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Abstract

Multiphase �uid �ows are very common in engineering and science applications.

Examples include air �ow on water surface, metallurgical �ow and blood �ow in the

body. In these �ows, �uids are separated by a sharp interface and form di�erent phases.

The �ow is characterized by the movement of this interface. Accurate modelling of the

interface movement is a fundamental problem in the numerical simulation of these �ows.

Velocities for the movement are provided by the numerical solution of the Navier-Stokes

(N-S) equations. These equations are discretized and converted into linear systems of

equations. Research in the direction towards solving these systems e�ciently has been

the main focus of many researchers in the �eld of Computational Fluid Dynamics

(CFD).

A modi�ed Volume of Fluid (VOF) method for modelling two phase �ows is im-

plemented using an analytic relation for its reconstruction step. The Finite Volume

Method (FVM) is utilized, by incorporating a staggered grid, to discretize the two-

dimensional (2-D) N-S equations. A preconditioned Krylov-Subspace iterative method,

namely, the Bi Conjugate Gradient Stabilized (Bi-CGSTAB) method is employed to

solve the linear systems of equations. Solving the linear system usually consumes most

of the simulation time for multiphase �ow problems. Novel algorithms for the Incom-

plete LU Threshold (ILUT) preconditioner, forward and backward substitution and

other matrix operations for penta-diagonal matrices are proposed here by adopting a

diagonal sparse matrices format. The novel algorithm for ILUT reduces the computa-

tional complexity from O(n3 − n2) to O(n) in comparison to dense format. Further,

it brings down the communication overhead, consequently facilitating parallelization.

Parallel versions of these algorithms are developed using a new load balancing scheme.

The MPI C++ communication library is utilized to develop the parallel version.

The 2-D VOF code is applied to shape advection problems and results are found
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in good agreement with those available in literature. In the case of translation of a

square box, it provides more accurate results than other VOF methods. The code

for the VOF method and the parallel iterative solvers are integrated with 2-D N-S

code in C++. The whole code is then implemented to simulate several two phase �ow

problems: dam breaking with and without an obstacle, rising of an air bubble and

lid driven cavity �ows. Speedup data from parallel programs implemented on these

problems are generated.
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Chapter 1
Introduction

The study of �uid dynamics has applications in many areas of engineering and science.

These include the understanding of environmental, biological and chemical �ows. Lab-

oratory experiments and computer simulations are the two main approaches for the

study of complex �ow problems. Computer simulations can help one to understand

and analyse the complexity involved in these �ows more clearly without having to

perform time consuming, expensive and complicated experiments. Advancements in

modern computers have facilitated the solution and analysis of �uid �ows with high

accuracy (i.e. close to reality) and reduced computational time. This simulation ap-

proach is known as Computational Fluid Dynamics (CFD). In CFD, one has to employ

basic physical principles to develop mathematical models and thereafter obtain accu-

rate numerical solutions. Development and improvement of numerical schemes have

encouraged researchers to investigate almost every branch of �uid dynamics and its

application to real life problems.

Multiphase �ows occur in many industrial and natural phenomena such as petroleum

re�ning (Mayer and Lenhard, 1998), biological �ows (Christopher, 2005) and interac-
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tion of air with the sea surface (Melville, 1996). The simulation of multiphase �uid

�ows is one of the most challenging problems in CFD as it involves the modelling of

sharp interfaces separating multiple �uids. The numerical simulation of multiphase

�uid �ow can be divided into �uid �ow modelling and multiphase modelling as shown

in Fig.(1.1).

The �uid and �ow properties (velocity, pressure etc.) can be represented by Par-

tial Di�erential Equations (PDEs) such as the Navier-Stokes (N-S) equations (Section

2.3). Numerical solution of these equations constitute �uid �ow modelling. Multiphase

Figure 1.1: Di�erent steps of the multiphase �uid �ow simulation
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modelling involves de�ning the interface between various phases and then calculating

the �ux in all directions by using the solution from the �uid �ow model (Section 3.4).

Discontinuity in the �uid velocity, pressure and other �uid properties across the inter-

face is one of the characteristics of multiphase �uid �ow. Further, the interface motion

is integrated with the �uid properties and gradients which may be discontinuous near

the interface. The movement of the interface between two phases a�ects the solution of

the PDEs in both phases where the interface is tracked as a moving boundary (Welch,

1995). Since the �uid �ow is characterized by the movement of the interface, this step

completes the multiphase �uid �ow simulation. More details of this procedure are given

in the next two sections.

1.1 Multiphase Modelling

Maintaining a sharp interface during �uid transportation is a di�cult task in the

modelling of interfacial �ows (Rider and Kothe, 1998). The interface between two

phases can be modelled by a scalar transport equation (Greaves, 2004). The modelling

involves the description (or construction) and movement of the interface. An e�ective

approach for interface modelling is interface capturing (see Section 2.4.1). In this thesis,

a Volume of Fluid (VOF) method based on interface capturing approach has been used

(Section 2.4.1.2). This method has two steps: reconstruction and advection of the

interface between two �uids (Rudman, 1997; Denis et al., 1999). First, the interface

is de�ned by calculating the volume fractions of each �uid. Then a transportation

algorithm is employed for the movement of the interface. The main challenge in the

modelling of the interfacial �uid �ow is the implementation of a method which can

e�ciently move the sharp interface without stretching and wrinkling (Aliabadi and
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Shujaee, 2001; Rudman, 1997).

In the reconstruction step, the interface is approximated by a straight line (or a

plane in 3D) (Scardovelli and Zaleski, 2000). Next, the area of the geometrical shape

(represented by triangles or rectangles) below the lines is calculated to evaluate the

volume of �uid based on the position of the interface. The interface is approximated in

the subsequent time steps by using the volume of �uid data of the previous time step

and this is where the main di�culty (maintaining the sharpness of the interface) in the

interface approximation arises (Ruben and Zaleski, 2003). In this thesis, an analytical

relation between the fractional volumes and interface position has been implemented

to overcome this di�culty (Section 3.3).

1.2 Fluid Flow Modelling

The numerical solution of certain PDEs, representing the physical properties of �uids,

involves the discretization of those PDEs and solving large systems of linear equations.

The solution of the linear system of equations (involving the matrix-vector product) is

the kernel in CFD and consumes most of the computational time (Buttari et al., 2007;

Pichel et al., 2009). Development of e�cient algorithms for the numerical solution of

PDEs, hence, falls into the category of high performance computing (Suda et al., 2009).

The solution procedure for linear systems of equations has two issues: the memory

requirement for storing sparse matrices involved and the computational time. The

storage formats for the non-zero entries of the matrices, are decided based on MATRIX

structures (Buttari et al., 2007; Shahnaz et al., 2006). For un-structured matrices,

separate arrays are required for pointing to the locations of the non-zero entries. The

memory required by pointer arrays can be saved in the case of well-structured matrices.
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A special matrix storage format has been adopted in this work in order to save memory

(Section 4.2).

Large sparse linear systems are solved by advanced iterative methods such as Krylov

Subspace methods (Behra and Mittal, 2009; Nordsveen and Moe, 1999; Saad, 1989;

van der Vorst, 2003). Since such solvers may take a large number of iterations to con-

verge for a given tolerance value, preconditioning techniques are employed to accelerate

the convergence rate (Birken et al., 2008). In order to reduce the computational time

for the entire simulation of the �uid �ows, parallel algorithms are developed for the

available parallel computer (Behra and Mittal, 2009; Liu et al., 2005).

1.3 Objectives

This thesis is focused on �nding solutions of the challenging tasks mentioned in the

above two Sections. The �rst objective of this research is to investigate and implement

preconditioned iterative solvers for the linear system of equations which can be run on

modern parallel computers. In order to achieve this goal, the main tasks are:

• Investigation of algorithms for suitable preconditioners for Krylov Subspace meth-

ods for matrices arising from multi�uid �ow problems.

• Analysis of the memory requirements of the sparse matrix formats.

• Investigation of the computational complexity of preconditioners based on the

chosen matrix format.

• Development of a novel time and memory e�cient algorithm for sparse matrices

arising from the numerical solution of multiphase �ows.
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• Investigation of parallel algorithms for Krylov Subspace methods and appropriate

preconditioners to run on a parallel computer.

The second objective is to implement the VOF method to ensure that the interface

should not wrinkle or smear. The main tasks for this goal are:

• Investigation of the algorithm for the reconstruction step of the VOF method.

• Development of 2D VOF code using analytic relations for the interface recon-

struction.

• Implementation of the VOF transportation algorithm for the movement of the

reconstructed interface.

• Validation of the developed VOF code.

• Integration of the developed VOF code, linear solver code and N-S solver code.

1.4 Thesis Organisation and Overview of Chapters

Chapter 2 provides a background study and general overview of multiphase �ow prob-

lems. It includes a discussion of the methods for modelling the multiphase �ow prob-

lems applicable to immiscible �uids separated by a sharp interface. A development

history of the versions of the VOF methods and their merits/demerits for di�erent �ow

problems is presented. A short overview of the discretization methods for PDEs and

two di�erent grid structures applicable to multiphase �ow problems is provided. Cat-

egories of the linear solvers, fundamental concepts and types of the Krylov Subspace

methods as well as preconditioners for them are discussed in detail. Strategies for par-

allelization of these methods and related issues are also highlighted. This chapter also
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includes details of the benchmark problems used to validate the numerical schemes and

computer code.

The mathematical formulation of both steps of the VOF method and di�culties

related to the calculation of the interface position from the known values of the volume

of �uid fractions is explained in Chapter 3. The interface reconstruction step involves

the estimation of the normal vector to the straight line and the calculation of the area

of polygons. The detailed discussion of the geometrical formula for this area calculation

and its comparison with an analytical relation is presented in this chapter. An extended

form of the analytical relation in 2D, introduced by Zaleski (Scardovelli and Zaleski,

2000), is explained and documented. The geometrical and mathematical details of the

advection algorithm are explained in a �ow chart. A short discussion on staggered

grid and pressure velocity coupling are also provided in this chapter. At the end of

the chapter, the algorithm for the Semi Implicit Pressure Linked Equations (SIMPLE)

method of solution of the N-S equations is presented.

In Chapter 4, details of the linear systems solvers, parallelization strategies and

integration of the parallel solvers with the N-S solvers are provided. A comparison of

the memory requirements of di�erent matrix formats is given and the advantages of di-

agonal format, adopted in this work, is documented. Algorithms for matrix operations,

the BiCGSTAB method and the ILUT preconditioner in diagonal format are presented

and their computational complexities are discussed. Details of the implementation pro-

cedure of the parallel solvers are described by providing the parallel algorithms. At the

end of the chapter, the details of the integration of the N-S solver and developed par-

allel solver as well as the VOF method are outlined. The whole integration procedure

is delineated in a �ow chart.
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The developed VOF code is integrated with the N-S code and tested using bench-

mark simulation problems. The results of these simulation problems obtained from

sequential and parallel code are presented in Chapter 5. At the beginning of this

chapter, validation of the VOF code is accomplished for shape advection problems.

The results from these problems are found to be in good agreement with those in the

literature (Harvie and Fletcher, 2001; Ketabdari et al., 2008). Further, a new bench-

mark test to validate the VOF code is presented.

The next section of this chapter is devoted to the validation of the N-S solver. We

have chosen three benchmark problems to validate the N-S code:

(1) lid driven cavity �ow (Erturk, 2008; Gjesdal and Lossius, 1997)

(2) dam breaking (Greaves, 2006; Ketabdari et al., 2008; Qian et al., 2003) and

(3) the rising of an air bubble (Hua and Lou, 2007; Lawson et al., 1999).

The performance of various preconditioners is measured by comparing the number of

iterations required for di�erent problems. This comparison indicates the variation in

the condition number of the matrix generated at di�erent time steps. These variations

are expalined by �gures of the �uid locations at di�erent time steps. Moreover, the

time taken by di�erent preconditioners are also recorded and compared to observe the

computational cost of them.

Finally, the summary of the important �ndings are presented in Chapter 6. The

next research steps to be taken from these �nding are also pointed out in this chapter.
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Chapter 2
Literature Survey and Proposed

Research

2.1 Introduction

This chapter provides a literature review on the simulation of the multiphase �ow prob-

lems. As outlined in Section 1.1, modelling of multiphase �uid �ow may be divided

into (i) multiphase models and (ii) �uid �ow models. In the multiphase model, the

interface is identi�ed by the value of a scalar function or marker points on the mesh.

Advection of the interface is accomplished either by moving the mesh (the interface

being used as a deforming boundary) or by applying advection schemes to the interface

indicator on the �xed mesh. In the �uid �ow models, the numerical solution proce-

dure requires discretization of the computational domain as well as of the di�erential

equations, thereby generating linear systems of equations. These systems are solved by

employing suitable iterative solvers. The solvers are typically implemented on parallel

computers, for large scale problems, in order to speed up the solution procedure and to
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deal with memory constraints. To run the simulation on parallel computers, parallel

algorithms are designed according to the computer topologies.

The topics covered in this context are as follows:

• a general overview of multiphase �ow,

• the computational modelling issues and mathematical equations for these �ows,

• the numerical methods utilized for modelling,

• the methods for equation discretization and linear systems thereby obtained,

• a discussion on matrix data-structures and non-stationary iterative solvers for

solving linear systems,

• a description of preconditioners applied to these iterative solvers, in particular

the ILUT preconditioner,

• the need for parallelization of the solvers and network topologies for the parallel

computer,

• the components of the solvers which can be parallelized,

• some issues on load balancing schemes for parallel algorithms,

• a discussion on parallel preconditioners and

• some benchmark problems for validation of both multiphase and �uid �ow mod-

els.

While discussing these topics, the proposed research directions for particular topics

have also been mentioned.
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2.2 Multiphase Flow: An Overview

Multiphase phenomena can be found in everyday life: the interaction of air �ow with

water at the sea surface is an example of this phenomenon in our environment (Rahman

et al., 2006; Zhi and hai, 2007); the �ow of two metals in liquid form in an alloy

represents a multiphase �ow system in the metallurgical industry (Liovic et al., 2001);

rising of an air bubble in viscous �uid represents multiphase �uid �ow in the petroleum

and chemical industry, (Chen et al., 1999; Hua and Lou, 2007).

Depending upon the nature of the system, these �ows can be classi�ed as (a) liquid-

liquid �ows, (b) gas-liquid �ows and (c) liquid-solid �ows. The simplest form the

multiphase �uid �ow is two-phase �ow, for example the �ow of two immiscible �uids1

such as air and water. In this case, two �uids are separated by a sharp interface

(Aliabadi and Shujaee, 2001; Navti et al., 1998; Zhao et al., 2004). This thesis focuses

on the �ow of two immiscible �uids in 2D and investigates the modelling approaches

as well as numerical methods required for the motion of the �uid.

2.3 Mathematical Equations for Physical Phenomena

The physical behaviour of two-phase �ows, e.g., �ow of two immiscible �uids, can be

predicted by computer modelling (Singhal et al., 2002). A general classi�cation of

recent advances in computational methods for multiphase �ow involving gas, solid and

liquid phases is discussed in articles by (Loth, 2000; Moses, 2007). The properties

of the �uid �ow (such as velocity and pressure) are governed by the continuity and

momentum equations which are the mathematical interpretations of the mass and

1Two immiscible �uids are separated by sharp interfaces, so that the mixture properties are dis-
continuous across the interface.
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momentum conservation principles (Anderson, 1995). These governing equations are

represented by a set of PDEs as follows (Versteeg and Malalasekera, 1995):

(a) The Continuity Equation: The general continuity equation at a point in a

compressible �uid is given by

∂

∂t
(ρ) +∇·(ρV) = 0 , (2.1)

where t stands for time, ρ denotes density, V is the velocity vector and ∇ repre-

sents the nabla operator.

(b) The Momentum Equation: The transportation of �uid is described by the

momentum equation as follows

( ∂ρV

∂t︸ ︷︷ ︸
Unsteady

acceleration

+∇·(ρVV)︸ ︷︷ ︸
Convective
acceleration

)
= −∇p︸︷︷︸

Pressure
gradient

+ ν ∇2V︸ ︷︷ ︸
Viscosity

+ Sv︸︷︷︸
Other
body
forces

(2.2)

where ν denotes the viscosity coe�cient, SV is the source term.

This set of PDEs (equations 2.1 and 2.2) represents the �ow of each viscous �uids and

are known as the Navier-Stokes (N-S) equations (see (Galdi, 2000)). These non-linear

and coupled equations are di�cult to solve analytically, and numerical solutions are

generally used for simulation.

In the simulation, the properties of the �uid change abruptly across the interface

whose location must be known at every time step. This position is determined by

interface advection methods and the �uid motion is predicted using N-S solvers (Chen

and Kahrif, 1999; Henrie and Stanley, 1997). There are two main approaches to the
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solution of the multiphase �uid �ows such as air and water �ow which involves large

viscosity and density ratios:

(1) In the �rst approach, only the liquid phase (assumed to be inviscid) is modelled.

In this approach, the N-S equations can be converted into Laplace's equation

(Delaure and Lewis, 2003).

(2) Viscous e�ects are considered in the second approach (Singhal et al., 2002) and

both the liquid and gas are modelled with the full N-S equations.

This thesis is focused on the second approach for multiphase �ow, in particular the

�ow of the two immiscible �uids (which is also known as multi�uid �ow). In order

to simulate di�erent phases of the �ow, a multi�uid model accounting for the motion

of the interface between two �uids is required. The numerical solution of the PDEs

involves the discretization in a speci�ed solution domain and thereafter solving a system

of linear algebraic equations. This numerical solution provides the �uid �ow properties

such as velocity and pressure. The numerical methods required (to solve the PDEs and

multi�uid model) for the computer simulation are presented in the next section.

2.4 Numerical Methods

As discussed above, the simulation of multiphase �ow problems requires the numerical

solution of the PDEs and a model for specifying and moving the interface between the

two phases. The numerical solution calls for the discretization of the computational

domain using a grid arrangement to store variables for the �uid properties. Thereafter,

the PDEs are discretized according to the chosen grid resulting in a linear system of

equations which is then solved to obtain the numerical solution. This section presents
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the overview of the di�erent steps involved in the whole simulation procedure. An

overview of existing methods for multi�uid modelling and discretization of the PDEs is

provided in the �rst three subsections. The linear solvers required to solve the system

of equations, and their convergence behaviour are presented in the fourth part of the

section. An overview of the model validation completes section 2.4.

2.4.1 Methods for Multiphase Flow

Modelling the advection of the sharp interface numerically is a challenging task (De-

laure, 2001) and a range of methods (see(Tryggvason et al., 2001)) have been developed

over the last 30 years to achieve this. Among other numerical methods to simulate

two-�uid �ows, those applied to immiscible �uids can be broadly classi�ed into two

categories: (i) interface-tracking and (ii) interface-capturing (Chen and Kahrif, 1999;

Ferziger and Peric, 1999; Hogg et al., 2006). Another classi�cation of these methods,

as given in the reference (Ubbink, 1997), divides them into (a) surface methods and

(b) volume methods. The surface method category is similar to the interface tracking

methods while the interface capturing methods are similar to volume methods. In this

thesis, we follow the former classi�cation.

2.4.1.1 Interface-Tracking Methods

In interface-tracking methods, the interface between two �uids is explicitly tracked

during the �uid motion to maintain a sharp discontinuity in the �uid viscosity and

density. The motion of the interface is tracked either by marker points located on the

surface or by attaching it to a mesh boundary surface. A short description of two

commonly-used methods is provided below:
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(i) In the front tracking method (Unverdi and Tryggvason, 1992), a separate front,

on a �xed grid, is used to identify the interface for each phase with the help

of additional computational elements introduced explicitly. These elements are

known as marker particles on the surface and form a moving internal boundary.

Both phases are treated as one �uid with variable material properties and one

set of the N-S equations is solved over the whole computational domain. Further,

�uid properties such as density and viscosity are calculated with respect to the

interface position.

This method uses a piecewise linear, higher order polynomial to �t the inter-

face (by joining the marker particles), which is advected with the �ow �elds in

a Lagrangian manner (Greaves, 2004; Hua et al., 2008). An irregular grid is

constructed in the vicinity of the interface and �nite di�erence stencil is used to

calculate �uid properties (Tryggvason et al., 2001). Spacing between the marker

particles is one of the complexities of this method. The interface is not well-

resolved if the particles are placed far apart while in the case of too closely-spaced

particles, very high interface curvature may arise which generates high surface

tension (Ubbink, 1997).

An application of this method for the simulation of free surface �ow can be found

in (Navti et al., 1998). Nguyen and co-workers (Nguyen et al., 2009) presented

a front tracking method and applied it successfully to a two-phase �ow problem

with surface tension. However, the main problem in the front tracking methods

is the treatment of the topology of the front due to fact that the interaction of the

interface grid with the stationary grid is very complicated. The major drawbacks

of the front tracking method as reported in (Unverdi and Tryggvason, 1992) are:
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� it requires dynamic restructuring of interface grid,

� it requires the addition of grid points where the grid stretches and the re-

moval of points in the compression region,

� the interaction of one front to another in a cell, forces two interfaces to

merge in one.

As a result this method is computationally expensive and also may not simulate

the interface accurately.

(ii) Another interface-tracking method is the moving mesh method (Hyman, 1984;

Welch, 1995), wherein a boundary �tted grid is employed and the grid points

are embedded in the �uid and these points are moved in a Lagrangian manner.

The same �uid elements are kept in all computational cells which are adjacent to

the interface and the �uid always coincides with the speci�ed region facilitating

the precise tracking of the �uid surface (Kim and Lee, 2003). The interface is

integrated with these points and is tracked by the nodes a�xed on both phases.

The movement of the interface is determined utilizing the knowledge of velocities

known at the current time step (Tao, 2005). A simple interpolation between the

�uid boundaries and the interface determines the motion of the mesh (Welch,

1995).

The N-S equations are solved for both �uids (liquid and gas). For the liquid phase,

these equations are solved on a deforming unstructured mesh (Hyman, 1984).

One of the advantages of this method is that it permits the accurate prescription

of the boundary conditions of the interface (Ubbink, 1997). A detailed discussion

on the moving mesh methods can be found in the reference (Tao, 2005). Quan and

Schmidt (Quan and Schmidt, 2007) implemented this method for incompressible
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two-phase �ow using an unstructured mesh. Recently, a model for merging and

breakup in the moving mesh method has also been presented by Quan et al.

(Quan et al., 2009).

Since the grid (or marker) points move in the Lagrangian manner, these methods

are also known as Lagrangian methods (Hyman, 1984; Tornberg, 2000). One of

the di�culties of Lagrangian methods is the numerical instability due to the irregular

nature of the mesh (Navti et al., 1998).

In interface-tracking methods, the computational mesh is adjusted to �t the inter-

face. The advantage of such methods is that they maintain a sharp interface for which

the exact position is known throughout the calculation. However, they require special

treatment when the interface is subjected to large deformation or stretching as men-

tioned above. In the case of large deformation, a numerical inaccuracy in the solution

of the �ow �eld may occur due to the high mesh distortion, hence, this method is not

suitable for free surface problems such as dam breaking and wave propagation where

complex interface breakup and merging occurs (Kim and Lee, 2003).

The severe problem of mesh deformation in the interface-tracking method has moti-

vated the author to explore the interface-capturing method in which the mesh is treated

as a �xed reference frame of the �uid movement.

2.4.1.2 Interface-Capturing Methods

In these methods, the sharp interface between two �uids is identi�ed by an indicator

function. Using the �uid velocities, the interface advection across the mesh is modelled

by advecting the indicator function with the �owing �uid. The indicator function can

be chosen as:

(i) a level set function (Sussman and Smereka, 1994) or
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(ii) a volume fraction function (Hirt and Nichols, 1981).

(i) The level set function is a smooth (i.e. each has derivatives of all orders) but

arbitrary function which takes di�erent values for both �uids. The values of this

function identify the interface. One way of choosing its values is to take a positive

value in one �uid and a negative one in the other as de�ned originally in (Sussman

and Smereka, 1994). Thus, the interface is de�ned at those points where the function

has a zero value. This method is known as the Level Set Method (LSM). According

to(Ubbink, 1997), this method can also be put in the category of surface methods. The

LSM automatically takes care of the merging and breaking of the interface. Gibou et al.

(Gibou et al., 2007) used a LSM based model to simulate multiphase incompressible

�ow. They implemented the model successfully to simulate the 2D boiling �lm for

di�erent grid sizes. One drawback of this method, however, is that either a higher-

order scheme or a mesh re�nement is required to obtain accurate solutions of the

advection equation as it does not conserve the mass intrinsically. This makes it a

computationally expensive method (Devals et al., 2007).

(ii) The volume fraction function (which is also known as the colour function) is a step

function and represents the fraction of volume occupied by one �uid.

The interface is reconstructed from the value of the colour function (Hirt and Nichols,

1981; Ruben and Zaleski, 2003). The volume fraction method solves a scalar transport

equation (equation 2.3) in an Eulerian manner2, thereby satisfying the conservation

laws; in other words, the volume fraction of a mesh cell is conserved. An example of

this method is illustrated in Fig.(2.1) which shows that the value of the colour function

C is unity in the �uid 2 and zero in the �uid 1 unity while its lies between zero and unity

2The computational grid is �xed and the continuum moves with respect to it.
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at the interface. The mesh is kept �xed and a suitable technique is chosen to locate the

interface in the interface capturing methods (Greaves, 2004; Scardovelli and Zaleski,

2000). Since the interface is reconstructed at each time step from the known value

Figure 2.1: Interface capturing method

of the indicator function, the interface capturing methods are able to cope with large

stretching and deformation of the interface. Consequently, these methods can be used

for modelling large-scale deformations of the interface including breakup and merging

(Chen and Kahrif, 1999). The volume fraction methods which use the colour function

to identify the interface are known as Volume Of Fluid (VOF) methods. The VOF

methods have been widely used for the numerical simulation of viscous �ows (having

non-zero viscosity) with moving interfaces.

