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Abstract 

 

 This thesis describes the development of and results from a new laboratory 

facility designed to investigate the properties and explore potential applications of 

colliding laser produced plasmas.  

 

 When two plasmas collide there are two extreme scenarios that can play out – 

the plumes can either interpenetrate or stagnate depending on the ion-ion mean free 

path. During interpenetration, the plasmas stream through each other, the main 

interaction amounting to binary collisions. In the case of stagnation, rapid 

accumulation of plasma material at the collision front leads to the formation of a dense 

layer of material between the two plasmas.  

 

 Interferometry of single laser produced plasmas created in background gaseous 

atmospheres expose the presence of a shock front at the plasma gas interface which 

rapidly expands outwards. Shadowgraphy is currently the most widely employed 

diagnostic technique to analyse such shock fronts and a comparison of both techniques 

reveals that interferometry can be used to diagnose the interaction of laser produced 

plasmas in gaseous environments in pressure regimes where other techniques such as 

shadowgraphy are not sensitive. 

 

 Optical diagnostics such as laser interferometry, fast imaging (angularly 

resolved) and optical emission spectroscopy have been employed to probe colliding 

plasmas, revealing important factors in the formation of the stagnation layer. For 

example the studies have found that electrons stagnate before ions and similarly ions 

stagnate before neutral species.  
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 Faraday Cup measurements reveal a significant increase in ion yield normal to 

the target from the colliding plasma system compared to single plumes and the ions 

possess a much narrower range of kinetic energies.  

 

 Finally, preliminary experiments on materials deposition using colliding plasmas 

as the source of deposition reveal an enhancement in the number density of nano-

particles deposited on a substrate compared to single plumes suggesting increased 

clusterisation in the stagnation layer. 
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Introduction 

 

Introduction I: Thesis Structure 

 

The main aim of this work reported herein was to design and construct a new 

laboratory facility to probe the fundamental physical properties of colliding plasmas. 

The project also had the ultimate goal of identifying and performing preliminary 

investigations into potential applications of colliding laser produced plasmas. This 

thesis has been divided into six chapters. A short description of each chapter follows. 

 

Chapter 1: includes a brief overview of the background physics and basic concepts 

 relevant to the work presented in the thesis. The basic theory of plasmas 

 (including main atomic processes and equilibrium models) is presented along 

 with the theory of the interaction of high power lasers with matter. In addition 

 theoretical considerations underlying the plasma diagnostic techniques 

 employed during the course of the Ph.D. are outlined. Finally the principles of 

 colliding laser  produced plasmas are also presented. 

 

Chapter 2: presents the main experimental apparatus. This includes the design, 

 assembly and testing of the entire experimental laboratory. The experimental 

 setups for the various plasma diagnostic techniques are summarised.  

 

Chapter 3: outlines the results from experiments on single laser produced plasmas. 

Results from interferometric and shadowgraphic probing of single laser 

produced plasmas created in vacuum and gaseous atmospheres are compared 

and contrasted. 
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Chapter 4:  presents the results from optical and laser diagnostics of colliding laser 

 produced plasmas, specifically spectrally and temporally resolved imaging and 

 spatially resolved optical emission spectroscopy. Laser interferometry 

 constitutes the laser based diagnostic of colliding plasmas.  

 

Chapter 5:  presents results on ion emission from colliding laser produced plasmas 

 with a Faraday cup and compares the results to those from single laser 

 produced plasmas.  

 

Chapter 6: outlines the potential  applications of colliding plasmas identified from 

 preliminary results of  experiments performed during the course of this work. 

 

Chapter 7: concludes the thesis with a summary of all the conclusions arising to 

 date. The chapter concludes with suggestions on possible future experiments 

 on colliding laser produced plasmas that could build on the work in this thesis. 
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Introduction II: Colliding Laser Produced Plasmas 

 

 Laser produced plasmas, formed when a high power pulsed laser is focussed 

onto a solid density target or into a gaseous atmosphere, have been the subject of 

considerable attention since their discovery in 1960’s [1]. Studies have been driven not 

only by a desire to obtain a full understanding of the fundamental physics underlying 

their formation and evolution across the wide parameter spaces in which they can exist 

but also to develop and exploit applications. Applications of single laser produced 

plasmas include Pulsed Laser Deposition (PLD) [2], Extreme UltraViolet (EUV) light 

sources [3] and ion accelerators [4]. In addition, laser plasmas are playing an important 

role in the search for solutions to problems including energy generation [5], analytical 

sciences [6, 7] and industrial, environmental and security applications [8].  

  

 Single laser produced plasmas, formed in vacuo or in an ambient gas 

atmosphere, are still the subject of significant research activity and in keeping with 

this, the first experiments conducted with the new laboratory facility were focused on 

their study. The results from the investigations of single plasma plumes are presented 

in Chapter 3 and provide not just a performance benchmark of the experimental 

system for comparison with existing studies of single laser produced plasmas, but also 

reference data for comparison with colliding plasma measurements. In our studies 

laser interferometry was used to diagnose the spatial profile of the electron density for 

a single plasma created both in vacuo and in a low pressure gaseous atmosphere. It 

was found that a shock wave (i.e. a compressive layer of gas) was visible in the 

interferograms when the plasma was created in a gaseous atmosphere. The expansion 

dynamics of this compressive layer were investigated using interferometry (low 

pressure ambient atmosphere) and focused shadowgraphy (high pressure background 

gas) and the results from both techniques compared. 
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 The overriding motivation for the project, however, originates from a growing 

recognition of several important potential applications of colliding laser produced 

plasmas. Colliding plasmas have shown much potential as laboratory scale models of 

astronomical interactions between colliding shock waves where, for example, Gregory 

et al. [9] and Smith et al. [10] have shown how they can be used as a scaled model of 

astrophysical colliding shocks. Colliding plasmas have also been prevalent in the area of 

research into indirect drive laser nuclear fusion systems where a hollow hohlraum 

hosts multiple colliding plasmas as X-ray sources which are used to drive fusion in a 

fuel cell located at the centre of the hohlraum [11].  

  

 In addition to these applications, it has been shown [12, 13] that heating of a 

preformed plasma with an intense laser pulse has the ability to increase laser 

absorption and consequently provide emission intensity enhancement. This has led to 

benefits in the area of Laser Induced Breakdown Spectroscopy (LIBS), for example, 

where prepulsing has been shown to enhance analyte line emissions [14]. Since the 

stagnation layer is itself a preheated slab of plasma it can at least be speculated that it 

could be used as a source for similar applications.  

 

 More recently, in the area of materials deposition, Irssou et al. [15] have 

demonstrated the successful fabrication of droplet free films using colliding laser 

produced plasmas. Further investigations into materials deposition using colliding 

plasmas performed as part of this project have shown an ability to increase the 

number density of nano-particles deposited on a substrate compared to that from a 

single plume (cf. Section 5.4.2). Also as part of this work, analysis of the ion emission 

from colliding plasmas using a Faraday cup reveal real possibilities for applying colliding 

plasmas as a new source of laser generated ions (cf. Section 5.4.1). The ion time of 

flight distribution from colliding plasmas displays a narrower, more symmetric profile 

with a higher peak signal (≈ 3X) than a single laser produced plasma. With so many 

wide and varied potential areas where colliding plasmas can make a significant impact 
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in future applications, both fundamental research into the properties of colliding 

plasmas and also research into the applications of colliding plasmas is of particular 

interest thereby providing a solid motivation for the work presented in this thesis. 

 

 Colliding laser produced plasmas are created when a single laser beam is split 

into two beams and then focused to two points on a target thereby creating two laser 

produced plasmas separated by a fixed distance (usually 1-10 mm). These two plasmas 

are referred to as the “seed” plasmas. The seed plasmas freely expand until they start 

to collide over a region of space at the interface between the two plasmas. Under 

appropriate conditions, as outlined by Rambo et al. [16], a layer of plasma is formed at 

the collision front between the two counter-propagating plasmas. Far from these 

conditions the colliding plasmas can undergo significant interpenetration where the 

plasmas pass through each other without any evidence of stagnation occurring. Rambo 

et al. [16] introduced the so called “collisionality parameter,” ξ, to determine whether 

stagnation or interpenetration dominates the interaction between a pair of colliding 

plasmas. The collisionality parameter is given by  

 

    
ii

L

λ
ξ =       I.1 

 

where L is the typical plasma dimension (i.e. the separation between the two colliding 

plasmas) and λii is the ion-ion mean free path given by [17] 
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where mi is the ion mass, ν12 is the relative collision velocity of the ions from each of 

the plumes, e is the electronic charge, Z is the average ionization state of the plasma, ni 

is the average plasma ion density, and lnΛ12 is the so-called Coulomb logarithm [18] for 
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collisions between seed plasma 1 and seed plasma 2. Inserting values of the 

parameters typical of experiments presented in this thesis (ni = 1018 cm-3, Z = 2, ν12 = 4 

× 106 cms-1) one obtains a value of 270 for the collisionality parameter and so the 

plasmas in this thesis are in the strong collisionality or ‘hard stagnation’ regime [16].  

 

 In a colliding plasmas system, the higher the value of the collisionality 

parameter, the more likely it is that stagnation will occur at the interface between the 

two plasmas. Changing the collisionality of the colliding plasmas system can be 

preformed experimentally by a number of ways. Two of the most important of these 

are, firstly, by changing the separation between the two plasmas and secondly, 

changing ion number density in the plumes (e.g. via changing the on-target irradiance). 

In fact, by examining equations I.1 and I.2, one can readily see that low density, high 

velocity colliding plasmas will tend to interpenetrate where as high density, low 

velocity colliding plasmas will tend to stagnate. Figure I.1 highlights how the 

collisionality parameter varies with ion density (figure I.1 a) and with relative collision 

velocity (figure I.1 b) for the experimental parameters given above. The red line 

indicates the parameters for the colliding plasmas presented in this thesis. 

 

 

Figure I.1: a) Variation of collisionality parameter with ion density.  b) Variation of collisionality 

parameter with relative collision velocity. The red lines indicate the values of the parameters for the 

colliding plasmas presented in this thesis. 

 

 It is clear from figure I.1 a) that as the ion density rises for a given velocity, so to 

does the probability of stagnation. This can be explained by the fact that with higher 
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densities, one increases the probability of collisions occurring leading to a reduction in 

λii and, ultimately, stagnation at the interface between the colliding plasmas. On the 

other hand, looking at figure I.1 b), it is clear that as the velocity rises for a given ion 

density, the probability of stagnation decreases. This can be understood from the fact 

that as the velocity increases, the probability of the ions occupying the same region of 

space long enough for a collision to happen decreases. For both of these processes, the 

collisionality parameter provides a good measure of stagnation, where higher values 

indicate increased probability of stagnation. 

 

 The physical process of stagnation layer formation has been found to be very 

complex. For example, Pollaine et al. [19] have shown that plasma stagnation can be 

preceded by a phase of interpenetration where the plasmas initially pass through each 

other. Rancu et al. [20] also found that interpenetration and stagnation in colliding 

laser exploded Al/Al and Al/Mg foils is highly dependent on the collisionality 

parameter. In this thesis it is shown that separation of charge in space can play a 

significant role in stagnation of various plasma constituents (cf. Section 4.3, [13]) 

where, specifically, we found that electrons stagnate before ions and similarly, ions 

stagnate before neutral atoms.  

 

With many simultaneous and complex processes involved, it is critical that 

comprehensive diagnostics of the seed plasmas and the stagnation layer are performed 

to obtain a more complete picture of the physical nature of colliding plasmas and the 

mechanisms of stagnation. The diagnostics can also provide extremely useful reference 

data for colliding plasma modelling efforts [16] especially for colliding plasmas in the 

soft stagnation regime. This need for further data on colliding plasmas, especially in the 

critical early or nascent stagnation stage, provided further motivation for the 

conducting the studies presented in this thesis. 

 



 xv 

 Over the years, a variety of different diagnostic techniques have been 

employed to study the interaction of colliding plasmas since first produced by Rumsby 

et al. in 1974 [21]. In that study they investigated the interaction of two laterally 

colliding laser produced carbon plasmas using time-integrated imaging and photon 

scattering techniques. Several years passed before research on colliding plasmas by 

Rumsby et al. [21] was extended when Begimkulov et al. [22] studied the interaction of 

laterally colliding aluminium or beryllium plasmas using time and wavelength 

integrated imaging as well as spectroheliography to track the spatial distribution of 

selected ion stages.  

  

 Shortly after the work of Begimkulov et al., Vick et al. [23] utilised an X-ray 

pinhole camera together with an X-ray spectrometer to study colliding aluminium 

plasmas. In their study, they utilised a 2-D single fluid hydrodynamic code (IZANAMI) to 

model the conditions of their experiment and showed good agreement with their 

experimental results revealing the stagnation of the colliding plasmas in nonirradiated 

regions. 

 

 Later eXtreme UltraViolet (XUV) spectroscopy of colliding plasmas was initiated 

by a group in the Institut fur Experimentaphysik Ruhr-Universat in Bochum Germany 

and results were first published by Ruhl et al. [24]. In their study they utilised time-

integrated XUV spectroscopy of the collision region between two colliding carbon 

plasmas. They observed an increase in emission from the C (VI) Balmer-alpha line 

compared to single plasma emission and attributed the observation to charge-

exchange collisions during the collisional interactions. Shortly afterwards, the same 

group were also the first to utilise time-integrated VUV spectroscopy to study the 

lateral collision of two boron-nitride plasmas [25] and again observed evidence of 

charge-exchange between fully ionised boron and B (III) ions. 
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 Harilal et al. [26], again from the group in Bochum, was the first to utilise time 

resolved XUV pinhole imaging to track the interaction of two colliding laser produced 

magnesium plasmas. The interactions were studied for laterally and orthogonally 

colliding laser produced plasmas and it was found that a good deal of interpenetration 

occurred between the plasmas colliding orthogonally compared to the laterally 

colliding case. 

 

 One of the first major studies into the properties of the stagnation layer using 

space- and time-resolved visible imaging and spectroscopy was published in 2007 by 

Luna et al. [27]. In that study they used visible emission spectroscopy to extract the 

temperature and density profile along the stagnation layer at relatively late times (≥ 

300 ns). In more recent times, laser based probes, in particular, laser interferometery 

have been employed to study the interaction of colliding plasmas. One of the first of 

these studies was conducted by Purvis et al. [28] where they utilised soft X-ray laser 

interferometry to diagnose colliding plasmas created in semi-cylindrical cavities. These 

experiments were performed using high intensity pump lasers (1012 W cm-2) combined 

with a soft X-ray probe laser and the experiments were aimed at developing X-ray laser 

interferometry as a diagnostic tool for laser fusion studies. Gregory et al.  [9] also 

utilised laser interferometry as a diagnostic tool to study the interaction of two 

colliding laser produced plasmas with the aim of creating plasma jets for which the 

relevant scaling parameters showed significant overlap with outflows associated with 

Young Stellar Objects (YSOs). Finally, Velso et al. [29] investigated the properties of 

laser produced annular plasmas using both laser schlieren imaging and laser 

interferometry techniques.   

  

 Despite the significant body of work that has been published on colliding 

plasmas to date, summarised above, the number of investigations on colliding plasmas 

is dwarfed by that performed on single laser produced plasmas. In particular, up until 

recently, there was a paucity in the published literature on optical diagnostics (such as 
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fast imaging, optical emission spectroscopy, optical laser interferometry) of colliding 

plasmas (especially at early times i.e. <100ns and for laboratory scale plasmas). This 

was uppermost in our thinking when deciding on the various plasma diagnostic 

techniques to be used during the project as we aimed to fill this knowledge gap. 

 

 In addition, the work was also intended to extend an early study at DCU by Luna 

et al. [27] who investigated the properties of the stagnation layer at mid to late times 

in the lifecycle of the seed plasmas using visible emission spectroscopy. For this reason, 

it was decided to avail of plasma diagnostic techniques that could elucidate the 

properties of colliding plasmas at early times (< 100 ns). Consequently, laser 

interferometry was the first diagnostic technique to be chosen for these studies as it 

could provide values the electron density of the plasma at early times.  

  

 Visible fast imaging was also utilised, in addition to laser interferometry, to 

investigate the spatial distribution of atoms and ions in colliding plasmas. Optical 

emission spectroscopy was utilised briefly during the course project to reveal spatial 

distribution of neutral atoms and ions in the stagnation layer at relatively early times (≈ 

80 ns). 

 

 A Faraday cup electrical probe was the final diagnostic to be utilised to 

investigate the properties of ions emitted from the colliding laser produced plasmas 

and compare them to those emitted from single plumes. This diagnostic technique was 

chosen as it can effectively and rapidly measure the distribution of the kinetic energies 

of the ions emitted from the plasmas and so is well suited for investigating ion 

emission from colliding plasmas. 

 

Finally it is worth noting that, in this work we have concentrated on studying 

colliding plasmas created with nanosecond tabletop laser sources which are likely to 

impact routine and wide scale applications in materials science, analytical science, EUV 
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and X-ray light sources. This is mostly due to their ease of use and cost competitiveness 

(compared to short pulse or high intensity laser systems) and also concomitantly wide 

availability. The advent of cheap and widely available pulsed high power fiber lasers 

are set to accelerate applications and their deployment in industrial, medical and 

analytical environments further over the coming decade. 

 

To conclude, figure I.2 shows an example of two laterally colliding Al plasmas 

formed on a flat slab target with the stagnation layer visible at the interface or collision 

plane. The image was taken during the course of the work presented in this thesis. The 

field of view of the image was 3.84 mm X 3.84 mm and it was recorded 50 ns after 

creation of the seed plasmas with an exposure time of 3 ns. The energy carried in each 

laser pulse of 6 ns (FWHM) duration was 300 mJ and the laser beams were focused 

onto a flat aluminium target separated by a distance of 1.3 mm. The diameter of each 

focal spot was 100 µm. 

 

   
Figure I.2: Image of colliding laser produced aluminium plasmas and stagnation layer captured 50 ns 

after creation of the seed plasmas.  Each seed plasmas was created with a laser beam with an energy 

of 300 mJ, a wavelength of 1064 nm and a pulse-width of 6 ns, focused to two spots of diameter 100 

µµµµm separated by a distance of 1.3 mm. 
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Chapter 1:

Orientation 

 

 A brief introduction to the properties and current/potential applications of 

colliding laser generated plasmas has already been described along with the main 

motivations for conducting the research presented in this work. A brief history of the 

main research performed to date on the properties of colliding plasmas was also 

presented. 

 

 This chapter aims to provide an orientation around the fundamental properties 

of plasmas in general and principles of plasma generation with high power lasers.  The 

key atomic processes prevalent in laser produced plasmas are also summarised along 

with the main plasma expansion and plasma equilibrium models employed to describe 

laser produced plasmas. The underlying concepts behind the operation of the various 

plasma diagnostic techniques that were employed during this work is included and the 

chapter ends with a summary of the principles and characteristics of colliding laser 

generated plasmas. 

 

 

1.1: Plasma Definition 

 

 Plasma is recognised as the 4th state of matter. It is distinguished from solids, 

liquids and gases by the fact that it is in a state of partial or complete ionisation. Thus, 

in its simplest form, a plasma is a gaseous – like assembly of electrons, ions and (not 
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necessarily, however) neutral atoms. Laser produced plasmas are formed when a high 

power laser interacts with matter, for example, by focussing a high power laser onto 

the surface of a solid target or into a gas at high pressure. The laser ionises the matter 

and creates a plasma plume that subsequently expands outwards into the surrounding 

environment. 

  

 A very important attribute that plasmas possess is that the bulk plasma is 

overall electrically neutral. This is defined by the expression [1] 
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where ne is the electron density, nz is the density of ions of charge Z. 

  

 In a plasma the electrons will tend to accumulate at and surround a positively 

charge ion and therefore they will tend to shield the electric field from that charge 

preventing it from penetrating the local plasma environment. One of the fundamental 

properties of a plasma is the distance over which the electric field from such a charge is 

shielded. This distance is known as the Debye length, λD, and is given by [2] 
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where ε0 is the permittivity of free space, kB is the Boltzmann constant, Te is the plasma 

temperature (in kelvin), e is the electron charge and ne is the electron density.  

   

 An extension of the Debye length is the Debye sphere, i.e. the sphere with a 

radius equal to the Debye length, outside which the electric field of the enclosed 

charge is zero (fully shielded). The number of electrons, NDe, inside the Debye sphere is 

then given by [3] 
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 A perturbation of a charged particle in the plasma (by e.g., displacing it from its 

equilibrium position) will immediately affect its neighbours. This collective response of 

charged ions and/or electrons is an important defining characteristic of a plasma and 

pertains only when the length of the plasma is considerably greater than the debye 

length [1], L >> λD.  

  

 The collective response of the plasma manifests itself as a wave–like motion of 

the particles within the plasma. If by some mechanism the electrons are displaced by a 

small distance, the electrons will tend to move back to their equilibrium positions. The 

equation of motion of the electrons is found to have an oscillatory solution 

corresponding to the collective motion of the electrons. This so called electron wave 

oscillates with a frequency, ωp, given by [1] 

 

    
2

1

0

2









=

ε
ω

e

e
p m

en
     1.4 

 

 If an electromagnetic wave (with frequency ω) propagates through the plasma, 

it will be subjected to a dispersion which is dependent on the electron density. The 

dispersion relation for an electromagnetic wave travelling through a plasma is given by 

[1]  

 

    ω 2 = ω p
2 + c 2k 2     1.5 

 

where ωp, is the plasma frequency, c is the speed of light and k=2π/λ is the 

propagation constant of the wave. Clearly, from equation 1.5, for ω > ω p , k is real and 

the wave propagates through the plasma. However, for ω < ω p, k is imaginary and the 
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wave does not propagate through the plasma. By setting ω = ω p and using equation 1.4 

one can determine that the electron density of the plasma at which the 

electromagnetic wave no longer propagates is given by 
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 This value is known as the critical density and for a CO2 laser (with a wavelength 

of 10.6 µm), the critical density is approximately 1019 cm-3 while for a Nd:YAG laser 

(with a wavelength of 1.064 µm) it is ca. 1021 cm-3. The critical density is a crucial 

parameter when considering the interactions of high power lasers with matter. 

 

 

1.2: The Interaction of High Power Lasers with Matter 

 

When a high power laser beam is tightly focussed onto the surface of a solid 

target a laser produced plasma is created. In this thesis high power laser beams are 

defined as those delivering pulses with energies typically between 0.1 and several 

joules in a few nanoseconds (typically < 10 ns). Focused to a spot with a diameter of ≈ 

100 µm, the irradiance achieved is in the region of 1010 – 1011 W cm-2. The laser 

produced plasmas so formed have some very specific features including: 

 

• High temperature (electron temperatures up to 100 eV).  

• High density (electron densities of ≈ 1018 – 1021 cm-3) 

• Relatively high degree of ionisation of material, up to 20 times ionized 

(depending on irradiance, material etc.) 

• High expansion velocities (ion velocities of ≈ 106 - 107 cm s-1) 
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The laser produced plasma evolves on a very short timescale and has a lifetime 

of a few microseconds (in the sense that one can still observe the remnants of photon 

and ion emission in the vicinity of original plasma core). The lifetime of plasmas of 

interest here is divided up into three main stages which are as follows: 

 

1. Early-life – i.e. from initiation up to approximately one hundred nanoseconds 

(0-100 ns) 

2. Mid-life – i.e. one to a few hundred nanoseconds (100 – 1000 ns)  

3. Late-life – i.e. typically one to a few microseconds (1 – 10 µs) 

 

When the laser radiation first reaches the target, it only penetrates to a very 

short depth (typically less than one optical wavelength). The actual initial interaction 

between the laser radiation and the target occurs over a very thin layer close to the 

surface of the target referred to as the skin depth, δ, given by [4] 

 

2
1
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where ν is the frequency of the incident laser radiation, σ’ is the conductivity of the 

target material and µ0 is the permeability of vacuum (µ0 = 4π × 10-7 N A-2).  

 

In the case of aluminium, having a conductivity of 3.767 × 107 S m-1 and 

irradiated with an Nd:YAG laser working at its fundamental frequency of 2.819 × 1014 

Hz, the skin depth given by equation 1.7 is δ ≈ 5 nm – a very small fraction of the 1064 

nm irradiating laser wavelength. Even so the electric field is high enough to interact 

strongly with the conduction electrons which results in rapid heating, evaporation and 

ionisation of the electrons thereby creating the initial or primary dilute plasma. The 

maximum electric, Emax, and magnetic fields, Bmax, of the laser in vacuum are related to 

the laser irradiance, IL, by [3],  
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For a Nd:YAG laser (as utilised in these studies) with 0.8 J per pulse and a pulse 

width of 6 ns focussed to a spotsize of 100 µm, the laser irradiance is found to be IL ≈ 

4.24 × 1011 W cm-2. The maximum electric and magnetic fields are calculated to be, Emax 

≈ 1.8 × 107 V cm-1 and Bmax ≈ 6 × 104 G (6 T) respectively. 

 

The incoming laser radiation is absorbed by the primary plasma via the inverse 

Bremsstrahlung process [5, 6] (described in more detail in Section 1.4.3). The 

absorption of this radiation leads to a gain in the kinetic energy of the liberated 

electrons. These electrons create further ionization and the electron density rises 

rapidly. Indeed the density increases so much that after a time the plasma becomes 

opaque to the laser radiation. The plasma density at which the laser light no longer 

propagates is called the critical density, nc, of the plasma given by equation 1.6 above 

or quite simply by [7]  
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where λµm is the wavelength of the laser light in micrometres.  

 

At or above nc the laser pulse is therefore prevented from reaching the target 

surface and creating more plasma. The region of the plasma where the density reaches 

and even exceeds the critical density is referred to as the critical density layer and is 

where much of the laser energy is deposited, i.e., the so called deflagration zone (see 

figure 1.1). This does not prevent the plasma expanding however and the plasma 
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continues to gain energy and expands rapidly which reduces the density. After some 

expansion the density of the plasma drops below the critical density and the radiation 

can once again reach the target surface where it generates more plasma via 

evaporation and ionization which once again increases the density. This cyclical process 

repeats right throughout the whole duration of the laser pulse (few nanoseconds 

typically). A shock front develops that propagates into the target as a reaction to the 

plasma streaming away from the target when the laser light hits the target [3]. Figure 

1.1 depicts this process pictorially. 

 
 

 
Figure 1.1: Schematic diagram of a laser pulse incident on a solid target creating a laser produced 

plasma [3]. 

 

After the laser pulse terminates, no new plasma is generated and what follows 

is a rapid expansion of the laser produced plasma plume into the surrounding space 

where the radiation emitted from the plasma in the early-phase of its lifecycle is mostly 

continuum. Diagnosis of the plasma is particularly difficult in this phase due to the 

continuum emission which affects standard plasma spectroscopic diagnostic 

techniques such as spectral line width analysis and of line intensity ratio analysis from 

which one can extract the plasma density and temperature respectively. It has been 

shown, however, that it is possible to gain some information about the plasma at these 

early times even though the emitted radiation is mainly from continuum emission. For 
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example, De Luna et al. [8] have shown that it was possible to parameterise a laser 

produced plasma from the analysis of emission line to continuum ratios, however, they 

have pointed out that the technique is difficult to implement. At mid-lifetimes the 

density subsides sufficiently so that there is only weak continuum emission and the 

radiation loss is mainly due to bound-bound transitions from which plasma parameters 

such as densities and temperatures can be extracted via optical emission spectroscopy 

or OES. 

