack of the number of defects

discovered in both UAT and in production (Hot fix). There were 9 defects detected in

UAT, this represents an escape ratio of 3%. The purpose of UAT was beneficial with

detecting these defects before the application was released to production. After 6

months in production there was 1 further defect detected (Hot fix)

After the project went live and production feedback received a post-mortem meeting

was held with the team and topical points from the project discussed.

0

20000

40000

60000

Lines of Code

Source Code Distribution

CSC 41802 50476

FIIS 37582 23284

UI Middleware

Fig 7.12 comparison of UI to middleware code for CSC and FIIS projects

Page 168 of 225

The Junit testing of the middleware was successful in the reduction of the number of

defects that were detected during the testing of the middleware. The number of

defects detected in the middleware is approximately 20% of the total defects, where

the UI accounts for approximately 80% of the total defects detected, see figure 7.12.

The Junit tests were written before the code had been complete so there are no metrics

on the number of defects that the Junit testing had detected.

When this project is compared with that of the previous project CSC (the earlier

project by the same team of developers with old practices) the difference in the testing

practices becomes more obvious. There were 60% more defects in Project CSC when

compared to project FIIS. This may be seen as better defect detection in project CSC;

however this is not the case when the test effort outcome is assessed where Project

CSC delivery milestone was missed by 5 weeks. This indicates a higher effort for

higher defect detection. The software quality can be gauged in Figure 7.12 for the

number of defects per KLOC for project CSC which was 5.37 where it is 4.5 in

project FIIS.

Project

CSC Project FIIS

KLOC 68 52

Number of defects 365 233

Number of FP 565 820

FP per KLOC 8.3 15.7

Defects / FP 0.64 0.28

Average LOC/FP 120 63

Defects /KLOC 5.36 4.48

Fig 7.13 Project CSC statistics versus project FIIS

Page 169 of 225

7.3.4 FIIS project reflection

The code reviews in particular while identifying a lot of defects were quite popular

with the developers which had a mixture of junior and senior developers. The

identification of defects at the coding stage contributed to a reduction of defects at a

later stage, but the sharing of coding methods was a success in that ideas were shared

across the team. This facilitated a „best of breed‟ approach to solving issues as they

arose during the code reviews. The collaboration between QA and development

during the code reviews, documentation reviews and the sharing of the test data

allowed for a more positive team dynamic. There was frequent interaction outside of

scheduled meetings between team members largely due to the team spirit that had

developed. This interaction was useful in solving small blockages in the project

progress on an individual basis, which was a contributory factor to the overall

efficiency of the team.

The creation of the test data at an early stage of the project allowed more accurate

testing of the code with the Junit tests. Each component of the project had Junit tests

developed.

Page 170 of 225

7.4 Summary

This chapter describes the foundation for and the framework for test and QA practice

improvements. The framework is based on the planning and design phases and the

implementation phases of projects. The legend and components of the framework are

described in detail. An evaluation of the effectiveness of the framework was

conducted in a second software company, company Y. The FIIS project and the

quality improvements that were implemented in this project were described. A

comparison of a previous project in company Y was made with the FIIS project to

highlight the quality improvements.

Page 171 of 225

8 Chapter Eight - Conclusions and Further work

8.1 Conclusion

The aim of this thesis is to investigate the best test and QA practices in industry and to

design and evaluate a process for implementing best practices in the software lifecycle

of a small to medium enterprise (SME) over successive projects. This thesis was the

culmination of over five years of software testing and quality assurance research and

practice improvements for software projects in two different SME organisations. To

this end the aim of the thesis has been successfully completed. Each of the four

objectives in succession led to the resolution of a quality problem in one organisation

and for the creation of a framework of proven test and QA practices.

The research into software testing was insightful and of benefit for testing multiple

products in different company‟s. Testing is difficult and requires detailed test plans.

These plans must tie the testing approach to the software design and development

schedule. This requires careful consideration of the product and demands that

resources are prepared in advance of testing. The test plan ideally should be risk based

so that it can yield better test benefits where test execution time is limited. Software

testing is not sufficient in its own right to ensure that a quality product is realised.

There are other quality factors that have to be considered and planned into the project

lifecycle. The software test plan should tie in with a project lifecycle process. This

project lifecycle process needs to incorporate quality assurance for each deliverable of

the project stages to address the quality factors.

Quality assurance from all team members in addition to testers is needed to address all

quality factors. The testing of software and QA of each software deliverable requires

structure and needs to be an endemic part of a project team. Where each project raises

its own difficulties, a process for having QA at each stage of the project is a benefit in

surmounting such obstacles The QA process needs to be incorporated into the project

lifecycle with the facility for improvements at project end for feed back into the next

project, this continuity of process refinement aids with quality improvements.

Page 172 of 225

If the QA process consists of a combined development and testing process, it is more

beneficial in improving the quality of each project phase. With the emphasis of

quality in this process, the experience of the QA team can strengthen the project team

as a whole in the mindset of Quality Assurance. While the QA process is a combined

effort, if the QA team can report independently of the development team, it can be

more effective than a dependent team. In addition to an independent QA team, the

inclusion of customers in the QA aspect of the project can also have a contribution to

improved quality and reduced defects. It is also more effective to have the customers

assess quality during different stages of the development cycle. The customers

themselves may be included or a body of representatives which can assist with

determining the quality assessment of the software.

Software quality metrics are required to track the defects and quality improvements at

each stage of the project lifecycle. Graphs of the metrics can be used to plot trends

over time of these software quality improvements to assist with the management of

the test execution and quality initiative.

Page 173 of 225

8.1.1 Limitations of research

There are limitations in this thesis in respect to the quantitative data used to

extrapolate the benefits of the research and also due to the individualistic nature of the

project work itself.

Where defect rates and lines of code are determined, they are accumulated over

several months of project work and are accurate at the point of their recording from

the respective artefacts in which they are stored. There is no allowance made for code

that was rewritten a number of times. A simple line code counting application was

used to determine as best as possible the number of lines of code for each application.

Every effort was made for the allowance of defects that were opened in error and

defects that were assigned an incorrect severity as far as was possible. The man hour

and milestone dates are representative of the project target dates and scheduled

timeframe. Accurate data was accumulated over the duration of six projects over three

years of project work, every attempt was made to keep accurate recordings of each

projects respective data irrespective of other projects taking precedence and resources

being temporarily reassigned.

The other major limitations to the research are that the projects were carried out by

many different individuals; each individual had different work experience and

education. The number of lines of code and the number of defects detected are

attributed to the work of the individual developers and testers respectively on each

project. The exact value of each statistic is determined on a project basis and

individual allowances are not represented.