As reported in the article by (Kaceniauskas, 2005), the numerical implementation of

the LSM is very complicated and requires large computational resources. Further, the

interface reconstruction technique of the VOF method provides better approximation

of the interface (by following the conservation of the mass fraction) than the LSM.

Hence, the VOF methods have been chosen in this work for modelling the two-phase
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�ow. Details of this method are provided in the following subsection.

2.4.2 The VOF Methods

The VOF method, �rst introduced by Hirt and Nichols (Hirt and Nichols, 1981), uses

the colour function to model the displacement of a �uid surface. The volume conser-

vation of one of the �uid can be expressed as (Hirt and Nichols, 1981):

∂C

∂t
+V · ∇C = 0 (2.3)

In this method, the computational domain is divided into a number of computational

cells which can be referenced by the index pair (i, j) in 2D. The interface is represented

by the value of the colour function C in each cell and denoted by Ci,j. As outlined

in Section (2.4.1.2), Ci,j takes the value of the volume fraction of one of the two

immiscible �uids. There are two steps in the VOF methods: the reconstruction of the

interface and the advection of the interface. Various techniques have been proposed

for reconstructing and advecting a well-de�ned interface using Ci,j. These are based

on either an algebraic or a geometric approach.

2.4.2.1 The Algebraic Approach

In the algebraic approach, the convective scalar transport equation for the volume

fraction is discretized by the values of C at cell faces in such a way that preserves the

position of the interface (Ubbink and Issa, 1999). One such method takes the interface

orientation into account while calculating the amount of volume fraction moved across

the face of a computational cell (Hogg et al., 2006). The algebraic approach has the

boundedness problem where the amount of the volume fraction that initially lies in
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the neighbouring cells is not necessarily preserved properly during the advection (in

the absence of shear). If the amount is not preserved properly, it leads to non-physical

deformations of the interface (Ashgriz and Poo, 1991; Rudman, 1997). Advection of the

interface without di�using, dispersing or wrinkling-due to numerical approximation- is

one of the main di�culties of the VOF methods (Hogg et al., 2006), because the

interface position is not known in advance. Ubbink and Issa (Ubbink and Issa, 1999)

proposed a scheme for the interface advection, named Compressive Interface Capturing

Scheme for Arbitrary Meshes (CICSAM). This scheme combines two other advection

schemes described by Leonard (Leonard, 1991). In �ows where the interface takes a

shape such as in the case of bubble formation, CICSAM imposes a limit on the Courant

number de�ned as (e.g. in x-direction) Cr = |u| δt
δx

(Ubbink, 1997) , where u, δt and

δx are the velocity magnitude in x-direction, time step and length interval respectively

(Greaves, 2004). Due to this limitation, the geometric approach becomes the altrnative

choice for the VOF method. Details of this method are provided below.

2.4.2.2 The Geometric Approach

In this approach, the interface is represented by a series of line segments connecting

the sides of the cells. The interface may be approximated either by a straight line

or a polynomial which divides the computational cell into two parts containing the

calculated volume of each �uid. The main methods in this category include:

(i) The Simple Line Interface Calculation (SLIC) method (Greaves, 2004; Rudman,

1997) in which the straight line approximating the interface is selected as par-

allel to the coordinate axes. The SLIC method was the �rst VOF method and

was found to smear the interface during advection (Morris, 2000). One of the
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di�culties here is that the simple representation of the interface may allow more

than one interface of each �uid in the computational domain.

(ii) Another method in the geometric approach is the Piecewise Linear Interface

Calculation (PLIC) method (Greaves, 2004; Kumar et al., 2008; Rider and Kothe,

1998) wherein the interface is approximated by a straight line which may be at

an angle to the coordinate axes. In this method, the interface is reconstructed

by a prede�ned set of rules based on the value of the colour function. This

method relies on the explicit advection of reconstructed interface and overcomes

the di�culties encountered in the SLIC method (Rudman, 1997).

Due to problems of smearing and overlapping of the interface in the SLIC method,

the PLIC method has been found to be more suitable for the reconstruction step.

Advantages of the interface-capturing methods over the interface-tracking meth-

ods and the accuracy of the geometric approach (for capturing the interface)

motivated the author to implement the VOF(PLIC) method in this thesis. Fur-

ther details of this method are continued below.

The VOF(PLIC) Method:

The reconstruction step of the VOF(PLIC) method has two substeps:

(a) normal vector estimation and

(b) volume fraction calculation based on the interface position.

The estimation of normal vectors can be performed by a �rst order scheme for

example using a nine points stencil as given in the document (Rudman, 1997).

During the VOF advection, the volume fractions are updated by advecting the

reconstructed interface using the local velocities to approximate the motion of

the interface. Di�erent components of this method are depicted in Fig.(2.2).
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Figure 2.2: Components of VOF (PLIC) method

The main di�culty with the PLIC method is that the cell shapes are implic-

itly used in the interface reconstruction. Therefore, it is di�cult to extend the

PLIC method to arbitrarily complex geometries and three dimensional (3D) prob-

lems (Scardovelli and Zaleski, 2000). To deal with the di�culties concerning 3D

problems, Scardovelli and Zaleski (Scardovelli and Zaleski, 2000) introduced an

analytic relation between the interface and the volume fraction in a normalized

unit square domain. They documented the formula for the relation only for half

of the normalised domain i.e. [0, 1
2
].

This relation is re-derived in this work and has been extended to the whole
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domain, i.e. [0, 1]. The re-derived formula has been used to implement the

VOF(PLIC) method. Two problems namely�forward� and �inverse� have been

formulated in order to establish this relation. The forward problem is used to �nd

the volume fraction in a cell. In the inverse problem, the equation of the interface

is obtained using the value of the colour function and normal directions. One of

the main features of this relation is that it provided a one to one mapping between

the colour function and the interface position, facilitating the accurate calculation

of the interface position. Furthermore, it can be extended for the 3D problems.

The normal vector of the line representing the interface is estimated during the

reconstruction step. A detailed mathematical description of VOF(PLIC) method

is provided in chapter 3.

2.4.3 Discretization Methods for PDEs

The PDEs representing the �ow and physical phenomena of multiphase �ow problems,

as described in equations (2.1) and (2.2) in Section (2.3), are solved numerically for

the computer simulation (Aliabadi and Shujaee, 2001; Elman et al., 2008; Zhao et al.,

2004). In the numerical studies of �uid �ows, an approximate solution of these PDEs

can be obtained using certain discretization methods such as:

• The Finite Di�erence Method (FDM) (Peiró and Sherwin, 2005),

• The Finite Element Method (FEM) (Ferziger and Peric, 1999) ,

• The Finite Volume Method (FVM) (Versteeg and Malalasekera, 1995).

These methods convert the di�erential equations into system of linear algebraic equa-

tions. A brief description of these methods is provided below.
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�• The FDM is the oldest method (Peiró and Sherwin, 2005) for the discretization

of the PDEs and describes the unknowns ϕ of the �ow problem by means of grid

points on the coordinate lines (Ansorge, 2003). Historical details of this method

can be found in (Ernst, 2009). The di�erential equation is approximated by

replacing the derivatives of ϕ using truncated Taylor series expansions in terms

of nodal values of ϕ at each grid point and its neighbours (Ferziger and Peric,

1999). Liovic et al. (Liovic et al., 2001) employed FDM along with VOF(PLIC)

for the simulation of multiple immiscible �uids. They reported that this method

is not suitable for problems involving high density di�erences because it is di�cult

to perform high resolution simulation due to a requirement for a robust e�cient

Poisson equation solver. Therefore, this method can not be used for multi�uid

�ow problem having high density di�erences such as �ows of water and air.

�• In FEM (Petrov-Galerkin approach), the domain is divided into a set of �nite ele-

ments, and simple piecewise functions valid on elements are used to approximate

the local variations of the unknown �ow variable ϕ (Zienkiewicz and Morgan,

1983). The exact solution ϕ precisely satis�es the governing equations, but the

piecewise approximation of it does not hold exactly and leaves a residual. This

residual, which serves as an error measure, is minimised by integrating its val-

ues over the domain after multiplying by a set of weighting functions (Ferziger

and Peric, 1999). These weighting functions are used to approximate the so-

lution within each element in such a way which ensures that continuity of the

solution is satis�ed across the boundaries of elements. The FEM is able to deal

with arbitrary geometries and facilitates error analysis (Zienkiewicz and Morgan,

1983).
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Kaceniauskas (Kaceniauskas, 2005) has implemented successfully the FEM with

the VOF method for the simulation of breaking wave phenomena. The authors in

(Navti et al., 1998) applied the FEM for the free-surface �ow simulation and re-

sults were found to be in good agreement with the literature. Devals et al. (Devals

et al., 2007) introduced a FEM based interface-capturing method in conjunction

with a �ltering technique for the colour function and an automatic mesh re�ne-

ment procedure for two-phase �ow simulation. The e�ciency of this method was

assessed by solving the Rayleigh-Taylor �ow problem and the proposed scheme

was shown to produce solutions that are of comparable accuracy as those that

can be obtained using a �ne mesh. Aulisa et al. (Aulisa et al., 2007) presented

a numerical model using a FEM with the front tracking method, to simulate

two-phase �ows. They tested the model for �ows where a droplet is surrounded

by another �uid. In (Grille et al., 1999), authors employed the FEM to model a

visco-elastic lid driven cavity �ow and investigated the e�ect of elasticity on the

velocity �eld.

The main drawback of the FEM is that in the case of an unstructured grid, the

matrices generated by the discretization are not well structured and it is di�cult

to �nd the e�cient solution methods to solve such matrices. The authors in

(Liovic et al., 2001) reported that for re-meshing of the moving interfaces, FEM

su�ers from a heavy computational load. Due to this extra computational load

and unstructured matrices, this method has not been adopted in the present

work.

�• In the FVM the solution domain is subdivided into �nite numbers of contiguous

Control Volume (CVs) in the FVM. A typical sketch of CVs in a 2D grid is de-
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picted in Fig.(2.3). The fundamentals of this method are introduced by Patankar

and Spalding (Patankar and Spalding, 1972). The conservation equations are ap-

plied to each CV and the integral form of the conservation equation is used as a

starting point. The computational nodes, at which the variable values are calcu-

lated, are situated at the centroid of each CV as shown in Fig.(2.3). A variety

of �nite-di�erence-type approximations can be employed for the terms in the in-

tegrated equations which represent �ow processes such as convection, di�usion

and sources (Patankar, 1980). The variable values at the surface of CVs of the

nodal values are calculated using interpolation of the nodal values. Integration

over the CVs is the special discretization component of FVM which distinguishes

it from all other CFD techniques.

Since the conservation laws are applied to each CV, the resulting systems express the

conservation of relevant properties within them and make a clear relationship between

the numerical scheme and underlying physical conservation principle. This is one of

the main reasons to choose the FVM in this study for the discretization of PDEs.

The CVs in the FVM are de�ned by a suitable grid. It is important that these CVs

should not overlap in order to maintain the conservation in the whole computational

domain. This process is known as domain discretization (Anderson, 1995; Patankar,

1980). Equation discretization is carried out for all the momentum equations as well as

for the continuity equation as described in Section 2.3. In 2D, there are three equations,

viz., two momentum equations and one continuity equation. Since the momentum

equation is a vector equation and involves both pressure and velocity terms as indicated

in equation(2.2), it requires special attention during discretization. Because of the

coupling of the pressure and velocity in the momentum equations, the distribution of
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Figure 2.3: Sketch of control volumes in a 2D grid

computational points/nodes in the domain becomes more complex and leaves a choice

for various storage arrangement for the variables (Patankar, 1980). The di�culties

related to the storage arrangement choice lie in the pressure correction method as

described in chapter 3. This method is required to deal with the continuity equation

for incompressible �ows. An overview of two such choices is given here.

�• One of the choices for the arrangement of variables is to store all variables at

the same set of grid points. In this case, the same CV is used for all variables.

This type of arrangement of grid points is known as a collocated grid (Yu et al.,

2005). The obvious advantages of this grid are: (a) a smaller number of coef-

�cients have to be stored as only one set of CVs is required and (b) an easier

programming implementation. However, collocated grids create di�culties with

pressure-velocity coupling and can generate oscillations in pressure unless correc-

tive schemes are introduced (Versteeg and Malalasekera, 1995). Moreover, these
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grids require interpolation at boundaries to approximate boundary conditions

(Ferziger and Peric, 1999).

�• Another widely-used arrangement of grid points is the staggered grid in which all

variables are stored at di�erent nodes of the CV (Fletcher, 1991; Patankar, 1980).

The pressure variables are generally stored at the centre of the CV while the x

and y-momentum variables are at horizontal and vertical locations respectively.

Therefore, in this case, the whole grid can be viewed as three di�erent grids in 2D,

viz., the x-momentum grid, the y-momentum grid and the pressure grid. Each

grid de�nes the CVs for respective �eld variables. The main advantages of the

staggered grid over the collocated grid can be summarized as done by authors in

reference (Ferziger and Peric, 1999) :

• In contrast to the collocated grid, several terms can be calculated without

interpolation.

• A strong coupling of the pressure and velocity �elds reduces the oscillations

in pressure and velocity as well as avoids other convergence problems.

• The integral of the momentum equation over the domain is preserved. In

other words, the numerical approximation is conservative.

Peric and co-workers (Peric et al., 1988) compared the performances of staggered and

collocated grids with FVM for the solution of 2D incompressible �ows and documented

that for �ows such as (a) in the lid drive cavity problem, (b) over a backward-facing

step problem and (c) in the circular pipe with sudden contraction, the colocated grid

has importance only when non-orthogonal grids are considered.
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The presence of the non-linearity in the velocity term and the coupling of the pres-

sure term in the N-S equations implies that an iterative scheme is required for the

solution procedure. In the case of incompressible �uids, a pressure correction (Ferziger

and Peric, 1999) iterative scheme is employed in which some innovative physical rea-

soning is used to construct the next iteration from the results of the previous iterations.

The e�ective and widely used iterative scheme for this purpose is the Semi Implicit

Method for Pressure Linked Equation (SIMPLE) developed by Patankar (Patankar,

1980) which has been shown to be very stable for a wide range of �ow problems.

In this scheme, the momentum equation (2.2) for an intermediate velocity is solved

using a previously-generated pressure. In the next step, the continuity equation is

solved using the intermediate velocity to calculate the pressure update which is then

used to update the velocity components. The scheme perturbs the pressure terms in

the momentum equation and does not a�ect the velocities components (Elman et al.,

2008). More details of the SIMPLE method are provided in chapter 3.

Since the FVM has a direct resemblance to the physical situation� the conservation

of quantities such as mass, momentum, energy, and species are satis�ed in each CV

and whole domain� it has been widely used for modelling multiphase �ow problems.

Skuratovsky and Levy (Skuratovsky and Levy, 2004) successfully implemented the

FVM with SIMPLE for solving two-�uid �ows with heat and mass transfer of wet

particulate materials through a pneumatic dryer. FVM along with modi�ed VOF is

employed to simulate the bubble rising in a viscous liquid by Chen et al. (Chen et al.,

1999). A 3D Navier-Stokes �ow solver using a second order cell-centred FVM which

has been used for the simulation of a NASA space shuttle launch vehicle (Mavriplis

et al., 2007). Cowles presents the FVM for the simulation of ocean processes in coastal
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areas (Cowles, 2008).

In the present problem of the multiphase �uid �ow, it is particularly important

that the conservation laws are satis�ed in order to calculate the exact amount of the

volume fraction of one of the �uids in the the computational domain. To ful�l this

requirement, the FVM with a staggered grid arrangement has been shown to be well

suited (Fletcher, 1991). Hence, this method has been adopted in this research for the

discretization of PDEs.

Discretization steps (domain discretization and equation discretization) in the nu-

merical solution procedure convert the PDEs into linear algebraic system of equations.

Fig. (2.4) summarizes the procedure of discretization and illustrates the steps involved

in converting the PDEs that represent the physical model into an algebraic systems

of equations. The next step after discretization is solving these systems of equations.

The next subsection provides the details of methods for solving the linear system of

equations.

2.4.4 Methods for Solving Linear Systems

As indicated above, FVM discretization converts the governing PDEs representing

the momentum equations (i.e. equation 2.2) into linear systems of equations which

can be solved by linear algebraic solvers. Fig.(2.5) categorizes these solvers into two

types, viz., direct solvers and iterative solvers (Golub and Van Loan, 1996). For large

scale problems, a consideration of direct solvers can be ruled out because of memory

constraints (Benzi, 2002; Benzi et al., 2005). Iterative solvers have been the viable

means of solution processes in such cases. A detailed history of iterative solvers can be

found in (Saad and van der Vorst, 2000).
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Figure 2.4: PDE to linear system

Iterative solvers may again be classi�ed into stationary and non-stationary solvers

(Saad, 1989). In the non-stationary category, current variable values are updated based

on several of the previous iteration values, e.g. the value of a residual vector r at the

(n + 1)th iteration level is updated based on the values of the variables at the nth

and (n − 1)th levels. Whereas in the stationary methods, the values at the (n + 1)th

level is updated based only on the values at the nth level. Prior knowledge of the

matrix structure generated by the discretization methods should be available in order

to decide the matrix data structure and to choose the appropriate linear solver. The

convergence rate of non-stationary K-S methods is related to the matrix properties and

are accelerated using preconditioning techniques (Benzi, 2002; Sun et al., 2009). All of

these issues are explored in the following three subsections.
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Figure 2.5: Categories of linear solvers

2.4.4.1 Matrix Data Structure

Non-stationary methods are commonly employed to solve large sparse linear systems of

equations (Benzi et al., 2005). These systems are typically represented as Ax = B,

where A is an n × n sparse matrix, and x and B are the n-dimensional vectors. A

matrix having mostly zero elements is called a sparse matrix.

In sparse matrices, the number of non-zero entries is quite small in comparison to

the number of total entries therefore, there is a need for a special data structure to

store these entries in order to save on memory. Literature reveals (Kumar, B.V.R.

and Kumar, 2005a; Shahnaz et al., 2006) several common sparse matrix formats such

as Compressed Sparse Column (CSC), Compressed Sparse Row (CSR), index format

and diagonal format. In order to choose a speci�c matrix data structure, one needs to

analyse the storage requirements of these formats (Straubhaar, 2008). Matrices arising

from FVM discertization are commonly found to be of diagonal form, in particular

penta-diagonal (for 2D problems) or septa-diagonal (for 3D problems) form (Versteeg

and Malalasekera, 1995).
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Figure 2.6: Nonstationary iterative methods

2.4.4.2 Krylov-Subspace (K-S) Methods

Krylov Subspace methods (Axelsson, 1996; Saad, 1989) are some of the most e�cient

iterative methods applied to the large sparse linear system of equations obtained from

PDEs representing multiphase �ow problems (Greaves, 2004). In these methods, a

residual vector r = B − Ax is calculated initially, and is minimized or is set to

satisfy some other constraints in each iteration.

This residual vector on multiplication by powers of the matrix A in successive itera-

tions, generates a subspace which is called a Krylov Subspace (Km) (Saad, 1996; van der

Vorst, 2003), where m denotes the dimension of the subspace. Krylov-Subspace meth-

ods belong to the non-stationary category (Benzi et al., 2005), as depicted in Fig.(2.6)

and have been widely adopted as a good choice for solving large sparse linear systems of

equations (Bergamaschi and Àngeles, 2005; Dag, 2007; Gu et al., 2009; van der Vorst,

2002).

The Conjugate Gradient Method (CGM) is probably the most well-known of these
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methods but is only applicable to symmetric positive-de�nite matrices (Golub and

Van Loan, 1996). Some other powerful K-S methods which are not restricted to sym-

metric positive de�nite matrices are: Bi-Conjugate Gradient Method(Bi-CGM), Bi-

Conjugate Gradient Stabilized (Bi-CGSTAB) and the Generalized Minimal RESidual

(GMRES) (Liu and Li, 2002; Topsakal et al., 2001).

The GMRES method was developed in 1986 by Saad & Schultz (Saad and Schultz,

1986). The main advantage of this method is that it guarantees to compute ap-

proximate solutions with minimal residual norm. The minimal residual is de�ned

as rn = b − Axn, where the symbols have the same meaning as de�ned previously

and the subscript n denotes the nth iterations step. A disadvantage of GMRES is over-

head costs per iteration which increases linearly with the iteration count and requires

more memory to store all the basis vectors of Krylov Subspaces (Saad, 1989, 1996).

In order to overcome these di�culties, a restart version was developed and termed as

GMRES(l) (Saad, 1996). This version was found to decrease the robustness of the

method because it does not guarantee convergence, as well as the risk of slowing the

convergence in the case of large value of “ l ” (Saad and van der Vorst, 2000).

The Bi-CGM, developed by Fletcher (Fletcher, 1976), solves both the primal (Ax = B)

and the dual (ATx = B), and therefore requires transpose matrix operations. The

transpose operations are di�cult in many data structures of sparse matrices (Sleijpen

and Fokkema, 1993) and therefore, it is di�cult to implement this method. Moreover,

the convergence of this method is not smooth and it su�ers from several breakdown

conditions; a detailed discussion of which is provided in (Saad and van der Vorst,

2000; Pommerell, 1999). To remedy the breakdown problem of Bi-CGM, van der Vorst

(van der Vorst, 2003) in 1992 proposed the Bi-CGSTAB method.
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Bi-CGSTAB produces smooth as well as faster convergence than Bi-CGM. In the

literature (Sleijpen and Fokkema, 1993), it has been pointed out that Bi-CGSTAB

shows stagnant convergence for problems in which the coe�cient matrix has almost

purely imaginary eigenvalues. In order to remove this problem, Sleijpen and Fokkema

(Sleijpen and Fokkema, 1993) propose the generalized version of this method, viz.,

Bi-CGSTAB(l) which takes the bene�ts from the GMRES(l) and Bi-CGM. In this

method, the large value of `l ' may give faster convergence but then the computational

cost becomes higher because the cost of the GMRES part increases as the value of `l '

increases (Itoh and Namekawa, 2003).

The convergence behaviour of K-S methods has been shown to depend on the spec-

tral properties of the coe�cient matrix of the problem under consideration (Benzi

et al., 2005). One such property is the condition number of the matrix. The condition

number κ(A) of a matrix A can be calculated from its maximum and minimum eigen-

values λmax and λmin respectively and is de�ned as κ(A) = λmax/λmin (Elman, 1992;

Horn and Johnson, 1985; Jennings and McKeown, 1992). Matrices with high condi-

tion numbers are known as ill-conditioned. Discretization of the PDEs representing

the multiphase �ow problem may result in non-symmetric and ill-conditioned sparse

matrices (Versteeg and Malalasekera, 1995). K-S methods can converge slowly when

applied to these ill-conditioned matrices (Kumar, B.V.R. et al., 2004; Jennings and

McKeown, 1992; Castillo et al., 2009).

2.4.4.3 Preconditioning

It has been shown that preconditioning techniques (Arabshahi and Dehghan, 2006;

Sheen and Wu, 1998; Sun et al., 2009; Zucchini, 2000) can improve the rate of con-
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vergence and robustness of iterative solvers. In these techniques, the original linear

system of equations, viz., Ax = b may be transformed into a preconditioned system

Ãx = b̃ by a linear transformation. The preconditioned system is constructed in such

a way that the characteristics of the matrix Ã are close to the characteristics of the

identity matrix i.e. having unit values on the diagonal and zero every where else. The

main aim here is that the preconditioned system should be much easier to solve than

the original system and the computational cost of the construction of preconditioned

system should not be probihibitive (Du� and van der Vorst, 1998).

The condition number of the preconditioned matrix Ã is less than that of the original

matrix A. Krylov Subspace solvers converge faster when applied to preconditioned

systems than when applied to un-preconditioned systems (Benzi, 2002). Among other

preconditioners applied to the K-S solvers, the most e�ective are (Axelsson, 1996;

Golub and Van Loan, 1996; Birken et al., 2008; Saad, 1996; van der Vorst, 2003)

• Incomplete L-U (ILU) factorization,

• Incomplete CHolesky factorization (ICH),

• Symmetric Successive Over Relaxation (SSOR) and

• Diagonal Scaling (DS).

Diagonal Scaling is one of the easiest to apply to Krylov Subspace solvers because in

this case matrix entries in a row are scaled by the diagonal entry. In general, ILU and

ICH have been found to produce faster convergence rates than SSOR when applied

to matrices obtained from CFD problems as noted in (Kumar, B.V.R. and Kumar,

2005b). In ILU factorization, the matrix is decomposed as A = LU, where L is the

lower triangular and U is the upper triangular matrix by dropping some elements of

these matrices in order to reduce computational expensive. Due to this cancellation
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of non-zero matrix entries, this factorization is called incomplete factorization. The

ILU has di�erent versions which can perform more e�ectively to di�erent sparse data

structures depending upon the criteria for the elimination/dropping of matrix entries.

One of ways of dropping the entries is based on their location (Saad, 1996; Chow

and Saad, 1997). In this version, the rows of matrices L and U can be computed one

at a time and accumulated easily in a row-oriented data structure such as the CSR

format of sparse matrices. In the simplest form of ILU, the nonzero entries of L and

U matrices are retained at the same location as in the original matrix A. This version

is known as no-�ll ILU or ILU(0) and is better to suitedto well conditioned systems

(Diosady and Darmofal, 2009). The ILU(0) version generates a crude approximation

of the precondition matrix as explained in (Saad, 1996). But it is useful in some

CFD problems as discussed in (Birken et al., 2008). Several other versions of ILU

are available which allow more �ll-in of the L and U matrices, and provide more

accurate factorization to take fewer iterations for converging K-S methods. However,

the computational cost of these ILU algorithms is higher than ILU(0) because in these

cases, more operations are required in order to avoid possible break-downs. (Saad,

1992, 1996; Benzi, 2002). It has been noticed that in this approach (i.e., dropping

the matrix entries based on locations), the numerical values of the entries are not

considered to make it di�cult to predict the locations of the largest entries (Malas and

Gürel, 2007).

