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Abstract

A vascular graft should mimic the structure and properties of the native artery which
has a layered structure. The media layer of native arteries contributes the main mechan-
ical support to the vessel and the intima layer, lined with endothelial cells, provides a
smooth antithrombogenic surface for circulating blood. To mimic this arterial structure
and property, this study focused on fabricating a layered vascular graft with hydrogel
and fibre layers to match the compliance properties of native arteries, which is a critical
property to smooth the pulsatile blood flow in circulation.

Firstly, the feasibility of preparing polyvinyl alcohol (PVA) based hydrogels with
controllable mechanical property was investigated. Three PVA based hydrogels were
prepared by blending PVA with chitosan, gelatin or starch and by treatment with
freeze-thaw cycles and coagulation. The synergistic crosslinking with the freeze-thaw
technique and coagulation was found as a versatile method to control the structure and
mechanical properties of PVA-based hydrogels.

A further study was focused on the microstructure formation of PVA/Gelatin hy-
drogel. The results showed that the freeze-thaw cycles increased the strength of hy-
drogels by growing the crystal domains in the PVA matrix. The coagulation treatment
strengthened the mechanical properties of the hydrogels by increasing the overall poly-
mer fraction of the hydrogels.

Polyvinyl alcohol with styrylpyridinium pendent groups (PVA-SbQ) is a photosen-
sitive polymer. PVA-SbQ fibres were fabricated by electrospinning and photocrosslink-
ing techniques. The photocrosslinked PVA-SbQ fibre presented water-insoluble prop-
erties. Priliminary endothelial cell culture result showed evidence that the PVA-SbQ
fibres could potentially act as a cell lining substrate.

Finally, a duo-layer vascular graft was constructed with one outer layer composed
of a PVA based hydrogel and one inner layer of composed of PVA-SbQ fibres. The
mechanical properties, especially the compliance, of the as-prepared duo-layer graft
were shown to closely match with that of selected native arteries.
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Chapter 1

Introduction

Cardiovascular disease (CVD) refers to the class of diseases related to heart or blood

vessels. It remains as one of the most significant health challenges. In USA, the

mortality rate from CVD was 278.9 per 100,000 population in 2005, which can be

translated as 1 American death from CVD every 37 seconds [1]. Mortality from CVD

in Ireland was 214.0 per 100,000 population in 2002 [2]. In European countries, each

year there were over 4.35 million deaths resulting from CVD, which account for 49%

of all deaths [3]. It was estimated that CVD costs the European Union (EU) economy

C169 billion every year [3]. The burden of CVD remains high despite the fact that a

decline of mortality rate of CVD was reported from 1995 to 2005 [1].

Many of the patients with CVD had other cocurrent arterial diseases, such as pe-

ripheral arterial disease and cerebrovascular disease. It was reported that about 29%

of patients with CVD had cocurrent peripheral arterial disease and 20% had cocurrent

cerebrovascular disease [4].

Nowadays an increasing number of patients with arterial diseases can be treated by

pharmaceuticals and minimally invasive techniques. However, the demand for vessel

reconstruction by grafting methods remains significant, especially in treating complex

arterial disease or cases in which minimal invasive treatments have failed [5].
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1.1 Bypass surgery

The arteries that serve the heart muscle and other parts of human body can be blocked

by plaque build-up. This can slow or stop the flow of oxygen-rich blood to heart

muscle and organs, leading to muscle necrosis and ischemia. When long lesion of

arteries happens, a bypass surgery is necessary. The bypass surgery uses vessel grafts

to bypass the obstruction and improve the blood supply to the heart muscle and organs.

In each surgery, several arteries may need to be bypassed. A schematic of a coronary

artery bypass and a femoral popliteal bypass is shown in Figure 1.1.

1.2 Vascular grafts

The gold standard for vessel graft is the autologous saphenous vein taken from another

part the body, most often from the leg. Although successful, grafting with autolo-

gous grafts faces a supply deficit due to limited donor locations in the body and also

a lack of suitable vessels in elderly or diseased patients. The increasing demand for

vascular grafts has driven the development of grafts from synthetic materials, such as

polyethylene terepthalate (PET, Dacron), polytetrafluoroethylene (PTFE, Teflon) and

polyurethanes (PU). However, the elastic or compliance properties of commercially

available synthetic grafts are significantly different from those of native vessels. This

mismatch of compliance at the junction of graft and artery has been postulated to cause

the formation of neointimal hyperplasia or thrombosis [6], which leads to the disap-

pointing long-term patency and eventual failure of grafting. Consequently, the devel-

opment of new vascular grafts is aimed at achieving a compliant graft to mimic native

arteries.
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Figure 1.1: Schematics of bypass surgeries. (A) Coronary artery bypass (Image ob-
tained from www.medmovie.com); (B) Femoral popliteal bypass (Image obtained from
Healthwise, Incorporated)
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1.3 PVA hydrogels

Polyvinyl alcohol (PVA), as a synthetic polymer, has attracted attention as a poten-

tial biomaterial for artificial blood vessels because it can be fabricated as a hydrogel,

and can match the mechanical properties of the vascular system. For example, Wan et

al. [7] have optimized the tensile properties of PVA hydrogels to match those of the

porcine aortic root. Chu and Rutt [8] have applied PVA hydrogel structures as ves-

sel phantoms due to the similarity of mechanical and acoustic properties between the

PVA hydrogel and porcine aortas. Millon et al. [9] demonstrated that the mechanical

properties of the porcine aorta can be closely matched by an anisotropic PVA conduit.

These studies have established PVA hydrogels as potentially good vessel substitute

candidates in terms of mechanical characteristics.

1.4 Research objectives and methodology

PVA hydrogels formed by cryogelation have poor cell attachment properties. Hence,

previous work has investigated the development of PVA/Chitosan hydrogel as a can-

didate for vascular grafts. PVA/Chitosan hydrogels have been reported to be suitable

for the adherence of endothelial cells and their mechanical properties are comparable

to porcine arteries[10, 11].

Healthy native arteries are composed of three layers: intima, media, and adventia

[12, 13]. In the intima layer, the lining of endothelial cells provides a smooth an-

tithrombogenic surface for circulating blood. A subendothelial tissue plays a critical

role in the attachment of endothelial cells. The media layer provides the necessary

structural integrity and strength of blood vessels. In contrast, the adventia layer con-

tributes much less mechanical support to the vessel in comparison with the media layer.

Accordingly, a vascular graft would preferably be fabricated into a layered construct.

Multiple layered tissue engineered blood vessels have been constructed using fibrin

hydrogels [14], and also using sequential electrospinning techniques [15].
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Based on the previous work on PVA/Chitosan hydrogels and the concept of mul-

tilayer artery construction, the main concern of this research was to combine both the

merits of PVA based hydrogels and nanofibres by constructing hydrogel/fibres duo-

layer graft for vascular applications. The PVA based hydrogel was to mimic the media

layer which supplies the mechanical properties for native blood vessel and the PVA-

based fibres were to conduct endothelial cell attachment. Thereafter, a two-layer vas-

cular graft, PVA based hydrogel as outer layer and PVA based fibre as inner layer, were

constructed.

To accomplish this design of vascular graft, some hypotheses are listed as follow.

1. That the mechanical and structural properties of composite hydrogels of PVA

with a selection of candidate natural macromolecules (which, unlike PVA, are

conducive to cell attachment) can be closely controlled by the freeze-thaw and

coagulation bath parameters.

2. That PVA-based fibres, fabricated by the electrospinning technique, would be

stable in aqueous environments and be conducive to endothelial cell attachment.

3. That a final duo-layer construct vessel can be fabricated whose mechanical prop-

erties (specifically compliance) closely match those of native arteries over a wide

range of mean blood pressures.
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Chapter 2

Literature Review

2.1 Introduction

This literature review is structured as into four main sections as shown in Figure 2.1.

These are (i) vascular architecture and biomechanics, (ii) vascular grafts, (iii) polyvinyl

alcohol hydrogels and (iv) electrospinning.

2.2 Vascular architecture and biomechanics

2.2.1 Vascular architecture

The common strategies of vascular tissue engineering involve developing vascular

grafts by mimicking the structure and function of native vessels. It is therefore im-

portant to understand the architecture of the vessel wall.

All healthy arteries are composed of three distinct tissue layers, the intima, media

and adventitia [12, 13], Figure 2.2 shows a diagram of the major components of arter-

ies. Generally, there are two categories of arteries; elastic and muscular [16]. Elastic

arteries are those arteries with media containing both smooth muscle cells and many

elastic laminae. Often, elastic arteries are large in diameter. Arteries located more

peripherally have smaller diameters and contain less elastic laminae, and are therefore
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Figure 2.1: Structure of literature review.

called muscular arteries. A brief description of each tissue layer of the arterial vessel

is included below to introduce the overall structure of arterial vessel wall. More de-

tailed studies on the macroscopic and microscopic structure of vessel wall have been

published by Clark and Glagov [17], Rhodin and Bohr [16] and Silver et al. [18].

2.2.1.1 Intima layer

The intima is the innermost layer of the vessel wall. It consists of monolayer endothe-

lial cells, a basal membrane and subendothelial connective tissue [18]. Endothelial

cells are in direct contact with blood and rest on the basal membrane. These cells are

flat and elongated to the direction of blood flow. They are held together by junction

complexes, which ensure blood flow without thrombosis. Beneath the basal membrane

is the subendothelial connective tissue, which develops gradually with age or patho-

logically with disease. In infants or young adults, the intima plays an insignificant role

in the mechanical properties of vessel walls. In middle age, the internal elastic lam-

ina becomes thicker and affects mechanical properties [16]. The pathological changes
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Figure 2.2: Diagram of the major components of a healthy elastic artery composed of
three layers: intima, media, adventitia[12].

in the intima layer tends to result in deposition of fatty substances, calcium, collagen

fibres, cellular waste products and fibrin, which is consequently associated with the

most common artery disease, atherosclerosis [12].

2.2.1.2 Media layer

The media is the middle layer of the vessel wall. It can be distinguished from the intima

and adventitia by the internal elastic lamina and external elastic lamina, respectively.

The media consists of smooth muscle cells, a number of elastic lamina, bundles of

collagen fibrils and a network of elastic fibrils [12]. Rhodin and Bohr [16] further

conclude that smooth muscle cells are the only cells present in the media, and that

they closely contact with collagen fibrils, elastic fibrils and elastic laminae, and form

together a continuous fibrous helix. The helix has different pitch in different elastic

lamina. Therefore, these helically arranged fibre-reinforced medial layers can resist

forces acting in both the longitudinal and circumferential directions. The media is the
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Figure 2.3: Mechanical separation of the layers of human external iliac artery into a
stiff media-intima tube (left) and a limp adventitia (right) [12].

layer which primarily determines the mechanical properties of healthy arteries. In the

aorta, the media can reach 500 µm in thickness and this reduces as arteries become

more peripheral.

2.2.1.3 Adventitia layer

The adventitia is the outermost layer of the vessel wall. It is composed of fibroblasts,

fibrocytes, large-diameter collagen fibrils, the micro-vascular supply, and a neural net-

work that regulates the vasotone of the blood vessel [18, 19]. Clark and Glagov [17]

reported a collagen network which is interlaced in the manner of a helix, the so-called

“Chinese finger trap”. The helically arranged collagen fibrils serve to stabilize vessel

structure [12]. At low blood pressure, the adventitia layer contributes much less to the

mechanical resistance of the vessel wall in comparison with the medial layer. However,

when reaching higher pressure levels, the adventitia helps to increase vessel stiffness

and prevent the vessel from overstretch and rupture. Schulze-Bauer [12] was able to

separate the layers of the human external iliac artery into a media-intima tube and a

limp adventitia (see Figure 2.3).
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2.2.2 Vascular biomechanics

The artery is the conduit to maintain the pressure of pulsatile blood flow and distribute

blood to the various tissues in the body. The mechanical properties of the vessel are

of great importance to energy-efficient pulsatile blood flow and to withstanding the

stress and strain imparted [6, 18]. To design a vascular graft requires a fundamental

understanding of the mechanical properties of vessels.

Viscoelasticity and nonlinearity are the most significant mechanical properties of

arterial walls. Elastic solids strain instantaneously when extended and regain their

original dimensions when the stress is removed. Viscous fluids exhibit a constant rate

of strain when a constant stress is applied, and do not retract when the stress is re-

moved. The vessel walls exhibit a combination of the properties of an elastic solid

and a viscous fluid [20], a behaviour known as viscoelasticity. When this property is

plotted as stress versus strain, it has a non-linear profile. The elastic component of this

property is responsible for the ability of the artery to store a part of the pulsatile en-

ergy in systole and restore it to the circulation in diastole. Consequently, blood vessels

convert the heart pulsatile ejection into a smoother, more continuous blood flow [21].

Investigators [22, 23, 24, 25, 26] agree that the stress-strain relationships of blood

vessels are not linear. This nonlinearity is dependent on the mechanical characteristics

of the main components of arteries, such as elastin and collagen. Elastin is a highly

elastic component which undergoes a large strain under small loads, whereas collagen

exhibits higher stiffness and strength properties than elastin [25]. A schematic of this

nonlinearity is shown in Figure 2.4. The stress-strain response displays a J-shape which

demonstrates it does not abide by Hooke’s law over the whole stress range. Within an

initial low stress (region A), the stress-strain line is nearly straight with a low slope

(low modulus) and only elastin is recruited to withstand extension in this region. With

further extension (region B), load bearing is gradually taken over by collagen fibres,

which is a relatively inelastic but stiffer component [21, 27]. Holzapfel et al. [26] have

also confirmed that the adventitia, where large-diameter collagen bundles are located,
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Figure 2.4: Illustration of the J-shape stress-strain curve of blood vessel.

shows pronounced stiffening behaviour in larger strain regions.

The stress-strain nonlinearity of materials is mainly measured by uniaxial tensile

tests. In this method, dumbbell-shaped vessel samples are gripped between two flat

plate clamps with sandpaper to prevent sample slippage during the test. One end of

the sample is pulled away from the other at the required extension rates or loads. The

stress-strain relationship is recorded continuously with extension. The width and thick-

ness of dumbbell-shaped sample can be measured with a micrometer at the narrow

section. A more detail test method can be obtained from the standard ASTM D638-00

[28].

The other method commonly used to access the elastic property of vessels is the

compliance measurement. Vessel compliance is defined as the ratio of change in vessel

diameter over the change in blood pressure [20]. It can be calculated by the following

equation [6]:

Compliance =
Ds −Dd

Dd × (Ps −Pd)
×104

where D and P are vessel diameter and blood pressure, and the d and s subscripts

refer to the diastole and systole respectively. The unit of compliance is % per mmHg

×10−2.
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2.3 Vascular grafts

2.3.1 Grafts from natural materials

Native vessels can be utilised in a number of ways [29], including decellularized au-

tologous and allologous blood vessels [30], decellularized xenogenic blood vessels

[31, 32, 33], decellularized non-vascular conduits [34, 35, 36] and prefabricated ECMs

[37, 38]. These grafts can be decellularized by chemical methods, which generally use

a combination of enzymatic and detergent treatments [29]. Enzymtatic treatment is

used for cell lysis and detergent treatment is used to remove cell membrane lipids

and nuclear debris, which can invoke calcification and graft degeneration [30, 31, 38].

The apparent advantages of these grafts are that intact collagen [39] and elastin [40]

fibres are preserved to withstand wall extension and the cell signalling components

[41, 42, 43] are retained for control of cell behaviours like adhesion, migration, pro-

liferation and differentiation. Natural grafts generally have good outcomes in surgical

applications [44]. However, this is offset by the supply deficit in autologous and al-

lologous grafts, and the concern on the cross-species infection of xenogenic grafts.

Although the contamination risk of porcine endogenous retrovirus (PERV) can be re-

duced in decellularization processes, a remaining up to 2% donor DNA in grafts should

be taken into account [45], especially when primary human cells are reported to be in-

fected by PERV [46]. A cell-sheet-based tissue engineering approach is able to solve

this issue by using autologous human cell sheets to fabricate tissue engineering blood

vessels [38, 47]. Even so, matching the elastic properties of native arteries remains as

a challenging topic for as-engineering natural blood vessels.

2.3.2 Synthetic grafts

Synthetic grafts to replace natural blood vessels have been explored for more than 50

years [19]. There is an extensive list of synthetic materials employed for vascular

grafts. Here, the focus is on the three dominant synthetic vascular grafts, namely
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polyethylene terepthalate (PET, Dacron), polytetrafluoroethylene (PTFE, Teflon) and

polyurethanes (PU), which have been commercialized in industry.

PET is commonly available in a standard fibre form which can be readily fabricated

into textile and mesh. It has been successfully applied in large-diameter vessel grafts.

However, blood responds actively with PET implants, which stimulates the release

of macrophage TGF-beta [48] and consequently leads to high inflammation, neointi-

mal proliferation and inhibition of endothelialization. Impregnation of albumin [49],

hyaluronic acid, fibronectin and growth factors [50] have shown promise in enhancing

the vascularisation within PET grafts.

PTFE is the most widely used fluorocarbon for biomaterials applications due to its

long term biostability and biocompatibility in vivo. It has been applied extensively

in various vessels, such as the femoral [51], carotid [52] and infrapopliteal [53] arter-

ies. The patency rates of these implants are closely related to their diameters. Gen-

erally, larger diameter would have higher patency following implantations [54]. The

expanded form of PTFE (ePTFE) can be produced by an extrusion and sintering pro-

cess and fabricated into a tube with a porous wall [55], which improved cell adhesion

characteristics in comparison with plain PTFE [54]. One concern with PTFE is that

other materials can have difficulty binding to its surface which is a beneficial declotting

function but, however, limits the adherence of endothelial cells. This issue has been

addressed and investigated with coating of adhesion molecules to improve endothelial-

isation on the inner surface of the tubular graft [55, 56].