Page 174 of 225

8.1.2 Improvements to practices

The first metric that should be obtained that was not recorded in enough detail would

be the number of items detected (design defects) during the review of any design

documentation. This could be a peer review of an artefact or the analysis of a

document during the test design stage. The cost benefits analysis of the time spent on

reviews would be more transparent and support the early inclusion of QA in the

projects. This is not the case in most projects.

During the test execution of projects, testing is frequently held up by late delivery of

builds or that certain features are not implemented, these test blockages (blocked test

cases) should also be recorded as evidence of delays that are not attributed to testing,

it would be prudent to include test cases that are blocked and for the duration in which

this is the case. Once the testing phase begins, any delays are automatically assumed

to be the result of the testing itself. This is frequently not the case.

The additional metrics of design defects and blocked test cases would further support

the case for QA reporting on software quality before there is a number of test cases

executed and defects reported. It is frequently too late to make significant changes to

the software at the test execution phase. The inclusion of metrics at the end of each

project phase (the Go / No-Go meetings) would again add weight to any opinions

expressed in terms of software quality before proceeding to the next phase. The

enthusiasm of developers can often out weigh the pessimism of QA when a project

manager‟s project is under the scrutiny of senior management at meetings.

Page 175 of 225

8.2 Further Work

The areas that could be explored further in relation to this testing process is to be

more accurately with the test effort and test outcome. The determination of test effort

in terms of the number of resources (man hours) and the test outcome in terms of the

number of defects anticipated that a project would produce from both testing and

development perspectives based on the number of function points.

Two of the projects were developed off shore, this is an increasingly more frequent

approach to software projects and it is an area worth examining further in relation to

GSD (Global software development) and the testing of the software developed in this

manner. It is increasingly more difficult to co-ordinate a distributed team (virtual

team) of developers, testers or business analysts for the purposes of artefact reviews,

team meetings and deployment of software builds and releases.

During the testing of some of the projects some of the test cases were automated in

conjunction with the maintenance of the test cases. This is a worthwhile activity, but

the test automation tools are frequently of the record and playback variety which can

extend the project lifecycle. The inclusion of test automation during the development

and unit testing of components would be an area that would be worth further pursuit.

With Java a test tool „Junit‟ was utilized for the unit testing of the applications in

project FIIS. This could be extended further and used in a broader sense for System

testing the application in conjunction with the test data for further test coverage and

extending the automation of tests. The QA effort while very beneficial for early

inclusion in the project perhaps would be best utilized for Test Driven Development

(TDD where the test cases are developed before the code is actually written.

The Framework was evaluated in a second company. Further research is necessary on

the frameworks adoption across different industry sectors and company‟s. Only after

this research is conducted would the academic community accept its validity and

benefits.

Page 176 of 225

9 Appendices, Glossary and Bibliographies

9.1 Appendix A Company X process documentation

The list of Documents as referenced in the thesis are listed below, copies of these

documents are at the end of the thesis.

ECR – 0100 Testing Research Plan

Procedure 0029 writing test documents

Procedure 0056 software testing procedure

Work instruction 0032 test script creation

Work instruction 0005 dealing with an incident in released software

Work instruction 0081 use of Bugzilla for defect tracking

Form 0105 software handover form

Form 0123 firmware handover form

Form 0127 SW test report form

Page 177 of 225

9.2 Appendix B – Glossary of terms

Test condition

A test condition is an abstract extraction of the testable requirements from the

baseline documents (Requirements, specification, design) A test condition has one or

more associated test cases.

Test cases

A test case is a set of test inputs, execution conditions, and expected results developed

for a particular test condition to validate specific funcionality in the application under

test. The percentage of business scope and functionality that is covered by the number

of test cases equates to the test coverage.

Test script

A test script is the collection or set of related test cases arranged in the execution flow

for testing specific business functionality. A test script must refer to the test

conditions covered, the number of test cases that cover these conditions and list the

prequisites for each test condition, the test data required and the instructions for

verifying the results.

Software

“Computer programs, procedures, and possibly associated documentation and data

pertaining to the operation of a computer system” (IEEE)

Software Quality

 “The composite characteristics of software that determine the degree to which the

software in use will meet the expectations of the customer” (IEEE quoted in Daniel

Galin, 2004, p.24)

Page 178 of 225

Quality control

Quality control is the process by which product quality is compared with applicable

standards and that action is carried out if non conformance is detected.

Auditing

Auditing is the inspection/assessment activity that verifies compliance with plans,

policies and procedures.

Review Process

A process or meeting during which a work product or set of work products, is

presented to project personnel, managers, users, customers, or interested parties for

comment or approval.

Page 179 of 225

9.3 Bibliography

Black, R. (2002). Managing the testing Process. USA: Wiley

Coghlan, D, Brannick T. (2005). Doing Action Research in your organisation. IRL.

Demillo, R.A, McCracken, M. W, Martin R.J, Passafiume, J.F. (1987). Software

Testing and Evaluation. Addison-Wesley

Fewster, M, Graham, D. (1999) Software Test Automation. London: ACM Press

Galin, D. (2004). Software Quality Assurance from theory to implementation. USA:

Pearson Addison-Wesley

Gao, J.Z, Tsao J. H.-S, Wu, Y. (2003) Testing and QualityAssurance for Component-

Based Software. USA: Artech House

Hetzel, B. (1988). The complete guide to software testing. USA: John Wiley & Sons

Inc

Jorgensen. P.C. (1995). Software Testing: A Craftmans approach. USA: CRC Press

Kan, S. H. (2004). Metrics and models in software quality engineering. USA:

Addison –Wesley

Lewis, W. E. (2005). Software Testing and Continuous Quality Improvement. USA:

CRC press LLC

Bain, J. Lee (1978) Statistical Analysis of Reliability and Life-Testing Models. USA:

Dekker

Myers, G. J. (2004). The Art of software testing Second Edition. USA: Wiley

Parrington, N. (1989). Understanding Software Testing. Halsted Press

Rational, (2002). The Rational Unified Process. USA: Rational

Raynus, J. (1998). Software Process Improvement with CMM. USA: Artech House

Publishers

Sanders, J. Curran, E. (1994). Software Quality: A framework for success in Software

Development and Support. GB: Addison –Wesley

Edsger W. Dijkstra and Carel S. Scholten. Predicate Calculus and Program Semantics,

(Texts and Monographs in Computer Science, Springer

Ernest T Stringer (1996). Action Research: A Handbook for Practitioners. USA: Sage

Page 180 of 225

9.4 Web Bibliography

John Mittelstaedt, William Ward, Maya Vijayaraghavan, (2001) Available from:

"Location, competition and globalisation: increasing returns and international trade”

www.webpages.dcu.ie/~mcdonpi/4-Rahtz-and-McDonagh-eds-2001.pdf, [Accessed 5

Aug 2007]

Irish Software Association Pre-budget submission 2006, ISA executive summary,

(2006) Available from: www.software.ie/Sectors/ISADoclib3.nsf, [Accessed 12

September 2007].