 

 

1.3: Plasma Expansion 

 

 When a laser impinges on a solid target a plasma is created. For the duration of 

the laser pulse, the plasma is said to be isothermal. This means that a dynamic 

equilibrium exists between the plasma absorption coefficient and the rapid transfer of 

thermal energy to kinetic energy. In the isothermal regime the density, temperature 

and dimensions of the plasma plume adjusts in such a manner the rate of thermal 

energy generation via Inverse Bremsstrahlung and collisional excitation is greater than 

or equal to the rate of loss of thermal energy to the surrounding environment. 

Assuming so, the expansion of the plasma plume in directions X, Y, Z can be described 

by the equation of isothermal expansion [9] 
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where the direction X is normal to the target surface, Y and Z are both orthogonal to 

each other and parallel to the target surface, k is the Boltzmann’s constant, T0 is the 

isothermal temperature of the plasma and X(t), Y(t), Z(t) are the plume dimensions as a 
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function of time. Equation 1.11 holds true only for times less than the duration of the 

laser pulse. 

  

 Once the laser pulse has terminated, the subsequent expansion of the plume 

can be described as an adiabatic expansion. An adiabatic process here is one where the 

expansion of the plume happens so rapidly that there is no transfer of heat between 

the plasma and the surroundings. The plume expands rapidly into the surrounding 

vacuum and cools as the thermal energy in the plume is converted to kinetic energy. 

The adiabatic expansion of the plume is also described by Singh and Narayan [9] as 
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where γ is the ratio of the specific heat capacities at constant pressure and volume. 

 

 Plume front velocities of up to 106 cms-1 have been observed for plasmas 

presented in this thesis (Section 4.1) and so the velocity of the plasma species can 

indeed attain very high values. 

  

 As the plasma expands into the surrounding vacuum, the velocity of the 

electrons can far exceed those of the ions, due to the significant difference in mass 

between the electron and ions. Consequently the electrons lead the expansion of the 

plasma plume and hence strong space – charge electric fields (originating from the 

Coulombic force between the electrons and ions) are created. This will cause the highly 

charged ions to be accelerated out from the target surface. These space charge 

separation effects have been observed in single plasmas by various groups worldwide, 

e.g. Okano et al. [10], Ursa et al. [11], and are also evident in the colliding plasmas 

studied during this work (cf. Section 4.3 [12]). 
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1.4: Atomic Processes in Plasmas 

 

 Many atomic processes occur in plasmas. These processes commence at the 

instant that the laser radiation impinges on the target surface creating the plasma, 

right through to plasma expansion and eventual dissipation into the surrounding 

environment. When the laser strikes the target, the laser photons can be: 

 

• absorbed by atoms and ions promoting them into excited states 

(photoabsorption) 

• absorbed by atoms and ions resulting in the liberation of electrons into the 

free-electron continuum (photoionisation) 

• absorption by free electrons in the vicinity of ions which results in an increase in 

kinetic energy of the electrons (inverse-Bremsstrahlung). 

 

 After creation of the plasma with the laser, collisional processes (e.g. excitation, 

recombination) occur in the plasma for the remainder of its life. Table 1.1 summarises 

the main atomic processes occurring in laser produced plasmas. They are divided into 3 

main types of processes, Bound – Bound (B – B), Bound – Free (B – F) and Free – Free (F 

– F) [13]. 

 
Table 1.1: Summary of the main atomic processes that occur in Laser Produced Plasmas 

Process Excitation De-excitation Type 

B – B Impact Excitation Impact De-excitation Collisional 

B – B Photoabsorption Spontaneous Decay Radiative 

B – F Impact Ionisation 3-Body Recombination Collisional 

B – F Photoionisation Radiative Recombination Radiative 

F – F Bremsstrahlung –  Collisional 

F – F – Inverse Bremsstrahlung Radiative 
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1.4.1: Bound - Bound Processes 

 

Radiative Bound – Bound Processes 

 

There are two situations where bound to bound transitions can occur. Firstly, a 

bound to bound transition can occur in atoms/ions which have an electron dropping 

from an excited state to one with lower energy releasing a photon in the process. The 

energy of the liberated photon is equal to the energy difference of the electron before 

and after the transition. This process is denoted as Spontaneous Decay [13] and 

analysis of the emitted line spectra is important in many plasma diagnostic techniques. 

Spontaneous decay can be described by: 

  

   γ+→ AA*       1.13 

 

where A* denotes the atom/ion in an excited state, A represents the atom/ion in a 

lower energy state and γ represents the photon released during the transition. 

 

Conversely a bound to bound transition can also occur when a photon is 

absorbed by an electron in a low energy state that is consequently promoted to a state 

of higher energy. In this case the energy difference of the electron before and after its 

transition is equal to that of the energy of the photon absorbed. This process is 

denoted as Photoabsorption and can be described by: 

 

   *AA →+ γ       1.14 

 

where A, A* and γ are as indicated above in equation 1.13. Figure 1.2 depicts these two 

processes schematically: 
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Figure 1.2: Schematic illustration of the photoabsorption (left) and spontaneous decay (right) atomic 

processes which occur in laser produced plasmas. E1 and E2 are lower and upper electron energy states 

of the atom/ion respectively [13]. 

 

 

Collisional Bound – Bound Processes 

  

 In collisional bound – bound processes a bound electron can gain or lose energy 

i.e., become excited or de-excited after a collision with free electron. Electron Impact 

Excitation occurs when some or all of the kinetic energy of a free electron is 

transferred to a bound electron exciting it to a higher energy level [13]. The energy 

gained by the bound electron is equal to the energy lost by the free electron.  

 

 Conversely, Electron Impact De-excitation occurs when a bound electron in an 

excited state loses energy and is demoted to a state of lower energy upon collision of 

the host atom or ion with (usually) a free electron. The kinetic energy of the free 

electron will be increased by the same amount or quantum of energy that lost by the 

bound electron in the collision. 

 

 The balance equation for these collisional bound to bound processes is given in 

equation 1.15 

 

    A + e(ε1) ⇔ A * +e(ε2)     1.15 
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where e denotes the free electron, A* denotes the atom/ion in an excited state, A 

represents the atom/ion in a lower energy state and ε1 and ε2 denote the free electron 

kinetic energies before and after the collision respectively. Also ε1 > ε2. Reading 

equation 1.15 from the left-hand side to the right-hand side describes the process of 

electron-impact excitation, and vice-versa for the case of electron-impact de-excitation 

(right-to-left) 

 

 Figure 1.3 is a simple schematic diagram of the collisional bound – bound 

atomic processes. 

 

 
Figure 1.3: Schematic diagram of the electron impact excitation (left) and electron impact de-

excitation (right) atomic processes which occur in laser produced plasmas [13]. 

 

 

1.4.2: Bound – Free Processes 

 

Radiative Bound – Free Processes 

 

Bound - free transitions also occur in two ways. First of all when a free electron 

is in the vicinity of an ion, it can be captured by the ion and consequently recombine 

with the atom. During the process a photon is released with an energy equal to the 

energy difference of the electron before and after the transition. This process is called 

Radiative Recombination (RR) [3] and can be described by: 

    

   γ+→+ + zz AAe 1      1.16 
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where e is the free electron, A
z+1 and A

z represents ions in charge state z+1 and z 

respectively and γ is the emitted photon.  

 

The inverse process to Radiative Recombination is the famous photoelectric 

effect or so called Photoionisation [3]. In photoionisation, the absorption of a photon 

by a bound electron results in the release of the electron into the continuum. The 

photoelectric is described by: 

   

   eAA zz +→+ +1γ      1.17 

 

where e, A
z+1, Az , and γ are as already defined. Figure 1.4 illustrates the two bound to 

free processes.  

 

 
Figure 1.4: Schematic illustration of the Radiative Recombination (left) and Photoionisation (right) 

atomic processes that occur in laser produced plasmas. E1, E2, E3…En are bound electronic states of 

the atom/ion [13]. 

 
 

Collisional Bound – Free Processes 

 

 When a free electron collides with an atom or ion, enough energy may be 

transferred from the free electron to a bound electron to overcome the ionisation 

potential of the atom/ion. The bound electron will then be ionised and enter the free 
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electron continuum. The energy gained by the bound electron is equal to the energy 

lost by the free electron. This process is known as electron impact ionisation [13] and is 

described by  

 

    2
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where A
z and A

z+1 are as described above, e1 and e1
’ is the free electron before and 

after (lower energy) the collision and e2 is the ionised electron.  

  

 The inverse of this process is known as 3-body recombination and usually occurs 

in high density plasmas where the probability of two electrons entering the debye 

sphere of an ion becomes relatively high. In 3-body recombination, one free electron is 

captured into an outer level of an ion. The second electron gains the energy lost by the 

captured electron. The balance equation for 3-body recombination is given by: 

 

   )()()( '
11221

1 εεε eAeeA zz +→+++     1.19 

 

where Az+1 is an ion in charged state z+1, A
z is the ion in charge state n, e1(ε1) and e2(ε2) 

are the free electrons before the interaction and e1(ε1
’
) is a free electron with increased 

energy after the capture of the other free electron by the ion. Figure 1.5 illustrates 

these processes graphically. 
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Figure 1.5: Schematic diagram illustrating the electron impact ionisation (left) and 3-body 

recombination (right) atomic processes that occur in laser produced plasmas [13]. 

 

 

1.4.3: Free – Free Processes 

 

Radiative Free – Free Processes 

 

When a free electron (in the vicinity of a heavy ion) absorbs a photon the 

kinetic energy of the electron is increased by the quantum of energy absorbed. 

Because the electron is in the vicinity of the heavy ion, momentum is conserved. This 

process is called Inverse Bremsstrahlung (IB) and plays a major role in laser radiation 

absorption by a plasma. Inverse Bremsstrahlung is described by [3]: 

 

   )()( 21 εγε eAAe +→++     1.20 

 

where e is the free electron, ε1 and ε2 are the energies of the free electron before and 

after the process, A represents the ion and γ is the photon. The inverse Bremsstrahlung 

process is shown schematically below in figure 1.6. 
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 The corresponding free – free emission process is known as Bremsstrahlung. 

Bremsstrahlung or ‘braking radiation’ occurs when an electron is passing through the 

electric field of an ion (in fact it can happen when passing through any electric field, 

but for the case of plasmas the field originates from the Coulombic field of an ion in the 

plasma). The electron may be accelerated in the electric field and thereby emit a 

photon. Bremsstrahlung can be described by: 

  

    γεε ++→+ AeAe )()( 21     1.21 

 

where e, ε1, ε2, A, and γ are defined above. 

  

 Figure 1.6 shows the Bremsstrahlung process schematically. 

 

 
Figure 1.6: Schematic diagram of the Bremsstrahlung (left) and Inverse Bremsstrahlung (right) atomic 

processes that occur in laser produced plasmas [13]. 

 

 

1.5: Plasma Equilibrium Models 

 

 A plasma is said to be in a state of Complete Thermodynamic equilibrium (CT) if 

all of the following conditions (A – D) are satisfied [1]: 

 

A. All particles obey the Maxwell velocity distribution law. 
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B. The population distributions over the states of any atom or ion are given by the 

Boltzmann formula. 

C. The number of ions in a charge state z relative to the number in state (z-1) is 

given by the Saha equation. 

D. The intensity distribution of the radiation emitted can be described by the 

Planck radiation distribution function. 

  

 In CT plasmas every atomic process occurring in the plasma is balanced by an 

equal and opposite process, for example the rate of collisional excitation equals the 

rate of collisional de-excitation. This is the ideal case for a  plasma in equilibrium and in 

fact it is very rare for this to be the case, especially in laboratory plasmas.  

 

 Laboratory plasmas rarely approach a state of complete thermodynamic 

equilibrium. The fact that radiation is emitted from plasmas prevents this from 

happening. Thus for more practical reasons, equilibrium models have been developed 

to describe plasmas in different regimes with less stringent prerequisites than those for 

CT. The 3 most common equilibrium models used to describe plasmas are: 

 

I. Local Thermodynamic Equilibrium 

II. Coronal Equilibrium 

III. Collisional Radiative Equilibrium 

 

 Figure 1.7 [14] illustrates the range of validity of each model for a range of 

plasma densities and temperatures.  
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Figure 1.7: Ranges of validity for the application of the different plasma equilibrium models (after 

Colombant and Tonon, 1973 [14]). 

 

 

1.5.1: Local Thermodynamic Equilibrium 

 

Local Thermodynamic Equilibrium (LTE) is the name given to describe a plasma 

in which collisional excitation and de-excitation are the dominant atomic processes. 

The electron density must be high enough that an ion in an excited state has a greater 

chance of returning to the ground state through collisional de-excitation than through 

spontaneous emission. LTE is distinguished from complete thermodynamic equilibrium 

in that the temperature need not be the same everywhere, and the spectrum is not 

characteristic of a pure blackbody. Several conditions must hold true for LTE [6, 15, 16]: 
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• The electron and ion velocity distributions should obey a Maxwell-Boltzmann 

distribution written as: 

 

   dv
Tk

vm

Tk

m
vndvvf

eB

e

eB

e
e








−









=
2

exp
2

4)(
2

2

π
π    1.22 

  

where f(v) is the density of the electrons with velocity between v and v + dv, ne is the 

electron density and Te is the electron temperature. 

 

• The plasma dimensions should be much smaller than the mean free path of the 

emitted photons but larger than the collision length of the electrons and ions. 

• The electron density should be high enough so that the ratio between 

collisional de-excitation and radiative decay should be larger than 10:1 for all 

transitions. McWhirter [16] derived the following relationship between the 

electron density and temperature for LTE: 

 

    32

1
12 ),(106.1 qpTn ee χ×≥ cm-3   1.23 

 

where Te is in Kelvin and χ is the energy difference between levels p and q in electron 

volts. If we take the example of an Al+ ion with a transition at 466 nm (2.66 eV) and an 

electron density of 1 × 1019 cm-3, an electron temperature of Te ≥ 30 eV is required for 

LTE to hold in that particular case. 

 

 

1.5.2: Coronal Equilibrium 

 

Coronal Equilibrium (CE) is the name given to describe a plasma in which the 

electron density is too low for LTE to hold so that upward atomic transitions are 
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assumed to be caused by collisions between electrons and ions and downward 

transitions occur by spontaneous emission [6], i.e., in CE radiative processes dominate 

the de-excitation to lower lying levels. 

 

 

1.5.3: Collisional Radiative Equilibrium 

 

Collisional radiative equilibrium (CRE) is the name given to the model that 

describes an intermediate state between LTE and CE (typically ne ≈ 1019 – 1021 cm-3). 

Here both collisional and radiative processes have to be taken into account [14]. The 

following conditions must be satisfied in order for CRE to hold: 

 

• The velocity distribution of the electrons must be Maxwellian to ensure that the 

electron-electron relaxation time is smaller than the electron heating time. 

• The population density of ions of charge Z+1 must not change significantly 

during the period when the quasisteady-state population distribution is being 

established among the ions of charge Z. 

• The plasma must be optically thin to its own radiation. 

 

 

1.6: Fundamentals of Plasma Diagnostics 

 

 In order to fully explore and understand (and eventually exploit for 

applications) the properties of laser produced plasmas, it is essential to employ 

diagnostic techniques that can extract critical parameters such as densities, 

temperatures, velocities, dimensions etc. which characterise the laser produced 

plasma.  
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 After construction of the experimental system, the first experiments 

concentrated on analysis of single laser produced plasmas. These experiments aimed 

not only to provide a test and benchmark in preparation for future experiments on 

colliding plasma but provide useful data on the properties of single plumes at early 

times in the life of the plasma plume. To this end the experiments concentrated on 

utilising laser interferometry (which can reveal the 2-dimensional (2D) spatial 

distribution of electron densities) and laser shadowgraphy (which can visualise the 

spatial expansion of the plume) to investigate the properties of single plumes 

expanding into vacuum and variable gaseous atmospheres which is currently of 

significant in the PLD community who utilise background gases in the growth of 

materials. 

 

 Earlier studies on colliding plasmas in Dublin City University (DCU) [17 - 19] 

employed techniques such as optical emission spectroscopy to extract the 

temperatures and densities of the stagnation layer and seed plumes at mid-late times 

in the life of the plasma. In extending these studies, it was logical to employ diagnostic 

techniques that could measure the stagnation layer at early times as to elucidate 

plasma conditions before, at and beyond stagnation, thereby, revealing more detailed 

information about both the process of stagnation and the properties of the stagnation 

layer. For this reasons, two main diagnostic techniques were employed during the 

project, laser interferometry (already well tested and benchmarked on single plumes in 

the literature) and fast imaging (which, in combination with spectral filtering, can 

reveal the 2-D spatial distribution of visible emission from neutral atoms and ions).  

  

 The project did not exclusively use these techniques, however, and during the 

project two other diagnostic technique were employed to study the properties of the 

colliding plasmas. Optical emission spectroscopy was utilised to reveal the spatial 

distribution of emission from neutral atoms and singly and doubly charged ions in the 

stagnation layer. Finally, in order to reveal the properties of ion emission from the 
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colliding plasmas, a Faraday cup was employed which uncovered the distribution of 

kinetic energies of the ions. What follows is an overview of the fundamental principles 

of each of the diagnostic techniques employed during the project. 

 

 

1.6.1: Fast Imaging 

 

Time resolved optical imaging of laser produced plasmas with fast framing 

cameras has been a useful and widely used diagnostic over the past two decades or so 

e.g. Harilal et al. [20], Siegel et al. [21], Whitty et al. [22] and Geohegan [23]. 

Broadband imaging is useful for tracking the whole plasma motion for comparison with 

the results of single fluid codes such as Medusa [24]. Further refinement via the use of 

narrow bandpass filters enables one to select the charge state of each individual 

atomic and/or molecular plasma constituent and so can be useful for comparison with 

multifluid codes, e.g. Rambo and Denavitt [25] and Jones et al. [26]. Indeed, with a 

sufficiently narrow bandpass, one can even isolate a particular excitation state of the 

atom or ion, under study.  

 

The high temporal resolution afforded by the use of modern gated-intensified 

charge coupled device cameras or ICCD’s (usually a few nanoseconds) means that 

specific atomic or ionic constituents in a plasma can be tracked over time and 

subsequently the images processed to extract important information such as their 

spatial distributions and velocities. The focus of the fast imaging work presented in this 

thesis (results described in Chapter 4) is specifically on spectrally resolved imaging of 

colliding laser produced plasmas. As stated in the introduction, fast imaging enables a 

comparison of the spatio-temporal evolution of ions before, at and after stagnation. In 

this work, the spatio-temporal behaviour of Al+ ions is compared with that of the free 

electrons for colliding aluminium plasmas. Furthermore, fast imaging can, especially, in 



 24 

combination with spectroscopy, help to shed light on the populating/depopulating 

mechanisms for highly excited electronic states in plasmas.  

 

 

1.6.2: Optical Emission Spectroscopy 

 

 Optical Emission Spectroscopy (OES) is a very useful and versatile tool for 

analysing laser produced plasmas as demonstrated by Shaikh et al. [27]. In particular 

OES can be used to extract temperatures and densities of plasmas at mid to late times 

during the lifecycle of the plasma.  

 

 The width of spectral lines is dominated by so-called Stark broadening effects. 

Thus for a spectral line with a Stark broadening parameter, w, the width (Full Width at 

Half Maximum or FWHM), ∆λFWHM, of the broadened line is given by [28]  
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where ne is the electron density (cm-3). 

  

 The electron temperature, Te, can be extracted from emission spectra by 

comparing the intensity of spectral lines which originate from consecutive charge 

states [28]. Assuming a Boltzmann population distribution of the charge states, the 

ratio of line intensities from successive charge states is described by [28] 
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where I’/I is the ratio of intensities of the two measured lines and λ, g and f are the 

wavelength, statistical weight of the lower state of the transition, and absorption 

oscillator strength, respectively. E and E’ are the excitation energies of the transitions 

of interest in the successive ion stages, while E∞ and EH are the ionization energies of 

the lower of the two apposite ion stages and the hydrogen atom, respectively. The 

subsequent (higher) ionisation stage is primed in equation 1.25. 

  

 Significant work has already been performed at Dublin City University on 

analysing temperatures and densities of colliding plasmas using OES (e.g. Kavanagh 

[18] and Dardis [19]). For this reason, OES has not been employed to study 

temperatures and densities in this thesis. Rather it has been exploited to reveal the 

spatio – temporal evolution of different of different plasma species (in this study: Al0, 

Al+ and Al2+) in the stagnation layer (cf. Section 4.4). 

  

 

1.6.3: Laser Interferometry 

 

 Although OES can yield both densities and temperatures and is 

especially useful if combined with both space and time resolution [21, 29], it is at its 

most effective only during the mid-life of a laser produced plasma when there is little 

or (ideally) no continuum emission that, if present, can overpower the line emission 

used for analysis [8]. To fully diagnose the interaction region between colliding plasma 

plumes, a quantitative technique that can “pinpoint” the birth phase of the stagnation 

region and diagnose the plasma parameters at the same time is required. Laser 

interferometry is one such solution as it permits an accurate determination of the 

electron density distribution at early times (<100 ns) in the lifecycle of a laser produced 

plasma [30]. The basic theory of an interferometer is outlined below [7]. 
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One can express the temporal variation of the electric field vector, E, for a wave 

with a given frequency ω, by equation 1.26 below [31], 

 

   }{exp0 tiEE ω=      1.26 

 

where, ω is the angular frequency of the wave and E0 is the peak electric field 

amplitude and E  is the instantaneous electric field amplitude.  

  

 In a simple two arm interferometer this wave is split into two waves, E1 and E2, 

and then added together after introducing some phase difference, Φ, between them. 

Assuming that one arm of the interferometer is in vacuum, the value of the refractive 

index is thus, n = 1. After addition of the two waves the total field, Et, is given by 
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The magnitude of the power detected is proportional to
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tE , 

 

   







Φ

+
++= cos

2
1][

2
2

2
1

212
2

2
1

2

EE

EE
EEEt     1.28 

 

From equation 1.28, is can be readily seen that the output power of the 

interferometer has a constant component that depends only on the individual probe 

beam intensities plus a component that varies as cosΦ and therefore an interference 

pattern is obtained comprising constructively interfering bright and destructively 

interfering dark fringes. Figure 1.8 is an example of this interference pattern captured 

using the interferometer constructed in this project.  
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Figure 1.8 Sample interferogram where the modulation in intensity (from equation 1.26) is visible, i.e. 

the horizontal fringes of light visible in the top half of the interferogram. The yellow line points out the 

position of the surface of the target. The interference fringes are visible above the target surface.  

 

 Consider now what happens if a medium with an unknown refractive index, for 

example, a laser produced plasma, is introduced into one of the arms of the 

interferometer. By doing so one acquires an additional phase Φ’ in the interferometer 

which can be computed using the relationship: 
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where k is the wavenumber of the probe beam along the path of length l that it takes 

through the plasma. Here, N is the refractive index of the plasma calculated along the 

path, l. When the ray is travelling outside the plasma (i.e. in vacuum) the wavenumber 

is denoted by k0 and N = 1, therefore, 

 

1.92 mm 

1.53 mm 

Target Position 
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c

k
ω=0       1.30 

Of course the interferogram of the plasma also comprises the phase lag Φ, i.e. 

the integration outside the plasma e.g. to the detector. To extract any information 

about the plasma, it is necessary to find the phase lag due to the plasma alone.  

 

The phase due to the plasma alone is simply the difference in phases between 

Φ and Φ’ which is denoted by ∆Φ, given by, 
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This process of subtraction of the phase with no plasma present is known as 

background subtraction. The phase shift induced by the plasma can now be directly 

related to the refractive index of the plasma. According to standard plasma theory the 

refractive index of a plasma is composed of a contribution from free electrons only [7] 

and is given by, 

 

    
2

1

1 







−=

c

e

n

n
N       1.32 

 

where, ne is the density of free electrons and nc is the critical density of the plasma 

where, as already defined in Section 1.2, nc is given by 
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where λµm is the wavelength of the light in µm. 
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Assuming that ne << nc, a valid assumption in laser produced plasmas, equation 

1.32 reduces to 
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By substituting equation 1.34 into equation 1.31, the phase shift induced by the 

presence of a plasma in the arm of an interferometer can be directly related to the 

number density of free electrons present in the plasma to obtain [7], 
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Finally with the use of the Abel inversion mathematical technique [32], it is 

possible to find a solution for calculating the electron density. The electron density is 

then given by [30], 
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where r is the radial distance of the cordial light path through the plasma and x is the 

propagation distance of the light as depicted in figure 1.9 below,  

 

 

Figure 1.9: Coordinate system for a ray of laser light passing through a cylindrically symmetric plasma 

[32]. 
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 A freely available software package was employed to analyse the 

interferograms, perform the able inversion technique and extract the electron density 

profiles. The freeware software package, called IDEA [33], was specially developed for 

the purpose of analysing interferograms by a group in the Technical University Graz, 

Austria [34] and is widely utilised in the interferometry community. 

 

 

1.6.4: Shadowgraphy 

 

 Shadowgraphy in its simplest form is the detection of variations in the 

transmitted intensity of a collimated light beam after it has passed through a (usually) 

non-uniform medium, for example, a laser produced plasma [35]. The refractive index 

of the medium results in the deflection of the probe light beam. This is illustrated 

schematically in figure 1.10 [7]. 

 

 

Figure 1.10: Schematic diagram of the angular deflection of a light ray through an angle θθθθ after passing 

through a non-uniform medium [7]. 

 

 As already defined in equation 1.29 the phase shift, Φ, induced in a 

monochromatic light wave along the beam path, l, through a plasma is given by 
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As a result, the emerging ray will subtend an angle, θ, with respect to the incident ray, 

given by [7] 
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where all of the arguments are as defined above. 

 

 So, on passing through the medium the beam is deflected in proportion to the 

density gradient. If the point at which the ray falls without the medium present is 

denoted by y, then with the medium present it will be moved to a new position y’ given 

by the expression: 
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where L is the distance from the non-uniform medium to the detecting plane. 

  

 The same process occurs in the orthogonal direction (i.e. direction into the page 

in figure 1.10) denoted by the coordinate x. Therefore, a light ray incident on a point 

(x,y) at the detection plane will be moved to (x’,y’) in the presence of a non-uniform 

medium where 
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 If the incident beam intensity is denoted by Ii then the detected intensity Id will 

be given by: 
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Following from equation 1.40 and equation 1.41 [7], one obtains, 
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For small fractional intensity variations equation 1.42 becomes 
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 Thus, for shadowgraphy, a signal proportional to the second derivative of the 

refractive index of the medium is detected. 

  

 In particular, shadowgraphy is very useful when observing the propagation of 

shock fronts in gaseous atmospheres that are produced when a laser driven plasma is 

created in the presence of a background gas [36]. The variation of refractive index at 

the shockfront arises from the compression of the gas which changes the refractive 

index. 

 

 

1.6.5: Faraday Cup Probe 

 

 The technique of using an electrostatic probe to measure the properties of 

plasmas was first introduced by Langmuir in the 1920’s [37]. Langmuir developed the 

theory needed to use a metallic probe for analysing collision-less, large volume, steady 

state plasmas in which the velocities of the ions and electrons can be described by 

Maxwellian distribution functions. Essentially when a bias voltage is applied to a probe 

placed in the vicinity of a plasma, the charge is collected across a capacitor (which 

serves to block the bias voltage and transmit the varying signal current – i.e. the 
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plasma charge being collected by the probe) which is then registered on an 

oscilloscope. 

 

 The use of an electrostatic probe applied to flowing plasmas was developed 

further by Koopman [38]. Koopman employed the Langmuir probe together with a self-

designed bias circuit, the so called “Koopman bias circuit”, to investigate properties 

such as electron and ion velocities of a “plasma ball” created with a ruby laser. 