Polyurethanes (PU) are a large family of polymers which are commonly comprised

of hard and soft segments. The diversity in hard and soft segments assigns PU a range

of physical properties and they have been considered as soft, tough and rigid polymers

[55]. The soft segments in PU are sites mainly related to its biodegradation property.

Conventional polyester soft segments exhibit biodegradation potentials [57, 58], how-

ever, which also resulted in occlusion in vivo [59]. This issue can be addressed by

replacing polyester with polycarbonate, so-called polycarbonate polyurethane (CPU),
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Table 2.1: Compliance and cumulative patency of arterial grafts. (Adapted from
Walden et al. [70])

which has shown high resistance to degradation [60, 61, 62, 63]. However, a mi-

nor intrinsic hydrolytic effect is detectable in CPU one-year after implantation [59].

Although the biostability of CPU can be improved by manipulating the degree of hy-

drogen bonding among hard segments [64], the progressive degradation has laid a

challenge for its use as long-term or “permanent” vascular grafts.

2.3.3 Compliance mismatch of conventional vascular grafts

The mismatch of elastic properties between vascular grafts and native vessel, called

compliance mismatch, has been reported to be primarily responsible for intimal hyper-

plasia (IH) [21, 65], a major causes of long term failure of vascular grafts [66]. The

fluid mechanics at the junction between the graft and the native arterie could also affect

the success rate of vascular grafts. There could also be two main factors affecting the

fluid mechanics at the junction: (1) matching of the geometry and properties of grafts

and native arteries; (2) sewing technique. Compliance mismatch causes an alternation

to fluid flow in the arterial system [66, 67], which subsequently affects the wall shear

distribution [68], damages endothelial cells [69], changes histological features [65],

and consequently results in formation of IH and poor patency rates of vascular grafts.

Walden et al. [70] showed a positive correlation between compliance and patency rates

and the results have been listed in Table 2.1.

Tai et al. [6] has compared the compliance of a prosthetic graft with the native
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Figure 2.5: Compliance-pressure curves of artery, vein, CPU, Dacron and ePTFE.
(Dacron–polyethylene terepthalate, ePTFE–expended polytetrafluoroethylene, CPU–
polycarbonate polyurethanes)[6] .

artery. The compliances of Dacron, ePTFE, CPU, vein and artery were calculated

over mean pressures in the range of 30-100 mmHg with 10 mmHg increments and the

results are shown in Figure 2.5 [6]. It is apparent that the ePTFE and Dacron are rigid

grafts, CPU is more compliant and veins exhibit a compliance-pressure profile closer

to that of an artery. However, the compliance mismatch between these grafts and artery

is apparent.

2.3.4 Comparison of mechanical properties of PVA hydrogel with

native vessel

Addressing the issue of compliance mismatch, an alternative to ePTFE, Dacron and

CPU would preferably exhibit viscoelastic properties to match the native artery. A

PVA hydrogel is an attractive material for vascular graft applications due to its suitable

elastic properties, in terms of the nonlinear stress-strain relationship. PVA cyrogels are

fabricated by a thermal treatment, freeze-thaw cycles. The stiffness of these hydrogels

can be enhanced by increasing the number of freeze-thaw cycles [71].

Chu and Rutt [8] have compared the stress-strain property of PVA hydrogels with
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Figure 2.6: Stress-strain curves of PVA hydrogels and porcine aorta. PVA hydrogels
were prepared with 1, 2, 3, 4, 5 and 10 freeze-thaw cycles. Data from a fresh porcine
aorta are plotted as dashed lines. The inset shows the low strain range of the same
stress-strain curve [8].

that of porcine aorta (Figure 2.6). The PVA hydrogels were prepared by 1,2,3,4,5

and 10 freeze-thaw cycles. It was found that there is no longer a change in the shape

of stress-strain curve after 5 freeze-thaw cycles. At the low stress level where corre-

sponding strain values are less than 0.2, the secant modulus of PVA hydrogel with 2

freeze-thaw cycles is 1.9±0.3×105Nm−2 which matched closely with that of porcine

aorta, 1.75±0.03×105Nm−2.

Wan et al. [7] reported that the stress-strain curve of PVA hydrogels with 4 freeze-

thaw cycles was comparable to that of porcine aortic root in the physiological strain

range. This stress-strain relationship of PVA hydrogel is advantageous compared to

commercial products, such as ePTFE and Dacron.

Millon et al. [72] prepared anisotropic PVA hydrogel by applying initial strain

during thermal cycles. It was found that the stress-strain properties of anisotropic PVA

hydrogels with 3 freeze-thaw cycles and 75% initial strain was able to match closely

that of porcine aorta (Figure 2.7).

A previous study in our group prepared PVA and chitosan blended hydrogels [10].

The PVA/chitosan hydrogels with 1 freeze-thaw cycle and 3 freeze-thaw cycles exhib-
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Figure 2.7: The stress-strain curves of anisotropic PVA hydrogels and aorta. PVA
hydrogels were prepared with 75% initial strain and 3 freeze-thaw cycles which closely
match the stress-strain curve of aorta in both the circular and axial direction [72].

ited the bounds of the softer and stiffer porcine aortic tissue respectively.

2.4 Poly(vinyl alcohol) hydrogel

2.4.1 Structure and property of Poly(vinyl alcohol)

Poly(vinyl alcohol) (PVA) is a synthetic water-soluble polymer with a number of pen-

dant hydroxyl groups (Figure 2.8). It is commercially produced by the hydrolysis of

poly(vinyl acetate) (PVAc). The manufacturing process can be viewed as two seg-

ments, a polymerization of vinyl acetate and a following hydrolysis of poly(vinyl ac-

etate) to PVA. The hydrolysis reaction does not go to completion and therefore the

term PVA refers to a copolymer of vinyl acetate and vinyl alcohol. The molecular

weight and the degree of hydrolysis have an overall impact on the physical properties

of PVA. It is possible to purchase PVA with various molecular weights and degrees of

hydrolysis.

PVA has been broadly used in industry due to its excellent chemical resistance and

physical properties. It can be produced as an adhesive with resistance to solvent, oil and
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Figure 2.8: PVA chemical structure.

grease. The polymer films also exhibit high tensile strength and abrasion resistance.

The crystallization of PVA is one of the most important mechanical properties of

PVA as it controls water sensitivity, tensile strength, oxygen barrier properties, and

thermoplastic properties [73]. PVA is able to dissolve in solvents with high polarity,

such as water, dimethyl sulfoxide (DMSO), glycols, and dimethylformamide. The sol-

ubility of PVA depends on the degree of polymerization (DP) and hydrolysis. The

hydroxyl groups along PVA molecular chain promote strong hydrogen bonding which

reduces the solubility of PVA in water. This hydrogen bonding can be weakened by the

presence of residual acetate groups in PVA molecules and consequently allow a solu-

bility of PVA at lower temperature. As a polyhydric alcohol, PVA is able to participate

in various reactions, such as esterification with boric acid and borax, etherification with

ethylene oxide, acetalization with aldehydes [73]. These reactions can be applied to

cross-link PVA and form specific materials, like hydrogels.

Some other properties of PVA, such as solution viscosity, solvent resistance and

biodegradation, have been investigated in detail by Marten [73] and Sundararajan et al.

[74].

2.4.2 Synthesis methods of PVA hydrogels

A hydrogel is a hydrophilic polymer network where the loose cross-links prevents

solubility but allows for swelling in water. They are in high demand in a number of ap-

plications, especially in biomedical and pharmaceutical sectors. PVA can be prepared

as a hydrogel by either chemical or physical cross-linking.
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Figure 2.9: Crosslinking by high energy radiation [75].

2.4.2.1 Crosslinking by chemical agents

PVA is able to be cross-linked by a multifunctional crosslinking agent that reacts with

hydroxyl groups. The most widely used cross-linking agents are glutaraldehyde (Fig-

ure 2.9), formaldehyde, acetaldehyde, glyoxal, boric acid, and isocyanates [73]. How-

ever, these cross-linking agents are often toxic compounds and can result in unwanted

reactions with bioactive substances. The residue of these agents has to be extracted

before the hydrogel can be applied in the area of biomaterials and medicine.

2.4.2.2 Crosslinking by high energy radiation

High energy radiation on polymer enables numerous applications in industry, such as

crosslinking of plastics, curing of coating, surface modification, sterilization and hy-

drogel formation [76]. High energy radiation, in particular Gamma–irradiation and

electron beam radiation, can be applied as another physical cross-linking method to

prepare PVA hydrogels. This method is better than the use of chemical cross-linking

agents as no chemical residue would be left behind. In the procedure of irradiation,

radicals can be formed both from the scission of chemical groups on polymer chains
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and from the radiolysis of water molecules [77]. The radiation is generally performed

in an inert atmosphere since the radical is sensitive to oxygen. Peppas and Merrill

prepared transparent PVA hydrogels with irradiation by electron beam [78]. This hy-

drogel showed low mechanical properties, including elastic moduli, tensile strength

and extensibility to break. Zhao et al. [79] prepared a PVA and carboxymethylated

chitosan blend hydrogel by electron beam. The hydrogel exhibited satisfying antibac-

terial activity, but relatively weak mechanical properties. Another technical issue is

the formation of bubbles which resulted in difficulties to form homogeneous hydro-

gels [80]. Moreover, the radicals generated by irradiation might potentially attack and

damage bioactive substances.

2.4.2.3 Physical crosslinking

To avoid the residue of cross-linking agents and the generation of radicals, physical

cross-link methods are of increasing interest in recent years. A variety of physical

methods has been applied to form hydrogels, including ionic interaction, crystalliza-

tion, hydrogen bonds or even protein interaction [77]. The crystallization is the most

feasible physical method to produce a PVA hydrogel as crystallites can be gener-

ated within hydrogel network by repeated freezing and thawing cycles (Figure 2.10).

This physically formed PVA hydrogel has unusual mechanical characteristics, such

as visco-elasticity and high mechanical strength which is very attractive to be a drug

carrier or a tissue substitute in biomedical application.

2.4.3 Preparation of PVA hydrogels

The thermogram (Figure 2.11) of PVA hydrogel formation can be divided into three

parts, freezing (A to B), storing (B to C) and thawing (C to D). In the freezing stage,

PVA solution is cooled from initial temperature (Ti) down to temperature at which the

sample is stored in frozen state (Ts). Upon storage at the frozen state, the specimen is

subject to a thawing process, raising the temperature to the initial temperature of this
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Figure 2.10: The crystallites generated within network structure of freeze/thawed PVA
gels [80].

system.

2.4.4 Factors to control the structure and properties of PVA hy-

drogels

There are a number of factors which can be considered to control the final physical

properties of PVA hydrogels, including the characteristics of the PVA polymer, thermal

treatment and the nature of solvents for PVA. These factors have been reviewed by

Lozinsky [81] and Table 2.2 has been adapted from that review to overview how the

factors would influence final physical properties of PVA hydrogels. The comment and

the rating of factors within this table should be considered as a guideline, and for a

more detailed description the reader is referred to the original review.

2.4.5 Structure of PVA hydrogels

2.4.5.1 Characterization techniques

The outstanding elastic properties of PVA hydrogel, as shown in the section 2.3.4, is

strongly depending on the structure [78, 80, 81] formed during freeze-thaw cycles. The
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Table 2.2: Factors to tune the final properties of PVA hydrogels. Adapted from Lozin-
sky’s review [81].
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Figure 2.11: General thermogram of the formation of PVA hydrogel. Ti–initial tem-
perature; T0–freezing point; Ts-temperature at which the sample is stored in frozen
state.

structure of PVA hydrogels has been extensively studied by swelling behavior [82, 83].

Other techniques can also be applied to the structural characterizations: including

confocal microscopy [84], transmission electron microscopy (TEM) [85], differen-

tial scanning calorimetry (DSC) [86], 13C nuclear magnetic resonance (13C NMR)

[85], solid-state 1H nuclear magnetic resonance (NMR) [86, 87, 88], wide-angle X-

ray diffractioin (WXRD) [86, 89, 90], small-angle X-ray scattering (SAXS) [85], light

scattering [91, 92, 93], small-angle neutron scattering (SANS) [72, 90, 91, 92] and

ultrasmall-angle neutron scattering (USANS)[92, 94].

2.4.5.2 Structure model

Based on these characterizations, a model of the structure of PVA hydrogels has been

proposed by Yokoyama et al. [89], Willcox et al. [85] and Millon et al [9]. The struc-

ture of PVA hydrogels is a porous network, in which polymer crystallites act as junction

points for dangling chains [80, 85, 89, 91, 92, 93, 94, 95]. These crystallites ensure the

dimensional stability and elastic property of PVA hydrogels. Three phases are present

within PVA hydrogel, including PVA crystallites phase, amorphous PVA phase and

free water phase [89]. Before freeze-thaw cycles, a PVA solution is composed of poly-

mer chains randomly spread in the solvent. Upon the first free-thaw cycle, polymer

chains are concentrated by either phase separation or the formation of ice crystals, and
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Figure 2.12: Schematic of the structure formation of the PVA hydrogels. The dimen-
sion of the crystallites is about 3nm, and the average distance between crystallites is
about 19nm. [9]

held together by hydroxyl bonds to form a folded chain structure, which leads to small

crystallites scattered in an amorphous polymer matrix. Successive freeze-thaw cycles

results in further crystallization by the growth of previously-formed crystallites and the

formation of new crystallites. A schematic of the structure formation of the PVA hy-

drogels has been proposed by Millon et al. [9] and shown in Figure 2.12. It is reported

that crystallites are about 3 nm in size and the space in between crystallites is about 19

nm, based on the characterization technique of small-angle neutron scattering.

2.5 Electrospinning

Electrospinning is a simple and versatile technique to produce fibres with dimensions

down to the micro- or nano-meter scale. The electrospun fibres have large surface-

to-volume ratio, controllable porosity, morphology and assembly and a relatively high

production rate, which invoke applications in biomedical engineering, environmental

engineering, energy storage, healthcare and protective clothing [96, 97]. A large num-

ber of polymers have been electrospun in solution form, and these have been reviewed

extensively by Huang et al. [97] and Greiner et al [98].
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Figure 2.13: Schematic of the setup of electrospinning system.

2.5.1 Fundamentals of electrospinning

In principle, there are only three components required in this system, namely a high

voltage power supply, a capillary tube and a collector (Figure 2.13). The capillary tube,

such as a syringe with a metal needle tip, is firstly filled with fibre precursor, such as

polymer, metal, ceramic or glass. When a high voltage is applied to the capillary tube,

the fibre precursor is therefore charged and subject to a repulsive force as resulting in

the electrical field generated in between the capillary tube and collector. The repul-

sive force is opposite to the intrinsic surface tension of the fibre precursor and can be

enhanced by increasing the applied voltage. Upon reaching a critical point that the

repulsive force overcomes the surface tension, a further increase of voltage gives rise

to a charged jet ejected from the capillary tube (Figure 2.14 B) [98, 99]. The jet is then

subject to bending instability [100] in the electric field and subsequently elongates into

a fibre form (Figure 2.14 C) [101]. The as-formed fibres dry on travelling towards

the lower potential, and deposits onto the collector (Figure 2.14 D) which is generally

grounded.
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Figure 2.14: Diagrams of fibre formation during electrospinning. A) The drop shape
without presence of a high voltage; B) Jet initiated; C) Jet instability and elongation;
D) Dried fibre deposited on collector. Image A and B are adapted from a review by
Greiner et al. [98]. Image C is adapted from a study by Yarin et al. [100]. Image D is
the PVA electrospun fibres.

2.5.2 Electrospinning conditions

The parameters which affect the electrospinning process and the resultant fibre diame-

ter and morphology have been investigated extensively by some researchers [102, 103,

104, 105]. Ramakrishna et al. [102] have classified these parameters into three cate-

gories: polymer solution parameters, processing conditions, and ambient parameters.

Operating parameter are classified which have been listed in Figure 2.15. The main pa-

rameters that affect fibre diameter have been systematically studied by Tan et al. [103]

and divided into two groups. One is the parameters that affect the electrical force. The

other group is the parameters that affect the mass of polymer that can be brought into

the jet. The effects of these parameters have been summarized as a processing map

(Figure 2.16). Generally, when fibre morphology is dominated by the effects of mass

of polymer, a lower polymer concentration, feed rate and applied voltage can result in

fibres with smaller diameter. Alternatively, when the fibre morphology is controlled

by the effects of electrical force, a higher applied voltage and solution electrical con-

ductivity can result in fibres with smaller diameters.

2.5.3 Guided assembly of electrospinning fibres

Teo and Ramakrishna [106] have reviewed various concepts for guided assembly of

fibres in electrospinning by using dynamic collection devices and by manipulating

the electric field. The concepts related to assembling aligned fibrous mesh have been
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Figure 2.15: Parameters of electrospinning process. Adapted from Ramakrishna et al.
[102].

Figure 2.16: The effect of processing parameters on the diameter of fibres based on
systematic parameter study by Tan et al. [103]
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Figure 2.17: Schematics of electrospinning set-ups for fibre assembly [106]. (A) Par-
allel electrodes collector [107]; (B) Rotating drum collector [108, 109, 110, 111]; (C)
Rotating wire drum collector [112]; (D) Rotating drum collector wires wound circum-
ferentially [113]; (E) Rotating tube collector with knife-edge electrodes below [114];
(F) Rotating tube collector with knife-edge bar below and blade attached to needle
[114].

shown in Figure 2.17.