CMMI Appraisal Method for Process Improvement , SEI (2001) Available from:

(www.sei.cmu.edu/pub/documents/01.reports/01hb001.html) [Accessed 5 September

2007]

Quantitative Software Management, (2005), QSM Function Point Programming

Languages Table v3.0, Available from: www.qsm.com/FPGearing.html, [Accessed

12
th

 November 2007].

Compuware corporation, Compuware optimal, (2005), Available from:

www.compuware.com/solutions/default.htm, [Accessed September 2005]

Object Mentor, (2006), Available from: www.junit.org, [Accessed October 2005]

Robert N.Charette. Why Software Fails, 2005, Spectrum IEEE, available from:

http://spectrum.ieee.org/sept05/1685, [Accessed August 2007]

Watts Humphreys. Team Software Process, available from:

http://www.sei.cmu.edu/tsp/ , [Accessed August 2007]

UK Software Metrics Association (1998), available from: http://www.uksma.co.uk,

[Accessed July 2007]

Software Defect reduction

http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf

International Organisation for Standards, ISO available from:

www.iso.org/iso/home.htm, [Accessed October 2007]

Rational Unified Process (2002), available from: www.rationale.ie, [Accessed

October 2007]

http://www.webpages.dcu.ie/~mcdonpi/4-Rahtz-and-McDonagh-eds-2001.pdf
http://www.software.ie/Sectors/ISADoclib3.nsf
http://www.sei.cmu.edu/pub/documents/01.reports/01hb001.html
http://www.qsm.com/FPGearing.html
http://www.compuware.com/solutions/default.htm
http://www.junit.org/
http://spectrum.ieee.org/sept05/1685
http://www.sei.cmu.edu/tsp/
http://www.uksma.co.uk/
http://www.cs.umd.edu/projects/SoftEng/ESEG/papers/82.78.pdf
http://www.iso.org/iso/home.htm
http://www.rationale.ie/

Page 181 of 225

Appendix A – Document Copies

The list of documents as specified in Appendix A are copied in to this thesis. These

copies do not contain the Company header and Footer information but do contain the

text from the original documents.

ECR-100

Company x Controls Testing Research topics

Author: Mark Kevitt

Approvals:

Reviewed By: Passed Signature Date

Reviewe

d

Issuer Mark Kevitt 16/12/03

R&D Manager Assigned CWP- NONE

Further Distribution:

Document Revision History:

Rev. Date Details Of Changes By

1.00 16/12/03 Created MK

Page 182 of 225

10 Description of Problem(s)

This document outlines the topics that require research for the improvement and

modernisation of the testing process in Company x Controls. The reasons for the

research are given briefly and a small outline of what is expected from any resultant

changes. The topics are subdivided in to relevant sections.

11 Proposed Solution/Change(s)

11.1 Software Lifecycle changes

Implement a more structured version control for both firmware and
windows software. New builds to be documented and a
process for its release to test.

User requirements documented to be complete before a
design/specification document is written. The user
requirements to include preformance and User Interface
requirements.

Specification documents to be approved before coding
commences and any changes to the application to be
reflected in an updated specification.

A system architecture to be implemented for the explanation of the
current software suite and any new applications to be
modelled in detail and then added to the overall system
architecture.

Testing documents to map to the user requirements and
specification document. It is to include risk analysis and user
acceptance testing. The test plans are to provide for manual
and automation tests.

Determine what is an acceptable beta release standard and what is
full release standard.

Page 183 of 225

11.2 Test Process improvement

Testing to be broken in to projects and test team members to be
assigned projects on an „experience‟ basis.

Test automation to be adopted. The training of the best practises
and use of the tool to be implemented.

Bug tracking, Bugzilla database to be backed up on a daily basis.
Procedure for the tracking of bugs using Bugzilla to be
implemented. Bugzilla emailing problems to be ironed out.

The testing of the a software application to be divided in to three
sections/iterations, the first iteration is to automate the tests
and to identify as many tickets as possible. The second is to
regression test the bug fixes and improve the scripts where
necessary. Any tickets found will be documented and
metrics calculated. The third regression test will be to verify
that the application meets release criteria. After each test
section the application will be returned to the developer for
the relolution of any tickets.

System testing to be implemented for the release of a CD or a new
aplication which is to be added to the suite. An improved test
area to be set up and documented for the system test. It is to
include remote modem and TCPIP sites. It should test each
application for functionality and performance.

Test to liase with technical support for hand over purposes and for
user acceptance testing.

Firmware testing to be addressed, the feasibility of automating the
firmware testing using a developed COM interface or other
testing tool.

12 Implications of Change(s)

The testing and development process will become more efficient. There will be more

transparency of projects.

Page 184 of 225

13 Proposed Implementation

The research will be done on a part time basis and will not impact on the current

workings of the test department. The procedures that will be created or modified will

be done in accordance with the quality plan.

14 What Tests Will be Required?

N/A

What Documentation Changes Will be Required?

A new procedure will have to be written for the use of Bugzilla.

The work instruction 32 will need to be updated to reflect white box testing of

applications. The application and test script should be broken down in to its

constituent components.

The procedure 29 will need to be updated to reflect that a test plan and test script can

be merged in to one document called a test specification.

The updating of Specification documents WI0022 will need updating to include a

model of the application under development.

The creation of a new procedure for the testing of applications in the three iterative

process.

Page 185 of 225

Procedure 0029

Owner Dept. Windows Testing

Modifier: M Kevitt

Title: Test Team Leader

Document Revision History

Rev. Date Details Of Changes

1.00 9/3/00 Initial Issue

1.01 14/3/00 Change to correct format

2.00 10/11/04 Updated to include template files and Added reference to F-133 Test Doc

template and F-134 Test plan template, modified test plan and document

procedure to reflect best practices.

Page 186 of 225

1 Purpose
To establish a standard for the creation of test scripts for Software Testing within

the Software Testing department.

2 Scope

2.1 This procedure applies to anyone creating scripts in
order to test any Company x software.

3 Policy
It is the policy of Company x Controls to create Software Test Scripts in

accordance with this procedure.

4 Responsibility.

4.1 It is the responsibility of the Test Team Lead in Company
x Controls to ensure that this procedure and the
procedures and work instructions it references are
adhered to.

4.2 It is the responsibility of the Software Testers to adhere
to this procedure and the procedures and work
instructions it references.

5 Applicable Documents.
WI-0032 Test Script Creation.

6 Definitions
No definitions applicable

7 General
This Procedure is closely linked with Work Instruction WI-0032. Please read both

documents before attempting to create scripts.

8 Procedure

Page 187 of 225

8.1 IMPORTANT:
Before creating any scripts it is important to read all the
relevant documentation that refers to the area you are
about to create scripts for.