 

 The Faraday cup is a variation of the Langmuir electrostatic probe named after 

Michael Faraday who pioneered investigations of electricity and magnetism in the 

1800’s [39]. A Faraday cup is simply a conducting cup shaped device to which a bias 

voltage is applied. The cup collects charged particles which are registered as a change 

in current on an oscilloscope. The cup is surrounded by a grounded metal conductor to 

shield it from electrical noise. 

  

 When placed in the path of a laser produced plasma, the Faraday cup can 

collect the passing electrons or ions (depending on the polarity of the bias voltage). 

The charged particles are collected by the cup as the plasma expands outward in time 

and is registered as a change in current on the oscilloscope. By knowing the exact 

moment the laser strikes the target surface, for example – by using a fast photodiode, 

the velocity of the particles can be calculated by the distance from target to the 

Faraday cup divided by the time after the laser is incident on the target as 

demonstrated, for example, by Harilal et al. [40]. 

 

 The kinetic energy of the particles, Ek, can then be extracted using 
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where m is the mass of the charged particle and v is the velocity.  



 34 

 For the case of aluminium ions, which is the case for experiments presented in 

this thesis, equation 1.44 becomes 
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where Ek is the kinetic energy of the ions in electronvolts, mAl is the mass of aluminium, 

d is the distance to the Faraday cup and t is the time to reach the Faraday cup. 

  

 Calculating for the time of flight for all the ions reveals the kinetic energy 

distribution of the ions emitted from the laser produced plasma. 

 

 

1.7: Fundamentals of Colliding Laser Produced Plasmas 

 

Colliding laser produced plasmas have been a largely unexplored and an 

especially unexploited research domain until quite recent times despite the fact that 

first experiments can be traced back to the early 1970s [41].  

 

When a laser beam is split into two parts and focused onto a target, two 

separate laser produced plasmas are created at each of the two foci. The two plasmas 

created initially are referred to as the “seed” plasmas. Each of these two laser 

produced plasmas initially expand as single individual laser produced plasmas up to a 

certain point after which they start to “sense” each another. At this point two extreme 

scenarios can potentially occur – they can either interpenetrate or stagnate at the 

collision midplane. If the plasmas interpenetrate, then the two plasmas just stream 

through each other with binary collisions dominating. If they stagnate, on the other 
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hand, a layer of plasma builds up at the interface where the two plasmas collide. This 

layer of plasma is referred to as the stagnation layer, the location where the density 

and temperature increases and the velocity drops to make a somewhat uniform 

(compared to a seed plume) layer of plasma. In practice the situation may be 

somewhere between these two scenarios, a state which is referred to as “soft 

stagnation”. 

 

The key quantity determining whether interpenetration or stagnation (hard or 

soft) occurs is the so called collisionality parameter, ζ [25]. It is expressed as the ratio 

of the experimental scale, D, usually taken to be the separation between the two seed 

plasmas, to the ion – ion mean free path, λii [25]: 
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where the ion – ion mean free path is given by [42]: 
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where mi is the ion mass, ν12 is the relative collision velocity is the charge of the 

electron, Z is the average ionization state of the plasma, ni is the average plasma ion 

density, and lnΛ12 is the so-called Coulomb logarithm for collisions between seed 

plasma 1 and seed plasma 2. The value of the Coulomb logarithm is typically in the 

range of 10 to 30 for most laboratory plasmas [43].  

 

Since λii scales as ν12
2, for a given D, high temperature – high velocity plasmas 

will tend to interpenetrate whereas low temperature – low velocity plasmas will tend 

to stagnate. Figure 1.11 shows a picture of a pair of colliding plasmas and the 
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stagnation layer created at the interface between the two. The image was captured 40 

ns after the creation of the seed plasmas by splitting a 800mJ laser beam and focusing 

it onto two spots of diameter 100 µm separated by a distance, D, of 1.3 mm. The target 

used consisted of a flat aluminium slab (99.99% purity). An interference filter with a 

centre wavelength of 460 nm and a FWHM of 10 nm was used to select emission from 

the Al II ions (singly ionised Al) only and the exposure time was 3 ns.  

 

 

Figure 1.11: Sample image of two seed plasmas and stagnation layer taken 40 ns after the creation of 

the seed plasmas. 

 

Briefly, several configurations for generating colliding plasmas have been 

investigated by different groups internationally, including a split laser beam focused 

onto two orthogonal targets [17], a single beam impinging onto a hemispherical target 

[44] and a single beam focused to create annular plasmas [45]. Diagnostics used to 

probe colliding laser produced plasmas in the past mainly include visible and X-ray 

emission imaging and spectroscopy (e.g. Harilal et al. [46], Leboucher-Dalimier et al. 

[47], Eagleton et al. [48] and Luna et al. [17]). 

  

 In this work a new experimental laboratory facility was constructed to 

investigate the properties and potential applications of colliding laser produced 
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plasmas. A flat target configuration was used for all colliding plasma experiments 

performed during this work. The first reason for choosing the flat target arrangement is 

due to the simplicity of the experimental system which avoids the alignment challenges 

that can arise when utilising, for example, angled targets. Secondly, to avoid laser 

drilling, the target system needs to be moved, after the laser impinges on the target 

surface, to reveal a fresh surface. By employing a flat target, it is possible to move the 

target in 2-dimensions significantly increasing the life of a target compared to an 

angled target which can only be moved in 1 direction.  

 

 Finally, a variety of plasma diagnostic techniques were employed to investigate 

the properties of colliding plasmas, including Nomarski laser interferometry, fast 

imaging and optical emission spectroscopy which revealed detailed information on the 

spatial and temporal dynamics of electrons, neutral atoms and ions in the colliding 

plasmas with high resolution. A Faraday cup was utilised to reveal the distribution of 

the kinetic energies of the ions emitted from the colliding plasmas. 
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Chapter 2:  

Experimental Systems 

 

In this chapter, details regarding the experimental apparatus used to perform all the 

measurements completed during the project is presented including, the design, 

assembly and operation of the entire laboratory facility along with the experimental 

arrangements and layouts for all of the plasma diagnostic techniques employed.  

 

 

2.1: Design and Assembly of the Main Experimental Apparatus 

 

 The project began with the design and development of a new laboratory facility 

with the purpose of investigating the properties and identifying potential applications 

of colliding laser produced plasmas. The new laboratory facility was built as part of the 

Centre for Laser Plasma Research (CLPR) based in the School of Physical Sciences, 

Dublin City University (DCU) and the National Centre for Plasma Science and 

Technology (NCPST). Work began in October 2006 with an old laboratory space and the 

first stage included design and assembly of the entire experimental system along with 

all other lab infrastructure e.g. supporting tables.  

  

 The construction part of the project was broken down into 2 phases, the design 

phase and the assembly phase, each with their own projected timelines as follows: 
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2.1.1: The Design Phase (October 2006 – December 2006) 

 

 The initial design phase had a duration of 3 months with the objective of having 

all the necessary equipment for the project designed by the end of December 2006. 

The very first task at this time included clearing out the laboratory space entirely in 

preparation for assembly of the new experiment. A scaled cardboard model of the 

empty laboratory was created from which the size and orientation of the supporting 

tables that would be constructed to hold the experimental apparatus was determined. 

This established the layout of the apparatus for all future experiments. It was decided 

that the main supporting table for the target chamber and associated optical elements 

should be fabricated from extruded aluminium. The table to hold the Reflection Time 

of Flight Mass Spectrometer (RETOF – utilised by another PhD. student, Mr. Conor 

McLoughlin) was recycled from a steel table not in use at the time and specially 

adapted for our purposes. The final table to support the two lasers in the lab was made 

from a steel frame and adapted to hold an optical table to which the lasers were bolted 

to ensure maximum stability. 

  

 The main interaction chamber was the centrepiece of the experimental system 

and all other lab infrastructure was designed and constructed around it. In the design 

procedure a cylindrical chamber, 400 mm in diameter, was chosen with a wide range of 

access ports and windows ensuring maximum flexibility for incorporating the 

experimental layouts for the various planned plasma diagnostic experiments. To enable 

access to the whole chamber easily, it was decided that the main lid would be 

removable. The ISO configuration of the lid comprised a rubber o-ring which sat 

between the lid and the chamber and a set of four clamps which secured the lid to the 

chamber. Figure 2.1 shows a schematic of the design of the main interaction chamber 

along with main dimensions and the details of access ports. 
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Figure 2.1: Schematic diagram of the main interaction chamber design along with main dimensions 

and access ports. Left: Wire blueprint. Right: 3D sketch. 

 

 This chamber was coupled to the Reflection Time of Flight Mass Spectrometer 

(RETOF) via a connecting straight tube and a T-piece. This is shown in figure 2.2 where 

the main interaction chamber along with the connecting straight, T-piece and RETOF is 

shown along with main dimensions. As the RETOF was operated by another Ph.D. 

student, its operating details and results are not included here although I was deeply 

involved in the integration design and commissioning of the device. 

 

 
Figure 2.2: Schematic 3D drawing of the experimental system showing main interaction chamber, 

connecting straight, tee-piece and RETOF along with main dimensions. 

  

 A single stage differentially pumped vacuum system was designed. This system 

enabled the pressure in the main vacuum chamber to be varied whilst still maintaining 

high vacuum in the RETOF. This was necessary since it was essential to maintain the 

RETOF at high vacuum (better than 1 × 10-6 mbar) when in use as its Micro-Channel 

Plate (MCP) detector runs at high voltage (3 kV). Operating the MCP in low vacuum 
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could lead to electrical shorting across the detector which could cause irreversible 

damage. A vacuum gate valve was installed between the chamber and the RETOF so 

that it could be opened or closed to allow venting of the chamber whilst maintaining 

the RETOF under vacuum or vice versa. The differential pumping barrier was located 

between the RETOF and the T-piece where the only entrance to the RETOF was via a 

0.5 mm hole in a conical skimmer. The RETOF was coupled to the side of the T-piece 

and could be accessed via a viewing port on the opposite side of the T-piece. Ions 

emitted from the laser produced plasma travel from the plasma chamber down along 

the straight and enter the RETOF. The technical drawings of the main components are 

given in the appendix A1. After the components were designed, the parts were ordered 

from various companies and construction of the experiment began. 

 

 

2.1.2: The Assembly Phase (January 2007 – June 2007) 

 

 Once delivery of the components commenced, the assembly phase began. The 

first elements of the system to be assembled were the three supporting tables. One 

table needed to be refurbished and modified to support the RETOF. A new table 

constructed from extruded aluminium frame was assembled to hold the main 

interaction chamber and finally a steel frame also needed adapting and refurbishing 

and adapted to support the optical bench, optics and laser systems. Once assembly of 

the supporting tables was completed, the assembly of the RETOF began. 

 

 The main interaction chamber, straight and T-piece were ordered from ProVac 

Ltd., along with the various ports, flanges, vacuum electrical feed-throughs, copper 

gaskets etc. and so they were all delivered at the same time. Assembly of all these 

components took several weeks and once constructed vacuum testing began. A 

Leybold Turbovac TW250S (pumping speed of 250 l/s) turbo molecular pump was 

attached to the underside of the main interaction chamber via an ISO 100 flange. A 
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similar Leybold TW 250 l/s pump was used to pump the RETOF except that it was 

coupled to the RETOF via a CF100 flange. A smaller Leybold 50 l/s turbo molecular 

pump was used to evacuate the T-piece. Two oil sealed rotary pumps were used as 

backing pumps for the turbo pump mounted on the main interaction chamber and the 

T-piece. A third, oil free piston backing pump was used in conjunction with the turbo 

pump mounted on the RETOF in order to avoid any possible build up of oil on the MCP 

ion detector. The pressure in the main interaction chamber, T-piece and RETOF could 

be monitored separately using independent pressure gauges located at the different 

main sections. It was found that a base pressure of ≈ 5 × 10-3 mbar was achieved 

throughout the whole vacuum system under backing pressure alone. With the turbo 

molecular pumps switched on, a base pressure of 3 × 10-7 mbar was achieved in the 

main interaction chamber and T-piece and 2 × 10-8 mbar in the RETOF. The turbo pump 

on the main interaction chamber also had variable speed capability and a gas purge to 

allow insertion of gas into the main interaction chamber for, firstly, studying the 

interaction of single and colliding plasmas in gaseous environments and, secondly, for 

materials growth using pulsed laser deposition in gases.  

  

 The in-vacuum, computer controlled, motorised target system was next to be 

assembled. It was decided to fit the target system with two axes of movement (vertical 

and lateral). Two vacuum translation stages were purchased (Thorlabs high precision 

motors, Model: T25X), both of which gave 25 mm of movement and adapted to give 

the vertical and lateral movement needed for experiments. A special flange with wire 

feed-throughs was also purchased so that the motors could be controlled under 

vacuum. The target system was then placed inside the chamber and positioned at its 

centre using alignment lasers. Figure 2.3 (left) shows a picture of the motorised target 

system and the base plate on which it rests. The assembled system was then located at 

the centre of the main interaction chamber. The white arrow defines the direction 

normal to the target (i.e. direction of plasma expansion), pointing towards the 

entrance of the RETOF (when in position in the experiment). The red arrows indicate 
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the 2 axes of movement of the motors. Figure 2.3 (right) shows the flange adapted to 

control the motors from outside the vacuum. 

 

 
Figure 2.3: Left: Picture of in-vacuum, computer controlled motorised target system. The white arrow 

defines the direction normal to the target and the red arrows outline the axis of movement for the 

target. Right: Picture of the vacuum feed-through enabling computer control of the motor whilst 

maintaining vacuum. 

   

 The next task centred on locating and integrating the two laser systems 

(Continuum Surelite III & I) in the lab along with the associated beam guiding and 

focussing optics. One laser (Surelite III) was used to create the laser produced plasmas 

and the other (Surelite I) was employed as the source of laser light for Nomarski 

interferometry and shadowgraphy. Both lasers were bolted to the table with the 

optical bench to provide maximum stability. Three Stanford DG535 delay generators 

and two PCs were setup in the lab to control the entire experiment electronically. The 

maximum temporal jitter between the two lasers was 1 ns. This concluded the design 

and assembly of all the major components of the experiment. In figure 2.4 a 

comparison is made between the laboratory just at the start of construction (January 

2007) and the laboratory in full operation (January 2009). 
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Figure 2.4: Comparison of the laboratory just at the start of construction (January 2007) and the 

laboratory in full operation (January 2009). 

 

 Once the main experimental components were assembled and installed, work 

began on setting up the various plasma diagnostics for experiments. 

 

 

2.2: The Surelite Laser Systems 

 

 Figure 2.5 shows a schematic diagram of a Surelite laser system. 

 

 
Figure 2.5: Schematic diagram of a Surelite laser system. The harmonic generating optics are shown as 

dashed lines as they are absent in the Surelite III but present in the Surelite I. 

  

 For general purpose use, all aspects of the Surelite lasers operated using 

internal electronics – i.e. the Pockels cell triggered at an optimal delay time of 180 µs 

after the flashlamps trigger (cf. figure 2.11 below). Both lasers operated at a repetition 

rate of 10 Hz (the optimal repetition rate). For the experimental studies presented 
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here, the operation of both Surelites (flashlamps and pockels cell) were controlled 

using Stanford DG535 delay generators in single shot mode allowing the outputs from 

both lasers to be synchronised with a maximum temporal jitter of 1 ns. 

  

 The Surelite I-10 laser could be operated at 1064 nm, 532 nm, 355 nm, and 266 

nm producing maximum energies of 450 mJ, 230 mJ, 130 mJ and 60 mJ respectively 

and these energies were achieved during testing. The Full Width at Half Maximum 

(FWHM) of the pulse obtained from the Surelite I, operating at its fundamental 

frequency, was measured to be 6 ns and was ca. 2 ns shorter when operating the 

second harmonic (532 nm). 

  

 The Surelite III-10 laser only operated at its fundamental wavelength of 1064 

nm and produced a pulse carrying an energy of 800 mJ with a FWHM of 6 ns. The 

output from each laser was linearly polarised with a Gaussian beam profile and a 

divergence of 0.6 mrad. The salient characteristics of both the laser systems are 

summarised in Table 2.1. 

 

Table 2.1: Characteristics of the Surelite laser systems used 

 Surelite I-10 Surelite III-10 

Wavelength 1064, 532, 355 & 266 nm. 1064 nm 

Energy 450, 230, 130 & 60 mJ 800 mJ 

Pulse width (FWHM) 6 ns (4 ns for Harmonics) 6 ns. 

Repetition Rate 10 Hz or Single Shot 10 Hz or Single Shot 

External Trigger Jitter 1 ns 1 ns 

 

 The output pulses from both lasers were measured using a fast photodiode (1 

ns risetime). These oscilloscope traces are shown below in figure 2.6 for a) the Surelite 

III-10 pump laser and b) the Surelite I-10 probe laser with Gaussian profiles fitted to the 

oscilloscope traces. 
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Figure 2.6: a) Fast diode trace of the output from the Surelite III-10 laser (1064 nm output). Second 

order Gaussian fit is shown in red. The full width at half maximum for this trace is 6 ns. b) Fast diode 

trace of the output from the Surelite I-10 laser. First order Gaussian fit is shown in red. The trace has a 

full width at half maximum of 4 ns (532 nm output). 

 

 

2.3: Laser Plasma Generation 

 

2.3.1: Single Laser Plasma Generation 

 

To create a single laser generated plasma, a plano-convex lens with a focal 

length of 300 mm and a diameter of 25.4 mm with, anti-reflection coating for the 1000 

nm – 1200 nm wavelength range, was used to focus the laser beam to a spot on the 

solid target as illustrated in figure 2.7. 

 
 

 
Figure 2.7: Schematic of the optical setup for creation of a single laser produced plasma. 

 

The spot size achieved with this optical arrangement was ≈ 100 µm and using 

the 800 mJ output from the Surelite III laser a peak irradiance of ≈ 4 × 1011 W cm-2 was 
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achieved at the focal point. Using the simple collisional-radiative model of Colombant 

and Tonon [1], an initial temperature of ≈ 100 eV is obtained for such a single laser 

produced plasma using an aluminium target. 

 

 

2.3.2: Colliding Laser Plasma Generation 

 

 The optical system used to split the colliding laser produced plasmas was similar 

to that used by Harilal et al. [2] and is depicted in figure 2.10. A 0.5° wedge prism split 

the laser beam into two separate beams which were subsequently focused onto the 

surface of an aluminium slab target by means of a 300 mm focal length plano-convex 

lens. The experimental setup was optimised to probe the evolution of the atom, ion 

and electron densities of this stagnation layer in space and time. The seed plasma 

plumes were created by splitting a 1064 nm wavelength, 600 mJ, 6 ns laser pulse into 

two parts and focusing them to two spots of diameter of 100 µm with a separation of 

1.3 mm onto a flat slab of 99.99% pure aluminium. The peak irradiance at each spot 

was ≈ 1.6 × 1011 W cm-2. A schematic drawing of the optical system used to create the 

colliding plasmas is shown in figure 2.8. 

 

 
Figure 2.8: Setup used to create the colliding laser produced plasmas. The incoming laser beam from a 

Surelite III Nd-YAG laser is split into two beams by a 0.5° Wedge Prism and focused to two points using 

a plano-convex lens with a diameter of 25.4 mm and a focal length of 300 mm. The lens is placed 300 

mm away from the flat aluminium target and the two laser beams are focused to points each with a 

spot size of ≈100µµµµm. The separation, D, between the two spots is 1.3 mm. 
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2.4: Laser Based Plasma Probes 

 

2.4.1: The Nomarski Laser Interferometer 

 

 As stated in the introduction Nomarski laser interferometry was one of the 

main plasma diagnostic tools employed in the new experimental laboratory. The main 

benefit of interferometry as a diagnostic tool is that it can diagnose the plasma 

accurately (specifically electron densities) in the nascent phase, i.e., at very early times 

after plasma ignition (typically in the range of 0 – 100 ns). These early times are the 

most important when investigating colliding laser induced plasmas as critical plasma – 

plasma collisions, which can have a strong bearing on the final outcomes at the 

collision front or plane, occur on this time scale and so these early times are the most 

interesting when studying colliding plasmas.  

 

 It was decided that a Nomarski type polarisation interferometer [3] was the 

best choice for this application. The main advantages of the Nomarski interferometer is 

the simplicity of its design and the absence of stability and alignment problems 

associated with the other type of beam-splitting interferometers e.g. Mach Zehnder [4] 

or Michelson [5].  

  

 The key to the enhanced stability offered by the Nomarski design is the fact 

that both interfering laser beams pass through the same optical components unlike 

other standard interferometers. Consequently, should an event that would cause a 

vibration in the experiment occur e.g. people walking, talking, opening doors, 

vibrations from pumps etc., that vibration will affect both the laser beams equally as 

they pass through the same optical components, thus cancelling out vibration effects in 

the interferograms. In effect it has common mode vibration rejection inherent in the 

design. 
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 The first stage of building the interferometer was designing it. After studying 

similar experiments reported in the literature (e.g. those of Benattar et al. [3] and Beg 

et al. [6]) an initial design of the interferometer for use in this particular experiment 

was created. This design is shown schematically in figure 2.9. 

 

 
Figure 2.9: Schematic drawing of the design of the Nomarski Interferometer showing the main 

components (after Benattar [3]).  

 

The principle of operation of the interferometer is as follows. The first beam-

splitting cube polariser is used to set the polarisation direction of the probe laser beam 

to 45° and so the beam contains equal amounts of horizontally and vertically polarised 

components. A λ/2 waveplate is used in conjunction with the first cube polariser to 

divert the majority of the energy of the laser beam into the beam dump. Only a small 

percentage (≈ 4%) of the probe laser beam energy passes through the interferometer. 

This is due to the fact that the CMOS imaging chip detects the laser light directly and so 

if the energy of the beam were too high, irreparable damage would be caused to the 

imaging chip. Also, all optics positioned after the first cube polariser were designed for 

low power laser beams and so this is also another reason for dumping the majority of 

energy in the laser beam. 

 

After passing through the plasma, the laser beam hits the Wollaston Prism. 

Here it is split into two laser beams (the vertically polarised component and the 

horizontally polarised component) separated by an angular deviation of 0.6°. The fact 

that the beams are orthogonally polarised at this point means that they currently 

cannot interfere. To enable the two laser beams to interfere and make an interference 
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pattern, they pass through a second polariser, again orientated at 45° to the vertical 

thus projecting the two laser back onto the same plane of polarisation beams (in fact 

selecting aligned components of the light fields). The interference pattern is located at 

the overlap region of the two laser beams and is detected by the CMOS camera. Two 

lenses image the plasma plane onto the detector plane. Finally the narrow band-pass 

filter, which is centred at 532 nm, rejects light due to emission from the plasma itself 

ensuring only light from the probe laser beam is detected by the CMOS chip. After 

designing the interferometer the components were ordered with construction and 

testing starting upon delivery.  

 

For Nomarski interferometry the two lasers and the CMOS camera were 

synchronised using two Stanford DG535 delay generators with a maximum temporal 

jitter of 1 ns. One of the delay generators constituted the master oscillator and 

generated a reference +5 V TTL pulse 10 µs wide with a repetition rate of 10 Hz which 

was used to trigger the flashlamps on the pump laser. The second output on the delay 

generator provided a second similar TTL pulse 180 µs after T0 (the optimal time delay 

between the laser flashlamp and the Pockels cell trigger). This output was sent through 

an AND box and connected to the pump laser Q-switch. The other input into the AND 

box came from the output from the computer which generated a TTL signal once the 

F5 button was pressed on the computer. Only when both inputs into the AND box were 

positive, was a TTL signal was sent to the pump laser Q-switch and hence the laser fired 

a single laser shot. A copy of this TTL pulse provided the trigger for the camera to start 

the exposure, with the exposure time set to 1 ms during which time it captured the 4 

ns duration interferogram. It was via this technique that the laser was operated in 

single shot mode whilst keeping the flashlamps triggered at 10 Hz which is important 

as it stabilised the temperature of the laser rods and hence the laser output. 

 

A copy of the T0 pulse from the master oscillator of the first delay generator 

was used as the external trigger for the second delay generator thereby synchronising 
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the two delay generators. The first output from the second delay generator (+5 V TTL, 

10 µs wide, 10 Hz) was utilised to fire the flashlamps on the probe laser ensuring 

temperature stability of the laser rod. By adding a time delay between T0 and this 

output, it was possible to vary the timing between the pump and probe lasers and in 

this way high temporal resolution was achieved. The final output from this generator 

was also set to fire 180 µs after the flashlamp trigger. This TTL pulse was input into a 

second AND box along with a copy of the output from the computer. Again, only when 

both inputs into the AND box were positive, a TTL signal was sent to the probe laser Q-

switch. This wiring diagram is show schematically below in figure 2.10. 

 

 
Figure 2.10: Electronic wiring diagram for synchronisation of the two Surelite laser systems and the 

camera. 
 

Figure 2.11 below shows a schematic timing diagram (not to scale) of the 

various trigger pulses used to synchronise the laser systems and the camera. 
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Figure 2.11: Timing diagram showing synchronisation of the lasers and the camera for interferometry 

experiments. 

 

 Finally, shown figure 2.12 is a schematic drawing of the entire experimental 

setup. 
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Figure 2.12: Schematic diagram showing the layout of the experimental system for performing 

Nomarski laser interferometry of laser produced plasmas.  

 

 The pump laser beam was incident at 45° to the target normal in order to allow 

expansion of the laser generated plasma into the RETOF which was orientated normal 

to the target. The combination of a Brewsters window and a half wave plate at the 

output of the pump laser beam enabled the energy of the laser beam reaching the 

target surface to be varied without affecting its pulsewidth. 

 

During the testing stage, the interferometer was calibrated and tested on single 

laser plasma plumes, the results from which are presented in Chapter 3, Section 3.1. 

After the operation of the interferometer was well understood, experiments began on 

interferometery of laser plasmas produced in gaseous environments [7] and also 

experiments on colliding laser produced plasma plumes [8, 9], which were much more 

challenging experiments to perform.  
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2.4.2: Shadowgraphy 

 

 The setup for shadowgraphy experiments was the exact same as that for 

Nomarski interferometry except that all of the polarisation optics were removed when 

performing shadowgraphy. The resulting setup is referred to as a “focused 

shadowgraphy” system [10] where a relay lens system is used to image the 

shadowgram onto the CMOS imaging chip. This is shown schematically in figure 2.13. 

 

 
Figure 2.13: Schematic drawing of setup used for performing shadowgraphy of laser produced 

plasmas. 

 

 The exact same methods were used here for synchronising the laser systems 

and timing arrangements as were used for perform interferometry. 

 

 

2.5: Optical Plasma Diagnostics 

 

2.5.1: Spectrally Resolved Fast Imaging 

  

 Fast imaging refers to the visible imaging of the laser produced plasmas. The 

imaging system was spatially, spectrally and temporally resolved. Spatial resolution 

was obtained by using a zoom lens assembly to image the plasma onto a 2-dimensional 

ICCD camera.  
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 Spectral resolution was achieved by introducing a narrow bandpass filter into 

the imaging system which isolated a particular transition or band of close lying 

transitions in a neutral atom or ion. Only radiation emitted from a particular neutral 

atom or ion with wavelengths within the bandwidth of the filter, reached the detector 

and so the spatial evolution of individual atoms or ions (in a particular state of 

excitation) could be tracked over time. For experiments presented in this thesis, two 

narrow bandpass filters were used to select isolated line emission from neutral 

aluminium atoms and singly charged aluminium ions. 