One of the other approaches to generate ILU factorization is based on the magnitude

of the elements rather than their locations. In this approach, which is known as the

threshold approach, the small magnitude elements are dropped or treated as zero (Chow

and Saad, 1997). ILU factorization based on this approach has been found to be quite
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e�ective in preconditioning the K-S methods and is known as ILUT (Castillo et al.,

2009). It is the simplest form of the threshold ILU algorithm (Saad, 1996). The general

form of the threshold approach is ILUT(p,τ) in which the elements whose magnitudes

are less than the given value of τ in a row are dropped (Saad, 1997). Further, the

maximum number of non-zero entries in the row should not be greater than p; thus,

this version keeps track of the storage requirements beforehand. The ILUT is known

to be more accurate and stable than the �ll-level versions (Chow and Saad, 1997;

Saad, 1992). The incomplete Choleski factorization (Golub and Van Loan, 1996) may

be seen to decompose the matrix into a lower triangular matrix L and its transpose.

The matrix L is called the Choleski triangle and can be generated only for symmetric

positive de�nite matrices (Golub and Van Loan, 1996).

2.4.5 Model Validation and Other Numerical Schemes

The whole model for multiphase �ow problems consists of two parts (as shown in

Fig.(1.1). These parts are (i) PDE solvers which includes linear system solvers and

(ii) multi�uid methods. For computer simulations, both these parts are integrated

together and executed within a time iteration (Anderson, 1995). In order to validate

this integrated model, many benchmark problems are available in previous literature

on the subject (Erturk, 2008; Hua and Lou, 2007; Ketabdari et al., 2008; Rudman,

1997). A brief overview of these benchmark problems (in the sequence of increasing

complexity) and other numerical schemes applied to them, is provided below.

(a) Problems for testing the VOF Method:

The most common test problems for testing VOF methods are the translation

and rotation of geometrical shapes. These are pure advection problems and
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no N-S solver is required. During the advection, the geometric shape should

remain intact or minimally deformed. One such problem is the translation of a

square box in a �uid with uniform constant velocity. The main complexity in this

problem is to maintain the sharp corners of the square box �lled with �uid. The

reconstruction algorithm should be able to approximate these corners e�ciently.

At the sharp corners, the estimation of normal vectors becomes complicated (see

Section 3.3.1). Consequently, the calculation of the volume fraction advection

may cause numerical inaccuracies. Hence, this is a good benchmark problem to

test the reconstruction and advection steps of the VOF methods.

The performance of this method is measured by calculating the error based on the

exact solution and the calculated solution (Greaves, 2004; Rudman, 1997; Scar-

dovelli and Zaleski, 2003). Rudman (Rudman, 1997) proposed a VOF method

based on the �Flux Corrected Transport� (FCT) algorithm (Zalesak, 1979) for

the interface advection and Young's method for the interface reconstruction. His

method has been implemented for the translation of geometrical shapes such as

a hollow circle and a square box and gave better results than methods such as

SLIC, Hirt-Nicolas VOF (Hirt and Nichols, 1981).

Another scheme for interface reconstruction and �ux update is supplied by Rider

and Kothe (Rider and Kothe, 1998) which uses the operator-split time integra-

tion approach. Harvie and Fletcher (Harvie and Fletcher, 2000, 2001) present two

schemes, viz., the Stream Scheme and the De�ned Donating Region(DDR) for

advecting the reconstructed interface. The former scheme uses semi-continuous

velocity �elds and the latter one de�nes the donating region in all boundaries

with some restriction. In the DDR scheme, the �ux is calculated based on volume
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intersection between the donating regions and the position of the reconstructed

interface. These schemes have been implemented on the geometrical shape move-

ment (translation and rotation) problems. The stream scheme has been found

to be in good agreement with literature for box translation, but the DDR gave

poor performance for the same problem.

A scheme known as De�ned Donating and Accepting Region(DDAR) has been

proposed by Nobari et al. (Nobari et al., 2009) which was based on the DDR

scheme of Harvie and Fletcher (Harvie and Fletcher, 2001). In this scheme, the

�ux calculation is performed using information of cell volume fraction and its

face velocities. For the square box translation problem, it has provided better

performance than any other scheme.

Another well-known benchmark test for comparison of scalar advection algorithm

is solid body rotation. In this test problem, which is known as the Zalesak prob-

lem (Zalesak, 1979), a slotted circle is rotated through one or more revolutions.

Since this is a rotation problem, it tests the accuracy of the advection scheme as

well as the reconstruction algorithm of the VOF method. The stream and DDR

schemes have been found to be in good agreement with published numerical re-

sults while the DDAR scheme did not perform better than Young's and PLIC

methods for the solid body rotation problem (Nobari et al., 2009).

(b) Driven Cavity Flow:

Driven cavity �ow serves as a test problem for N-S solvers modelling single phase

�ows and is one of the most studied problems in CFD due to its simple geometry

(Bruneau and Saad, 2001). This problem tests the accuracy and e�ciency of

the numerical methods due to the ambiguity of the boundary conditions (Erturk,
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2008). Lid driven cavity �ows provides a model for understanding more complex

�ows with closed recirculation regions, such as �ows over a slit, contraction �ows

and roll coating �ows (Grille et al., 1999).

A detailed discussion of the driven cavity �ow problem is provided in the article

(Erturk, 2008) and the �uid mechanics underplanning this �ow is reviewed in

(Shankar and Deshpande, 2000). A solution of the 2D incompressible N-S equa-

tions and its validation on lid driven cavity �ow problem is presented in (Erturk

et al., 2001). Ghia et al. (Ghia et al., 1982) have presented a solution to the lid

driven cavity �ows using the multigrid method. Their results are widely used as

a benchmark by researchers to validate N-S solvers because they have provided

extensive experimental data as well as a comparison of higher order numerical

schemes.

Gjesdal & Lossius (Gjesdal and Lossius, 1997) have introduced two pressure cor-

rection algorithms for multigrid solvers and applied them to lid driven cavity �ow

problems. They have compared the performance of their algorithms with SIM-

PLE and SIMPLEC as given in (Versteeg and Malalasekera, 1995). Wu & Shao

(Wu and Shao, 2004) have investigated a near-incompressible steady lid-driven

cavity �ow for Reynolds Numbers (Re) 100-7500 using a multi-relaxation time

model, and have compared results with Ghia et al. for grid size 64 × 64 and

256× 256. Results for grid size 256× 256 are in better agreement than the grid

size 64× 64.

(c) The Dam Breaking Problem:

A benchmark problem to test N-S solvers with multiphase �ow is the dam break-

ing problem. This problem contains large deformations of the free surface hence
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the surface tension is unimportant. The large surface deformation requires accu-

rate reconstruction of the interface including the e�cient estimation of normal

vectors and must account for complex deformation such as interface breaking and

merging. Since, at every time step a new linear system of equations (obtained

from the PDE discretization) is generated, the matrix entries (which are calcu-

lated based on the value of the colour function) are updated at every time step

subsequently changing the properties of the matrix. This problem measures the

accuracy of the VOF method as well as the linear solver and Navier Stokes solver.

Martin & Moyce (Martin and Moyce, 1952b,a) have carried out experiments on

the collapse of a �uid column on a rigid plane. In their work, they have provided

data for surge height, distance from the axis of symmetry and velocity of the top

column of the experiment along with the details of experimental setup which can

be used to test the simulation results.

Numerical simulation of free surface problems is helpful in understanding the

hydrodynamics of free-surface �ows that cause impact loads on maritime struc-

tures (Abdolmaleki et al., 2004). The authors in (Abdolmaleki et al., 2004) have

validated a N-S solver with a VOF method for dam breaking problems using ex-

perimental results. They have concluded that simulation results are much more

sensitive to grid size than time step.

Kaceniauska (Kaceniauskas, 2005) has implemented the Pseudo-Concentration

Method (PCM) for interface capturing, wherein a pseudo-concentration function

is de�ned on the entire domain whose value value indicates the presence of one

�uid. The movement of the interface between two �uids is followed by these

concentrations. He implemented this PCM in conjunction with the FEM, for
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simulating dam breaking problems. The numerical results were found to be in

good agreement with experimental data but the computational cost was found to

be more than the other methods. Ketabdari and others (Ketabdari et al., 2008)

implemented a DDAR scheme for the dam breaking problem and the results were

found to be in good agreement with experimental data.

(d) The Rising Bubble Problem :

The numerical simulation of a single air bubble rising in a viscous liquid provides

another benchmark problem to test all three parts of the multiphase �ow model.

In this problem, the surface tension force on the bubble surface has to be con-

sidered as it has signi�cant impact on the shape of the bubble. The important

properties characterising the behaviour of rising bubbles include, density and

viscosity of both phases (liquid and air) and the surface tension on the interface

between these phases.

The main di�culty in the simulation of this problem arises due to the rise history

of the bubble and the non-linear coupling of some factors such as surface tension,

buoyancy force, viscosity etc. (Hua et al., 2008). A bubble rising in a liquid

driven by a buoyancy force may create deformation of the bubble, resulting,

in some cases, in a toroidal shape (Cerne et al., 1998). The surface tension,

in particular, can lead to the large variations in the �uid �ow characteristics

over a narrow region (in the vicinity of the interface ). The variation in the

bubble shape changes the properties of the matrices, as discussed in the previous

problem, consequently it tests the performance of both the VOF method and the

N-S solver.

The study of this problem has great importance in engineering applications such
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as rise of air bubbles in boiler tubes, gas bubbles in oil wells (Hua and Lou, 2007).

Gibou et al. (Gibou et al., 2007) developed a Level Set Method-based model to

simulate the multiphase incompressible �ow. They implemented the model to

simulate the 2D boiling �lm problem and presented results for di�erent grid

sizes. Hua & Lou (Hua and Lou, 2007) introduced a new front tracking method

to simulate the rising of bubble in a viscous liquid. Further, they reported details

of parameters, such as mesh size, volume correction, Re, which a�ect the bubble

shape. These parameters can be used to validate the numerical results. Lawson

et al. (Lawson et al., 1999) have presented the experimental details of the break-

up of large bubble and compared the results from numerical simulation using

the VOF method. Their results can be used for direct validation of numerical

results. More experimental details of this problem can be found in the reference

(Martinez-Bazaz et al., 1999b,a).

2.5 Parallel Numerical Algorithms

As seen in previous sections, computer simulation of multiphase �ow problems involves

the implementation of complex algorithms which are as intensive in both time and

memory requirements. Executing these algorithms may take days when run on a single

processor. For instance, in the present project simulation of some problems such as the

dam breaking, the rising of an air bubble, for �ne grid resolution (e.g. 512×512) takes

6-7 days when executed on single processor with clock speed 2.8 GHz and 8GB RAM.

Furthermore, for higher resolution simulations of CFD problems, the matrix size may

become too big to �t in the memory and thus, it is di�cult to solve the linear system

on the available computer (Cowles, 2008; Shang, 2009).
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To deal with memory constraints and to reduce computational time, these com-

plex algorithms need to be implemented on parallel computers consisting of clusters of

processors (Beltrán and Guzmán, 2009; Li, 2005; Mavriplis et al., 2007). An idea

of the importance of the parallel computers can be found from the Top 500 site

(www.top500.org), which details the 500 fastest machines in the world on their per-

formance on various benchmark problems In this approach, one can avail of the huge

memory and computational power of many processors. The parallel implementation

of CFD code has been carried out for the simulation of a space shuttle by authors in

(Mavriplis et al., 2007). The development of parallel numerical algorithms has been

the focus of intense research in the area of parallel matrix computation (Mezher and

Philippe, 2002; Straubhaar, 2008; Shang, 2009).

The quality of parallel algorithms can be measured by using common performance

evaluators, viz, speed-up Sn and e�ciency En which are de�ned in (Hecquet et al.,

2007; Tao et al., 2008) as follows:

Sn = Ts/Tp , En = Sn/n, (2.4)

where Tp is the time taken by a parallel algorithm on n processors and Ts denotes

the time taken by its serial version. One needs to develop the appropriate parallel

algorithm in order to implement it on a parallel computer based on the data struc-

ture used for matrix storage. In the present research work, the simulation has been

carried out on a linux cluster which has 56 nodes, each having 2 quad core processors

with clock speed 2.8 Ghz and 8 GB RAM. In the programs related to parallel matrix

computation, processors are required to send the executed data to each other within a

network (Beaumont et al., 2001). These data are sent in the form of messages by us-

ing certain parallel communication libraries such as Message Passing Interface (MPI)
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(Dalcin et al., 2008; Le and Rejeb, 2006; Quinn, 2004; Wu et al., 2009).

For the parallel computation of the linear solvers, one processor is required to manage

the processor communication such as gathering the parts of matrix-vector products

calculated by other processors (Mezher and Philippe, 2002). This processor acts as the

master processor and therefore, the master-slave paradigm (Duncan, 1990; Mavriplis

et al., 2007) is adopted in this research to design the parallel algorithms for the di�erent

steps of the linear solvers.

2.5.1 Parallel K-S Methods

The communication overhead is the bottleneck in the development of e�cient parallel

algorithms for K-S solvers (Bergamaschi and Àngeles, 2005; Behra and Mittal, 2009;

Giraud et al., 2008; Ouarraui and Kaeli, 2004). Any attempt at implementation of

the parallel preconditioned K-S solvers is aimed at shortening the computation time

and solving very large problems that may not be solved (or take too long to solve)

on a single processor (Sun et al., 2009). The speci�c versions of parallel algorithms

are formulated for particular problems which can work optimally on a given hardware

such as the Distributed Memory System (DMS) (Behra and Mittal, 2009; Li, 2005).

The main components of K-S methods, which need to be parallelized, are (Giraud

et al., 2008; Kumar, B.V.R. et al., 2005; Gu et al., 2009; Secher et al., 2009): (i) inner

product, (ii) matrix-vector product and (iii) vector updates. Out of these three, the

matrix-vector product consumes most of the computational time (Buttari et al., 2007;

Dag, 2007; Mellor-Crummey and Gravin, 2004; Pichel et al., 2009; Shahnaz et al., 2006;

Williams et al., 2009).

In order to develop the parallel version of these solvers, either the matrix has to

be generated at each node or it has to be distributed by a node using an e�cient
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load balancing scheme (Section 2.5.2). For a particular solver, researchers need to

build the parallel version by their own way of parallelization according to the memory

architecture of the parallel computer and parallel libraries.

A parallel version of CGM can be found in (Bycul et al., 2002). Dag (Dag, 2007)

has presented the implementation of the parallel preconditioned CGM and documented

results in the form of execution time and speed-up factors. Zucchini (Zucchini, 2000)

has also reported the speed-up factors obtained from his version of parallel CGM.

Parallel versions of Bi-CGM have been discussed in (Kumar, B.V.R. et al., 2004, 2005).

Ouarraui et al. (Ouarraui and Kaeli, 2004) have presented the parallel Bi-CGSTAB

algorithm using object oriented MPI. An improvement in this algorithm has been

provided by Gu and co-workers (Gu et al., 2009). They have proposed an idea to reduce

the data dependency in the inner products. Authors in (Wang et al., 2009) presented

a parallelization of the Bi-CGSTAB method with diagonal preconditioner. They have

implemented the code on the CRAY XT3 and SUNX4600 computers for simulation of

thermo-hydro-mechanical problems. Liu and Li (Liu and Li, 2002) have presented a

comparison of results obtained from parallel Bi-CGSTAB running on three di�erent

machines.

2.5.2 Load Balancing

One of the steps in the development of a parallel algorithm is to distribute the data on a

di�erent processors on a cluster using an e�cient load balancing scheme. A discussion

on the di�erent load balancing schemes for heterogeneous clusters has been provided by

Beltrán and Guzmán (Beltrán and Guzmán, 2009). They have proposed a general load

balancing scheme for heterogeneous clusters related to di�erent hardware and software.
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More load balancing schemes for parallel matrix computations for the heterogeneous

clusters have been discussed by Beaumont and co-workers (Beaumont et al., 2001).

In the current project, the parallel algorithms have to be implemented on a homoge-

neous cluster (Wu et al., 2009) as pointed out above (in the beginning of the section).

The designing of load balancing schemes also depends on the data distribution strate-

gies, for instance, the partitioning of matrices and vectors from the linear systems of

equations (Kahou et al., 2008). A note on the load balancing for the row-wise matrix

partition has been provided in (Petersen et al., 2009).

Most of these traditional load balancing schemes use a formula to distribute the loads

which divides the total number of processors into two parts called `lowered numbered

half ' and `upper numbered half ' (Jordan and Alaghband, 2003). Hence, there is an

equal distribution of load within these two parts but di�erent in both the parts. As

discussed in Section 4.9.1, this equal load on both parts can be less e�cient for parallel

algorithms for preconditioners. In the present research, a new load balancing scheme

has been devised which provides equal distribution of data to all processors except one

processor, consequently facilitating the parallelization of the preconditioners. More

details about the new load balancing scheme have been provided in Section 4.9.3.

2.5.3 Parallel Preconditioner

The major computational components of preconditioned K-S methods which are to be

parallelized are (Dag, 2007) :

(i) the computation of the preconditioner,

(ii) the sparse matrix-vector multiplication,

(iii) the sparse inner product and
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(iv) the application of the preconditioner.

Parallelization of the ILU and ICH preconditioners is a challenging task because of data

dependency (Henon et al., 2008). The application of these preconditioners involves the

development of parallel algorithms for forward and backward substitution. In these

algorithms, the data available in one node is needed by another connected node in the

network. The parallel implementation of threshold based ILU factorization is known to

be quite e�ective because of dynamic creation of �ll elements (Osei-Ku�uor and Saad,

2009). In general, the parallel versions of these preconditioners are developed with the

help of highly parallel graph partitioning algorithms (Karypis and Kumar, 1997). Using

graph partitioning algorithms, the original matrix A is partitioned among processors

and then each processor generates factors for its part of the matrix. In the next step,

all the processors exchange the data in order to complete the factorization.

An overview of the development of the parallel preoconditioner can be found in (Saad

and van der Vorst, 2000). Parallelism involved in ILU is discussed in (Vuik et al., 1998;

Shen et al., 2003). The literature in (Benzi, 2002) provides the details of paralleliza-

tion ILU and ILU(0) factorization. Bassermann (Basermann, 2000) has presented the

parallelization of block ILUT. Parallelization strategies for these preconditioners also

depend on the matrix data structure. As indicated in Section (2.4.4.1), matrices aris-

ing from the 2D FVM discretization are penta-diagonal. Therefore, one may need to

develop new schemes for the parallelization of preconditioners for these matrices. In

this research, a parallel version for penta-diagonal ILUT in diagonal format has been

developed based on the master-slave paradigm. More details of the parallel ILUT in

the diagonal format have been provided in Section (4.9.5).
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2.6 Chapter Conclusions

The main conclusions of the literature review are presented in this section. The

overview of the multi�uid model is presented �rst, followed by the conclusions from

other sections.

�• Computer simulation of multi�uid �ow requires the numerical solution of PDEs.

This numerical solution is used to move the interface between two phases of �uids

in the multi�uid model. The key observations in this model are :

(i) the interface-capturing method is more suitable for large deformation and stretching

of the interface.

(ii) the VOF(PLIC) method maintains the sharpness of the interface.

(iii) an analytic relation between the interface position and the volume fraction facili-

tates extension to 3D problems.

�• PDEs are solved numerically in a computational domain which is divided into

parts using suitable grid schemes. The following points are noted for steps from

domain discretization to linear system of equations.

(a) the FVM enforces conservation of the momentum and mass in each CV as well as

in the whole domain.

(b) the staggered grid is more suitable to deal with the problem involving velocity-

pressure coupling.

(c) the non-linearity in the velocity terms can be dealt with by the SIMPLE method.

(d) a special data structure is required to store sparse matrices.
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(e) the non-stationary K-S solver Bi-CGSTAB provides smooth convergence.

(f) e�ective preconditioners for K-S solvers are DS, ILUT and SSOR.

�• Large scale problems are solved on the parallel computer. Parallel algorithms are

needed to develop to carry out the simulation on these computers. The overview

of the parallel algorithms can be concluded as :

(1) matrices derived from FVM (in 2D) are pentadiagonal. In order to solve these

matrices, new algorithms for K-S methods and preconditioners are required to

reduce computational cost and save memory.

(2) the load balancing scheme can be modi�ed to facilitate the parallelization.

A detailed discussion of the implementation of components of the VOF(PLIC)

method such as the analytical relation between interface position and volume frac-

tion and the Lagrange advection algorithm are provided in the next chapter. Also the

next chapter provides details of staggered grid arrangement, the pressure correction

method and the SIMPLE algorithm.
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Chapter 3
Solving Multi�uid Flow Models

3.1 Introduction

This chapter provides the implementation details of the methods for the modelling

of two immiscible �uids. As seen in the previous chapter, the interface between two

�uids can be modelled accurately by the geometric approach of the interface-capturing

methods. The VOF (PLIC) method belongs to this category and is applied, in this

study, to a �xed Eulerian mesh to evaluate the interface position.

The main challenge in the �rst step is the calculation of the interface position. In

this work, this has been dealt with by using an analytic relation. This relation is split

into two parts: forward relation and inverse relation. Advecting the reconstructed

interface, without smearing and wrinkling, is another challenging part of the VOF

method.

The previous chapter, it has been observed that the Finite Volume Method(FVM) is

more suitable method than FDM and FEM for solving the momentum equations for the

multi�uid �ow problems in a speci�ed discertized computational domain, because, in
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this method, the conservation laws are automatically satis�ed over the whole domain.

Moreover, the staggered grid has been found to be more suitable than the collocated

grid to store the �eld variables. The pressure-velocity coupling in the momentum

equations can be dealt with by applying the pressure-correction technique such as the

SIMPLE algorithm. In the context of these issues, the following topics are covered in

the present chapter:

• a de�nition of the "colour function" used in the VOF method,

• an estimation of the normal vector and a calculation of the line constant needed

for the reconstruction step of the VOF method,

• forward and inverse analytic relations for the line constant and the volume frac-

tion used in this step,

• the correspondence between this analytic relation and the geometric formula for

calculation of the volume fraction,

• advection of the interface in the computational domain using the Lagrangian

method,

• the staggered grid implementation for the domain discretization,

• the discretization of the momentum equations in the speci�ed discretized domain,

• the pressure-correction method to deal with the non-linearity of the equations

and

• details of the SIMPLE algorithm of the pressure-correction method.
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A �ow chart of the SIMPLE algorithm is provided at the end of this chapter. All these

topics are crucial computational tools for simulating the multiphase �ow phenomena.

3.2 Implementation of VOF(PLIC) Method

As mentioned in the previous chapter, interface-capturing methods can be classi�ed

into two approaches, algebraic and geometric. The latter approach includes the VOF

method which is the topic of this section. It has been noted in the previous chapter

that the VOF(PLIC) method gives more accurate approximations of the interface than

the SLIC method. The components of the VOF(PLIC) method as illustrated in Fig.

(2.2) are discussed here.

It has been seen in section (2.4.2) that VOF methods use a colour function which

is a step function and provides the value of volume fraction of one �uid (in a mixture

of two �uids) in a control volume (CV). The colour function C in each cell can in 2D

be de�ned as

Ci,j =


0 fluid 1

λ ∈ (0, 1) both fluids

1 fluid 2

(3.1)

Equation (3.1) states that the value of the colour function in a cell at location (i, j),

i.e, Ci,j is equal to unity if the cell is �lled with �uid one, and it is equal to zero

in the case when cell is �lled with another �uid. The value of Ci,j lies between zero

and unity if the interface is present in the cell indicating that both �uids are present.

The relationship between the topology of the interface and the distribution of C is

illustrated in Fig.(3.1).

As mentioned before in section 2.4.2.2, the VOF(PLIC) method involves two steps.
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Figure 3.1: Values of colour function in particular CVs

The �rst step is known as the interface reconstruction algorithm in which the interface

position and shape are approximated from the known distribution of the volume frac-

tion. Both the values of the colour function and its gradient are used to evaluate the

interface position and orientation (Kumar et al., 2008; Rudman, 1997; Scardovelli and

Zaleski, 2003). In the second step, the volume fraction at a new time level is deter-

mined from the VOF �uxes derived for the known velocity �eld at the reconstructed

front. This step is known as the VOF advection algorithm. Both of these steps are re-

quired during the simulation in order to determine the movement of the �uid. Detailed

information of both these is provided in the next two sections.

3.3 Interface Reconstruction

In the VOF(PLIC) method, the interface between two �uids in a grid cell is approxi-

mated by a line segment which intersects the cell's faces. The line segment divides the
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Figure 3.2: Cell ABCD is cut by the straight line EH and contains �uid 2 in region ABFGD
and �uid 1 in region FCG

cell into two parts, each of them containing one of the two �uids as shown in polygon

ABFCGD in Fig.(3.2). In this �gure, the notations are as follows:

• rectangle ABCD: represents a grid cell,

• dx: the length of cell in x-direction,

• dy: the length of cell in y-direction,

• Line EH: approximation of the interface,

• polygon ABFGD: volume of one �uid in the cell and

• α

m1

: projection of the line segment EH on the X axis.

The general equation of a straight line (say L1) with normal m̃ may be written as

m1.x+m2.y = α (3.2)
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where m1, m2 are the components of the normal vector in the x and y directions

respectively and α is the line constant which is related to the distance of the line from

the origin. The coordinates of the points at which the line intersects the axes X and

Y are respectively ( α
m1

, 0) and (0, α
m2

) which corresponds to the points E and H in

Fig.(3.2).