2.5.4 Electrospun fibres as vascular grafts

The electrospinning technique can easily produce tubular fibrous constructs which di-

rectly inspire its use as a method to fabricate vascular grafts [115, 116, 117, 118, 58,

119]. The alignment of electrospun fibres could act as guidance for the migration of

smooth muscle cells (Figure 2.18 [115]) and endothelial cells [115, 120]. An innova-

tive method of forming electrospun fibrous tube with diagonal alignment could help in

designing a fibrous construct to match the helical arrangement of elastin in the media

layer of vessel wall [114].
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Figure 2.18: Micrographs of smooth muscle cell growth on aligned electrospun fibres
and tissue culture plate [115]. (A) aligned electrospun fibres; (B) tissue culture plate.

2.5.5 Challenges and approaches

There has been much effort and great progress in the design of electrospinning systems

for controllable assembly of fibres. Nevertheless, we are still facing some challenges.

Firstly, alignment of fibres over a substantial thickness is generally difficult to

achieve. Katta et al. [112] clearly showed that the alignment of fibres tend to be

diminished over electrospinning duration (Figure 2.19). Two solutions can be consid-

ered to fabricate fibres with greater alignment. One is to reduce the chaotic whipping

of liquid jets. Sun et al. [121] have designed a near-field electrospinning method to

deposit nanofibres with a controllable manner. The electrode-to-collector distance has

been reduced to a range of between 500 microns and 3 mm. A tungsten spinneret of

25 microns tip diameter was used to intensify the electrical field and generate small-

diameter jets in a stable region. The chaotic whipping effect is therefore reduced and

the fibres are able to deposit directly to controllable positions. The other solution is to

reduce the build-up of surface charge on deposited fibres. Kessick et al. [122] have re-

placed the conventional direct-current (DC) power supply with the alternating-current

(AC) power supply. Fibres with significantly higher alignment have been detected un-

der AC potential, which is accounted for by the reduction of net charge on deposited

fibres.

Electrospun fibres are generally produced into two-dimensional mats. The only

three-dimensional form that has been widely studied is the fibrous tube which can
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Figure 2.19: SEM images of fibre alignment over various durations of electrospinning
[112]. (A) 5min; (B) 15min; (C) 2.5h.

be fabricated with columnar collectors. Zhang et al. [123] has prepared tubes with

multiple patterns, different shapes, sizes and structures by designing 3D collectors,

which give the possibility to control the 3D configuration of electrospun fibrous tubes.

This technique is versatile to fabricate fibres in the form of tube. However, more

complicated 3D structures are still necessary for further investigation to match various

applications. A technique for targetted deposition of fibres with controllable fibre-fibre

distance would help to fabricate 3D fibrous structures.

As for biomedical applications, a fibrous construct with pores large enough for cell

penetration is often not easy to prepare. A dissolvable polymer can be incorporated into

fibrous structures, which can be prepared by simultaneously electrospraying hydrogels

with the electrospinning process and then leaching hydrogels to form electrospun fi-

brous constructs with macroporous structures [124]. Im et al. [125] also reported

the possibility to form macro-meso pores by dissolving polyacrylonitrile (PAN) with

N,N-dimethyl formamide (DMF). Another alternative way to directly incorporate cells

into fibrous constructs is electrospraying cell solutions simultaneously with polymer

solution in the electrospinning process or coaxial electrospinning cell solution with

polymer solution [126]. It is evident that elecrospinning process, with its high voltage,

has no significant effect on the cell function at cytogenetic or physiological level [127].

Stankus et al. [58] have constructed vascular grafts by electrospraying smooth mus-

cle cell (SMC) solutions simultaneously with electrospinning poly(ester urethane) urea

(PEUU). A compliant tubular matrix with SMC incorporated is thereby fabricated.
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2.6 Thesis layout

As a summary, PVA hydrogels and electrospun nanofibres have been investigated in-

tensively. However, there is a gap in the literature to combine both the merits of hy-

drogels and nanofibres by constructing hydrogel/fibres duo-layer graft for vascular ap-

plications.

To address the design of composite duo-layer vessels, the following studies will be

described:

1. Composite hydrogels of PVA with one of three macromolecules (chitosan, starch

and gelatin) were physically crosslinked by freeze-thaw thermal cycles followed

by coagulation treatment. The mechanical properties of the hydrogels were char-

acterized by uniaxial tensile tests. The structure profile of the hydrogels was in-

vestigated by equilibrium swelling and rehydration tests to show the relationship

between network structure and mechanical properties.

2. A more detailed investigation was performed on PVA/Gelatin hydrogels to study

how the freeze-thaw thermal cycles and coagulation treatment influence the struc-

ture and consequently the control over the mechanical properties of the hydro-

gels. Infrared Spectroscopy was applied to investigate the presence of gelatin

in the matrix of the PVA hydrogel. Differential Scanning Calorimetry was em-

ployed to calculate the crystallinity of hydrogels. The glass transition temper-

atures were studied by DMA. Rheological properties and uniaxial tensile tests

were applied to characterize the mechanical properties of hydrogels.

3. PVA-SbQ was selected as a photocross-linkable PVA based polymer. PVA-SbQ

has not previously been fabricated into fibres by the electrospinning process.

Firstly, Infrared Spectroscopy and Ultraviolet-Visible spectroscopy were em-

ployed to track the photoreaction of PVA-SbQ. Also, the water resistance of

photocrossliked PVA-SbQ was assessed by weight loss experiments, and the

morphology was assessed by Scanning Electronic Microscopy (SEM). Finally,
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endothelial cells were cultured on PVA-SbQ fibres. Immunofluoresence stain-

ing and SEM were applied to determine whether the PVA-SbQ fibre support the

attachment of Endothelial Cells.

4. Based on the above studies, a duo-layer vascular graft was construct by fabri-

cating a PVA/Gelatin hydrogel vessel as an outer layer to provide the main me-

chanical support and PVA-SbQ fibres as an inner layer to provide a favourable

surface for endothelial cell attachment. Both uniaxial tensile tests and compli-

ance tests were employed to compare the mechanical properties between the

duo-layer construct and with published results for the native artery.

The structure of the thesis is shown in Figure 2.20. Chapter 3 describes materials and

methods. Chapter 4 and 5 contains studies on the structure-property relationships of

PVA based hydrogels. Chapter 6 describes electrospinning of PVA-SbQ fibrous mat.

Chapter 7 presents a duo-layer vessel graft and study the mechanical properties of

the duo-layer construct. Chapter 8 summarises the conclusions from this study and

discusses potential future work.
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Figure 2.20: Structure of literature review and the thesis layout.
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Chapter 3

Materials and Methods

3.1 Materials

3.1.1 Chemicals

PVA with an average molecular weight (Mn) of 78,400 g/mol was purchased from

Vassar Brothers Medical Center (New York, USA) to prepare PVA hydrogels. An-

other PVA with molecular weight of 89,000~98,000 was obtained from Sigma-Aldrich

(Germany) and applied as a control material in the electrospinning process.

Water soluble chitosan with a de-acetylation degree of 85% was bought from Jinan

Haidebei Marine Bioengineering Co. (China). Starch, from potato, and gelatin, type B

from bovine skin, were supplied by Sigma-Aldrich, Germany.

PVA-SbQ was ordered from Polysciences Inc. (USA) with a concentration of

13.3%, 45,000 molecular weight and 4.1 mol% SbQ content.

Other chemicals used were:

• Potassium Hydroxide (KOH) (Sigma, Germany)

• Sodium Sulphate (Na2SO4) (Sigma, Germany)

• Iso-octane (Fisher, Ireland)

• DAPI (Sigma D9542, USA)
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• Phalloidin-FITC (Sigma P5282, USA)

• Rat collagen type I (Sigma, Germany)

• RPMI 1640 cell culture medium (Sigma, Germany)

• Fetal Calf Serum (Sigma, Germany)

3.1.2 Equipment

The following scientific instruments were used in the study:

• YDK 01 LP Density Measurement Kit (Sartorius AG, Germany)

• Labconco Freeze Dry Freezone System (Labconco, USA)

• Zwick Z005 Tensile Test Machine (Zwick-Roell, Germany)

• DTA/TGA STA 1500 (PL Thermal Sciences Ltd., UK)

• Nicolet Avator 360 Fourier Transform Infrared Spectroscopy (Thermo Scientific,

USA)

• DSC 2920 Modulated DSC (TA Instruments, UK)

• Rheometric Scientific Mark III DMTA (Rheometric Scientific, USA)

• Advanced Rheometer AR1000 (TA instruments, UK)

• UV-3100 UV-VIS Spectrophotometer (Shimadzu, Japan)

• BX51 Olympus Microscopy (Olympus, Japan)

• EVO LS15 Scanning Electron Microscopy (Zeiss, Germany)
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3.2 Methods

3.2.1 Preparation of hydrogels and fibres

3.2.1.1 Preparation of hydrogels

PVA, PVA/Chitosan, PVA/Starch and PVA/Gelatin solutions were prepared by mix-

ing polymer powders in deionized water and autoclaving at 121°C for 1h. Table 3.1

shows the percentage weight per volume ratio of the composition of each solution and

Figure 3.1 shows the process of the preparation of hydrogels. After autoclaving, the

solutions were immediately homogenized by magnetic stirrer to prevent aggregation of

polymers. Air bubbles in the solutions were removed by settling at room temperature.

After casting solutions in casting moulds (Figure 3.2), they were physically crosslinked

by one or three freeze-thaw cycles which consisted of freezing at -20°C for 12h and

thawing at 21°C for 12h. Those freeze-thawed hydrogels to be treated with the coag-

ulation bath were submerged in a constantly stirred coagulation bath (7.5% KOH and

1M Na2SO4) for 1h. As-formed hydrogels were washed with deionized water several

times and kept in deionized water until testing (storage duration 3-5 days). The names

of samples are abbreviated as follows. These designations will be used throughout the

thesis.

• P : PVA

• PC : PVA/Chitosan

• PS : PVA/Starch

• PG : PVA/Gelatin

• 1FT, 1 Cycle : 1 freeze-thaw cycle

• 3FT, 3 Cycles : 3 freeze-thaw cycles

• bcb: before coagulation bath
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Table 3.1: Percentage weight per volume ratio of the composition of polymer solutions.

Figure 3.1: Preparation of PVA based hydrogels.

• acb : after coagulation bath

• 1-bcb: 1 freeze-thaw cycle before coagulation bath

• 3-acb: 3 freeze-thaw cycles after coagulation bath

3.2.1.2 Preparation of PVA and PVA-SbQ fibres

Electrospinning of PVA and PVA-SbQ fibres: 10 % PVA solution was prepared by dis-

solving PVA powder in distilled water and heating at 121 °C for 1 hour. The prepared

10% PVA and 13.3% PVA-SbQ solutions were then transferred into a syringe equipped
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Figure 3.2: Hydrogel casting moulds. (A) Flat plastic mould; (B) Plane glass mould
with spacers; (C) Tubular mould to prepare hydrogel vessel graft.

with a 19 gauge stainless blunt needle and infused at 0.35 ml/h with a syringe pump.

A positive bias of 19 kV was applied to the needle. The collector position was placed

10 cm away from the needle to collect the as-formed PVA fibres and PVA-SbQ fibres.

Figure 3.3 showed the set-up of electrospinning rigs. Collector-1 was the generally

used collector and the other collectors are applied when it was specified.

For photocrosslinking of PVA-SbQ fibres, the electrospun PVA-SbQ was irradiated

by a 100W UV lamp (B-100AP, UVP, Ireland) for 20 min (Figure 3.4). The PVA-

SbQ fibres before and after irradiation were named as PVA-SbQ and PVA-SbQ-hv,

respectively.

3.2.2 Structural and mechanical properties of PVA based hydro-

gels

3.2.2.1 Equilibrium swelling study

There are three main structural parameters for hydrogels, namely the polymer volume

fraction in the swollen state, the number average molecular weight between cross-
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Figure 3.3: Electrospinning set-up. Collector-1, square collector covered with Alu-
minium foil; Collector-2, Glass slides collector; Collector-3, Collector assembled by
metal wires; Collector-4: Rotating mandrel as collector.

Figure 3.4: Photocrosslinking set-up.
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links, and the network mesh size. These parameters can be determined or predicted

by equilibrium swelling experiments [83] and the theory of hydrogel elastic networks

reported by Peppas and Merrill [78].

The hydrogels formed by physical treatments were considered to be in a relaxed

state. The weight and volume of the relaxed membranes were measured by a Density

Measurement Kit. Briefly, the as-formed hydrogels were weighed in air and then im-

mediately weighed in iso-octane. When weighing in iso-octane, the sample was put

into the stainless steel mesh basket which was then suspended in iso-octane. To deter-

mine the equilibrium swelling ratio, Q (Eq. 3.6), the membranes in the relaxed state

were placed in deionized water at room temperature for 4 days to swell to equilibrium

and then were dried for 6 h with a freeze-dryer . Q indicates relative polymer volume

fraction for a hydrogel.

The calculation method used for our equilibrium swelling studies was similar to

that used by Peppas and Wright [83]. The polymer volume fraction in the relaxed state

and swollen state were calculated using Eqs. 3.1 and 3.2.

V2,r =
Vd

Vr
(3.1)

V2,s =
Vd

Vs
(3.2)

where, Vd , Vr and Vs are the volume of the polymer samples in the dry, relaxed,

and swollen states, respectively; V2,r and V2,s are the polymer volume fractions of the

relaxed and swollen polymer gel, respectively.

The volumes were calculated using Eqs 3.3, 3.4 and 3.5. which utilize the weights

of the dry polymer, Wd , the relaxed polymer, Wr, and the swollen polymer, Ws, in the

air and iso-octane. a refers to the weight in the air and i refer to the weight in the

iso-octane.
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Vd =
Wa,d −Wi,d

ρi
(3.3)

Vr =
Wa,r −Wi,r

ρi
(3.4)

Vs =
Wa,s −Wi,s

ρi
(3.5)

where ρiis the density of iso-octane (0.691 g/ml). The equilibrium swelling ratio,

Q, in this study is defined as Eq. 3.6

Q =
1

V2,s
(3.6)

3.2.2.2 Rehydration study

Dehydrated PVA hydrogel is able to re-swell completely to the predehydrated level

[88, 90]. This rehydration is a process of re-expanding the polymer structure by the

diffusion of water, which indicated the stability of hydrogel structure.

Samples for the rehydration study were cut from the as-formed PVA-based hy-

drogels. The water was removed from samples by drying with the freeze-dryer for 6

h. The sample weight was monitored periodically to make sure the sample was com-

pletely dehydrated. The dry weight was recorded before immersing the dehydrated

samples in deionized water. The sample weight was first measured half an hour after

immersion, then taken out every hour for the next 4 h. As swelling approached the

equilibrium, sample was taken out of the water for weighing after 12, 15.5, 20, and 36

h. The dry and wet weights of the samples were used to calculate the swelling ratio in

rehydration.
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3.2.2.3 Uniaxial tensile tests

The uniaxial tensile test is a commonly used test for evaluating the mechanical prop-

erties of materials. A programmed force or a specify strain rate is applied to specimen

by the tensile test machine, resulting in the gradual elongation and eventual fracture

of the specimen. The force-extension data are monitored and can be used to quantify

some important mechanical properties, such as Young’s modulus.

Two different types of samples were tested: hydrogels and laminates of hydrogels

with electrospun fibres. The fabrication of the composite specimens is discussed in

Section 3.2.5.1.

Uniaxial tensile tests were conducted on a Zwick Z005 displacement controlled

tensile testing machine. All PVA/Gelatin hydrogel samples were cut in dog-bone shape

(Figure 3.5 A) and swollen to the equilibrium state before tensile testing. Fixed grips

were mounted onto the tensile testing machine. Abrasive paper was placed between

the hydrogel sample and the grip surface to prevent slippage during loading. All tests

followed the protocol established by Mathews et al. [10]. Briefly, a preconditioning

cycle was performed firstly at 60% min−1 strain rate to 60% strain and the hydrogel

samples were then loaded to failure (Figure 3.6). The preconditioning protocol is de-

scribed in more detail in Section 4.3.1.The behavior of the material changes with the

first cycle but does not change under any subsequent loading cycles. Six samples of

each type of hydrogel were tested. The broken sample after tensile test is shown in

Figure 3.5 B.

3.2.3 The structure formation of PVA/Gelatin hydrogels

3.2.3.1 Attenuated total reflectance fourier transform infrared spectroscopy (ATR-

FTIR)

FTIR is a sensitive characterisation technique which can detect molecule interactions.

This technique examine samples through the vibrations of the atoms and molecules.

An infrared spectrum is a plot of the energy absorption over a range of wave numbers
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Figure 3.5: Hydrogels samples for uniaxial tensile test. (A) Dog-bone hydrogel sam-
ples; (B) Dog-bone sample before and after tensile test. Note that the hydrogel samples
were griped with abrasive paper to prevent slippage during loading.

Figure 3.6: Stretching of hydrogel samples in uniaxial tensile test.
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when infrared radiation passes through a sample. The energy absorption peak corre-

sponds to the frequency of a vibration of the sample molecule [128]. Conventionally,

potassium bromide (KBr) is grounded with a solid sample to make a die for analy-

sis. The attenuated total reflectance (ATR) mode of the FTIR system provides a better

and easier sampling technique for liquid and solid sample when compared with the

conventional technique.

Fourier transform infrared spectroscopy was carried out on samples of PVA, gelatin

and PVA/Gelatin hydrogels using the Attenuated Total Reflectance (ATR) mode on a

Nicolet Avator 360 FTIR, with a 32 scan per sample cycle and a resolution of 8 cm−1.