8.2 Before you can move on to create the “Master Test Plan”
the “Master Test Document” needs to be signed off by
both the programmer, the Test Team Lead and the
Customer Services Co-ordinator. Only when this is done
can you go ahead and create the “Master Test Plan”.
Likewise the “Master Test Plan” must to be signed off by
the programmer involved and the Test Team Lead before
you can go ahead with the creation of the “Master Test
Scripts”.

8.3 Introduction

8.4 This document has been written with the intention of
laying out a definitive procedure by which to create the
three documents required to create successful and
comprehensive test scripts. The first document to be
created is a “Master Test Document”, the second being a
“Master Test Plan” and the third being the actual
“Master Test Scripts”. Below I have broken each of these
three down to give a clear outline of the procedure to be
used when creating either one or all three of these

Page 188 of 225

documents. Most documentation required to create
these documents (User Requirements, Software
requirements specification, Design specs etc.) can be
found in the project directory. It is good business
practice that the tester involved with a project be
included with the project at each gate meeting and
project meeting to provide input and insight in to the
project. This will assist with the project test design and
test planning and test document writing. Insist that you
are at each meeting pertaining to the project. You can
direct any questions at the relevant figurehead. If in
doubt consult the QA manager.

8.5 The Master test document (MTD) should be written
outlining the purpose of the project and the user
acceptance criteria for the project. The Master test
document is based on the user requirements document.
This document outlines the plans for user acceptance
testing (UAT). It should will give an outline of the
software that will be tested and inform the reader of
whatever purpose or function this particular area serves.
Also outlining any new features contained in the
software which were not present in previous versions.
Here as well should be noted any features in previous
release(s) which were not working or working
incorrectly. It is the first document to be written as it is
used for the initial CWP gate process. It should be
written in the format specified in the Master test
document/UAT template. The acceptance testing should
be carried out by Customer Services after system testing
and all testing has been passed. The MTD should have
enough information for a user to read and understand
the purpose of the new application. It should include
enough checklists that the user will have confidents in
the application after following the tests in the chcklist.
Some checklist criteria are in the sample MTD.

8.6 |The Master test plan is written after the master test
document has been approved. This document is based
on the software requirements specification and the
design or architecture plan. The purpose of this
document is to plan all testing activity on the project.
The plan should be written in accordance with the Test

Page 189 of 225

plan template FXY.Master test plan template.doc

8.7 The Master test plan should only be written after the
USR, SRS and Design stages have been complete.
Previous projects or applications if they exist should
also be researched for outstanding issues or problems
so that this information can be factored in to the plan.
The stages of the testing have been broken down in the
Test plan template. It is imperative that the plan follow
the template

8.8 It can be advantageous to use the numbered points in
the “Specification Requirements” document to create
your scripts keeping in mind that all points have to be
covered (“User Requirements” document is useful for
reference purposes). The test cases in the scripts should
map to the requirements in order for the tester to easily
reference a feature that is being tested.

8.9 Once scripts are created it is important that their
reference details (Number etc.) be entered into the
“Requirements Matrix” alongside the function they were
created for.

8.10 If scripts are changed the “Requirements Matrix”
will need to be updated to reflect any new scripts that
have been added. The same applies if new Requirements
are added to the “User Requirements document” if new
features are added and new scripts in turn need to be
created. These new scripts then will have to be added
into the “Requirements Matrix”.

8.11

8.12 The “Master Test Plan” is an index of exactly what
tests are going to take place. Here the “Master Test
Plan” creator will break down all the main components
and sub components that will need to be tested. The
first area to be covered is that all requirements on the
“Requirements Matrix” are covered in the scripts. He /
She will then create a “Skeleton” or “Index” of all the
areas to be tested. Once this Index has been created
then the actual names of the tests to be carried out will
be given titles underneath their respective heading or

Page 190 of 225

sub heading. This means that before any test is written
in the “Master Test Script” that the script already has a
name. Then all that is required is for the steps
themselves to be written for each of the named tests.

8.13 The component headings then need to be added to
Bugzilla after the plan has been approved. This is to
facilitate bug tracking when testing commences.

8.14 Master Test Scripts
These are simply scripts now created from the index you
created in the “Master Test Plan”. If while creating the
scripts you feel the need to add in new tests along the
way (This will happen on a regular basis hopefully if you
are testing properly) then remember to update the index
in the “Master Test Plan”. For exact steps on how to
create test Scripts please see Work Instruction WI – 0032
which can be found in Q-Pulse in the “Documents and
Data Control” area.

Page 191 of 225

Procedure 0056

Document Revision History

Rev. Date Details Of Changes

1.00 15/04/20

04

Initial Issue

Owner Dept. Quality

Initiator: Mark Kevitt

Title: Test Team Lead

Page 192 of 225

1 Purpose

1.1 To document how software and firmware are tested in
the company.

2 Scope

2.1 This procedure applies to all software testing activity in
the company regardless of who is doing the testing.

3 Policy

3.1 It is the policy of the company to test software and
firmware in accordance with the practices outlined in this
document.

4 Responsibility.

4.1 It is the responsibility of the Test Team Lead in The
company to ensure that this procedure and the
procedures and work instructions it references are
adhered to irrespective of who is performing the testing.

4.2 It is the responsibility of the Software Testers and other
testing software/firmware to adhere to this procedure
and the procedures and work instructions it references.

5 Applicable Documents.
PROC-0029 Writing Windows Test Documents

WI-0032 Test Script Creation.

WI-0005 Dealing with an incident in released UNITRON software interface.

WI-0081 Use Of Bugzilla

F-0105 Software Handover Form

F-0123 Firmware Handover Form

F-0127 SW Test Report Form

6 Definitions

6.1 Bugzilla – defect tracking tool.

7 General

7.1 This Procedure describes the operation of the QA
department. It gives an overview of each process, to get
a description is detailed of each function. It would be
advisable to read all that is listed in the applicable
documents section.

file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/PROC-0029.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0032%20Test%20Script%20Creation.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0032%20Test%20Script%20Creation.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/Draft%20Documents/WI-0081%20Bugzilla.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0105%20SW%20Application%20Handover%20Form.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0123%20FW%20HANDOVER%20DOCUMENT.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0127%20SW%20TEST%20REPORT%20TEMPLATE.DOC

Page 193 of 225

8 Procedure

8.1 Test Overview Flowchart:

Test

ing

Bug Fixing

Testing

Development

Goal is maximum of

three iterations of

testing for a CWP.

Pass One: First pass

should be early as

possible in

development.

Pass Two: Main

testing

1.1.1.1 Pass Three:

Final test,

should be

bug-free or

only minor

bugs, P4,

severity at

minor or

below.