In the simulation, the values of the volume fractions are provided initially for all the

cells. But, at the next time step, the �uid mixture moves and the interface changes its

position, and hence new values of the volume fraction have to be calculated. In order

to evaluate the volume fraction of one �uid in a cell, one has to calculate the area

below the line L1 which is the area of the polygon ABFGD, as depicted in Fig.(3.2).

For calculating the polygon area, the position of the line is determined by estimating

the normal vector from the known value of colour function and the line constant α.

The next subsection presents the procedure for normal vector estimation.

3.3.1 The Estimation of the Normal Vector

The reconstruction of the interface is based on the idea that a normal vectorm together

with the colour function values determine a unique linear interface cutting the cell. In

the �rst part of the reconstruction, a normal vector is estimated by a nine-point �nite

di�erence formula which is de�ned as (Rudman, 1997),

m = ∇C (3.3)
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Formula (3.3) represents the gradient of the colour function C in the direction of

coordinate axes. The discrete approximation to equation (3.3) is given by

∇C =

 ∇x C

∇y C

 ≡

 m1

m2

 (3.4)

where,∇x is the gradient in the x direction and∇y is the gradient in the y direction. For

approximating the values of these gradient terms, we choose eight nearest neighbours in

2D (i.e. all the neighbours sharing the vertex). This scheme is known as the nine-point

stencil or centred column scheme (Scardovelli and Zaleski, 2003). For a uniform mesh,

in a grid cell at location (i, j), the gradient terms of equation (3.4) in the coordinate

form can be expressed as (Rudman, 1997),

(m1)i,j =
1

δx
(Ci+1,j+1 + 2Ci+1,j + Ci+1,j−1 − Ci−1,j+1 − 2Ci−1,j − Ci−1,j−1) (3.5)

(m2)i,j =
1

δy
(Ci+1,j+1 + 2Ci,j+1 + Ci−1,j+1 − Ci+1,j−1 − 2Ci,j−1 − Ci−1,j−1) (3.6)

Equations (3.5) & (3.6) represent the normal vector estimation formula for the x

and y directions respectively. Denis and others (Denis et al., 1999) reported that this

scheme produces good estimation of the normal vector. An assessment of the accuracy

test of di�erent normal estimation schemes has been carried out by Scardovelli and

Zaleski (Scardovelli and Zaleski, 2003). They documented that the linear �t (using the

nine point stencil as given above) produce the same order error as other methods such

as quadratic �t which requires more computations.
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3.3.2 The Calculation of The VOF from the normal vector and

the line constant

The values of the normal vector components m1 and m2 along with the line constant

α provide the exact position of the interface in the grid cell. As mentioned before,

the value of the colour function Ci,j in a grid cell (i, j) is determined from the area of

polygon ABFGD as shown in Fig. (3.2). This area may be calculated geometrically as

follows,

D ABFGD = △ AEH︸ ︷︷ ︸
△big

−△ BFE︸ ︷︷ ︸
△1

−△ DGH︸ ︷︷ ︸
△2

(3.7)

Mathematically, this may be shown to be (Greaves, 2004)

Area =
α2

2m1m2︸ ︷︷ ︸
△big

1−H(α−m1dx)

(
α−m1dx

α

)2

︸ ︷︷ ︸
△1

−H(α−m2dy)

(
α−m2dy

α

)2

︸ ︷︷ ︸
△2

 (3.8)

where H(x) is the Heaviside step function de�ned as

H(x) =

 0 x < 0

1 x > 0

This formula calculates the area below the line as shown in Fig.(3.2) The line segment

representing the interface can cut the grid cell in two di�erent ways (in a particular

coordinate direction) depending upon its slope. The procedure for calculating the area

below the line in the two cases for the x direction using equation (3.8)is described here.

(I) Consider the case of a line with positive slope intersecting the grid cell at the axes

as shown in Fig.(3.3). This �gure represents three triangles,
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• △big : triangle BEH

• △1 : triangle AEF and

• △2 : triangle CGH

Figure 3.3: Line of positive slope intersects the cell faces

From this �gure it is clear that the area of polygon D ABCGF is required to

calculate the actual volume of the �uid contained in the cell.

△big =

∣∣∣∣0.5× (
dx+

α

m1

)
× f2

∣∣∣∣
△1 =

∣∣∣∣(0.5× α

m1

× α

m2

)∣∣∣∣
△2 = △big

(CH)2

(BH)2

⇒ △2 = △big

{
(f2 − dy)2

f 2
2

}
= △big

(
1− dy

f2

)2

(
α

m1

< 0

)
⇒ h1 = 1 and (f2 − dy) > 0 ⇒ h2 = 1

Area = △big {1− h1.△1 −h2.△2}

(3.9)
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Equation(3.7) states that to calculate the area of polygon D ABCGF, one needs

to calculate the area of these triangles and then apply equation (3.8). The values

of the area of these triangles and the complete calculation procedure is presented

in equation (3.9). In equation (3.9), variables h1 and h2 represent the Heaviside

step function H(α−m1dx) and H(α−m2dy) respectively.

(II) Another situation occurs when a line with negative slope intersects the cell as

shown in Fig(3.2). A clearer picture of this case is depicted in Fig.(3.4). The

di�erent steps involved in the procedure of area calculation are described below,

△big = 0.5×
(

α

m1

× α

m2

)

△1 = △big ×
(BE)2

(AE)2
= △big ×

(
α
m1

− dx
)2

(α/m1)2

⇒ △1 = △big

(
α−m1.dx

α

)2

△2 = △big
(DH)2

(AH)2
= △big ×

(
α
m2

− dy
)2

(α/m2)2

⇒ △2 = △big

(
α−m2.dy

α

)2

(α−m1dx) > 0 ⇒ h1 = 1 and (α−m2dy) > 0 ⇒ h2 = 1

Area = △big {1− h1.△1 −h2.△2}

(3.10)

The variables h1 and h2 in equation (3.10) have the same meaning as described in the

previous case. The above two situation are more general case when line intersects the

cell such that it generates two small triangles. Other cases may arise when there is

only one triangle (i.e. h1 = 0 or h2 = 0) or there is no triangle present at all (i.e.
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Figure 3.4: Line of negative slope intersects the cell faces

h1 = h2 = 0) as shown in Fig.(3.5). For the latter case the area will be equal to △big

(i.e., Area = △big).

During advection, the value of α has to be calculated from the known values of the

colour function in order to know the interface position. It is di�cult to calculate the

exact value of α from equation (3.9) or (3.10), and the calculation procedure becomes

even more complicated in 3D. This is due to the fact that it requires a numerical

iterative approximation which can converge slowly in 3D case in order to solve the cube

root as given in (Denis et al., 1999; Rider and Kothe, 1998). To mitigate this di�culty,

Scardovelli and Zaleski (Scardovelli and Zaleski, 2000) proposed an analytic relation

between the values of the colour function and the line constant α in a normalized

domain [0, 1]. They provided the details of their analytical solution and its properties

in the half domain [0, 1
2
] only. In the present research, this relation has been further

investigated and an extension to the full domain in 2D has been documented. One of

the main advantages of this formula is that it can be easily extended to 3D problems.
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We have provided the details of all the analytical steps involved in its derivation.

This formula has two parts, viz., a forward relation and an inverse relation. The

forward relation computes the value of the colour function while the value of line

constant α is obtained from inverse relation. Both relations and their correspondence

to the geometric equation (3.8) are presented below.

The Forward Relation

From this relation, the value of the colour function can be calculated using the known

values of α, m1 and m2. The values of these variables are known for the line which

has been advected at the current time step. Therefore, the forward relation is used to

update the volume fraction after advection. It is directly related to equation (3.8) and

is de�ned as,

C(α) =



α2

2.m.(1−m)
0 ≤ α < m

α

(1−m)
− λ m ≤ α < 1/2

1−
(
1− α

1−m
− λ

)
1/2 < α ≤ (1−m)

1− (1− α)2

2.m.(1−m)
(1−m) < α ≤ 1

(3.11)

In the equation (3.11), m = min(m1,m2), m1 +m2 = 1, λ =
m

2.(1−m)
and C ∈ [0, 1].

Since the formula is derived for normalized form, we consider each grid cell as unit

square (therefore, dx and dy are assumed to be unity) but all the calculations has been

done using the actual values of dx and dy by normalizing the cell length as elucidated

later in Fig. (3.11). The relation between equations (3.8) and (3.11) can be examined
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by investigating each inequality of (3.11) one by one.

The First inequality

The condition 0 ≤ α < m implies that both the small triangles (△BFE and

Figure 3.5: Interface position corresponding to the �rst inequality in equation (3.11)

△DHG ) in Fig.(3.2) are absent. The position of the interface for this inequality

is shown in Fig. (3.5). This means that the values of Heaviside step functions

H(α−m1) and H(α−m2) are zero and the equation (3.8) becomes

Area =
α2

2.m1m2

This is same as in the �rst condition of equation (3.11).

The Second inequality

In this case let m = m1 then the meaning of the condition m1 ≤ α < 1/2 is that

the small triangle in the y direction, i.e., △DGH is absent as depicted in Fig.

(3.6). Hence the value of H(α −m2) = 0 and H(α −m1) = 1. The formula for
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Figure 3.6: Interface position corresponding to the second inequality in equation(3.11)

the area below the line DE in the cell ABCD in Fig. (3.6) can be expressed as

Area =
α2

2.m1m2

{
1− (α−m1)

2

α2

}
=

α

m2

− m1

2m2

=
α

(1−m1)
− m1

2.(1−m1)

=
α

(1−m)
− λ

Hence, the value of the area is same as in the second condition of equation (3.11).

The Third inequality

The condition 1/2 < α ≤ (1 − m) states that the small triangle (△BEF ) on

the x axis is absent(so m = m2). This position of the interface is illustrated in

Fig.(3.7) which shows that the value of H(α−m2) = 1 and H(α−m1) = 0. Now

equation (3.8) can be shown to be equal to 1−
(
1−α
1−m

− λ
)
.

The Fourth inequality

The condition in this inequality refers to the position of the interface as shown in

Fig (3.2). Here, both Heaviside step functions have unit value and the formula
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Figure 3.7: Interface position corresponding to the third inequality in equation (3.11)

of area is written as

Area =
1

2.m1m2

{−m2
1 −m2

2 − α2 + 2m1α+ 2m2α}

=
−1

2.m1m2

{(m1 +m2)
2 − 2α(m1 +m2)− 2m1m2 + α2}

(m1 +m2) = 1 ⇒

Area =
−1

2.m1m2

{1− 2α+ α2 − 2m1m2}

≡ 1− (1− α)2

2m(1−m)

(3.12)

The properties of equation (3.11) can be summarized as,

• Function C(α) : [0, 1] −→ [0, 1] is a continuous monotonically increasing function

of α.

• It is one-to-one and onto mapping from [0, 1] to [0, 1].

Since C(α) is a one-to-one and onto and continuous function, its inverse function exists

(Fischer, 1983) and can be used for calculating the value of the line constant α from

the value of C. This inverse relation is discussed in the next section.
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3.3.3 Calculation of the Line Constant (Inverse Relation)

At a certain time step, after advection, the position of the interface (i.e. the value of α)

needs to be calculated using the updated values of C, m1 and m2. The inverse relation

of equation (3.11) is used to calculate the value of α which has been constructed here

and can be de�ned as,

α(C) =



√
2.m.(1−m).C 0 ≤ C < λ

(C + λ)(1−m) λ ≤ C ≤ 1/2

1− (1− C + λ)(1−m) 1/2 < C < 1− λ

1−
√

2(1− C).m.(1−m) 1− λ ≤ C ≤ 1

(3.13)

Similar to the forward relation, the last two inequalities of this formula have been

derived in this work based on the �rst two inequalities and their symmetric properties

documented in (Scardovelli and Zaleski, 2000).Equations (3.11) and (3.13) de�ne an

analytical relation between volume fraction values C and line constant α. Equation

(3.13) determines the exact value of α for a given value of C which is quite di�cult to

�nd using equation (3.8). The interface is reconstructed using these two equations at

each time step during simulation.

3.4 Advection of the Interface

Once the interface is reconstructed, the advection algorithm is used to model its motion

in the underlying velocity �eld. Equation(2.3) represents the volume conservation of

one �uid provided that the velocity is divergence free (for incompressible �ows) i.e.,
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∇ · V =0 (Greaves, 2004; Hieu et al., 2004). However, it is to be noted here that

the discrete velocity divergence is not necessarily zero therefore, divergence correction,

∇·V, is added to both side of this equation. Hence, equation(2.3) can be expressed in

2D as (Rider and Kothe, 1998),

∂C

∂t
+∇·(VC) = C∇·V (3.14)

Equation (3.14) represents the movement of “C”. For advection of the interface, a

Lagrangian advection method is implemented in this work and is discussed in the next

section.

3.4.1 The Lagrangian Advection Method

With the Lagrangian method outlined in (Denis et al., 1999), the interface is located

by tracking the motion of line segments representing the interface between two �uids.

The advection of the interface can be carried out in two ways: one of the ways is to

move the interface in both x and y directions simultaneously; the second way is to

split the advection process in both directions. The latter has more advantages over

the former as discussed in (Rider and Kothe, 1998) and thus has been utilized in this

work. At each time step, the solution of the N-S equations provides the velocity �elds

in the x and y directions. To understand the procedure in the x direction, consider

the position of the interface at a time step n as shown in Fig.(3.8). In this �gure, u(x)

denotes the x-component of the velocity (V ≡ (u, v)) and the interface is represented

by the line �ab�. The general equation of a line at time step n can be written as
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m
(n)
1 x+m

(n)
2 y = α(n) (3.15)

During the x-sweep, the y component of velocity is ignored. Assume that the velocity

at the west face (line CD) is Uw and at the east face (line AB) is Ue. Then the x-

component of velocity within the cell can be described as a linear interpolation of Uw

and Ue as shown in equation (3.16).

Figure 3.8: Position of the interface at a time step n

u(x) = Uw

(
1− x

δx

)
+ Ue

x

δx
(3.16)

During advection, in the next time step, the �uid moves to other cells and thereby

the position of the interface changes. The �uid can move to any one of four directions

in 2D depending upon the direction of the velocity �eld as illustrated in Fig. (3.9).

A mathematical description of the movement in the x-direction is presented here.

Suppose the new position of the interface at the next time step is represented by the

line �cd� as shown in Fig.(3.10) An arbitrary point on the line �cd� can be described

as

xn+ 1
2 = xn + u(xn)δt (3.17)
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(a) Movement of �uid in +ve x direction for α>0 (b) Movement of �uid in -ve x direction for α>0

(c) Movement of �uid in +ve x direction for α<0 (d) Movement of �uid in -ve x direction for α<0

Figure 3.9: Movement of �uid in x direction

Which, on substituting the value of u(xn) from equation (3.16), becomes

⇒ xn+ 1
2 = xn +

[
Uw

(
1− xn

δx

)
+ Ue

xn

δx

]
δt

⇒ xn+ 1
2 =

[
1 +

(
Ue − Uw

δx

)
δt

]
xn + Uwδt

(3.18)
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Figure 3.10: New position of the interface at next time step in +ve x direction

The superscript (n + 1
2
) represents the partial time step in one spatial direction x.

Therefore the point xn can be written as

xn =

(
xn+ 1

2 − Uwδt
)

[
1 +

(
Ue−Uw

δx

)
δt
] (3.19)

On substituting the value of xn from equation (3.19), the equation of the new line (i.e.

equation 3.15) becomes

mn
1 .

(
xn+ 1

2 − Uwδt
)

[
1 +

(
Ue−Uw

δx

)
δt
] +mn

2y
n = αn (3.20)

The coordinate yn remains constant during the x-sweep in the advection process. Equa-

tion (3.20) can be rearranged as

m
n+ 1

2
1 xn+ 1

2 +mn
2y

n = αn+ 1
2 (3.21)

where m
n+ 1

2
1 =

mn
1[

1 +
(
Ue−Uw

δx

)
δt
] (3.22)
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and

αn+ 1
2 = αn +

mn
1Uwδt[

1 +
(
Ue−Uw

δx

)
δt
] (3.23)

Equation (3.21) de�nes the new line after the advection (line �cd� in Fig. (3.10)). This

new line can move to the left or right of the cell faces and hence the volume fraction

under line (3.15) will move to those cells. In particular, suppose
(
αn+ 1

2/m
n+ 1

2
1

)
> δx

then some portion of the volume fraction has moved to the right hand cell as depicted

in Fig.(3.10).

To update the volume fraction of that cell, the volume contained under the line cd

in D AEFB has to be calculated. By using the coordinate transformation xn+ 1
2 =

(x̂)n+
1
2 + δx, where (x̂)n+

1
2 is the distance from the left face of the right cell, equation

(3.21 ) gives

m
n+ 1

2
1

[
(x̂)n+

1
2 + δx

]
+mn

2y
n = αn+ 1

2 (3.24)

=⇒ m
n+ 1

2
1 (x̂)n+

1
2 +mn

2y
n = αn+ 1

2 −m
n+ 1

2
1 δx (3.25)

which can be written as

m
n+ 1

2
1 (x̂)n+

1
2 +mn

2y
n = ά (3.26)

where

ά = αn+ 1
2 −m

n+ 1
2

1 δx (3.27)

The portion of volume which has moved to the right hand cell is the area below the

line de�ned by equation (3.26) covered in that cell. This area can be calculated by the

forward relation (3.11) using the coe�cients m
n+ 1

2
1 , m2 and ά.
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Figure 3.11: Flow chart of calculation of area in X-direction
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A �ow chart of the algorithm for calculating the area in x-direction for a particular

normal vector position is presented in Fig. (3.11). The incoming and outgoing volume

fractions are calculated for each cell in the computational domain during the x-sweep

of time step. A similar procedure is applied for the y-sweep of the time step to calculate

both �uxes for each cell.

Under the Courant Friedrichs Lewy (CFL) condition
[
(max|V|) δt

δx
< Υ ∈ (0, 1)

]
, the

Lagrangian method is stable and satis�es the physical condition on the volume fraction

0 ≤ C ≤ 1 (Greaves, 2004; Denis et al., 1999). The values of the volume fractions in

all the cells are updated in the x direction during the x-sweep. After completing the x-

sweep, the calculation of the y-sweep is carried out and the cell values in the y-direction

are updated. More details of the cell values updates have been provided in the next

subsection.

3.4.2 Flux Update

The �uxes (the amount of the volume fraction �ow into a cell in a particular direction)

in each cell are updated by time integration of equation (3.14), whereby the volume

fraction of a �uid at time step n is marched forward to time step n+1. In this research,

we have implemented the operator-split time integration scheme in which the �uxes

are updated in one spatial direction �rst followed by the other direction in a certain

time step and then the directions are changed in the next time. This scheme has been

found to be more accurate than an un-split scheme (Rider and Kothe, 1998).

To understand this scheme, consider the �ux update during the x-sweep and let

Cn
i,j be the volume fraction of the �uid at time step n in the cell at location (i, j).

After calculating the �uxes of C into and out of this cell, the updated value of volume
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fraction, due to �ow in the x direction, can be de�ned as (Rider and Kothe, 1998)

C
n+ 1

2
i,j = Cn

i,j + FXi,j + dt (Ue − Uw)C
n
i,j (3.28)

where FXi,j is the change of �ux at the east and the west faces in the x-direction and

is de�ned as

FXi,j =
(
FXe

i,j + FXw
i,j

)
Ue is the velocity at the east face, Uw is the velocity at the west face of the cell and

dt is the time step. The quantities FXe
i,j and FXw

i,j are the net �ux changes at east

and west faces of the cell as shown in Fig(3.12). During the �ux updation, the value

of FXe
i,j is calculated as the �ux di�erence at east face cells at locations (i, j) and

similar de�nition applied for the quality FXw
i,j. The extra term in the right hand side

of equation(3.28) is due to the divergence correction as explained in equation(3.14).

After completing the x-sweep, a cell is updated from the north and the south faces

during the y-sweep. The updated value of the volume fraction in this case can expressed

as

Cn+1
i,j = C

n+ 1
2

i,j + FYi,j + dt (Un − Us)C
n
i,j (3.29)

In equation (3.29), Un, Us are the velocities at north and south faces. FYi,j is the

change of �ux at north and south faces whose values may be de�ned in the similar way

as for the FXi,j. It should be noted in this equation that the updated value of the

volume fraction is represented by the superscript (n + 1). The initial sweep direction

is altered at every time step in order to minimize the numerical error that arises due
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Figure 3.12: VOF update during X-sweep

to the operator splitting scheme.

3.5 Modelling the Fluid Flow

Viscous incompressible �ows are governed by the Navier-Stokes equations as mentioned

in chapter 2. Equations (2.1) and (2.2) can be expressed in 2D as follows,

u-momentum equation:

ρ

(
∂u

∂t
+

∂(u2)

∂x
+

∂(uv)

∂y

)
= −∂p

∂x
+ Γ

(
∂2u

∂x2
+

∂2u

∂y2

)
+ Su (3.30)

v-momentum equation:

ρ

(
∂v

∂t
+

∂(uv)

∂x
+

∂(v2)

∂y

)
= −∂p

∂y
+ Γ

(
∂2v

∂x2
+

∂2v

∂y2

)
+ Sv (3.31)

continuity equation:

∂u

∂x
+

∂v

∂y
= 0 (3.32)
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In chapter 2, it was observed that the Finite Volume Method(FVM) is more suitable

for multiphase �ow problems modelling. Its advantages are summarized there. The

�rst step in the FVM is to discretize the computational domain into a �nite number

of CVs.

3.5.1 Domain Discretization

In the FVM, CVs are de�ned in the vicinity of the nodal points of the grid where values

of �eld variables are stored. One needs to decide �rst the location of these variables in

the domain. One of the ways is to store all variables for velocity and pressure at the

same location (i.e. using the same CV for all the variales). However, this arrangement

may generate an un-physical situation, in particular, where the in�uence of pressure

is not properly represented in the discretized momentum equation (Anderson, 1995;

Versteeg and Malalasekera, 1995). This problem can be avoided by using a staggered

grid for velocity components and de�ning the pressure variable at the nodal points. A

detailed description of the staggered grid is provided below.

The Staggered Grid

The staggered grid is centred around the cell faces as depicted in Fig(3.13).

The pressure variables are stored at grid nodes marked by �l� and labelled

as (I − 1, J), (I, J), (I +1, J). The velocity components are calculated at the

cell faces in between nodes and labelled using the half cell width. Speci�cally

the u velocity components are labelled as (i− 1 , J), (i+1 , J) and marked by

�s�. The symbol �H� represents the v velocity components which are labelled

as (I , j−1), (I , j+1), (I , j+2).
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Therefore, three di�erent grids (one pressure grid and two velocity grids) can

be viewed within same domain. A sketch of the staggered grid is depicted in

Fig.(3.13). All these three grids are clearly shown by using di�erent colour CV.

More clearly, the black colour CV represents the pressure grid which is surrounded

over the symbol �l�. Similarly, the u velocity grid is represented by the blue CV's

and the red colour CV represents the v velocity grid. One of the advantages of

this grid is that the pressure gradient is based on adjacent pressure points (as

shown in Fig.(3.13), which eliminates the possibility of pressure oscillations which

is a non-physical situation (Fletcher, 1976).

Next, the solution procedure using a staggered grid will be discussed. As pointed out

before in chapter 2, one of the complexities in the mathematical model of multiphase

�ow problems is the coupling of pressure and velocities in the governing equations

(3.30) to (3.32) . In the next subsection some details of this issue have been provided.
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Figure 3.13: Staggered Grid
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3.5.2 Pressure-Velocity Coupling

On a closer look at the N-S equations (equations (3.30) to (3.32) ), the following facts

may be observed:

• There is a non-linearity in the convective term of the momentum equation, for

example, equation (3.30) contains the x-derivative of ρu2 and y-derivative of ρuv.

• Every velocity component is present in each momentum equation and in the

continuity equation, which means that all three equations are coupled.

• Another complex issue is the presence of a pressure term in both the momentum

equations but not in the continuity equation so that there is no separate equation

for the pressure term.

To get the solution of the momentum equations, the pressure should be known in

advance. However, the coupling between velocity and pressure imposes a condition

that the velocity �eld would satisfy the continuity if the correct pressure �eld is applied

to the momentum equation.

3.6 Equation Discretization

The second step in the FVM is discretization of the governing equations according to

the grid arrangement. The advantages of the staggered grid as mentioned above have

led us to utilize it in this work, for discretizing the momentum and continuity equations.

The discretization steps are brie�y discussed in this section. First, considering the u-

momentum equation, the location of u-velocity variable in Fig.(3.13) is (i, J). The
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integral form of this equation imposes a conservation condition over the CV and can

be expressed as:

ρ

 ∂

∂t

∫
CV

u dΩ +
∂

∂x

∫
CV

u2 dΩ +
∂

∂y

∫
CV

(uv) dΩ

 =

− ∂

∂x

∫
CV

p dΩ +

∫
CV

Γ

(
∂2 u

∂x2
+

∂2 u

∂y2

)
dΩ +

∫
CV

SudΩ

(3.33)

where,
∫
CV

represents the integral over a CV.

The discretized equation for u-momentum equation can be expressed as

ai, J ui, J =
∑
ab

anbunb + (pI−1, J − pI, J) Ai, I + bi, J (3.34)

Equation (3.34) has been obtained from the approximation of integrals in equation

(3.33) over a CV de�ned around u(i,J). The details of the intermediate steps between

these two equations can be found in (Versteeg and Malalasekera, 1995). The de�nition

of the terms involved in equation(3.34) are as follows,

(a) Ai, J is area of the (east or west) face of the u-CV.