The samples were scanned from 400 to 4000 cm−1.

3.2.3.2 Modulated differential scanning calorimetry (MDSC)

Differential Scanning Calorimetry (DSC) is a technique most often used for character-

izing the glass transition temperature, melting temperature, crystallization temperature

and other phase transitions of materials. It measures the power (heat energy per unit

time) differential between a sample and reference and is shown as a function of temper-

ature [129]. Modulated DSC permits separation of overlapping events that are difficult

to do by standard DSC and provides further information to have a better understanding

of the thermal properties of materials.

MDSC analysis was performed on hydrogel samples with the DSC 2920 Modu-

lated DSC (TA Instruments) containing a refrigerator cooling system. All samples

were dried at 30 °C for 20h before analysis. 8 – 12 mg of dry sample was placed in a

hermetically sealed aluminum pan. An empty hermetically sealed aluminum pan was

used as the reference cell. The samples were ramped from 10 to 120 °C and isother-

mally held for five minutes. After this the sample was cooled and the calorimetry data

was collected from 10 to 300 °C (modulated +/- 1°C every 60 seconds) with a heating

rate of 10 °C/min under nitrogen atmosphere. The instrument was calibrated using

indium as standard.
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3.2.3.3 Dynamic mechanical thermal analysis (DMTA)

DMTA is a versatile technique to have information linking chemical composition di-

rectly with mechanical properties in a single test. With an oscillatory mechanical defor-

mation mode, DMTA measures the dynamic modulus of sample during a programmed

temperature scan at controlled frequency [129]. It is more sensitive and yields more

easily interpreted information in measuring glass transition temperature compared to

another conventional measurement, DSC.

DMTA scans were performed using a Rheometric scientific mark III DMTA in

tensile mode. Samples were dried in an LMS cooled incubator at 4 °C for 7 days

and the specimens for DMTA testing (7mm×3mm×0.5mm) were cut from the selected

samples. The temperature profile ranged from -40 to 250°C at a 2 °C/min heating rate

with a frequency of 1Hz.

3.2.3.4 Low strain rheological measurements

The Rheometric system is especially suitable for measuring the viscoelasticity of ma-

terials. It has the advantage of separating the moduli into the elastic component and

the viscous component, which are represented by the dynamic storage modulus (G’)

and the dynamic loss modulus (G”) respectively.

Oscillatory parallel plate rheological measurements were carried out on PVA/Gelatin

hydrogels using an Advanced Rheometer AR1000 (TA instruments) fitted with a Peltier

temperature controller to measure the dynamic storage modulus (G‘). Hydrated hydro-

gel samples were tested in triplicate (using individual samples) at a temperature of 20

°C using a 6 cm parallel steel plate. A strain sweep was applied from 5× 10−4 to

3× 10−3 at a frequency of 1Hz, while a constant normal force of 10± 0.5 N was ex-

erted on the samples. A low frequency and low strain range was adopted while all

samples were blotted free of water using filter paper prior to testing in an attempt to

minimize slippage.
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3.2.4 PVA-SbQ fibres

3.2.4.1 Photoactivation of PVA-SbQ

• Ultraviolet-visible spectroscopy (UV-VIS)

UV-VIS is a technique to measure the light absorption of molecules which represent the

electronic transitions from the ground state to the excited state. The use of Shimadzu

UV-3100 ultraviolet-visible spectroscopy allows for evaluating the photoreaction of

PVA-SbQ. PVA-SbQ was diluted from 13.3% to 3.3% and 10%, and then their UV

absorbencies were measured in a UV disposable plastic cuvette. Distilled water was

used as a control.

• Attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR)

PVA-SbQ fibres with varied exposure duration to the UV lamp were prepared for FTIR

analysis to study the molecular structure change upon photocrosslinking. The FTIR

analysis was carried out by using the Attenuated Total Reflectance (ATR) mode on a

Nicolet Avator 360 FTIR, with a 32 scan per sample cycle and a resolution of 8 cm−1.

The samples were scanned from 400 to 4000 cm−1.

3.2.4.2 Weight loss measurement

The water solubility of PVA, PVA-SbQ and PVA-SbQ-hv fibres was studied by mass

loss measurement. The fibres were immersed in 37 ˚C distilled water for 5 days. All

samples were vacuum dried before measuring mass loss.

3.2.4.3 Scanning electron microscopy (SEM)

The SEM is a technique to image the surface of samples. When high-energy electrons

are applied to scan the sample surface, they interact with the atoms of samples and

produce signals, such as secondary electrons, back scattered electrons and characteris-

tic x-rays, which contain information of the sample surface, including the topography
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and composition. The use of EVO LS15 scanning electron microscopy allows for ob-

serving the morphology PVA fibres and PVA-SbQ fibres. Prior to observation, fibres

were dried at room temperature and coated with thin conducting material, gold, to pre-

vent the accumulation of electrostatic charge during electron scanning. The fibres were

collected onto carbon tape, which is able to improve the conductivity of sample and

increase the contrast of image.

3.2.4.4 Endothelial cell culture on PVA-SbQ fibres

Bovine aortic endothelial cells (AG08504, Coriell Institute, NJ, USA) at passage 10

were cultured by RPMI 1640 medium with 10% fetal bovine serum. The medium was

changed every 2-3 days and culture flasks or plates were maintained in a humidified

incubator at 37 °C with 5% CO2. At 80-90% confluence, the endothelial cells were

detached with 1% trypsin-EDTA and counted with a hemocytometer. Cells were then

seeded onto scaffold in the density of 2× 105 cells/cm2. It is important that the cell

suspension was concentrated by centrifuging and seeded on the scaffold for 20min to

induce initial cell attachment. The additional culture medium was gently filled into

6-well culture plate along the well wall to prevent flushing cell away from scaffolds.

3.2.4.5 Immunofluoresence Staining

Immunofluoresence staining was performed to assess the cell attachment on PVA-SbQ

fibre scaffolds. After 1 day of cell cultured, the fibre sample with cells on it were

stained with DAPI and Phalloidin-FITC. DAPI is a blue fluorescent nucleic acid stain

which shows the cell nucleus. Phalloidin is a fungal toxin with ability to bind to F-

actin in liver and muscle cells and shows green color with FITC label. Phalloidin-FITC

stains the cytoskeleton. Briefly, the scaffold samples were fixed with 3.7% formalde-

hyde for 30 minutes and rinsed with PBS. Then the cells were permeated by immers-

ing in 0.1% triton-X solution for 2-3 minutes. After permeation, the samples were

incubated in PBS containing 1% BSA at 37 °C for 30 minutes to reduce nonspecific
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background staining. 1: 1000 dilution of DAPI (1 mg/mL in stock) and 1:20 dilu-

tion of Phalloidin-FITC (0.5 mg/mL in stock) were then added onto the samples and

they were incubated in the dark for 15 minutes. Rinsing with PBS several times, the

samples were then viewed under fluorescence microscope with multiple fluorescence

modes (Olympus BX51, Japan).

3.2.4.6 Cell morphology

The morphology of endothelial cells on fibres was observed by the use of EVO LS15

scanning electron microscopy (SEM). After 1-day cell culture, the fibre samples with

endothelial cells attached were firstly fixed with 3.7% formaldehyde for 30 mins and

then dried at room temperature for 1 week. Prior to SEM observation, the samples

were coated with gold to reduce the accumulation of the electrostatic charge when the

electrons scanned.

3.2.5 Study on hydrogel/fibre duo-layer construct

3.2.5.1 Fabrication of hydrogel/fibre duo-layer film

The duo-layer film samples were designed for the uniaxial tensile test. The fabrication

process of hydrogel/fibre duo-layer film has been shown in Figure 3.7. Glass slides

were applied as a casting mould for the duo-layer film. Briefly, one glass slide is firstly

laminated with 5% PVA solution. Upon drying, PVA thin film is formed on the glass

slide (Figure 3.7 A). PVA-SbQ fibres are deposited onto this glass slide by electrospin-

ning technique (Figure 3.7 B). The process parameters in the electrospinning are 10cm

as electrospinning distance, 10kv as positive potential, 0.3 mL/h as solution feeding

rate and 20min as collecting duration. The collected fibres are then photocrosslinked

by exposing to 365nm UV light for 20min. PVA/Gelatin solution is prepared as the

same way of in section 3.2.1.1. The as-prepared PVA/Gelatin solution is casted onto

fibres (Figure 3.7 C) and covered by another glass slide (Figure 3.7 D). Aluminium

spacers are placed in between the glass slides to control the thickness of the film.
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Figure 3.7: Schematic diagram of fabrication of hydrogel/fibre duo-layer film.

Upon 1 cycle freeze-thawing treatment and 1 h coagulation (dynamic coagulation bath

stirred by magnetic stirrer), PVA/Gelatin hydrogel and PVA-SbQ fibres duo-layer film

is therefore fabricated (Figure 3.7 E). Note that the PVA thin film eases the detachment

of final duo-layer film from glass slide.

3.2.5.2 Fabrication of hydrogel/fibre duo-layer vessel

The concept of fabricating hydrogel/fibre duo-layer vessel is similar to that of duo-

layer film. Figure 3.8 showed the schematic diagram of the fabrication process of the

duo-layer vessel. The PVA-SbQ fibres and PVA/Gelatin solution were prepared with

the same process parameters as in Section 3.2.5.1. The as-prepared PVA-SbQ fibres

were manually covered onto a stainless steel mandrel. This mandrel is then placed in

the graft casting mould (Figure 3.2 B). Upon injecting PVA/Gelatin solution, the mould

was then subject to 1 freeze-thaw cycle. The as-formed hydrogel/fibre construct was

further submerged into coagulation bath for 1h to obtain the final vessel graft. Coagula-

tion treatment was performed in either static coagulation bath or dynamic coagulation

bath as in section 3.2.1.1. Note that it is important to have the fibrous mat big enough
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Figure 3.8: Schematic diagram of fabrication of hydrogel/fibre duo-layer vessel.Note
that the PVA-SbQ fibres were manually covered onto the stainless steel mandrel in this
study.

to cover the whole mandrel to ensure the reproducibility of the duo-layer vessel.

3.2.5.3 Uniaxial tensile test

Uniaxial tensile test was performed in the same parameters as in section 3.2.2.3. The

duo-layer film samples tested were shown in table 3.2.

Table 3.2: Samples for uniaxial tensile test.
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3.2.5.4 Compliance test

A system was set up to perform compliance tests by Dr. C. Lally’s research group

at Dublin City University. It mainly includes a pump to generate pulsatile cardiac

pressure, a sensor to monitor pressure in the system and a video-extensometer to track

the changes in the external diameter of vessel graft with respect to each pressure cycle.

Two types of tubular samples were tested, including:

1. PVA/Gelatin hydrogel vessel with 1 freeze-thaw cycle and 1h coagulation treat-

ment (static coagulation bath).

2. PVA/Gelatin Hydrogel / PVA-SbQ fibre duo-layer vessel with 1 freeze-thaw cy-

cle and 1h coagulation treatment (static coagulation bath).

A typical pulsatile pressure over time (monitored by the pressure sensor) is shown in

Fig 3.9A, and the corresponding displacement of vessel over time (tracked by video-

extensometer) is shown Fig 3.9B. The pulse pressure was controlled over a range of

mean pressures (40- 140 mmHg) with an increment of 10 mmHg. At each mean pres-

sure, 60 mmHg was set to be the constant difference between end-diastolic pressure

and end-systolic pressure. The end-systolic and end-systolic external diameters were

measured from the waveform of displacement, like that shown in Fig 3.9B.

The compliance (C) of the vessel grafts is determined at each mean pressure as

follows [6]:

Compliance =
Ds −Dd

Dd × (Ps −Pd)
×104 (3.7)

Where Ds and Dd are systolic and diastolic external diameter of grafts, and Ps and

Pd are systolic and diastolic pressure, respectively. In the test, Ps −Pd is maintained as

60 mmHg. The unit of compliance is % per mmHg ×10−2.
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Figure 3.9: Typical profile of pressure versus time and displacement versus time in
compliance test. The control on the frequency of pusatile flow was of concern and
therefore the profiles were ploted without specific time on x-axis.
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3.2.6 Statistical Analysis

Each experiment was performed three to six times. All quantitative data are presented

as Mean ± S.D. Statistic analysis was conducted by two-way analysis of variance

(ANOVA). The statistical differences between the treatment and control were deter-

mined by Tukey’s Honestly Significant Differences Test. The level of statistical signif-

icance was set to p < 0.05.
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Chapter 4

Composite hydrogels of PVA with

natural macromolecules

4.1 Introduction

4.1.1 PVA and chitosan/gelatin/starch blending system

Polyvinyl alcohol (PVA), as a synthetic polymer, has attracted attention as a potential

biomaterial for artificial blood vessels because it can be fabricated as hydrogel, and

can match the mechanical properties of the vascular system [7, 8, 9, 130]. However,

PVA hydrogels by themselves are not suitable for cell adherence due to their highly

hydrophilic nature. To tackle this issue, various biocompatible macromolecules have

been blended with PVA to provide for cell attachment to the gel. Gelatin, dextran,

collagen, starch, chitosan, and hyaluronic acid blended with PVA have been intensively

studied by Cascone et al. [131, 132, 133, 134]

Chitosan is a cationic polysaccharide obtained by alkaline deacetylation of chitin.

It has been widely used to improve the cell attachment of PVA hydrogels. Chuang et al.

[135] and Koyano et al. [136] reported that chitosan blended with PVA is favorable for

the attachment and growth of fibroblast cells. One previous study has shown that the

chitosan blended with PVA allowed vascular smooth muscle and endothelial cells to
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attach and grow on the hydrogel [10]. Gelatin, a natural protein derived from collagen

denaturation, maintains functional groups to promote cell attachment [137, 138] and

is known to exhibit biocompatibility in long term clinical applications [139]. Gelatin

is widely used to fabricate tissue scaffolds in combination with various synthetic poly-

mers for the purpose of improving the biocompatibility of synthetic polymers, [7, 140]

including PVA[138]. Starch, a polysaccharide-based polymer, is a mixture of amylose

and amylopectin and it has been blended with PVA in previous studies [141, 142].

4.1.2 Freeze-thawing and coagulation

PVA hydrogels can be prepared by chemical crosslinking, photocrosslinking, high-

energy irradiation, or physical crosslinking (such as the freeze-thaw technique). Among

these, the freeze-thaw technique has a remarkable advantage of being able to crosslink

the polymer solution without leaving in the gel matrix any crosslink remnant which

could leak out and evoke serious inflammatory response after implantation into the

human body. The freeze-thaw process is capable of producing PVA hydrogels with a

wide range of mechanical properties by controlling parameters such as the number of

freeze-thaw cycles, the quenching temperature, and the thawing rate. An increase in the

number of freeze-thaw cycles and a decrease in the thawing rate could result in a stiffer

hydrogel. However, this would render the manufacturing process time-consuming. In

manufacturing polymer product, a fast and cost-efficient processing route is required.

Moreover, freeze-thawing cycles do not have the same effect on the substitutes as on

PVA; thus the degradation of the substitutes would be faster than the PVA, which could

compromise the hydrogel composition.

Polymer coagulation is an important technique in polymer solution processing. It

involves quenching a polymer solution in an aqueous nonsolvent, which results in

solvent-nonsolvent exchange and polymer precipitation [143]. This process would

considerably simplify the manufacturing route and act as another physical crosslink-

ing route for PVA-based hydrogels.
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4.1.3 Objective of this study

In this study, PVA was blended with chitosan, gelatin and with starch, and treated

with a combination of freeze-thaw and coagulation techniques to obtain hydrogels for

evaluation with respect to artificial blood vessel applications. The structure-property

reltionships were examined by measuring the swelling, rehydration, mechanical prop-

erties of PVA based hydrogels. In particular, the influence of the number of freeze-thaw

cycles, coagulation and additive type on the structure on the structure and mechanical

properties were investigatede.

4.2 Results

4.2.1 Equilibrium swelling study

The equilibrium swelling ratios of each PVA hydrogel sample are shown in Figure 4.1.

For all the PVA hydrogels, the equilibrium swelling ratio decreases with increasing

number of freeze-thaw cycle and with coagulation treatment, although some varia-

tion is observed. The highly swollen hydrogel represents a less tight structure and a

lower degree of crosslinking compared to the hydrogels with lower swelling ratio. The

crosslinks in the hydrogel hinder the mobility of polymer chain and resulted in a lower

swelling ratio [144].

For PVA, PVA/Chitosan and PVA/Gelatin hydrogels, the samples treated for one

freeze-thaw cycle without coagulation showed a much more swollen structure than

others (p < 0.05). However, the “overshoot” in the volume swelling ratio is a strong

indication of some initial instability due to the loss of crystallinity and chain dissolution

[145].

Increasing the number of freeze-thaw cycles leads to further formation of crystals

which act as crosslinking sites, therefore indicating a more stable network structure,

which behaves like a less swollen structure. The equilibrium swelling decreases with

the increasing number of freeze-thaw cycles, except for the PVA/starch hydrogels. Af-
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Figure 4.1: The equilibrium swelling of PVA based hydrogels (n=4).

ter submersion in the coagulation bath, the equilibrium swelling ratio of all hydrogels

went through a significant decrease in their equilibrium swelling ratio (p < 0.05).

4.2.2 PVA hydrogel structure

The degree of equilibrium swelling is closely related to the hydrogel structure. A high

degree of equilibrium swelling is generally associated with large pore or mesh size

of gel network. A significant change in the structure of PVA based hydrogels can be

qualitatively reflected by the changes in equilibrium swelling. Flory and Rehner [146]

contributed to the early development of rubber elasticity theory for polymers. Peppas

and Merrill et al. [78] further modified this theory and developed a new model suitable

for studying the structural properties of hydrogels prepared in the presence of a solvent.