 

 The filter employed to select emission from neutral aluminium atoms was 

centred at 390 nm with a Full Width at Half Maximum (FWHM) of 10 nm. The detected 

line emission (which passed through the filter) has transitions at 394.4 nm (3s24s 2S1/2 – 

3s23p 2P1/2) and 396.15 nm (3s24s 2S1/2 – 3s23p 2P3/2). The transmission curve for this 

filter is shown in figure 2.14 [11]. 

 

 

Figure 2.14: Transmission curve for the narrow bandpass filter centred at 390 nm used to isolate 

emission from neutral aluminium atoms [11]. 
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 For singly charged aluminium ions, the transition at 466.3 nm (3s4p 1P0 – 3p2 

1D) was selected by employing a narrow band pass filter centred at 460 nm with a 

FWHM of 10 nm. The transmission curve for this filter is shown in figure 2.15 [11]. 

 

 

Figure 2.15: Transmission profile for narrow bandpass filter centred at 460 nm used to select emission 

from singly charged aluminium [11]. 

 

 To observe bulk plasma emission a broadband short pass interference filter was 

employed which transmitted all radiation of wavelengths between 300 nm and 950 nm 

(so called “whitelight”). This served to block any scattered radiation from the Nd:YAG 

laser which had a wavelength of 1064 nm. 

 

 Time resolved imaging was achieved by employing an Intensified Charge 

Coupled Device (ICCD) as the framing camera. Two cameras were employed for fast 

imaging during the course of project. This was due to the sharing and allocation of 

equipment and resources in the CLPR because of high demand. Both of the cameras 

were supplied by Andor Technology. The first camera used was the DH5H7 model and 

comprised of 512 × 512 pixels with a pixel area of 24 μm × 24 μm yielding an active 

area of 12.3 × 12.3 mm2. This CCD chip is coupled via a fibre optic coupler to a MCP 

which was gated to provide optical exposure times as low as 3 ns in duration thereby 
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providing very high temporal resolution. The second camera utilised was the DH534 

model and comprised a CCD chip with 1024 × 1024 pixels of pixel area 13 µm × 13 µm 

yielding an active area of 12.3 × 12.3 mm2. The CCD chip was lens coupled to the MCP 

in this camera and the minimum exposure time was also 3 ns. 

 

 A zoom lens assembly was coupled to the ICCD cameras to image the plasma 

onto the detector. Because the zoom lens could not be placed inside the vacuum 

chamber, the closest achievable distance from the zoom lens to the plasma (object 

distance) was ≈ 250 mm. This meant that in order to achieve high magnification (≈ 2 X) 

an extension tube (≈ 500 mm in length) was needed to increase the distance between 

the zoom lens and the camera. Without the zoom lens, the optical system would de-

magnify the image of the plasma. A schematic diagram of the fast imaging setup is 

shown in figure 2.16 along with main dimensions.  

 

 
Figure 2.16: Schematic drawing of the experimental setup for fast imaging of laser produced plasmas. 

For better orientation, in this figure we are observing the vertical plane edge on and the horizontal 

plane face on.  

 

 The setup shown in figure 2.16 was employed extensively to perform fast 

imaging of colliding laser produced plasmas during the course of the studies reported 

here. The length of the extension tube could be varied between 0.3 and 1 m to adjust 

the magnification. A more detailed discussion of the creation of the colliding plasmas is 
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given in second 2.3 above. In this experimental setup the pump laser beam was split in 

the vertical plane and so both of the seed plasmas could be imaged using the 

experimental setup shown in figure 2.16.  

 

 A problem was encountered, however, when attempting to perform angle 

resolved fast imaging study of colliding plasmas (specifically angle resolved fast imaging 

of the stagnation layer), results from which are given in Section 4.5. The problem arises 

from the fact it was necessary that the camera, extension tube, and zoom lens 

remained stationary during the experiment to keep the imaging system stable and 

reproducible. Therefore, to perform angle resolved studies, it was necessary to rotate 

the colliding plasmas themselves. This was done by simply rotating the wedge prism 

about its centre as shown in figure 2.17 a) which results in a rotation of the deflected 

part of laser beam about the un-deflected portion of the pump laser beam. In doing so 

the plane of the colliding plasma system was changed from vertical to horizontal (see 

figure 2.16). As the pump laser beam was incident at 45° to the target normal, the 

deflected part of the pump laser beam was no longer tightly focused on the target 

surface resulting in 2 very different colliding plasmas. This problem is illustrated below 

in figure 2.17 b). 

 

 
Figure 2.17: a) Illustration of the effect that rotating the wedge prism has on the deflected part of 

pump laser beam. b) Schematic diagram showing effect of having a 45° angle of incidence of the pump 

laser beam when attempting to perform angle resolved fast imaging. The vertical plane is viewed 

edge-on and the horizontal plane is viewed face-on in this drawing. 

  



 65 

 The only solution to this problem was to rearrange the experimental setup, 

specifically, the orientation of the target, so that the incident pump laser beam was 

always normal to the target ensuring that both laser beams were focused onto the 

surface of the target. Of course, in doing so, the target occludes the view of the 

camera. It was therefore necessary to rearrange the imaging system in order to view 

the colliding plasmas. Fortunately, there was a viewing port located at the required 

viewing angle but there was a space issue. As the RETOF location prevented a direct 

view of the interaction region, it was necessary to reflect the image of the plasmas 

with a broadband mirror to a direction away from the RETOF. A schematic drawing of 

the experimental setup designed to implement angle resolved imaging of colliding 

plasmas is shown in figure 2.18 a) along with a picture of the actual experimental setup 

figure 2.18 b). 

 

 
Figure 2.18 a): Schematic drawing of the optical imaging system designed to enable angle resolved fast 

imaging. b): Picture of actual experimental setup. 

 

 The angular resolution enabled fast imaging of the colliding plasmas with at two 

different viewing angles. These angles of views are defined as 0 degrees and 90 

degrees as shown in figure 2.19. These studies were performed at delay times when 

the bulk of the visible emission originated from the stagnation layer, thus avoiding 

occlusion of the stagnation layer by the seed plasmas when observing along the 90 

degree direction. 
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Figure 2.19: Definition of the two angles of view used for the angle resolved fast imaging of the 

stagnation layer. 

 

 To calibrate the magnification of the optical system it was necessary to insert 

an accurately graduated ruler in the plane normally occupied by the plasma. The zoom 

lens was then adjusted until the image of the ruler was focused onto the CCD chip and 

so could be clearly seen on the computer. Using an image of the ruler and knowing the 

physical size of each pixel it was possible to determine the magnification of the system. 

A calibration image for one of the experiments (imaging of colliding aluminium 

plasmas) is shown in figure 2.20 along with the intensity line out of the image and 

finally a calibration curve. The DH5H7 model camera was used for this experiment. 

 

 

Figure 2.20: Left: Sample calibration image ruler for fast imaging experiment on colliding aluminium 

plasmas. The white line shows the position at which the lineout was taken. Centre: Plot of lineout 

intensity. Right: Calibration curve obtained from intensity lineout. 

 

 The magnification obtained with this setup was calculated to be ca. 1.5X 

although experiments presented here have been performed with magnifications as 

high as 3.2 X. 
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2.5.2: Optical Emission Spectroscopy 

 

 Spatially and temporally resolved Optical Emission Spectroscopy (OES) was 

performed on the stagnation layer created at the interface between the two colliding 

laser produced plasmas, the results from which provided the intensity distributions of 

the various species in the stagnation layer as described fully in Section 4.4. 

  

 The optical spectrometer consisted of a 0.5 m Chromex visible imaging 

spectrometer. The Andor Technology DH534 ICCD camera (1024 × 1024 pixels, lens 

coupled MCP) was mounted on the Chromex spectrometer. This allowed high 

resolution temporally resolved spectroscopy with a minimum intensifier gate width of 

3 ns. The optical spectrometer was a Czerny-Turner mount with toroidal focusing 

mirrors which enabled aberration-corrected flat field imaging. It was operated with a 

1200 line/mm diffraction grating with a blaze wavelength of 400 nm providing a 

resolution of 0.07 nm (FWHM) [12]. The instrument function of the spectrometer was 

determined using a method outlined by Kavanagh [13] using a narrow emission line 

(441 nm) from a cadmium lamp. Using a slit width of 60 µm, an instrument function of 

0.16 nm was determined. This is the slit width that was used for all experiments 

presented in these studies. A schematic drawing of the experimental setup used for the 

optical emission spectroscopy studies is shown below in figure 2.21. 
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Figure 2.21: Schematic diagram showing the setup for the emission spectroscopy studies. The main 

components include the imaging system employed to create an image of the stagnation layer on the 

slit of the spectrometer. A schematic diagram of the Chromex 0.5 m spectrometer including the 

collimating and focusing mirrors and the diffraction grating and the ICCD camera is also given. 

 

 As can be seen in figure 2.21 a relay lens imaging system was employed to 

create an image of the colliding plasmas on the entrance slit of the spectrometer. The 

relay system comprised of a 10 cm focal length achromatic plano-convex lens located 

10 cm away from the target and a 20 cm achromatic plano-convex lens positioned 20 

cm away from the entrance slit of the spectrometer. The inclusion of a Dove prism 

served to rotate the image of the colliding plasmas so that the stagnation layer was 

aligned along the slit of the spectrometer. This offered spatial resolution along the 

stagnation layer away from the target. This is illustrated in figure 2.22 where the 

orientation with respect to the stagnation layer is shown. 

 

 
Figure 2.22: Orientation of the stagnation layer with respect to the slit of the spectrometer. 
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2.6: Faraday Cup Probe 

 

 As already outlined in chapter 1, a Faraday cup is a metal conductive cup 

capable of collecting charged particles [14].  The Faraday cup detector used during this 

work was completely surrounded by a grounded metal cage. This isolated the Faraday 

cup from electro-magnetic noise originating from the probe laser beam and the 

creation of the laser produced plasma. The entrance aperture was a 2 mm diameter 

hole and this hole was located 100 mm from the target surface. This resulted in a very 

low angular acceptance (≈ 1°) thus providing very high angular resolution when 

performing angle resolved ion emission experiments. A schematic drawing (not to 

scale) of the experimental setup is shown in figure 2.23. 

 

 
Figure 2.23: Schematic diagram of the experimental setup for Faraday cup measurements on colliding 

plasmas including main dimensions.  

  

The optical system used to create the colliding plasmas is the same as that outlined in 

Section 2.3.2. When probing single plumes, one of the incident laser beams was 

blocked to compare to the probe signal from the colliding plumes. When performing 

angle resolved experiments, the Faraday cup was rotated about the centre of the 

colliding plasmas with an accuracy of ± 1°. All experiments were performed in vacuum 

at pressures of 1 × 10-5 mbar. The target was mounted on an in-vacuum high precision 

x-z motor and was moved to reveal a new surface after each laser pulse. A bias voltage 
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of -30 V was applied to the Faraday cup to attract ions from the laser produced plasma 

and + 30 V to attract electrons. The probe signals were collected across a 50 Ω resistor 

on a Textronix oscilloscope (Model: TDS3023, 300 MHz, 2.5 GS/s) in single shot mode 

triggered by a fast photodiode.  

  

 The bias circuit employed for the Faraday cup experiments presented in this 

thesis is shown schematically in figure 2.24. 

 

 
Figure 2.24: Bias circuit used with the Faraday cup. 

 

 As already outlined in section 1.6.5 the circuit allowed the transmission of the 

plasma signal collected by the Faraday cup but blocked the bias voltage used to collect 

the electrons or ions. The capacitor, C, had a capacitance of 1 µf and the resistor, R, 

had a resistance of 100 kΩ.  

 

 

2.7: Summary 

 

 In this chapter details of the apparatus for performing experiments on single 

and colliding laser produced plasmas were presented. The design phase included 

designing all the vacuum systems, supporting tables, experimental layout, target 

systems and ordering the designed components from a variety of companies. The next 

phase comprised assembly of the entire experimental apparatus and testing e.g. 

vacuum testing. This phase also included location and integration of the main 

experimental systems such as laser systems, oscilloscopes, delay generators etc.   
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 Once the main experimental apparatus was assembled work focused on 

designing and constructing the plasma diagnostics techniques, including fast imaging, 

optical emission spectroscopy, Nomarski interferometery, shadowgraphy and a 

Faraday cup electrical probe. The chapter included a description of the experimental 

apparatus for the various plasmas diagnostic techniques. The experimental setup for 

creation of the colliding plasmas was also presented. 
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Chapter 3:  

Laser and Optical Diagnostics of 

Single Laser Produced Plasmas 

 

 In this section the results from the experiments, on single laser produced 

plasmas, performed using the new laboratory facility are presented. The very first 

experiments were focussed on laser interferometry of single laser produced plasmas in 

vacuum environments and aimed to test the operation of the new laboratory (i.e. 

vacuum systems, laser systems, synchronisation techniques etc.). In addition, similar 

experiments had already been reported in the literature, which therefore provided a 

means to benchmark the results from the Nomarski laser interferometer.  

 

 Once the first experiments were completed with results analysed and 

benchmarked, the operation of the new laboratory was well understood and work 

progressed to performing more challenging experiments, such as analysis of single 

laser produced plasmas in gaseous atmospheres using interferometry. The results from 

these experiments are presented later in this chapter. These experiments are currently 

of particular interest to the PLD scientific community (who deposit and grow materials 

using laser ablation, mostly in background gases). For this reason, an elemental target 

and background gas, of significant topical interest to this community, were chosen for 

this work, namely, zinc and oxygen.  
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 The final results presented in this chapter concern laser interferometry as a 

diagnostic technique for analysing the so called “shock-fronts” or, more specifically, the 

compressive layers of gas that are created and expand rapidly outwards after a laser 

produced plasma is created in a background gaseous atmosphere. Currently, 

shadowgraphy is the main diagnostic tool for analysing such compressive layers and 

the final results presented in this chapter compare and contrast both techniques.   

 

 

3.1: Nomarski Laser Interferometry 

 

3.1.1: Vacuum Environment 

 

 As stated in Chapter 2 (cf. Section 2.2), following construction of the laboratory 

the first stages involved extensive testing and calibration of the laser interferometer to 

ensure it was operating as expected. The easiest way to do this was to first use the 

laser interferometer to make measurements on individual laser generated plasma 

plumes in a vacuum environment. Interferometery of single laser generated plasma 

plumes in vacuum has already been well investigated and consequently, there is a lot 

of published literature readily available for comparison. The experimental details for 

interferometery of single laser generated plasma plumes are also described in Chapter 

2 (cf. Section 2.3.2). 

  

 Densities in the range 1018 – 1020 cm-3 in the regions close (< 1 mm) to the 

target normal were expected from the literature, [1-4]. This provided a good 

comparison for our calibration purposes. Figure 3.1 shows the results from one such 

calibration experiment. The plasma plumes were generated by focusing the output of a 

Nd:YAG Surelite III working at its fundamental wavelength of 1.064 µm with an energy 

of 700 mJ onto a solid 99.99% pure Zn solid target using a 30 cm plano-convex lens. 
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The spot size had a diameter of 100 µm and the pulse width of the laser pulse was 6 ns. 

The background pressure in the chamber was 1 X 10-4 mbar. The error associated with 

the electron density was determined by finding the minimum detectable fringe shift 

and extracting its corresponding electron density. A value of ± 0.22 × 1019 cm−3 has 

been obtained for the minimum detectable fringe shift. 

 

 
Figure 3.1: Comparison of the electron density profile of a single Zn plasma plume at delay times of 20, 

40, 60 and 80 ns after the peak of the pump laser beam. 
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The results from the Nomarski interferometer compare very well with previous 

published work [1 - 4] and allowed for much deeper understanding of the operation 

and limitations of the interferometer and the analysis of the interferograms. The 

testing provided a good starting point to attempt more complex and difficult 

experiments – e.g. interferometery of plasmas in gaseous environments and colliding 

laser generated plasmas. 

 

 However, before attempting such experiments, the interferometer was utilised 

to perform more detailed experiments on single laser produced plasmas in a vacuum 

environment. First of all, an investigation was conducted to analyse the spatial and 

temporal behaviour of the electron density profile of laser produced aluminium whilst 

varying the energy of the incident plasma producing laser beam. The energy of the 

pump beam was varied several times between 130 mJ and 800mJ. The one dimensional 

(1D) spatial behaviour of the electron density, normal to the target was extracted from 

the interferograms at a delay time of 10 ns after the peak of the pump laser pulse for 

the various laser energies studied. The results of this analysis are shown below in figure 

3.2. 

 

 
Figure 3.2: Spatial behaviour of the electron density for a variety of laser energies for an aluminium 

plasma at a delay time of 10 ns after the peak of the plasma producing laser pulse. 
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 As one would intuitively expect, as the incident laser energy is increased, the 

electron density increases. Figure 3.13 shows the increase in electron density as a 

function of laser energy at a distance of 200 microns from the target. 

 

 
Figure 3.3: Variation of electron density with incident laser energy at a distance of 200 microns from 

the target surface at a delay time of 10 ns. The blue curve is a best spline fit to the data. 

 

 At the low end of the energy scale, an increase in the energy of the laser has a 

small effect on the electron density, increasing it only slightly. The same energy 

increment on the higher end of the scale has a significantly larger effect on the 

electron density. With the higher laser energies there is much more plasma ablation 

and ionisation and also, there is a stronger interaction of the preformed plasma with 

the trailing edge of the heating laser beam [5] which leads to higher degrees of 

ionization and a concomitant increase in electron density as shown in figure 3.3. 

 

 Presented in figure 3.4 below is the spatio-temporal evolution of the electron 

density for a laser produced aluminium plasmas created with an incident laser pulse 

energy of 600 mJ where the full capability of the interferometer with its high temporal 

and spatial resolution can be demonstrated. 
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Figure 3.4: Spatio-temporal evolution of the electron density for a laser produced aluminium plasma 

with a pump pulse energy of 600mJ. 

  

 As can be readily seen from figure 3.4, the density of the plasma peaks at a 

delay time of 10 ns after the peak of the pump pulse. By 40 ns, the density of the 

plasma has dropped and its profile is similar to that at a delay time of 5 ns. 

 

 Interferometric experiments were performed on plasmas produced from a 

variety of targets. The purpose was to elucidate the variation of the electron density 

with atomic number, Z. This study not only helped with insight in designing later 

experiments but the dataset also provided a solid comparison for future 

interferometric studies of plasmas. The targets studied include, magnesium (Mg), 

aluminium (Al), silicon (Si), titanium (Ti), iron (Fe), copper (Cu), tin (Sn) and tungsten 

(W). The energy of the laser was kept at a constant value of 800 mJ and the spotsize 

was maintained at 100 µm during the experiments. The vacuum pressure was kept at 

better than 1 × 10-5 mbar for all experiments. Again, the one dimensional spatial 

distribution of the electron density profile has been analysed at a constant delay time 

of 15 ns for the various targets. This is shown in figure 3.5 below. 
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Figure 3.5: Spatial distribution of the electron density for different targets for a laser energy of 800 mJ. 

 

 It is clear from figure 3.5 that there is a dependence of the electron density on 

the target used. Using different targets can increase or decrease the density of the 

plasmas substantially with Sn and Ti producing the largest densities and Al and W 

producing the smallest densities. Figure 3.6 shows the variation of the electron density 

at a distance of 200 µm from the target as a function of a) atomic number (Z) and b) 

ionisation potential of the element. 

 

 
Figure 3.6: Variation of the electron density at a distance of 200 mm from the target at a delay time of 

15 ns with a) atomic number Z, and with b) ionisation potential. 

 

 As can be seen from figure 3.6 there is no clear dependence of the electron 

density on atomic number or ionisation potential. Any dependence would require 

investigation of complex dynamics including laser absorption, ionisation, 
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recombination, expansion etc. for the various targets which was beyond the scope for 

these preliminary studies of single plumes in vacuum environments. The main 

objective of the project was to study plasma dynamics involving collisions (e.g. plasma 

– plasmas collisions and plasma – background gas collisions) but the results presented 

here provide a useful comparison for the vast and growing repository of studies (both 

experimental and theoretical) on single plasma plumes in vacuum. The results can also 

provide useful insight for the design of future experiments, e.g. target selection etc. 

This concluded the work on interferometry of single plumes in vacuum.  

  

 

3.1.2: Gaseous Environments 

 

The interferometer was, at this point, employed to study the effect of creating a single 

laser produced plasma in a gaseous atmosphere. This was the first major study to be 

published using this new experimental system [6] and aimed to probe the spatio-

temporal behaviour of the electron density profile of a single plasma plume expanding 

into a gaseous atmosphere and compare it with that of a single plume expanding into 

vacuum. In this experiment, a blank silicon substrate was also placed in front of the 

plasma to gather the plasma debris in order to observe the effect that the presence of 

a background gas has on materials deposition when compared to a vacuum 

environment. The experiment was conducted in two different atmospheres, namely 

vacuum (vacuum maintained at better than 1 × 10-5 mbar) and high pressure O2 (10 

mbar pressure) and the results were compared. 

 

 Oxygen was chosen as the background gas for all the studies involving gaseous 

atmospheres because it is widely used in the area of materials growth using laser 

produced plasma (to be precise, Pulsed Laser Deposition – PLD). Studies involving the 

interactions of O2 with laser produced plasmas is therefore of great interest in the PLD 

community [7, 8] as oxygen is widely used as a background ambient medium for 
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materials growth provides further motivation for carrying out such work. In this 

experiment, a slab of 99.99% pure zinc (of dimensions 25 mm × 25 mm × 1 mm) was 

chosen to be the target. Experiments on zinc and zinc oxide (ZnO) in oxygen rich 

environments are currently of major interest to the materials community. Specifically, 

considerable focus is currently been placed on the growth and characterisation of ZnO 

as it possesses excellent electrical, chemical and optical properties [9].  The fact that 

ZnO has a large excition binding energy of 60meV could also lead to lasing action at 

room temperature [10].  It also has a large bandgap, 3.37eV at room temperature and 

a concomitantly shorter wavelength, a very attractive trait for applications requiring 

shorter wavelength sources. These confer on ZnO potential applications in a wide 

range of areas such as UV opto-electronics devices [11], thin film transistor devices 

[12], anti-bacterial surfaces [13] and nano-structures [14].  Some groups have recently 

reported success in the production of ZnO nano-structures, for example nano-wires 

[15], nano-pyramids [16], and nano-dots [17] using PLD as the preferred method of 

growth. For these reason the first major experiments focused on this topical area of 

research. 

 

During the experiment, a high precision gas flowmeter was used to introduce 

99.999% pure O2 into the vacuum chamber at a rate of 400 sccm (standard cubic 

centimetres per minute) creating a stable pressure of 10 mbar. The Zn target was 

mounted on a high precision in-vacuum motorised X-Z stage and set to move 

continuously during the period of deposition in order to avoid laser drilling of the 

target. Plasma debris was collected over a period of 30 minutes encompassing some 

18000 laser shots at room temperature. The silicon substrate was mounted at a 

distance of 5 cm from the target surface and was orientated to face the laser produced 

plasma. 

 

Interferograms of the plasma plumes were taken at 5 ns intervals up to a delay 

of 100 ns after plasma formation starting at the peak of the plasma producing pulse 
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(i.e. 0 ns time delay). In figure 3.7 the results from the laser interferometric study are 

shown for the two different regimes (vacuum and 10 mbar O2). The area of interest in 

the interferogram selected for analysis (200 – 800 µm from target surface) is free from 

probe laser beam light absorption near the target surface where the electron density is 

greater than the critical density of the 532 nm probe laser beam.  

 

 

 
Figure 3.7: Comparison of results obtained from optical interferograms taken at delay times of 30, 60 

and 80 ns for the Zn plume in vacuum and in O2 at a pressure of 10 mbar. 

 

What is immediately clear from figure 3.7 is that the peak electron density is 

very high in the early stages of the plasma lifecycle (≈ 30 ns) and lies just above 1 × 1020 

cm-3 for both scenarios, albeit the vacuum case is slightly higher (≈ 20% higher at 200 

µm see figure 3.2 (Top)).  It is also apparent from figure 3.7, that the spatial profile 
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(normal to the target) of the electron density of the plumes is different for the vacuum 

and oxygen cases at early times (30 ns).  This is emphasised in figure 3.8 where the 1D 

lineouts of the electron density normal to the target for vacuum and oxygen 

environments are compared for delay times of 30 ns (a) and 80 ns (b). 

 

 
Figure 3.8: Comparison of the electron density profile normal to the target for vacuum and oxygen 

environments at a) Delay time of 30 ns, b) Delay time of 80ns. Exponential functions are fitted to the 

data and there is very good agreement between the fitted curves and the data points. The exact 

details of the fits along with fit constants are also supplied. 

 

 In the vacuum case a simple single exponential function makes a good fit to the 

experimentally observed electron density spatial profile, as the plasma is freely 

expanding in vacuum. To calculate the plasma density scale length we follow the same 

convention as Santala et al. [18] where they show that a first order estimate for the 

plasma density scale length, L, can be extracted by assuming an exponential electron 

density profile given by, 
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where ne(x) is the plasma density at a distance from the target, x, ne,0 is an estimate of 

peak electron density, and L is the plasma density scale length. 

 

Employing the method of Santala et al., we obtain a value for the density scale 

length of 240 µm for the vacuum case at a time delay of 30ns. In the O2 environment 

the density profile cannot be fitted with a single exponential. In fact a double 

exponential with a rapidly decaying term (scale length = 125 µm) superimposed on a 

slowly decaying term (scale length = 1440 µm) works best. It is proposed that these 

observations are due to the effects of the strong plasma confinement which can be 

expected when a plasma expands into a background ambient gas. With an increase in 

gas pressure, an increase in the frequency of electron and ion collisions with 

background atoms and molecules takes place [19], which results in increased 

ionisation, density, recombination and plasma emission [20-23]. In particular Lui et al. 

[20] and Leboeuf et al [21] have predicted, using 2D particle hydrodynamic plume 

expansion models, that as a result of the confinement of the plasma, the plasma 

density remains higher inside the shock wave than in the free expansion case. The 

studies shown here endorse the finding of Lui et al. and Leboeuf et al. More precisely, 

the electron density is found to be approximately three times higher at 900 µm from 

the target (figure 3.8 a)). To make a direct comparison between the spatial density 

profiles it is observed that in vacuum the density drops by a factor of 1/e at a distance 

of 240 µm from the target and it drops by a factor of 2/e at 495 µm. 1/e and 2/e values 

of 310 µm and 740 µm respectively are obtained in the in O2 environment. So it can be 

clearly seen that there is a fast decay component and a slow decay component in the 

O2 case at a time delay of 30 ns.  
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 In figure 3.8 b), the spatial profiles of the electron density normal to the target 

are shown for both vacuum and oxygen ambient atmospheres at a time delay of 80 ns.  

Although the density in the vacuum case is slightly higher, the main observation here is 

that both profiles can be fitted using a single exponential function. From these fits 

density scale lengths of 500 µm and 410 µm are obtained for the vacuum and oxygen 

atmospheres respectively at a time delay of 80 ns. It is clear that by 80 ns the shock 

wave, behind which the density has grown, has dissipated sufficiently for its 

confinement effect to have largely disappeared in the region close to the target.   

 

The temporal evolution of the electron density at a distance of 200 µm from 

the target is given in figure 3.9 for both vacuum and O2 environments.   

 

 
Figure 3.9: Temporal evolution of the electron density in the plasma plume at a distance of 200 

microns from the Zn target surface.  

 

It is clear from figure 3.9 that the electron density for the Zn plume expanding 

into vacuum, decays much more quickly than in the oxygen ambient atmosphere case.  