CD/System Test

Unit Testing

New Function (Proj. Test Doc)

Regression

Old bugs

Scri

pts Pass /

Fail

Release

Pass /

Fail

Max 3 times

Development

Test Report

Test Report

Handover Form

For Build

Update

Requirements

Matrix and test

scripts

P

P

F

F

DevelopmentTest Planning

Page 194 of 225

8.2 Test plan

8.2.1 The purpose of a test plan is to document and plan what will
be tested in a project.

8.2.2 The output of the plan will also produce a project schedule
that will be used to track the project progress.

8.2.3 The test plan is written after the requirements and design
documents are approved.

8.2.4 The test plan has to be approved by the test team lead and
the developer and or project manager on completion, to
ensure that everything in the project will be tested
sufficiently.

8.2.5 The test plan must describe the hardware and software set
up necessary to perform the testing.

8.2.6 The test plan should also break down the specific areas that
will be covered during the testing;. The tests incorporate the
requirements of the project and the functionality as
described in the design document.

8.2.7 Each requirement can be traced from the requirements
through the test plan and to the test scripts. The
requirements matrix is used for this purpose.

8.3 Test scripts

Page 195 of 225

8.3.1 The test scripts have to contain the steps necessary to
perform the tests as outlined in the test plan.

8.3.2 Each test has a description to facilitate the testers
understanding of the actual test. Notes can be added as
required to further facilitate the comprehension of the test.
The steps necessary for the test are outlined, following the
steps are a list of the expected results. This inclusion is to
facilitate the testers verification of what was seen during the
test to previous known outcomes. A table is provided for the
inclusion of the actual results. This table must include
provision for a defect number, the signature of the tester, a
description of the actual results and a pass/fail field. The
creation of test scripts is outlined in WI-0032 Test Script
Creation and PROC-0029, Writing Windows Test Documents.

8.4 Handover

8.4.1 The respective handover form (F-0105 for SW/F-0123 for FW)
is completed by the developer and handed over to the tester.
The form is handed over with the (or the location of)
required software and or firmware for the testing.

8.4.2 Only when the tester is satisfied has signed to accept the
handover, will testing commence, this may involve
performing a „smoke test‟ to verify minimum quality level .
The purpose of the form is to ensure that the coding and
administration required of the developer is complete before
the testing begins. All of the changes made since the last
test on a particular build are listed to assist the tester with
their knowledge of the project before testing commences.
For example the run log is appended so that each code
change since the last tested build can be viewed. The list of
fixed bugs can also be added. This assists the tester with the
test report and with preparation of the testing.

8.5 Bug Tracking

8.5.1 While following the execution of the test scripts the testers
may encounter bugs. The tester will log bugs in Bugzilla for
the application that they are testing. They will also fail the
test in the scripts and log the bug number in the test script.
They will follow WI-0081 Use of Bugzilla for its correct use.
Bugzilla will email the relevant development manager about
the bug.

8.5.2 The bug lifecycle (as per WI-0081) will be followed by the
development manager who will assign a developer if

file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0032%20Test%20Script%20Creation.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0032%20Test%20Script%20Creation.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/PROC-0029.doc
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0105%20SW%20Application%20Handover%20Form.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0123%20FW%20HANDOVER%20DOCUMENT.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0081%20Bugzilla.doc

Page 196 of 225

appropriate to fix the bug. During a later test cycle when the
tester is testing fixed bugs they will close or reopen the bug
as appropriate.

8.6 Project Testing cycles

8.6.1 The purpose of having testing cycles is to maximise the
productivity of the testing activity and measure the quality
level of each build. Each phase of testing is planned and
results documented on F-0127, SW Test Report Form which
will have been assigned a test no. from the SW Test Report
Log.

8.6.2 There can be any number of testing cycles but the optimum
is three. On handover of the project the tester will complete
the first section of F-0127, SW Test Report Form.

8.6.3 The initial test cycle will be for complete test script
completion with all defects reported. The cycle should be the
longest and will allow the development effort to fix the bugs
as they are raised.

8.6.4 On the completion of the initial cycle the tester should
update the test scripts and test plan if necessary and the
also the requirements matrix. On completion of the test the
tester will complete the second section of the test report.

8.6.5 The development team, will optimally have the next release
ready with most or all of the bugs fixed. The tester will
complete a test report for the next build based on the
handover form. If the bugs are fixed in accordance with the
bug fixing procedures then the bug list and related areas as
per the bug fix report should suffice in test coverage of the
project. The list of bugs fixed will be tested with each
affected area in accordance with WI-0005. On completion of
the test the tester will complete the second section of the
test report.

8.6.6 The third test cycle will be followed in the same manner.
Should new requirements be introduced or the project be
altered substantially then the test plan and scripts will need
to be updated appropriately and the next test cycle should be
performed as an initial test cycle and continue the cycles in
sequence.

8.6.7 When a project is ready for release on Beta or full release the
tester follows WI-0069, Changing a Program from Untested to
Release, and changes the status of the application to Beta or

file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/F-0127%20SW%20TEST%20REPORT%20TEMPLATE.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0069%20CHANGING%20A%20PROGRAM%20FROM%20UNTESTED%20TO%20RELEASE.DOC
file://sbssrv/vol2/Q-PULSE%20DOCS/ACTIVE%20DOCUMENTS/WI-0069%20CHANGING%20A%20PROGRAM%20FROM%20UNTESTED%20TO%20RELEASE.DOC

Page 197 of 225

Release as appropriate.

8.7 Regression testing

8.7.1 Regression testing is performed when there have been
substantial code changes to a product. A proportion or all of
the appropriate test scripts are executed, this is agreed in
advance of testing starting..

8.7.2 The handover form will list the changes to the project. The
Test Report will be filled out and agreed in accordance to the
amount of code that has changed. Certain sections of the
scripts may be omitted from a test if that code has remain
unaltered and the code changes that were made have no
effect on that section of code, again as agreed on the Test
Report. Regression testing follows the project testing cycles.

8.8 Reports

8.8.1 The tester will produce weekly reports highlighting any major
problems that are preventing the progress of the project.

The team lead will produce Statistics from the bug tracking database to report on

the progress of the project.

8.9 CD/System Testing

8.9.1 The CD is tested as an install program. There are purpose-
written test scripts that are executed for the testing of a CD
release. A list of the applications that are to be installed are
provided for the tester for comparison purposes. In
accordance with the test script each application version is
tested.

8.9.2 Any bugs that the CD addresses are also tested in
accordance with WI –0005. The Q-Pulse database and
Bugzilla are checked to ensure that all bugs required have
passed test before the CD install is tested. A brief system
test is also performed on the system after the install.

Page 198 of 225

Work Instruction 0032

Owner Dept. Windows Testing

Initiator **************

Title Test Team Leader

Document Revision History

Rev. Date Details Of Changes

1.00 9/3/00 Initial Issue

1.01 14/3/00 Change to correct format

1.03 2/6/00 Updated after changes from test team

1.04 6/6/00 Further format update

Page 199 of 225

1. Purpose

To establish a standard for the creation of test scripts for Software Testing within

the Software Testing department.