Two structural properties, including the average molecular weight between crosslinks,

Mc, and mesh size, ξ , were predicted by Eqs 4.1 and 4.2 [78].
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Table 4.1: Network structure properties of PVA hydrogels

1
Mc

=
2

Mn
−

ln(1−V2,s)+V2,s+χV 2
2,s

ρ2V1

V2,r

[(
V2,s
V2,r

)1/2
−
(

V2,s
2V2,r

)] (4.1)

ξ = Q−1/3
[
C∞

(
2Mc

Mr

)]1/2

l (4.2)

Where Mn is the average molecular weight of PVA, ρ2 is the density of the dry

polymer (1.269 g/cm3 for atactic PVA), and V1 is the molar volume of the solvent (18

cm3/mol for water). C∞ is the Flory characteristic ratio (8.4 for PVA), and l is the

carbon-carbon bond length (1.54 Å). The Flory-Huggins interaction parameter, χ , is

another important parameter. The χ of PVA and water is 0.494 [147]. This model

will now be applied to PVA-only cryogels which have been processed by four differ-

ent routes, and used to provide estimates of the molecular weight between crosslinks

and mesh size. Even though the χ of chitosan, starch and gelatin have not been re-

ported in literatures and some further determination of χ will be required in future

works, the effect of the number of freeze-thaw cycles and coagulation on the network

structure of PVA hydrogel can be clearly addressed from Table 4.1. The molecular

weight between crosslinks (Mc) and mesh size (ξ ) were remarkably decreased with

the increasing number of freeze-thaw cycles and the treatment of coagulation bath.

However, there is no significant different between PVA hydrogels with 1 cycle after

coagulation bath (1Cycles-acb) and 3 cycles before coagulation bath (3Cycles-bcb).
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Figure 4.2: The rehydration profiles of PVA based hydrogels (n=3).

4.2.3 Rehydration study and reequilibrium ratio

When a dehydrated hydrogel sample is submerged into water, swelling occurs due to

water absorption, which is induced by osmotic pressure. During the sorption process,

diffusion of water into the sample matrix causes continuous changes in materials un-

til equilibrium swelling is reached [148]. The sorption behavior of dehydrated PVA

samples is shown in Figure 4.2. The swelling ratio is plotted against the square root of

sorption time to aid interpretation. In general, sorption occurs rapidly within the first

few hours, and then slows down after approximately 5 hours as equilibrium swelling

is approached. The sorption curves in Figure 4.2 are close to sigmoid behavior, which

is related to the diffusion behavior of water. The anomalous water sorption behavior

of hydrophilic polymers including PVA has previously been reported [149], following

a similar pattern to that shown here for short times.
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4.2.4 Mechanical properties

The data obtained from tensile tests was in the form of load versus extension data,

which was then converted into engineering stress versus engineering strain and further

converted into true stress versus true strain, using the sample cross section area and the

initial gauge length. The true stress and true strain were calculated by eqs. 4.3, 4.4,

4.5 and 4.6 as follows:

σE =
F
A0

(4.3)

εE =
l − l0

l0
(4.4)

σT = σE(1+ εE) (4.5)

εT = ln(1+ εE) (4.6)

Where σE is engineering stress, F is force, A0 is initial cross-section area, εE is

engineering strain, l is final extension, and l0 is intial gauge length, σT is true stress

and εT is true strain. Even though the approximate average strain between diastole

and systole of porcine aortic root is between 20 and 30% [9, 150], to provide a full

characterization of the uniaxial mechanical response up to and beyond in vivo strain

levels, data was shown up to 40% strain.

Figure 4.3 presents the effect of numbers of freeze-thaw cycles and the coagulation

bath on the tensile property of PVA hydrogels. When ANOVA was applied to the

stress reading of all PVA hydrogel samples at 40% strain, a stiffening effect is observed

between p1-bcb and p3-bcb hydrogels (where p1 and p3 denote pure PVA hydrogels

with one and three freeze-thaw cycles, respectively, and bcb signifies hydrogels tested

before coagulation bath treatment). The coagulation bath enhanced the stiffness of
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Figure 4.3: The effect of freeze-thaw cycles and coagulation treatments on PVA hy-
drogels (n=6).

both 1 cycle and 3 cycles PVA hydrogels, but no statistically difference was found

between p1-acb and p3-acb (p > 0.05), where the acb designation refers to hydrogels

after coagulation bath treatment.

Figures 4.4, 4.5 and 4.6 show the effect of freeze-thaw cycles and the coagulation

bath on the tensile properties of PVA/Chitosan, PVA/Gelatin, and PVA/Starch hydro-

gels. Note that, in the labeling system used in these Figures, pc, pg, and ps refer

to the PVA/Chitosan, PVA/Gelatin, and PVA/Starch compositions, respectively. The

PVA/chitosan (Figure 4.4) and PVA/starch (Figure 4.6) hydrogels showed increased

stiffness for the higher number of freeze-thaw cycles and after the coagulation treat-

ment. For PVA/chitosan samples, a statistically significant difference for stress at

40% strain was found between each of the four experimental cases (p < 0.05). For

PVA/starch hydrogels, this significant difference is also found. As for PVA/Gelatin

hydrogels (Figure 4.5), the higher number of freeze-thaw cycles and the coagulation

bath treatment have a similar effect on stiffness as for the other two blend systems.

However, there is no significant difference between pg1-acb and pg3-bcb (p > 0.05).
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Figure 4.4: The effect of freeze-thaw cycles and coagulation treatments on
PVA/Chitosan hydrogels (n=6).

Otherwise, the stiffness of the hydrogels increased according to the following order;

1-bcb, 3-bcb, 1-acb to 3-acb.

4.3 Discussion

Hydrogel grafts for vascular tissue engineering are required to have physical stability

and tissue-like elasticity. In this study, the equilibrium swelling ratio (Figure 4.1) was

investigated as an indicator for hydrogel structure which is confirmed for the PVA

hydrogel by calculating average molecular weight between crosslinks and mesh size

(Table 4.1). The uniaxial tensile test was applied to profile the stress-strain relationship

of each hydrogel.

4.3.1 Preconditioning cycle

Figure 4.7 showed the effect of two preconditioning cycles (repeated loading to 60%

strain and unloading to 0% strain) on the stress-strain profile of the hydrogel. In the
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Figure 4.5: The effect of freeze-thaw cycles and coagulation treatments on
PVA/Gelatin hydrogels (n=6).

Figure 4.6: The effect of freeze-thaw cycles and coagulation treatments on PVA/Starch
hydrogels (n=6).

63



first preconditioning cycle, the hydrogel sample is conditioned with the loading and

unloading process. The unloading profile of the first preconditioning cycle overlays

the unloading of the second preconditioning cycle. The loading profile of the second

preconditioning cycle overlays the final loading path. If additional preconditioning cy-

cles were performed, the profile will be the same as the second preconditioning cycle.

This also means that one loading and unloading cycle is sufficient for preconditioning

the hydrogel. The significant different between first loading and second loading profile

represents the rearrangement of hydrogel network to the external uniaxil tensile stress.

The softening effect of the second preconditioning cycle is similar to the hysteresis

effect of native arteries [151], called the hysteresis loop. The area enclosed in the

loop indicates the energy lost by viscoelasticity [152], which would help to smooth the

pulsatile flow.

The preconditioning cycle is able to stabilise tissue or hydrogel samples and re-

produce the state of tissue sample in the physiologic condition [153]. It is therefore

recommended that preconditioning cycles should be performed in tensile tests for ei-

ther the hydrogels produced or for the native arteries.

4.3.2 Nonlinearity

It is well accepted that the stress-strain relationship of arteries is non-linear [152, 154,

21, 22, 23, 24, 25]. This nonlinearity is due to the main components of arteries, elastin

and collagen [152, 154], see Figure 4.8. Elastin is an elastic component which can

be recruited from the low strain range. Collagen is a component stiffer than elastin.

Collagen fibres are initially in the coiled state. It is therefore the case that only elastin

is initially employed to resist external load. When the extension passes a critical strain,

the coiled collagen fibres are stretched and take a main role in response to the external

load [25].

This non-linear elasticity of arteries is of extreme importance for damping out the

pulsatile blood flow and allowing regular irrigation of downstream organs [155]. The

64



Figure 4.7: Preconditioning cycles in tensile test on a hydrogel sample. Arrows repre-
sent loading and unloading.

Figure 4.8: The tension-length profile of human iliac artery and its main components,
elastin and collagen. Trypsin digestion removed elastin and remained collagen fibres.
Formic-acid digestion removed collagen and remained elastin fibres. (data redrawn by
Shadwick [152] from Roach and Burton [27])
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cyclic nature of the heart pump produces cyclic increases and decreases in blood pres-

sure which creates pulsatile blood flow [156]. This non-constant flow would result in

high shear stress and irregular irrigation of organs. To address this and to smooth the

blood flow, the elastic arteries serve as compliance chambers that temporarily store the

stretching energy at systole (heart ejects blood) and release this energy by compressing

the filled blood at diastole (heart fills with blood). Therefore the diastolic pressure in

arteries does not decrease as much as in the heart. In fact, the diastolic pressure of

aorta is maintained at a high value in humans. The systolic/diastolic pressure of the

heart left ventricle is about 120/5 mmHg. In contrast, that of the aorta is kept at about

120/80 mmHg.

The mechanical properties of the PVA-based composite hydrogels were studied

using tensile tests. All the stress-strain curves in Figures 4.3, 4.4, 4.5 and 4.6 show

a nonlinear response that agrees with the nonlinear stress-strain behaviour of arteries.

It is reported that elastin mainly contributes to the initial low stiffness region of the

nonlinear curve, whereas collagen is responsible for the higher stiffness region at large

strains [7, 157]. A similar kind of behavior might be expected for the composites used

in this study. However, the mechanical properties appear to be dominated by PVA.

As for the PVA hydrogel, there are three different regions that can be classified in its

microstructure that would contribute to mechanical properties in a different manner:

crystalline phase, amorphous phase, and water. Watase et al. [158] first investigated the

effect of freezing and evacuating of PVA hydrogels on the complex Young’s modulus,

and concluded that the increase of the elastic modulus is due to increased crystallinity

in the PVA hydrogel. Wan et al. [7] reported that the uncoiling and reorganizing of the

polymer chain in PVA hydrogel under loading might contribute to the nonlinear tensile

property of PVA hydrogel.

A summary of the secant modulus measurements at 40% strain is shown in Figure

4.9. All the PVA-based hydrogels showed two similar trends. First, the increase in

secant modulus by increasing the number of freeze-thaw cycles without coagulation
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Figure 4.9: Secant modulus of PVA based hydrogels at 40% strain (n=6).

was significant. The modulus has increased 2-5-fold when the number of freeze-thaw

cycle was increased from 1 to 3. This is in agreement with the previous studies for

PVA hydrogels [7, 158, 159]. The second trend is that the treatment of the coagulation

bath significantly increased the modulus of the hydrogels.

4.3.3 Reswelling ratio

In comparing the equilibrium swelling of the as-formed hydrogel (Figure 4.1) and of

the dehydrated hydrogel (Figure 4.2), the difference between these two equilibriums

can be addressed and presented as reswelling ratio (Figure 4.10). This reswelling ratio

is a ratio between crosslinked polymer fraction and the total polymer fraction of the

as-formed hydrogel, which indicates the physical crosslinking effect of freeze-thaw

cycles and coagulation. Because these two equilibrium properties were determined

for each hydrogel using separate sets of experiments, average equilibrium values were

used to calculate the reswelling ratio. The dehydrated PVA-based hydrogels reswelled

completely to the predehydrated level, which is consistent with other reports[88, 90].

The variation of reswelling ratios is due to the different polymer fraction applied in

calculating these two equilibriums. The equilibriums of as-formed hydrogels are cal-

culated from the polymer fraction of swollen hydrogel. The equilibriums of dehydrated

67



Figure 4.10: The reequilibrium swelling ratio of PVA based hydrogels.

hydrogels are calculated from the polymer fraction of as-formed hydrogel. When the

noncrosslinked polymer fraction leaked out during swelling, the polymer fraction of

the swollen hydrogel became lower than that of the as-formed hydrogel, which resulted

in the variation of reswelling ratios. 10% polymer solution was used to prepare each

hydrogel. After physical crosslinking by freeze-thaw cycles and coagulation, hydrogel

networks were formed with different crosslinked polymer fraction.

The reswelling ratios (Figure 4.10) and secant modulus (Figure 4.9) of the as-

prepared hydrogels are relatively consistent with each other, except for the PVA/starch

hydrogels. The reswelling ratio represented the fraction of polymer crosslinked for the

hydrogels in this study. The increase in reswelling ratio means more polymer has been

crosslinked during freeze-thaw cycles and coagulation. In tensile tests, hydrogels were

extended in one direction, and the gel network would be reorganized. With the increase

in crosslinked polymer fraction, more polymer content would be applied to support the

gel network and, therefore, more resistance to the extension would be generated in the

tensile tests.
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The freeze-thawing process has long been used as a physical crosslinking method

for preparing PVA hydrogels. There are three main theories to explain the effect of

the freeze-thaw process on PVA; hydrogen bonding, polymer crystallite formation,

and liquid-liquid separation [7]. Combined with the model of crystalline formation

during freeze-thaw cycles [160] and the model of coagulation in polymer processing

[143], one hypothesis is given to explain the effect of freeze-thawing and coagula-

tion on the property of PVA-based hydrogels. Starting from fresh polymer solution,

the initial freezing step would form some ice crystals which concentrate the polymer

solution in regions between the ice crystal and promote the formation of PVA crys-

tallites. These crystallites would act as crosslinking sites for polymer chains. Upon

thawing, the ice crystal would melt and create one region of polymer-rich gel which

would be surrounded by another region of polymer-poor solution. During successive

freeze-thawing cycles, additional formation of ice crystals would take place in the re-

gion of polymer-poor solution and the newly generated crystalline sites which further

enhance the polymer crystallization in the gel,resulting in a hydrogel with smaller pore

size (Table 4.1) and higher stiffness (Figure 4.9). Upon immersion of the polymer hy-

drogel in the coagulation bath, the region of polymer-poor solution comes in contact

with the coagulant. The fast solvent-coagulant exchange across the interface of poly-

mer solution and coagulant cause an immediate precipitation of the polymer which

would results in a further enhancement of the polymer crystallization in gel network

and consequently presented a further decrease in pore size (Table 4.1) and higher stiff-

ness (Figure 4.9). Chapter 5 will describe microstructural characterisation experiments

which are intended to further probe the structural formation of one of these hydrogels.

4.4 Summary

In this part of the research, the feasibility of preparing PVA-based hydrogels with

controllable mechanical property was investigated. Three PVA based hydrogels were

prepared by blending PVA with chitosan, gelatin and starch and by treatment with
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freeze-thaw cycles and coagulation. With equilibrium swelling, reswelling and tensile

testing, the synergistic crosslinking with freeze-thaw technique and coagulation was

found to be able to act as versatile method to control the structure and mechanical

properties of PVA-based hydrogels. The secant modulus of the hydrogels can be en-

hanced with the increased cycles of freeze-thaw and with the treatment of coagulation.

The structural property and mechanical property were found to be closely related with

each other.

A parallel study on the endothelial cell behavior on the PVA based hydrogel has

been investigated by my colleague Engin Vrana [161]. It is report that endothelial

cell presented highest proliferation rate on PVA/Gelatin hydrogels after culturing for

10 days. Meanwhile, PVA/Gelatin was able to form much more stable hydrogels,

when comparing the ultimate tensile strength of the three composites hydrogels. For

these reasons, PVA/Gelatin hydrogels were selected for further study in the following

chapters.
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Chapter 5

Structure formation of PVA/Gelatin

hydrogels

5.1 Introduction

In last chapter, the effect of freeze-thaw cycles and coagulation bath on the structural

and mechanical properties of PVA based hydrogels has been addresed. It is clear that

both freeze-thaw cycle and coagulation treatments are able to enhance the stiffness of

PVA/Gelatin hydrogels. However, this is an overall understanding of the relationship

between processing parameters and final properties of hydrogels. To be able to explain

this relationship more clearly, a study on the microsture formation of PVA/Gelatin

hydrogels was necessary.

In this chapter, glass transition temperature, melting temperature, degree of crys-

tallinity, polymer fraction and mechanical properties of PVA/Gelatin hydrogels were

investigated to elucidate the structure formation of these hydrogels.
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Figure 5.1: FTIR spectra of PVA, gelatin and PVA/Gelatin hydrogels.

5.2 Results

5.2.1 ATR-FTIR analysis of PVA/Gelatin hydrogels

The ATR-FTIR spectra for the PVA, gelatin and PVA/Gelatin hydrogels are shown in

Figure 5.1 and the assignment of each peak of PVA and gelatin are listed in table 5.1

and 5.2. Notable differences can be found in the region of 1475-1775 cm−1. The peak

at 1626 cm−1 in the gelatin spectrum can be assigned to the C=O stretching and hy-

drogen bonding coupled with COO- stretching [162, 163]. As PVA only shows a small

shoulder at 1658 cm−1 due to the water absorption, the increase in the intensity of the

peak at about 1630 cm−1 shows the presence of gelatin in the PVA/Gelatin hydrogel.