This makes physical sense as without a background gas present the plume expansion is 

faster and so the density drops more rapidly. 

 

As reported by Lui et al. [20] and Leboeuf et al. [21], the key signature of this 

plasma confinement is the development and evolution over time of shock waves as the 

plasma plume expands into the gaseous environment. The shock wave acts as a 

compressive layer of gas formed at the interface between the plasma plume and the 
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background gas and is observed to expand outward normal to the target over time. It 

manifests itself in the interferograms as a blurring of the fringes due to the gas 

compression in the region. The blurring of the fringes originates from the fact that the 

refractive index of the compressed gas layer changes rapidly, so rapidly in fact, that the 

temporal resolution of the interferometer (4 ns) is not sufficient to resolve the prompt 

increase in refractive index of the layer. This causes a blurring of the fringes which can 

then be exploited as a signature of the spatial distribution of the compressed layer of 

gas. Shown in figure 3.10 are interferograms taken at time delays of 0, 5 and 10 ns 

after the peak of the pump laser beam. The spatial distribution of the compressed layer 

of gas is clearly visible and is observed to develop rapidly over time. 

 

 
Figure 3.10: Comparison of interferograms for a): 0 ns, b): 5 ns and c): 10 ns with the shock front.  The 

arrow marks the peak (largest distance from target) of the shock front. d): Plot of the position of the 

leading edge of the shock wave at a function of time with a fitted spline curve and the resulting 

velocity of the shock wave. 

 

 Although these shock waves that occur when plasma expands into gaseous 

atmospheres, are well documented in the literature (e.g. [19, 23]), these results reveal 

the creation of this shock wave at the earliest times of the plume lifecycle starting at 
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the peak of the laser producing pulse.  A sharpening of the shock wave (the so called 

“snowplow” effect) is observed in the 10 ns interferogram which has been predicted 

[21, 25] and observed at later times (100’s of ns) using fast imaging [24]. The 

observations here show its formation at very early times.  In figure 3.10 d) the position 

of the leading edge of the compressed layer as a function of time is plotted.  One 

observes that the shock wave starts with quite a large velocity of 1.1 x 105 ms-1 but 

over time drag causes a deceleration and the velocity drops to 3.2 x 104 ms-1.  This 

deceleration has also been observed and predicted previously in the literature [20, 21] 

and is caused by a viscous force causing drag on the particles as it expands in the 

background gaseous environment although the observations presented here are at 

very early times. 

  

 In figure 3.11, Scanning Electron Microscope (SEM) images taken of the silicon 

substrates for the two samples grown are shown for a) debris collected on the silicon 

substrate in a vacuum atmosphere and b) debris collected on a silicon substrate in an 

O2 rich environment. 

 

 

 

 
Figure 3.11: A: SEM images of surface of Si substrate after deposition of a Zn plume in vacuo. B: SEM 

image of surface of Si substrate after deposition of a Zn plume with O2 at a pressure of 10 mbar as the 

background gas.  
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 From the SEM analysis it can be seen that there are quite different mechanisms 

of growth involved in the two distinct regimes.  Under vacuum, in effect mainly plasma 

debris, i.e. melted target material, is observed on the substrate.  This would be 

expected as the Zn plume is freely expanding into a vacuum with nothing to buffer the 

plasma blow-off that follows from the violent interaction at the target surface.  With O2 

as a background gas, however, a carpet-like, nano-structured layer has developed on 

the surface of the Si substrate.  This is due to the interaction of the Zn plume with the 

ambient O2 gas.  It is proposed that the ambient gas acts as a buffer assisting the 

growth of clustered structures in the plasma plumes which are subsequently deposited 

in a more orderly fashion onto the surface of the substrate.  The result is related to the 

analysis of the interferometry where it has already been seen that there is a very rapid 

interaction between the ambient gas and the plasma plume resulting in more 

moderate plasma gradients likely to be signatures of the more placid plume expansion 

than in the vacuum case. 

 

 

3.2: Interferometry and Shadowgraphy 

 

 After performing the experiments involving laser plasma creation in gaseous 

atmospheres outlined in Section 3.1.2, it was observed that laser interferometry could 

be used as a diagnostic tool for analysing the expansion of shock wavefronts present 

after the creation of a laser produced plasma in a gaseous atmosphere. It is worth 

noting that in the literature, one of the main diagnostic tools employed for analysing 

such compressive layers is the shadowgraphy diagnostic technique [26, 27]. The 

brightness profile in a shadowgram is responsive to the second spatial derivative of the 

refractive index. As already described in Chapter 1, variations in the refractive index in 

the field of view of the shadowgram manifest themselves by the redistribution of light 

intensity. In this way the development of compressive gas fronts can be tracked and 

measured. Figure 3.12 shows an example of a shadowgram taken using the 



 90 

experimental setup employed for the studies presented in this thesis. The 

experimental setup has been described more fully in Section 2.4.2. 

 

 
Figure 3.12: Left: Sample shadowgram taken 30 ns after the peak of the pump laser pulse. The incident 

laser pulse had an energy of 100 mJ and the background pressure was 1000 mbar of air. The outline of 

the shock front at the plasma – gas interface is clearly visible. Right: Background shadowgram with no 

plasma present for reference. The visible variations in intensity are inherent in the probe beam and 

induced by the intervening optics.  

 

 Figure 3.12 shows a shadowgram taken 30 ns after the peak of the pump laser 

beam (100 mJ in 6 ns FWHM). The target comprised of a flat slab of aluminium of 

dimensions 25 mm × 25 mm × 1 mm. Also shown for comparison is a blank 

shadowgram with no plasma present for comparison. The pressure of the background 

gas was 1000 mbar of air.  

 

 Given the ability to perform both shadowgraphy and interferometry with the 

one setup, it was logical to perform some experiments which compared the ability of 

shadowgraphy and interferometry as diagnostic tools for the purpose of compressive 

layer observations. Interferometric and shadowgraphic experiments were performed 

on single laser produced plasma expansion into gaseous atmospheres for a variety of 

incident laser energies and a variety of background gas pressures.  

 

 Presented in figure 3.13 below is a comparison of interferograms and 

shadowgrams for single plasma expansion into a background gas at three different 
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delay times (20, 100 and 200 ns) after the peak of the pump laser pulse. The 

experimental conditions are the same as those used to obtain figure 3.12. In short, the 

incident laser pulse had an energy of 100 mJ focused to a spotsize of diameter 100 µm 

on the surface of a flat slab of Al in 1000 mbar of background air. The target was 

moved after each laser pulse to reveal a new surface. 

 

 
Figure 3.13: Comparison of interferograms (left panels) with shadowgrams (right panels) at 3 different 

delay times, 20, 100 and 200 ns after the peak of the pump laser pulse. The incident laser beam had an 

energy of 100 mJ and the background gas comprised of 1000 mbar of air. The development of the 

shockwave is clearly visible in both the interferograms and shadowgrams. 
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 As a result of the high spatial and temporal resolution of both the 

interferograms and shadowgrams, it was possible to extract the spatio-temporal 

evolution of the shockfront (defined here to be the locus of points of the shock wave 

furthermost from the target surface). This has been done for the above experiment 

presented in figure 3.13. The results are plotted in figure 3.14 a) where the position of 

the front of the shockwave is plotted as a function of delay time after plasmas creation. 

The shock is analysed for varying delay times between 5 ns and 300 ns from the 

interferograms (blue dots) and shadowgrams (red dots). Simple spline fits (solid lines) 

are also plotted. Both techniques show a consistent behaviour in the spatio-temporal 

evolution of the shockfront.  

 

 
Figure 3.14: a) Comparison of the spatio-temporal evolution of the front of the shockwave as observed 

using interferometry (blue dots) and shadowgraphy (red dots) along with best fit spline curves. b) 

corresponding temporal behaviour of the velocity of the shock front extracted from the 

interferometric (blue) and shadowgraphic (red) data. 

 

 Shown in figure 3.14 b) is the temporal evolution of the velocity of the shock 

front obtained from an analysis of the interferograms (blue curve) and shadowgrams 

(red curve). It is clear that the interferometry data is consistent within reason with that 

of the shadowgraphy. The extracted velocities from the interferometry analysis and 

shadowgraphy analysis are in very good agreement with each other. These results are 

also consistent with those from similar experiments published in the literature, for 

example, Thiyagarajan et al. [27] have found shock front velocities in the region of 10’s 
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of kms-1 for similar experimental parameters which are very much in keeping with the 

observations presented here. 

 

 It is clear from the results shown above in figure 3.13 and figure 3.14 that 

interferometry can be utilised to diagnose the spatio-temporal development of the 

compressive gas layers formed when plasmas expand into background gases. There 

remains the question of whether there is any benefit of employing interferometry as a 

diagnostic tool for such applications compared to shadowgraphy which is currently the 

main shock wave diagnostic tool.  

 

 There are limitations to the shadowgraphic technique, in that, when the 

background gas pressure becomes relatively low (defining low background gas 

pressure here as between ≈ 1 mbar and ≈ 100 mbar), it becomes more difficult to 

detect the compressive gas layer. This is because there is less compression at the 

plasma – gas interface and so the variation of refractive index at the shock front 

decreases with decreasing background gas pressure. Therefore, when employing 

shadowgraphy as a diagnostic technique, the re-distribution in image brightness due to 

the change in refractive index in the compressed gas layer is significantly reduced and 

is hence difficult to detect in low pressure regimes. 

 

 In these low pressure regimes the velocity of the compressive gas layers are 

also noticeably higher, up to an order of magnitude in some cases, than the velocity of 

compressed gas layers created at higher background pressures (100’s - 1000 mbar). 

This also makes it difficult to detect the compressed gas layers at lower pressures using 

shadowgraphy. 

  

 For these reasons, further investigations of compressive gas fronts using 

interferometery and shadowgraphy focused on the relatively lower background 

ambients comprised of O2 at pressures in the regime of 1 - 100 mbar with the objective 
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of comparing the viability of diagnosing gas layers more accurately and extensively at 

these intermediate background pressures. Presented in figure 3.15 are the results from 

one such experiment where interferometery and shadowgraphy were performed on a 

laser produced plasma expanding into a background gas maintained at a pressure of 10 

mbar. The energy of the incident laser beam was 100 mJ with a focal spotsize of 100 

µm. The target was a flat slab of aluminium and the background gas was oxygen. The 

target was moved to reveal a new surface after each laser shot. 

 
Figure 3.15: Comparison of interferometry (left panels) with shadowgraphy (right panels) of a laser 

produced aluminium plasma expanding into a background gas of oxygen maintained at a pressure 10 

mbar at 3 different time delays after the peak of the pump laser pulse, namely 5, 10 and 15 ns. The 

white arrows in the interferograms point out the front of the compressive gas layer. 
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 On close inspection of figure 3.15, some very interesting findings were 

revealed. Looking at the shadowgrams (right panels), there is no evidence of a 

compressive gas layer expanding at the plasma – gas interface. On the other, when 

looking at the interferograms (left panels) there is some evidence of a compressive gas 

layer rapidly expanding outwards from the target. As already described, the 

compressive gas layer manifests itself in the interferograms as a blurring of the fringes. 

This fringe blurring is more easily observable than very small redistributions in 

illumination levels that occur in shadowgraphy. However, it can also be argued that the 

blurring of the fringes is also difficult to observe and certainly needs very close 

inspection to reveal the presence of the compressive layer.  Fortunately, it is possible to 

enhance the signature of the gas layer. This can be done by employing a simple “Find 

Edges” algorithm which can detect changes in image brightness to enhance features 

such as discontinuities by differentiating the image. This can be done using any widely 

available image processing package but the processing package employed during this 

study to perform the find edges algorithm was a freeware software package called 

“ImageJ” [28]. Figure 3.16 shows comparison of the interferogram and shadowgram 

from figure 3.15 at a time delay of 10 ns before and after applying the find edges 

algorithm. 

 



 96 

 
Figure 3.16: Comparison of the interferograms (left) and shadowgrams (right) from figure 3.10 taken 

at a time delay of 10 ns before and after applying the ‘find edges’ algorithm in the ImageJ image 

processing software package.   
 

 The presence of the shock wave is now much clearer following application of 

the find edges algorithm. The algorithm enhances the discontinuities of the blurred 

fringes at the position of the compressive gas layer. No evidence of the layer is visible 

from the shadowgram even after applying the algorithm. 

  

 With the ability to observe the expansion of compressive gas layers in these 

plasma regimes, it is possible to extract the spatio-temporal evolution of the front of 

the compressive gas layer. This spatio-temporal analysis, performed on the 

experimental data in figure 3.15 is presented in figure 3.17. 
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Figure 3.17: Spatio-temporal analysis of the interferograms presented in figure 3.15. Left: Distance Vs. 

time plot of the peak position of the compressive layer (blue dots) between 5 and 40 ns after the peak 

of the pump laser pulse. Also shown is a best fit curve to the data (solid red line). Right: Velocity of the 

compressive layer (extracted from fitted curve in left panel). The background pressure is 10 mbar. 

 

 Comparing figure 3.14 to figure 3.17, i.e. same incident laser pulse but in a 

background pressure of 1000 mbar, it is clear that the velocity of the shock wave in 10 

mbar is much higher. In fact, the peak velocity of the compressive layer at a gas 

pressure of 10 mbar is just over a factor of 2 higher than that in the same ambient gas 

at a pressure of 1000 mbar. The shock front present in 1000 mbar pressure background 

gas remains in the field of view of the interferogram up to a delay time of 300 ns after 

the peak of the plasma producing laser pulse. In contrast in a gaseous atmosphere at a 

pressure of 10 mbar, the shock wave present in the interferogram remains in the field 

of view of the camera only for a few 10’s of nanoseconds. 

 

 

 By employing interferometry as the diagnostic tool to analyse compressive gas 

fronts formed during laser plasma expansion into a background gas, it is possible to 

probe background pressure regimes where the reliability of shadowgraphy begins to 

fade. Interferometery has, in fact, been employed in pressures as low as 1 mbar, where 

the faint signs of the expansion of a compressive gas front are still visible in the 

corresponding interferogram with no visible indication whatsoever in the shadowgram. 

The results of one such experiment are shown in figure 3.18 below. In this experiment 

an incident laser beam of energy 100 mJ was again focused onto a flat slab of 
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aluminium, in a background pressure of 1 mbar of O2. This creates a very weak 

compressive gas layer that expands extremely rapidly. The results from shadowgraphy 

are also shown for comparison.  

 

 
Figure 3.18: Comparison of interferograms (left panels) and shadowgrams (right panels) for a laser 

produced plasma expanding into a background oxygen gas pressure of 1 mbar. The white arrows mark 

the faint signature from the front of the compressive layer. 

 

 Upon application of the find edges algorithm, the weak compressive locus of 

the gas front becomes visible. At later times (> 10 ns) under these experimental 

conditions the signature of the compressive layer becomes harder to detect as it does 

not produced blurred fringes with discontinuities, rather, the expansion of the layer 

can be detected due to the subtle bending of the fringes as a result of the presence of 
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the compressive layer. Figure 3.19 shows a comparison of the interferograms and 

shadowgrams presented in figure 3.18 after application of the find edges algorithm. 

 
Figure 3.19: Comparison of the interferograms and shadowgrams from figure 3.12 (1 mbar) following 

application of a find edges algorithm. The compressive gas front visible as the red curve in the 10 ns 

interferogram serves to further highlight the position of the fringe shifts due to the presence of the 

compressive gas layer. 

 

 Once again it is possible to obtain the spatio-temporal evolution of the weak 

compressive gas front from the interferometry study in 1 mbar of background gas. This 

is not possible using shadowgraphy. The results are shown in figure 3.20 below. 
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Figure 3.20: Spatio-temporal analysis of the interferograms presented in figure 3.12. Left: 

Displacement of the peak position of the compressive layer (blue dots) in the range 0 to 15 ns after the 

peak of the pump laser pulse. Also shown is a best fit curve to the data (solid red line). Right: Velocity 

of the peak of the compressive layer (extracted from fitted curve in left panel). The background gas 

was O2 at a pressure of 1 mbar. 

 

 It is evident again here that the velocity of the compressive layer has increased 

by a significant amount. The peak velocity is, in fact, about a factor of 3 times larger 

that of expansion into a background pressure of 1000 mbar. Using interferometry, one 

is able to gain insight into the dynamics of plasma-gas interactions that are otherwise 

difficult observe. Further it will be shown later on that it is possible to observe high 

velocity compressive gas fronts travelling at speeds of over 100 kms-1. 

 

 The interferometric analysis of the spatio-temporal expansion of compressive 

gas fronts presented above has been performed for a variety of background gas 

pressures (O2 at pressures of 1, 10 and 100 mbar and air at a pressure of 1000 mbar) 

and pump laser energies (100, 200, 400 and 600 mJ). Before the results are presented, 

a comparison is made between the compressive gas layer visibility in the 

interferograms and shadowgrams for the different experimental conditions studied. 

The compressive gas layer visibility is summarised in table 3.1. 
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Table 3.1: Visibility of Compressive Gas Layer 

Gas 

Pressure 
Diagnostic 100 mJ 200 mJ 400 mJ 600 mJ 

Interferometry � � � � 1 mbar 

O2 Shadowgraphy � � � � 

Interferometry � � � � 10 mbar 

O2 Shadowgraphy � � � � 

Interferometry � � � � 100 mbar 

O2 Shadowgraphy � � � � 

Interferometry � - - - 1000 mbar 

air Shadowgraphy � - - - 

Table 3.1: Comparison of the visibility of the compressive gas layer using interferometry and 

shadowgraphy for various experimental parameters. Legend:  � = Visible, � = Not Visible, - = 

Experiment Not Possible (due to gas breakdown). 

 

 Presented next in figure 3.21 is a comparison of spatio-temporal evolution of 

the compressive layer for a variety of gas pressures with a constant incident pump 

laser energy of 100 mJ along with a comparison of the extracted velocity profiles. 

 

 
Figure 3.21: Left: Comparison of the spatio-temporal evolution of the shock front at varying 

background gas pressures of 1, 10, 100 (O2) and 1000 mbar (air) at a constant laser energy of 100 mJ. 

Also shown are the best spline curve fits. Right: The temporal evolution of the velocity extracted from 

the spline fits.  
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 Close inspection of figure 3.21 reveals that at a gas pressure of 10 mbar, the 

velocity of the compressive layer at 10 ns after the peak of the plasma producing laser 

is ≈ 25% lower than that created in a pressure of 1 mbar. Similarly, the velocity of the 

compressive gas layer in 100 mbar is 30% lower than that in 10 mbar and finally, the 

velocity of the shock front in a background pressure of 1000 mbar is 60% lower than 

that in 100 mbar.  

 

 The same analysis as that presented in figure 3.21 has been performed for 

incident laser energies of 200 and 400 mJ for experiments in O2 at pressures of 1, 10 

and 100 mbar. These results are shown in figure 3.22. 

 

 
Figure 3.22: Spatio temporal analysis of the compressive layer of gas for laser energies of 200 mJ and 

400 mJ. a) Evolution of the shock front position as a function of time for an incident laser energy of 

200 mJ and background gas of O2 at pressures of 1 mbar, 10 mbar and 100 mbar. b) Extracted velocity 

profiles from best curve fits in a). c) Temporal evolution of the compressive gas layer for an incident 

laser energy of 400 mJ and background gas pressures of 1 mbar of O2, 10 mbar and 100 mbar. Included 

are extracted velocities from best straight line fits. 

 



 103 

 The evolution of the compressive layer of gas created with a laser energy of 200 

mJ follows very much the same profiles as that created using 100 mJ (figure 3.15) with 

the exception that the velocity of the compressive gas layer is somewhat higher for all 

gas pressures. This is expected as the pump laser energy is doubled. In particular the 

velocity of the compressive gas layer created by the 200 mJ pulse in 1 mbar 

background pressure is 9 % higher than that created by the 100 mJ pulse in the same 

background gas. Similarly, in 10 mbar background gas pressure, the velocity of the 

compressive layer of gas created by the 200 mJ pulse is 12 % higher than that of the 

100 mJ pulse and in 100 mbar it is 13 % higher.   

 

 Finally, considering the compressed layer of gas created by the 400 mJ pulse, it 

is clear that the velocity is much larger than the previous observations. Firstly, with the 

laser energy at 400 mJ in a background pressure of 1 mbar, the velocity of the 

compressed gas layer reaches speeds of over 100 kms-1, nearly an order of magnitude 

greater than in the previous observations (figure 3.15). In these cases at such early 

times the best fit was a straight line fit from which the velocities were obtained. 

 

 

3.3: Summary 

 

 In this section, the experimental results from interferometric and 

shadowgraphic probing of single laser produced plasmas were presented. Firstly the 

results from interferometry of single plumes in vacuum environments were presented 

and typical densities in the range of 1018 – 1020 cm-3 were obtained which is in keeping 

with results published in the literature. The interferometer and data processing 

methodology was thus observed to be working as expected.  

  

 A useful dataset on the behaviour of the electron density was obtained for 

single plasma plumes in vacuum environments for a range of laser energies and for a 
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range of target compositions. The data could be useful for future studies of laser 

produced plasmas including comparisons with model outputs.  

 

 The next experiment was the first study to be published using the new 

experimental facility. The experiment concentrated on probing single plasma plumes in 

vacuum using the Nomarski interferometer and comparing with those from created in 

a gaseous atmosphere. The target was a flat slab of 99.99% pure zinc. The gaseous 

atmosphere was created by introducing oxygen to the chamber to create a background 

pressure of 10 mbar. The choice of target and background gas was related to the fact 

that there is currently a large amount of research being conducted on creation of zinc 

oxide materials, in particular using the pulsed laser deposition method. The experiment 

was thus particularly interesting for that research community. 

  

Two-dimensional spatially and temporally resolved laser interferograms were 

taken of the Zn plasma plume revealing the structure and evolution of the electron 

density profile and the differences between the two scenarios.  The plumes were 

simultaneously utilised for pulsed laser deposition where Si substrates were used to 

grow the sample.  Analysis of the samples grown was conducted via scanning electron 

microscopy (SEM) where comparisons between both the vacuum and background gas 

cases have been made.  It was found that the electron density remained higher at 

larger distances from the target for the gaseous environment compared to the vacuum 

environment. This is related to confinement of the plume by the background gas. A 

shock front was also observed to be created at the plasma – gas interface that 

expanded outwards over time. The shockfront manifested itself as a blurring of the 

fringes in the interferograms. 

 

It has been shown that this method can be used to probe the dynamics of laser 

plumes used for pulsed laser deposition at early stages (< 100 ns) in its lifecycle in 

different gaseous environments. This has been a somewhat neglected parameter 
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regime until recently due to the high levels of continuum emission which makes 

traditional plasma diagnostics based on line-ratio and line-width measurements very 

difficult but is of vital importance as the plasma parameters of the plume at this early 

stage undoubtedly determine the parameters at later times when materials deposition 

take place. It is also at this early stage that interaction between the plume and any 

background gases (in particular ionisation of and mixing with background gases) takes 

place as revealed by our analysis of the interferometry. 

 

 After it was observed that the expansion of a compressive layer of gas at the 

plasma – gas interface was visible in the interferograms, some experiments were 

performed on analysing the expansion of the compressive layers of gas for a variety of 

laser energies and background gas pressures. The standard method for analysing such 

layers has been shadowgraphy and so, as a comparison, shadowgraphy was also 

performed along with interferometry.  

  

 It was found that the compressive layer was visible in both shadowgraphy and 

interferometery for high background gas pressures (≈ 100 – 1000 mbar) and the spatio-

temporal analysis of the layer using both techniques gave similar results. The velocity 

of the expansion of the compressive gas layer was relatively low at these pressures (≤ 

10 km s-1). When the pressure of the background gas was lowered, however, in the 

region of 1 – 100 mbar, it was observed that the compressive gas layer was not 

detectable using shadowgraphy. In fact interferometry was the only technique utilised 

that was capable of detecting the compressive layer in these regimes. The expansion of 

the compressive layer here had a much higher velocity (up to 100 km s-1) and 

manifested itself as a blurring of the fringes in the interferogram. This blurring of the 

fringes was visible in the bare interferograms but needed close inspection. The 

application of a find edges algorithm revealed the presence of the compressive gas 

layer much more clearly. It was shown that interferometry can be used to diagnose the 
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interaction of laser produced plasmas in gaseous environments in pressure regimes 

where other techniques such as shadowgraphy are not sensitive. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 107 

References 

 

[1] A. Sagisaka, H. Daido, K. Ogura, S. Orimo, Y. Hayashi, M. Nishiuchi, M. Mori, K. 

 Matsukado, A. Fukumi, Z. Li, S. Nakamura, K. Takagaki, H. Hazama, M. Suzuki, T. 

 Utsumi, S. V. Bulanov and T. Esirkepov, Characterization of preformed plasmas 

 with an interferometer for ultra-short high-intensity laser-plasma interactions, 

 Applied Physics  B – Laser and Optics, 78, 919-922, (2004). 

[2] L. A. Doyle, G. W. Martin, A. Al-Khateeb, Electron number density

 measurements in magnesium laser produced plumes. Applied Surface Science,

 129, 716-720, (1998). 

[3] M. Purvis, J. Grava, J. Filevich, Dynamics of converging laser-created plasmas in 

 semicylindrical cavities studied using soft x-ray laser interferometry. Physical

 Review E – Statistical, Nonlinear and Soft Matter Physics, 76, 4, (2007). 

[4] F. Veloso, H. Chuaqui, R. Aliaga-Rossel, Laser-produced annular plasmas. Review 

 of Scientific Instruments, 77, 6, (2006). 

[5] J. F. Ready, Effects of High-Power Laser Radiation, Academic Press, New York, 

 (1971). 

[6] P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, J. T. Costello,  

 Time resolved Nomarski interferometry of laser produced plasma plumes,

 Applied Surface Science, 255, 10, 5167-5171  (2009). 

[7] Z.G. Zhang, F. Zhou, X.Q. Wei, M. Liu, G. Sun, C.S. Chen, C.S. Xue, H.Z. 

 Zhuang, B.Y. Man, Effects of Oxygen Pressures on Pulsed Laser Deposition of 

 ZnO films, Physica E – Low Dimensional Systems and Nanostructures, 39, 253-

 257, (2007). 



 108 

[8] X. S. Gao, J. M. Xue, J. Lib, C. K. Ong, J. Wang, Ferroelectric Pb(Mg1/3Nb2/3)O3 

 Thin Films by PLD at Varying Oxygen Pressures, Microelectronic Engineering, 66, 

 926–932, (2003). 

[9] D Rajesh, K. Adhikary and S. Ray, Comparison of Electrical, Optical, and 

 Structural Properties of RF-Sputtered ZnO Thin Films Deposited Under Different 

 Gas Ambients, Japanese Journal of Applied Physics, 47, 3, 1501-1506, (2008). 

[10] T.-W. Kin, T. Kawazoea, S. Yamazakib, J. Limb, T. Yatsuia and M. Ohtsua, Room 

 Temperature Ultraviolet Emission from ZnO Nanocrystallites Fabricated by the 

 Low Temperature Oxidation of Metallic Zn Precursors, Solid State 

 Communications, 127,  21-24. (2003). 

[11] F. Li, D.-I. Son, J.-H. Leem, T. W. Kim, W. Dong and Y.-H. Kim, Enhanced 

 Ultraviolet Emission from ZnO Nanocrystals Embedded in a Hybrid Polymer 

 Composite Layer, Journal of Applied Physics, 103, 073511, (2008). 

[12] P.-K. Shin, Y. Aya, T. Ikegami, K. Ebihara Application of Pulsed Laser Deposited 

 Zinc Oxide Films to Thin Film Transistor Device, Thin Solid Films, 516, 3767-

 3771, (2008). 