2. Scope

This work instruction applies to anyone creating scripts in order to test any

Company x software.

3. Policy

It is the policy of Company x Controls Ltd. to create Software Test Scripts in

accordance with this work instruction.

4. Responsibility

It is the responsibility of the Test Team Lead in Company x Controls to ensure

that this work instruction and the work instructions and procedures it references

are adhered to. It is the responsibility of the Testers to adhere to this work

instruction and the work instructions and procedures it references.

5 Applicable Documents.

PROC – 0029 Software Test Script Creation

F - 0076 Test Script Template

5. General

This Work Instruction is closely linked with Procedure PROC - 0029. Please read

both documents before attempting to create scripts.

Page 200 of 225

1 SCRIPT CREATION:

1.1 IMPORTANT:

1.1.1 Before creating any scripts it is important to read all
the relevant documentation in the relevant project
folders that refers to the area you are about to create
scripts for.

1.1.2 Before you can move on to create the “Master Test
Plan” the “Master Test Document” needs to be
signed off by both the programmer and the Test
Team Lead. Only when this is done can you go ahead
and create the “Master Test Plan”. Likewise the
“Master Test Plan” must to be signed off by the
programmer involved and the Test Team Lead before
you can go ahead with the creation of the “Master
Test Scripts”.

2 If you are about to create the “ Master Test Plan” for
“Microsoft‟s Outlook 97”, the first thing you would
need to do would be to break down Outlook 97 into its
main areas for testing.

2.1 These would be:

2.1.1 Inbox

2.1.2 Calendar

2.1.3 Contacts

2.1.4 Tasks

2.1.5 Journal

2.1.6 Notes

3 Once you have these main areas you need to select
one of these and further break this main areas down
into it’s respective sub sections. We will select “Inbox”
for our Example.

Page 201 of 225

3.1 Our sub sections for “Inbox” will be

3.1.1 Menus

3.1.2 Icon Bar

3.1.3 Tool Bar

3.1.4 Outlook Icon view side bar

3.1.5 Mail Field (Where mails are actually visually
represented)

3.1.6 Window Title bar

4 Once you have done this you need to select one of
these sub headings. We will
select “Menus” for this example and break this down
into its sub areas.

4.1 Our sub sections for “Menus” are

4.1.1 File

4.1.2 Edit

4.1.3 View

4.1.4 Go

4.1.5 Tools

4.1.6 Compose

5 Now once we have broken down our sections into in to
sizeable testing
chunks we now begin the final step for the “Master
Test Plan” and that is
to give each separate script a name. We will use the
“File” menu as an example.

5.1 So under “File” I will have the following names of tests
to

 be written.

 File/New – Correct modules appear

Page 202 of 225

 File/New – Correct number of options

 File/New – Hotkeys present and functioning

 File/New – Icons present and functioning

 File/New – Shortcut keys present and functioning

 File/New – Text is correct format

6 So if my “Master Test Plan” is testing Microsoft’s
Outlook97 the name of the “Master Test Plan” will be
“Outlook 97 - Master Test Plan”. Your heading below
this will be named “Inbox - Menus”. The heading
underneath this will then be “File Menu”. Directly
underneath this you will have all the names of all the
tests you will end up writing in your “Master Test
Script”, please see above for example test names.

7 Also note that I have used Outlook 97 for example
purposes only. Sometimes an area will involve the
testing of an actual procedure or complicated action.
This can still however be carried out following the
above “Master Test Plan” document.

8 Master Test Scripts

8.1 Once you have both the “Master Test Document” and
“Master Test Plan” completed the scripts themselves
should be fairly straightforward and uncomplicated to
write.

Page 203 of 225

8.2 The test scripts themselves should also contain an area
to fill in your results from each test undertaken. The
very first page of your scripts should clearly show how
many tests Passed/Failed. If one script has failed then
the whole application has failed to pass the testing
procedure and it should be clearly marked so on the
front page. Each script also needs to be signed off by
the programmer working on the application that the
scripts are created for.

8.3 Also on the front page is “Level of Knowledge
required”. This is filled in by the original person who
created the scripts with the aid of the Test team lead.
Basically this outlines any technical knowledge (both
hardware / software /firmware) required to carry out the
scripts.

EXAMPLE:

Page 204 of 225

Tester Name: A Tester

Date: 22/2/00

Level of Knowledge Required:

Application Name: Calarms (Alarm Handler)

Build & Version No: Build 5.00 Version 1

Passed: 199

Failed: 1

Operating System:

Total Script Status: FAILED (Here should be a pass or fail)

QA Engineer Signature:

Programmer Signature:

QA Lead Signature:

8.4 The names for all the tests to be created are present in
the “Master Test Plan” and the only thing left to do is
create the steps to test the specified area.

8.5 Tested scripts can only be filed and considered
completed once signed off by both the test team lead
and programmer involved.

8.6 IMPORTANT: Please note that all incidents discovered in
software that is not in general distribution (Meaning that it is
not freely available to all our customers) needs to be logged
in a separate Excel worksheet and not into Q-Pulse. Once
you have verified that there are no other lists in existence
(Possibly from old tests that have been carried out) enter
your own list in VSS (Visual Source Safe). Go to the “Test
Area” section and enter the Excel worksheet under the
correct application folder.

Page 205 of 225

Work instruction 05

Owner Dept. Windows Development

Initiator EK

Title Windows Development

Manager

Document Revision History

Rev. Date Details Of Changes By

0 5/10/99 Initial Issue EK

1 12/11/99 Changed to accommodate Q-Pulse EK

2 17/11/99 Title changed EK

3 20/12/99 Step 6 made more explicit. Clarification made to “Identification”. Bug

changed to Incident

EK

4.00 7/5/2002 "Notes on files here" dropped - all details are in the run logs

Technical support will confirm bug fixed with customer

EK

4.01 7/5/2002 Added a note that this applies to feature requests as well as bugs

WNNEWVER is now __WNNEWVER

EK

4.02 15/5/200

2

Tester changes "Untested" to "Release" before giving to technical

support

Technical writer adds technical support to PCD for the web

EK

4.03 25/07/20

02

Added point where the status is changed from „fixed‟ to „passed test‟ for

tech support

MK

5.00 3/6/2003 Changed location of software to R:\Windows Group and defined that

urgent software can be issued by ECO

EK

5.01 22/7/200

3

DLL is to be stored in the same directory as the EXE EK

5.02 23/2/200

4

Changed „Q_Pulse‟ to Appropriate bug tracking since there are now 2

DB‟s (Q_Pulse & Bugzilla). Added point 12 „For all incidents in

Bugzilla the tester will change the status to closed.‟ Amended Pt 6

where a handover form will be used.