The peak shift from 1626 cm−1 to 1630 cm−1 indicates an interaction between PVA

and gelatin, which represents the compatibility of PVA and gelatin blend. There is no

significant difference between the other peaks of PVA and the PVA/Gelatin hydrogel.
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Table 5.1: Assignment of the FTIR peak of PVA[147].

Table 5.2: Assignment of the FTIR peak of gelatin [162, 163].
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5.2.2 Thermal analysis of the hydrogel systems

Figure 5.2 presents the MDSC thermograms of the PVA and PVA/Gelatin hydrogel

with 1 freeze-thaw cyle. The relaxation observed at 100-200 oC designated as the βc

relaxation, is due to the relaxation in the PVA crystalline domains. The third relaxation

in the temperature range of 200-250 oC is caused by the melting of the crystalline

domains of PVA [164].

The MDSC thermogram of PVA/Gelatin 1FT hydrogel showed no apparent dif-

ference with that of PVA 1FT hydrogel, which is prepared using the same procedure

as the PVA/Gelatin hydrogel but with 10% PVA instead of 9% PVA and 1% gelatin.

The gelatin does not affect the PVA melting temperature, which indicates that no sig-

nificant modification occurs in the nature of PVA crystallites because of the presence

of gelatin. Cascone et al [134] reported a similar result for a PVA/dextran hydrogel

system. Additionally, the PVA/Gelatin hydrogel is mainly composed of PVA. There-

fore, the following discussion is based on the formation of PVA crystallites during

freeze-thaw cycles and the effect of polymer coagulation.

MDSC analysis of PVA/Gelatin hydrogels (Figure 5.3) shows that the freeze-thawing

and coagulation treatments affect their melting temperature (Tm). The Tm of PVA/Gelatin

hydrogels increased in the order of 1FT, 3FT, 1FT-acb and 3FT-acb, with melting tem-

perature 224 oC, 227 oC, 232 oC and 233 oC, respectively.

5.2.3 Crystallinity analysis of the hydrogel systems

The MDSC thermogram also provides information on the enthalpy of each relaxation.

The heat required for melting of 100% crystalline PVA is 138.6 J/g [165, 166]. There-

fore, the degree of crystallinity can be quantitatively estimated by the enthalpy of melt-

ing, which is the third relaxation in the temperature range of 200-250 oC.

The degrees of crystallinity of PVA/Gelatin hydrogels were calculated as 31.2%,

36.3%, 18.3% and 23.9% for 1FT, 3FT, 1FT-acb and 3FT-acb, respectively. Therefore,

the treatment of freeze-thaw cycles enhanced the degree of crystallinity. In contrast,
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Figure 5.2: MDSC thermograms of PVA and PVA/Gelatin hydrogels with 1 freeze-
thaw cycle.

Figure 5.3: DSC thermograms of PVA/Gelatin dried hydrogels.
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Figure 5.4: Tan delta of PVA/Gelatin dried hydrogels.

the coagulation attenuated the degree of crystallinity.

5.2.4 DMTA analysis of the hydrogel systems

DMTA was used to measure the glass transition temperature (Tg) of the PVA-based

materials. Due to machine constraints, the samples were tested in their dry state, thus

the modulus obtained from DMTA is not considered as an indication of a true hydro-

gel mechanical property. Instead, the storage modulus from rheology tests and data

from ultimate strength from uniaxial tensile tests are used to evaluate the mechanical

properties of these hydrogels.

From the DMTA thermograms a notable shift occurred in the Tan delta values for

the hydrogels samples which correspond to the glass transition (Tg) of the gels (Figure

5.4). By increasing the freeze thaw cycle time from 1 to 3 cycles the Tg shifted from

39.7 to 45.7 oC respectively. This shift is due to the increase in the crystallinity of the

hydrogel. However, in relation to the samples which were prepared using coagulation

treatment, the Tg values decreased (35.6 to 33.6 oC respectively) due to the reduction

in crystallinity. This finding is comparable with the MDSC crystallization analysis.
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Figure 5.5: The polymer fraction of PVA/Gelatin hydrogels (n=4).

5.2.5 Polymer fraction analysis

The polymer fractions calculated for the PVA/Gelatin hydrogels are shown in Fig-

ure 5.5. Both additional thermal treatment and coagulation treatment were found to

enhance the polymer fraction in the hydrogel. The polymer fraction significantly in-

creased from 5.4% for 1FT hydrogel to 12.6% for 3FT hydrogel (P<0.001). When 1FT

and 3FT PVA/Gelatin hydrogels were treated with coagulation, their polymer fractions

further increased to 15.7% and 14.1%, respectively (P<0.001).

5.2.6 Mechanical analysis of the hydrogel systems

In the rheology measurements, samples were tested in triplicate, with 25 storage mod-

ulus (G‘) measurements collected for each test, which resulted in 75 data points being

collected for each type of hydrogel over a narrow strain range. The average value of

the 75 storage modulus data for each type of hydrogel was calculated and results are

shown in Figure 5.6.
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Figure 5.6: Storage modulus of PVA/Gelatin hydrogels in rheological measurement
(n=3).

Both thermal treatment and coagulation treatment increased the mechanical proper-

ties of the PVA/Gelatin hydrogel. The storage modulus obtained from rheological mea-

surement increased significantly from 3495 Pa for the 1FT hydrogel to 8616 Pa for the

3FT hydrogel (P<0.001). With the coagulation treatment, the G‘ of 1FT significantly

increased to 5889 Pa (P<0.05), however, there is no significant difference between G‘

of 3FT and 3FT-acb. The trend between the storage moduli of the PVA/Gelatin hy-

drogels obtained from the rheological analysis agrees well with the ultimate strength

trends measured from the uniaxial tensile test (Figure 5.7). A significant enhancement

in ultimate strength appeared with the number of thermal cycles and the coagulation

treatment, and similarly, no significant difference can be found between the ultimate

strength of 3FT and 3FT-acb.
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Figure 5.7: The ultimate strengths of PVA/Gelatin hydrogels in uniaxial tensile test
(n=6).

5.3 Discussion

Understanding the relationship between structure and properties is always important in

investigating a new material. In this study, PVA and gelatin were blended and formed

into a hydrogel with thermal (freeze-thaw) treatment and coagulation treatment. The

thermal behavior, degree of crystallinity, polymer fraction, storage modulus and ulti-

mate strength of treated PVA/Gelatin hydrogels were studied in this work. The results

are summarized in Table 5.3.

5.3.1 The effect of thermal treatment

The glass transition temperature, melting temperature, degree of crystallinity, poly-

mer fraction and mechanical strength of 3FT hydrogel are all higher then that of 1FT

hydrogel.

PVA polymer chains are held together by hydroxyl bonds to form a folded chain

79



Table 5.3: A summary of testing results.

structure. The hydroxyl groups of PVA are able to form hydrogen bonds within chains

or between chains, which lead to small crystallites scattered in an unordered, amor-

phous polymer matrix [80]. With additional freeze-thaw cycles, the crystalline do-

main grows [86] due to the strengthened hydrogen bonding, which is associated with

an increase in chain stiffness. This increases the glass transition temperature of the

hydrogel. Meanwhile, the crystallite domains served as crosslinks to hold the three-

dimensional structure together [80] and withstand external stress, thus enhancing the

G‘ modulus and ultimate strength [167].

5.3.2 The effect of coagulation treatment

For the coagulation treatment, hydrogels were immersed in the coagulation bath and

vigorously stirred for 1h. After the coagulation treatment, the Tg of both 1FT and 3FT

hydrogels shifted to a lower value, the melting temperature was further increased, the

degree of crystallinity was depressed, and the polymer fraction was enhanced. Only the

mechanical properties (modulus and strength) of 1FT were significantly strengthened

with coagulation treatment.

Yokoyama et al. [89] suggested that PVA hydrogel is composed of three phases,

comprising the water phase, the amorphous PVA phase and the crystal PVA phase.

Mallapragada and Peppas [165] further examined the dissolution of semicrystalline

PVA prepared by annealing at different temperatures. PVA crystallites are folded PVA

polymer chains formed by inter-chain hydrogen bonding. When presented in water,
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PVA crystallites tend to dissolve and result in a decrease in the degree of the crys-

tallinity [80]. In the view of the increase in polymer fraction but decrease in the degree

of crystallinity with coagulation in this study, two continuous processes could be pro-

posed in the treatment of coagulation: one process is the dissolution of PVA crystallites

formed during freeze-thaw cycles; the other process is the coagulation of amorphous

polymer in contact with coagulants. This coagulation could produce different polymer

structures among PVA crystallites, ranging from dust- to finger- to sponge-like mor-

phologies [143]. The decreased proportion of PVA crystal phase and increased propor-

tion of the coagulated amorphous PVA domain is associated with a reduced hydrogen

bonding, which indicates decreased stiffness of the PVA chains and less constrained

chain movement, and therefore a lower Tg.

The Tm increased in the following order; 1FT, 3FT, 1FT-acb and 3FT-acb. Accord-

ing to the Thomson-Gibbs equation [165], the melting temperature observed in DSC

is proportional to the crystal lamellar thickness. An enhanced melting temperature in-

dicates an increased crystal lamellar thickness. In this study, the Tm was enhanced

with coagulation treatment. This could be explained by considering that some parts of

the amorphous domains are coagulated around crystallites which increase the size of

crystal domains. However, the lamellar thickness is also strongly dependent on other

parameters in the Thomson-Gibbs equation, such as the value of the equilibrium melt-

ing temperature of an infinitely thick crystal and the surface free energy per unit area of

the chain folds. This limitation leads to uncertainty in explaining the Tm enhancement

from 1FT to 3FT.

A dramatic increase in polymer fraction indicates that more polymer phase, both

amorphous and crystal, can be employed to withstand external stress, which shows in

the increase of G‘ modulus and ultimate strength from 1FT to 1FT-acb. Because the

polymer fractions of 3FT and 3FT-acb are closer to each other, the differences in the

mass ratio between the crystal phase and amorphous phase would have a proportionally

greater effect on their mechanical properties due to the different rigidity of these two
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phases. The fact that no significant difference can be found between the mechanical

properties of 3FT and 3FT-acb may be attributable to this effect.

5.4 Summary

This part of the research investigated the microstructure formation of PVA/Gelatin hy-

drogel. Infrared spectra were applied to verify the present of gelatin and PVA. The

glass transition temperature, melting temperature and the crystallinity were studied

by thermal analysis, including DSC and DMTA. With additional results on polymer

fraction and mechanical properties of PVA/Gelatin hydrogels, the evolution of the

microstructure of hydrogels was discussed in detail. Briefly, the thermal treatment

(freeze-thaw cycles) increased the strength of hydrogels by growing the crystal do-

mains in PVA matrix which acted as the crosslinks to withstand external stresses. The

coagulation treatment strengthened the mechanical properties of hydrogels by increas-

ing the polymer fraction of the hydrogels, which was resulted from the decreased por-

tion of crystal domains and the increased portion the amorphous PVA phase within

hydrogel matrix.
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Chapter 6

Fabrication of PVA-SbQ fibres by

electrospinning and photocrosslinking

6.1 Introduction

Electrospinning is a highly versatile method that can produce fibres on the micro-

or nano-scale. Electrospun fibre mats have a large surface-to-volume ratio, tunable

porosity, and relatively high production rates, and possess the potential for use in many

technological areas [96, 98]. In the biomaterials field, electrospun fibres have been

successfully applied in wound dressing, in artificial blood vessels, and as vehicles for

controlled drug delivery [168].

Polyvinyl alcohol (PVA), a synthetic polymer, has attracted great attention due to

its hydrophilicity, good physical properties, biocompatibility and chemical resistance

[169]. PVA electrospun fibres could potentially have the merits of both the polymer

and the nano-fibrous architecture. However, high hydrophilicity contributes to the dis-

solution of PVA fibres, which limits its application in some areas, especially in biomed-

ical engineering. There have been several studies related to the crosslinking of PVA

[170, 171, 172]. Gohil et al [170] crosslinked PVA using maleic acid with heat treat-

ment. Ding et al [171] crosslinked electrospun PVA/glyoxal fibres by heat treatment.

Zeng et al [172] synthesised a PVA derivative containing thienyl acrylate groups and
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Figure 6.1: Schematic of the [2+2] cycloaddition reation of PVA-SbQ

photocrosslinked PVA-Thio electrospun fibres with UV irradiation. The crosslinked

PVA in these studies showed less water solubility than non-crosslinked PVA. Another

PVA derivative, PVA with pendent styrylpyridinium groups (SbQ), has been widely

used as a photocrosslinkable material due to its water stability, high photosensitivity

and good storage stability [173]. The photocrosslinking behaviour and mechanism of

PVA-SbQ have been systematically investigated by Ichimura et al [173, 174], Shindo

et al [175, 176, 177] and Cockburn et al [178]. The SbQ pendant groups undergo

[2+2]-cycloaddition reactions which crosslink the PVA backbones (Figure 6.1). The

present study is the first to use PVA-SbQ as a photocrosslinkable polymer to prepare

water-insoluble electrospun fibres. PVA-SbQ fibres were fabricated by the electro-

spinning process and then photocrosslinked with UV irradiation. The photoactivation,

water resistance, and morphology of PVA-SbQ fibres were investigated in this study.

6.2 Results and discussion

6.2.1 Preliminary experiment of electrospun fibres

PVA has been used as a preliminary material for exploiting the electrospun technique.

PVA fibres showed good morphology and sub-micron fibre size (Figure 6.2A). How-

ever, upon being immersed in water and dried immediately, the PVA fibres dissolved

quickly and formed a crispy film (Figure 6.2B). The need for a PVA based fibre that
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Figure 6.2: Morphology of PVA electrospun fibres. (A) Without contact with water;
(B) Briefly immersed in water and dried out immediately.

would be stable in water leads to the following studies of photocrosslinkable PVA,

PVA-SbQ, as a material for electrospinning technique.

6.2.2 Photosensitivity of PVA-SbQ

6.2.2.1 UV-VIS Spectrum

The spectral change of PVA bearing 4.1 mol% 4-styrylpyridinium groups (SbQ) in

aqueous solutions is shown in Figure 6.3. When 3.3% and 10% PVA-SbQ solutions

85



Figure 6.3: Absorption spectra of 3.3% PVA-SbQ and 10% PVA-SbQ.

were exposed to 200~700nm light in measurement, a dramatically wide absorption

band occurs at 200~411 nm for 3.3% PVA-SbQ and 200~428 nm for 10% PVA-SbQ,

which can be attributed to the presence of the SbQ group on the PVA backbone. Inter-

estingly, the absorption value is not affected by the difference in PVA-SbQ concentra-

tion.

Ichimura et al. reported that the photosensitivity of PVA-SbQ was high in spite

of the extraordinarily low content of the styrylpyridinium group [174]. It was reported

that PVA with 1 mol% SbQ was about 10 times more sensitive than PVA that contained

6 wt% of ammonium dichromate. When the SbQ content was increased to 1.9 mol%,

it exhibited about 80 times more sensitivity than the dichromated PVA. Therefore, the

dramatically wide absorption band could be a result of the much higher content of
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SbQ on the PVA backbone, 4.1 mol%, in this study. As PVA-SbQ is sensitive to a

wide range of wavelengths, light sources with various wavelengths could be used to

irradiate the SbQ group to crosslink the PVA-SbQ. In the present work, a 365-nm high

intensity UV lamp was used to irradiate PVA-SbQ fibres after electrospinning.

6.2.2.2 FTIR

The photocrosslinking reaction has been tracked by the FTIR analysis of PVA-SbQ

fibres without UV exposure and with UV exposure for 5 min and 10 min (Figure 6.4).

PVA (Sigma) fibre was applied as a control to the PVA-SbQ fibres. Two absorption

bands, 1652 cm−1 and 1626 cm−1, are of the most interest. PVA fibres have no obvious

absorption in between 1580 cm−1 and 1680 cm−1. PVA-SbQ fibres without UV expo-

sure have a strong absorption at 1626 cm−1 and a small shoulder band at 1652 cm−1.

Upon being exposed to UV light for 5 min, PVA-SbQ fibres showed an enhanced ab-

sorption at 1652 cm−1 and a significantly decreased absorption at 1626 cm−1. When

extending exposure time to 10 min, the spectrum of PVA-SbQ fibre showed no dif-

ference with that of the fibres with 5-min UV exposure. Therefore, the band at 1626

cm−1 was assigned to the C=C bonds of styrylpyridinium pendent groups and the band

at 1652 cm−1 was assigned to the result of [2+2] cycloaddition reaction.

6.2.3 Weight loss measurement

To evaluate water resistance, as-prepared PVA, PVA-SbQ and PVA-SbQ-hv fibres were

immersed in 37 oC distilled water for 5 days. The average mass loss and standard

deviation of these fibres are shown in Figure 6.5. PVA fibres and PVA-SbQ fibres were

soluble in water and are therefore represented as 100 % mass loss. UV irradiation

significantly decreases the water solubility of PVA-SbQ-hv fibres and lowers its mass

loss to about 17.5 % (p<0.001). In fact, the mass of PVA-SbQ-hv fibres reduced to

approximately 17.5% in the first day immersion (data not shown) and then stabilised.