[13] K. Ghule, A. V. Ghule, B.-J. Chen and Y.-C. Ling, Preparation and Characterization 

 of ZnO Nanoparticles Coated Paper and its Antibacterial Activity Study, Green 

 Chemistry, 8, 1034-1041, (2006). 

[14] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, 

 S.-J. Cho, and H. Morkoç, A Comprehensive Review of ZnO Materials and 

 Devices, Journal of Applied Physics, 98, 041301, (2005). 

[15] T. Okada , J. Suehiro, Synthesis of Nano-structured Materials by Laser-Ablation 

 and their Application to Sensors, Applied Surface Science, 253, 7840–7847, 

 (2007). 



 109 

[16] R. O’Haire, E. McGlynn, M. O. Henry, J. P. Mosnier, ZnO Nanostructured Thin 

 Films Grown by Pulsed Laser Deposition in Mixed O2/Ar Background gas, 

 Superlattices and Microstructures, 42, 468-472, (2007). 

[17] R. O’Haire, A. Meaney, E. McGlynn, M. O. Henry, J.-R. Duclère, J. P. Mosnier, 

 Growth of crystalline ZnO nanostructures using pulsed laser deposition, 

 Superlattices and Microstructures, 39, 153-161, (2006). 

[18] M. I. K. Santala, M. Zepf, I. Watts, F. N. Beg, E. Clark, M. Tatarakis, K. 

 Krushelnick, and A. E. Dangor, T. McCanny, I. Spencer, R. P. Singhal, and K.W. D. 

 Ledingham, S. C. Wilks, A. C. Machacek and J. S. Wark, R. Allott, R. J. Clarke, and 

 P. A. Norreys, Effect of the Plasma Density Scale Length on the Direction of Fast 

 Electrons in Relativistic Laser-Solid Interactions, Physical Review Letters, 84, 7, 

 (2000). 

[19] S. Amoruso, J. Schou, J. G. Lunney, Multiple-Scattering Effects in Laser Ablation 

 Plume Propagation in Gases, Europhysics Letters, 76, 3, 436-442, (2006). 

[20] C.L. Liu, J. N. Leboeuf, R.F. Wood, D. B. Geobegan, J. M. Donato, K. R. Chen, A. A. 

 Puretzky, Computational Modeling of Physical Processes During Laser Ablation, 

 Materials Science and Engineering, B47, 70-77, (1997). 

[21] J. N. Leboeuf, K. R. Chen, J. M. Donato, D. B. Geohegan, C. L. Liu, A. A. 

 Puretzky, R. F. Wood, Modeling of Plume Dynamics in Laser Ablation 

 Processes for Thin Film Deposition of Materials, Physics of Plasmas, 3, 5, 2203-

 2209 (1996). 

[22] J. Gonzalo, F. Vega, C. N. Alfonso, Plasma expansion dynamics in reactive and 

 inert atmospheres during laser ablation of Bi(2)Sr(2)Ca(1)Cu(2)O(7-y), Journal of 

 Applied Physics, 77, 12, 6588-6593 (1995). 

[23] R. K. Singh, A. Kumar, B. G. Patel, K. P. Subramanian, Role of Ambient Gas and 

 Laser Fluence in Governing the dynamics of the Plasma Plumes Produced by 



 110 

 Laser Blow Off of LiF-C Thin Film, Journal of Applied Physics, 101,103301, 

 (2007). 

[24] S. S. Harilal, C. V. Bindhu, M. S. Tillack, F. Najmabadi, A. C. Gaeris, Plume 

 Splitting and Sharpening in Laser Produced Aluminium Plasma, Journal of 

 Physics D: Applied Physics, 35, 2935-2938 (2002). 

[25] C. V. Budtz-Jorgensen, M. M. Mond, B. Doggett, J. G. Lunney, Model for Laser 

 Ablation Plume Expansion in Gas, Journal of Physics D: Applied Physics, 38, 12, 

 (2005). 

[26] J.-F. Y. Gravel and D. Boudreau, Study by Focused Shadowgraphy of the Effect 

 of Laser Irradiance on Laser-Induced Plasma Formation and Ablation Rate in 

 Various Gases, Spectrochimica Acta Part B, 64, 56–66, (2009). 

[27] M. Thiyagarajan and J. Scharer, Experimental Investigation of Ultraviolet Laser 

 Induced Plasma Density and Temperature Evolution in Air, Journal of Applied 

 Physics, 104, 013303, (2008). 

[28] ImageJ: http://rsbweb.nih.gov/ij/ 

 

 

 

 

 

 

 
 
 



 111 

Chapter 4:  

Laser and Optical Diagnostics of 

Colliding Laser Produced Plasmas 

  

 In this chapter, the results from laser (i.e. interferometry) and optical (i.e. fast 

imaging and optical emission spectroscopy) diagnostics of colliding plasmas are 

presented. The results from spatially, temporally and spectrally resolved fast imaging 

are presented and spatially and temporally resolved laser interferometry are a major 

focus of this chapter. These techniques complement each other extremely well, 

revealing information about the atoms, ions (imaging) and electrons (interferometry).   

 

 The results from optical emission spectroscopy are also presented revealing 

detailed information about the neutral atom and ion structure and composition of the 

stagnation layer. The chapter concludes with a presentation of results from angularly, 

temporally, spatially and spectrally resolved fast imaging which reveals more detailed 

information on the distribution of atoms and ions around the stagnation layer. 

 

4.1: Fast Imaging  

 
 The experimental details for production and fast imaging of colliding laser 

produced plasmas are as described in Section 2.5. The results presented here in 

sections 4.1 – 4.3 are based on results from our first major study of colliding plasmas 

using the new experimental facility [1]. Fast imaging provided a means to track the 2-

dimensional spatial evolution of the laser produced plasmas with very high temporal 

and spatial resolution. The flexible optical imaging system (based on a simple zoom 
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lens) provided variable magnification (1X - 4X) and concomitant control over spatial 

resolution versus field of view. The minimum shutter width of the intensifier was 3 ns 

and so the tracking of the spatial evolution of the plasma with very high temporal 

resolution was also possible. Finally, with the aid of narrow bandpass filters, it was 

possible filter out emission from a particular neutral atom or ion and track their 

evolution independently. 

  

 Figure 4.1 shows a sequence of optical images taken at different time delays 

following the instant at which the peak of the laser pulse creating the two seeds 

plasmas impinges on a flat aluminium slab target (the location of the target surface is 

depicted on each image as a white bar). The seed plasma plumes were created by 

dividing a 1064 nm wavelength, 600 mJ, 6 ns (FWHM) laser pulse into two parts with 

the aid of a 0.5° wedge prism and focusing it onto two spots, each of 100μm diameter, 

by means of a f/6 plano-convex lens located at 45° to the target normal. The peak 

irradiance at each spot was ≈ 1 × 1011 Wcm−2. The seed plasmas had a separation of 1.3 

mm and the target was a flat slab of 99.9% pure aluminium which was mounted on a 

high precision in-vacuum motorized X–Z stage so that the target could be moved to 

reveal a new surface after each shot. The pressure in the interaction chamber was 

maintained at better than 1 × 10−5 mbar. 

 

 The camera, an intensified charged coupled device (or ICCD), comprised a gated 

intensifier coupled to a front illuminated (CCD) camera via a high quality relay lens 

system. As discussed in Section 2.5.1, it was supplied by Andor Technology Ltd. (Model 

No. DH5H7) and had 512×512 pixels with a pixel area of 24 μm × 24 μm yielding an 

active area of 12.3 × 12.3 mm2. Using a telephoto lens system, the camera was able to 

capture a field of view (FOV) of ≈ 3.8 × 3.8 mm2. The magnification was measured by 

placing a graduated target at the plasma position which resulted in a value of 3.2X. The 

ICCD was synchronized with a Surelite III laser using a Stanford DG 535 delay-gate 

generator with a total trigger jitter of less than 1 ns which was verified using a fast 
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sampling digital oscilloscope. For all experiments the time delay is defined to be the 

time interval following the peak of the seed plasma producing laser pulse. 

 

 An optical filter centred at 460 nm with a bandwidth of 10 nm (described in 

Section 2.5) was placed in front of the ICCD to isolate emission from the Al+ ions in the 

seed plasmas and stagnation layer. This spectral range is free from emission due to 

atomic aluminium and also multiply charged ions which may be present in the seed 

plasmas and stagnation layer. The optical gate width for each image was 3 ns and a 

stagnation layer first appeared in these images at a time delay of 20 ns after the 

emission of first light from the seed plasmas which we take to be the instant of 

creation. 

 

 
Figure 4.1: Temporal sequence of optical images of Al

+
 emission at 460nm from colliding laser 

produced plasmas.  Each image has a field of view or FOV of 3.84mm X 3.84mm. 

 

 The stagnation layer grows outwards in time as plasma species (here singly 

charged ions) from the seed plasmas meet at time delays determined by their time of 

flight from each source point.  So the layer appears first in the space directly between 

the two seed plasmas as that corresponds to the shortest ion time of flight and 
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subsequently grows outwards from the target surface,. At stagnation, the ion kinetic 

energy is converted into excitation energy and the stagnation layer begins to glow, the 

intensity growing with time into a bright strip of light.  It is clear that the excitation 

energy has to be high as the upper and lower levels of the selected transition at 466 

nm lie almost 18 eV and 15 eV respectively above the ground state.  The expansion of 

the Al+ ions over time has also been measured along trajectories normal, at 45° and 

parallel to the flat target surface in order to extract the range of ion velocities in the 

expanding seed plasmas. The trajectories are drawn in figure 4.2(a) for the image 

recorded some 30 ns after the peak of the laser pulse. The plume expansion in all three 

directions is shown in figure 4.2(b).   

 

 
Figure 4.2: (a) Al

+
 image for one time delay showing trajectories chosen to determine seed plume 

expansion velocities. (b) Plume expansion traces for trajectories normal, parallel and at 45° to the 

target surface. 

 

 The values obtained were 2.17 ± 0.1 x 106 cm.s-1, 1.53 ± 0.12 x 106 cm.s-1 and 

1.22 ± 0.12 x 106 cm.s-1 respectively. These values represent the bulk motion of Al+ ions 

in the seed plasmas. The fastest ions reach the collision front quite quickly and their 

velocity can be estimated by noting that the stagnation layer starts to form and heat up 

just 20 ns after the seed plasmas are created. As the ions travel an average distance (to 

the centre of the layer) of ca. 1 mm, this group of ions has a peak velocity of 

4.0 x 106 cm.s-1. 
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4.2: Laser Interferometry 

 

 One of the main objectives of the entire project was to probe colliding laser 

produced plasmas at very early times with the intention of observing the nascent 

phase of the stagnation layer. For this reason, Nomarski laser interferometry was one 

of the main plasma diagnostic tools employed as it permitted us to probe the spatio-

temporal behaviour of the electron density in the stagnation layer at very early times 

with high spatial resolution. 

  

 The first experiment aimed to probe the structure of the free electrons 

distribution at the mid-plane, i.e. in the region of the stagnation layer. All experimental 

conditions were kept exactly the same as those for the fast imaging results presented 

in Section 4.1. For laser interferometry, as described in chapter 2, the two lasers and 

the (CMOS) camera (C Cam Ltd, Model: BCi4) were synchronized using two Stanford 

DG535 delay generators which resulted in a maximum temporal jitter of 1 ns. This 

value was verified during the experiment using fast photodiodes (Thorlabs model no.: 

DET10A) and a fast sampling digital oscilloscope (TDS3032, 300 MHz, 2.5 GS/s). A TTL 

master pulse was sent to trigger the Surelite III laser (6 ns, 1064 nm) to create the seed 

plasmas. The delay to firing the probe laser (Surelite I, 4 ns, 532 nm) was scanned to 

interrogate the stagnation layer at different times before, during and after its 

formation. The camera was triggered synchronously with the probe laser beam and the 

shutter was left open for 1 μs during which time it captured the 4 ns duration 

interferogram. In performing the analysis of the interferograms we have assumed that 

the plasma is distributed uniformly around an axis normal to the target. This 

assumption is justified having performed fast photography in the broadband regime at 

angles of 0°, 45° and 90° (cf. section 4.5, figure 4.12) to the axis normal to the target 

surface. The results show the broadband plasma emission to be symmetric to a high 

degree about this axis and one would not expect the free electron distribution to 

depart significantly from this. 
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 In figure 4.3 a series of stagnation layer interferograms and corresponding 2D 

electron density maps is shown for six time delays ranging from 20 to 80 ns. The 

density scales on each image are chosen to best illustrate the general features of each 

frame. Comparisons on an absolute scale are made later (Section 4.3). The error 

associated with the electron density was determined by finding the minimum 

detectable fringe shift and extracting its corresponding electron density. A value of 

± 0.22 × 1019 cm−3 has been obtained for the minimum detectable fringe shift. 

 

 
Figure 4.3: Sequence of interferograms showing the temporal and spatial evolution of the electron 

density in the stagnation layer created at the interface between two colliding laser produced plasma 

plumes. 

 

 What is immediately clear from the image sequence is that the electrons form 

tightly confined structures reminiscent of ion stagnation layers at the collision front 

between the two seed plasma plumes and are observed to first form at a time delay of 

10 ns. At 20 ns the fringe shift pattern and corresponding electron density distribution 
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are quite confined but also reasonably uniform. One can see that the fringe pattern is 

pinched close to the target at a position where it is sandwiched directly between the 

two seed plasmas. The electron density is greatest at a distance of approximately 0.4 

mm from the target surface where it reaches a peak value in excess of 4 ± 0.22 × 1019 

cm−3 at a time delay of 40 ns (cf. figure 4.4, page 117). The electron density begins to 

fall from that point onwards, so that by 80 ns its peak value has dropped significantly 

and the distribution has flattened somewhat. 

 

 In figure 4.4 the temporal evolution of the electron density profile at a distance 

of 0.4 mm from the target surface is plotted for delay times ranging from 10 to 80 ns 

after the peak of the seed plasma laser. 

 

 
Figure 4.4: Time evolution of the stagnation layer electron density at a distance of 0.4 mm from the 

target surface. 

 

 The first detectable fringe shift occurs at a delay of 10 ns following the creation 

of the seed plasmas. As time proceeds, a soft electron stagnation (e.g. 10 ns frame) 

followed by rapid further stagnation, which peaks at 40 ns or so, is observed. After that 

point the electron layer becomes broad and damped. As noted above, by 80 ns the 
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peak electron density has dropped to a value in the low 1019 cm−3 range and soon after 

drops further to a density below the minimum detectable value of the interferometer. 

 

 

 

4.3: Comparisons: Fast Imaging and Interferometry 

 

 The results from the spectrally resolved fast imaging in Section 4.1 reveals the 

spatio-temporal behavior of the singly charged ions in the region of the stagnation 

layer. Broadband fast imaging has also been performed and reveals the spatio-

temporal behavior of the plasma as a whole in the region of the stagnation layer. The 

results from the laser interferometry in Section 4.2 reveal the spatio-temporal behavior 

of free electrons in the region of the stagnation layer. It is therefore instructive to 

make a direct comparison of the ion spatial distribution with the whole plasma spatial 

distribution and with the free electron distribution. This is done in figure 4.5 where a 2-

D space-time montage of electron density, Al+ ionic and broadband optical emission 

distributions is presented. The density (upper row) and intensity (lower rows) scales 

are the same for each panel to aid direct comparison.  
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Figure 4.5: 2D temporally and spatially resolved electron density and ion distribution maps. The top 

panels show the 2D electron density profile in the stagnation region between the two seed plasmas 

for time delays of 10, 15 and 20 ns. The centre panels show the Al
+
 ion emission in the corresponding 

region at the same time delays while the bottom panels show the corresponding broadband emission. 

  

 Looking at the free electron maps, one can see a broad, long and weakly 

stagnating layer in the electron density distribution at 10 ns resulting from a fringe shift 

induced by electron localization and stagnation at this time delay. The broadband 

images display evidence of nascent plasma stagnation at a time delay of 15 ns. The 
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singly charged ions are observed to stagnate in the vicinity of the collision front at 20 

ns which is approximately 10 ns after that of the electrons and 5 ns after the first signs 

of broadband plasma emission from the collision front. The broadband images contain 

emission from a range of ion stages and so will be characteristic of the plasma as a 

whole. The observations in figure 4.5 are attributed to the separation of charge in 

space in the seed plasma plumes. Immediately after the seed plasmas are formed, the 

fast electrons try to move towards the mid-plane leaving behind the heavier ions, thus 

creating a space charge potential (otherwise know as an ambipolar potential and 

associated field). This field induces an acceleration on each ion depending on its 

charge. For this reason more highly charged ions will acquire a higher velocity at early 

times.  

 

 Images were also taken of the neutral atom species and the results are shown 

in figure 4.6. They are in keeping with the observations above where first evidence of 

stagnation of the neutral species occurs at a time delay of 30 ns and so are the slowest 

moving species (as one would expect). 
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Figure 4.6: Comparison of the results of fast imaging at time delays of 10, 20, 30 and 40 ns for neutral 

atom species revealing first evidence of their stagnation at a time delay of 30 ns. 

 

 Fast electron generation and transport has been studied for intense and ultra-

intense laser interactions (1015 – >1020 W cm-2) with solids and dense plasmas [2]. 

There is also, however, evidence of the separation of charge in space occurring in 

expanding plasma plumes (single seed plumes) produced by ‘longer’ laser pulses (> 100 

ps). For example, Okano et al. [3] infer space charge separation to explain the results of 

a time resolved electron shadowgraphy measurements on an expanding copper plasma 

plume. They found that a fast electron bunch leads the expansion of the laser 

produced plasma. Ursu et al. [4] have shown how the expansion velocities of the 

ionised species in single laser produced plasmas (for plasmas very similar to those 

presented in this thesis) are found to increase with the degree of ionisation. Not 

unexpectedly then, they found that excited neutral species were the slowest moving 

particles [4]. In their experiment they also employed an ICCD camera coupled to an 
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optical spectrometer to identify and track over time, line emission for neutral, singly 

and doubly charged ions emitted from a single laser produced aluminium plasma. They 

concluded that the electrons are first species leave the target after laser excitation. 

Subsequently, ions are ejected on a very short time scale through interaction with the 

very intense electric field formed by initial electron laser excitation and detachment. In 

the experiment presented here (Section 4.1 – 4.3), by allowing a pair of plasma plumes 

to collide and using both ‘ion and electron imaging’, this separation is shown optically.  

 

 Returning to figure 4.5 above, as the electron front leads the ion front one 

expects stagnation of the electrons to occur before ion stagnation and indeed the 

stagnation of more highly charged ions before that of lowly charged ions. Of course any 

electron – ion separation is mediated by the ambipolar field which will limit it to a 

dimension less than the Debye length [5], λD, which will be on average ≈ 100 μm for the 

seed plasmas in these experiments. λD for the stagnated plasma can be expected to 

change in space and time as it evolves but this variation will be significantly smaller 

than in the case of an expanding laser plasma plumes. The time delay of 10 ns between 

electron and singly charged ion stagnation is consistent with the transit time obtained 

by dividing the Debye length by the average ion velocity obtained from figure 4.2. The 

time delay of 5 ns between electron stagnation and broader plasma stagnation is also 

well within the limits set by the Deybe length. It can be further speculated that the 

early stagnation of the electrons at the mid-plane collision front induces a significant 

‘screening’ effect which permits the ions (especially more highly charged ions) to 

approach each other quite closely leading to a tight ion stagnation layer, especially at 

40 ns where the electron density reaches quite a high value (≈ 4.5 ± 0.22 × 1019 cm−3).  

 

4.4: Optical Emission Spectroscopy  

 

  Optical emission spectroscopy has been employed to observe the spatial 

distribution of neutral atomic, singly and doubly charged aluminum in the stagnation 
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layer [6] with the same experimental conditions that pertained when creating the 

colliding laser produced plasmas in Section 4.1.  In summary, the laser energy was kept 

constant at 600 mJ and focused to two spots separated by 1.3 mm. The pressure in the 

vacuum chamber was maintained at a pressure of better than 1 × 10-5 mbar. 

 

 The optical system used to perform the OES studies has been fully described in 

Section 2.5.2. Briefly an Intensified Charged Coupled Device (ICCD, Andor Technology, 

Model No. DH534, 1024 × 1024 pixels with pixel size of 13 × 13 µm2) was employed to 

perform the spatially and temporally resolved optical emission spectroscopy 

measurements. The camera was mounted on a Chromex 0.5 m optical 1:1 imaging 

spectrometer with a 1200 l/mm grating resulting in a relative wavelength 

measurement accuracy of +/-0.1 nm. The plasma was imaged onto the slit of the 

spectrograph using achromatic imaging lenses with a magnification of 2X. The 

stagnation layer was orientated to lie along the spectrometer slit as previously 

illustrated in figure 2.22. The spectrometer was used to analyse line emission from 

neutral, singly and doubly charged aluminium. The slit width was set to a width of 60 

µm and all spectra were averaged over 10 laser shots. The gate width for each shot 

was set to 5 ns. 

 

 The spectral studies, presented here indicate that the emission features within 

the stagnation layer comprise (mainly) excited neutrals along with singly and doubly 

charged ions. Corresponding spectra are shown in figure 4.7 where line emission for 

neutral, singly and doubly charged aluminium are compared as a function of distance 

from the target for two different delay times (80 and 150 ns). The birth of the 

stagnation layer occurs at a time delay of 10 – 30 ns or so depending on experimental 

parameters and it usually dissipates into the surrounding environment at a time delay 

of ≈ 200 ns. Thus observing the stagnation layer at a time delay of 80 ns and 150 ns 

reveals the structure of the layer at relatively early and late times respectively. 
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Figure 4.7: Comparison of the optical spectra obtained showing line emission from neutral, singly and 

doubly charged aluminium as a function of distance from the target at two different delay times (80 

and 150 ns). The black lines serve to illustrate distances of 0.5, 1 and 1.5 mm from the target surface. 

  

 Spectra in the region of 365 nm capture line emission from both singly charged 

and doubly charged ions. The line at 358.7 nm is a 4f 3F3-3d 3D3 transition in singly 

charged aluminium. The other lines present in the spectra originate from transitions in 

doubly charged ions at 360.19 nm (2p63d 2D3/2 – 2p64p 2P3/2), 361.23 nm (2p63d 3D3/2 – 

2p64p 2P1/2), 370.2 nm (2p64p 2P1/2 – 2p65s 2S1/2) and 371.31 nm (2p64p 2P3/2 – 2p65s 

2S1/2) [7]. This wavelength region is well suited to the task of making a comparison of 

the spatial distributions of singly and doubly charged ions. From figure 4.7 it is clear 

that at a delay time of 80 ns (top panel), the spatial extent of singly charged ion 

emission is limited to a region extending outwards to a distance of ca. 1.5 mm from the 

target surface with a maximum value ca. 0.7 mm from the target surface. The doubly 
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charged ions can be seen at larger distances (up to 2 mm) from the target with an 

emission distribution which peaks at a distance of 1 mm. 

 

 The emission from neutral aluminium comprises transitions at 394.4 nm (3s24s 

2S1/2 – 3s23p 2P1/2) and 396.15 nm (3s24s 2S1/2 – 3s23p 2P3/2) [7]. At 80 ns, again looking 

along the direction normal to the target surface, the neutral atom distribution is found 

to be less extended than either the singly or doubly charged ions. In fact neutral 

species reach a maximum distance of only ≈ 1 mm from the target with the peak 

emission originating from a region lying at a distance of  ≈ 0.5 mm from the target. 

 

 Figure 4.8 shows a comparison of the spatial distribution of the line emission 

from Al0 (396.15 nm), Al+ (358.65 nm) and Al2+ (360.19 nm) at a delay time of 80 ns and 

clearly highlights the spatial dispersion of plasma species along the stagnation layer. 

 

 
Figure 4.8: Al

0
 (396.15 nm), Al

+
 (358.65 nm) and Al

2+
 (360.19 nm) emission as a function of distance 

from the target at a time delay of 80 ns providing evidence of the space charge effects where the 

doubly ionised aluminium extends to the furthest distances from the  target followed by singly ionised 

aluminium with the neutral species remaining close to the target. 

  

 As already mentioned, Ursa et al. [4] have shown that the expansion velocities 

of ionised species in single laser produced plasmas are found to increase with their 

degree of ionisation. It was already shown in this study (cf. Section 4.1 - 4.3 [1]) that 

the separation of charge in space can become manifest at very early times (<20 ns) in 

plasma – plasma collisions just prior to and during stagnation. In the present 
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spectroscopic experiment, however, one can observe that the development of the 

stagnation layer at later times (≈ 80 ns – compared to the very early times studied at 

the start of this chaper) is still influenced by the mechanisms of expansion in the seed 

plasmas resulting in variations in the spatial distribution of ions of different charge in 

the stagnation layer. This is clear in figure 4.7 and figure 4.8 where specifically the 

emission from doubly charged ions is evident at the furthest distances from the target 

as the more highly charged ions expand away from the seed plasmas with a larger 

velocity than either singly charged or neutral atomic species. Similarly emission in the 

stagnation layer from singly charged ions predominates at greater distances from the 

target than the excited neutral species.   

 

At later times (150 ns - Figure 4.7 - bottom panel) most of the emission 

originates from neutral atoms and singly charged ions suggesting that the doubly 

charged ion density has been significantly reduced via processes such as recombination 

at this stage. The Al atoms and Al+ ions are observed to emit from very similar regions 

(at later times) implying that the stagnation layer has developed into a more uniform 

plasma with neutral atom and ion species more uniformly distributed. 

 

Figure 4.9 shows the stagnation layer luminous front  expansion trace (distance 

vs. time) of neutral, singly and doubly charged aluminium emission obtained from 

optical emission spectroscopy. The selected emission lines were 396.15 nm, 358.65 nm 

and 360.19 nm for Al0, Al+ and Al2+ respectively. The luminous front is defined to be the 

position of the plasma front where the emission is measured to be 10% of the peak 

value. An important point for one to bear in mind is that this trace is indicative of the 

spatial development (normal to the target – cf. figure 2.22) of various species in the 

stagnation layer. Ions leaving the seed plasmas travelling on different trajectories will 

reach the stagnation layer at a variety of positions and times. Hence inferring an 

‘expansion velocity’ for any one species expanding outward in the stagnation layer or 

indeed the stagnation layer as a whole would be somewhat misleading. 
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Figure 4.9: Expansion traces for the luminous front positions of Al

0
 (396.15 nm), Al

+
 (358.65 nm) and 

Al
2+

 (360.19 nm) emphasising the differences in the spatial evolution of the three ion stages. The 

smooth curves are best fitted spline curves. 

 

It can be clearly seen from figure 4.9 that the temporal evolution of the 

emission front for the neutrals and the two ion stages differ substantially. The emission 

front for doubly charged Al extends furthest from the target surface. Similarly the 

emission front of singly charged aluminium extends farther from the target than that 

for neutral aluminium. To complement these spectroscopy studies, angle and 

spectrally resolved ICCD imaging has been performed; results are shown in the 

following section. 

 

 

4.5: Angle Resolved Fast Imaging 

 

2D spatial emission features of the stagnation region have been investigated 

using ICCD fast imaging at two orthogonal camera angles [6]. The angles of view were 

defined previously in figure 2.20 and are again defined below in figure 4.10 for easy 
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recollection. As before in the previous fast imaging experiments, two narrow bandpass 

filters were employed to select line emission from neutral and singly charged 

aluminium.  

 

Images of colliding plasmas were obtained at two orthogonal camera angles, 

namely 0 degrees and 90 degrees. The 0° angle of view is the standard viewing angle 

for studying colliding laser produced plasmas [8, 9] but this method is limited in that it 

only captures emission in the lateral expansion plane, defined to be the plane that cuts 

through the seed plasmas and the stagnation layer. This is illustrated in figure 4.10 

below. 

 

 
Figure 4.10: Diagram illustrating the orientation of the colliding plasmas with respect to the lateral and 

vertical expansion planes of the colliding plasmas. Also defined are the two orthogonal angles of view 

which were used for the angle resolved fast imaging experiments, i.e., 0° and 90°. 

 

Viewing the stagnation layer from the 90° angle of view reveals the structure of 

neutral atoms, singly charged ions and whole plasma broadband emission from the 

stagnation layer in the vertical expansion plane. It is worth noting that it was necessary 

to record images at time delays when the majority of the radiation emanated from the 
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stagnation layer alone in order to ensure that emission from the seed plumes did not 

overlay emission from the stagnation layer.  

 

The first results of this fast imaging study are presented in figure 4.11 where 

emission from the stagnation layer for the 2 orthogonal angle of views are compared 

for Al0, Al+ and broadband emission. The time delay for each image was 90 ns, by which 

time emission from the seed plasmas had faded and so they did not obstruct the view 

of the ICCD from the stagnation layer. Also included are the normalised lineouts 

(parallel to the target) to compare the spatial distributions of the atoms, ions and 

broadband emission at a distance of 1 mm from the target for the two different 

viewing angles. The white lines in the images serve to illustrate the locations where the 

lineouts were taken. 
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Figure 4.11: Comparison of the angle resolved spatial emission from neutral Al atoms with that of 

singly charged Al ions and broadband emission for the two viewing angles (0 degrees – left panel and 

90 degrees – centre panel) defined in figure 1b (recorded at a time delay of 90 ns). The right hand 

panel shows the comparison of the emission distribution (lineouts) from the two viewing angles along 

a line parallel to, but separated from, the target surface by a distance of 1 mm. The white lines in the 

images define the positions where the lineouts were taken for comparison. 

 

The most prominent feature in figure 4.11 is the asymmetry of the emission 

from Al+ in the stagnation layer when viewed from the two orthogonal directions. The 

singly charged ions form a narrow elongated layer at the interface between the two 

seed plasmas. Pressure from the two seed plasmas, in the lateral expansion plane (0° 

angle of view), pinches the stagnation layer at early time delays (<80 ns) when plasma 

expansion from the seed plasmas is very strong. It therefore serves to enhance Al+ 

expansion in the orthogonal direction (along the vertical expansion axis observed from 

the 90° angle of view). This is further illustrated by the corresponding lineouts (right 

panel) for the Al+ emission in figure 4.10.  
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The broadband emission, characteristic of the relevant range of ion stages 

emitting in the 300 – 950 nm spectral window indicate the overall stagnation layer to 

be quite cylindrically symmetric about an axis normal from the target. To further 

emphasise this point, broadband images taken at a time delay of 80 ns have been 

compared for viewing angles of 0°, 45° and 90°. These are shown in figure 4.12 a), b) 

and c) respectively. 

 

 
Figure 4.12: Broadband emission (5 ns gate width) at a delay time of 80 ns after the peak of the pump 

laser beam for an angle of view of a) 0°, b) 45° and c) 90°. The white lines indicate the position at 

which lineouts were taken for comparison (shown in figure 4.13 below). 

 

To compare the results in more detail 1-D lineouts of each image at a distance 

of 0.8 mm from the target surface have been extracted and compared. These lineouts 

are indicated by the white lines in figure 4.12 and corresponding traces are compared 

below in figure 4.13. 

 

 
Figure: 4.13: Comparison of normalised intensity lineouts for broadband images at a distance of 0.8 

mm from the target surface for angles of view of 0°, 45°, and 90°. 

 



 132 

It can be seen from figure 4.13 that the whole plasma emission from the 

stagnation layer is reasonably cylindrically symmetric. The broadband images are 

signatures of the whole excited plasma distribution (emission due to all processes 

including electron excitation and recombination) and concomitantly one should expect 

that the electron spatial distribution also should not depart radically from this profile. 

 

Returning to figure 4.11, emission from neutral atoms also displays a 

somewhat, symmetric profile with the lineouts from both viewing angles having similar 

profiles. There is, however, evidence of a “V” shaped profile in the image recorded at 

the zero degree viewing angle (cf: central dip in blue lineout in top right panel – figure 

4.11). This V shaped profile is much more prominent at later times (> 100ns) as can be 

seen below in figure 4.14 where the emission images (all taken at 0° angle of view – the 

lateral expansion axis) of Al0, Al+ and whole plasma are given for two delay times (80 

and 150 ns).  
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Figure 4.14: Comparison of emission from Al

0
, Al

+
 and broadband emission images at a fixed viewing 

angle (0 Degrees) and two different time delays (80 ns – left panels and 150 ns – right panels). 

 

Similar V-shaped structures were noticed in laterally colliding plasmas 

previously with X-ray [10] diagnostics. In that study Farley et al. have observed high 

energy colliding plasmas (1015 W cm-2) in the X- ray region and found that large 

radiative losses in the denser central region reduced its luminosity giving rise to the 

appearance of a V-shaped emission feature just after plasma formation (1.1 ns).  
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It is proposed that the bifurcation of the neutral emission in figure 4.14 can be 

explained as follows. The ion stagnation, as already discussed in the previous sections, 

precedes the arrival of the slower neutral species and hence they do not penetrate the 

ion stagnation layer to any great degree. Rather they collide preferentially with the 

outer region of the pinched layer where they emit strongly giving rise to a V-shaped 

neutral feature – in effect the preformed ion layer acts as a wedge preventing neutral-

neutral collisions and the emission observed is due, at least in part, to neutral atom 

collisions with the preformed stagnation hard core.  

 

 

4.6: Summary 

 

The electron and ion distributions of the stagnation layer formed at the 

interface between two laterally colliding laser produced aluminium plasmas have been 

investigated with high temporal and spatial resolution. The plasmas were created by 

splitting a 6 ns, 600 mJ pulse from a Nd:YAG laser into two parts and focusing them to 

two spots on a flat slab of aluminum. 2D spatially and temporally resolved 

interferograms of the stagnation layer were obtained, from which corresponding 

electron density distributions were extracted. Optical imaging with an ICCD provided 

2D maps of the spatial distribution of the ion emission in the stagnation layer. The 

electron stagnation layer is observed to have a peak electron density of 4.5 × 1019 cm−3 

at a delay time of 40 ns with respect to the peak of the seed plasma laser pulse. 

Significant stagnation of the electrons is observed to occur at a probe delay time of 10 

ns, while stagnation of the broader plasma occurs at a time delay of 15 ns. The Al+ ions 

are found to stagnate somewhat later at a time delay of 20 ns after the peak of the 

seed plasmas. First evidence of stagnation of the neutral atoms is found to occur at a 

time delay of 30 ns. This is attributed to the effects of space charge separation that has 

already been proposed in several other experiments.  
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The emission features of excited neutrals and ions in the stagnation layer of 

laterally colliding laser produced plasmas have also been investigated. Angle, spectrally 

and temporally resolved optical imaging and spatially and temporally resolved optical 

emission spectroscopy were used to diagnose the stagnation layer. Optical emission 

spectroscopy shows clear differences in the spatial extent of atoms with respect to that 

of singly and doubly charged ions. Atoms are found to remain closer to the target than 

ions and doubly charged ions are found to extend further from the target than singly 

charged ions. It also shows that the temporal and spatial development of emission 

fronts of Al0, Al+ and Al2+ are very different; Al0 emission is the slowest to develop 

spatially and ultimately pervade the stagnation layer while Al2+ develops fastest 

revealing how space charge effects, namely the dependence of the expansion velocity 

of plasma species on their charge state in the seed plasmas, is a significant determining 

factor in the development of the stagnation layer.  

 

Emission from neutral atoms appeared as a V shaped distribution extending 

from the target surface. Angle and spectrally resolved fast imaging revealed an 

asymmetric layer of ions in the stagnation layer. This layer is formed very early (< 80 

ns) in contrast to the atoms (≈ 150 ns) at a time when the seed plasmas are still rapidly 

expanding, thereby causing compression of the layer. In contrast the broadband and 

atomic layer emission distributions are quite cylindrically symmetric about an axis 

normal to the target however with a dip in the atomic emission observable at the 

centre in the lateral expansion plane. These studies should be very useful in building up 

a more complete picture of the mechanisms involved in stagnation layer formation and 

structure for relatively low energy colliding laser plasma experiments and apposite 

applications, e.g., pulsed laser deposition. It should also provide a useful reference 

dataset for comparison with future experiments and testing future colliding plasma 

computer models in this parameter regime. 
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Chapter 5:  

Faraday Cup Probe  

 

 

 

The previous chapter outlined the results obtained from laser and optical diagnostics of 

colliding laser produced plasmas. This chapter begins by introducing the results 

obtained using a Faraday cup on the kinetic energy distribution of the ions emitted 

from a single seed plasma. A comparison is then made between the properties of the 

ions emitted from a single seed plume with those emitted from a pair of colliding 

plasmas. The final section of the chapter presents the potential applications of colliding 

plasmas and the promising results from some preliminary experiments performed 

during the project. 

 

 

5.1: Faraday Cup Probe of Single Plasmas 

 

 A Faraday cup probe has been utilised to analyse the behaviour of electrons 

and ions from single and colliding laser produced plasmas. A lot of work has already 

been published on probing electron and ion emission from single laser produced 

plasmas using electrical probes [e.g. 1 - 4]. The first experiments presented here also 

focussed on electrons and ions emitted from single laser produced plasmas so that a 

comparison could be made with results in the literature. This ensured that the Faraday 
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cup probe was working as expected before experiments on colliding laser produced 

plasmas were performed. 

 

 To perform the experiments on single plasmas, the same experimental setup 

was used as with colliding plasmas, except that one of the laser beams used to create 

the seed plasmas was blocked and so was not allowed to reach the surface of the 

target. This meant that only one of the seed plasmas was created and so the charged 

particle emission from a single plasma could be easily studied. A key advantage of this 

procedure was that the time of flight distribution of electrons and ions from the seed 

plasmas could be compared with those from colliding plasmas without adjusting of the 

experimental arrangement.  

 

 A schematic drawing of the experimental configuration used during these 

experiments has already been shown in figure 2.23. Briefly, the same method to create 

the colliding plasmas as described in Chapter 4 was employed here resulting in two 

seed plasmas separated by a distance of 1.3 mm. The target material was 99.99% pure 

aluminium. The Faraday cup was located at a distance of 100 mm from the target and 

the entrance to the Faraday cup comprised of a 2 mm diameter hole resulting with an 

angular acceptance of 1°. For angle resolved measurements, the Faraday cup could be 

rotated about the plasmas with an accuracy of ± 1° as illustrated in figure 2.23. The 

probe was biased negatively to interrogate the ion emission and biased positively to 

examine the electron emission. 

 

 Figure 5.1 shows an example of the signal obtained from the Faraday cup when 

it is biased to collect ions (red curve) and electrons (blue curve). To create the plasma, 

one of the split laser beams was blocked and the other is allowed to impinge on the Al 

target thereby creating a single plasma. The energy of the incoming laser beam was 

600 mJ. After splitting the laser beam one of the parts was blocked before reaching the 
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target and the other part created a single seed plasma on the alumium target. This part 

of the laser beam contained an energy of 300 mJ. 

 

 
Figure 5.1: Left: Ion signal from a single laser produced plasma detected with the Faraday cup. Right: 

Corresponding electron signal. The plasma was created by forming a single seed plume on the target 

by focussing a laser beam with an energy of 300 mJ, a wavelength of 1064 nm and a pulsewidth of 6 ns 

on the surface of an aluminium target. A bias voltage of -30 V was used to collect the ions and +30 V to 

collect electrons.  
  

 The ion emission signal from a single laser produced plasma has been 

comprehensively investigated in the literature [e.g., 1 - 4]. As already outlined in 

Section 1.6.6, the Faraday cup can be utilised to record the kinetic energy distribution 

of the ions emitted from the plasma. The kinetic energy distribution for the ions shown 

in figure 5.1 is shown below in figure 5.2. 
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Figure 5.2: Kinetic energy distribution of the ion time of flight signal presented in figure 5.1. 

 

 The range of ion kinetic energies emitted from single laser produced plasmas is 

known to be very large. In the case presented here (figure 5.2), the energies range 

from ≈ 10 eV to 3 keV or so. 

 

 As the energy of the laser creating the plasma is varied, so too does the time of 

flight distribution of the ions. For example, as the laser energy is increased, more and 

more high energy ions (with concomitantly shorter times of flight) are observed. Also 

the range of kinetic energies grows as the energy of the laser is increased. This is 

clearly visible in figure 5.3 where the ion time of flight signal is compared for a variety 

of incident laser energies. It is important to note at this point that the laser energies 

defined in figure 5.3 are that of the energy of the full laser beam before division into 

two parts by the wedge prism or the so called “whole beam energy”. Thus, the energy 

of part of the laser beam allowed to reach the target and create an individual seed 

plume is half this value. Defining the laser energy with respect to the full energy at this 

point (and hence forth) aids direct comparison of the single plasma case with that of 

colliding plasmas in Section 5.3 below. 
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Figure 5.3: Variation of the ion time of flight distribution profiles emitted from a single laser produced 

plasma as a function of incident laser energy. 

 

 It can also be seen in figure 5.3 that the ion flux also grows strongly with 

increasing laser enegy. Integrating the ion time of flight signal, one can obtain the 

dependence of the ion flux as a function of laser energy and the results of this 

procedure are shown in figure 5.4 for each of the seed plasmas.  
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Figure 5.4: Variation of the integrated ion flux as a function of incident laser energy for each of the 

individual seed plasma plumes. Once again the energy of the laser is defined as the full energy before 

splitting at the wedge prism. 

 

 It is clear from figure 5.4 that the emitted ion flux from a single laser produced 

plasma increases linearly with increasing laser energy. In the case of seed plasma 1, 

designated as the “left plasma” here, the laser beam creating seed plasma 2, 

designated “right plasma” was blocked and vice versa. The results from both plasmas 

are in very good agreement and so the physical parameters for both of the seed 

plasmas appear to be very similar. 

 

 Angle resolved ion probe measurements have also been performed on a single 

plasma plume. In this experiment the laser beam creating the right plasma was blocked 

and the Faraday cup was rotated to observe the ion emission as a function of angle or 

angular deviation from the target normal. The results from the angle resolved 

measurements are presented in figure 5.5. The 0 degree angle of detection is 

designated to be the direction normal to the target (cf. figure 2.23).  
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Figure 5.5: Left: Ion time of flight signal from a single Al plume as a function of angle of detection in 

the range 0° to 50°. Right: surface plot of the ion time of flight signal as a function of angle of 

detection spanning -60° to +60°. The whole energy of the laser beam was 600 mJ i.e. 300 mJ at the 

focal spot of a single seed plume. 

 

 As the angle of detection is increased (i.e. the Faraday cup is rotated away from 

the target normal) the flux of the ions reaching the detector decreases. The shape of 

the time of flight profile, however, remains similar for all angles. To examine this 

relationship in greater detail, the integrated ion flux has been extracted from the raw 

data and plotted as a function of viewing (or detection) angle in figure 5.6. 

 

 

Figure 5.6: Ion flux (integrated ion time of flight signal) as a function of angle of detection of the 

Faraday cup. The experimental data (blue squares) have been fitted with a cos
2
(θθθθ) curve (solid blue 

curve). 

 

 As can be seen from figure 5.6 a cos2θ function fits the angular distribution of 

the ion emission for a single seed plasma well. This observation has already been well 
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documented [5] and the results presented here on single plumes are in good 

agreement with many previous studies. Having ensured that the Faraday cup was 

working as expected, experiments on colliding plasmas were initiated. 

 

 

5.2: Faraday Cup Probe of Colliding Plasmas 

 

 Performing the experiments on single plumes ensured that the Faraday cup was 

in proper working order so that experiments on colliding plasmas could begin. The very 

first experiment on colliding plasmas involved detecting the ion and electron time of 

flight signals from the complete colliding plasma system i.e. with both laser beams 

unblocked and allowed to create two seed plasmas. The target material remained a flat 

slab of 99.99% pure aluminium. These time of flight profiles are plotted in figure 5.7 

below. 

 

 

Figure 5.7: a) Ion time of flight profile for colliding plasmas at an angle of detection of 0°. b) 

Corresponding electron time of flight profile. The whole laser beam energy was 600 mJ i.e. 300 mJ at 

each of the focal spot. 

 

 From figure 5.7 (left panel), it is very clear that there is a striking difference 

between the ion time of flight profile from colliding plasmas compared to that from a 
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single plasma. Further, in depth, comparisons are made in Section 5.3 below. It is 

apparent from figure 5.7 a) that the time of flight profile of the ions emitted from the 

colliding plasma system possesses a much narrower range flight times that for a single 

plasma. The long tail of low energy ions (with long times of flight) that are very 

characteristic of the ion emission from single plasmas is absent in the colliding plasma 

case. On the other hand, the electron signal is not significantly different to that of a 

single plume. Following conversion of the ion time of flight axis to  kinetic energy scale, 

figure 5.8 is obtained. 

 

 
 

Figure 5.8: Kinetic energy distribution for ions emitted normal to the target from colliding plasmas. A 

Gaussian profile of the form f(x) = a*exp(-((x-b)/c)^2) fits the distribution of ion kinetic energies very 

well and yields an R
2
 value of 0.98. 

 

 Figure 5.8 shows the ion kinetic energy distribution for the colliding plasmas 

system. A Gaussian profile is also fitted to the signal from the Faraday cup. The profile 

is very symmetric and the kinetic energies range from ≈ 500 eV to ≈ 2 keV Full Width 

Zero Maximum (FWZM). In fact, as visible in figure 5.8, the kinetic energy distribution 
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can be very well described by a Gaussian profile in complete contrast to ion emission in 

the case of single plasma plumes. The large flux of low energy ions present in single 

plumes is absent in colliding plumes. 

 

 With differences between the ion emission from single plumes and colliding 

plasmas visible from the very first result, it is more appropriate (and helpful to the 

reader), to characterise the ions emitted from colliding plasmas whilst comparing the 

results to single plasmas. For this reason the remainder of the results obtained from 

colliding plasmas is compared and contrasted with those from single plumes in Section 

4.3. 

 

 

5.3: Comparisons: Single and Colliding Plasmas 

 

5.3.1: Ion Energy Distribution 

 

 The ion time of flight and kinetic energy profiles for colliding aluminium 

plasmas are compared to the ion profiles from the independent seed plumes, i.e. left 

seed plume only and right seed plume only in figure 5.9. The whole laser beam energy 

was 600 mJ i.e. 300 mJ in each of the pulses generating the two seed plasmas. 
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Figure 5.9: Main: Comparison of the ion time of flight profiles from the individual seed plasmas and 

colliding plasmas. Also shown (black curve) is the numerical sum of the signals for the seed plumes. 

Insert: comparison of the kinetic energy distributions for colliding plasmas and single plasmas. 

 

 As shown in figure 5.9 (main), the time of flight profile observed for colliding 

plasmas is found to be noticeably narrower than that from either of the seed plasmas, 

which have almost identical profiles. In figure 5.9 (insert) the time of flight scale is 

converted to kinetic energy and it shows a striking redistribution of the kinetic energy 

of emitted ions in the colliding plasma case compared to the individual single seed 

plumes. The low energy tail present in the kinetic energy distribution for the single 

plasma case is significantly attenuated, resulting in a narrower and more symmetric 

distribution. Typically the ions emitted from a single laser produced plasma possess a 

Maxwell-Boltzmann kinetic energy distribution [6]. The kinetic energy distribution of 

the seed plasmas ranges from ≈ 0.1 to 3 keV with a Full Width at Half Maximum 

(FWHM) of 2.6 keV with a very asymmetric distribution. The ions from the colliding 

plasmas exhibit a FWHM of 1.8 keV with an almost Gaussian profile.   
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 We can also see from figure 5.10 that the (instantaneous) peak current from 

the colliding plasma is enhanced approximately three fold compared to that of a single 

plasma or by ≈ 50% compared to the numerical sum of the left and right seed plumes. 

The ion emission, normal to the target, from the colliding plasmas is clearly not a 

simple numerical sum of those from the seed plumes and we are in fact, observing an 

entirely new ion signal originating from the combined colliding plasma system. 

 

  

5.3.2: Ion Angular Distribution 

 

 Figure 5.10 shows the angle resolved ion time of flight signal from the colliding 

laser plasmas system. The same experimental parameters as used to obtain figure 5.9 

were employed to observe the ion angular distribution in figure 5.10. 

 

 

Figure 5.10: Main: Angle resolved ion time of flight signal for colliding plasmas (main). Insert: 

Comparison of the colliding plasma TOF signal with that of a single plume at a detector angle of 20°.  

 

 It can be readily seen from figure 5.10 that a narrower energy distribution is 

observed only in the direction normal to the target. The energy distribution broadens 

with increasing angle. It is evident from figure 5.10 that ion signal splits into two 
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distinct peaks, labeled P1 and P2, when the Faraday cup is moved to angles between 5° 

and 30° on either side of the target normal. The first peak, P1, originates from ions 

leaving from a seed plasma plume and arriving at the detector which appear to be 

largely unaffected by the presence of the stagnation layer. This is clear in figure 5.10 

(inset) where it can be seen that the first peak, P1, of the colliding plasma signal 

matches extremely well with the ion TOF signal from the left seed plasma plume only. 

The signal and kinetic energy of P2 decreases rapidly as the detector is rotated away 

from the target normal. Beyond ± 20° P2 is severely diminished and has disappeared 

completely for angles greater than ± 30° where the traces are indistinguishable from 

the single plasma plume case. Therefore, the conclusion is that P2 is due 

predominantly to ion emission from the stagnation layer and/or a component of the 

ion emission from the seed plasmas that is significantly modified by the presence of 

the stagnation layer. This emission component is clearly highly directional and stands in 

stark contrast to emission from single plasma plumes where ions are emitted over a 

wide range of angles. 

 

 The exact physical mechanism or mechanisms underlying the narrowing of the 

kinetic energy distribution for colliding plasmas has yet to be determined. However, 

one can speculate as follows. In the early stages of stagnation layer formation (first few 

tens of nanoseconds) it is known that electrons dominate [7] the collision plane and so 

the prompt highly charged ions from the seed plumes are likely to experience a finite 

accelerative force. Hence, one would expect to observe an increase in the number of 

ions at higher energies close to the peak or cut-off energy. However, as time 

progresses, ion stagnation is established, and the stagnation layer can build up a net 

positive charge which can result in Coulomb blocking of the slow ions from each seed 

plasma thereby significantly reducing the number of low energy ions reaching the 

Faraday cup and consequently reducing the tail of the distribution, or almost 

eliminating it as can be seen in our case. Additionally, at later times when ion 

stagnation has established itself, one could also suffer a loss of low velocity ions in 
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their interaction with the stagnation layer (e.g., in neutralisation via collisional 

recombination processes), again leading to a suppression of the low velocity ions. All of 

these processes (and perhaps others) could act in consort to reduce the low energy ion 

flux below our detectable limits. 

 

 

5.3.3: Dependence on Laser Energy 

 

 Controlling the energy of an ion beam is very important for most of the 

applications of ion sources. Tunability of the energy of the ions is one of the main 

advantages of the laser ion source and enables them to be deployed in a wide variety 

of applications from ion injection into accelerators to materials modification.  

 

 In figure 5.11, ion time of flight results obtained by varying the energy of the 

incident laser pulse are presented for colliding plasmas where they are compared to 

those from a single plume. Once again, the energies defined in figure 5.11 are that of 

the whole laser beam energy. 

 

 
Figure 5.11: a) Ion time of flight distribution for colliding plasmas for a variety of incident laser 

energies. b) Ion time of flight distribution for a single plasma for a variety of incident laser energies. 

The scales on each axis are comparable. 
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 It is immediately clear that there is an entirely different ion distribution 

behavior for colliding plasmas compared to the individual single plasmas as the energy 

of the laser is increased. Figure 5.11 b) is a re-plot of figure 5.3 designed to make the 

comparison between the two scenarios easier. Again, briefly, in the single plume case, 

the range of kinetic energies of the ions and the ion flux both increase with laser pulse 

energy. However the ions in the colliding plasmas case display a different behavior 

where it is clear that the range of kinetic energies increases more slowly with laser 

energy compared to the single plasma plume case. The peak flux of the ions emitted 

from the colliding plasma system is also increased significantly compared to the single 

plumes. 

 

 Figure 5.12 (main) shows the dependence of the peak kinetic energy and the 

kinetic energy FWHM of the ion beam on incident laser energy for colliding plasmas. It 

is clear from figure 5.12 that by varying the incident laser energy (whole laser energy), 

EL, it is possible to tune the kinetic energy distribution of the ions emitted from 

colliding laser produced plasmas. The peak kinetic energy of the ion signal from 

colliding plasmas (blue diamond) increases linearly with EL as it does for the single 

plume case. However, the FWHM of the kinetic energy distribution of the ions from 

colliding plasmas (blue squares) increases much more slowly compared to the single 

plume case and the FWHM scales as EL
1/2. In contrast, in the case of a single plasma, we 

observe that both the peak position (red stars) and the FWHM (red circles) of the 

kinetic energy distribution increase linearly with EL for these plasma regimes. Hence 

relatively narrower profiles (referenced to the peak position) can be obtained with 

increasing laser energy in the case of colliding plasma ion sources. 
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Figure 5.12: Main: Kinetic energy full width at half maximum (FWHM) and peak kinetic energy 

variation with incident laser energy for colliding plumes and single plasmas. Insert: Variation of 

integrated ion TOF signal (flux) with incident laser energy for colliding plumes. 

  

 The dependence of the integrated ion flux on the energy of the laser pulse for 

colliding plasmas is given in figure 5.12 (inset). The integrated ion flux from the 

colliding plasmas (red dots), increases rapidly at the lower laser energy scale and levels 

off in the case of higher laser energies and, in fact, again the integrated ion flux scales 

as α EL
1/2. This is in stark contrast to the case of the single plasma where the ion flux 

increases linearly with laser energy in these plasma regimes (blue squares and black 

triangles). A weak stagnation and accumulation of plasma is expected at lower laser 

energies and an enhancement in ion flux is noticed with increasing energy (i.e. with 

increasing stagnation). With increased stagnation (and increasing laser energy), one 

gets increased ionisation (e.g. collisional ionization) and a larger gain in ion emission 

(relative to single plumes) will be achieved. This is clear in figure 5.12 (insert). 

 

 Finally the integrated ion time of flight signal is plotted as a function of angle of 

detection between -60° and +60° in figure 5.13. 
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Figure 5.13: Ion flux (integrated ion time of flight signal) as a function of angle of detection of the 

faraday cup for a single plasma (blue) and colliding plasmas (red). The experimental data (squares) 

have been fitted with a cos
2
(θθθθ) curve (solid curve) in both the single plasma and colliding plasmas case. 

 

 Figure 5.13 reveals how the ion emission from colliding plasmas differs from 

that of a single plasma between -30° and + 30°. Outside this angular range, the ion 

emission from colliding plasmas is identical to that from the seed plasma. Therefore, at 

angles beyond ±30° the Faraday cup only detects ions from the corresponding seed 

plasma on the side of the collision plane. The ion emission from the opposite seed 

plasma is therefore blocked by the stagnation layer as there is no evidence of ion 

detected from it at all. The ion emission from the stagnation layer is only detectable at 

angles between -30° and +30° and so it is highly directional. 

 

 

5.4: Summary 

 

 Faraday cup electron and ion probe experiments were performed on single and 

colliding laser produced aluminum plasmas in a vacuum environment. A redistribution 

of kinetic energies is observed from the stagnation layer in the colliding plasmas where 

the lower energy ions gain kinetic energy resulting in an ion signal with a narrower 

range of kinetic energies compared to those from the single (seed) plume (34 % 
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narrower in comparison to the seed plasma at a laser energy of 600 mJ). The width (full 

width at half maximum) of the ion kinetic energy was found to increase linearly with 

increasing incident laser energy, EL, for the single plume case whereas for colliding 

plasmas the width is proportional to EL
1/2. For colliding plasmas the ion flux increases 

quite rapidly at the low energy laser scale before approaching saturation near the 

upper end of the available laser energy. The kinetic energy of the peak of the ion signal 

is found to increase linearly for both single and colliding plumes but is found to be on 

average 10% higher for colliding plasmas. 
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Chapter 6: Potential Applications 

of Colliding Plasmas 

 

 In Chapter 5, the characteristics of ion emitted from colliding laser produced 

plasmas was investigated and compared and contrasted to ions emitted from single 

plumes. 

  

 In this chapter we outline the potential applications of colliding laser produced 

plasmas that were identified during the course of the project. The results of some 

preliminary exploratory test materials deposition experiments using colliding plasmas 

are also presented. 

  

6.1: Colliding Laser Plasma Ion Source 

 

 In Chapter 5 a tunable and quasi-mono-energetic ion source was presented 

using laterally colliding plasma scheme. Two nanosecond laser beams were used to 

generate the colliding plasmas. The ions originated from the stagnation layer and 

possessed a narrower Gaussian-like kinetic energy profile which could be tuned by 

varying the input laser energy. So the colliding laser ion source provides higher flux as 

well narrower kinetic energy distribution compared to traditional single laser plasma 

ion source. There are several factors affecting the properties of the Laser Ion Source 

(LIS) which include laser wavelength and energy. With the colliding LIS one can gain 

more flexibility by considering additional changes, for example, in the target geometry. 
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The majority of applications of ion sources require ion beams with a narrow energy 

spread and in this respect, ions from colliding plasmas show much promise. 

 

 These preliminary studies present only the concept of colliding plasma LIS and 

its advantage over the single plasma LIS. It is hoped that these colliding plasmas can be 

used as the next generation of laser ion sources providing an improved, more versatile 

source of laser produced ions. 

 

 

6.2: Materials Source 

 

 Very preliminary experiments were performed to explore the use of colliding 

plasmas as a source for materials deposition. In this scheme it is envisaged that the 

colliding plasmas could potentially replace single plumes as the source for deposition 

of materials for some applicatons of Pulsed Laser Deposition (PLD). These introductory 

experiments simply aimed to deposit ZnO onto a blank silicon substrate using a single 

plasma and compare the results to a colliding plasma materials source. This would 

elucidate the differences (if any) between deposition using colliding plasmas and a 

single plasma. 

 

 For the first experiment, a blank silicon substrate was placed 7 cm {which is a 

standard distance (i.e. several cm’s) for PLD} away from a 99.99% pure ZnO target. 

Oxygen was injected into the chamber to create a background pressure of 1 mbar. 

When performing depositions using the colliding plasmas, the colliding plasmas were 

created using the same method as that outlined above. The laser energy was set 400 

mJ (i.e. 200 mJ in each laser beams) and focused using a 30 cm focal length lens onto 

the surface of the target again with focal spot sizes of approximately 100 µm separated 

by 1.3 mm. The deposition was performed for 1000 laser pulses and the target was 

continuously moved to avoid laser drilling of the target. When performing deposition 
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of single plumes, one of the laser beams used to create the colliding plasmas was 

blocked and the other allowed to reach the target resulting in the creation of a single 

laser produced plasma. This method guaranteed that the experimental parameters 

(e.g. focal spot size, laser energy etc.) remained constant during the experiment. 

Depositions using a single plume were performed for 2000 laser pulses (1000 pulses 

from each seed plasma) to compensate for the fact that when depositing using a 

colliding plasma system, two plasmas are created during the 1000 laser pulses 

aggregated in that case. This would enable direct comparison between the two 

samples.  

 

 The deposited materials were viewed using Scanning Electron Microscopy 

(SEM) which revealed the structures deposited on the surface of the blank silicon 

substrates. The first results from this experiment are shown below in figure 6.1. 

 

 

Figure 6.1: Comparison of the surface of the blank silicon substrates following deposition using a single 

plasma (left) and a colliding plasma (right) imaged using Scanning Electron Microscopy. 

 

 It is clear from figure 6.1 that there is a significant difference between the 

resulting depositions using single and colliding plasma plumes. In the case of colliding 

plasmas there are a lot more nano-particles deposited onto the surface of the blank 

substrate compared to the single plasmas case. It seems that the stagnation layer 

increases clusterisation of plasma enhancing the amount of nanoparticles deposited on 

the substrate as can be seen in figure 6.2. 
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 A similar experiment was also performed for different parameters and again 

comparable results were obtained. This time the laser energy was reduced to 200 mJ 

(i.e. 100 mJ in each focal spot). The pressure in the chamber was also reduced to 1 × 

10-1 mbar and the blank silicon substrate was positioned at a distance of 4 cm from the 

surface of the target. Once again, the deposition was performed for 2000 laser pulses 

(1000 from each seed plasma) for the single plasma deposition and 1000 laser pulses 

for the case of colliding plasmas. The surface morphologies of the samples were again 

investigated using scanning electron microscopy and the results of this are presented 

in figure 6.2 below. 
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6.2: Comparison of the surface of the blank silicon substrates following deposition using colliding 

plasmas (top) and a single plasma (bottom) imaged using Scanning Electron Microscopy. The 

background pressure was kept constant at 1 × 10
-1

 mbar and the laser energy was set to 200 mJ (100 

mJ at each focal point). 

 

 The results shown in figure 6.2 are analogous to those in figure 6.1 above 

where an increase in the number of nanoparticles deposited onto the surface of the 

substrate is clearly visible in the case of deposition of colliding plasmas. In the latter 

experiment a five fold increase in the number of nanoparticles on the surface of the 

substrate is observed. 
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 The results from these preliminary experiments undoubtedly show that 

colliding laser produced plasma have the potential to be used as next generation 

sources of nano-structures as an enhancement in the deposition of nanoparticles is 

clearly visible in figures 6.1 and 6.2. 

 

 

6.3: Summary 

 

 Two main applications of colliding plasmas were identified during the course of 

the project. Firstly, the unique characteristics of the ions emitted from colliding 

plasmas (e.g. narrow kinetic energy profile, enhanced tunability etc.) point to the 

potential for utilising colliding plasmas as a new source of laser produced ions, a so 

called colliding laser ion source.  

  

 Secondly, preliminary experiments on the deposition of materials using colliding 

laser produced plasmas indicate significant potential as a source for pulsed laser 

deposition. In particular it was found that there was an enhancement in the number of 

deposited nanoparticles when using colliding plasmas compared to a single plasma. 
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Chapter 7: 

Conclusions and Outlook 

 

 In this final chapter, a summary of the results obtained during the project and 

an outlook for the future of colliding laser produced plasmas is is given. Potential 

applications beyond materials growth and suggestions for follow-on experiments are 

suggested. 

 

 

7.1: Conclusions 

 

 The work presented in this thesis is concerned with studies of single and 

colliding laser produced plasmas utilising laser, optical and electrical plasma 

diagnostics. The project began with the design and construction of a completely new 

laboratory to investigate the properties and potential applications of colliding laser 

produced plasmas.  

 

 The first experiments concentrated on laser interferometry of single laser 

produced plasmas in a vacuum environment from which the 2 dimensional spatial 

profile of the electron density was extracted with high temporal resolution (4 ns). The 

substantial body of results from similar experiments provides a solid database with 

which to compare the results from these first experiments and to ensure that the 

interferometer was working well and providing physically reasonable data.  

 

 The next experiment compared the results from laser interferometry of a single 

plume (Zn) created vacuum with that created in a gaseous atmosphere (O2). The results 
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from this study were the first to be published using the new laboratory facility. It was 

found that the electron density was higher at further distances from the target in the 

oxygen atmosphere compared to that in vacuum. This was recognised as an effect of 

plasma confinement which occurs when the plasma is created in a background gas. 

Evidence of a compressed layer of gas rapidly expanding outwards (i.e. a shockwave) 

that occurs at the plasma – gas interface was visible in the interferograms and manifest 

itself as a blurring of the fringes at the position of the compressed gas layer. 

 

 Compressive gas layers formed when laser produced plasmas expand into 

gaseous atmospheres have being studied extensively in the literature. The main 

diagnostic technique employed to study them was shadowgraphy. It was decided to 

further investigate them using interferometry and to compare the results to those 

from shadowgraphy. Several experiments were performed for single plumes created 

with a range of energies in a range of background gas pressures. It was found that in 

the pressure range ≈ 100 - 1000 mbar, the compressed gas layer was visible in both 

shadowgrams and interferograms and expanded with velocities of ≈ 10 kms-1. 

However, in pressure range of ≈ 1 – 100 mbar, the visibility of the compressive layer 

was diminished significantly in the shadowgrams and, in fact, was impossible to detect 

at the low pressure end of the scale above. On the other hand the compressed gas 

layer was still visible as blurring of the fringes of the interferograms. Indeed the 

visibility of the gas layer could be further enhanced by applying a “find edges” 

algorithm to the interferograms which highlighted discontinuities in the 

interferograms. The velocity of the compressed layer at these pressures was much 

larger with a value peaking at just over 100 kms-1 for a plasma created with a 400 mJ 

laser pulse in a background gas pressure of 1 mbar. 

 

 Subsequent investigations focussed on colliding laser produced plasmas. The 

first of these experiments involved fast imaging of colliding plasmas. By employing an 

Intensified Charged Coupled Device (ICCD), images with high temporal resolution (3 ns) 
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were obtained. In addition, with the insertion of narrow band pass filters into the 

optical imaging system – it was possible to select line emission from particular plasma 

species, such as neutral atoms or singly charged ions. The spatio-temporal dynamics of 

neutral atoms, singly charged ions and the plasmas as a whole (i.e. a broadband filter 

accepting emission from all plasma species but rejecting laser light at 1.064 µm) were 

extracted for colliding plasmas. 

 

 In the next phase of the project complementary laser interferometry of 

colliding plasmas was performed which revealed the spatio-temporal behaviour of free 

electrons in the stagnation layer at the interface between the two plasmas. The results 

from the fast imaging were compared to those from the laser interferometry revealing 

that free electrons were the first plasma species to stagnate at the collision plane 

between the two colliding plasmas, closely followed by ions and finally stagnation of  

neutral species. These effects were attributed to the separation of charge in space in 

the seed plasmas, something which has been observed in the past by several different 

groups but made manifest optically in colliding plasma experiments.  

 

 Optical emission spectroscopy was utilised to examine the spatial distribution 

of different plasma species in the stagnation layer. Spectra were taken at relatively 

early (80 ns) and late (150 ns) time delays (relative to the life of the stagnation layer) 

after creation of the seed plumes. At the earlier time delay of 80 ns, it was found that 

the stagnation layer mainly comprised neutral atoms along with singly and doubly 

charged ions. Doubly charged species were found to lie at the furthest distances from 

the target surface followed by singly charged species. Neutral aluminium species were 

found to remain close to or in the vicinity of the target. Again, these effects were 

ascribed to ambipolar field effects in the seed plume expansion. 

 

 Angle and spectrally resolved fast imaging was performed on the colliding 

plasmas. Images were taken of the stagnation layer from two orthogonal angles of 
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view revealing the structure of the stagnation layer in both the lateral expansion plane 

and the vertical expansion plane (see figure 4.9 for definition of expansion planes).  

  

 The broadband images of the stagnation layer revealed it to be highly 

symmetric (about an axis normal to the target). The ion spatial profiles, however, were 

found to possess an asymmetric shape, being elongated in the vertical expansion 

plane. This was attributed to a “pinching” effect from the seed plumes. The neutral 

atoms were also found to be reasonably symmetric (albeit not to the same degree as 

the broadband emission) but there was clear evidence of a “V” shaped emission 

feature in the neutral species when viewing the lateral expansion plane. This 

observation was attributed to the fact that the neutral atoms are the species in the 

plasma with the lowest velocity and hence, collide with the outside regions of the 

already formed layer (mainly ions) resulting in an increase in neutral emission i.e. a “V” 

shape in the spatial emission distribution. 

 

 The final experiments concentrated on electrical probe studies of the colliding 

laser produced plasmas. These experiments utilised a Faraday cup as the detector 

which enabled extraction of the Time of Flight (TOF) distribution of the plasma species, 

from which the kinetic energy distribution could be obtained. The cup was based 

positively to attract electrons and negatively to attract the ions. The TOF profiles were 

then converted to kinetic energy distributions. The TOF (kinetic energy) distribution of 

the ions emitted from a single seed plasma was compared to that from colliding 

plasmas. It was found that the kinetic energy distribution from a single seed plasma 

followed a Maxwell-Boltzmann distribution and so exhibited a very wide range of 

kinetic energies. This observation has already been reported as far back as 1970’s. In 

complete contrast, however, the kinetic energy distribution of ions emitted from 

colliding plasmas follows a more symmetric, Gaussian-like profile and so possesses a 

much narrower range of energies than single plumes.  
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 Angle resolved measurements of the ion TOF profile revealed a double peak 

structure, with one of the peaks originating from angular ion emission from the 

stagnation layer, and the other peak emanating from a seed plasma. The angular 

emission from the stagnation layer diminished in both signal and energy rapidly with 

increasing angular deviation from normal and disappeared completely beyond ± 30°. 

The ion emission from the colliding plasma system was also shown to be highly tunable 

by varying the energy of the incident laser beam, EL, normal to the target. The full 

width at half maximum (FWHM) of the ion kinetic energy signal was revealed to 

increase as EL
1/2.  

 

 Finally, the end of the project focused on identifying potential applications of 

colliding plasmas. Single plumes are currently used as the source of laser produced 

ions. These sources are utilised for a wide variety of applications, e.g. injection into 

accelerators, surface modification and ion implantation etc. Factors such as laser 

wavelength and laser energy are utilised to adjust the properties of the ions emitted 

from the plasmas. With the colliding laser ion source, there exists more scope to tune 

the properties of the ions including target geometry and separation between the foci. 

With the very first experiments unveiling a source of ions with a much more symmetric 

distribution of kinetic energies, there is no doubting the potential for utilising colliding 

plasmas as a next generation laser ion source. 

  

 Very preliminary experiments were also performed on utilising colliding 

plasmas as a source for materials deposition, a variation on the so called “Pulsed Laser 

Deposition” (PLD) technique. To investigate whether there is any benefit in employing 

colliding laser produced plasmas in PLD applications, some first test experiments were 

performed on the deposition of Zinc Oxide (ZnO – 99.99% pure) using single and 

colliding laser produced plasmas in order to make a comparison between the two 

scenarios. A blank silicon substrate was used with oxygen as a background or ambient 

gas during the depositions. For deposition using colliding plasmas, a pair of laser beams 
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was focused onto the surface of the ZnO target and the material from 1000 shots 

accumulated.  

 

 In the case of deposition using single plasmas, one of the laser beams (called, 

for example, laser beam A) used to create the colliding plasma was blocked and hence 

not allowed to reach the target. The other laser beam (called, for example, laser beam 

B) remained unaffected and created a single plume at the surface of the target. The 

deposition was performed for 1000 laser shots after which laser beam B was then 

blocked and laser beam A allowed to reach the target. The deposition was again 

performed for another 1000 laser shots. This technique enabled a direct comparison 

between the sample deposition using single plumes and colliding plumes. The results 

indicated that there was a significant increase in the number of nanoparticles 

deposited on the surface of the substrate using the colliding plasmas. It is thought that 

the stagnation layer acts as a source for clusterisation which increases the fraction of 

nanoparticles emitted from the plasma and hence an increase in the deposition rate of 

nanoparticles is observed with the stagnation layer present. 

 

 

7.2: Outlook 

 

 The work presented in this thesis indicates that colliding laser produced 

plasmas have significant potential for both fundamental studies of plasma collisions 

and applications. Starting with the basic properties of colliding laser produced plasmas, 

there remains a lack of systematic studies on the properties of the stagnation layer as a 

function of various experimental parameters, finely tuned and over a wider parameter 

range. The exact response of the plasma parameters of the stagnation layer, such as 

temperatures, densities, spatial distribution and temporal evolution etc., as the 

parameters of the experiment are varied (e.g. target geometry, seed plasma 
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separation, laser wavelength, energy, pulsewidth etc.) is still not fully understood. Such 

systematic and fundamental studies are vital to the progression of colliding plasmas 

from preliminary investigations in the laboratory (as is the case currently) to being 

utilised for further applications. They would also provide a valuable reference when 

designing future experiments/applications for colliding plasmas. In addition, any next 

phase of the work will require the extension of existing models such as the multifluid 

approach [1] to the parameter range of relevance here. 

 

 This thesis has outlined two potential applications of colliding plasmas. Firstly, 

as a new source of laser produced ions, a so called colliding laser ion source and 

secondly, as a new source for materials deposition, in particular as a source of 

nanoparticles and clusters. Presently, only preliminary investigations have been 

performed here. Much more in-depth investigations are needed in order to realise 

these ambitions for colliding plasmas. For example, in the case of the colliding laser ion 

source, experiments need to be performed using a variety of targets, especially heavy 

targets including W and Ta which are currently widely used for applications involving 

standard single laser ion sources [2]. Again systematic studies are needed to elucidate 

the response of the ions emitted from colliding laser produced plasmas as a function of 

the various experimental parameters relevant to colliding plasma experiments 

(outlined above). The same can be said for the proposition of utilising the colliding 

plasma as a source for materials deposition. The preliminary studies in this thesis 

identify the fact that there is a strong potential for increasing the deposition rate of 

nanoparticles on a substrate using the colliding plasmas as the source for deposition 

but further, in depth, studies are needed to realise the full potential of the colliding 

plasmas. Systematic studies involving the effects on the deposition of the materials by 

varying not only the experimental parameters of the colliding plasmas (outlined above) 

but also experimental parameters of the deposition, for example, background gas 

pressure, target substrate distance, substrate orientation, substrate temperature etc. 
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 It has also been shown in the literature that colliding plasmas can make an 

impact in other application domains. For example, colliding plasmas have already been 

utilised to simulate laboratory scale models of astrophysical event such as outflows 

associate with young stellar objects. They have been studied to replicate the events 

inside hohlraums indirect fusion devices where the hohlraums host multiple colliding 

plasmas sources to drive fusion indirectly. There is also scope to utilise colliding 

plasmas as a conversion medium of laser to short wavelength light in High Harmonic 

Generation (HHG). Single plumes have already been used successfully for this 

application [3] and there is no reason to believe that stagnation layers could not also 

be used. 

  

 In conclusion, the project has revealed some interesting findings into both the 

properties of the stagnation layer and the mechanisms of stagnation. Preliminary 

experiments have shown that there is potential to utilise colliding plasmas as a new 

source of laser produced ions and for materials deposition. 
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Appendices 

 

APPENDIX A1: Technical Drawings 

 

Figure A1.1: Technical drawing of the main interaction chamber and lid. 
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Figure A1.2: Drawing of the specially made T-Piece to connect the RETOF with the main chamber. 
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Figure A1.3: Diagram showing layout of experimental system. 
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APPENDIX A2: Publications and Conferences Presentations  
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First Name Author: 

• P. Hough, C. McLoughlin, S. S. Harilal, J. P. Mosnier and J. T. Costello, Emission 

Characteristics and Dynamics of the Stagnation Layer in Colliding Laser 

Produced  Plasmas, Journal of Applied Physics, Accepted, December 2009. 

• P. Hough, C. McLoughlin, T. J. Kelly, P. Hayden, S. S. Harilal, J. P. Mosnier, J. T. 

Costello, Electron and Ion Stagnation at the Collision Front Between Two Laser 

Produced Plasmas, Journal of Physics D: Applied Physics, 42, 055211, March 

2009. 

• P. Hough, C. McLoughlin, T. J. Kelly, S. S. Harilal, J. P. Mosnier, J. T. Costello, 

Time Resolved Nomarski Interferometry of Laser Produced Plasma Plumes, 

Applied Surface Science, 255, 10, 5167-5171, March 2009. 
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• A. Azima, S. D usterer, P. Radcliffe, H. Redlin, N. Stojanovic, W. Li, J. Feldhaus, D. 

Cubaynes, M. Meyer, J. Dardis, P. Hayden, P. Hough, V. Richardson, E. T. 

Kennedy, and J. T. Costello. Time Resolved Pump Probe Experiments Beyond 

the Jitter Limitation at Flash, Applied Physics Letters, 94, 14, 144102, April 2009. 

• C. McLoughlin, P. Hough, J. Costello, E. McGlynn, J. P. Mosnier. Growth and 

Field Emission Properties of ZnO Nanostructures Deposited by a Novel Pulsed 

Laser Ablation Source on Silicon Substrates, Ultramicroscopy, 109, 5, 399-402, 

April 2009. 
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• C. McLoughlin, P. Hough, J. Costello and J. P. Mosnier. Particle Diagnostics of a 

ZnO Laser Ablation Plume for Nanostructured Material Deposition, Applied 

Surface Science, 255, 10, 5338-5341, March 2009. 

• M. Meyer, D. Cubaynes, D. Glijer, J. Dardis, P. Hayden, P. Hough, V. Richardson, 
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and S. I. Strakhova. Polarization Control in Two-Color Above-Threshold 

Ionization of Atomic Helium, Physical Review Letters, 101, 19, 193002, 

November 2008. 

• P. Radcliffe, S. Düsterer, A. Azima, W.B. Li, E. Plönjes, H. Redlin, J. Feldhaus, P. 

Nicolosi, L. Poletto, J. Dardis, J.P. Gutierrez, P. Hough, K.D. Kavanagh, E.T. 

Kennedy, H. Luna, P. Yeates, J.T. Costello, A. Delyseries, C.L.S. Lewis, D. Glijer, D. 

Cubaynes, and M. Meyer. An Experiment for Two-Colour Photoionisation Using 

High Intensity Extreme-UV Free Electron and Near-IR Laser Pulses, Nuclear 

Instruments and Methods in Physics Research A, 583, 516-525 December 2007. 

 

Publications in Preparation: 

• Quasi-Mono-Energetic, Tunable Ion Source Based on Colliding Laser Produced 

Plasmas. For submission to Applied Physics Letters. 

 

Conferences and Poster Presentations: 

 

 I have attended 11 conferences (both in Ireland and abroad) and presented 10 

posters and 1 oral presentation since October 2006.  These conferences were: 

 

2009 

• 10th International Conference on Laser Ablation, Singapore, 22nd – 27th 

November, 2009. Presented an oral presentation entitled “Colliding Laser 

Produced Plasmas as Novel Sources: Optical Diagnostics.” 
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• 26th International Conference on Photonic, Electronic and Atomic Collisions 

(ICPEAC), held in Kalamazoo, Michigan, USA, 22nd – 28th July 2009. Presented a 

poster entitled “Colliding Laser Produced Plasmas as Novel Sources: Optical 

Diagnostics.” 

• Physics at EBITS and Advanced Research Light sources (PEARL) 2009 held in 

Dublin City University 6th – 9th May 2009. Presented a poster entitled “Colliding 

Laser Produced Plasmas as Novel Sources: Optical Diagnostics.” 

• Institute of Physics Spring Weekend 2009 held in Wexford, 3rd – 5th April 2009. 

Presented a poster entitled “Colliding Laser Produced Plasmas as Novel 

Sources: Optical Diagnostics.” 

 

2008 

• 14th International Conference on the Physics of Highly Charged Ions (HCI) 2008 

held in Chofu, Tokyo, 1st – 5th September. Presented a poster entitled “Probing 

Electrons and Ions in Stagnation Layers at the collision front between colliding 

Laser Produced Plasmas.” 

• European Materials Research Society (EMRS) 2008 held in Strasbourg, France, 

May 26th – 30th 2008. Presented a poster entitled “Time Resolved Nomarski 

Interferometry of Laser Produced Plasma Plumes.” 

 

2007 

• Photonics Ireland 2007 held in Galway, 24th – 26th September.  Presented two 

posters entitled “Colliding Laser Generated Plasmas as Nano-Materials Sources” 

and “Time Resolved Nomarski Interferometery of Rapidly Expanding Laser 

Produced Plasma Plumes.” 

• The 25th Conference on Photonic, Electronic and Atomic Collisions (ICPEAC 25) 

held in Freiburg, Germany, 25th – 31st July 2007.  Presented a poster entitled 

“Colliding Laser Produced Plasmas as Atomic, Molecular and Cluster Sources: A 

Progress Report.” 
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• Attended a workshop on “Plasma Processes for Biomedical Applications” held in 

the National Centre for Plasma Science and Technology on the 24th May 2007. 

Presented a poster entitled “Colliding Laser Produced Plasmas as Atomic 

Molecular and Cluster Sources: A Progress Report.” 

• The Ninth European Conference on Atoms Molecules and Photons (ECAMP 9) 

held in Crete, Greece, 6th – 11th May 2007. Presented a poster entitled 

“Colliding Laser Produced Plasmas as Atomic Molecular and Cluster Sources: A 

Progress Report.” 

 

2006 

• The Third National Meeting on Quantum, Atomic, Molecular and Plasma Physics 

(QUAMP III) held in Durham, England, Sept. 18th - 22nd 2006. 

 

 

Talks and Seminars: 

 

• Given an oral presentation at the 10th International Conference on Laser 

Ablation on the 26th November 2009 entitled “Colliding Laser Produced Plasmas 

as Novel Sources: Optical Diagnostics.” 

• Given a seminar as part of the National Centre for Plasma Science and 

Technology (NCPST) seminar series on the 28th November 2008 entitled 

“Optical Diagnostics of Plasma-Gas and Plasma-Plasma Interactions.” 

• Given a seminar at a visit to the Intense Laser Irradiation Laboratory in Pisa, 

Italy in April 2008 entitled “Probing Electrons and Ions in Single and Colliding 

Laser Produced Plasmas.”  
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Awards: 

 

• Won 1st place at the 1st National Centre for Plasma Science and Technology 

(NCPST) Poster Competition held in DCU 25/4/2008 for a poster entitled 

“Colliding Laser Plasmas as Novel Sources: Optical Diagnostics.” 

• Won 3rd place at the BOC Gases Poster competition 2009 for Physics Ph.D. 

students studying in the School of Physical Sciences in Dublin City University.  

The competition was held in DCU on the 20th Feb. 2009 and my poster was 

entitled “Colliding Laser Produced Plasmas as Novel Sources: Optical 

Diagnostics”. 

• Won 3rd place at the 2nd National Centre for Plasma Science and Technology 

(NCPST) Postgraduate Seminar Competition held in DCU 25/4/2008 after giving 

a seminar entitled “Spatially and Temporally Resolved Electron & Ion Mapping 

of Colliding Laser Produced Plasmas.” 

 

Summer School: 

 

I have also attended a summer school on plasma physics for PhD. Students. The 8th 

Carolus Magnus Summer School on Plasma and Fusion Energy Physics was held in Bad 

Honnef, Germany, 3rd – 14th September 2007.  At the summer school I presented a 

poster entitled “Colliding Laser Produced Plasmas as Atomic Molecular and Cluster 

Sources” 

 