(b)
∑
nb

anbunb is the summation over the coe�cients of neighbouring nodes. The

neighbours for the node (i, J) are (i− 1, J), (i+ 1, J), (i, J + 1) and (i, J − 1).

(c) bi,J is the momentum source term.

(d) ai,J is the value of u-coe�cient at (i, J).

(e) pI−1, J and pI, J are the value of pressure gradient terms.
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Figure 3.14: Close up of u-control volume: E,W,N,S represent east,west, north and south faces re-
spectively.

To understand the meaning of the di�erent terms involved in this equation, a close up

of the u-Control Volume (u-CV) is shown in Fig.(3.14). The location of the neighbours

as de�ned in item (b) above is represented in Fig.(3.14). The four faces of the CV

are marked by E,W,N and S whose meanings are `east ', `west ', `north' and `south'

respectively.

The pressure gradient in the u-CV may be calculated by taking a linear interpolation

of the pressure nodes located in the CV. Di�erencing methods such as Upwind or
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QUICK can be employed to calculate the values of coe�cients ai, J and anb (Versteeg

and Malalasekera, 1995). In a similar way, the discretized equation for the v-momentum

equation can be expressed as

a(I,j)v(I,j) =
∑
ab

anbunb + (pI, J−1 − pI, J) AI, j + bI, j (3.35)

One of the conditions of pressure-velocity coupling is that the velocities obtained

from equations (3.34) and (3.35) should satisfy the continuity equation (2.1) which can

be discretized as

[
(uA)i+ 1

2
, j − (uA)i− 1

2
, j

]
−
[
(vA)i+ 1

2
, j − (vA)i− 1

2
, j

]
= 0 (3.36)

During simulation, at each time step the velocity obtained from the momentum equa-

tion should satisfy this equations.

3.6.1 Pressure Correction Method

The discretized momentum equations (3.34) and (3.35) cannot be solved directly due

to the non-linearity and coupling of pressure terms. The non-linearity comes from the

coe�cient terms ai,J , aI,j or anb which contain the velocity terms. Thus, in order to

solve them, an iterative scheme is required. The relaxation-based iterative method

techniques used for inviscid �ows are not useful for solving equations governing viscous

�ows because the mathematical behaviour (the PDEs have mixed elliptic-parabolic

behaviour) of these equations are di�erent (Anderson, 1995). Another technique which

is widely used for these equations is known as the pressure correction method developed

by Patankar and Spalding (Patankar, 1980). This method is an iterative scheme where
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an initial guess of pressure is used to start the iterations for solving the momentum

equations.

The discrete form of the momentum equations (3.34) and (3.35) is written for every

node in the appropriate staggered grid (u or v-momentum grid) implicitly which as a

result generates systems of linear algebraic equations. These linear systems are solved

by taking the pressure values from the previous time step. However, the velocity ob-

tained from the solution of the linear systems does not satisfy the continuity equation

(3.32). To rectify this problem, the velocities are corrected by introducing a correction

term and this requires a correction term for the pressure variable. Due to the correc-

tion in pressure, these methods are called pressure correction methods (Patankar and

Spalding, 1972).

The problems associated with the non-linearity in the momentum equations and

pressure-velocity coupling can be resolved by using the SIMPLE algorithm(as discussed

in section 2.4.3) which is based on a pressure correction technique.

3.7 The SIMPLE Algorithm

In this algorithm (Versteeg and Malalasekera, 1995), a pressure �eld, say p∗, is guessed

and substituted into the momentum equations (3.34) and (3.35). The new equations

can be written as

a(i,J)u
∗
(i,J) =

∑
ab

anbu
∗
nb +

(
p∗I−1, J − p∗I, J

)
Ai, J + bi, J (3.37)
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a(I,j)v
∗
(i,j) =

∑
ab

anbv
∗
nb +

(
p∗I, J−1 − p∗I, J

)
AI, j + bI, j (3.38)

In these equations, the subscript �nb� denotes the neighbouring cells and
∑

anbu
∗
nb has

the same meaning as described in equation (3.34). Solution of these equations provides

the velocities u∗ and v∗. Since the velocities obtained from these solutions do not

satisfy the continuity equation, a correction term in the pressure and velocity �elds is

introduced. The updated values for pressure and velocities are de�ned as follows:

p = p∗ + ṕ (3.39a)

u = u∗ + ú (3.39b)

v = v∗ + v́ (3.39c)

where, ú, v́ are the corrections to the velocities and ṕ denotes the correction in the

pressure term. The re�ned value of pressure (p∗) is obtained by solving the pressure

equation. This value is then substituted back into the discretized momentum equations.

Next, by manipulating the original momentum equation the new equation, i.e the

equations of correct velocities can be written as (for more detail see (Patankar, 1980)),

u = u∗ + du(∆ṕu) (3.40)

v = v∗ + dv(∆ṕv) (3.41)

where,

• ∆ṕu: is the di�erence in pressure correction at the two faces (east and west face)
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of u-CV as shown in Fig.(3.14).

• Similarly, ∆ṕv is the di�erence of the pressure correction at the north and south

faces of the v-CV.

• du, dv are the coe�cients which comes from equations (3.34) and (3.35) and are

de�ned as (at a particular node (i, J));

(du)i,J =
Ai,J

ai,J
, (dv)I,j =

AI,j

aI,j

It may be observed that in the equations (3.40) and (3.41), the summation terms
∑
nb

are missing. Actually, the omission of
∑
nb

is the main approximation in the SIMPLE

algorithm (Versteeg and Malalasekera, 1995) while estimating the correct velocities

from equations (3.34) and (3.35).

Now, since equations (3.40) and (3.41) provide the corrected velocities, they should

satisfy the discrete continuity equation (3.32) which is one of the constraints of the

problem under consideration. The discrete form of equation (3.32) can be expressed

as

[(ρ uA)i+1, J − (ρ uA)i, J ] + [(ρ v A)I, j+1 − (ρ v A)I, j] = 0 (3.42)

Substitution of the corrected velocities in the equation (3.42) yields a pressure cor-

rection equation,

aI, J ṕI,J = aI+1, J ṕI+1,J + aI−1, J ṕI−1,J + aI, J+1 ṕI,J+1 + aI, J−1 ṕI,J−1 (3.43)

where,

aI, J = aI+1, J + aI−1, J + aI, J+1 + aI, J−1
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aI+1,J = (ρ dA)i+1, J ; aI−1,J = (ρ dA)i,J

aI,J+1 = (ρ dA)I, j+1 ; ai,J−1 = (ρ dA)I,j

b́I,J = (ρ u∗A)i, J − (ρ u∗A)i+1, J + (ρ v∗ A)I, j − (ρ v∗A)I, j+1

Equation (3.43) generates a system of equations whose solution provides the pressure

correction values, which on substituting in equation (3.39) yields the correct values of

the pressure and velocities. At each time iteration, the estimated values u∗, v∗ and

p∗ are replaced by these corrected values. The whole SIMPLE algorithm may be

summarized in the �ow chart depicted in Fig.(3.15) which was adapted from (Versteeg

and Malalasekera, 1995).

3.8 Chapter Conclusion

The concepts behind the solution of the multi�uid model have been developed in this

chapter. Implementation of both steps of VOF(PLIC) methods have been derived. An

extension to the full normalized domain of an analytic relation for the reconstruction

step has been established. Details of the di�erent steps of the Lagrangian advection

methods have been provided. The main features of these topics can be summarized as:

(a) The VOF method uses a step function and provides the value of the volume fraction

of �uids in each CV,

(b) An analytical relation provides a way to calculate the exact value line constant

and

(c) The Lagrange advection method in conjunction with an operator-splitting scheme
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provides better �ux update procedure.

The domain discretization and equation discretization schemes are explained in detail

and the main conclusion here can be summarized as follows:

(1) the staggered grid is more suitable for storing variables as it avoids a non-physical

situation,

(2) pressure-correction methods can deal with the non-linearity of the momentum

equations and

(3) the SIMPLE algorithm resolves the problem of pressure-velocity coupling in the

equations.

This chapter has developed the basic computational tools for the computer simula-

tion of a multiphase �ow model as depicted in Fig.(2.4). The SIMPLE algorithm, used

for solving the momentum equations, generates large sparse linear system of equations.

These systems are solved by iterative methods such as K-S methods as observed in

the literature survey. The convergence rate of these methods can be accelerated by

preconditioning techniques. Moreover, large sparse matrices for linear systems call for

a special data structure. All these topics are the subject of next chapter.
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Figure 3.15: Flow chart of SIMPLE algorithm
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Chapter 4
Solving Linear Systems

4.1 Introduction

The previous chapter provided details of the building blocks of the computer simula-

tion of the multiphase �ows. Whole simulation procedure can be viewed as two sub

procedures: the implementation of the VOF method and the solution of the Navier-

Stokes equations. The latter step involves the solution of linear systems of equations as

required in the SIMPLE Algorithm. In this work, a sequential code for a Navier-Stokes

solver has been put to use.

This chapter focuses on methods for solving large sparse linear systems of equations.

In chapter 2, it was mentioned that the discretization of PDEs results in large sparse

systems of equations Ax = b, where A ∈ Rn×n is an n× n matrix and x,b ∈ Rn are

n-dimensional column vectors. The given code adopted the index format for storing

the sparse matrices as indicated in section 2.4.4.1 and the non-zero entries of the matrix

have been stored in a two dimensional array having �ve columns. The given code also

has a library for basic matrix and vector operations in the index format.
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Storage analysis of di�erent sparse matrix formats is needed in order to know their

memory requirements for storing the large sparse matrices. The linear system is solved

by non-stationary methods which are treated with preconditioning techniques to ac-

celerate their convergence rate. In the whole simulation of multiphase �ow problems,

solving the linear system has been found to consume most of the computational time.

Therefore, one of the objectives of the present research is to reduce this computational

time. In order to achieve this, at least two tasks are required; one of them is the de-

velopment of parallel algorithms for the di�erent parts of the solvers. The other task

is to choose a speci�c data structure so that the computational complexity of major

steps such as matrix-vector products can be reduced. In context of these issues, the

present chapter covers the following topics:

• storage analysis of di�erent sparse matrix formats,

• the reasons for choosing the diagonal format in linear systems,

• an implementation of the matrix-vector product in diagonal format necessary by

the linear solvers,

• a brief overview of the stationary and non-stationary (i.e. Krylov Subspace)

solvers,

• some implementation issues of the preconditioners for solvers,

• a novel algorithm for the ILUT preconditioner in the diagonal format

• some algorithmic details of the forward and backward substitution needed for

this preconditioner

• a note on the computational complexity of the novel Algorithm,

• a justi�cation of the needs of parallelization of the Algorithms for solvers and

preconditioners,
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• the implementation details of suitable parallel Algorithms,

• the details of the parallel Bi-CGSTAB Algorithm and

• the integration of parallel solvers with the available Navier-Stokes solver used.

After reading this chapter, it is intended that the reader will have an idea of the

conclusive themes of the whole project.

4.2 Matrix Format

As mentioned in Chapter 2, the four main data structures for sparse matrices are

Compressed Sparse Coloum(CSC), Compressed Sparse Row(CSR), index format and

diagonal format. In this section we shall analyse the storage requirements of these

formats. First of all, starting with CSR format, in this format all the non-zero entries

Figure 4.1: Representation of CSR format

are saved in a 1-D array of double precision say `a_val'. The column locations of

these values are stored in another 1-D (integer) array called e.g., `Col`. To �nd the

position of a new row in the array `a_val', the pointers to the starting point of new
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row are stored in another 1-D integer array `PTR'. A typographical representation

of CSR format of a penta-diagonal matrix is illustrated in Fig.(4.1). Similarly, in the

CSC format there are three arrays namely:

• `a_val': nonzero elements of the matrix,

• `row' : an integer array of row locations of the entries and

• `PTC': integer array of pointers to the starting point of a new column.

In the index format, there are three arrays of the same size; two integer arrays and

one double precision array, for example, `i_index', `j_index',`a_val' respectively.

These array corresponding to the matrix in Fig.(4.1) are shown in Fig.(4.2). There

Figure 4.2: Representation of index format

are �ve 1-D arrays of double precision in the diagonal format each of which may be

of maximum length `n' where `n' is the dimension of the matrix. These arrays have

been named here as `lldiag', `ldiag', `diag', `udiag' and `uudiag' which are shown

in Fig.(4.1). The maximum number non-zero entries in a penta-diagonal matrix can

be 5n. Therefore, the arrays `a_val', `i_index' and `j_index' will have maximum

5n values and the arrays `PTR' or `PTC' will contain n + 1 entries. To estimate

the storage requirements, one needs to calculate the size of each array, de�ned above,

in bytes. An integer variable takes 4 bytes while double precision numbers occupies
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8 bytes in memory. Based on these details, the size of di�erent arrays in bytes have

been calculated and are listed in table (4.1). From table (4.1), it is clear that diagonal

Array name CSR/CSC Index Format Diagonal Format
PTR/PTC 4n +1 × ×
col/row 20n × ×
a_val 40n 40n ×
i_index × 20n ×
j_index × 20n ×
5 diag's × × 40n
Total 64n+1 80n 40n

Table 4.1: Storage requirement of di�erent arrays in bytes

format occupies less space for penta-diagonal matrices in comparison to other sparse

matrix formats. Once the matrix format is decided, one needs to choose an e�cient

iterative method and develop the algorithm in that format. The next two Sections

are devoted on the details of this topic. In particular, the algorithmic to details of

non-stationary iterative methods in diagonal format are provided in section 4.4.

4.3 Stationary Iterative Methods

In the stationary iterative method, from an initial solution x0 (guessed), the iteration

scheme proceeds accordings to (Saad, 1996),

xk+1 = Hxk + f (4.1)

where H is an iteration matrix obtained from the parts of the matrix A and f is a

vector also obtained from part of A multiplication with vector b. The matrix A is

decomposed as A = D+ L+U, where D is diagonal, L is lower and U is the upper
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part of matrix A. Examples of basic stationary iterative methods include (Golub and

Van Loan, 1996),

Jacobi Method: In this method, HJA = D−1(L+U) and f = D−1b

Gauss-Seidel Method: Here, HGS = (D− L)−1U and f = (D− l)−1b

The necessary condition for convergence of stationary iterative methods is that the

spectral radius of the iteration matrix ρ(H) < 1 in magnitude (Saad, 1996). In other

words, the magnitude of the maximum eigenvalue of the iteration matrix H should be

less than 1. It has been observed that the matrices arising from the present problems

are unsymmetrical and ill-conditioned, and the magnitude of their maximum eigenvalue

is always more than 1. Therefore, the stationary methods are not suitable for solving

the linear systems having these matrices. An alternative choice for the solution of

ill-conditioned sparse linear systems is non-stationary methods which are described in

the next section.

4.4 Non-stationary Iterative Methods

These methods are based on projection methods in which the approximate solution x̃ is

extracted from subspace of Rn with some constraints. The de�nition of the projection

method can be written as (van der Vorst, 2003), �nd x̃

x̃ ∈ x0 +K such that b−Ax̃ ⊥ L (4.2)

where K is the search space, L is the space of constraints and x0 is the initial guess

of the solution. The search space is constructed by the residual vector r0 = b−Ax0

96



4.4. Non-stationary Iterative Methods Chapter 4. Solving Linear Systems

and is de�ned as (Saad, 1996; van der Vorst, 2003)

Km(A, r0) = span
{
r0,Ar0,A

2r0, · · · , Am−1r0
}

(4.3)

where m is the dimension of the space and span means the set of all possible linear

combinations of vectors. The space Km(A, r0) (hereafter will be denoted by Km)

Choose initial x0 and calculate r0 = b−Ax0 ;1

Choose r̃ = r0, k=1. ;2

Calculate ρ1 =< r̃, r0 > ;3

while (ρk > tolerance) do4

if (k == 1) then5

pk = rk6

else7

βk =
(

ρk

ρk−1

)
×
(

αk

ωk

)
8

endif9

Solve p̃k from Mp̃k = pk //Apply preconditioner ;10

wk = Ap̃k ;11

αk = ρk

<r̃T,w>
;12

sk = rk − αkp̃
k ;13

Solve s̃k from Ms̃k = sk //Apply preconditioner ;14

tk = As̃k;15

ωk = <tk,sk>
<tk,tk>

;16

xk = xk−1 + αkp̃
k + ωks̃k //update solution vector ;17

ρk =< r̃k, rk > ;18

k = k+1 ;19

endw20

Algorithm 4.1: Preconditioned Bi-Conjugate Gradient Stabilised (BiCGSTAB) algo-
rithm(Pommerell, 1999).

is a subspace of Rn and is called the Krylov Subspace and the methods based on this

search space are called Krylov Subspace (K-S) Methods (Saad, 1989, 1996). Based on

the choice of constraints space L, these K-S methods can be divided (van der Vorst,

2003; Sun et al., 2009) into four categories:
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The Ritz-Galerkin Approach: L = Km =⇒ x̃ ∈ x0+Km such that b−Ax̃⊥Km

The Minimal Residual Approach: Find x̃ such that ∥b−Ax̃∥2 is minimal over

Km

The Petrov-Galerkin Approach Choose L ̸= Km =⇒ x̃ ∈ x0+Km such that b−Ax̃⊥ L

The Minimum Error Approach: Search x̃ ∈ ATKm(A
Tr0) such that ∥x̃− x∥2 is

minimal.

The �rst approach leads to the Conjugate Gradient Method (CGM). The Generalized

Minimal RESidual (GMRES) belongs to the minimal residual approach but for un-

symmetric systems this approach leads to long recurrence relations for approximate

solutions due to renormalization, therefore, another search space L is chosen to relieve

this relation and falls in the Galerkin category (van der Vorst, 2003).

The Bi-Conjugate Gradient Stabilised (Bi-CGSTAB) is a hybrid approach and gives

smooth convergence for unsymmetrical matrices (Pommerell, 1999). Nordsveen and

Moe (Nordsveen and Moe, 1999) applied Bi-CGSTAB to the solution of 2D transient

two-phase �ows and documented a considerable decrease in the computational time in

comparison to methods such as Gauss-Seidel method. It is this convergence behaviour

of the Bi-CGSTAB method which motivates author to employ it for solving linear

systems of equations arising from the present problem. An algorithm for Bi-CGSTAB

is provided in Algorithm 4.1.

4.5 Sparse Matrix-Vector Product

From storage analysis of di�erent sparse matrix formats, it has been observed that

the diagonal format occupies less space to store the matrix. Therefore, we adopted
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this format in the present work. It may be observed from algorithm 4.1 that the

Bi-CGSTAB method requires two matrix vector products. Since the product of a

matrix and a vector consumes most of the computational time (Pichel et al., 2009;

Shahnaz et al., 2006), a new algorithm has been developed in the diagonal format

with the intention to reduce this time. For penta-diagonal matrices, the o�set distance

of lower/upper diagonal, viz., `ldiag' or `udiag' from the main diagonal ‘diag' has

been denoted by ‘offset1'. Similarly, the o�set distance from the main diagonal to

uudiag/lldiag has been denoted by `offset2'. These notations are elucidated in Fig.

(4.3) and, by using them a new algorithm for sparse matrix-vector product has been

designed which is delineated in Algorithm 4.2. As it can be seen from this algorithm

for (i = 0, i < n, i++) do1

if ((i− offset1) < 0) then2

ax i = (diag)i × x i + (udiag)i × x(i+offset1) + (uudiag)i × x(i+offset2)3

endif4

if ((i− offset1) >= 0 && (i− offset2) < 0) then5

ax i = (ldiag)i × x(i−offset1) + (diag)i × x i + (udiag)i ×6

x(i+offset1)(uudiag)i × x(i+offset2)

endif7

if ((i− offset2) >= 0 && (i− offset2) < n) then8

ax i = (lldiag)i × x(i−offset2) + (ldiag)i × x(i−offset1) + (diag)i × x i +9

(udiag)i ∗ x(i+offset1) + (uudiag)i × x(i+offset2)

endif10

if ((i+ offset2) >= 0 && (i+ offset2) < n) then11

ax i = (lldiag)i × x(i−offset2) + (ldiag)i × x(i−offset1) + (diag)i × x i +12

(udiag)i × x(i+offset1)

endif13

if ((i+ offset1) >= n) then14

ax i = (lldiag)i × x(i−offset2) + (ldiag)i × x(i−offset1) + (diag)i × x i15

endif16

endfor17

Algorithm 4.2: Matrix-vector multiplication in diagonal format.
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that only one `for ' loop is required for computing the product while in any other matrix

format two such loops are required (Shahnaz et al., 2006; Straubhaar, 2008; Williams

et al., 2009). Using `if ' conditions based on the offset distances of the diagonals, one

`for ' loop has been eliminated. Elimination of a loop from the Algorithm reduces

its computational complexity. Consequently Algorithm 4.2 saves memory as well as

reduces the computational time.

4.6 Implementation of Preconditioners

The second important step in Algorithm 4.1 is the employment of a preconditioner as

shown in lines 10 and 14. Before discussing the implementation details of precondi-

tioners, it is necessary to a closer look at the reasons why they are necessary.

4.6.1 The Need for a Preconditioner

As mentioned above in Chapter 3, to simulate multi�uid �ow, the VOF method has

been implemented. This method treats the mixture of two �uids as one �uid which

is determined by the interface. During the advection, the mesh is kept �xed and the

interface is reconstructed from the values of the colour function and its gradients in a

grid cell as explained in Section 3.3. These values contribute to the calculation of the

coe�cient matrix entries. Since the �uid moves at each time step, it has been observed

that the magnitudes of the matrix entries change because of the changes in the interface

position. Due to this change, the condition number (the ratio of the highest to the

lowest eigenvalues as de�ned in Section 2.4.4.2) of the matrix may vary.

A matrix with a high condition number makes Krylov Subspace solvers converge

slowly and, so, in order to increase the convergence rate, preconditioning techniques are
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applied (Saad, 1992; Sun et al., 2009). As mentioned in Chapter 2, ILU, SSOR and DS

are the most appropriate preconditioners for the solvers. In general, the performance

of the ILUT preconditioner has been found to be better than other versions of the ILU

preconditioner (Saad, 1996). A discussion on the implementation details of the ILUT

preconditioner is provided in the next subsection.

4.6.2 Implementation Procedure

In ILU factorization, the original matrix A is decomposed into two matrices, viz., L

and U. Its Algorithm in dense format is given in Algorithm 4.3. In this Algorithm,

there are three nested `for ' loops required (steps 1,2 and 9). These nested loops

for (i = 0 to n) do1

for (j = i+ 1 to n) do2

Uj,i = Aj,i ;3

if (Uj,i == 0.0) then4

Lj,i = 0.0 ;5

else6

Lj,i =
Uj,i

Ui,i
;7

endif8

for (k = i+ 1 to n) do9

if (Uj,k ̸= 0.0) then10

Uj,k − = Lj,i ×Ui,k11

endif12

endfor13

endfor14

Li,i = 1.0 ;15

endfor16

Algorithm 4.3: Dense ILUT algorithm (Saad, 1996).

generate the data dependency of the matrix elements of L and U. This dependency

implies that for calculating the elements of the (i + 1)th, (i + 2)th rows, the elements

from the ith or previous row are required. This data dependency is a hindrance to
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parallelising the Algorithm (Basermann, 2000). In the parallel version, the matrix is

divided into di�erent parts which are available on di�erent processors of the parallel

computer (Li, 2005). Therefore, the elements of previous rows may not be available on

the same processor and those elements have to be brought from other processors.

4.6.3 The Sparse Version of the ILUT Preconditioner

In this subsection we will discuss a new sparse version of the ILUT algorithm. A novel

approach to this Algorithm for penta-diagonal matrices is proposed in this thesis which

is summarised in Algorithm 4.4. The literature has been examined and no paper for

ILUT algorithm for exact penta-diagonal matrices which replaces the three loops with

one loop has been found. The main feature of this Algorithm is that it requires only

one `for ' loop in comparison to three loops in the dense ILU Algorithm and hence it

reduces the data dependency. There are �ve conditions in this Algorithm which are

related to o�set distances of the matrix diagonals. Using these conditions, two nested

`for ' loops of the Algorithm 4.3 have been incorporated by setting the values of j =

offset1 and j = offset2.

It can be observed in Algorithm 4.4 that only one `for ' loop is utilized from line 1

to line 72. It should be noted that line number 36 is continued again in the next page

thus line numbers 37 and 38 are repeated; the reader can read the Algorthim from

line 1 to 36 then in the next page continue from line 38 to 72. In this algorithm the

arrays `Ldiag', `Lldiag' and `Llldiag' represent the diagonals of matrix L. Similarly,

the arrays with pre�x U denote the diagonals of matrix U. A graphical representation

of the arrays of the U and L matrices is illustrated in Fig.(4.3). The diagonals of the

matrix L are shown in Fig. 4.3(a). In this �gure, offset1 is the distance of the main

diagonal from the lower diagonal and offset2 is the distance from the diagonal below
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than the lower diagonal. Similarly the three diagonals of the matrix U are depicted

in Fig. 4.3(b). Employment of the ILU or the SSOR preconditioner transforms the

original linear system in to a preconditioned system,

(a) Penta-diagonal L matrix (b) Penta-diagonal U matrix

Figure 4.3: Representation of penta-diagonal L and U matrices

LUp̃ = b (4.4)

This system can be decomposed into two systems

Lz = b (4.5a)

Up̃ = z (4.5b)

These two systems are solved by forward and backward substitution procedures. Here

p̃ is solution vector obtained from preconditioned system. New Algorithms have been

developed for these two procedures in the diagonal format. The algorithm for forward

substitution is presented in Algorithm 4.5. In this algorithm, only one `for ' loop is

required which contains three `if ' conditions based on the diagonal ‘offset' values. The

0th element is calculated before the `for ' loop because the loop has to be started from

i = 1. Otherwise, it will try to access the memory location z0−1 at line 5 which is out

of the allocated memory segment. A similar algorithm for backward substitution in

diagonal format has also been developed.
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for (0 to n− 1) do copy U = A1

//copy arrays diag, ldiag etc. to Udiag Uldiag ;
for (i = 0; i < n; i++) do2

if (i− offset1) < 0 then /* first condition */3

j = i+ offset1 ;4

if ((Uldiag)j ̸= 0.0) then (Lldiag)j = (Uldaig)j/(Udiag)i ;5

if (Udiag ̸= 0.0) then (Udiag)j − = (Lldiag)j × (Uudiag)i ;6

if ((Uudiag)j ̸= 0.0) then7

if (j− i > 1) then8

(Uudiag)j = (Uudiag)j;9

else10

(Uudiag)j − = (Lldiag)j × (Uuudiag)i11

endif12

endif13

j = i+ offset2 ;14

if ((Ulldiag)j ̸= 0.0) then (Llldiag)j = (Ulldiag)j/(Udiag)j ;15

if ((Uldiag)j ̸= 0.0) then16

if ((j− i) > 2) then17

(Uldiag)j = (Uldiag)j ;18

else19

(Uldiag)j − = (Llldiag)j × (Uudiag)i ;20

endif21

endif22

if ((Udiag)j ̸= 0.0) then23

(Udiag)j − = (Llldiag)j × (Uuudiag)i ;24

(Uudiag)j = (Uudiag)j;25

(Uuudiag)j = (Uuudiag)j;26

endif27

endif28

if ( (i− offset1) >= 0 && (i− offset2) < 0) then /* second condition */29

j = i+ offset1 ;30

. . . ;31

. . . ;32

j = i+ offset2 ;33

. . . ;34

. . . ;35

endif36

endfor37

Note: The previous line is not the end of the `for ' loop and line 36 is continued at line 38 in the next page.38
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for ( Same loop condition from line 2 of previous page ) do37

Continuation from line 36 of previous page if38

( (i− offset2) >= 0 && (i+ offset2) < n) then /* third condition */

j = i+ offset1 ;39

if ((Uldiag)j ̸= 0.0) then (Lldiag)j = (Uldiag)j/(Udiag)i;40

if ((Udiag)j ̸= 0.0) then41

(Udiag)j = (Udiag)j − (Llldiag)j × (Uudiag)i ;
if ((Uudiag)j ̸= 0.0) then42

if ((j − i) > 1) then43

((Uudiag)j = (Uudiag)j ;44

else45

(Uudiag)j − = (Lldiag)j × (Uuudiag)i ;46

endif47

endif48

j = i+ offset2 ;49

if ((Ulldiag)j) ̸= 0.0 then (Llldiag)j = (Ulldiag)j/(Udiag)j ;50

if ((Uldiag)j ̸= 0.0) then51

if ((j − i) > 2) then52

(Uldiag)j = (Uldiag)j53

else54

(Uldiag)j − = (Llldiag)j × (Uudiag)i ;55

endif56

endif57

if ((Udiag)j ̸= 0.0) then (Udiag)j − = (Llldiag)j × (Uuudiag)i58

endif59

if ( (i+ offset2) >= n && (i+ offset1) < n) then /* fourth condition */60

j = i+ offset1 ;61

. . . ;62

j = i+ offset2 . . . ;63

endif64

if ( (i+ offset1) >= n then /* fifth condition */65

j = i+ offset1 ;66

if (j <= n− 1) then67

if ((Uldiag)j ̸= 0.0) then (Lldiag)j = (Uldiag)j/(Udiag)j ;68

if (Udiag ̸= 0.0) then (Udiag)j − = (Lldiag)j × (Uudiag)i ;69

endif70

endif71

endfor72

Algorithm 4.4: ILUT Algorithm in diagonal format
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z0 = r0/(Ldiag)0;1

for (i = 1; i < n; i++) do2

if ((i− offset1) < 0) then3

if ((offset1− i) <= 0) then4

zi = ri −
(Lldiag)i×z(i−offset1)

(Ldiag)i5

else6

zi =
ri

(Ldiag)i7

endif8

endif9

if ((i− offset1) >= 0 && (i− offset2) < 0) then10

zi = ri −
(Lldiag)i×z(i−offset1)

(Ldiag)i11

endif12

if ((i− offset2) >= 0) then13

zi = ri −
(Llldiag)i×z(i−offset2)+(Lldiag)i×z(i−offset1)

(Ldiag)i14

endif15

endfor16

Algorithm 4.5: Forward substitution algorithm in diagonal format

4.7 Computational Complexity

In Algorithm 4.3, there are three `for ' loops. Its computational complexity can be

calculated by observing the number of counts in each loop. The outer loop runs from

0 to n− 1 and other two loops run from i+1 to n− 1. Therefore, the total number of

counts can be expressed by the formula

n∑
i=0

(n− i)2 (4.6)

which has complexity of order O(n3 − n2). In Algorithm 4.4, there is only one `for '

loop so its complexity can be given as O(n). The matrix-vector product in Algorithm
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4.2, requires only one `for ' loop. Therefore, its computational complexity can also be

given as n. On the other hand the computational complexities of the matrix-vector

products in other sparse formats (Shahnaz et al., 2006; Straubhaar, 2008) are 5n.

4.8 The Need for Parallelization

We have seen that the diagonal format saves space and reduces the computational

complexity in comparison to other sparse matrix formats. However, in the entire

simulation, solving large systems of equations takes a large percentage of the total

computational time, when run on a single computer. Details of the average time taken

by the main parts of the simulation of the bubble rising problem are provided in Table

4.2. The simulation has been run for bubble radius 0.003 m with dt = 1.0 × 10−5

seconds and grid size 128× 128.

Steps Time(sec)
Coe�cients 355.19
Solving U & V system 1192.49
Solving P system 32498.30
Continuity residual 34.80
Writing data 22.27
VOF 460.37
Total Simulation Time 35606

Table 4.2: Time taken by di�erent steps for the simulation of bubble rise problem

In this table, coe�cients means the time required for calculating the coe�cient of

the U,V velocities and pressure systems of equations. Solving the (U & V and P

) systems indicate the time taken by the Bi-CGSTAB solver for solving these linear

systems. The time required for calculating the continuity residual and writing the

data �le are represented by the continuity residual and writing date respectively. VOF
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represents the time taken by the VOF method. Total simulation time is the total

computational time required for the simulation (it is not the sum of the above times).

The alternate approach to reduce the computational time is the development of

parallel algorithms for linear solvers. The parallel versions of the Bi-CGSTAB method

with the ILU and SSOR preconditioners in diagonal format have been developed in

this work using the MPI. The next section provides the details of the steps involved in

parallel algorithms.

4.9 Implementation of Parallel Algorithms

In the development of a parallel version of an algorithm, the �rst step is to �nd out the

components which can be parallelized. In the case of preconditioned Krylov Subspace

Figure 4.4: Main computational steps for K-S methods corresponding to Algorithm 4.1

methods namely Bi-CGSTAB, the main computational steps as can be seen in Fig.4.4.

• two matrix-vector products,

• the inner products,

• vector updates and
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• the generation of the preconditioned linear system

These steps corresponding to Algorithm 4.1 are elucidated in Fig.4.4. The second step

is to choose the parallel paradigm as discussed in Chapter 2. This section provides the

implementation details of these topics.

4.9.1 Parallelism in Krylov Subspace Methods

The main computational steps in K-S methods involve operations on matrices and

vectors as depicted in Fig.(4.4). The important tasks in the parallelization of these

Figure 4.5: Parallelization steps for Krylov Subspace methods

methods are data distribution and load balancing on di�erent nodes of the parallel

computer as shown in Fig.(4.5). This �gure shows that one of the features of this

task is to divide vectors into parts or broadcast the vectors to all processors depending
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upon the matrix partition. The matrix or vector partition is carried out using a load

balancing scheme described in Section(4.9.3) and summarised below.

The partitioning of the matrix and vectors may be carried out by dividing them into

parts and distributing the parts using a load balancing scheme as indicated in Fig.(4.5)

which contains the formula for static load balancing. In this �gure, the notations ⌈ ⌉

and ⌊ ⌋ represent the ceiling and �oor 1 functions respectively. The variables n and

np are the order of the matrix and the number of available processors respectively

and Loadi is the amount of the data to be held by the ith processor. It is observed

from Fig.(4.5) that in this load balancing scheme, two functions, viz., ceiling and �oor

are called during the load balance calculation. As pointed out in Section 2.5.2, these

Figure 4.6: Di�erent ways of matrix partition

functions divide the total number of processors into two parts called `lowered numbered

half ' and `upper numbered half ' (Jordan and Alaghband, 2003). Hence, every processor

in a part has equal load of the data, however a processor from another part may have

di�erent amounts of the data. A similar strategy can be adopted for inner product

operations.

1⌈x⌉ = min{n ∈ Z | n ≥ x} and ⌊x⌋ = max{n ∈ Z | n ≤ x} where Z is set of all integers. For
example, ⌈2.4⌉ = 3 and ⌊2.9⌋ = 2.
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4.9.2 Data Distribution for Parallel the Krylov-Subspace Method

Generally, matrix partitioning is carried out in three di�erent ways as depicted in Fig.

(4.6) (Karniadakis and Kirby, 2003; Quinn, 2004):

• row-wise partition,

• block partition and

• column-wise partition.

For row-wise matrix partition, the whole vector is required for matrix-vector products,

as can be seen in Fig.(4.6). Therefore, there is no need to divide the vectors required

for the matrix-vector products (Shang, 2009). Because of this feature we used this

partitioning scheme to decompose the matrix A in this work. Thus, the matrix is

distributed across np processors as the of rows. Further, the vectors required for matrix-

vector multiplication are replicated on all the processors. In the master-slave paradigm

Figure 4.7: Representation of master slave paradigm

(Mezher and Philippe, 2002), the initialization of data (i.e. matrix A, vector b) takes

place on the master processor. The initialized data is then distributed to all processors

using an e�cient load balancing scheme described below. The master processor also
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executes all other required I/O operations. All the processors, including the master,

execute the algorithm on their own part of the data. If any need arises, the slave

processors can also communicate to each other, for example, in case of parallelization

of the ILU and ICH preconditioners, the ith processor sends some data to the (i+ 1)th

processor.

4.9.3 A Novel Load Balancing Scheme

In this subsection, a new load balancing scheme will be discussed. The load balancing

Figure 4.8: The novel load balancing scheme

scheme, as depicted in Fig.(4.5), has been implemented in a di�erent way in this work,

so as to facilitate data distribution. Fig.(4.8) delineates the new load balancing scheme.

In this scheme, the slave processors are indexed from 0 to (np − 2) while the master

processor has the value (np − 1), np being the total number of available processors.

Using this new scheme, the master processor divides the whole data n by np, i.e.

dsize(= n/np : an integer division), and then sends the dsize amount of the data to the

slave processors. The remaining amount of data (dsize + n1) is stored by the master

processor. Functions ceiling and �oor are not called in this scheme. Consequently,
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the new scheme reduces extra calculations during data distribution. Furthermore,

there is equal data distribution among all the slave processors, in particular, each slave

processor contains the dsize amount of data (either rows of a matrix or the elements of a

vector). During the parallelization of ILUT every processor exchanges data with every

other one. This scheme allows easier data calculation to be sent from one processor to

the next.

Moreover, this scheme incorporates only a little extra load on the master processor.

As shown in Fig.(4.8), the extra load on the master processor is n1, where n1 can

be either the number of extra rows of a matrix or the number of extra elements of a

vector whose partition is carried out. The maximum value of n1 is equal to (np − 1).

Therefore, when the matrix size is quite large, for example O(106), the value of n1 is

negligible. As (np− 1) is the last number in the index, the master processor does not

send data to any other processor. Hence, the extra load on the master processor does

not a�ect the communication process.

4.9.4 Parallelization of the Sparse Matrix-Vector Product

The above load balancing scheme has been implemented for data distribution i.e. for

partitioning the matrix. After data distribution, each processor receives its appropriate

part of the matrix. Algorithm 4.2 for the matrix-vector product is implemented on all

processors and parts of the product vector Ax are calculated in parallel. According

to the new load balancing scheme, the master processor calculates the last part of

the vector. All the slave processors send their part of the vector Ax to the master

processor. These parts of the vector are placed in the whole vector held by the master

processor.
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4.9.5 Parallelization of the ILUT algorithm in diagonal format

We have seen earlier in this chapter that the ILUT algorithm in diagonal format saves

memory and reduces the computational complexity. Now we will discuss how the

parallel version of Algorithm 4.4 can be developed using the new load balancing scheme

de�ned above. Algorithm 4.6 provides an overview of the main parallelization steps for

the master ILUT functions.

Calculate data size m_dsize. //using new load balancing scheme ;1

for (m_dsize to n− 1) do2

copy U = A //copy arrays diag, ldiag etc. to Udiag Uldiag ;3

endfor4

for (0 to offset2− 1) do5

receive data from processor (np− 2) ;6

endfor7

for (m_dsize to n− 1) do8

implement all �ve conditions of Algorithm 4.49

endfor10

Algorithm 4.6: Steps for master ILUT function

As a part of the discussion on this algorithm, a few remarks have been provided.

Remarks for Algorithm 4.6

1. At step number 6, there are 7 arrays which require the elements from the previ-

ous processor. These arrays are ‘L_lldiag', ‘L_ldiag', ‘U_lldiag', ‘U_ldiag',

‘U_udiag' and ‘U_uudiag'. Therefore, a total of 7×offset2 elements are needed

to be sent by the previous processor. All these elements are stored in a bu�er

array say `buf ' in a particular order (e.g., the elements from array ‘L_lldiag'

are stored at the �rst offset2 location followed by the element from the array

‘L_ldiag' and so on) and received by calling theMPI_receive function only once.

After receiving array `buf ', the elements of particular arrays (like ‘L_lldiag'or
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‘L_ldiag') are extracted using the same order (as they were stored).

2. Note that the arrays ‘U_lldiag' and ‘U_ldiag' (which are not shown in Fig.

4.3(b)) contain the elements of their original matrix arrays, viz., ‘lldiag' and

‘ldiag' as they are copied from the original matrix at step 3.

3 Since the master processor resides at the end of the processor index, it does not

have to send the array elements to the next processor.

4 After receiving elements from processor (np−2), the master processor implements

all the �ve conditions of the Algorithm and generates the elements of the last

part of the matrices L and U.

Calculate data size dsize. //using new load balancing scheme ;1

for (0 to dsize− 1) do2

copy sU = A //copy arrays diag, ldiag etc. to sUdiag sUldiag ;3

endfor4

if ((myid > 0) && (myid < np− 1)) then5

for (0 to offset2) do6

receive data from previous processor ;7

endfor8

endif9

for (0 to dsize) do10

implement all �ve conditions of Algorithm 4.411

endfor12

for (0 to offset2) do13

(buf)i = (sLlldiag)i+dsize //fill the array buf ;14

(buf)i+offset2 = (sLldiag)i+dsize ;15

(buf)i+2×offset2 = (sUlldiag)i+dsize ;16

(buf)i+3×offset2 = (sUldiag)i+dsize ;17

(buf)i+4×offset2 = (sUdiag)i+dsize ;18

(buf)i+5×offset2 = (sUudiag)i+dsize ;19

(buf)i+6×offset2 = (sUuudiag)i+dsize ;20

endfor21

Send buf to next processor22

Algorithm 4.7: Steps for slave ILUT function

115



4.9. Implementation of Parallel Algorithms Chapter 4. Solving Linear Systems

Next, we will discuss the slave part of the ILUT function. As mentioned before,

the slave processors have their indices numbered from 0 to np − 2 and the index

np− 1 is reserved for the master processor. Each processor gets its index as one of the

function parameters `myid'. The main steps of the slave ILUT function are presented

in Algorithm 4.7.

Remarks for Algorithm 4.7
(1) A question in Algorithm 4.7 arises regarding the need of sending the array `buf '

to the next processor. To answer this question, one has to look back to Algorithm

4.4. In each condition (except for condition 5) of this Algorithm, the value of

j = i+ offset2. Therefore, for a particular value i, the array elements up to the

location (i+ offset2) are calculated. Moreover, for calculating these elements,

new values of elements of other arrays are required. To clarify this, observe line

15 of Algorithm 4.4. At this step, the value of Ulldiag at location (i+ offset2)

is needed for calculating the value of Llldiag at the same location. This value

has not yet been calculated on this processor but was calculated on the previous

processor.

(2) For the 0th slave processor these values are available from the original matrix

values as they have been copied already at line 3. This processor then calculates

the elements up to the location (dsize− 1) + offset2. Thus, the 0th processor

calculates the offset2 extra elements of all arrays. At the 1st processor� which has

elements of the location from dsize to (2× dsize− 1), the extra offset2 elements

calculated by 0th processor are required.

(3) Similarly, the extra offset2 elements calculated by the �rst processor are required

by the next (2nd) processor and so on.

(4) Since the 0th processor lies at the �rst location in the processor index, it does
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not need to receive the elements from any previous processor. This condition is

assured by the statement at line 5 of this Algorithm.

4.9.6 Parallelization of forward substitution in diagonal Format

The details of the steps involved in the parallelization of Algorithm 4.5 are presented

in this subsection. Algorithm 4.8 provides the main steps of the slave's forward

if ((myid > 0) && (myid < np− 1)) then1

Receive data from previous processor ;2

endif3

for (0 to dsize) do4

i1 = i + myid× dsize ;5

i2 = i + offset2 ;6

if ( (i1− offset1) < 0) then7

if ((offset1− 1) < 0) then8

(sz)i2 = (sr)i−(sLldiag)i×(sz)i2−offset1

(sLdiag)i9

else10

(sz)i2 = (sr)i
(sLdiag)i11

endif12

endif13

if ( (i1− offset1) >= 0) && (i1 − offset2) < 0) then14

(sz)i2 = (sr)i−(sLldiag)i×(sz)i2−offset1

(sLdiag)i15

endif16

if ((i1 − offset2) >= 0) then17

(sz)i2 = (sr)i−(sLlldiag)i×(sz)i2−offset2−(sLldiag)i×(sz)i2−offset1

(sLdiag)i18

endif19

endfor20

for (j = 0 to offset2) do /* fill buffer sbufz */21

(sbufz)j = (sz)j+dsize22

endfor23

Send sbufz to next processor24

Algorithm 4.8: Steps for slave forward substitution function
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substitution function.

Remarks for Algorithm 4.8

(1) The algorithm for the master part is similar to this Algorithm except the steps

from lines 19-22. This is because the master does not need to send elements to

the next processor.

(2) The processor at 0th position does not receive data from any other processor as

indicated in lines 1-3.

(3) Each processor calculates the offset2 extra elements which are required by the

next processor.

(4) The values of the vector sz (or vector z for the master processor) are required to

calculate the preconditioned solution vector r as explained in equations 4.5b and

4.5a.

4.10 Parallelization of Bi-CGSTAB

The complete parallelization of the preconditioned Bi-CGSTAB method has been de-

veloped using the parallel Algorithms already developed in this chapter for the matrix-

vector product, the ILUT preconditioner and forward and backward substitution. The

scalar variables α, β and ω are calculated by the master processor and then broadcast

to all processors. Parallel implementation of the preconditioners has been performed

by the master and all slave processors.

The main steps accomplished by the master processor are listed in Algorithm 4.9.

As can be seen in this algorithm, the preconditioner is implemented by calling its
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master function. For the case of the ILUT preconditioner, there is some communication

required as mentioned in the remarks of Algorithms 4.6 and 4.7. But in the case of the

Symmetric Successive Over Relaxation (SSOR) and Diagonal Scaling preconditioners,

no communication is required among processors because there is not data dependency

involved. At line number 35 of this Algorithm, the master processor calculates the norm

of the residual vector r, viz., ||r|| and broadcasts it to all processors. It is this norm

which is used to check the convergence criteria by all the processors. The convergence

condition is satis�ed by all the processors by utilizing a while loop.

The Bi-CGSTAB method steps carried out by the slave processors are presented in

Algorithm 4.10. All the scalar variables, viz. α, β and ω are received from the master

processor. The requisite parts of the inner-products are calculated and then sent to

the master processor. Similarly, the parts of the vectors (such as the residual vector

r, the solution vector x etc) are sent to the master after updating. The norm ||r|| is

received from the master which is used for checking the convergence condition. It can

be noticed here that no communication between the slave processors is required. The

slave processors only communicate with the master processor.

After convergence, the master processor holds the full solution vector x which can

be the solution of the velocity (u or v velocity ) system. This solution vector is

then assigned to the appropriate velocity vector. After copying the solution vectors,

the master processors broadcast it to all the processors because it is also required by

the slave processors to copy into the appropriate vectors. Furthermore, the velocity

solution is required to calculate the coe�cients of the pressure systems as indicated in

Fig.(4.9).
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Calculate data size, set k = 1 ;1

Calculate matrix-vector product Ax // master part ;2

Receive parts of matrix-vector product from other processors. ;3

Accommodate parts of these product in the whole vector ax ;4

Calculate residual vector r = b− ax // master part ;5

Receive and accommodate the residual vector. ;6

Calculate ρ0 and ||b|| and broad cast them to all processors ;7

while (convergence) do8

if (k == 1) then9

pk = rk // master part ;10

else11

β = αk

ωk ∗ ρk

ρk−1 ;12

pk = rk + β(pk−1 − ωk ×wk) ;13

Broadcast β to all processors ;14

endif15

Solve Mp̃k = pk // master part;16

Receive parts of p̃ from other processors and accommodate them into whole vector17

;
Broadcast p̃ to all processors ;18

Calculate matrix-vector product wk = Ap̃ // master part ;19

Calculate inner product < rT ,w > // master part;20

Receive parts of inner-product and add all of them. ;21

Calculate α and broadcast to all processors. ;22

Calculate vector sk = rk − αkwk // master part;23

Receive part of vector s and put them into whole vector. ;24

Solve preconditioer Ms̃ = s // master part;25

Calculate matrix-vector product tk = As̃k // master part;26

Receive parts of vector tk, place them in to whole vector and broadcast the whole27

vector. ;
Calculate inner products < (tT )k, sk > and < (tT )k, tk > // master part;28

Receive the parts of these inner-products and add them. ;29

Calculate ω = <(tT )k,sk>
<(tT )k,tk>

and broadcast to all processors. ;30

Update the residual vector and rk = sk − ω ∗ tk // master part;31

Receive parts the vector r and place them into whole vector. ;32

Update the solution vector xk = xk−1 + αp̃+ ωs̃ // master part;33

Receive parts the vector x and place them into whole vector. ;34

Calculate ||rk|| and broadcast. ;35

k = k + 1 ;36

endw37

Algorithm 4.9: Outline of master part of parallel Bi-CGSTAB algorithm
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Calculate data size, set k = 1 ;1

Calculate matrix-vector product Ax // slave part ;2

Send part of matrix-vector product to master. ;3

Calculate residual vector r = b− ax // slave part ;4

Receive ρ0 and ||b|| from master ;5

while (convergence) do6

if (k == 1) then7

pk = rk // slave part ;8

else9

Receive β from master. ;10

pk = rk + β(pk−1 − ωk ∗wk) ;11

endif12

Solve Mp̃k = pk // slave part;13

Send part of p̃ to master ;14

Receive whole vector p̃ from master ;15

Calculate matrix-vector product wk = Ap̃ // slave part ;16

Calculate inner product < rT ,w > // slave part;17

Send this part of inner-product to master. ;18

Receive α from master. ;19

Calculate vector sk = rk − αkwk // slave part;20

Send part of vector s to master. ;21

Solve preconditioer Ms̃ = s // slave part;22

Calculate matrix-vector product tk = As̃k // slave part;23

Send part of vector tk, to master. ;24

Calculate inner products < (tT )k, sk > and < (tT )k, tk > // slave part;25

Send the parts of these inner-products to master. ;26

Receive ω from master. ;27

Update the residual vector and rk = sk − ω ∗ tk // slave part;28

Send part the vector r to master ;29

Update the solution vector xk = xk−1 + αp̃+ ωs̃ // slave part;30

Send part the vector x to master. ;31

Receive ||rk|| from master. ;32

k = k + 1 ;33

endw34

Algorithm 4.10: Outline of slave part of parallel Bi-CGSTAB algorithm

121



4.11. Integration of Parallel Solvers into N-S Solver Chapter 4. Solving Linear Systems

4.11 Integration of Parallel Solvers into N-S Solver

As mentioned in the chapter introduction, the sequential N-S solver code was made

available for this research.

Figure 4.9: Flow chart of whole code
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The original code had adopted the index format for storing sparse matrices. In the

present work, the diagonal format has been chosen and all the algorithms have been

developed in this format. The outline of the whole code for one time iteration is shown

in the �ow chart depicted in Fig.(4.9). As shown in this �gure, steps (3) and (5) require

solving the linear system of equations. One of the main objectives of the present work

is to demonstrate the power of preconditioners and reduce the computational time,

therefore these steps have been parallelized. The original code was developed in C++,

therefore, all the functions have been developed in object oriented way using MPI

routines. The driver function of the code, i.e., the `main' function calls only two

functions. The �rst function initializes the necessary parameters which include:

• initialization of geometry,

• reading the parameter from the input �le,

• calling the solvers

In other words, the �rst function corresponds to step (1) of the �owchart. The sec-

ond function executes all the steps from (2) to (6). The parallel version of the `main'

function contains these two functions with additional parameters processor identi�ca-

tion number `myid' and the value of total number of processors `np'. The master and

slave versions of the functions are called based on the value of the variable `myid'. Each

processor generates part of the matrix separately at each time step, hence avoiding dis-

tribution of the matrix by the master processor. After matrix generation the parallel

version of the BiCGSTAB method (master or slave) is called.
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4.12 Chapter Conclusions

Details of the novel algorithms developed for the linear solvers have been provided in

this chapter. A global picture of the whole computer simulation of multiphase �ow

problem has been created. The �rst half of the chapter (i.e. up to Section 4.6) focuses

on the development of the solvers and preconditioners in the diagonal format. The

second part gives details of the development of parallel versions of these algorithms.