Therefore, this mass loss is attributed to the dissolution of non-crosslinked PVA-SbQ.
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Figure 6.4: ATR-FTIR spectra of PVA fibre exposed to UV light for 0 min, 5 min and
10 min. PVA has been shown as control. (A) IR spectra in 4000-400 cm−1; (B) IR
spectra in 1500-900 cm−1. The band of at 1626 cm−1 was assigned to the C=C bonds
of styrylpyridinium pendent groups and the enhancement at band 1652 cm−1 indicated
the reaction of [2+2] cycloaddition.
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Figure 6.5: Mass loss of PVA, PVA-SbQ and PVA-SbQ-hv fibres (n=4). Data are
presented as mean ± S.D. *p<0.001, significant differences from the PVA and PVA-
SbQ fibres.
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6.2.4 Fibre morphology

The morphology changes of PVA, PVA-SbQ and PVA-SbQ-hv fibres were observed

by SEM (Figure 6.6). Upon water immersion for 5 days, the PVA fibres and PVA-SbQ

fibres totally dissolved in water. Actually, the PVA and PVA-SbQ fibres dissolved im-

mediately upon coming into contact with water. This would clearly present a problem

in vivo. This was shown by dropping water onto these two fibre mats. The trace of

water drops on the fibre mats are shown in Figure 6.6 A and B. With the exposure to

UV light, PVA-SbQ-hv did not change its morphology during water immersion (Figure

6.6 C), and hence remains a viable prospect for in vivo applications.

PVA-SbQ was supplied in a water solution (Polysciences Inc.). Within the elec-

trospinning process, the applied voltages moved the PVA-SbQ solution jet towards

the counter grounded collector with the water evaporating on the way to the collector.

Upon UV irradiation, PVA-SbQ-hv dramatically decreased its solubility. Consistent

with the mass loss result and morphology observation, irradiation is assumed to result

in the formation of cyclobutane rings which leads to the crosslinking of the PVA chains

and their consequently being water-durable [179].

6.2.5 Optimization of electrospinning parameters

Many studies have addressed the processing/property relationships in electrospun poly-

mer fibres [180, 181]. It is clear that the structure and morphology of electrospun fibre

are determined by a synergetic effect of solution parameters and process parameters,

such as viscosity, surface tension, concentration of polymer, solution feed rate and the

applied voltage. The relationship between the parameters and fibre properties iden-

tified in one polymer system may not be suitable for other systems. Therefore, it is

necessary to optimize the electrospinning parameters for PVA-SbQ. This work focused

on the two main parameters of electrospinning technique, applied voltage and feeding

rate. Please note that the fibre collector in this optimization is assembled by parellel

wires, see Figure 6.7. The using of this collector not only helped in optimizing the
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Figure 6.6: SEM micrographs of PVA, PVA-SbQ and PVA-SbQ-hv fibres. (A) PVA
fibres with a trace of water drop, (B) PVA-SbQ fibres with a trace of water drop, (C)
PVA-SbQ-hv fibres during water immersion (label “W” refers to the position of the
trace of water drop) .
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Figure 6.7: The schematic of wired assembled collector. Solid lines are wires and the
dot line represent the edge of collector.

electrospinning parameters for PVA-SbQ, it also indicated the possibility of assem-

bling PVA-SbQ fibres with helical alignment. One electrospinning experiment was

carried out for each case, and multiple samples were obtained from each experiment.

6.2.5.1 Effect of the applied voltage

In this PVA-SbQ/water system, the applied voltage significantly changed the morphol-

ogy of electrospun fibres. 5kV did not reach the jet initiating point, which resulted in

no deposition on the collector. When 10kV voltage was applied, the PVA-SbQ fibre

showed as defect-free and deposited both on wires and in between wires (Figure 6.8

A, C and E). The alignment of the fibres in between wires was relaxed during sample

preparation for the scanning electron microscope, but the predominant alignment of

the fibres is clearly evident (Figure 6.9). The fibre changed to a highly disordered fibre

morphology at a voltage of 15kV (Figure 6.8 B, D and F). As the voltage increases,

there is a shift from circular fibres (Figure 6.9 A) to flat fibres (Figure 6.9 B). Extensive

coiling can also be observed when applied voltage reach 15kV (Figure 6.9 B), which

indicate the splitting and splaying of jet due to the bending instability [182]. This

effect of applied voltage on the electrospun fibre morphology agreed with Deitzel’s

study in PEO/Water system [181]. It was shown that an increase in applied voltage

causes a change in the shape of the jet initiating point, and a consequent change on the

morphology of electrospun fibre [181].
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6.2.5.2 Effect of feeding rate

The feeding rate of PVA-SbQ solution had no significant effect on the morphology

of electrospun fibres (Figure 6.9). As the feeding rate of PVA-SbQ solution was in-

creased, there was an enhancement of the deposition of PVA-SbQ fibres on the collec-

tor. However, with higher feeding rate, the polymer solution tended to accumulate at

the nozzle of syringe and resulted in dripping of solution. For this wire collector, the

dripping effect is apparent at the feeding rate of 0.35 ml/h and 0.5 ml/h. To prevent

wasting of polymer solution, 0.2 ml/h was considered to be the suitable feeding rate

for electrospinning of PVA-SbQ with the wire collector. However, if a plane collector

(surface collect area higher than that of wire collector) should be applied, 0.35 ml/h

will be a better feeding rate to ensure the productivity of PVA-SbQ fibres.

6.2.6 Cell attachment on PVA-SbQ fibres

After endothelial cells were cultured on PVA-SbQ fibres for 1 day, the initial cell at-

tachment was characterized by immunofluoresence staining and the cell morphology

on PVA-SbQ fibres were observed by scanning electron microscopy. Figure 9B showed

the immunofluoresence staining result. The nucleii of endothelial cells were stained by

DAPI and can be seen as a blue colour. Both F-Actin of endothelial cells and PVA-

SbQ fibres were stained by FITC-Phaloidin and can be seen as green colour. When

comparing the immunofluoresence image (Figure 6.10 A) with the image of light mi-

croscopy Figure 6.10 B), the attached cells can be easily distinguished from PVA-SbQ

fibres. With initial seeding density of 2×105 cells/ml, the density of attached cells on

fibres can also been seen from a lower magnification by light microscopy (Figure 6.11

A) and scanning electron microscopy (Figure 6.11 B). It is apparent that endothelials

cells preferably attached to the PVA-SbQ fibres. Some cells spread across PVA-SbQ

fibres and other cells remain in round shape due to the short culture duration (1 day).

The cell-cell contacts can be easily found from Figure 6.11 B.

Another advantage of fibres for cell attachment is that the electrospun fibre could
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Figure 6.8: SEM micrographs of each run of the design of experiment, bar=100µm.
(A)Run 2, 10kV, 0.2 mL/h; (B) Run 3, 15kV, 0.2 mL/h; (C) Run 5, 10kV, 0.35mL/h;
(D) Run 6, 15kV, 0.35mL/h; (E) Run 8, 10kV, 0.5 mL/h; (F) Run 9, 15kV, 0.5 mL/h.
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Figure 6.9: SEM micrographs showing the effect of applied voltage on the structure in
the electrospun PVA-SbQ fibres. (A) 10kV; (B) 15kV.
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Figure 6.10: Immunofluoresence staining of endothelial cell attachment on PVA-SbQ
fibres (bar=50 µm). (A) Immunofluoresence stainning image, DAPI stains cell nucleus
in blue and Phalloidin-FITC stains F-actin and electrospun fibre in green. (B) Light
microscope image, as control.
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Figure 6.11: Morphology of endothelial cell attached on PVA-SbQ fibres. (A) light
microscope image; (B) scanning electronic microscopy image.
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Figure 6.12: Morphology of the endothelial cell attached on PVA-SbQ electrospun
fibres. (A) Cell-cell contact on fibres; (B) Cell hanging on fibres.

act as the guidance for cell growth. In this cell culture experiment, some cells have

been found to grow along the fibres to contact with other cells (figure 6.12 A) and

some other cells are seem to be hanging on fibres (figure 6.12 B), which is evidence

that PVA-SbQ fibres could be applied to guide the growth of endothelial cells.

The present work appears to be the first to use PVA-SbQ as a photocrosslinkable

material for use in the electrospinning process. Ichimura [174] investigated the im-

mobilization of biocatalysts, like enzymes, in PVA-SbQ. The SbQ photosensitive units

provided a promising way to entrap biocatalysts due to the prevention of photochemi-
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cal modification on the biomolecules during photodimerization. Meanwhile, with the

low content of SbQ substitution on the PVA backbone, the physical properties of PVA,

especially the mechanical properties, are likely to be only slightly affected. Together

with the mild crosslinking conditions, PVA-SbQ photocrosslinked electrospun fibres

could act as good candidates for biomedical or tissue engineering scaffold applications.

It should be noted that this is a preliminary evaluation of cell attachment and that a

comprehensive study would be required to evaluate proliferation at various durations,

such as 1day, 3days, 5days, 7days and longer.

6.3 Summary

This part of the research focused on fabricating PVA-SbQ fibres by electrospinning

and photocrosslinking techniques. The PVA-SbQ showed high photosensitivity in the

spectroscopic study. The photocrosslinked PVA-SbQ fibre presented water-insoluble

property in the study of water immersion and the analysis of Secondary Electronic Mi-

croscopy. Electrospinning parameters, including applied voltage and polymer feeding

rate, were optimized to obtained fibres with good morphology and deposition. The

attachment of endothelial cells showed the potential of PVA-SbQ fibres as a substrate

for endothelial cell lining.
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Chapter 7

PVA based hydrogel and fibres

duo-layer construct

7.1 Introduction

The structure and mechanical properties of PVA/Gelatin hydrogel have been investi-

gated in Chapters 4 and 5. The results showed the mechanical properties of the hy-

drogel can be controlled by the treatment of freeze-thawing cycles and coagulation.

Chapter 6 presented the preparation of PVA-SbQ fibres with electrospinning and pho-

tocrosslinking techniques. The attachment of endothelial cells to the fibres has been

demonstrated.

In this chapter, the PVA/Gelatin hydrogel and PVA-SbQ fibres were finally con-

structed as duo-layer vascular graft to take advantage of the merits of both the hydro-

gels and the fibres. PVA/Gelatin hydrogels with one freeze-thaw cycle were prepared

to provide the main mechanical support for the duo-layer construct. The PVA-SbQ fi-

bres were laminated onto the luminal surface of the graft to supply a favourable surface

for endothelial cell attachment.

By understanding the overall effect of the coagulation treatment on the properties

of PVA/Gelatin hydrogel (chapter 5), coagulation parameters (including coagulation

duration, static or dynamic coagulation bath) were applied to control the mechanical
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properties of PVA/Gelatin hydrogels and consequently the duo-layer construct. The

thickness of hydrogels affects the permeability of coagulants through the gel matrix,

which would vary the affect of coagulation treatment on the properties of hydrogels.

This is why the constructs with two different thickness (1mm and 2mm) were com-

pared in this study (see Table 3.2 in section 3.2.5.3).

The mechanical properties of the constructs are of the main concern. Both uniaxial

tensile tests and compliance tests helped to elucidate the effect of the coagulation bath

and the layer of fibres on the mechanical properties. Especially, the compliance prop-

erty is an essential mechanical property of an artery. The compliance property of grafts

has been closely related with long-term patency rate [68, 70, 183, 184, 185, 186, 187].

In the study, the elasticity or compliance of the final duo-layer graft closely match with

that of native arteries.

7.2 Results

7.2.1 Uniaxial tensile test

Figure 7.1, 7.2 and 7.3 presented the stress-strain profile of the 1mm thick PG1FT

(PVA/Gelatin hydrogel with one freeze-thaw cycle) with a coagulation time of 15min,

30min and 60min, respectively. Upon submersion in a dynamic coagulation bath, all

hydrogels behaved as elastic materials, especially at the low strain range (0-40%). The

stiffness of the hydrogels with 15-min coagulation was lower than that of the hydrogels

with 30-min coagulation. When the coagulation time was increased to 60min, the

stiffness barely changed.

Figure 7.4, 7.5 and 7.6 presented the stress-strain profile of the 2mm thick PG1FT

hydrogel with coagulation time of 15min, 30min and 60min. The dynamic coagulation

bath gradually increased the stiffness of these 2mm thick hydrogels when extending

coagulation duration from 15min to 30min and 60min. The stress-strain profiles of

these hydrogels showed a linear response within the strain range of 0-40% and a non-
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Figure 7.1: Stress-strain profile of 1mm thick PG hydrogel with 1freeze-thaw cycle
and 15 min coagulation.

Figure 7.2: Stress-strain profile of 1mm thick PG hydrogel with 1 freeze-thaw cycle
and 30 min coagulation.
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Figure 7.3: Stress-strain profile of 1 mm thick PG hydrogel with 1 freeze-thaw cycle
and 60 min coagulation.

linear curve at the strains higher than 40%.

Figure 7.7 presented the stress-strain profile of the 2mm thick PG1FT hydrogel/fibre

composite with coagulation duration of 60min. The stress-strain profiles were non-

linear in the strain range of 0-60%, which covered the physiological strain range of

arteries. In the strain range of 0-40%, the stress-strain profiles showed as a linear re-

sponse and there was no apparent difference of stiffness between hydrogel/fibre and

the hydrogel (Figure 7.6) in this strain range. When the hydrogel/fibre construct ex-

tended to the strain range of 40-60%, the stress-strain profile became non-linear and

the stiffness of the hydrogel/fibre construct was higher than that of single hydrogel

construct shown in Figure 7.6.

7.2.2 Compliance test

Figure 7.8 presents the compliance results for PVA/Gelatin hydrogels with 1 freeze-

thaw cycle and 1h dynamic coagulation. The three samples were prepared by freeze-

thawing PVA/Gelatin hydrogel for one cycle and then the as formed hydrogel was

further treated with stirred coagulation bath for 1h.

As can be seen from the compliance profile of each of the three samples, there is
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Figure 7.4: Stress-strain profile of 2 mm thick PG hydrogel with1 freeze-thaw cycle
and 15 min coagulation.

Figure 7.5: Stress-strain profile of 2 mm thick PG hydrogel with 1 freeze-thaw cycle
and 30 min coagulation.
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Figure 7.6: Stress-strain profile of 2 mm thick PG hydrogel with 1 freeze-thaw cycle
and 60 min coagulation.

Figure 7.7: Stress-strain profile of 2 mm hydrogel/fibre duo-layer construct with 1
freeze-thaw cycle and 60 min coagulation.
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Figure 7.8: Compliance-mean pressure profile of PG hydrogel with 1freeze-thaw cycle
and 60 min dynamic coagulation.

no apparent change in the compliance values over the mean pressure range of 40-140

mmHg. The compliance value among samples varied from about 2.4 to 4.2 per cent

per mmHg×10−2.

Note that the dynamic coagulation treatment was performed by using magnetic

stirrer to the coagulation bath. The vigorous flow of the bath is able to increase the

precipitation rate of polymer by bursting coagulating agent into the PVA/Gelatin hy-

drogel matrix generated primarily by freeze-thawing treatment. However, the stirrer

imparts limitations on controlling the flow rate of the bath, which may consequently

lead to inconsistent results. Therefore the following compliance tests were performed

on the graft with static coagulation treatment.

Figure 7.9 shows that compliance values of samples of PG hydrogel and a PG

hydrogel/fibre composites. PG hydrogel samples were prepared by 1 freeze-thaw cy-

cle and 1h static coagulation treatment. PG hydrogel/fibre samples were prepared by

freeze-thawing a PVA/Gelatin solution with photocrosslinked PVA-SbQ fibres for 1
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cycle and then treated with static coagulation bath for 1h.

PG hydrogels samples generally have a linearly decreased compliance values in

response to increases in mean pressure (Figure 7.9A). The compliance values among

samples spread in a wide range of 8 – 26.6 per cent per mmHg×10−2. The range of

compliance values at each mean pressure among samples was confined to a smaller

range as the the mean pressure was increased.

Similar to PG hydrogels, PG hydrogel/fibre samples showed decreased compliance

values in response to increases in mean pressure (Figure 7.9B). At low mean pressure,

the compliance value reached as high as 9.1. The compliance gradually decreased to

as low as 2.5 at the high mean pressure of 140 mmHg. The linear regression in Figure

7.9 clearly showed that the dynamic compliance changes in response to increases in

the mean pressure.

7.3 Discussion

7.3.1 Nonlinearity

All the hydrogels or hydrogel/fibre composites with thicknesses of 2mm exhibit non-

linear stress-strain profiles at high strains. This is one of the critical properties of

a vascular graft because it could store a part of the pulsatile energy in systole and

restore it in diastole to the circulation [21]. The modulus of 2mm thick hydrogels with

coagulation for 15min, 30min and 60min are all within the range of the modulus of pig

aortas (Figure 7.10).

It is notable that the variations of elasticity among pig aortas are significant, which

could be due to the multiple components in elastin and collagen matrices [151]. Elastin

can be composed of microfibrillar and amorphous components. Collagen structure can

be different depending on the composition of differing amino acids. At different arte-

rial sites or in different species, it is possible that the collagen and elastin matrices may

be composed of different ratios of these components, which may result in differences

107



Figure 7.9: Compliance-mean pressure profile of PG hydrogel and hydrogel/fibre duo-
layer vessels.
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Figure 7.10: Stress-strain profile of five pig aortas. (data redrawn from Prendergast et
al. [188])

in the arrangement and linkages and consequent significant differences in the overall

mechanics of blood vessels [153].

7.3.2 Effect of coagulation treatment

The coagulation bath applied in this study is composed of 7.5% KOH and 1M Na2SO4,

which is basically a non-solvent system for PVA and gelatin. This non-solvent system

can be any over-saturated basic water-soluble salt solution. The coagulation treatment

is intended to stabilise the gelatin within the PVA physically crosslinked (by freeze-

thaw cycle) matrix. Another polymer solution phase exists in the PVA crosslinked

matrix, namely the PVA solution phase, which is the part of the PVA solution have

not been physically crosslinked during freeze-thaw cycle. This part of PVA solution

can be stabilised and precipitated when treated with the coagulation bath. This is why

coagulation treatment increased the polymer fractions and improved the mechanical

properties of hydrogels in Chapter 5. In this chapter, a similar effect of coagulation

can be found from Figure 7.1, 7.2, 7.3, 7.4, 7.5 and 7.6. It is obviously that the co-

agulation treatment increased the stiffness of the hydrogels. Meanwhile, these data

shows the possibility of controlling coagulation effect by the duration of submerging
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Figure 7.11: Thickness of hydrogel changed when increasing coagulation duration.
The thickness of hydrogel before submerging in coagulation bath was 2 mm (dash-dot
line).

in coagulation bath.

The effect of coagulation on the thickness of hydrogel is evident in Figure 7.11.

When the coagulation duration increased from 15min to 30min and 60min, a linearly

decreasing thickness was found. This is due to the precipitation of polymer solution

around PVA crystal domain, which expelled free water from the gel matrix.

Meanwhile, coagulation has a different effect on the hydrogel with different thick-

ness. For those hydrogels with 1mm thickness (Figure 7.1, 7.2 and 7.3), the stress-

strain curves were almost linear. The hydrogels with 2mm thickness displayed non-

linear stress-strain curves. This could due to the saturation of the coagulation effect.

For thinner hydrogels, the coagulants can easily permeate through and coagulate the

polymer solution within the gel matrix. In contrast, a thicker hydrogel would take more

time to coagulate all the parts of the polymer solution. The remaining polymer solution

phase in the gel structure would contribute a viscous effect to the overall mechanics of

hydrogel.

It is noteworthy that the colour of the PVA-SbQ fibre of the hydrogel/fibre compos-

ite changed to green and became darker green with increasing coagulation time. This
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green coloured PVA-SbQ fibre became lighter following rinsing of the hydrogel/fibre

composite in deionised water. After keeping these coloured composites in a refriger-

ator (dark enviroment) for 1 week, the colour changed to pink. This colour variation

of PVA-SbQ fibres could be due the reaction of remaining uncrosslinked SbQ group

with chemicals in coagulation bath. Light in the lab could also affect the SbQ group.

Interestingly, as the fibres colour changed in coagulation bath, it gives a way to visu-

alise the PVA-SbQ fibres of the hydrogel/fibre comoposite. However, this is an issue

of system stability that may require further investigation.

7.3.3 Effect of fibres layer

When comparing Figure 7.6 and 7.7, the effect of a layer of PVA-SbQ fibres can be

easily found. The hydrogels, with or without the fibre layer, show linear stress-strain

profile at the strain range of 0-40% and non-linear profile at the strain range of 40%-

60%. The fibre layer does not affect the modulus of hydrogel in the low strain range (0-

40%). However, at a higher strain range (40% - 60%), the fibres significantly increase

the modulus up to about two-fold. This result clearly shows that the PVA-SbQ fibres

only recruit at higher strain range, which play a similar role to the collagen fibres in

the native arteries. However, the modulus of this hydrogel/fibre composite (Figure 7.7)

seems too high when compared with the modulus of pig aortas (Figure 7.10). This

means that coagulation effect is too strong when coagulating with 7.5% KOH, 1M

Na2SO4 for 60min in a dynamic coagulation bath stirred by a magnetic stirrer. To

decrease the coagulation effect, several options could be addressed: firstly, a decrease

in the concentration of KOH and Na2SO4; secondly, a decrease in the submerging

duration; lastly, submerging in a static coagulation bath (without stirring by magnetic

bars).
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Figure 7.12: The relationship between the compliance of various vascular grafts versus
patency rate. (data from Salacinski et al. [190])

7.3.4 Compliance test

This compliance property of arteries is an essential factor in the storage of energy

during systole and the release of energy during diastole. As a result, compliant ar-

teries are able to damp out the pulsatile arterial flow to smooth the venous flow and

to decrease the blood pressure progressively from the heart to the irrigated organs

[189, 155]. Some synthetic grafts have been developed as substitute arteries for bypass

surgery. Dacron and ePTFE are the two vascular grafts which are clinically dominant.

However, Dacron and ePTFE have the disadvantage of compliance mismatch with na-

tive arteries. This mismatch of compliance at the anastomosis site (at which the artery

connects to the vascular graft) tends to invoke a variation on normal blood flow, which

increases the risk of thrombosis and intimal hyperplasia and consequently results in

unsatisfactory long-term patency [68, 70, 183, 184, 185, 186, 187]. Salacinski et al.

have summarized the compliance of grafts and their patency rates [190]. Their study

showed a linear relationship between compliance and patency rates (Figure 7.12). It is

therefore possible that a better the patency rate can be maintained when more compli-

ant graft is applied.

Recently, a compliant vascular graft, poly(carbonate)polyurethane (CPU), has been

developed [6]. CPU shows a static compliance value of 8.1 % per mmHg ×10−2over
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a range of mean pressure, 30-100 mmHg. The compliance of CPU matched with that

of artery in the pressure range of 30-60 mmHg. However, a significant compliance

mismatch can be found at mean pressures higher than 60 mmHg. Taking into account

the fact that physiological blood pressure of 120/80 mmHg, a new vascular graft is

desired to match the compliance artery over a wide range of pressure. This has led to

the study of a PVA/Gelatin hydrogel and PVA-SbQ fibre duo-layer constructed graft.

The PVA/Gelatin hydrogel single layer graft was much more compliant than arter-

ies (Figure 7.13 B) over the whole pressure range (Figure 7.9). When the PVA-SbQ

fibres were assembled on the luminal surface of PVA/Gelatin hydrogel, the as-prepared

duo-layer graft exhibit a close compliance match to the arterty over the whole pressure

range (Figure 7.13). One of the most significant properties is that this hydrogel/fibre

duo-layer graft behaves with a variable pattern of compliance. A higher compliance

value is found at the lower mean pressure. This is important to impart pulsatile energy

to the blood flow in the case of low blood pressure, such as shock [190]. Decreased

lower compliance can be found at higher pressure, which helps to prevent vessel burst

at high pressures.

The compliance of PG hydrogels can be controlled by the treatment of freeze-

thawing and coagulation. The effect of coagulation on the compliance can be seen from

Figure 7.8 and 7.9. With stirring in the coagulation bath, the coagulation effect on the

PG hydrogel was enhanced and resulted in lower compliance values. This agrees with

coagulation effect observed in uniaxial tensile test experiments, where the coagulation

effect was enhanced by prolonging the coagulation time (Figure 7.4, 7.5 and 7.6).

The compliance of PG hydrogels can also be controlled by the number of freeze-thaw

cycles and the thawing rate [81].

When PG hydrogels were constructed with PVA-SbQ fibres, the compliance of the

duo-layer graft dramatically reduced to the physiological range of the compliant artery.

It clearly showed that the fibres increased the elastic modulus which agrees with the

tensile test results (Figure 7.6 and 7.7).
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Figure 7.13: The comparison of compliance-mean pressure profile of the hydro-
gel/fibre duo-layer graft, human femoral artery and PTFE graft. (A) PG hydrogel/PVA-
SbQ fibre duo-layer graft. (B) Human femoral artery and PTFE graft (data is adapted
from Salacinski et al. [190]).
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Figure 7.14: Creeping of statically coagulated PG hydrogel at the mean pressure of 140
mmHg. The control on the frequency of pusatile flow was of concern and therefore the
displacement-time profile were ploted without specific time on x-axis.

Fibres not only help to control the elasticity of the duo-layer graft, they also elim-

inate the creeping effect, which is significant for statically coagulated PG hydrogel at

mean pressure of 140 mmHg (Figure 7.14). Another advantages is that the PVA-SbQ

fibres are favourable for endothelial cell attachment, and could be further immobilized

with molecules like RGDs to regulate cell behaviour on the fibres. Meanwhile, the

fibres can also be applied as reservoir for various drugs, which would give benefits of

anti-infection and curing vascular disease.

7.4 Summary

In this last part of the research, a duo-layer vascular graft was designed and constructed

by a layer of PVA/Gelatin hydrogel and another layer of PVA-SbQ fibres. The result of

uniaxial tensile tests showed the preconditioning effect, non-linear stress-strain profile

and the effect of coagulation treatment and additional layer of fibres on the elasticity

of constructs. It is clear that both extension of the coagulation duration and addition of

the fibre layer increase the elastic modulus of the constructs. The compliance results

show that the compliance of the duo-layer graft closely matches with that of native

artery over a wide range of pressure (mean pressure at 40-140 mmHg). A significant
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conclusion that can be addressed from the uniaxial tensile test and the compliance

test is that the mechanical properties of the as-prepared duo-layer graft closely match

with that of native artery. This superiority in mechanical properties is coupled with

the advantages of fibre layers in conducting the endothelial cell lining and potentially

delivering growth factors or drugs. All these merits make the duo-layer graft a very

promising candidate for potential applications in vascular tissue engineering.
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Chapter 8

Conclusions and future work

8.1 Conclusions

This research involved in the development and evaluation of a duo-layer vascular graft

to mimic the structure and function of the native artery. The contributions to the knowl-

edge gained from this study are summarized as follows:

1. Soft-tissue like PVA-based hydrogels with controllable structural and mechan-

ical properties were developed by physical crosslinking methods, specifically

freeze-thawing and coagulation. These methods provide the possibility to tailor

the mechanical property of PVA based hydrogels to fit the needs of vascular graft

applications.

2. With the findings on the effect of physical crosslinking methods on the glass

transition temperature, melting temperature, crystallinity, polymer fraction and

mechanical properties of hydrogels, the current study developed a comprehen-

sive understanding of the formation of hydrogel microstructures and provided

fundamental knowledge concerning the control of the mechanical properties (es-

pecially the compliance property) of the final duo-layer graft. This finding also

filled a gap in the literature in terms of a micro-structural study on the effect of

coagulation treatment on the properties of hydrogels.
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3. Endothelial cell attachment favourable fibres were fabricated by electrospinning

and photocrosslinking. To the best of our knowledge, this was the first time

that PVA-SbQ was applied as a material for the electrospinning technique. With

photo-activation, PVA-SbQ fibres provide promising water insolubility and con-

duciveness to the attachment of endothelial cells.

4. The most significant contribution of the current study is that the novel duo-layer

construct has the most suitable compliance characteristics for vascular graft ap-

plications, compared to all prototype grafts described in the literature to our best

knowledge. This finding inspires a platform method to develop vascular grafts

to mimic the multiple-layer structure of native arteries by compositing hydrogel

and fibrous layers.

8.2 Perspectives and future work

8.2.1 Duo-layer constructs as vascular grafts

The design of the duo-layer graft was inspired by the layered structure of native arter-

ies. The media layer plays a dominant role in the mechanical properties of arteries.

The intima layer provides a basal membrane to conduct the lining of endothelial cells,

and a subendothelial connective tissue to support the basal membrane. Accordingly, a

duo-layer graft was designed in this research. Firstly, PVA/Gelatin hydrogels with con-

trollable mechanical properties were formed by physical crosslinking methods. Taken

with the parallel study [191] on the encapsulation of smooth muscle cells, PVA/Gelatin

hydrogels evidently have the potential to mimic the role of the media layer of arteries

in providing the main mechanical support and in encapsulating smooth muscle cells.

Secondly, the PVA-SbQ fibres were fabricated by electrospinning and photocrosslink-

ing techniques. PVA-SbQ was employed as a material to fabricate electrospun fibres

due to its photocurable property, which is a superior approach to chemical crosslinking

methods when considering the issue of chemical residuals. The preliminary result on
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the attachment of endothelial cells showed the possibility of PVA-SbQ to play the role

of intima to facilitate the lining of endothelial cells. As the mild conditions of elec-

trospinning and photocrosslinking, the PVA-SbQ fibres give the possibility to preserve

functionalities of proteins which could invoke future application as a delivery system

for process-sensitive substances, such as growth factors and medicines. The capabil-

ity of PVA-SbQ to preserve the functions of enzymes was proved by Ichimura [174].

More interestingly, the thin PVA-SbQ fibre layer was able to affect the overall mechan-

ical properties of the duo-layer construct. Actually, the layer of PVA/Gelatin hydrogel

(with the reported preparation process) presented an overly high compliance value and

the PVA-SbQ fibre layer helped to tailor the mechanical property of vascular graft to

match with that of native artery. Therefore the electrospinning and photocrosslinking

processes are also important factors when trying to obtain suitable mechanical proper-

ties for vascular graft application.

Apart from obtaining a graft with suitable mechanical properties, this duo-layer de-

sign also inspired a platform method, which is the fabrication of the multilayer struc-

ture vascular graft with one layer to provide mechanical support, and another layer to

conduct endothelial cell behaviour and to modify the mechanical properties.

The hydrogel layer can be made from compliant materials, such as PVA based

hydrogels in this study and possibly other materials, such as bacterial cellulose [192].

PVA and bacterial cellulose can also be blended to form a composite hydrogel layer

[193]. Importantly, the mechanical property of this layer is of the first concern for the

entire design. Jeong et al. [118] fabricated a duo-layer graft with a porous collagen

porous scaffold and an inner layer of PLGA fibres. However, the collagen scaffold is

too weak to supply mechanical support, which leads to a deficit of mechanical strength

of the final graft.

The fibrous layer in this study is made from PVA-SbQ, which could possibly be

replaced by other materials that can be prepared as fibre form, such as collagen [109]

and photocrosslinkable PEG [194]. Fibres coated with cell conducive material [195]
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Figure 8.1: VWR thermal circulator 1187P.

could be another candidate for this layer. Meanwhile, as the physiological strain is

typically lower than 5%, the addition of the thin stiffer layer could also account for the

overall mechanical characteristics of the final duo-layer graft. Therefore, the influence

of the fibrous layer on the overall mechanical property of the vascular graft is worthy

of further investigation.

8.2.2 PVA based hydrogel developments

PVA based hydrogels were fabricated with freeze-thaw cycles and coagulation treat-

ments. Both of these effectively contributed to the final mechanical characteristics of

the hydrogels. The effect of the number of freeze-thaw cycles, the duration of the

coagulation treatment and either static or dynamic coagulation bath conditions were

investigated. There are still some other factors available to further control the me-

chanical properties of final gels. The rate of thawing is another important factor in

the freeze-thaw process. For pure PVA gels, a stronger gel can be formed by a slower

thawing process [81]. More specifically, there may be a temperature range (around -

2.5 °C) optimum for the formation of the gel network [81]. The longer the temperature

resides in this range, the stronger the gel will be. Therefore, it will be worth to control

the thawing rate by a thermal circulator (such as VWR Circulator 1187P, see Figure

8.1).

The aortic tissue has an anisotropic pattern of mechanical response. The elastic

modulus of the circumferential direction is higher than that of the axial direction of
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the aortic tissue [9]. In the current study, the compliance of duo-layer graft closely

matched that of native artery. However, the non-linearity of compliance with respect

to mean blood pressure was not apparent. This is may be improved by replacing the

currently used isotropic hydrogels with anisotropic hydrogels, which can be developed

by stretching the hydrogel during the freeze-thawing process for PVA hydrogels[9].

8.2.3 Alignment of electrospun fibres

Various methods have been developed to assemble oriented fibres in electrospinning,

(see Figure 2.13). A novel wire collector (Figure 6.7) has been designed to obtain

helical aligned fibres, in order to simulate the helical alignment of fibrous bundles in

the media layer of the artery [16]. With a preliminary study on the electrospinning of

the PVA with this new collector, the alignment of PVA fibres was successfully fabri-

cated, as described in section 6.2.5 (Figure 8.2). The fibres were aligned both on the

wires and across the wires. this also offers the possibility to redesign the collector to

obtain fibrous tubes with luminal alignment which would facilitate the attachment or

migration of endothelial cells on the fibres. A stent with a suitable pattern, like Figure

8.3, could possibly be used as a collector for electrospinning. A drum collector with

rotation controller has been developed in our group as part of this project, which would

also help to obtain the alignment of fibres in future.

8.2.4 Biocompatibility testing

The current study presented promising mechanical characteristics of the duo-layer

graft. Some future work on other mechanical properties and biocompatibility testing

still needs to be performed to ensure successful application as vascular graft.

In compliance test, our duo-layer graft was able to withstand flow pressure as high

as 140 mmHg, however, a burst pressure experiment (ASTM D6797-07) would still be

necessary to ensure the potential use of this graft in vivo. A suture retension strength

would be required to approve the suture holding capacities [47].
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Figure 8.2: Aligned fibres on wire collector of electrospinning. (A) 200 magnification;
(B) 5000 magnification.

Figure 8.3: A helically assembled stent. (Image obtained from www. bostonscientific.
com)
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As to the in vitro cell compatibility testing, the viability of endothelial cell and

smooth muscle cell can be tested by neutral red dye. The cell proliferation can be tested

using the mitochondrial metabolic (MTT) activity assay or the Alamar blue assay.

The cell attachment can be observed by scanning electron microscopy or analysed by

immunofluoresence staining, where using anti-alpha smooth muscle actin and anti-

CD-31 to visualize the smooth muscle cell and endothelial cell , respectively [119].

In vivo biocompatibility testing can be performed on animals, such as mice, pig

and sheep. Micro computed tomography (CT) can be employed to evaluate the wall

of grafts and arteries in vivo [196]. Smooth muscle cells and endothelial cells can

be distinguished by Hematoxylin and Eosin (H&E) staining or by immunofluoresence

staining as the same method in vitro. Especially, the behaviour of endothelial cells on

the luminal surface can also be analysed by the synthesis of Prostacyclin (PGI2) , a

potent inhibitor of platelet aggregation [38]. The production of collagen and elastin

can be tracked by Masson trichrome and Verhoeff staining, respectively.
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The mould used for fabricating duo-layer graft
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