MK

Page 206 of 225

Note that this work instruction also applies to feature requests not covered by a

separate ECR or CWP

1 Method

1.1 Engineer fixes incident following work instruction WI-
0006 - Fixing an Incident in Release Unitron Software.

1.2 Engineer completes the "Incident Fix Report" (F-0062)
part 1 and gets it signed off by the Windows Development
Manager or a senior engineer assigned by him.

1.3 Engineer updates Appropriate bug tracking database by
marking the incident as fixed in the “Status” field,
assigning the incident to the Test Lead (not applicable for
Bugzilla) and describing the fix in the Follow
Up/Corrective Action field or the Comments field in
Bugzilla. At a minimum this should include description of
the fix, a reference to the bug fix report and the build
number of the fixed executable and dll if appropriate.

1.4 Engineer puts the executable and the DLL that it works
with into “R:\Windows Group\Program
name\Version.Build” – e.g. R:\Windows
Group\CCPager\5.40B06

1.5 The Appropriate bug tracking DBwill automatically email
the incident number to the test lead so that he can assign
it to a tester.

1.6 The engineer places the signed incident fix report in the
application directory in the filing cabinet. At a later date
the handover form F-0105 will be given to the test dept
with the bug fix reports describing each code change to
the application.

1.7 If the customer needs this fix very urgently (as defined by
technical support), the programmer issues an ECO and
copies the software into S:__WNNEWVER\Release
name\ECOed\Alpha

1.8 Tester confirms that the incident is fixed following work
instruction WI-0033, "Incident Verification in UNITRON
software interface" and fills in the incident fix report part

Page 207 of 225

2 which is then signed by the test lead.

1.9 The tester changes the comment field in the version
details to "Release" following work instruction WI-0069.

1.10 In the case of incidents raised by technical support or
external customers in Q_Pulse:

1.11 The tester updates the Q-Pulse database by assigning the
incident to the technical support person who entered it (if
you are not sure, assign it to the technical support
coordinator).

1.12 Tester updates the status from „fixed‟ to „passedtest‟, and
saves the change.

1.13 If the customer needs this fix urgently (as defined by
technical support), the programmer issues an ECO and
copies the software into S:__WNNEWVER\Release
name\ECOed\Beta

1.14 Technical support will verify the fix with the customer as
per work instruction WI-0070 and when it has been
verified it will be reassigned to the Windows Development
manager.

1.15 For all other incidents in Q-Pulse:

1.16 The tester updates the database by assigning the incident
to the Windows Development Manager. If at this point the
“Approver” field is empty it should be set to the person
who entered the incident.

1.17 For all incidents in Bugzilla the tester will change the
status to closed.

1.18 The appropriate bug tracking dbwill automatically email
the incident number to the test lead with a note indicating
that it has been closed or reassigned to technical
support. It should also automatically notify the person
who raised the incident if their name is in the
”appripriate” field .

1.19 When the fixed incident has been reassigned to the
Windows Development Manager he will assign a

Page 208 of 225

programmer to issue an ECO. When the ECO has been
issued, the programmer the software into
S:__WNNEWVER\Release name\ECOed\Release and
sends an email to the technical writer with the details of
the fix and a request that the new software is put in the
"Software Updates" section of the Company x web site.
These details will include whether or not a technical
bulletin and/or manual changes are required.

1.20 When the technical writer puts a fix on the web, the
technical support coordinator and marketing will be on
the signoff list for the product control document so that
they can advise all other customers of patch existence.

Page 209 of 225

Work Instruction 0081

Owner Dept. Quality

Initiator: Mark Kevitt

Title: Test Team Leader

Document Revision History

Rev. Date Details Of Changes

1.00 11/2/04 Initial Issue

1.01 24/2/04 Made changes as commented by EK, changed the lifecycle to reflect that the

tester assigns bugs to the relevant manager. Added in sections for reassigning a

bug and for changing a bug to fixed.

Document Shortcuts:

Bugzilla

Login

Mail settings

Entering bugs

Querying existing bugs

Changing the status of a bug to fixed.

ReassigningABug

Bug Status Cycle

Page 210 of 225

2 Objective
To establish uniform practice for the operation of the Bugzilla bug tracking

software.

3 Frequency

This procedure applies to anyone who uses Bugzilla and should be

referenced when any confusion arises through its use.

4 Applicable Documents
WI-0064 software test acceptance of non released software.

WI-0005 Dealing with an incident in WN3000.

5 Procedure

5.1 The basics, find and login to Bugzilla.

5.1.1 In order to use Bugzilla a user will need a login and a
password, this they can obtain from the Test Team Leader.
The username will be of the sort yourname@bugzilla.ie

5.1.2 To run Bugzilla the user needs to type the following URL
in to their browser http://bugzilla or http://192.168.0.54.
They will be brought to the home page which currently
looks like this:

http://bugzilla/
http://192.168.0.54/

Page 211 of 225

5.1.3 They must log in using the username and password as
described in 4.1.1. There is a link on the homepage of
bugzilla called „Log In‟ this the user must click before
entering in their username and password as shown below.

5.2 Receiving mails from Bugzilla

5.2.1 If the user wants to receive mails about bugs that are
applicable to them then they need to set up another mail
account in their email client. The settings are as follows:
An email will automatically be sent every time that a new
bug is entered or when the status of a bug is changed.
Only those who are associated with a bug will receive an
email.

POP Server: 192.168.0.54
SMTP Server: N/A
Account Name: yourname
Password: password

(N.B. For email the username is yourname not
yourname@bugzilla.ie)

 Bugzilla main use: Entering New bugs

1. Select Product
2. Select Version & Component (If the version is not
there notify the test team lead, it takes <1 min to add it)
3. Select Priority and Severity (Normal unless a show
stopper)

mailto:yourname@bugzilla.ie

Page 212 of 225

4. Assign the bug to the appropriate development
manager unless you have been informed otherwise for
this particular test pass.
5. CC the project manager if applicable.
6. For the summary describe concisely the bug.
7. For the description elaborate on the steps necessary
to reproduce the bug.
An Example bug is shown below

Page 213 of 225

5.2.2 Querying existing bugs.

To Query Existing bugs you can specify the bug number if
known. Enter the bug number in the page footer (Yellow
Box) and press Find.

Or you can enter a query. To find all fixed ETV6 bugs do
the following:

1. Press Query

2. Enter the criteria for your query, in this example all fixed
ETV6 bugs
3. Select the product and the Status and the Resolution
and press Search.

Page 214 of 225

NOTE: The more items that you select the more restrictive
the query is, the less items the more general the query.
You can deselect items by holding down CTRL and using
the mouse button.

4. If you want to save the query (before you run it) and to
have the option of running it in the future you can save the
query in your page footer.
5. Scroll down the page and identify the „Remember this
query‟ section.
6. Save the query.