The last section throws light on the implementation of the whole code.

The main conclusive points from both parts have been summarized here. The �rst

part deals with the solvers and preconditioners in diagonal format. Their main con-

clusions can be summarised as follows:

(1) the diagonal format occupies less memory for storing penta-diagonal matrices,

(2) solving the linear system consumes most of the computational time of the simula-

tion.

(3) a short description of the iterative methods has been provided,

(4) the Bi-CGSTAB method requires four inner-products and two matrix-vector prod-

ucts,

(5) these products are developed in diagonal format reducing the computational com-

plexity of the solver,

(6) the need for precondtioners has been highlighted ,

(7) a novel algorithm for ILUT in diagonal format has been shown to have reduced

computational complexity in comparison to dense format and
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(8) the backward and forward substitution procedures have been developed in the

diagonal format

Details of parallel versions of the novel ILUT algorithm and Bi-CGSTAB methods

have been provided in the second half. The important points of this part can be

summarized as follows,

(1) the main computational steps of Krylov Subspace methods have been described.

(2) the master-slave paradigm has been used to design the parallel Algorithms,

(3) a new load balancing scheme has been shown to provide easier data distribution,

(4) using this scheme, the parallelization of novel ILUT Algorithms has been developed,

(5) similarly the parallel version of backward and forward substitutions in the diagonal

format required for preconditioner has been developed using a new load balancing

scheme and

(6) using these parallel Algorithms, the parallel version of Bi-CGSTAB method has

been developed.

(7) the parallel Bi-CGSTAB method has been integrated into the Navier-Stokes solver.

Now all the parallel computational tools (C++ code with MPI) for simulating the

multiphase �ow phenomena have been developed. The developed code will be employed

to simulate the following problems:

(1) lid driven cavity �ow,

(2) a single air bubble rising,
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(3) dam breaking problems and

(4) the shape advection test for validating the VOF code.

The next chapter will provide the results obtained from the simulation of these prob-

lems which also include the performance of the preconditioners applied to BiCGSTAB.

Analysis and discussions of these results are also provided in that chapter.
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Chapter 5
Results and Discussions

5.1 Introduction

As mentioned in chapter 1, the model implemented in this research includes two main

parts:

1. the Navier-Stokes(N-S) solution methods which includes the solution of linear

systems of equations and

2. the methods for multi�uid modelling.

The VOF (PLIC) method has been employed, in this work, for the second part. An

analytic relation has been implemented for the interface reconstruction step and a

Lagrangian advection method has been used to advect the interface. This method has

been validated in the �rst stage with pure advection problems.

The N-S code as the PDE solver in conjunction with VOF code has been validated

by simulating benchmark problems involving one or more �uids. A number of stan-

dard benchmark problems are mentioned in chapter 2. The solution of linear systems of
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equations is obtained by employing the preconditioned BiCGSTAB method. The per-

formances of the preconditioners are measured by comparing the number of iterations

taken by the preconditioned solvers.

This chapter presents results of validations of the methods and speedup from parallel

implementation. The key points can be summarized as follows:

• the validation of the VOF method for benchmark problems,translation of a square

box and rotation of a solid disk.

• the introduction of a new benchmark problem for the VOF method.

• the validation of N-S code for the single and two-�uid �ow problems by simulating

the lid driven cavity �ow, dam breaking and rising bubble problems.

• the advantage of choosing the diagonal format for sparse matrices, involved in

the linear system solution of N-S code.

• the performance measurement of the preconditioners used in the linear solvers.

• the speedup data for parallel linear solvers.

5.2 Validation of the VOF Method

This chapter begins with validation of the VOF method. The most common benchmark

problems for this purpose are the translation and rotation of the geometrical shapes

as documented in (Hirt and Nichols, 1981; Harvie and Fletcher, 2000, 2001; Rudman,

1997; Nobari et al., 2009; Zalesak, 1979). The main purpose of these is to check the

accuracy of the reconstruction and advection schemes applied for the method. One

of the simplest but most important problems in this category is the translation of a

square box in a computational domain with uniform velocity �eld.
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5.2.1 Translation of a Square Box

In this test, a square box �lled with �uid is translated with a uniform constant velocity

�eld in the computational domain. The accuracy of the advection algorithm and the

reconstruction method a�ects the general accuracy of the interface capturing method.

This problem poses a signi�cant challenge for the VOF method because it contains a

discontinuity in the interface direction at the corners of the square. In order to compare

the accuracy of the developed VOF method, we have chosen the parameters as given

in (Harvie and Fletcher, 2001; Nobari et al., 2009).

The computational domain is taken as a 2D cartesian region of dimensions 1m×1m,

where m stands for meter. The domain is divided into 100 cells in the x direction as

well as in the y direction. At location (0.15m, 0.15m), a square block of �uid of the

dimensions 0.1m×0.1m is placed. Then a uniform velocity �eld (1, 1)m/s (s is second)

is applied to move the block. The simulation has been carried out for 0.7 seconds

and the position of the box is noted at intervals of 0.1 seconds. Fig.(5.1) shows the

position of the �uid block computed using the VOF-Analytic method and compares

the same using with other schemes. The graphs of the �uid positions obtained from

other schemes have been taken from reference (Nobari et al., 2009). The value of

computational time step in the other method has taken 1× 10−3 seconds while in our

case its value is 7×10−3 seconds. This higher value of δt has been chosen after verifying

the numerical errors for lower values. Therefore it shows that the developed VOF-

Analytic method performs better even for higher δt. It can be seen from Fig.(5.1),

that in the case of the Hirt-Nicolas algorithm, the calculated VOF contours show

signi�cant numerical di�usion in the direction normal to the �uid velocity. The shape

of the box has �attened tangentially at end of the calculation with this scheme. In the
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case of the DDR-Pukett and DDR-Young schemes, developed by Harvie and Fletcher

(Harvie and Fletcher, 2001), the shape of the box has not �attened tangentially but

its corners are rounded as the advection progresses. The box shape looks better in the

case of the DDAR scheme developed by Nobari and co-workers (Nobari et al., 2009)

although there is numerical di�usion in the tangential direction. There is signi�cant

improvement in the numerical di�usion as well as in the corners of the box in the case

of the VOF-Analytic method employed in this work.

In order to judge the accuracy of the solver, an error function is de�ned based on the

concept that the total amount of the �uid (VOF) must be conserved during numerical

computations. This error function can be expressed by as in (Rudman, 1997),

error =

∑
i,j

|Cn
i,j − Ce

i,j|∑
i,j

Ce
i,j

(5.1)

where Cn
i,j is the volume of fraction (VOF) calculated after n time steps and Ce

i,j is the

exact value of VOF calculated using the exact values of the colour function at that

position. Based on this function the errors obtained from di�erent schemes (Nobari

et al., 2009; Rudman, 1997) are shown in Table (5.1).

H-N DDR/Pukett DDR/Young DDAR VOF-Analytic
0.539 0.216 0.19 0.126 0.0668

Table 5.1: Errors calculated using equation (5.1) for translation of a box.

From this table, it is clear that the VOF-Analytic method, employed in this work,

is more accurate than the other schemes to conserve the total volume of �uid.
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(a) Exact Solution (b) Hirt-Nicholas

(c) DDR-Pukett (d) DDR-Young

(e) DDAR (f) VOF-Analytic

Figure 5.1: Translation of a square box using di�erent algorithms.

131



5.2. Validation of the VOF Method Chapter 5. Results and Discussions

5.2.2 Translation of Triangular Shape

In this work, we have also considered one more example for testing the accuracy of the

VOF advection scheme. In this test, a triangular block of �uid is translated using a

uniform velocity �eld similar to the translation of a square box.

Reason for choosing this example

The reconstruction step of the VOF-PLIC method uses a di�erent approximation

whether the line which approximates the interface, is parallel to the coordinate axes

or not. This situation can be viewed clearly by observing any of the �gures in section

(3.3). In the example of square box translation, the interface line is parallel to either of

the axes. In this example, the volume fraction of the �uid can be calculated as the area

of a square. Because in this case no triangle is present, there is no need to calculate

the area of the triangle which is quite complex as discussed in section (3.3). But, in

the case of a triangular shape, one of the lines is not parallel to any axes and creates

triangles whose area are required to calculate the volume of �uid. These two cases are

clearly shown in Fig.(5.2). Therefore, this example contains very sharp corners similar

to the square box as well as an interface not parallel to either of the axes. Hence it

also serves as a good benchmark problem. A similar computational domain to the one

in the case of square box translation has been taken for this example. The triangular

block of �uid is kept at the same location as for the square box, i.e. at (0.15m, 0.15m)

and translated by applying the velocity �eld (1.0, 1.0) meter/second toward the right-

up corner. The simulation is run for 0.7 seconds and the position of the block is noted

at intervals of 0.1 second.

The VOF contours for this example at di�erent time steps are depicted in Fig.(5.3).

Exact solutions for those time steps are also presented in this �gure. As can be seen
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(a) Triangular shape (b) Rectangular shape.

Figure 5.2: Di�erence between triangular and rectangular shapes for validation of the VOF
method.

from this �gure, the shape is not �attened and numerical di�usion is also very small.

The time step for this simulation was taken as 7× 10−3 seconds which is the same as

in the case of a square box. The error is calculated using the same error function as

de�ned in equation (5.1). The calculated error is compared with the same in the case

of square box which is provided Table (5.2).

Shape Grid δt error
Square 100× 100 7× 10−3 0.0668

Triangular 100× 100 7× 10−3 0.1467

Table 5.2: Errors calculated using equation (5.1) for translation of a triangular and square box.

The data of this table shows that the error in the case of triangular box is more

than the same for the square box. The reason for this big error is the same as was

explained above. The error can be reduced by decrementing in the time step and grid

re�nement as shown in Table(5.3). The data from this table shows that by halving the

grid size (and reducing the δt) the error in the case of square box is reduced by about

50%. Similarly, a signi�cant reduction in the numerical error in the case of triangular
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(a) Exact Solution (b) Calculated value using VOF-Analytic method.

Figure 5.3: Translation of a triangle block of �uid.

box has been observed.

Shape Grid δt error
Square 200× 200 2× 10−3 0.0386

Triangular 200× 200 2× 10−3 0.0922

Table 5.3: Errors calculated for translation of a triangular and square box with a re�ned grid.

5.2.3 Solid Disk Rotation

Another important benchmark problem to test the VOF method is the Zalesak slotted

disk rotation (Zalesak, 1979). In this test, a slotted disk is rotated through one complete

rotation within the computational domain using a uniform vorticity velocity �eld. In

this case, the advection of �ow is rotational and satis�es continuity. The slot is inserted

to include sharp interface corners avoiding a purely circular shape which is the simple to

model. The accuracy of the solver is assessed by comparing the initial and �nal position

of the disk. For comparison of the VOF-Analytic method with other methods, the same
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parameters for the Zalesak disk have been taken as given in references (Rudman, 1997;

Harvie and Fletcher, 2001).

The dimensions of the computational domain is 4×4m2. It is divided into 200×200

equally sized cells and a disk of diameter 1.0m is placed with centre at (2.0m, 2.75m).

The disk is slotted with a rectangle of width 0.12m. An angular velocity of magnitude

1 revolution/second has been applied and simulation was run for 2425 time steps to

complete one revolution.

(a) Initial Position (b) DDR-Pukett

(c) DDR-Young (d) VOF-Analytic

Figure 5.4: Zalesak test problem for solid disk rotation: (a) shows the initial position of the disk.
Other �gures represent position of the disk after one complete revolution.
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The chosen time step corresponds to Courant number of 0.25 which is taken from the

above references. The errors for di�erent algorithms (calculated by the error function

which is the same as in equation (5.1)) are provided in the reference (Rudman, 1997).

A comparison of these errors including the error obtained from the present methods is

provided in Table (5.4). The data in this table shows that the VOF-Analytic method

provides better performance in comparison to any other method except the Young's

scheme. Fig (5.4) represents the position of the disk after completing one revolution.

From this �gure, it is clear that the VOF-Analytic has slightly better accuracy than

the DDR-Young and DDR-Pukett algorithms. Comparison of this �gure with the

�gure presented in the above references (Rudman, 1997) shows that the VOF-Analytic

method has a similar level of accuracy as that of Young's algorithm (shown in the last

column of Table (5.4) ). The less error produced by this algorithm may be due to the

H-N SLIC FCT-VOF DDR/Young DDR/Pukett VOF-Analytic Young

9.62× 10−2 8.38× 10−2 3.29× 10−2 1.56× 10−2 1.50× 10−2 1.41× 10−2 1.09× 10−2

Table 5.4: Errors (taken from references (Nobari et al., 2009; Rudman, 1997)) calculated using equa-
tion (5.1) for rotation of the slotted disk.

method used for the estimation of the normal vector which involves the calculation of

the angle the interrface makes with x-axis as explained in reference (Rudman, 1997).

5.3 Validation of the N-S Solver

In section 5.2, a velocity �eld that satis�es continuity was imposed. In a �uid �ow

problem, this �eld must be approximated by the solution of the N-S equations. Solving

the PDEs numerically is the kernel of the multiphase �ow modelling. As noted in

chapter 3 in this study, the N-S equations are solved by employing the FVM. The
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numerical schemes used in this section are assessed by implementing on single �uid

and multi�uid benchmark problems.

5.3.1 Lid Driven Cavity Flow

One of the most studied problems for measuring the accuracy of the N-S solver is the

�ow in a lid driven cavity as explained in Section (2.4.5). The geometry (or exper-

imental set up) used for this problem is illustrated in Fig.(5.5). In a discussion on

Figure 5.5: Lid driven cavity geometry.

driven cavity �ow documented by Erturk (Erturk, 2008), it was stated that at high

Reynolds number (Re = H|u|/ν, where ν is the kinematic viscosity and H is charac-

teristic length), there is a chance of spurious solutions. Hence, the numerical solutions

need to be validated at these Reynolds numbers and the solution must satisfy the con-

tinuity equation. For validating the solver, authors calculate the velocity (horizontal

or vertical) pro�les along the cavity centrelines (vertical or horizontal).
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Figure 5.6: u-velocity pro�le for Re =1000.

In this work, the u-velocity pro�le has been calculated and compared this with those

given in (Gjesdal and Lossius, 1997) which provides the results for a �rst order scheme

for the discretization of the convection terms. Since, in this study, a �rst order scheme

has been employed, I chose this reference for comparison purpose. Fig. (5.6) illustrates

the comparison of u- velocity for Re = 1000. In (Gjesdal and Lossius, 1997), the

grid size (for the �rst order scheme) was 64 × 64 which is adopted in this work for

comparison. It is clear from this �gure that the velocity pro�le is in good agreement.

This �gure also represents the velocity pro�le obtained by a third order scheme marked

by �Gjesdal_kappa =1/3�. In this work, the u-velocity has been calculated for a more

re�ned grid (128×128) and plotted in this �gure. It can been seen that by re�ning the

grid, the velocity pro�le (using a �rst order scheme) approaches the pro�le obtained

by the third order scheme.
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5.3.2 The Dam Breaking Problem

Another benchmark problem for testing the N-S solvers is the dam breaking problem

which simulates collapse of a water column. This test problem is used as a test case

for free surfaces to assess the numerical stability of multiphase �ow models. It has

been studied by many researchers such as (Greaves, 2006; Ketabdari et al., 2008; Qian

et al., 2003). Experimental data have been provided by Martin and Moyce (Martin

and Moyce, 1952b). In this test problem, a square tank containing a column of water,

(a) Height of water column versus time (b) Position of leading edge versus time

Figure 5.7: Height of collapsing water column and position of leading edge versus dimension less time
t∗. Where t∗ = t

√
g/a and t is the simulation time.

is held at position t = 0.0 second. The motion of the water column, after removing the

restraint instantaneously, is simulated. During the simulation, the water elevation at

a point in the computational domain (referred as the height of water column) and the

distance of the travelling water from the left vertical boundary (referred as position of

leading edge) is monitored. Parameters used for this simulation are given in Table (5.5).

The dimension of the computational domain was chosen 0.6m×0.6m and domain was

139



5.3. Validation of the N-S Solver Chapter 5. Results and Discussions

divided by 100× 100 uniform cells.

(a) t* = 0 (b) t* = 1.617

(c) t* = 3.234 (d) t* = 4.043

(e) t* = 4.85 (f) t* = 5.98

Figure 5.8: Time history of the interface position of collapsing water column
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The accuracy of the model can be gauged by observing the height of the collapsing

water column and the position of the leading edge of the water front with respect to

time. The non-dimensional height of the water column at the left wall with respect to

the non-dimensional time is shown in Fig.(5.7(a)). This �gure shows that the calculated

height is in very good agreement with experimental data as well the numerical data.

Fig. (5.7(b)) represents the non-dimensional position of the leading edge against the

non-dimensional time which also agrees with the experimental and numerical data.

The time histories of the interface position of the collapsing water column are plotted

in Fig.(5.8).

Parameter Value

Height of water column (L) 0.3m

Width of water column (a) 0.15m

Viscosity of water (µf ) 1× 10−3 kg/ms

Viscosity of air (µg) 1.7× 10−5 kg/ms

Density of water (ρf ) 1000 kg/m3

Density of air (ρg) 1 kg/m3

Gravity acceleration (g) 9.81 m/s

Table 5.5: Parameter values used for the simulation of dam breaking problem.

5.3.3 The Bubble Rising Problem

The computation of the position of a free rising bubble in a viscous liquid also serves as

a benchmark problem for multiphase �ow simulation. This problem has been used to

validate the numerical methods for interfacial �ows (Chen et al., 1999; Raymond and

Rosant, 2000). The study of the fundamentals of bubble rise has wide applications in

the industry such as the rise of steam bubbles in boilers tubes, gas bubbles in oil wells

(Chen et al., 1999) and bubbly �ow in nuclear power safety (Cerne et al., 1998).
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(a) Bubble rising velocity verses time for D=0.008 m.
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(b) Bubble rising velocity verses time for D=0.006 m.

Figure 5.9: Bubble rising velocity verses time.

In this problem, the shape of the bubble and its rising velocity are observed. These

properties depend on di�erent �ow parameters. The parameter values used in this

study are given in Table(5.6). As it rises, the bubble shape can deform to ellipsoidal,

skirted and toroidal shapes (Clift et al., 1978). These shapes and the rising velocities
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of the bubbles can be characterised by some non-dimensional parameters such as (Hua

and Lou, 2007; Bhaga and Weber, 1981):

Parameter Value

Surface tension of water (σ) 0.073 kg/s2

Diameter of bubble (D) 0.006− 0.008m

Viscosity of water (µf ) 1× 10−3 kg/ms

Viscosity of air (µg) 1.7× 10−5 kg/ms

Density of water (ρf ) 1000 kg/m3

Density of air (ρg) 1 kg/m3

Gravity acceleration (g) 9.81 m/s2

Table 5.6: Parameter values used for the simulation of dam breaking problem.

MortonNumber Mo =
gµ4

f

ρfσ3
(5.2a)

ReynoldsNumber Re =
ρfDu

µf

(5.2b)

Eotvos (or Bond)Number Eo =
ρfgD

2

σ
(5.2c)

where u is the bubble rising velocity. The computational domain is taken as 0.07m×

0.07m. The time step is selected according to grid size. Fig.(5.9) illustrates the air

bubble rising velocities for two grid sizes and two bubbles of di�erent diameters. The

rising velocities for a bubble of diameter 0.008m for grid sizes 128× 128 and 256× 256

are shown in Fig.(5.9(a)). Similar velocities for bubble of diameter 0.006m are depicted

in Fig.(5.9(b)). The value of the time step in this case is taken as δt = 1×10−5 seconds.

In this �gure, u∗ and t∗ are the dimensionless velocity and time respectively which are

de�ned as (Hua and Lou, 2007),

u∗ =
u√
gD

t∗ = t

√
g

D
(5.3)
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It can be seen from Fig.(5.9) that in the case of a coarse grid (i.e. grid size 128× 128),

there are signi�cant �uctuations in the bubble rising velocity. Similar �uctuations have

been reported in the reference (Hua and Lou, 2007).

(a) Grid size = 128× 128 and D = 0.008m (b) Grid size = 128× 128 and D = 0.006m

Figure 5.10: Instantaneous shapes of air bubble verses time for grid size 128× 128

Positions and instantaneous shapes of air bubbles of diameters 0.008m and 0.006m

using grid size 128 × 128 at di�erent time are represented in Fig.(5.10). The similar

positions and instantaneous shapes of the air bubble for grid size 256 × 256 are il-

lustrated in Fig.(5.11). The values of the non-dimensional parameters (as de�ned in

equations 5.2a - 5.2c) for these two air bubbles are provided in Table(5.7). It has been

Bubble Diameter(D) Eo Re Mo
6 mm 4.83 1439 2.6× 10−11

8 mm 8.60 2237 2.5× 10−11

Table 5.7: Values of non-dimensional parameters.

reported in (Chen et al., 1999) that as the values of Eo and Re increase the shape of
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(a) Grid size = 256× 256 and D = 0.008m (b) Grid size = 256× 256 and D = 0.006m

Figure 5.11: Instantaneous shapes of air bubble verses time for grid size 256× 256

bubble changes to toroidal. Similar results have been obtained here and this fact can

be observed in �gures 5.10(a) and 5.11(a).

In the previous sections (5.1 to 5.3), the results from the validation of the solvers

have been presented. The another part of this research is the adoption of the diagonal

format for storing the sparse matrices. The next Section provides the comparison of

simulation times taken in the case of the index format and the diagonal format.

5.4 Advantages of Diagonal Storage Format

We have seen in section (4.2), that the diagonal format for storing matrices requires

less memory in comparison to any other formats. Another advantage of this format is a

reduction in computational time. A simulation for the bubble rising problem using the

index format and diagonal format has been carried out. Total simulation time for this
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simulation has been noted down and signi�cant di�erences have been observed. The

times taken by simulation for 2000 iterations using grid size 256× 256 are provided in

Table (5.8). Table data shows that by adopting the diagonal format, the linear solvers

Format Grid No. Iterations Time
Index 256× 256 2000 2135 min

Diagonal 256× 256 2000 224 min

Table 5.8: Simulation time required for the bubble rising problem using two formats.

take much less time. The time reduction in computing the matrix vector product a�ects

the total simulation time. Similarly, the simulation for the dam breaking problem has

also been carried out using the index format and the diagonal format. Time taken by

this simulation is shown in Table(5.9).

Format Grid No. Iterations Time
Index 100× 100 38120 1743 min

Diagonal 100× 100 38120 573 min

Table 5.9: Simulation time required for the bubble rising problem using two formats.

From this table it can be stated that the algorithm developed in the diagonal format

is three times faster than that developed in index format for the bubble rising problem.

The reduction in the computation time is due the reduced time complexity of the

matrix-vector multiplication and less memory requirement which may induce a cache

hit (i.e. the required data is available in the CPU cache memory).

5.5 Performance of Preconditioners

As mentioned in chapter 2, the preconditioners accelerate the convergence rate of the

Krylov Subspace methods. During simulation, the matrix is being generated at each
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time step. Hence the matrix entries changes at each time step which changes the matrix

properties. In this research, the Bi-CGSTAB method has been employed because it

has been found, in literature, to provide smooth convergence (see Section 2.4.4.2) for

non-symmetric matrices. In this section, the e�ects of the preconditioners applied to

the Bi-CGSTAB method implemented on di�erent problem are discussed. Lets start

with the e�ect on the dam breaking problems.

5.5.1 E�ect of Di�erent Preconditioners on The Dam Breaking

Problem

(a) Overall maximum iterations taken by dif-
ferent solvers for the dam breaking simula-
tion using grid 100× 100.

(b) Time taken by di�erent solvers for the
dam breaking simulation using grid 100 ×
100.

Figure 5.12: Time taken by di�erent solvers for the dam breaking simulation using grid 100× 100.

This problem is ideal to test the performance of preconditioners. As seen before, in

this case, the water column collapses and moves in the positive x direction . Since the

position of the water, i.e., the values of the volume of �uid in the grid cells changes,

the matrix entries generated at each time steps also changes. The changes in the value
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of entries may change the condition number of the matrix and subsequently the num-

ber of iterations taken by the solver. The number of iterations needed by the solver

using di�erent preconditioners and their variations have been recorded. Fig.(5.12(a))

represents the maximum number of iterations taken by the preconditioned BiCGSTAB

solvers to run the simulation for the dam breaking problem. This �gure shows that

the ILU preconditioner takes fewer iterations in comparison to SSOR and DS (Diag-

onal Scaling). The time taken by the solver using these preconditioners are shown in

Fig.(5.12(b)). This �gure demonstrates that although the ILU preconditioner takes

signi�cantly fewer iterations in comparison to SSOR, the di�erence in the time taken

by ILU BiCGSTAB and SSOR BiCGSTAB is not signi�cant. This result indicates that

the computational cost of ILU is more than SSOR. Furthermore, the DS preconditioner

takes more computational time in comparison to both ILU and SSOR preconditioners.

Figure 5.13: Variation in the number of iterations taken by preconditioned BiCGSTAB solvers for
Dam breaking problem using grid 100× 100.

The variation of the iterations at di�erent time steps during this simulation is depicted
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in Fig.(5.13). It can been seen from Fig.(5.13) that there are variations in the number

of iterations at two locations which are covered by rectangles. These two locations are

related to time t = 0.3 seconds and t = 0.43 seconds. At the �rst location, the water

has just touched the right wall and started climbing up. The second location is where

water has started moving away from the wall. A graphical representation of these two

situations is shown in Fig. (5.14).

(a) Water touches the right wall after 0.3 seconds
(t* = 2.426)

(b) Water starts moving away from the right wall
after 0.43 seconds (t* = 3.477)

Figure 5.14: Locations of water at which variation in the number of iteration occurs for grid 128×128.

An investigation of the performance of preconditioners has also been done for a �ne

grid, namely, for grid size 256 × 256. The variations in iterations taken by di�erent

preconditioners for this case are represented in Fig.(5.16).

The maximum numbers of iterations and the total simulation time taken by the

preconditioners are shown in Fig.(5.15). Similar to the case of grid size 100 × 100, in

this case also the ILU takes fewer iterations to SSOR. But here, the time taken by ILU

is less than that for the SSOR. Further there is a big di�erence in the times taken by
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(a) Overall maximum iterations taken by dif-
ferent solvers for the dam breaking simulation
using grid 256× 256.

(b) Time taken by di�erent solvers for the dam
breaking simulation using grid 256× 256.

Figure 5.15: Time taken by di�erent solvers for the dam breaking simulation using grid 256.

DS and ILU preconditioners which was not observed in the previous case.

In Fig.(5.16), the jumps (or variations) in the number of iterations are marked by

symbols L1, L2 and L3. The positions of the front of the water column corresponding

to these three locations are shown in Fig.(5.17). The �rst location L1 is at an early

stage when the water column starts collapsing. When the height of the water column

decreases by about half then there is a jump in the number of iterations graph and this

location has been marked by L2. The third location, L3, is when water touches the

right hand wall. This analysis indicates that the grid size also a�ects the performance

of the preconditioners. One more point that can be observed in the �gure is that, at

a certain time step, the number of iterations taken by DS preconditioners suddenly

jumps and generates a spike. But at the same time step, there is no such jumps are

observed by ILU and SSOR preconditioners.
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Figure 5.16: Variation in the number of iterations taken by preconditioned BiCGSTAB solvers for
Dam breaking problem using grid 256× 256.

Figure 5.17: The positions of front of water column corresponding to Fig(5.16).
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5.5.2 E�ect of Di�erent Preconditioners on The Rising Bubble

Problem

Next, the performance of the preconditioners on the simulation of a rising air bubble

has been investigated.

Figure 5.18: Variation in the number of iterations taken by preconditioned BiCGSTAB solvers for
rising bubble problem using grid 128× 128.

As shown before, in this problem, the air bubble moves in a viscous liquid in the

positive y direction and during the simulation the bubble shape changes. Due to the

changes in the shape of bubble, the surface tension near to boundary changes which

creates a pressure di�erence in those area. This pressure di�erence changes the amount

of VOF in the neighbouring grid cells near to the boundary of its surface which in turn

makes sharp variation in the matrix coe�cients on the pressure system. The changes
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Figure 5.19: The zoomed view of Fig.(5.18)

in the matrix coe�cient alter its condition number, consequently, solver takes less or

more iterations for convergence at di�erent time steps. The iterations at certain time

steps and the maximum iterations during the entire simulation have been recorded for

a bubble of diameter 0.006m using grid 128× 128. The time history of the number of

iterations taken by the preconditioned BiCGSTAB method is depicted in Fig.(5.18).

As can be seen in this �gure, there are many locations where the variations in the

number of iterations occurs. Four such locations are highlighted by green rectangles.

The corresponding positions and shapes of the air bubble are shown in Fig.(5.20). It is

clear from this �gure that at all these locations, there are some changes in the air bubble

shape, which in turn make changes in the values of matrix entries. These changes in

the values of matrix entries alter its condition numbers. Fig.(5.19) shows the zoomed
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view of Fig.(5.18). In this �gure, three locations, where jumps in the iteration have

observed, have been highlighted. The di�erent shapes of the bubble corresponding to

the �rst rectangle of Fig.(5.19) have been illustrated in Fig.(5.21). This �gure shows

that there are many sharp changes in the bubble shape which is due to the variation

in the surface tension. This variation creates pressure di�erence at these locations

responsible for the sharp change in the matrix coe�cients.

(a) (b)

(c) (d)

Figure 5.20: Locations and instantaneous shapes of the air bubble rising in the viscous liquid corre-
spond to the areas surrounded by green rectangles in Fig. (5.18) .
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Figure 5.21: Locations and instantaneous shapes of the air bubble rising correspond to the �rst
rectangles in Fig. (5.19)

The maximum number of iterations taken by the simulation for di�erent precon-

ditioners are represented in Fig.(5.22(a)). The times taken by the BiCGSTAB solver

with these preconditioners have also been recorded and are shown in Fig.(5.22(b)). It

is clear from Fig.(5.22) that for this problem, both the ILU and SSOR precondition-

ers perform similarly. The di�erence in the number of iterations and times taken by

ILU_BiCGSTAB and SSOR_BiCGSTAB is small.

In order to observe the e�ect of preconditioners on large size matrices, the simulation

for a rising bubble has been run for grid size 256×256. The variations in the iterations

at certain time steps are shown in Fig.(5.23). This �gure shows that there are mainly

three locations where the changes in the numbers of iterations occurs. These locations
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(a) Overall maximum iterations taken by di�er-
ent solvers for the rising bubble simulation.

(b) Time taken by di�erent solvers for the rising
air bubble simulation.

Figure 5.22: Time taken by di�erent solvers for the rising air bubble simulation using grid 128×128.

are marked by L1, L2 and L3 in the �gure. At location L1, it is observed that the

SSOR preconditioner takes too many iterations for a particular time step (step number

3800) and generates a spike there. The instantaneous shapes of the bubbles at these

locations are illustrated in the Fig.(5.24).

Since at these locations, the shapes of the bubble change, the matrix entries change

there also and hence the solver takes a di�erent number of iterations (fewer or more) for

convergence. The maximum number of iterations taken by these preconditioners with

the BiCGSTAB method is shown in (5.25). In this case the performance of the ILU

preconditioner is found to be best in comparison with the other two preconditioners.

The total time for the entire simulation taken by the ILU preconditioner is less than

the same for both SSOR and DS preconditioners. Furthermore, there is a signi�cant

di�erence between times taken by the ILU and the SSOR preconditioners
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Figure 5.23: Variation in the number of iterations taken by preconditioned BiCGSTAB solvers for
rising bubble problem using grid 256× 256.

Figure 5.24: Instantaneous shapes of air bubble at locations corresponding to Fig.(5.23 ).
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(a) Overall maximum iterations taken by di�erent
solvers for the rising bubble simulation .

(b) Time taken by di�erent solvers for the rising air
bubble simulation.

Figure 5.25: Time taken by di�erent solvers for the rising air bubble simulation using grid 256×256.
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5.6 Results from Parallel Algorithms

The parallel preconditioned BiCGSTAB method developed in this work has been ap-

plied to the dam breaking and the bubble rising problems. In order to measure the

performance of the parallel algorithms, the speedup factors have been calculated using

equation (2.4). The computation time taken by the master processor to solve the linear

system of equations generated by the pressure system (as indicated by step no. 5 in

Fig.(4.9) ) has been recorded. From Table (4.2), it has been noticed that solving the

pressure equations requires signi�cantly more time than solving the U or V velocity

equations. Hence the time required for the pressure equations has been recorded to

calculate speedup.

5.6.1 Parallellization of the Preconditioner Algorithms

The speedup obtained from the preconditioners has been calculated separately using

the computational and communication times. Fig.(5.26) illustrates and compares the

speedup factors for three preconditioners. The generation of the preconditioned system

with the ILU preconditioner requires communication between the processors as noted

in algorithms (4.6) and (4.7). In the case of SSOR and DS preconditioners, no such

communication is required for generating the preconditioned system.

The ILU and SSOR preconditioners decompose the original system of equations into

two systems as discussed in the section (4.6.3). These systems are solved by the back-

ward and forward substitutions algorithms (Saad, 1996). Parallel implementation of

the backward and forward algorithms requires communication between processors as

observed in Algorithm (4.8). Thus, the parallel implementation of the ILU precondi-

tioner needs more communication than the same for SSOR.
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(a) Speedup for ILU preconditioner (b) Speedup for SSOR preconditioner

(c) Speedup for DS preconditioner (d) Comparison of speedup factors for precondition-
ers

Figure 5.26: Speedup factors for the preconditioners calculated using the computation time plus
communication time required for the dam breaking problem.

The DS preconditioner requires no communication for parallel implementation. It
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can be seen from Fig.(5.26) that the speedup for ILU is less that that for SSOR. This

is due to the fact that there is more communication in the ILU.

The speedup obtained from three preconditioners applied to the bubble rising prob-

lem are calculated in the same way as for the dam breaking problem. A comparison of

the these speedups is depicted in Fig.(5.27). This �gure indicates that in the case of

bubble rising simulation, the performances of the ILU and SSOR preconditioners are

almost the same. Further, the speedup generated by the DS preconditioner is better

than for its ILU and SSOR counterparts because of no communication involved in its

parallel version.

Figure 5.27: The speedup factor calculated for the preconditioned BiCGSTAB method employed to
bubble rising problem.
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5.6.2 Parallel Preconditioned BiCGSTAB

The speedups obtained from the parallel implementation of the BiCGSTAB method

with the three preconditioners employed for the dam breaking problem are depicted

in Fig.(5.28). It was observed here that the wall clock time remains the same when

running the simulation on more than 2 processors. This is due to the communication

overhead required for the parallel BiCGSTAB algorithm. In algorithm (4.1), there are

two matrix-vector products, four inner products and preconditioners are called twice.

All these steps increase communication overhead. Thus, as the number of processors

increases, the signi�cant amount of communication increases. These speedups are

calculated using the computational time taken by the method. As shown in Fig.(5.28),

the speedup for the ILU_BiCGSTAB and the SSOR_BiCGSTAB are almost the same.

But the speedup for the DS_BiCGSTAB is less than both of these.

Fig.(5.29) shows the speedup obtained from the parallel preconditioned BiCGSTAB

method applied to the bubble rising problem. In this case the SSOR (in conjunction

with the BiCGSTAB method) provides better speedup than the DS and ILU precon-

ditioners. The performance of the DS preconditioner is again poor as in the case of

the dam breaking problem.

5.6.3 Multiple-core Vs. Single Core Processors

In this research, the parallel algorithms have been implemented on a Linux cluster. This

cluster has 56 nodes, each having 2 quad core processors. Thus it is assumed that each

node can furnish the computational power equivalent to 8 processors. In order to ex-

amine the power of a node, the parallel algorithms have been implemented on one node

with many (maximum 8) processors to avail of the facility of multiple-core architectures
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Figure 5.28: The speedup factor calculated for the preconditioned BiCGSTAB method employed to
dam breaking problem.

and on n nodes using one processor on each node. In both cases, the times have been

recorded and compared. The computational and communication times required using

one node (with many processors) and many nodes for the ILU_BiCGSTAB method

applied to the dam breaking problem are shown in Fig.(5.30).

In this �gure, the legend �Time 1_node� indicates the time taken by the ILU_BiCGSTAB

method when run on one node using more than one processor (i.e. using multiple-core).

While the legend �Time n_node� means the same time when the program is run on

n nodes (2,4 or 8) using one processor per node (i.e. using single core). It can be

observed here that the times taken by 2 processors in both cases are almost the same

except a little di�erence in the communication times as shown in Fig.(5.30(b)). From

Fig(5.30(a)), one can see that the computation time, required for the ILU_BiCGSTAB,
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Figure 5.29: The speedup factor calculated for the preconditioned BiCGSTAB method employed to
bubble rising problem.

when the program is run using multiple-core (viz., 4 and 8 processors) is more than the

single core. Similarly, the communication times required for the ILU preconditioner

using multiple-cores is more than that for a single core. Moreover, in this case, there

is no reduction in the time is observed when the program is run on 4 processors and

8 processors. The SSOR_BiCGSTAB algorithm has also been implemented on one

node (using many processors) and many nodes. The computation time taken by the

method and communication time taken by the SSOR preconditioner are depicted in

Fig. (5.31). In this case also, the times taken by 4 and 8 processors, when the program

is run on one node, are more than the times taken by the same processors on many

nodes. A di�erence in the communication time can be observed from Fig. (5.31(b)),

when the program is run using 4 and 8 processors on the same node.
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(a) Computation times for ILU_BiCGSTAB on 1 node (using
multi-core) and many nodes.

(b) Communication times for ILU on 1 node (using multi-core)
and many nodes.

Figure 5.30: Comparison of times for ILU using multi-core and single core processors

165



5.6. Results from Parallel Algorithms Chapter 5. Results and Discussions

(a) Computation times for SSOR_BiCGSTAB on 1 node (us-
ing multi-core) and many nodes

(b) Communication times for SSOR on 1 node (using multi-
core) and many nodes.

Figure 5.31: Comparison of times for SSOR using multi-core and single core processors
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5.7 Chapter Conclusions

This chapter focuses on the results obtained from the methods and algorithms de-

veloped in chapter 3 and chapter 4. The VOF method developed using the analytic

relation has been validated for two benchmark problems, namely, the translation of a

square box and the rotation of a solid disk. A new benchmark problem is presented

here. The main �ndings from this validation are as follows:

(1) The VOF-analytic method provides the best performance for the case of the

translation of a square box,

(2) For the solid disk rotations test, this method provides a smaller error compared

to the literature except for Young's method (Rudman, 1997).

(3) The translation of a triangular box provides a new benchmark test.

The VOF code was integrated with the N-S code and validated for the following

benchmark problems: the lid driven cavity �ow, the breaking of a dam and the rising

of an air bubble in a viscous liquid. The main results from this validation can be

summarised as follows;

(a) The data for the u-velocity for the lid driven cavity �ow agree well with the

literature data available for a �rst order scheme.

(b) The results obtained from the dam breaking simulation are in very good agree-

ment with experimental data as well as numerical data from the literature.

(c) The rising bubble simulation has been carried out for grid sizes 128×128 and 256×

256 and the terminal velocities and instantaneous bubble shapes are represented.
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The advantages of using the diagonal storage format have been discussed by comparing

the simulation times taken in this format and using the index format. The performances

of the preconditioners have been measured by comparing the number of iterations taken

by them. The performance measurements have been done for the bubble rising and

dam breaking problems. The key observation from this comparison are;

• for the dam breaking problem, the variations in the number of iterations to

converge have been found when the water touches the right hand wall,

• the ILU preconditioner takes fewer iterations in comparison to SSOR and DS

when applied with the BiCGSTAB method.

• the size of grid a�ects the performance of the preconditioners for the dam breaking

problem,

• the number of iterations and the time taken by both the ILU and the SSOR

preconditioner are almost the same for the bubble rising problem. However,

these two factors have di�erences when grid sizes increase.

The parallel algorithms developed for the BiCGSTAB method, the ILU and the SSOR

preconditioners have been applied to the dam breaking and bubble rising problems.

The computation times taken by the master processor, for solving the pressure system

of equations, are recorded. The times taken by di�erent numbers of processors are

compared and the speedup data are generated. A comparison of the computation and

communication times taken by using single core and multi-core processors has been

carried out.
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Chapter 6
Conclusions and Future Research

The computer simulation of problems from engineering and science applications re-

quires e�cient numerical schemes and robust algorithms to reduce the computational

time as well as memory requirements. One of the most important parts in the simula-

tion of the �uid �ows is that of solving linear systems of equations. Another critical part

is the modelling of the multi�uid �ows which requires an e�cient method to capture

the interface between two �uids. In this research, both of these issues have been dealt

with by developing algorithms for the solvers and implementing a modi�ed method for

the interface capturing.

6.1 Muli�uid Flows

In chapter 3, a modi�ed version of the VOF method has been documented. The re-

construction step of this method was devised using an analytic formula. The details of

the derivation of this formula have been provided in this work. Further, the relation of

this analytic formula with the geometric formula has been established. In the second
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step of the VOF method, viz., the transportation step, the mathematical derivation

of the Lagrange advection scheme is explained. The whole transportation algorithm

has been summarized in a �ow chart; also the geometrical representations of the �ux

calculations have been illustrated. This chapter provides a short description of the do-

main discretization and the equation discretization approach adopted in this research.

The domain discretization has been carried out using the staggered grid arrangement

whose concept has been explained diagrammatically. For equation discretization, the

SIMPLE algorithm has been implemented and its description has been provided in the

form of a �ow chart.

6.1.1 Main Conclusions from Multi�uid Methods

The developed VOF_Analyic code has been validated quantitatively to measure its

accuracy. The results obtained were found to be in very good agreement with the ex-

perimental as well as numerical data available in previous literature. The inverse rela-

tion of the analytic formula facilitates accurate calculation of the interface position and

simpli�es the extension of the reconstruction step into 3D. Hence it is concluded here

that the developed VOF method performs better than other versions of this method,

and it can be extended to 3D modelling problems more easily. The Lagrange advec-

tion scheme, using the alternate spatial direction for time integration, has been found

to be in almost perfect agreement with the developed VOF_Analytic method for the

movement of the interface without wrinkling or smearing.

Code for the VOF_Analytic method has been integrated with the N-S code and

applied to the simulation of two-phase �ow problems, namely, dam breaking and the

rising of an air bubble in a viscous liquid. Additionally, this code has been implemented
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for the lid driven cavity �ow problem. The results obtained from the dam breaking

problem were matched very well with the experimental as well numerical data from

previous literature. Some small spots have been observed in the graphical representa-

tion of this problem. This is due to numerical di�usion which may be caused due to

the method used for normal estimation � the nine point �nite di�erence scheme� or

the �rst order upwind di�erence scheme utilized here. The results obtained from the

simulation of the lid driven cavity �ow were found to be in good agreement with the

literature data for the �rst order scheme. For the simulation of the air bubble rising in

a viscous liquid, the instantaneous shape of the bubble and the terminal velocity have

been documented.

6.2 Algorithms for Linear Solvers

Chapter 4 is devoted to the optimization of algorithms for the linear solvers and pre-

conditioners. One of the issues in this topic is the memory requirement for storing the

sparse matrices. An investigation of the storage requirement for di�erent sparse ma-

trix format has been carried out. Short descriptions of stationary and non-stationary

iterative solvers have been provided. An algorithm for sparse matrix-vector product in

the diagonal format has been developed. The need for preconditioners applied to the

Krylov Subspace methods is discussed and the algorithm for the ILUT preconditioner

in the dense format is explained. A novel algorithm for the ILUT in the diagonal

format has been developed. The computational complexities of this algorithm in the

diagonal format and dense formats have been analyzed.

The times required for the di�erent parts of the simulation, for rising bubble prob-

lems, were recorded and the need for the parallelization of algorithms has been detailed.
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The parallelism involved in the Krylov Subspace methods has been highlighted. Much

focus has been devoted to the data distribution and load balancing schemes. The par-

allel algorithms for the BiCGSTAB method, the ILUT preconditioer and the forward

substitution in the diagonal format have been developed and documented. Integration

of the N-S code and the developed parallel algorithms has been explained with the help

of a �ow chart.

6.2.1 Key Observations and Conclusions from the Solution to

the Linear Solvers

It has been found that the diagonal format for storing the structured matrices brings

down the memory requirement in comparison to other sparse matrix formats applicable

to unstructured matrices. Furthermore, a signi�cant reduction in the time taken by the

BiCGSTAB method developed in the diagonal format has been observed in comparison

to the same for the index format. Therefore, it is concluded here that the diagonal

format brings down both the memory requirement as well as the computational time of

the algorithms developed in this format. The most computationally expensive task in

the BiCGSTAB method is the matrix-vector multiplication. Hence a large reduction in

the overall computational time can be obtained from developing sparse matrix-vector

multiplication in the diagonal format. The computational complexity of the ILUT

preconditioer has been reduced from O(n3 − n2) to O(n).

It has been noted that, in general, the ILUT preconditioner requires fewer iterations

when applied with the BiCGSTAB method, for multiphase �uid �ow problems, in

comparison to the SSOR and the DS preconditioners. However, in the case of rising

bubble simulation for grid size 128× 128, the number of iterations taken by the ILUT
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was found to be almost the same as that of taken by SSOR. In the case of the simulation

of the bubble rising problem, the SSOR preconditioner generates a spike at a certain

time step.

Although the number of iterations taken by the ILUT preconditioner is smaller in

most cases (e.g., the dam breaking problem with grid size 100× 100) the times taken

by the ILU_BiCGSTAB and SSOR_BiCGSTAB methods are almost same. For large

size matrices (such as in the case of grid size 256 × 256), some di�erence in this time

has been observed indicating that the computational cost of the ILUT preconditioner

is higher than that of the SSOR.

The e�ect of the preconditioners, on the dam breaking and rising bubble problems,

has been monitored by investigating the variations in the iterations taken. Such vari-

ations within a certain range of time steps have been observed and their relation with

the physical situation during the simulation have been established. It has been found

that a large variation in the number of iterations occurs when the shape of the bub-

ble or the position of the leading water front (in the case of dam breaking) changes

in a certain range of time steps. These variations take place due to a change in the

condition number of the matrix generated at those time steps. Therefore, it may be

concluded here that changes in the position of the water front or in the bubble shape

brings about changes in the matrix condition number.

Speedup data from the parallel preconditioned BiCGSTAB method has been gener-

ated. The parallel algorithms have been implemented for the dam breaking and rising

bubble problems. The speedup generated from the ILUT and SSOR preconditioners

developed in the diagonal storage format have shown good scaling, which concludes

that the parallel algorithms developed using the new load balancing scheme for ILUT,
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in the diagonal format, reduced the overall communication overhead. A reasonable

speedup has been obtained from the parallel BiCGSTAB method using the computa-

tional time taken by the master node. However, the communication overhead increases

with an increase in the number of processors. It has also been observed here that using

more than one processors in single node of multicore architecture performed poorly

perhaps because of sharing of the same cache and data transfer bus.

6.3 Overall Conclusion and Further Steps

The VOF_Analytic method was found to be more accurate in capturing the sharp

interface between two �uids than other methods available in literature. The simulation

in this research has been carried out for 2D problems; however, in order to investi-

gate real life problems from science and engineering applications, simulation in 3D is

required and in such simulations, the computational load would increase substantially.

The memory requirements and computational costs of the VOF_Analytic method

would also increase correspondingly. Therefore, a parallel version of the VOF_Analytic

method should be developed further to deal with these issues.

There are many commercial software packages available for the simulation of mul-

tiphase �uid �ows. The most widely used packages in industry are FLUENT (Ansys,

2006) and Fine/Marine from NUMECA (Numeca, 2008). Such softwares use an alge-

braic approach for the reconstruction of the interface. Since the geometric approach

with analytic relation has been found to be more accurate, the developed C++ code for

the VOF_Analytic method can be integrated into these software packages to facilitate

the interface capturing step. It has been observed from the literature (Ghia et al.,

1982) that the multigrid techniques are more appropriate to solve the linear system
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of equations obtained from multiphase �ow problems. The matrices generated for the

multigrid techniques and for the 3D equivalent of these problems for these problems,

using FVM, have generally more than �ve diagonals (seven or nine). Therefore, the

development of a new algorithm for the linear solvers and the preconditioners in the

diagonal format for these matrices would be another step for future research.

The parallel algorithms developed for the ILU and the SSOR preconditioners require

less communication overhead as can be seen from the speedup factors (calculated using

computation and communication times).

The numerical simulation of the multiphase �uid �ows can be a�ected by the applica-

tion of the appropriate preconditioners for the Krylov Subspace methods. It was found

that the ILU preconditioner accelerates the convergence rate by more than the SSOR

does. However, the computational cost of the ILU is more than that of the SSOR and

in some cases the computational time taken by the preconditioned BiCGSTAB method

using these two preconditioners was found to be the same.

The �nal conclusion is regarding the multiple-core architecture; it has been observed

that performance of the parallel algorithms (which require many communication steps)

using single core is better than that of using multiple-cores on the same node. Some

possible solutions for the communication overhead have been noted here, and discussed

in the next subsection. These possible ways are projected as one of the future research

directions of this work.

6.3.1 Possible Solutions for Communication Bottleneck

It has been observed that in the BiCGSTAB method, the communication of the data is

a big hindrance in achieving speedup. Furthermore, increments in the computational
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times have been observed when programs were run on one node using several processors

on the multiple-core architecture. One of the possible solutions for these issues is the

utilization of a new generation multiple-core processor having dynamic scalability such

as the Nehalem processor from Intel (Nehalem, 2009).

The other possible solution for these problems could be to use the General Purpose

Graphics Processing Unit (GPGPU) (Brandvik and Pullan, 2008; Dongarra et al., 2008;

Suda et al., 2009). In such a system the graphics card is used for general purpose com-

puting in a similar way to the CPU. The GPU consists of one or more multiprocessors

(MP) each of which has Stream Processors (SPs), register memory, shared memory and

constant cache (Suda et al., 2009). Thus each MP can be viewed as a multicore CPU

with extra memories. Furthermore, it can be linked up with the CPU using the special

interface such as PCI express to transfer the data from GPU memory to CPU memory.

This data transfer is carried out by writing code explicitly using special programming

languages provided by GPU vendors.

Some researchers have explored the power of GPU for matrix operations, �ow solvers

and other applications. Dongarra and co-workers (Dongarra et al., 2008) implemented

an algorithm for matrix operations such as LU decomposition and Cholesky factoriza-

tion on the GPU and compare the computational and communication times. Imple-

mentation of Euler solvers has been carried out by Brandvik and Pullan (Brandvik and

Pullan, 2008) on the GPU and a CPU with single core. They observed that the GPU

is twenty-nine times faster for 2D problems and sixteen times faster for 3D problems.

Further, they conclude that GPU is well suited for CFD problems. This is perhaps a

way forward towards the solution of such problems as detailed above.
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