7. You can run this saved query by clicking on it in your
footer.

Page 215 of 225

5.2.3 Changing the status of a bug to fixed.

You can change the status of a bug from New or
Reopened to Fixed.

1. Locate the bug in question by using the query in 4.2.2 or
selecting „my bugs‟ in the yellow box.
2. Enter in the comments field information about the bug
that is of use in the future, information such as the version
that the bug was fixed in, the consequences of the bug fix
e.g. areas that were affected and why.
3. Select the Fixed radio button.
4. Press Commit.

Page 216 of 225

5.2.4 Reassigning a bug to a person

You can reasssign a bug to an individual user for action.
Note: Assigning is different, it changes the Status to from
New to Assigned. Assigning is not applicable to our
lifecycle.

1. Locate the bug in question by using the query in 4.2.2 or
selecting „my bugs‟ in the yellow box.
2. Enter in the comments field information about the bug
that is of use to the person that you are reassigning a bug
to.
3. Enter in the email of the developer who is to fix the bug
in the format „developer@bugzilla.ie‟.
4. Select the Reassign radio button.
5. Press Commit

Page 217 of 225

The Bug Status lifecycle.

1. Tester enters bug, Status = NEW
2. (Optional cycle) Development manager assigns bug to a
developer, Status = ASSIGNED
3. Developer follows work instruction 005, fixes the bug
and gets it signed off by the development manager who
changes the status to fixed
4. Tester tests fix and either reopens bug or closes bug.
Status = REOPENED (see next point) or CLOSED.
5. If the tester reopens the bug, it is then re-assigned to
the relevant Development Manager.

Tester enters bug. (email sent to) Developer who fixes or
assigns bug to another developer

 Developer Fixes or Manager
assigns bug

 Tester enters a new bug

 Tester tests the bug fix

 Tester changes the status of the bug

Status =

NEW

Is the bug

Fixed or

Assigned?

Status =

Assigned

Status =

FIXED

Fixed

Assign

Is the bug

Fixed or

Still a bug?

Status =

REOPENED

Status =

CLOSED

Page 218 of 225

Form 105

This form must be used to handover any build of Software to the SW Test dept.

6 Work carried out under ECR/CWP No.:

7 Application and associated files, and this form, handed over in ZIP file (insert
zip file name):
R:\Test\ForTest\

8 Files included in this build:

 Version

Application Name

DLL Name

Other File(s)

9 Instructions to install/set-up:

10 Bugs Fixed in since last build handed over to test, i.e. since build _______(give
bug numbers & attached signed-off bug fix reports):

11 Other changes in this build:

12 The following tests have been performed on this build (complete unit test report
should be attached):

13 Runlog extract for this build (or series of builds since last test handover):

14 The release application has been compiled from source code checked out from source safe and placed in the
appropriately named subdirectory of R:\Windows Group\Program Name\Version.Build. 

15 The release application has all the necessary files to run on a clean machine with WN3000 installed.


16 The release application runs on a clean machine with WN3000 installed.


17 The release application meets all the requirements as outlined in the requirements matrix/ECR.


Page 219 of 225

18
The release application contains the correct version and build
number in each of three locations, namely:

 By right clicking the application in explorer and selecting
version.

 On start up on the splash screen.

 In the help about box.



Signed:

Developer _________________________________ Date: __________

Test Decision:

REJECT 

ACCEPT - Assigned SWT No.:

Tester: ________________________________ Date: __________

Page 220 of 225

Form 123

1 This form is related to WI-0064 SW Test Acceptance of
non-released Firmware from Company x Work
Programs (CWPs) & Engineering Change Requests
(ECRs).

2 Steps to perform before the Test departments
Acceptance of a completed firmware project.
The steps, where appropriate, should be completed by
both the developer and by the tester.

2.1 Fill in the details for the Firmware:

Controller _________________________________

Version

Date _________________________________

2.2 History of changes applicable to this firmware, including
bug fixes, feature requests implemented:

2.3 Comply that the firmware has been compiled from source
code checked out from source
safeFirmware\Controller\ProjectName\

Developer _________________________________

2.4 Comply that the firmware has no debugging code in it.

Developer _________________________________

Page 221 of 225

2.5 Comply that the firmware meets all the requirements as
outlined in the requirement‟s matrix.

Developer _________________________________

Tester _________________________________

2.6 Comply that any changes to the spec have been updated.

Developer _________________________________

Tester _________________________________

Page 222 of 225

SOFTWARE TEST REPORT

Before Test:

3 OBJECTIVE(S) OF THIS TEST

4 SPECIFICATION FOR SETUP AND EXECUTION OF TEST

Test will only be commenced when a completed SW/FW handover form and

all accompanying documents and files are handed over.

(a) DESCRIPTION

(b) RESOURCES PLANNED

Name Activity Man-

Days

Start Finish

 Total 0 Man-Days

(c) INCLUDED IN THIS TEST

(d) EXCLUDED FROM THIS TEST

5 PASS CRITERIA FOR THIS TEST

6 TEST PLAN SIGN-OFF:

Tested and accepted by: (Tester) Date:

________ (Tester) Date:

 (Tester) Date:

F-0127 Rev 5.00

Page 223 of 225

Reviewed and accepted

by:

 (Developer) Date:

Reviewed and accepted

by:

 () Date:

After Test:

7 RECORD OF H/W & S/W REVISIONS USED

 Product Version Developer Date/Approx Time
Received

SW

F/W

Controller
Type(s)

8 RESULTS OF TEST

1) DESCRIPTION

2) No. of test cycles so far (can use decimal places):

3) ACTUAL RESOURCES USED:

Name Activity Man-

Days

Start Finish

 Total 0 Man-Days

Page 224 of 225

4) BUG COUNTS:

Software
 Count Firmware Count

Bug
Fixed As per

Handover

 Bug Fixed
As per

Handover

 Actual % Actual %

 Bugs Not
Fixed

 Bugs Not
Fixed

 New Bugs
Found

 New Bugs
Found

 Bugs
Reactivated

 Bugs
Reactivated

Total
Bugs
Open

Blocker
 Total

Bugs
Open

Blocker

 Critical Critical

 Major Major

 Normal Normal

 Minor Minor

 Trivial Trivial

 Enhancement Enhancement

5) SW Bugs:

6) FW Bugs:

9 NON-FUNCTIONAL PROBLEMS ENCOUNTERED IN PERFORMING THIS

TEST

Page 225 of 225

10 CONCLUSION (Inc. Pass or Fail)

11 ATTACHMENTS TO THIS DOCUMENT

Attach list of open bugs.

12 RESULTS ACCEPTANCE SIGN-OFF:

Tested and accepted by: (Tester) Date:

 (Tester) Date:

 (Tester) Date:

Reviewed and accepted

by:

 (Developer) Date:

Reviewed and accepted

by:

 (Quality Manager) Date:

