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Abstract 

We have developed the first year undergraduate physics labs to incorporate both open and 

guided inquiry in a flexible approach. By doing this we have shown that there have been 

benefits in both the affective and the cognitive domain for our students.  

One of the main aims for the labs was to develop necessary transferrable scientific skills. 

Developing graphing skills was an important part of the work that we did in the labs.  

Through our work we have developed assessments to test students’ general graphing 

literacy and developed curriculum to tackle their difficulties. The difficulties addressed are 

with both qualitative and quantitative graphs.  
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Chapter 1: Integrating inquiry into first year 

undergraduate labs: Background 

1.1: Introduction 
In this chapter I present the background and research behind the development of the 

first undergraduate physics labs. Over the course of 10 lab experiments, we help 

students develop a “toolbox” of skills, which they use in developing investigative 

skills such as the ability to phrase and test scientific hypotheses. This approach is in 

keeping with building on students’ abilities and experiences rather than hoping that 

students “adapt” to labs that are beyond their capability. It allows us to reduce the 

guidance and increase students’ autonomy. Thus, their acquisition of inquiry skills is 

the result of the set of labs in its entirety, and not of any single lab. 

At the same time, we use inquiry as a method of teaching to improve conceptual 

understanding. In later chapters I present examples of curriculum, with pre- and post-

test data showing the efficacy of the labs in this area. 

There was an overwhelming consensus from the staff and tutors in the department at 

arranged meetings that the existing labs were unpopular with students and staff alike, 

and that little meaningful learning took place in them. It was clear as a tutor in the 

lab, that students were not enjoying themselves (see Figure 2.6 for some relevant 

data). We set about researching and developing a set of 10 guided inquiry 

experiments to replace the first year undergraduate physics lab experiments. 

Participants in these labs take courses in the faculty of science, but were not taking 
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physics as their primary degree. In this chapter I describe how we developed a set of 

labs that started prescriptively but transferred procedural autonomy to students as 

they gained necessary experience in the labs. This allowed us to develop labs that 

both developed necessary scientific skills and improve understanding of difficult 

topics. 

The existing labs were very prescriptive, with emphasis on verifying formulas, and 

operating complicated experimental setups in cookbook fashion. Informal feedback 

suggested that experiments in the previous labs like the Hooke’s law (1.3.2) 

experiment were unpopular with both staff and students. Too much of the tutors’ 

time was spent not on helping students understand concepts or the approach of the 

experiment, but on helping with basic scientific and manipulative skills and tasks, 

like labelling and drawing graphs or making measurements. 

In order to develop a relevant set of labs, our approach was focused around the 

following set of goals.  

1. The labs should be an enjoyable and positive experience for students; 

2. Students should develop general scientific skills such as hypothesis testing, 

control of variables, graphing and graph interpretation, tabulation, drawing 

conclusions and extracting mathematical relationships from observed data; 

3. Students should clarify conceptual difficulties based on their observations in 

the laboratory; 

4. Students should be able to carry out quasi-independent investigations. 

Before implementing the labs we investigated what experience the students had with 

science labs in school. Based on their experiences and our goals we then considered 

what features of the existing traditional labs we needed to change.  
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1.2: Students’ background 

1.2.1 Students’ experience of physics in formal education. 

A survey among nearly 400 students, spread over three years, revealed that 

approximately 25% of students taking part in the lab had studied physics at a 

Leaving Certificate level (an upper secondary level two-year course, typically taken 

at age 16-18). The vast majority, 70%, had not taken physics at Leaving Certificate 

level, and had only experienced physics as a part of a general Science course at 

Junior Certificate level (a lower level three-year course, typically taken at age 12-

15). All students attending the labs have taken at least one science subject for their 

leaving certificate in order to qualify to take a course in the faculty of science.  

1.2.2 Students’ prior experience of experiments - an Irish context. 

In this section, I will describe the Junior Certificate Science course as it was taught 

up to a few years ago, i.e., to the cohort of students taking our labs. Theory would 

have been presented first, and experiments were described afterwards mainly to 

illustrate or verify the claims made. In practice, in many classrooms students would 

not carry out any experimentation themselves apart from about 30 so-called 

mandatory experiments, ten of which were in the area of physics. These mandatory 

experiments are written in cookbook style, step by step, in the textbook. 

The teacher is clearly not precluded from taking alternative approaches to using 

experiments in the classroom [1,2]. However, the student interviews described in 

Section 1.1.3 suggest that, from a student perspective, the role of the experiments is 

to help them remember the theory. 
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Assessment of the experiments also seems to suggest that the view of these 

experiments tends to be narrow and content-led. For instance, in a Junior Certificate 

Science paper in 2008, students were given the setup of a mandatory experiment 

(shown in Figure 1.1) that they carried out in the labs. It involved measuring the 

volume of irregular shaped objects and then finding the densities of the objects [3]

 

. 

 

 

Figure 1.1:  Examination question on a Junior Certificate experiment, 2008. 

 

The first question was to name the items labelled A and B. Once the student had 

labelled them as being an overflow container and a graduated cylinder they are then 

given the question “The potato had mass 175 g and volume 125 cm3. Calculate the 

density of the potato. Give the units of density with your answer.” The last question 

that the students are given is “Why did the potato sink in the water?”  

The curriculum describes the experiment as “measure mass and volume of fixed 

quantities of a variety of solids and liquids and hence determine their densities” and 

“investigate flotation for a variety of solids and liquids in water and other liquids, 

and relate the results of this investigation to their densities”. While the curriculum 
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leaves some room for inquiry-designed classes by a teacher, the assessment of the 

experiment only requires the student to recall outcomes of an experiment that could 

have been done in cookbook fashion, pieces of equipment used or to use a formula 

featured in an experiment.  

 

1.2.3 Students’ experiences of experiments in science 

To gain insight into students’ experiences in science labs we invited students to 

participate in interviews before the labs started. Over the course of two years, we 

interviewed just over 20 students.  Below we present some of the pertinent responses 

from the interviews along with the questions asked. 

I: What do you think the role is of experiments is in [school] science? 

S1: They kind of give you more grounding to what you’re studying. Because 

you’re putting it into practice. 

S3: In biology when we were doing the heart, when we were doing the 

experiment on the heart, you get to know the heart better, because 

you’re physically seeing, while out of a book you might not see as much. 

When you’re in the middle of doing an experiment, you are going to 

remember it. Out of a book you might not remember it, but when you’re 

physically doing it, you might remember it more.  

S4: I think if you do the experiments you can remember. I think if you do the 

experiments you can get a result. And the result is a little definition or 
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something, you could actually remember them more. You actually would 

remember them more if you did them.  

S6: For me it made learning the experiments easier.  

S7: It increased the knowledge on the topics you were learning at the time. 

That’s basically it. 

When asked to identify what they felt the role of labs in the classroom was, nearly all 

students focused on using the labs to remember or learn information from the topic. 

Students 3 and 4 specifically used the word remember, while Student 6 said that it 

made it easier to learn the experiments. Student 4 specifically highlights that the 

results of the experiment are easier to remember if you have come to it in an 

experiment. These responses would also suggest that the experiment was something 

that they needed to know or learn off.  The response given by Student 7 was the only 

response that suggests a wider role for experiments, like helping to understand the 

ideas behind the experiment or learning to think and approach problems like a 

scientist. 

In a number of follow-up questions we probed some of the lab practices in schools, 

and students’ attitudes to these practices. 

I: What did you find positive and negative about [the labs]?  

S1: All our equipment was dirty and all that. I didn’t like that everything 

was broken. Nothing went right, maybe it was just me but nothing went 

right with all our experiments. They always failed miserably. That kind 

of put me off. I was just like ahhh. 
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I: Did you think it was important to get the right result?  

S1: It’s not really important.  

I: Were you prepared before an experiment about what you were going to 

be doing and what you were going to find?  

S1: [The teacher] would show you beforehand. She would stand up at the 

top and say you put this in here and it would work fine for her. And then 

everyone would go “Grand, we know how to this”. Then things would 

break and then I don’t know would blow up.  

I: When you were doing school science, did the experiments always work?  

S3: No, they barely ever… Usually sometimes only the teacher did the 

experiment while everyone was watching. So she would say it was at 3 

cm, but it was at 5 and she would say, “oh, here you go, it’s at 3.” A lot 

of the time it didn’t work but when it did work it was great 

 I: How did you feel when it didn’t work? Did it bother you or not bother 

you?  

S3: No not really. Like sometimes when you see an experiment in a book, 

and you go: “oh, this is going to be cool” and then you go and do it and 

it’s nothing like what it’s supposed to be. I wouldn’t have been too 

bothered but I would have been like “ah sure, why didn’t that work out.” 

I: Would it annoy you if you didn’t get the right result for an experiment?  
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S6: It would. It would annoy me. It would kind of stop me because I did 

something… I wouldn’t be able to think about the whole thing properly 

because I know something I did was wrong. 

There are some mixed responses to whether the success of an experiment is 

dependent on a successful outcome.  Student 3 describes a teacher’s attempts to keep 

that side of science locked away by manipulating results. This student also compares 

the experiment in the book and the experiment in practice that did not work out. It 

seems that no matter how much the curriculum, book or teacher tries to plan and 

keep the experiment as simple as possible, experiments will never be as straight 

forward as planned. Keeping the experiment as a linear exercise seems to mean that 

for a lot of students the success of the experiment is focused on a collection of 

actions, all of which must work and give a pre-determined result. 

A couple of students we interviewed had studied physics at Leaving Certificate level. 

We asked these students about their experience with a mandatory experiment they 

had completed, to measure the acceleration due to gravity (g). The question we asked 

aimed to see if these students had realistic hopes about the outcome of the 

experiment. 

I: Can you remember the experiment where you had to find the 

acceleration due to gravity?  

S6: Yeah, the one with the magnet and the ball falls through a trap door. 

 I: […] What would be considered a wrong result for that experiment? 

Would it have to be far out, or anything kind of close?  



9 
 

S6: I would have said, if you get 9.5 and 10, if you get anywhere between 

there, then I would say that would be accurate enough. The closer to 9.8 

you are the better. So if it was off by .2 then it might not be. Well that’s 

in my head, anyway. 

I: So if you got a result of 9 m/s2, you would not be happy with that.  

S6: I suppose it is close enough. If I got 9 I would go back and see if I did 

something wrong. 

I: What results would you have got and been happy with in terms of the 

experiment?  

S7: Less than 9.8 or just a bit over 9.8, so 10 not acceptable and 9.7 just a 

little bit off. 

When asked about acceptable accuracies in the experiment, Students 6 and 7 had 

unrealistic expectations of the results that they would find. They did not seem to 

consider experimental errors but seemed to pick a number they thought reasonable. 

Student 6 said that, if he got 9 m/s2, he would go back and see if he had done 

something wrong. As shown in previous answers, the “success” of an experiment is 

strongly correlated with how close the value obtained is to a predetermined outcome. 

Overall, the students had a narrow conception of the purpose of the experiment. 

Many students said that the purpose of the lab was to serve as an aid in being able to 

remember the content of the general curriculum. No students in any of the interviews 

identified the labs as a place where they learnt new science or a place where they 

developed scientific skills. 
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1.3 Conventional Laboratories 

The interviews also support the view that, in the students’ eyes, the quality of their 

experiment is strongly correlated with the closeness of their result to the pre-

determined value. They have become accustomed to experiments “not working” and 

teachers showing the experiment and in some cases the teaching demonstrating 

expected outcomes beforehand. 

 

1.3.1 Introduction 

The laboratory is one of the most identifiable features of science teaching: 

“Laboratory work is almost ubiquitously seen as being of great importance to 

science education, by some as almost the defining characteristic of this component of 

the school curriculum” [4].  The uses of labs in science education are broad ranging 

from being motivational to challenging students’ misconceptions in a practical 

setting [5].  Our interviews show that our students’ own beliefs and ideas of the role 

of labs were narrower. 

In practice, labs often emphasise systematic teaching of the subject while the 

students’ own reasoning is bypassed [6]. The systematic cookbook approach often 

means that participants in the experiment are disconnected with the process they are 

carrying out [7]. This type of labs is narrowly focused on content, and their efficacy at 

developing conceptual understanding in students has been shown to be limited [8,9]. 

Though there have been many movements away from these types of lab, they still 

remain commonplace at both second and third level [10]. 
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1.3.2 A conventional approach to teaching Hooke’s Law 

To illustrate the approach taken in the existing set of physics labs, we describe the 

experiment on Hooke’s Law. The conventional cookbook approach to laboratory 

instruction quickly becomes apparent (see Appendix 1). At the start of each lab, each 

student was given a page of text to introduce them to the concept being taught, and 

“the point” of the experiment, as shown in Figure 1.2. They were then given a table 

to fill out, and were asked to tabulate the measurements for a rubber cord. 

Each step required to find each figure in the table was given to the students. These 

steps included: 

• How to make the measurements; 

• How many readings to take; 

• What graph to draw; 

• What are the units of the slope measured from a graph? 

 

Having carried out these steps, students are told to find the ratio g/k. 

 

Figure 1.2: Background given to students in a Hooke’s Law experiment. 
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In other experiments, students were given a list of formulae, and told which ones to 

use in different questions.  In nearly all cases a graph is drawn and the slope of the 

line is used to obtain a physical quantity like the expansion coefficient of a bar, the 

voltage in the mains, the viscosity of water, etc. By following a set pattern of 

instructions, both in setting up the experiment and manipulating the results, more 

focus is on following each step correctly rather than understanding clearly the 

purpose of each step. 

In addition to this standard cookbook approach, comprehension questions were 

asked after the introduction and before the experiment started as a way of getting 

students to engage with the theory of the experiment or the ideas that underpinned 

each experiment. For example, in the Hooke’s Law experiment the students were 

asked to list three examples from everyday life where materials that exhibit elasticity 

are used, and to identify how making a change in a number of properties (length, 

diameter, number of turns, density of the wire, force applied) would affect the 

stiffness of the spring.  This type of question however did not fundamentally change 

the structure or feel of the existing labs. 

 

1.4 Defining inquiry in teaching 

1.4.1 Inquiry and curriculum 

Inquiry has been an important theme with new approaches taken by curriculum 

designers in many countries. Even though the benefits of the traditional labs are 

limited, the difficulty and cost of implementing inquiry-based labs often means that 

many aspects of a traditional approach are commonplace in the science education 

labs [8]. 
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One complaint from some researchers is that the word “inquiry” is often ill-defined 

or too broad [11].  Inquiry in two different classrooms can appear to be very different 

because of the range of interpretations and approaches to inquiry. One of the broader 

interpretations is given by [7]: 

“It also refers to more authentic ways in which learners can investigate the 

natural world, propose ideas and explain and justify assertions based upon 

evidence and in the process, sense the spirit of science.” 

Two broad purposes of inquiry teaching are identified by Lunetta [12]

• Inquiry science teaching where students learn how knowledge is developed; 

: 

• Science through inquiry where students gain conceptual understanding, with 

inquiry being used as a method of instruction. 

1.4.2 Inquiry as a method 

A strong example where inquiry is a predominantly, though not exclusively, a means 

of instruction is the Physics by Inquiry curriculum developed for teacher education 

by the Physics Education Group at the University of Washington [13-15].  This guided 

inquiry curriculum strongly emphasises developing a level of deep conceptual 

understanding.  The focus is on inductive reasoning based on the students’ own 

observations. The labs are heavily structured, with quasi-Socratic questioning 

preceding and following prescribed experiments. Large conceptual gains have been 

proven to be made in practically all areas of secondary school physics. 
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1.4.3 Inquiry as a goal of the lab 

Inquiry can also be defined as a goal of instruction. Open inquiry can be identified as 

an approach that has as one of its overriding purposes that students develop inquiry 

skills and abilities. In open inquiry labs, developing conceptual understanding is 

often secondary. For example, Nott and Wellington state that they 

“have little confidence that open investigations in school science lessons 

generate or would be allowed to generate much worthwhile new conceptual 

or procedural knowledge.” [16] 

However, they identify as a potential benefit of open inquiry that it reveals 

“the messy side of real science which suddenly appears clean and tidy when 

it becomes accepted and is packaged away in the black box.” [16] 

An example of open type inquiry is given by Tuan et al [17].  In this case the teacher 

gives the student necessary laboratory skills before the lab for the students to 

explore. Then the teacher provides a problem for students in groups, and they must 

decide as a group how to solve it. After a class discussion, students carry out the 

experiment. Afterwards, the teachers discuss problems and the class’ solutions.  

Students’ reports are marked on what they are doing and why they did it. 

This form of open inquiry showed some improvements in the motivation of students 

of different learning backgrounds. This type of open inquiry was made possible by 

carefully planned exercises and discussions before and after the lesson as well as 

careful assessment. 
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1.4.4 Autonomy in labs 

Autonomy refers to the amount of freedom that is given to students in different 

aspects of the labs. Cognitive autonomy is common to both the open inquiry lab and 

guided inquiry labs, albeit in different ways. Both allow students to lead discussion 

of their views, though in the open inquiry environment students do not have the same 

degree of scaffolding from tutors that would be present in the guided inquiry labs. 

The difference between both inquiry labs lies in the amount of procedural autonomy 

students have. In open inquiry, students are allowed to design their own experiments, 

whereas in guided inquiry, the experimental procedures are prescribed. [18] 

Traditional labs which feature cookbook lists for students to follow have little to no 

procedural or cognitive autonomy. Students who experience high procedural 

autonomy often have to contend with the messy side of science. 

 

Figure 1.3: Cognitive and procedural autonomy in different types of labs. 
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1.5 Experience mismatch 
 

The profile that we got of our students from surveys and interviews as described in 

Section 1.1 would suggest that the existing labs were set at a level that was beyond 

students’ experience. For example, a standard set-up such as Searle’s bar apparatus, 

described in many physics textbooks, in which the thermal conductivity of a metal 

bar is determined by heating one end while keeping the other in an ice bath, can be a 

very nice extension of an existing body of knowledge of secondary school physics, 

but is unlikely to be understood at all by a student with, at best, a very basic physics 

background carrying it out in the second week of their physics module. Instead, to 

improve the learning experience for most students, in our approach the starting level 

of the labs would be more or less that of the starting level of the upper secondary 

physics course. 

 

The experiments in second level science are usually well defined and set out, with 

many of the procedural steps laid out in the books. The outcomes of the experiments 

in the curriculum are also well defined. From the interviews we also got a sense that 

experiments that students had completed at second level had been focused on content 

outcomes. Students’ experimental skills and ability to plan and execute an 

experiment appear to be basic.  In Chapter 3 I will show evidence that students often 

have a very basic ability for drawing and interpreting graphs, a skill assumed present 

in the existing labs. 

 

The evidence points to both content of the existing labs and the skills required of the 

students being mismatched to their previous classroom experience in physics and 
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science. This is backed up by results we present in chapter 4, in which students are 

asked to represent simple events with qualitative graphs. Overall we found that in 

many areas students had significant difficulties completing this task. We would have 

expected these questions to be manageable in this lab. To illustrate the importance of 

identifying the mismatch, in the  previous set of labs students were asked to use 

graphs to complete theoretically more sophisticated tasks like error analysis, or using 

the slope of the line to find the unknown value in an equation,  It is therefore not 

surprising that tutors often found that their time was split between helping students 

complete very basic tasks and skills like drawing graphs, drawing an appropriate 

trend-line, guiding students to use equipment or doing it for them, and helping 

students with more complicated skills like error analysis of a trend-line or defining a 

physical quantity from using a graph. The expectations of students starting were in 

many cases beyond the students’ abilities. As a result, the labs were often a struggle 

for the students. 

 

1.6 Our approach for moving towards inquiry as an outcome 
 

The existing labs placed little emphasis on students planning their own experiments, 

or developing skills that are necessary to carry out quasi-independent investigations. 

Even guided inquiry labs are typically not designed to do this. Etkina et al used 

physics labs for some similar goals with the design of the investigative science 

learning environment (ISLE). Central to her curriculum was that students “design 

their own experiments to investigate new phenomena, test hypotheses, and solve 

realistic problems”. [19] 
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We strongly believe that the skills required to carry out open or semi-open 

investigations are invaluable for any science student to acquire. In an attempt to 

achieve this, we decided we would start with quite tightly guided inquiry based labs, 

with little procedural autonomy (but as much as possible without the students having 

to rely on tutor support). As their skills base grows, students are given less and less 

guidance until they are able to carry out simple investigations with equipment they 

are familiar with. Thus, in this “reduced scaffolding” approach, we accept and 

acknowledge the need for stage management of practical work as suggested by Nott 

and Wellington in the initial phase, but gradually reduce the prescriptive elements 

and increase student autonomy. In this way the labs are more matched with students’ 

experiences, letting us move towards students successfully completing quasi 

independent investigations while also allowing them to develop an understanding of 

necessary physics concepts. 
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Chapter 2: Integrating inquiry into first year 

undergraduate labs: Implementation 

 

Chapter 1 set out the background behind why we revised the lab, and the research 

that has led to their development. In this chapter we set how we organised the labs 

and give an overview of we approached their practical implementation. The labs 

were designed to start prescriptively and then became less prescriptive as students 

developed more necessary skills. Towards the end of the set of labs students were 

able to carry out their investigations when given some background information.  

2.1 Overview of aims 

2.1.1 Enjoyment in the labs 

One of our main aims was that the labs should be enjoyable and worthwhile for our 

students. This should result in students being more motivated, and willing to engage 

with their tasks in a productive and meaningful way. This is further underlined as for 

many of these students; these labs will be part of their last formal educational 

experience of physics. 

The existing set of labs was not a positive experience for students or staff. We 

discussed in Chapter 1 how they were not set at an appropriate level for the students 

participating in the lab. Another feature that added to their unpopularity was the type 

of tasks that we asked the students to complete.  

For example, in a fairly standard introductory lab, where students determine the 

period of a pendulum by repeatedly measuring the time it takes to complete say 20 
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swings for different pendulum lengths, they end up counting many hundreds of 

pendulum swings in the space of a three hours lab. Also, students do not have any 

connection with the outcome of the experiment, as they do not make hypotheses or 

explore the setup before starting the experiment. 

2.1.2 Developing useful skills. 

The labs have been designed in such a way that over their course students develop 

investigative skills to a level that allows them complete simple quasi-independent 

investigations. These skills include manipulative, representational and 

reasoning/investigative skills. These investigations are not full open investigations as 

some context to what they are to investigate is provided to them.  

Manipulative skills speak for themselves – students need to be able to use the 

equipment independently. We include graph construction, tabulation, scientific 

notation and unit conversion, and report writing among the representational skills. 

Interpretative skills consist of interpretation of graphs, control of variables, 

qualitative hypothesis testing (i.e., the ability to phrase a hypothesis and to design 

and carry out an experiment to support or falsify it), drawing inferences from data, 

establishing physical and mathematical relationships from experimental data, and 

metacognitive skills.  These skills were identified as a result of the areas in the 

previous labs in which students needed the most help, and as skills that we felt were 

vital scientific skills for any scientist requiring to carry out an investigation.  

While formal error analysis is an important part of scientific investigation, due to 

time constraints, we found it difficult to tackle both conceptual development and 

formal error analysis in one and the same lab. However these students are non-

physics majors, so error analysis should be covered in other elements of their degree 
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program. Informal error analysis, like estimating whether a deviation from a 

hypothesis is large enough that it cannot reasonably be ascribed to uncertainty in 

measurement, does form part of the labs. 

 

2.1.3 Conceptual Development.  

In the existing labs conceptual development usually was limited to two or three 

higher order comprehension questions that either preceded the experiments or came 

after the experiment had come to its conclusion. 

We try to incorporate this type of question at all stages of the experiment. This 

allows us to help students develop conceptual models using inductive reasoning, and 

to make sure the students understand how the tasks they are carrying out are linked 

with these models. For example, in the uniform motion lab students are asked to take 

readings for a ball rolling along a track. They are then asked to interpret those 

readings and determine if the motion of the ball is constant or not. When they find it 

is not, they are asked to manipulate the setup so that they obtain constant motion 

with the ball. Students then write their own hypothesis for a different setup and 

investigate it using their own model. 

In the previous labs there was little questioning or student involvement outside the 

list of procedures and the tables students were asked to fill in. We hope that by 

taking this approach to experiments that students will be encouraged to think 

independently outside the bounds of the followed procedures. 

The conceptual development was verified using the standard pre-test/post-test 

method.  
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2.2 Practical Implementation 

2.2.1 Equipment 

The equipment in the labs was kept as simple and as hands-on as possible, avoiding 

the use of black boxes. By avoiding black boxes students are given some opportunity 

to explore the principles behind even such a simple device as a commercial spring 

balance (also called newtonmeter) before they go and use it. This also helped us 

implement non-rotational labs, with a new forty sets of each experiment, which in 

turn allows us to let all students do the same experiment at the same time, so that we 

can build up their skills base gradually.  It would be hard to implement such a set-up 

with forty expensive pieces equipment.  

2.2.2 Pre-labs 

One concern that academic staff and tutors had before revising the labs was the 

amount of difficulties that students were having with simple routine tasks. Often the 

purpose of the experiment was lost as students struggled to tackle these tasks. To 

combat this problem, we adopted the pre-lab approach taken by Johnstone et al [1]

Therefore, before entering our labs students took not only an online pre-test and 

answered a four-question survey about the experience of the previous lab; they also 

read a pre-lab and did a short pre-lab assignment. The pre-lab lays out what students 

should expect when coming into the labs, following which they may be asked to use 

, 

with minor modifications. Johnstone et al found that the introduction of pre-labs had 

made the laboratory experience a better one for the students.  Students felt like they 

understood the purpose of the experiment and had a better footing on the tasks they 

were to complete before going into the lab. 
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web based resources or easily accessible textbooks to carry out a simple assignment. 

In some cases students receive a set of instructions or help them in carrying out the 

pre-lab. These assignments are not conceptual in nature and focus on skills that 

students need to know before entering the labs. The skills covered in the pre-labs are 

generally are incorporated in the following lab. An example of a pre-lab that our 

students take is shown in Figure 2.1. 

1. What should I expect to see in this experiment?  

You will see how a spring stretches when different objects are attached to it. 

2. What will I be doing?  

To examine the way springs stretch you will hang masses from two different springs 
and observe the changes in each spring. You will use this information to construct a 
spring balance which will allow you to determine the mass of different objects. 

3. What equipment will I be using? 

An equipment list plus a photograph of the equipment is given: a retort stand, two 
springs, a ruler, a mass hanger, a slotted mass set, and a digital mass balance. 

4. What should I know before I begin? 

• The experiment will require you to take measurements with a ruler and to enter 
these measurements in a table. 
• You will be asked to plot the data gathered on a graph. The graphs are provided 
with the axes drawn; they will just require the addition of data points. 
• In addition to plotting the data points on a graph, you will be required to add a 
best fit line to the data. (See information below on Best Fit Lines) 
• What is the meaning of ‘slope of a line’ for a line plotted on a graph? 
• What is the meaning of ‘horizontal and vertical intersect’ of a line plotted on a 
graph? 
 
5. The pre-lab assignment:  

In your own words, give definitions of slope, intercept, and best fit line. You may of 
course use your textbooks or the Web, but do phrase the definitions yourself. 

Figure 2.1: A pre-lab given to students before the making a spring balance experiment.  
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2.3 Assessment of labs 

2.3.1 Learning environment/ Enjoyment 

Since the early 1980s, the cognitive domain in general and conceptual change in 

particular has gained prominence in science education research, at the expense of 

research into the affective domain [2,3]. For example, in a similar context to ours, 

Simonson and Maushak [3] found that  

“It is obvious that attitude study is not an area of interest or importance in 

mainstream instructional technology research. Of the hundreds of studies 

published in the literature of educational communications since [1979] less than 

5% examined attitude variables as a major area of interest.” 

In the area of science education, research into attitudes and motivation has seen 

peaks and troughs in terms of interest over the past three decades. Interest has often 

been motivated by trying to address or understand the poor uptake of science at 

second level, and understanding the implications of new scientific approaches [3].  

There are many valuable instruments to survey both the students’ attitudes and 

motivation and what is happening in the classroom. Most contain many items that 

are Likert scale type answers. These include the What is Happening in the Classroom 

(WIHIC) survey [4] and the Colorado Learning Attitudes about Science Survey 

(CLASS) [5]. However, we found that the size and detail of the surveys was too great 

to allow research-based development of individual labs on a weekly basis. We 

decided that feedback from students was important and set ourselves the following 

goals for that feedback: 
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• The feedback should be a non intrusive method of giving students the 
opportunity to rate their experience on a week to week basis,  

• The feedback should allow us to compare each lab with similar questions,  

• Students should have the opportunity to provide open and qualitative 
feedback.  

• At the end of the labs we would be able to compare their overall experiences. 

 

To achieve our aims we used a web freeware application called Moodle. Using 

Moodle, students logged on each week and completed a survey. This allowed us to 

collect quantitative data for each lab on students’ attitudes towards the lab. 

Typically, they were asked to rate on a five-point Likert scale (ranging from strongly 

agree to strongly disagree) whether they enjoyed the lab, had found it too hard, and 

felt they had learnt something from it. Also provided was an opportunity at the end 

of the survey for students to provide their own comments on the previous lab. An 

example of one of the surveys is shown in Figure 2.2. By gaining feedback on each 

lab, we were able to carry out a research based development of individual labs, 

especially where the affective domain is concerned,  and not just the set of labs.  

For the iterative design process we found that this stream of information was 

invaluable and helped us immensely in changing and tweaking the labs so that where 

needed students were properly supported. Especially in the first implementations we 

found a very strong correlation between enjoyment and being able to grasp the 

meaning of a question at once – a correlation that seemed stronger than how hard 

students perceived a question to be. 
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Figure 2.2: The survey students use to give online feedback on the previous lab. 

 

2.3.2 Assessment of student learning.  

Conceptual development is assessed using the pre-test/post-test method. The pre-test 

is given on-line prior to the labs. The post-test usually takes the form of exams, 

though occasionally they are asked as part of the pre-test of the subsequent lab. Two 

exams are given: a mid-term exam, which examines conceptual development 

through open unseen theory questions, and the end-of-term exam, which includes the 

examination of the investigative and experimental skills. 

The overall grade consists of three parts. Students get 5% for completing every pre-

test, regardless of whether their answers are correct, incorrect or incomplete. The 

graded worksheets are worth 45%, and the mid-term and end-of-term exams are 
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worth 50%. The initial weights were 5%-30%-65%, in line with our philosophy that 

the lab should be a learning environment and not an examination environment. 

However students themselves requested that more weight was given to the weekly 

worksheets and we believe a good balance has been found. 

 

2.4 Implementing guided labs with a practical approach to autonomy 

2.4.1 Experiment 1: Prescriptive guided inquiry. 

In the first lab, students start by a free exploration of how the length of a spring 

changes when different masses are hung on it, and they have to write a few lines on 

what they did. After that initial episode, however, the guidance is quite tight. The 

students carry out the same experiment on two different springs. First they attach the 

spring to a retort stand, and measure the length of unloaded spring. Then they attach 

a mass hanger of unknown mass and attach up to six slotted 20 g discs. In doing so, 

they tabulate their data, graph the extension of the spring as a function of the total 

mass of discs, and they draw a best-fit line through the data points. 

This activity forms the basis for three additional activities. The two graphs are used 

to help the students to think about the slopes and intercepts in a qualitative manner. 

Moreover the students are led to think about interpolation by adding unknown 

objects to the hanger (after removal of all slotted discs), finding the extension and 

hence read off the mass of the object. In the following weeks more freedom is given 

to students on collecting data and drawing their own graphs. 
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2.4.2 Experiment 4: More autonomy for students. 

In the pre-lab to Experiments 2 and 3 students are introduced to hypothesis testing 

and controlling variables. By the time they get to Experiment 4, the students’ 

procedural autonomy has been increased compared to Experiment 1 (described in 

Section 2.4.1). 

At the start of the experiment, students are again given free rein to explore the 

equipment and to “play and observe”. They are then given a brief description of the 

task: to investigate the effect of mass on the period of a pendulum. There is space in 

this investigation for some procedural autonomy, and we give it to students.  

 

Figure 2.3: Part of the pendulum lab in which students have some hand in planning parts of their own 
experiment. 
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As shown in Figure 2.3, students are allowed to choose their own fixed starting 

angle, the length of string, the number of swings of the pendulum, and are required 

also to give a rationale for their choices. They also need to phrase in their own words 

how variables are controlled in the experiment.  At this stage, it is little more than 

recapitulating their choices; in subsequent experiments, they will not be guided to 

the same extent. 

 

2.4.3 Final investigations: Implementing new skills in the labs.  

By Experiment 9, the students have acquired sufficient skills to successfully tackle a 

laboratory like the one shown in Figures 2.4 and 2.5 below. The investigation 

focuses on the max height a ping pong ball reaches after successive bounces. 

Students are given two guidelines for two investigations to carry out, and then they 

are asked to pick their own investigation. In their own investigation, students write 

their own hypothesis and decide what investigation they want to carry out. A list of 

possible investigations is provided, because we found that students otherwise get 

stuck. However, students are not restricted to this list, and a few choose their own 

investigation. 

Guidelines are given to help student show what is expected of students, as shown in 

Figure 2.4. 
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Investigation 1:  

Check that you have at your disposal: a ping pong ball, a meter stick, a retort stand with 
clamp, and a stopwatch. 

I.  General comments 

This is the first investigation that you will carry out in the physics labs.  You will first set up 
investigations into two prescribed aspects of the motion of a bouncing ball. In the last 
section, you will investigate any aspect you choose. 

The structure of each investigation is a lot like what you have done in the labs so far. For 
each of the investigations you will carry out, think about the following issues: 

• What do I need to measure to verify my hypothesis? 
• How can I achieve control of variables? 
• How many different measurements will I make? 
• How many repeat measurements will I make? 
• How can I make my experiment as accurate as possible? 
• Is the accuracy of my experiment sufficient to falsify or confirm my hypothesis? 
 

NOTES ON HOW TO WRITE YOUR REPORTS ARE GIVEN IN THE APPENDIX 

Figure 2.4: The guidelines for a quasi-independent investigation. 

 

To make the investigation as real as possible, the hypotheses chosen were the most 

popular answers on the pre-test to this lab. In the first version of this investigation, 

the students were not given the hints shown in Figure 2.5.  As it turned out, from 

classroom observations it was clear that  many students were not ready to carry out 

this investigation by themselves.  With these additional clues, most students were 

able to carry out a satisfactory investigation with appropriate reporting. 
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Section 1:  Multiple bounces 

In this section you will investigate how the maximum height reached by the ball changes 
after successive bounces on the floor or table. 

You are to investigate two hypotheses: 

Hypothesis 1: “The maximum height reached by the ball decreases by the same amount after 
every bounce.” 

Hypothesis 2: “The ratio of maximum heights reached by the ball on successive bounces is 
constant.” 

A few hints to help you with the investigation: 

1 Ensure that the height from which you drop the ball and the maximum height it reaches 
after the first bounce are approximately constant 

2 Make measurements for a reasonable number of bounces 
3 Repeat the experiment a reasonable number of times, and average your results 
4 State whether you have falsified or confirmed the hypothesis 
5 Plot the maximum height against the number of bounced (i.e. plot the maximum height 

on the vertical axis and the number of bounces on the horizontal axis). You may treat 
the release height as the height after zero bounces. Explain what sort of line you drew.  

 
Figure 2.5: The first investigation students are asked to carry out. 

 

2.5 Students’ experiences of the labs 

2.5.1 Students’ experience in the laboratory space 

After each lab students were asked if they enjoyed the lab, if the lab was too 

difficult, and if they felt they had learnt something.  Our target, to get the undesired 

answers to below 20% and the desired answers to 50% or over, has now been met for 

each of the experiments.  Some relevant statistics have been collected in Figure 2.6. 

In the end-of-semester survey, we give a more substantive questionnaire. Some 

interesting trends have emerged.  In the first year, one of the investigations was not 

as clear as desired, and more than 50% of students stated they preferred structured 

labs over the investigations.  Having replaced the unsuccessful investigation, 
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numbers are now consistently undecided: 40% prefer one over the other, while 20% 

are neutral. 

 

 

 

 

 

 

 

Figure 2.6:  Sample survey responses on the new set of physics labs described in this paper (‘2006-
08’, N~400) matched to closest corresponding question on 2005-2006 survey (N=150).  The first 
question was asked only on the 2006-2007, 2007-2008 and 2008-2009 surveys. 

 

It is clear that these labs have been transformed.  Interestingly, it appears that not 

only do the students find the labs more stimulating and useful; the tutors are judged 

to be much more helpful than they were in the old labs – even though in many 

instances, these tutors were the same people. 

*We have found that the  pre-test results year on year are consistently within 5% of 

each other, and while also acknowledging some variations between  groups of 

students we felt confident in rounding figures to the nearest 5%, and in doing so not 

present false accuracy. We also round off our data to the nearest 5% in later chapters. 
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2.6 Investigative skills 

Students were to carry out a graded investigation at the end-of-term exam (week 11).  

The exam question is given below. 

1. You have approximately ONE HOUR to complete this experimental question. 

You have at your disposal a retort stand, a clamp, a metre 

stick, a slotted mass set, and a stopwatch.  The mass of 

the mass hanger is 50 g; the masses of the different 

slotted disks are 5 g, 10 g, and 20 g. 

If an object hanging from a spring is displaced from its 

equilibrium position by some distance x0

• The total mass you hang on the spring should be not be less than 70 g, and not more than 

150 g. 

 and then 

released, it will oscillate about the equilibrium position.  

The object will move back and forth between positions of 

minimum and maximum height in a regular, periodic motion.  The period of this motion is defined as 

the time it takes to complete one cycle, i.e. for the object to go from minimum height to maximum 

height back to minimum height 

You are to investigate your own scientific hypothesis on how the period of the motion of an object 

attached to a spring depends on the mass of that object.  Please note the following: 

• You may use the stopwatch only as a clock, measuring time in seconds.  Alternatively, you 

may use your own watch as a clock, again measuring time in seconds. 

Carry out your investigation, and write a brief report on it in the space below and the next page.  Your 

report should have a similar format to that you used in Experiments 9 and 10.  The introduction 

however may be brief, merely stating the hypothesis you are testing.  Graph paper is provided in your 

exam booklet, just before the theory questions. 

Figure 2.7: An overview of an exam question in which students had to complete an investigation. 

We note here that the mass range was restricted because otherwise the likelihood of 

the mass hanger and discs coming off or banging on the table was too great.  The 

hint about using only the stopwatch essentially as a clock accurate to seconds was 

put in there predominantly to avoid continuous beeping in the lab. We were initially 
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concerned that this would push students towards making measurements on more than 

one swing. This does not appear to have been a problem in practice. 

2.6.1 Ability to phrase a scientific hypothesis (N=197): 

Some 80% of students were able to give a clear, testable hypothesis, such as “the 

period increases when the mass increases”.  Another 15% gave a more vague yet still 

testable hypothesis (e.g., “the period depends on the mass”), while some 10% gave 

unclear answers (such as “we will investigate the effect of the mass on the period”) 

or gave no hypothesis at all.  We deemed this outcome satisfactory. 

 

2.6.2 Understanding the experiment (N=197): 

Despite defining the period of the oscillatory motion in the text, merely 75% 

understood the experiment.  Some 10% thought that the period is time it takes for 

object to come to rest; another 10% thought that the period is the difference in 

minimum and maximum height.  A further 5% of students gave unclear or 

ambiguous answers.  In the remainder of this section, we will only consider the 147 

students who clearly understood the experiment. This ensures that we investigate a 

more homogeneous group, while still retaining a high enough number of students to 

extract meaningful data from.  

 

2.6.3 Control of variables (N=147 out of 197): 

Results here were quite encouraging.  Half the students gave written evidence that 

they kept x0 constant. As we counted explicit statements only, it is likely that the 

number of students who did this was actually higher. Just under 5% kept the initial 
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height above table constant –a variable a professional physicist is unlikely to keep 

constant, but showing evidence of a desire to control variables nevertheless 

More than 90% of students kept the number of oscillations constant, but this high 

percentage includes those who measured the time to complete just one bounce.  It is 

impossible to judge whether these students would have thought of keeping the 

number of bounces constant.  Interestingly, some 5% of students kept the total time 

constant and varied the number of oscillations in that period – an entirely valid 

procedure. 

2.6.4 Number of oscillations, masses, and repeat measurements (N=147 out of 197): 

All students who kept the time interval constant obtained a reasonable number of 

oscillations. However, of the other students, only 15% chose 10 or more oscillations, 

another 15% chose between 2 and 9 oscillations, and 65% of the students chose to 

measure the time it takes to complete just one oscillation.  Of the latter group, many 

complained that the instructions made it impossible to make clear measurements; 

some ignored the instructions, and used silent stopwatches on their own clocks to 

measure the period to hundredths of a second.  It is interesting to note that students 

could see what others were doing in the lab, and still two-thirds of the students did 

not think to measure the time needed to complete many oscillations, despite having 

done something similar in a pendulum lab. 

 

The situation is not much better when it comes to the number of different masses the 

students chose.  As the period versus mass graph is curved, one would hope that the 

students would make more measurements than required for a straight line graph.  

Given the mass range set in the question, it is perhaps not surprising that 65% of 

students chose five different masses (corresponding to 1, 2, 3, 4 or 5 slotted discs of 
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20 g mass).  Only 20% used the 10 g or 5 g slotted discs as well, and made 6 or more 

measurements.  A surprisingly high fraction of almost 20% made measurements for 

4 or fewer different masses. A more encouraging result came from analysing what 

percentage of students made repeat measurements, with 55% of students doing so.  

 

2.6.5 Tabulation and graphing (N=147 out of 197): 

Over 90% of students drew up acceptable tables, though only 40% gave both table 

headings and caption. The results for the graphing skills were positive.  While only 

55% of students drew a big enough graph (defined as using more than one quarter of 

the area of an A4 sheet), 90% drew scaled and properly labelled axes and gave units 

on both axes.  Some 85% drew a good best fit line; as most students had never seen 

the formula linking the period of an oscillating spring with the mass, it is entirely 

acceptable for them to draw a straight line (that does not go through the origin) 

through five data points. As we are only assessing graphing skills here, we do not 

consider the fact that students should ideally have taken more data points. 

2.7 Findings 
Overall we found that our flexible approach to guided inquiry labs, by allowing 

students more control with time on how they setup their experiments, had some 

benefits with the development of important scientific skills for students. Also by 

setting the labs an appropriate level and coupled with our approach, the labs have 

been transformed from being a chore for both students to tutors, to being a positive 

and valuable experience for students.  
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Chapter 3: Overview of Graphing in Physics Labs 

3.1 Overview 
One notable difficulty that was identified before introducing the new labs was 

that of students’ abilities to functionally use graphs. This inability to use graphs was 

one significant block to students independently carrying out their own experiments. 

There appeared to be difficulties connecting the graph and the experiment through 

proper interaction or patterns of reasoning. A difficulty that became clear during the 

first year of the newly introduced labs was the inability of many students to choose a 

suitable trend line to represent their data. One particular difficulty we identified was 

a tendency to draw a straight line through the origin regardless of the data students 

had collected. 

Assessments were designed to test students’ abilities to draw simple trend lines 

to represent observed events. The assessments were given as part of pre- and post-

tests in the physics labs. Significant difficulties and patterns were identified in 

students’ pre-tests and post-tests. These are set out in Chapter 4. Chapter 5 highlights 

the approaches that were made in the labs to help develop students’ understanding 

and abilities in the labs. In Chapter 7 the efficacy of the lab is described by 

comparing the pre- and post-test results. 
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3.2 Motivation 
We put strong emphasis on developing graphing abilities and skills in the physics 

labs. Graphing transcends subject boundaries and is essential for a practicing 

scientist, whether working in the field of chemistry, biology or physics. As stated in 

Chapter 1, one of our main goals was to allow students to independently carry out 

their own investigations. To achieve this, students must acquire functional abilities 

with graphs. These abilities can be classed as both analytical and communicative. 

This was summarized well by Jackson et al [1]: 

“Graphs are one of the most important tools in the practice of modern 

science, as a means of both exploration and communication. Graphing has 

been recognized as an important process skill in science education”.  

Graphs can also be used to solve problems, analyze multiple events and pictorially 

show intervals or co-variation. Interpolation and extrapolation are made easier with 

graphs, and it is possible to get a global view of trends from a series of plotted data 

points. All of this is more difficult to do with tabulated data. The use of graphs in 

textbooks is widespread at all levels of science instruction, and students are exposed 

to graphs from a very early stage of formal science education. They are extensively 

used by physics educators [2], almost as a second language. As a result mastery of 

these different graphing abilities is an important aspect of scientific literacy. PISA [3]

and they are able to 

 

contends that the comparison with language is appropriate,  

“as language implies that students must learn the design features involved 

with mathematical discourse” 
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“solve non-routine problems in a variety of situations defined in terms of 

social functions”. 

An example where graphing can be used as a tool of instruction is the development 

of the concept of instantaneous motion [4]

 

Figure 3.1: Breaking down a curved graph into smaller pieces to make a link with linear graphs. 

. In this approach, students had previously 

come to associate uniform motion with linear (distance-time) graphs, and non-

uniform motion with curved graphs. By zooming in on a curved line, considering 

increasingly smaller pieces as shown in Figure 3.1, students observe that the smaller 

pieces strongly resemble a straight line. This helps them associate a very small 

interval with constant motion. With more work students come to an understanding of 

instantaneous motion as the limit of constant motion over an infinitesimally small 

time interval. 

The graphing ability of students at third level often falls short of expectations.  The 

number and variety of difficulties with graphing for students in science have been 

well documented. Beichner [5] and McDermott et al [6] have found that students 

entering college have a deficiency in their graphing capabilities and do not 

necessarily pick up graphing skills spontaneously. Beichner [5] found that students in 

college and at high school level showed no statistical difference in their abilities to 



43 
 

use or interpret kinematics graphs.  McDermott et al [6] found that students at third 

level often have difficulties in choosing which trend line to draw after plotting points 

on a graph. McDermott et al [5], Clement [7]

3.2.1 The importance of context 

, and others have found that many 

students read the graph as if it was a picture, or pick the height of the graph when 

required to pick the slope of the graph. 

One of the important factors that affect how students approach and interpret a graph 

is the context in which the graph is set. Åberg-Bengtsson and Ottosson [8] designed a 

large graphing survey and found that there is a strong content-related factor in the 

success rate of interpreting the graph. They conclude: 

“However it may, for example, not be assumed that having learned the 

handling a particular type of graph in math class provides sufficient 

background knowledge for an intended reading of the same type of graph in a 

new context (e.g. a particular situation in science class)” 

Roth [2] points out that in order to answer a question, students need to both have an 

understanding of the context and a general ability to interpret graphs. Figure 3.2 

illustrates this with an example from our own student cohort. Three different groups 

were to figure out the rate of change for each of the three graphs.  

 

Figure 3.2:  Similar graphs in different contexts.  a) distance-time graph; 
b) water level-time graph; c) context-free graph. 
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The first is a distance-time graph, the second is a water-level versus time graph and 

the third is a purely numerical graph. When asked to find the speed of the object at 

point A, how fast the water level is changing at point B, or the slope at point C, 

many students incorrectly use a single point to answer each question.  It is quite 

common for students to use the incorrect formulae speed = distance / time, or slope 

=y/x, but students use the formula rate of change=water level/time much less 

frequently1. Moreover, we find that after instruction students are much more likely to 

abandon slope=y/x and use slope ∆y/∆x than to abandon speed=distance/time and use 

(average) speed = change in distance/ change in time. 

As this example shows, testing general graphing skills is difficult because of the 

influence of context on how students answer questions.  Different instruments that 

have tried to test general graphing abilities have taken similar approaches. They ask 

graphing questions in various contexts from everyday life. An example of this 

approach is Test of Graphing in Science (TOGS) [9]. This test was aimed at middle 

school students and used contexts such as the amount of gasoline used for a car 

journey and the amount of heartbeats experienced by a jogger. A similar approach is 

taken by Åberg-Bengtsson and Ottosson [8]

“The importance of interest and familiarity with the content domain of the 

graph interpreted cannot be overemphasized”. 

 who developed a 21 item test with 

questions about e.g. the differences in temperature and amounts of rainfall. They 

concluded that 

                                                 
1  For qualitative data backing up this statement, see Chapter 7. 
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As a third example, the PISA test also uses everyday context related situations as 

“they demand the ability to apply those skills in a less structured context, 

where the directions are not so clear, and where the students must make 

decisions about what knowledge may be relevant, and how it might be usefully 

applied”.

 

[3] 

3.2.2 The format of the questions 

Three question formats are often used: multiple choice, interviews and open 

questions. Each format has its own advantages and disadvantages. Interviews afford 

the ability to follow up on a question and allow the interviewer to be more 

exploratory with student responses. A strong disadvantage with interviews is that it 

becomes too time consuming to produce quantitative reproducible data. However, as 

a prelude to designing open or multiple choice questions, interviews can be very 

useful. 

Open questions afford the researcher less flexibility, but well constructed questions 

can probe students’ understanding effectively. The format allows for activities such 

as graph construction. One downside is that analysis can be very cumbersome, 

especially when many different answers are possible. 

The multiple choice format allows for very quick analysis. However, probing 

reasoning can be problematic. By necessity each answer must contain some implicit 

or explicit reasoning, which the students may not have arrived at spontaneously. For 

example, Berg and Smith find that students are more susceptible to the 

misconception of treating the graph as a picture in multiple choice tests [10].  They 
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suggest that students often answer multiple choice questions with low-level 

cognitive engagement, whereas in open questions they often make sketches and have 

a chance to take other approaches in analyzing and answering the question. 

3.3 Graphing difficulties 

3.3.1 Difficulties in constructing a trend line 

Line graphs are the most common type of graph in physics as they show co-variation 

most readily. In this thesis, I discuss only graphs with two linear axes. When 

constructing such line graphs, most students can draw axes and mark in the values 

from a table of figures. However, many students have difficulties with constructing a 

trend line, which demonstrates a lack of understanding of the role of different 

components of a graph.  

For example, McDermott et al [6] found that many third level students construct 

graphs without adding a trend line, or else join each dot with a straight line as shown 

in Figure 3.3. Leinhardt et al [11]

 

 suggest that students might do this as a result of 

early childhood practices of joining dots. 

 

 

 

Figure 3.3: Typical incorrect or incomplete graphs: a) connect-the-dots graph; 
b) no trend line on the graph. 

However, depending on context, other graph construction problems can emerge.  

Mevarech & Kramarsky [12] did a study with eighth grade students and found that 
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some “students conserve the form of an increasing function under all conditions”. 

For example, some students represented a decreasing function with an increasing 

line. In order to do this, the students re-organized the x-axis so that the numbers on it 

decreased in value. Other difficulties occur when students represented an entire 

graph with one point, or a series of points each on a separate graph. Others drew 

linear graphs under all circumstances by making the scale on the graph non-linear. 

“Students’ tendency to conserve the linear function may be explained by negative 

transfer: being exposed to positively sloped lines led some students to generalise that 

knowledge to all situations even to those where it is not accurate, as one student 

explained: I constructed the graphs this way because that’s what popped in my 

mind” 

Mevarech & Kramarsky [12] suggest that alternative conceptions of graphs are 

“rooted in the quality of instruction that may have led students to confuse, for 

example, process and product, or to apply strategies that are accurate to one 

situation but not in another.” They go on to suggest that “an overemphasis on one 

kind of function (e.g., an increasing function), or one kind of graph (e.g., 

histograms) may lead students to conceive all graphs as having that form.”  Overall 

they found that “the transition from verbal description to graphic representation is 

associated with various kinds of alternative conceptions that were robust in 

resistance to traditional instruction about graphing”. 

Goldberg and Anderson [13] found that students often had problems with negatively 

sloped graphs in kinematics, and suggest that students should be able to handle 

graphs with negative slopes because they have covered graphs with positive slopes. 
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We have found that third level students have similar problems. In an experiment 

where students investigate the focal length of a lens, they are required to draw a 

graph of 1/u versus 1/v, where u is the distance from the lens and v is the distance 

from the image to the lens. The correct graph is a negatively sloped linear graph. 

However some 45% of 115 students label the axes as shown in Figure 3.4. In 

addition, many appear to have manipulated their experimental data to allow their 

graph to become positively sloped; this is also true for many students who used 

linear axes2. 

 

Figure 3.4: Graph used to find the focal length of a lens 

3.3.2 Difficulties with interpreting a graph 

The first step in interpreting graphical data is reading the values from the graph. As 

we will show in Chapter 4, even at third level not all students are able to do this. 

Aside from this problem, many students struggle with interpreting a graph. An 

important reason for this is that in school [6] 

                                                 
2 We have no direct proof for data manipulation, but it is almost impossible to get positively 

sloped data with raw data. 

students are “customarily taught and 

expected to practice the low level mechanics of plotting a particular kind of graph 

when given a table of information”. Teachers often do not “focus on such issues as 

interpreting graphs, selecting information to be included in a graph, judging which 
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kind of graph is most suitable for a given purpose or purposefully modifying existing 

graphs.” 

We focus on two important broad classes of interpretation errors: the graph as 

picture error and the slope for height error. The graph as picture error has been 

reported in numerous papers [5,7,10,14]. Clement suggests that students are mixing up a 

“figurative correspondence between shape of the graph and some visual 

characteristics of the problem scene.”[7]

The adjective “global” is used when the entire shape of the line is considered, while 

the “local” correspondence error refers to a point, for instance when two lines are 

intersecting. Examples of a global correspondence error are given in Figure 3.5a and 

b. In a multiple choice question, some students choose Figure 3.5a when asked to 

pick a graph that represents a person first walking away from, and then walking 

towards a wall

 He identified two types of graph as picture 

errors: global and local correspondence errors. 

 [14]. 

 

Figure 3.5: a) A graph chosen to represent walking towards and away from a wall; b) a distance-time graph 
curving back on itself; c) crossing linear lines on a distance-time graph. 

Another example of a global correspondence error is shown in Figure 3.5b [14]. Here 

the graph is assumed to represent a physical feature, like a bike cycling over a 

terrain. Some students mistake the shape of the trend line for a representation of the 

terrain that the bike is cycling over, despite the labelled axes.  
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Figure 3.5c shows an example of a local correspondence error. In this diagram a 

student picks the point of intersection as being the point where two objects are 

travelling at an identical speed. Clement [7] states that “in both cases, however, the 

figurative matching process producing the error contrasts with the more complex 

process of metaphorical and functional symbolization”. 

Another error commonly reported is the so-called slope-height error. The slope-

height error is commonly made when a student is required to figure out the greatest 

slope on a graph. For example, on a distance-time graph the students may be 

required to find the instant at which the object had the greatest speed, which 

corresponds to the greatest slope. Often students choose the point of greatest height. 

In Figure 3.6 below students who make slope height error choose A as the point of 

greatest speed and B as the point of lowest speed.  

 

Figure 3.6: Curved distance-time graph. When a slope-height error is made,  
students think the object had the highest speed at point A. 

 

Clement [7] proposes that the reason for the error is the misplaced link between a 

successfully isolated variable and an incorrect feature on the graph. 
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3.4 Graphing in the science lab 
Wavering [15] found that there was a strong correlation between the development of 

students’ reasoning process and their ability to construct line graphs. Research on 

graphing in the science lab can be broken into the efficacy of high-tech lessons (see 

e.g. [16,17]) and low-tech lessons. 

In the past 3 decades there has been huge activity with micro-computers and data 

loggers. Their convenience and ability to allow the students the opportunity to see 

the production of a graph close to or during real time production makes the graph 

more “concrete”. Brasell [18] finds that an important feature of the calculators is the 

immediacy of the action and the appearance of the graph on the screen. Students are 

immediately able to connect the important features of the graph to the motion. She 

found, that with a 10 to 20 second delay between the graph appearing on the screen 

and the action from which the graph resulted, there was a significant drop in 

achievement in pre- and post-test questions. 

 

Hofstein and Lunetta [19] point out the possible benefits of computers and graphing 

technology to inquiry materials design. 

 

“By using associated software they can examine graphs of relationships 

generated in real time as the investigation progresses, and examine the same 

data in spreadsheets and in other visual representations. When inquiry 

empowering technologies are properly used by teachers and students to 

gather and analyze data, students have more time to observe, to reflect, and to 

construct conceptual knowledge that underlies the laboratory experiences.” 
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However Wavering [15] argued against the use of graphing calculators as students 

may short circuit the logical development and understanding of graphing. He 

believes that students should develop graphing skills from a young age using their 

own data from their own experiments. McDermott et al [6] contend that students need 

to experience graphs in different contexts like temperature with depth of the ocean 

etc. She found students gain from carrying out “the same reasoning and procedures 

in different texts”. 

Mokros and Tinker [14] found that only a few self-drawn graphs are needed to 

overcome large misconceptions, though their results are disputed by Berg and Smith 

[10]. Mokros and Tinker used the MBL calculators for a number of labs and, like 

McDermott et al [6], across a number of different contexts (including motion based 

labs) with different sensors. They found that students improved on their ability to 

answer multiple choice questions on kinematics.  

Zollman and Fuller [20]

It is clear that the of difficulties students have with graphing are diverse, with a main 

difficulty being  students’  inability to move away from the patterns they learn with a 

 describe the use of curriculum that allows the students to 

predict simple motions and represent them in different formats. The curriculum used 

was based around prediction and observation, with students gradually developing a 

link between the graph and the observed event. It is clear that the number of 

predictions and observations can be increased greatly by using graphing technology. 

We decided not develop high tech labs, for a number of reasons: the higher cost, and 

our philosophy that labs should not have black boxes and that graphing should be 

integrated into all labs and not be the focus of just one or two.  
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curriculum that uses a mechanical approach to graphing in the classroom. In chapter 

4, we set out how we approached testing students’ abilities to represent events using 

graphs. In chapter 5, how we approached developing a general graphing literacy 

based on our curriculum is set out.  
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Chapter 4: Assessing graphing literacy in the labs.  

4.1 Introduction 
To investigate students’ qualitative graphing abilities in an unfamiliar but instantly 

understandable context, we asked students to graph how the level of water inside a 

number of different beakers would vary with time when water was added at a 

constant rate.  

The context is familiar to students from everyday life but unlikely to have been used 

in a science class, and it is unlikely that formula-based reasoning or rote learning 

would influence their answers, as it may do when answering kinematics questions. 

The questions are analogous to qualitative kinematics questions, in that students 

need to use reasoning that is based on intervals, i.e. continuous changes with respect 

to time. These questions have three aims: 

• To help us understand students’ difficulties and their approaches when 

drawing qualitative trend lines. 

• To help us intelligently incorporate graphing as a theme throughout the labs 

and specifically in the uniform motion and non-uniform motion labs to help 

us to teach interval reasoning and kinematics (see Chapters 5 & 6). 

 

4.2 Chronology 
In the first set of pretest/post-test questions, students were required to draw water 

level versus time graphs for the five equally tall beakers shown in Figure 4.1. Beaker 

A is empty. Beaker B has identical dimensions but is half filled with water. Beaker C 
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is an identical beaker with a cone. Beaker D is wider than the other three beakers. 

Beaker E has the same width as Beaker D at the base but then narrows to the width 

of beaker A at the top. 

 

Figure 4.1: Five beakers filled at constant rate.  Students are to draw water level versus time graphs for 
(i) A and B, (ii) A, D and E, (iii) A and C. All three qualitative trend lines are drawn on blank water 
level versus time graphs.  

Water is poured into each beaker at the same constant rate, starting at the same time. 

Students are asked to draw trend lines for two or three beakers on the diagram shown 

in Figure 4.2. 

 

 

 

Figure 4.2: Blank graph for use with the questions of Figure 4.1. 

Comparing beakers A and B requires the same interval reasoning as for a kinematics 

problem where two objects move at the same constant speed but start at different 

points.  The kinematics counterpart of comparing beakers A and C would require 

students to draw a graph where one object moves with constant speed, while another 

object accelerates from rest until it reaches the same speed as the first object. 

Analysis of the students’ answers made us realize that some of the questions 

highlighted difficulties but were unsuitable for pinpointing specific difficulties in 
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students reasoning or approach.  We have since developed similar but different 

questions that have allowed us to identify and differentiate between difficulties 

students have with drawing qualitative graphs. In Section 4.3, we explore difficulties 

when the water level rises at a constant rate; in Section 4.4 we discuss those where 

the water level rises at changing rates. 

4.3. Student difficulties representing a constant rise in water level 

4.3.1. Overview 

Almost all questions contain an empty water beaker being filled at a constant flow 

rate. Students draw the water level versus time graph for this beaker mainly for 

reference purposes.  Some 400 answers reveal that 85% of students correctly 

represent this process by a straight line through the origin.  It seems likely that many 

more would do so if the question were asked in isolation: as shown in the remainder 

of this section, under some circumstances students abandon the notion of a straight 

line graph to represent other characteristics. 

4.3.2. Two beakers, same flow rate, same width, different height 

The first pre-test question we discuss features two beakers, A and B, with different 

height but identical widths, as shown in Figure 4.3. Students sketch their trend lines 

on a graph with labelled axes as shown in Figure 4.2. 

 

 

 

Figure 4.3: An experiment students needed to represent graphically: two empty beakers of the same 
width but different heights, filled at the same flow rate. 
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Since we are interested in finding out whether students can represent the rate at 

which the water level changes by correct relative slopes, we consider an answer 

correct if both graphs are straight lines through the origin with the same slope, and if 

line B is longer than line A.  Ideally, students would show that the water level 

remains constant once the beaker is full by means of a sharp bend in the graph as 

shown in Figure 4.4a. 

Figure 4.4: Correct and nearly correct graphs for the experiment of Figure 3.3. a): 25% of the students drew a 
horizontal line representing a full beaker; b) 20% did not draw lines levelling off; c) 20% drew smoothly 

levelling curve to represent a full beaker. 

 

This total of 65% consists of students who drew correct graphs with correct 

reasoning. Another 10% drew a correct graph but did not provide reasoning with 

their answer. Examples of what we considered a correctly drawn answer are shown 

in Figure 4.4. Our preferred answer, given by 25% of the students, is given in Figure 

4.4a. They drew a sharp bend to show the trend lines levelling off. Twenty percent 

had the graphs not levelling off. The 20% of students who drew a graph like Figure 

4.4c appear to represent the water “levelling off” in a fashion that corresponds to the 

more colloquial meaning of a gradual levelling off. The answers are summarized in 

Table 4.1. 
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Table 4.1: Most common answers to the question for two beakers, one taller than the other, both 
same width and water is poured in at the same constant rate, as given in Figure 4.3. 

Answer Percentage (N=116) 
Correct with correct and complete reasoning 55% 
  Correct with incorrect or no explanation 10% 
  
A steeper than B 10% 
B steeper than A 15% 

 

Coincident curved lines 5% 
Same lines for A and B <5% 
Other <5% 
No answer <5% 
  
  
  

 

Among the incorrect answers, 5% drew lines A and B with identical slopes, but with 

the lines curved either up or down. Some 10% of students drew two straight line 

graphs where A was steeper than B, as in Figure 4.5. These students seem to focus 

on the time it takes to fill the beakers. Typical explanations are: “A will fill quicker 

because it has a smaller volume than B”, and “It would take less time to fill beaker 

A as it is smaller”. Note the ambiguity in the first quote: “quicker” in everyday 

parlance may mean “in less time” or “at a greater rate”.  This ambiguity is persistent 

in many of the questions that feature linear graphs and non-linear graphs. 

 

 

 

 

Figure 4.5: Common incorrect answers to the question of Figure 4.3. 
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Another 10% of students drew two straight lines with B steeper than A, as shown in 

Figure 4.6. Typical explanations are: “Beaker B is larger than beaker A therefore it 

has a greater water level than beaker A”, “B takes more time to fill than A and also 

has a higher water level” and “the water level will remain almost the same until A is 

full and B continues to change and increase the water amount”.  All of these 

students recognized that the line should finish at a greater water level, but seemed to 

neglect time or rate. Eight out of these 14 students terminated line A at the same time 

or at a later time than line B. Reasoning seems to be led by the time it takes for the 

beakers to fill, with little focus on how each beaker fills. 

 

Figure 4.6: Common incorrect answer to the question in which water fills two beakers with identical 
widths and at an identical rate, but beaker B is taller than beaker A.  Line B is drawn with a greater slope 
in this case. 

 

We tentatively conclude from this analysis that at least one-third of the students do 

not think of the slope as representing a rate, when answering this question. There 

also seems to be a difficulty when more than one feature of the line needs to be taken 

into consideration, e.g., rate of change and finishing level. To probe deeper, we 
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asked a number of questions where the water level changes at different rates, 

described in sections 4.3.34.3.5. 

4.3.3. Two beakers, same flow rate, different width, same height 

 

 

 

 
 

Figure 4.7: Beakers A and D. D is wider than A, but has the same height. 

The next pre-test question asks students to draw the water level for beakers A, D and 

E of Figure 4.1 on the same graph. In this section, only answers for uniformly 

changing water level intervals are discussed, so we consider only the answers for 

beakers A and D here (shown again in Figure 4.7 above). Students’ answers for 

beaker E will be discussed in Section 4.4.2.  As shown in Table 4.2, 60% out of 194 

students answered the question correctly, with D having a smaller slope than line A. 

Again, we only looked at rates – not all of these finished correctly at the same level. 

 

 

 

Figure 4.8: Common student answers comparing water levels in beakers A, D and E.  a) A correctly 
drawn graph; b) A, D and E are all straight line graphs finishing at a near identical time; c) D finishes 
with a greater time and slope as demonstrated with the vertical line sketched from the end of D to the 
time axis. 
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The most common incorrect answer (given by 15% of students) had line D with a 

greater slope than A, as in Figures 4.8b and c.  As with the question of Section 4.3.2, 

the emphasis in these students’ answers was on the time it takes for D to fill.  The 

student that drew the graph in Figure 4.8b has the lines ending at about the same 

time, despite writing: “D - needs more water and more time to fill”.  The graph of 

Figure 4.8c appears to use both slope and abscissa to represent the time taken to fill 

the beakers: “D will take the longest time to fill because it is the biggest container; 

[…] A is the smallest out of the three so it takes the least time to fill”. The line 

sketched from the end of line D to the time axis shows that the student is indicating 

that line D takes the greatest time to fill.  However, a similar horizontal line is not 

drawn, which suggests that the final water levels are overlooked. 

Thus, we again find that students often do not focus on more than one feature of the 

graph when drawing a trend line. In this case the finishing time took precedence over 

accurately representing the slope of the line and the finishing level. A complete 

overview of the frequencies of different answers is given in Table 4.2. 

 

Table 4.2: Most common answers comparing beakers A and D of Figure 3.1. 

Answer Percentage (N=194) 
Correct with correct and complete reasoning 55% 
Correct no explanation 5% 
  
D steeper than A 15% 
A steeper but lines not straight 10% 
Identical slopes for D and A <2% 
Other <5% 
No answer <5% 
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For some students (5%) who focus on the time it takes for D to fill, the length of the 

line they draw is a significant feature of the graph. Figure 4.9a and b show graphs 

where lines A, D and E coincide, apart from their different lengths. Despite inventing 

a numerical scale on the vertical axis, the final water level does not appear to be the 

feature that was in focus in Figure 3.9a. The explanation is nearly identical to that of 

the student who drew Figure 4.8b: “Beaker A would fill up the quickest, because it’s 

thinner than D and E. Beaker D will fill up at the same rate as E initially, but then 

slows down due to E being thinner at the top”.  The explanation given with Figure 

3.9b: “A will take the least time to fill, D will take the most time and E will be in 

between”. 

 

Figure 4.9: a) A, D and E finish at a near identical time; b) D finishes with a greater time and 
slope as demonstrated with the vertical line sketched from the end of D to the abscissa. c) In 
the written explanation, this student puts a time limit on the experiment by saying that when A 
is finished filling D or E stop filling. A is allowed to fill to the greatest level while E and D do 
not as they are bigger than A. 

 

Some students drew line D shorter than A and E because they put a time limit on the 

experiment, as if all beakers ceased to be filled when A is full. For example, in the 

answer given with Figure 4.9c: “Because there is an increase in water in all 3 but A 

will be full at the end. However the other two won’t as there greater in size than A, 

D and E.”  
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The findings for this question corroborate what we found in Section 4.3.2.  

Moreover, it now appears that for some students, the length of the graph can be an 

important feature. 

4.3.4. Two beakers: same flow rate, different width, different height 

The question featuring beakers B and C as shown in Figure 4.10 was specifically 

designed to test if students focus on the time taken for the beaker to fill, or on the 

rate of change of water level. Beaker C is wider than beaker B, but fills before 

beaker B. Note that we do not tell students explicitly that the volume of beaker C is 

less than the volume of beaker B. Thus, students focusing on the time taken to fill 

would be expected to draw C steeper than B. The most common answers are given in 

Table 4.3. 

 

 

  

Figure 4.10:Pre-test question designed to test if students use the slope or the total filling time 
to represent how the beakers fill. Water is poured into each beaker at the same constant rate. 

 

Table 4.3: Most common answers to the question for two beakers, different heights, and the 
shorter beaker wider. Water is poured into both beakers at the same constant rate. The shorter, 
wider beaker fills first.  

Answer Percentage (N=102) 
Correct graph drawn 30 % 
  
C steeper than B 25% 
Both with the same slope 15% 
Either/both curved 15% 
No answer 15% 
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A correct answer for this question was judged to be two straight lines, with beaker C 

having a smaller slope than beaker B and finishing in a shorter time, as shown in 

Figure 4.11. As Table 4.3 shows, 30% of 102 students correctly drew straight lines 

for B and C, with B having a greater slope than C, with a correct explanation. 

Another 5% drew the same graph with no explanation. Some 15% drew B with a 

greater slope, but had one or both of the lines curved. 

 

 

 

 

 

 

Figure 4.11: Correctly drawn graph for two beakers, different heights, and the shorter beaker wider. 
Water is poured into both beakers at the same constant rate. The shorter wider beaker fills first.  

 

We found that 25% of students drew the line for beaker C with a greater slope than 

the line for beaker B. In these answers the focus is on the time it takes for C to fill. 

For example, the explanation given with Figure 4.12a: “As C fills up before beaker B 

does but beaker C is wider than beaker [B]”. In some cases there seems to be an 

ambiguity between the total time taken for the beakers to fill and how quickly the 

beakers fill. The explanation for Figure 4.12b explicitly states that the slope 

represents the filling time: “The water level in C raises quicker than the water in B, 

therefore it takes less time to fill so the curve is much steeper than that of B”. 

Likewise, explaining the graph of Figure 4.12c: “As C fills up quicker the curve will 

be more vertical than B which is slower in time”. 
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Figure 4.12: Graphs where C is steeper than B. a) Line C has a greater slope, a greater 
finishing level and a near identical finishing time, b) line C has a smaller finishing time but a 
finishing level, c) Line C has a greater finishing level and finishes before line B. 

 

Some 15% of answers drew B and C with the same slope. All but one of these 

students drew C both at a lower finishing level and finishing before B. The common 

theme for students who drew lines with the same slope was not to focus on time or 

the rate of change of water level, but rather to focus on the rate at which the water 

enters each beaker. The explanation that accompanies the graphs of Figure 4.13 

features both lines rising, but once C is full B continues to rise: “Because beaker C 

isn’t as tall as beaker B, the water level won’t be marked as high. Beaker C fills up 

more quickly than beaker B and because they are at the same constant rate both 

beakers B and C share the line but C is cut off earlier than B.” 

 

 

 

Figure 4.13: Incorrect answer to the question of Figure 3.10: same steepness, different length. 

The question proved more difficult than any other question featuring uniformly 

changing water levels. The beakers have different end levels, different finishing 



67 
 

times and different rates at which the water rises. Hence an unusually high fraction, 

15%, didn’t attempt the question and only 30% got the question correct. This is 

lower than other graphs in which uniformly changing intervals are present. 

A picture is emerging that, the more difficult a setting, the more students tend to 

focus on one feature of the graph.  In some cases the finishing point or finishing 

level seems to be more important than the slope and can determine the type of line 

drawn, while in other cases the slope determines the shape of the line. 

4.3.5. Two beakers: different flow rate, same width, different height 

Another pre-test question uses the same two beakers as in Section 4.3.3, with 

different heights but the same widths, but in this case the beakers fill at the same 

time. Students must infer that the filling rates are therefore different. The criterion 

for a correct answer is that two straight lines are drawn, with line A having a smaller 

slope than B, and A and B finishing at the same time but at a higher level for B. 

Figure 4.14 shows the two beakers. 

 

 

Figure 4.14: Beakers A and B. Beaker B is taller than beaker A and both containers are the same 
width. Water is poured into each beaker such that they fill in the same amount of time. 

 

As can be seen in Table 4.4, 50% of students correctly answer the question, with 

correct reasoning. A further 15% of students drew line A with a smaller slope but 

drew one or two curved lines to represent the identical filling times. 
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Table 4.4: Most common answers to the question of Figure 4.14. 

 

Some 10% of all students finished both lines at the same point. Some examples are 

shown in Figure 4.15. Even though it seems that the student who drew the graph of 

Figure 4.15a must have focused on the end point, the reasoning does not highlight 

this: “A seems to be getting to the top quicker because it is a smaller beaker. B takes 

longer to get to the top it is taller.” Nevertheless, we think the point represents the 

event that both beakers are full. In the similar graph of figure 4.15b, another student 

has marked “full” on the water-level axis. 

In Figure 4.15b, the trend lines for beakers A and B are curved in opposite 

directions. While it is difficult to interpret this, one possible explanation may be that 

they both are curving so that they can intersect at a point. The point on the graph for 

this student may be a more important detail than the slopes. The lines drawn appear 

to function merely as a path to the point rather than being anything significant in 

them. 

Answer Percentage (N=116) 
Correct with correct and complete reasoning 40% 
Correct with incorrect or no explanation 10% 
  
A steeper than B 5% 
Lines finish at the same point 10% 
Same Lines for A and B 5% 
Other including curved lined answers  20% 

No answer 5% 
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Figure 4.15: a) B is represented by a straight line, A is represented by a line curving upwards 
to meet B at the same finishing point; b) two curved lines, with line A curving downwards 
and line B curving upwards. Both lines intersect at a point that is marked as full on the y-axis. 

 

The explanation for the graph shown in Figure 4.15a supports this interpretation. 

This student has turned the question into something semi-quantitative (note that no 

numbers were given in the question): “A+B start off empty therefore zero (0,0) and 

are full at the same time Pt(15,10). B measures fuller each time interval on it is 

narrower. When A is measured at same time and intervals the water level is less than 

B. Since each beaker has same volume they are full at same time and correspond to 

same end pt on graph e.g. (15,10)”.  It is clear that (15,10) represents the event that 

both beakers are full and the students does not consider the water level. 

4.3.6 Two beakers: same flow rate, same width, same height, different starting levels 

In all preceding questions the beakers initially contained no water. In the pre-test 

question of Figure 4.16, beaker B is initially half full. Some 55% of 103 students 

drew a straight line for A through the origin and a parallel straight line for B that 

starts at the water level axis. Almost all of these gave explanations that tended to 

focus on the time it would take to fill both beakers. 
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Figure 4.16: a) An empty beaker A, and a half full beaker C; b) Correct answer showing correct finishing and 
starting levels, and both lines are parallel. 

 

 

 

 

Figure 4.17: Common incorrect answers to the question of Figure 4.16a indicating a tendency towards a point on 
the graph. a) B represented by a straight line 

 

We identified a tendency to treat the end point of graph A as representing an event 

where both beakers are full. Some 10% of students correctly started A at the origin 

and B half-way up the water level axis, but drew A with a greater slope than B. Half 

of these students drew the line B such that it finished at the same point as line A. The 

explanation that accompanies Figure 4.17a: “A fills quickly and the slope of the line 

is steep, B is already half full and levels off the same time as A”. Figure 4.17b comes 

with an explanation where the focus is not on the time but on the level that both 

finish: “Beaker A was empty at the beginning so the water level starts at 0 and rises 

gradually until it is full. Beaker B was half full so the water level starts at the half 



71 
 

mark and rises until it is full”. As in Section 4.3.2, the filling of the beaker appears 

to be represented by a smooth curve rather than an abrupt change in slope. 

No fewer than 25% of the 194 students who answered this question started line B at 

the origin. Some 10% drew a line B with a greater slope than B; 5% drew a trend 

line overlapping line A; nearly 5% drew line B less steep than line A. The remaining 

5% who drew lines starting at the origin, drew lines that were not straight. 

As before, students who drew B steeper than A tend to confuse a shorter time to fill 

up with a greater rate. The explanation accompanying Figure 4.18a was “B is 

already filled with water so the water-level will rise at the same rate as A but B is 

filled already so the level will be quicker to reach the top in beaker B”. The student 

correctly identifies that the beaker B will be filled quicker than A and also reiterates 

relevant information given in the question that both beakers fill at the same rate. 

However, the graph appears to go through the origin by default: there is no mention 

of the starting level of the water in beaker B. 

 

 

 

Figure 4.18: Trend line B drawn with a greater slope than A to show that the water level fills at with a quicker 
time in beaker B. 

 

The explanation given for Figure 4.18b is that “B is already half full, so it only takes 

another half load of water to fill to the beaker. In the amount of time it takes B to 

become full, A is only half full”. As is often the case, the written explanation is 
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correct, if incomplete. It is not possible to ascertain whether the curved graph 

represents levelling off when the beakers are full. If this is the case, and the student 

assumed that when B is full, water is stopped being poured into A, then the student 

gets the end-level right, and correctly represents both lines as finishing at the same 

time. Even in this generous interpretation, the focus is again on the overall time and 

the finishing levels, not on the rate. 

Table 4.5: Most common answers comparing beakers A and B of Figure 4.16a. 

 

4.3.7 Summary of findings for linear water level graphs 

A variety of water level questions have revealed a number of student difficulties.  

For most questions, about half the students give answers that are consistent with 

treating the slope of a line as representing the rate at which the water level changes, 

and hence seeing the filling of the beakers as a dynamic process.  However, 

depending on context a number of common errors are revealed.  Despite typically 

giving a correct written description of how the water level changes with time, when 

drawing the graphs many students appear to focus on one or two static features.  The 

most prominent of these is the time taken to fill the beaker, but starting and end 

points also play a role. Moreover, it seems that some students use the length of the 

Answer Percentage (N=194) 
Correct with correct and complete reasoning 55% 
Correct with incorrect or no explanation <5% 
B starting at the origin but parallel 5% 
B starting at water level, but greater slope 

 

10% 
B starting at the origin but different shaped line 5% 
Total B starting at the origin 25% 
No answer  
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graph to indicate the duration of the process. We also identified a tendency to rely on 

familiar forms of a graph even when their use is inappropriate, such as using a 

straight line through the origin for a graph with a non-zero intercept. 

 

4.4. Student difficulties with changing rate of change of water level 
Many of the trends we identified for questions where the water level changed at a 

constant rate were present, and even amplified, when we investigated questions 

where the rate of changed of water level varied. 

4.4.1. Cone in beaker 

The first question designed to test students’ understanding of changing rates asked 

students to compare the water levels in beakers A and C of Figure 4.1.  The beakers 

are shown again in Figure 4.19a and b below. As in all of our questions, water is 

poured in at a constant rate; here, beaker A is empty but beaker C contains a cone.  A 

correct answer would consist of a graph with a straight line through the origin for 

beaker A, and a line for C that initially rises more steeply but curves downwards 

(i.e., gets less steep) until it is parallel with line A at the same end level. 

Even when accepting graphs where the slope of C gets smaller but not exactly 

parallel at the end, and accepting end levels are not too different from each other, 

merely 20% of students drew a graph that we considered correct, with correct 

reasoning. A further 5% drew the correct graph but failed to give a correct 

explanation. The explanation given for the essentially correct graph of Figure 4.19b 

states: “A increases as normal, C initially fills faster as there is less area at the 

bottom of the beaker where the cone is wider as the cone gets thinner near the top it 

takes longer for the beaker to fill beaker there is a greater area to fill.”  The use of 
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the word “area” strongly suggests that this student is thinking of small cross 

sectional areas that are being filled sequentially, as would be required to obtain a 

correct well-reasoned answer. 

 

Figure 4.19: a) Empty beaker A and C with a cone inside are being filled at the same constant flow 
rate; b) a typical correct graph for water entering the containers. 

 

Table 4.6: Most common answers comparing beakers A and C of Figure 4.19a. 

 

Straight line graph. 

The trend identified in some of the linear graphs of Section 4.3 to represent a process 

that takes less time by a steeper straight line through the origin now becomes 

prominent. The most popular answer consisted of students drawing a straight line for 

graph C with steeper slope than A, as shown in Figure 4.20. As Table 4.6 shows, 

45% of students gave this answer. The explanation given with Figure 4.20a: “A is 

Answer Percentage (N=194) 
Correct with correct and complete reasoning 20% 
  Correct with no explanation 5% 
  
Line with an increasing slope 5% 
Straight line graph through the origin steeper than A 

 

45% 
No answer <5% 
Other 20% 
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empty thus it fills quickly hence its steep gradient, Beaker C has a cone in it thus it 

fills quicker as it has less space to fill and beaker C fills up first due to its lesser 

capacity of water”. The student who drew Figure 4.20b stated: “C fills up quicker 

than A as the cone in C takes up some of the volume in the beaker, meaning the 

water fills up beaker C quicker”. Dynamic entities such as interval changes or the 

changing speed of the water level in the beaker do not feature in the students answer; 

only static entities such as the time taken, average speed, and total volume are 

considered.  This answer echoes the incorrect reasoning identified in Section 4.3.6 

for the graph of Figure 4.18a. 

 

Figure 4.20: Examples of the most common answer to the question of Figure 3.19: two straight lines, 
with C steeper than A. 

 

Length of a line 

 

Figure 4.21: Incorrect answers to the question of featuring figure 3.19a that focus on the length of the line. a) 
Straight line graph through the origin, the length of line C is far shorter than line A; b) Line C is shorter than A 

and has the same slope. 
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Some 10% of students drew a much shorter straight line through the origin for C.  

This can often be ascribed to the tendency identified in Section 4.3 to let the length 

of a line describe the duration of the process. Thus, the graph of Figure 4.21a appears 

to reflect an attempt to represent the shorter duration of a process taking place at 

changing rate by a shorter straight line through the origin. The explanation given 

with Figure 4.21a: “Because C fills up quicker than A, due to the cone, the volume of 

this beaker is less.” The amount of water entering the beaker may play a part in the 

length of the line that the student drew, as the lower water level may be a way of 

representing a smaller volume entering the beaker. 

The explanation given with Figure 4.21b was: “A will take more time to fill than 

beaker C.” In this case, the length of the line is the only difference between lines A 

and C, and it seems clear that for this student the length of the line represents the 

time it takes for the beakers to fill. 

The most striking finding from this question is the number of students who draw a 

straight line graph through the origin, along with the low percentage of those who 

got a correct answer. Rather than reasoning on how the beaker is filling, and 

representing this with an appropriate trend line, the answers and the reasoning focus 

around an average speed or a total filling time for each of the beakers
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4.4.2. Changing shape of vessel 

 

 

 

Figure 4.22: Three beakers A, D and E filled at the same constant flow rate. E has the same width as 
D at the base, and narrows to the same width as A at the top. 

The next question under discussion asked students to draw water level versus time 

graphs for the set-up in Figure 4.22. The results for beakers A and D have already 

been discussed in Section 4.3.3. Students are informed that beaker E has the same 

width at the base as beaker D, and then narrows into the same width as beaker A. 

trend lines for the water level in all three beakers are drawn on the same blank graph. 

Some 10% of students represented E as consisting of two parts: a straight line 

coincident with D, then curving upwards with a steeper slope. Another 30% drew a 

straight line traced over D, but drew the second part of the line straight, with steeper 

slope. These answers showed some focus on intervals when drawing the graph. 

Table 4.7: Most common answers for line E of Figure 4.22.   

Answer Percentage (N=194) 
  
2 parts, 1 straight, 1 curved upwards 10% 
2 straight parts 30% 
Straight line through origin, steeper than A 25% 
Straight line through origin, parallel or less slope than A 15% 
Curve line upwards 5% 
Other/no answer 5% 
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Some 25% of students drew a straight line for E with a slope in between that of A 

and D, as shown in Figure 4.23. Similar reasoning is given to this as with the last 

question which focused on a changing interval. 

The focus again appears to be almost exclusively on time. The student who drew 

Figure 4.23a gave the explanation: “A is the smallest volume-fills first. E is the 2nd

 

 

 

 

 

Figure 4.23: Straight line graph through the origin to represent beaker E. a) Ending at different levels; 
b) Correctly ending at the same level. 

 

smallest and D takes the longest to fill as it has a larger volume.” Some students, 

like the one who drew the graph of Figure 4.23b, consider the static feature of the 

end level as well. 

 

 

 

 

 

Figure 4.24: a) E curved upwards and finished at the same point as D; b) line curved up but finishes 
between the lines for beakers A and D 
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Some 5% of students draw a single slope curved up as shown in Figure 4.24. The 

student who drew Figure 4.24a gave the explanation: “A would rise fastest hence the 

steeper slope. D would be steeper as its wider than A. E would be curved given that 

it tapers inwards thus being filled faster the further it rises”. This student does not 

focus on the identical widths of beaker D and the base of beaker E, or the identical 

widths of beaker A and the top of beaker E.  Rather, there is a focus on the how the 

trend of the graph changes globally. 

Figure 4.24b shows a similar line to Figure 4.24a, with the explanation: “Beaker A 

will fill up first as it is the smallest of all the beakers followed by beaker D. Beaker E 

will follow a curve as it with differs than that of both A and E at different points”. 

Even though the graphs of A and E are matched well, this student appears unable to 

match up graph D correctly with E. In the explanation, again a global trend is 

identified and represented, but the student lacks the correct level of reasoning to 

break down how the water level changes at different times when the beaker is filling. 

4.4.3. Stepped cylinder 

The next container requires an understanding of abruptly changing intervals to fully 

and correctly answer the question. As shown in Figure 4.25a, one of the beakers now 

contains a stepped cylinder, rather than a smooth cone. It was given as a post-test 

question after students completed the labs. An important point to note is that this 

question was given as a post-test, and students had not drawn lines that had stepped 

changes in slopes as part of their instruction. 

An almost correct answer is shown in Figure 4.25b: it has three straight lines with 

progressively decreasing slope pieced together. Ideally both lines would finish at the 
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same water level, however in this example they do not. Overall, 15% give the correct 

answer with a slope that is stepped downward. 

 

 

 

 

Figure 4.25: a) A beaker with a stepped cylinder in it.  b) The correct graph drawn, with incorrect 
finishing heights.  

 

The correct explanation for the shape of line C given with this graph was: “Beaker A 

yet again will be filling with a constant rate, i.e. the water level will rise at a 

constant (constant slope/linear graph) whereas beaker C will initially increase at a 

constant (more quicker than A) then the slope will become less when the first step is 

reached, yet water level will yet again increase with a constant slope before the next 

step is reached and water level will continue to increase but slower again. It will still 

move at a constant during this step. At no time will beaker A have a greater slope 

than beaker C. i.e. beaker C will always be increasing faster”. 

Interestingly, another 30% of students drew a smooth curve that bends downwards as 

shown in Figure 4.26. The shape of the graph and the answers accompanying the 

graphs would suggest that the students understand the general trend of the intervals, 

but are unable to analytically identify changes in the rate or isolate patterns of 

change for the intervals. Instead, it seems that a curved graph which looks like a 

graph they have drawn for period versus length in a pendulum experiment, and for 
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the distance-time graph of a decreasing ball, has become the default graph for a 

process in which the rate of change is variable. 

 

 

 

 

Figure 4.26: a) A curved line representing C, with both lines finishing correctly at the same height; 
b) A curved line for C finishing at a greater height than A.  

 

The student who drew Figure 4.26a gives the explanation: “A will fill at the same 

rate as before but this time C will fill only slightly quicker. The graph of C gets to the 

different levels of the stepped cylinder gradually takes longer to fill”. This student 

understands that the rate is decreasing. The answer also makes clear why this is the 

case and directly links to the shape of the cylinder. A similar explanation is given for 

Figure 4.26b: “A will fill at a slower rate than beaker C because it’s completely 

empty. C will fill quickly but will begin to slow down because the cylinder is 

stepped”. 

Another 5% of students represented the changing water level in beaker C with a 

single curved line sloping the upwards, as shown in Figure 4.27.  In the explanation 

for the graph of Figure 4.27a, there is mention of rate of change: “Again C will be 

steeper than graph A as beaker A is empty and beaker C contains a stepping cylinder 

which will cause the beaker to fill at a quicker rate”. Likewise, Figure 4.27b is 

explained by: “Beaker C fills up a lot quicker than beaker A. It takes less time for 

the water level to rise as shown in diagrams. However beaker C does not fill up as 
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quickly as beaker B”. Neither answer is analytical, in terms of describing how the 

rate changes abruptly change. The former alludes to rate but does not elaborate, and 

the latter only mentions the overall time. 

It seems from the answers given that these students had no general strategy for 

interpreting how the rate of changed in the water level beaker, or how to represent 

these rates on a graph. 

 

 

 

 

 

Figure 4.27: Examples of single line curving up. 

 

 

 

 

 

 

Figure 4.28: a) a straight line graph with the slope of C greater than that for an empty beaker; 
b) a straight line graph with the slope of C smaller than that of an empty beaker. 

 

As with the pre-test question that described how the water level changed when a 

cone was present in the beaker discussed in Section 4.4.1, a large number of students 

drew a straight line graph through the origin, as shown in Figure 4.28. In this case, 

30% did so. The explanation given with Figure 4.28a: “Similar to beaker B, beaker 
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C will fill up faster than A due to the space that up by cylinders present in the 

beaker. The only difference is that the stepped cylinder in beaker C takes up less 

space than the one in beaker B or C would fill up faster than A but slower than B. 

We can show this on graph by drawing the line B or C at a more steep angle to A but 

less steep than B.” The beaker B the student refers to in his answer contains a 

regular cylinder, which means that the water level changes uniformly for the entire 

time that the beaker is filling. However, the student treats the stepped cylinder in 

beaker C as equivalent to the regular cylinder in beaker B. In Figure 4.28b, there is a 

focus on the total time it takes to fill the beaker: “As before it will take more time to 

fill beaker A than beaker C”. What counts is the total volume to be filled or the time 

it takes to fill that volume; the distribution of this volume is inconsequential for the 

students.  

 

Table 4.7: Most common answers comparing beakers A and C of Figure 4.25. 

 
Answer Percentage (N=116) 
Correct with correct and complete reasoning 15% 
  
Line with an increasing slope 5% 
Straight line graph through the origin 

 

30% 
Curve line downwards 30% 
Other/no answer 20% 
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4.5 Findings 

4.5.1 Approach to changing intervals 

We have found that the students’ approaches to intervals can fit into three distinct 

categories. 

The first category is students who focus on either the total time taken for a beaker to 

fill.  Typically students who answer a question in this way draw straight line graphs 

through the origin for beakers in which the water level does not change uniformly. 

Answers usually centre on the time taken to fill the beaker. A startling example is the 

45% who draw a straight line graph through the origin when a cone is present inside 

a beaker and filled at a constant flow rate 

The second category is students who consider intervals, but do not or cannot break 

down how the water level changes at different times over a span of time. Rather, 

these students recognize a global pattern to how the water level changes. An example 

of this are students who draw a curved line to represent he changing water level in 

beaker E, in Section 4.4.2, or draw a curved line sloping upwards, for a beaker that 

abruptly changes from being wide at the base to being narrow at the top and for a 

beaker with a stepped cylinder as shown in Section 4.4.4. 

The third category is students that are able to successfully and analytically break 

down abrupt changes in interval and successfully represent them on a graph.  

However, in the case of a stepped cylinder in the beaker, as little as 15% of students 

could successfully complete this task after the labs. 
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4.5.2 Focus on features on a graph 

Many students however do not appear to focus on intervals. We find that about 10% 

of students focus on a single feature of the graph such as the length of the line, or the 

finishing point of the line. For instance when both beakers fill at the same time, but 

are different heights, students often draw one or two curved lines, so that both lines 

intersect at a point, that represents the time it takes for both these lines to fill. The 

length of the line seems to be linked with time or the amount of water being poured 

into the beaker also. 

4.5.3 Tendency towards preconception or a prototype 

No fewer than 25% of students started the trend line at the origin when required to 

start the trend line on the water level axis to show that water was already contained 

in the container. This strong tendency for students drawing graphs through the origin 

is in line with our experience of students’ graphing experience in school labs, and 

our pre-test results show that a considerable number of students draw trend line 

graphs inappropriately through the origin prior to taking the labs. 

As much as 45% of students drew a straight line graph through the origin when 

required to draw a curved graph to show a changing rate of change. Many of these 

students maintained that the slope of this straight line represented the time it took the 

beaker to fill, i.e. the greater slope, the less time it takes to fill. One possible 

explanation for this is the tendency to draw lines inappropriately. This may be traced 

to the narrow range of graphs that students experience at many levels of science 

education. In both the Leaving Certificate and Junior Certificate few graphs were not 

a straight line graph through the origin. 
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4.5.4 A link between time and slope 

As we have discussed before, the term speed is often used as shorthand for how 

much time it takes for something to get done. We find in nearly all of the questions 

featuring linear graphs that students have a strong tendency to focus on the time it 

takes for the beakers to fill as opposed the rate of change the beakers fill at. 

The time it takes to fill the beaker has also been nearly uniformly used as 

justification for drawing straight line graphs that represent changing intervals. The 

slope of the lines linked to the overall time it takes for the beakers to fill. Both 

examples from 4.4.1 with the cone in the beaker and 4.4.2 with a differently shaped 

beaker show that students often consider only the time and not the speed at which the 

process takes place. 

4.5.5 Inability to represent multiple features of a line 

In many of the questions there were a number of important features to be represented 

by a single trend line (i.e. finishing time, finishing level, rate of change). However, 

many students were not able to represent more than one feature with the trend line. 

The post-test results presented in Chapter 7 provide additional support for this 

statement, and show how the problem persists after instruction. 
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Chapter 5: Approach to developing graphing literacy 

5.1 Overview 
Based on the difficulties we identified in Chapters 3 and 4, we developed laboratory 

exercises designed to help students more effectively interpret and work with graphs. 

In this chapter we present the approach that we take through a series of four guided 

inquiry experiments. Pre and post-test assessment of their efficacy is presented in 

Chapter 7. 

 

The development of graphing skills is centred on four experiments: making a spring 

balance, the pendulum, uniform motion and non uniform motion. In this chapter we 

focus only on aspects of these experiments that are designed to help students develop 

their graph construction and graph interpretation abilities. The complete 

experimental worksheets as run in 2009-2010 are included in Appendix A. 

5.2. Overview of experiments and approach to developing graphing 

skills 
The general approach that we took to the curriculum was to develop the amount of 

autonomy that students had as they built on their experience in the lab.  This was 

similarly the case with the graphs that they draw in the labs. The first lab is very 

controlled in that students are given detailed instructions on what measurement to 

make and how to make them.  As the labs progress, students are given more freedom 

with the trend lines they draw, scaling axes, deciding how many readings to plot and 

the size of the graph. 
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5.2.1 Making a spring balance 

Graphing issues addressed: 
 interpretation of slope and intercept of linear graphs 
 straight lines not through origin 
 the role of time in drawing a graph 

 

Verification of Hooke’s law has always featured in our physics labs.  In our 

approach, students discover Hooke’s Law in the first lab (see Appendix A).  From a 

graphing point of view, students were given tables to fill out and given detailed 

instructions of what measurements to make, along with guidance on how to make 

them. The graphs that they draw have familiar straight lines. 

In this lab we focus on how the slope of the line relates to the stretchiness of the 

spring, that the slope and the height of a line are independent, that the slope of an 

extension versus mass graph is independent of the rate at which mass is added to the 

spring, and what the horizontal and vertical intercepts of these graphs signify. 

 

5.2.2 Uniform motion 

Graphing issues addressed: 
 straight lines not through origin 
 interval reasoning 
 re-creating motion from a graph 

 

The second lab, in which students discover the law of the lever, does not feature any 

graphs.  In the third lab1

                                                 
1 In the first three years of implementation, the pendulum lab was given before the uniform 

motion lab.  We changed the sequencing so as to tackle the development of linear graphing skills 
before moving on to non-linear graphs. 

 however, students obtain and record uniform motion. One 

of the most important exercises in terms of the development of graphing skills has 

students draw two graphs for the same motion. One of the graphs is a straight line 

that passes through the origin, as the students record the time taken for the ball to 
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travel from the bottom of the ramp to each equidistant cube on a track that they have 

angled so as to compensate for friction. The first of these distances is marked as x1 in 

Figure 5.1. The second graph is drawn for the same times recorded, but the distances 

are now measured from each cube to the back of the ramp (d1

 

 in Figure 5.1). 

 

 

Figure 5.1:

5.2.3 Pendulum lab 

Setup for uniform motion lab. On a track there is a ramp to help the balls start 
moving. Cubes are used both as markers on the track, and also to angle the track to attain 
uniform motion. 

As a final exercise, we require the students to recreate the motion of two balls rolling 

simultaneously along two parallel tracks. 

Graphing issues addressed: 
 curved graphs 
 interval reasoning 
 re-creating motion from a graph 

 

In the fourth experiment, students phrase and check their own hypotheses on how the 

period of a pendulum varies with mass and length.  In this lab students are required 

to draw their first graph that is not a straight line when they represent how the period 

of the pendulum changes with length.  

As in the uniform motion lab, students are given a graph and asked to recreate a 

pendulum-like motion of the bob on the string, thus reversing the process of 

graphing and experiment. 
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5.2.4 Non uniform motion 

Graphing issues addressed: 
 curved graphs 
 interval reasoning 
 creating a graph from hypothetical motion 

 

The last lab in which graphing features significantly deals with non-uniform motion. 

Students get a ball to slow down as it rolls up a track, and draw an appropriate graph. 

Links again are made between the shape of the graph and the speed of the ball based 

on interval reasoning.  Students need to piece together a distance-time graph for a 

hypothetical track. 

5.3 Developing skills to interpret slope 
As shown in Chapter 4, many students find it difficult to relate slope to a rate or co-

variation.  This section focuses on how we tried to develop students’ reasoning skills 

when it comes to slope. 

5.3.1 Linking slope and shape of a graph with a process 

In the existing labs, graphs focused on the mechanics of plotting data points and a 

best fit line, and finding a numerical value for the slope. Little attention was paid to 

how the shape of a graph is related to the events they represented. As evidenced in 

Chapter 3, students have not yet developed an ability to link the shape of a line with 

the events despite their previous science experience in schools, and this linkage is 

something students need to learn. In our approach students were asked to make 

explicit links between the shape of the graphs and the observations in the 

experiments that they were carrying out. 

In the first lab, two extension versus mass graphs are drawn for masses attached to 

two different springs. Slotted discs are attached to a mass hanger. Students are told to 

plot the extension of the spring, measured from the length when neither mass hanger 
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nor discs were attached, as a function of the mass of the discs added. While this is 

somewhat contrived, it allows us to get students to think about slopes and intercepts. 

(It is interesting to note that not one out of the ~1000 students who have taken the 

labs have asked us why we follow this procedure.  We think this is because they are 

used to doing cookbook experiments without thinking about the procedures 

followed.) 

One spring is notably stretchier than the other. Using two different springs allows us 

to ask students to identify which of the lines represents the stretchier spring and why. 

This link is asked through a series of two questions: “Examine the graph you have 

drawn in Section 4 and describe in your own words the ‘steepness’ of the slopes for 

Spring 1 and Spring 2”, as shown in Figure 5.2. 

 

Figure 5.2:A student’s answer for comparing the steepness of the slopes of the lines for spring 1 and 2. 

We also ask: “How can you use the slopes of the two best fit lines to compare the 

stiffness of the spring?”  Questions such as these are rarely encountered in Hooke’s 

Law experiments. 
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More substantial effort is needed on the part student for an exercise in the uniform 

motion lab. We ask our students to re-create the motion of two balls on a track 

simultaneously from the graph of Figure 5.3.  Here students have to consider the 

slope and the intercepts (or starting points) for both lines on the graph. 

 

 

 

 

 

 

 

 

Figure 5.3:A graph showing two balls, one starting later, travelling faster, and overtaking the other. 

A similar approach is taken in the pendulum lab. We ask students to re-create the 

motion of the pendulum bob, which is similar to but clearly different from the 

motion students have qualitatively investigated before for a pendulum bob released 

from a small angle. Aided by questions about the motion of the pendulum during 

intervals A to E. Figure 5.4a features the change of angle both positive and negative 

as the pendulum is physically moved left and right. 
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Figure 5.4:

 

a) An angle versus time graph; b) the bob to be moved left and right. 

 

Having completed this exercise, we then require students to consider which graph 

(A, B or C) in Figure 5.5 appropriately represents the motion of the pendulum as it 

freely moves side to side. 

 

 

Figure 5.5: 

 

Three possible graphs A-C that represent the motion of a pendulum swinging freely. 

 

Finally, in the non uniform lab, we ask the students to pick out the appropriate 

graph for each of the five segments as the ball rolls along the track as shown in 

Figure 5.6. The task requires the students to break down the motion of the ball into 

five distinct segments and draw to pick an appropriate graph for them. Then the 

student represents the total motion of the graph on a blank graph.  We found it 

necessary to put in the five different segments to select from. In previous versions of 

the lab, which only had students drawing the motion of the ball on the blank graph, 

students found this exercise so difficult that little or no learning took place. 
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Figure 5.6:

5.3.2 Relating rate of change to the shape of a line using interval reasoning 

 Top: a hypothetical ball and track broken into five segments; bottom: the five 
graphs that students are asked to match to each segment. 

 

Early versions of the labs showed that students find it difficult to choose an 

appropriately shaped trend line. In one early version of the pendulum lab, students 

were given the series of graphs shown in Figure 5.7.  Students were asked: “Which 

line best represents how the period changes as the length is changed? Explain how 

your data […] helped you determine your answer”. This question was unexpectedly 

troublesome for a lot of our students, with a lot of tutor support needed for many 

students to successfully attempt to answer it. 

 

Figure 5.7:Seven possible lines to show how the period of the pendulum changes with length. 
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The students’ difficulties centred around the inability to, or lack of experience with, 

considering the line as a series of interval changes. Details of these difficulties are 

given in Chapter 4. The problems encountered frustrated students and tutors alike. 

We set about adding questions which centred on intervals to offer support to the 

students when choosing of trend line. In the revised version of the pendulum lab, 

students first manipulate their data to complete the table of Figure 5.8a. 

Consideration is then given to four intervals in each of the four different graphs A-D 

shown in Figure 5.8b. 

 

 

 

 

A similar approach was taken in the uniform motion experiment. To put these 

findings on firmer ground, students are shown the similar distance-time graphs of 

Figure 5.8 a) Table showing how the change in length effects a change in period, b) Four 
possible graphs that represent the data in the table. 

 

Each line is broken into equal length intervals indicated with arrows on the 

horizontal axis. The corresponding change in period is shown on the vertical axis. In 

all cases students are to consider how the “length of the period arrows” change in 

direction and size with equal changes in the length intervals. Comparisons can then 

be made with the changes in the period for the equal changes of length in the table. 

The modifications to the lab have decreased the amount of guidance needed from 

tutors.  More importantly, they have allowed many students to figure out the answer 

for themselves based on interval reasoning. 
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Figure 5.9a. Changes in distance are shown for equal time intervals. Students are 

asked initially which of these graphs represent uniform motion. Then students have 

to compare the motion represented by each of the lines. This approach confronted 

students with how the straight line graphs in all four cases represented uniform 

motion in different ways. The exercise is designed to illustrate how different graphs 

with straight lines all represent uniform motion and interval reasoning is used to 

come to this conclusion. (In Chapter 6 we describe how questions based on the same 

setup and graphs are used to help us compare methods of quantifying speed.) 

 

 

 

 

 

 

Figure 5.9:

5.3.3 Tackling time dependencies of slope. Slope and height of a graph. 

a)Four different trend lines that all represent uniform motion; b) three 
differently shaped trend lines that could represent the motion of a ball slowing down. 

 

In Chapter 4 we found that there is a strong association with slope and time, rather 

than slope and rate. Also, we found that the height of the line or length of the line 

seemed to be commonly mixed with the slope. 

To help develop an understanding of what the slope of a straight line represents, it 

was crucial that we confronted students with their previous misconceptions. In the 

course of the pendulum lab, some exercises were set for the students to help them 

distinguish between the slope and other features of the line. 
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Figure 5.10 is shown to students in the spring balance lab. They are asked to 

compare the slopes and heights of the two hills. Hill A has the smallest height but the 

same slope as B; B has the same height as C a smaller slope.  Students don’t find this 

question hard at all, but it appears to be a useful step as it helps to prepare them for 

what is to come. 

Two questions are asked shown also shown along with a student’s answer in Figure 

5.10: “Rank the three hills from steepest to gentlest slope” and “In your own words, 

explain the difference between the height and the slope of a hill”. Each question 

requires students to consider the difference between the height of the hills and the 

slopes of the hills. 

 

 

 

Figure 5.10: Three slopes A, B and C. The slopes of A and B are identical, and the height 
of B and C are identical. Two related questions are shown under the three hills.  
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In the same spring balance lab, another question is set after the student’s graph for 

extension versus mass has been drawn. The exercise is a thought experiment and 

often needs some tutor attention and guidance. In the question, the supposition is put 

forward that, rather than adding 20 g slotted masses to the mass hanger, sand is 

added slowly (as shown in Figure 5.11). We then ask students to sketch on their 

extension versus mass graph (which has data points only on it at this stage, not yet a 

trend line) and ask how the extension changes as sand is added. 

In a pretest, only 55% of students (N~500) pick the correct trend line; 25% pick a 

line with shallower slope, and 15% pick a steeper line.  This supports the findings of 

Chapter 3, which shows that many students associate the slope with the time taken 

by an event rather than the rate of change of one quantity with respect to another. 

 

 

 

 

 

 

 

The reasoning that the tutors use to help with this question often involves 

asking:“What would the extension be if a total of 20 grams of sand were added?” or 

“What if you started adding discs of only 5 g or 10 g?”  The reasoning can be then 

taken to sand on a smaller scale, to bridge the gap from discrete data to continuous 

Figure 5.11:Sand is added slowly to a mass hanger instead of 20gram mass disks. 
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data. The student then is confronted with the inconsistency that was present in their 

reasoning, and their misconception at least in this instance is satisfactorily resolved.  

5.4 Intercept and the curriculum 
 

Chapter 4 showed that many students did not understand how to link the intercept of 

a line and the event that was being graphed. Often students tended towards drawing 

the line through the origin. In our first lab, a strong emphasis is put on interpreting 

how the intercept of the graph relates to the physical event. Students also use the 

intercept to figure out the mass of the mass hanger.  

 

 

 

 

 

 

 

 

 

Figure 5.12:

In the spring balance lab, we design the experiment such that the extension versus 

mass graphs for both springs does not pass through the origin. This is done by 

making the first reading the extension due to the mass hanger and the 20 g disk. The 

A scan of a student’s answer showing the graph representing the extension of 
two springs in the spring balance lab. 
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students only graph mark the mass of the 20 g disks on the horizontal axis initially 

resulting in the graph of Figure 5.12. 

The first link between the vertical intercept and the extension due to the mass hanger 

is made when students compare the value for the vertical intercept with the measured 

extension of the spring when no 20 g discs were added. This gives students some 

guidance before being asked explicitly to compare the vertical intercept and its 

relevance to the experiment. 

 

 

 

 

 

 

Figure 5.13: 

Then students are asked what happens if the mass hanger is removed from the spring 

balance. By following the pattern shown in Figure 5.13, they observe that they must 

go “back” another 50 g on the horizontal axis for there to be no extension to the 

spring. This helps students make the step that the horizontal intercept at minus 50 g 

represents the plus 50 g mass of the mass hanger. We have found that the approaches 

we take to developing graphing have been useful in engaging students with the labs, 

A graph showing some of the reasoning used with students to show the 
significance of the y intercept to the experiment. The arrows show the mass disks as they 
are removed from the graph. 
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by addressing known difficulties addressed in chapters 3 and 4. The effectiveness of 

these approaches is presented in chapter 7.  
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Chapter 6: Intervals and rate of change 

6.1 Overview of the labs 
We have found through our own pre-tests that students cannot (or do not) apply 

interval reasoning to solve questions in a number of basic kinematics questions.  

While there are no mandatory kinematics experiments at Junior Certificate level, 

distance, time, average speed and average acceleration are addressed. 

An example of the level of kinematics that students experience at second level is the 

examination question featuring a graph of a stone that is falling to the ground over 

five seconds (Figure 6.1). The graph plots the velocity of the stone and goes through 

the origin. 

 

1. Define velocity. 

Figure 6.1 A graph representing a stone falling to Earth  
(Junior Certificate examination problem). 

In their examination, students are asked: 

2. Use data from the graph to estimate the acceleration of the stone as it fell. 
Give the units of acceleration with your answer. 

3. Name the force that caused the stone to fall. 
4. The stone had a mass of 2 kg. What was the weight of the stone on earth? 

Give the unit. 
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It is clear that the sophistication of the ideas and concepts behind the motion are not 

examined by this question.  Instead, reliance on rote learning and algorithmic 

problem solving would suffice to obtain a good score on this question.  Moreover, 

we note that all kinematics graphs in textbooks and examinations at Junior 

Certificate level go through the origin. 

Although almost all of our students have been exposed to Junior Certificate physics 

at least, we find that as little as 20% of students coming into the labs can calculate 

the speed of an object from a simple straight line distance-time graph which does not 

go through the origin. Alarmingly, the numbers are independent of whether the 

students have taken Leaving Certificate physics or not. 

Beichner [1] and Woolnough [2] found similar results for students at college level 

with students applying incorrect or incomplete formulae to questions which could be 

solved easily without one. 

6.2 Testing students’ ability to use intervals 
Some of the questions that we use to pre-test and post-test students feature graphing 

questions like simple straight line graphs of distance versus time.  In order to 

investigate if students’ reasoning is transferable to other situations, we also pre-test 

and post-test with an equivalent rate of change question in a context that is not 

familiar to students, and in a context-free setting. These questions feature a graph in 

which the water level in a swimming pool is changing at a constant rate, and a 

numerical graph of dimensionless y versus x values. 

To broaden our understanding of interval reasoning, we also ask a question that 

requires students to compare the relative motion of two objects in motion. This kind 

of question adds a number of complications to the analysis.  Additional 



104 
 

considerations include the relative positions of the cars, e.g. one car is passing 

another, or the two cars are side by side.  The question is represented using a strobe 

diagram showing two cars at positions at four different intervals (Figure 6.2).   

 

Figure 6.2:

6.3 Difficulties with interval reasoning in different contexts 

 Car A and Car B are both traveling with constant speed down a track. The 
position of each car is shown at four different instances.[3] 

 

All questions are designed so that there is a different level of familiarity with the 

context of each question. However, universal to all of our questions is that interval 

reasoning can be used as complete reasoning to answer all questions successfully, 

either quantitatively or qualitatively, if students choose to answer the question this 

way. 

 

6.3.1 Overview 

Depending on the context of question, students have different success rates with our 

pre and post test questions. For instance in a question that requires the student to 

obtain the quantitative speed from a distance-time graph, there is a tendency to apply 

a familiar formula like s=d/t. Unfortunately, throughout their secondary school 

science this equation has been translated into words as “speed equals distance over 

time” rather than “average speed is the change in distance over the change in time”. 
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If water level is graphed against time, rather than distance, intervals are more likely 

to be used in the rationale for answering the question because most students have not 

seen this problem before.  That said many, but by no means all students 

spontaneously associate the rate at which the water level changes with a “speed”.  

Some even explicitly use the same formula. Finally, even in the context-free setting, 

only 45% of students calculate the slope as ∆y/∆x. 

6.3.2 Difficulty with formulae  

Misuse of a formula is the most common difficulty for students who try to find the 

speed at a point from a distance-time graph. In one question, we ask students to 

determine the speed of a ball at t = 6 s from the graph of Figure 6.3.  Complete and 

correct reasoning involves the recognition that the speed of the motion is constant, 

and that therefore the speed at any instant is the same as the average speed. 

 

 

 

 

 

 

Figure 6.3: The motion of a ball moving with constant speed towards a point P, recorded in 
a distance-time graph. 



106 
 

A typical example of a student incorrectly applying a formula is shown in Figure 6.4. 

In this case the student incorrectly calculates the speed of an object from a straight 

distance-time graph as the object does not start at zero.  The triangle shown in Figure 

6.4 is often taught as an aid to help students memorise the formula. 

 

 

 

 

 

Figure 6.4:A student answer in which a formula is used incorrectly. The formula only 
features a ratio of the position and the time, not the change in distance divided by the time 
taken. 

 

When asked to find how quickly the water level changes at a particular time from a 

straight water level versus time graph that does not pass through the origin, a 

different student applies a similar equation (see Figure 6.5). While the context was 

unfamiliar to the student, a formula was used which consisted of a simple ratio 

nearly identical to the formula that the student used in Figure 6.4. 

Figure 6.5: Using an incorrect formula to determine the rate of change of water level in a 
swimming pool. 
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In Figures 6.4 and 6.5 both students used formulae that used the position of the water 

or the object and a single time, and not the interval changes they were undergoing. A 

correct interpretation of the formula would have yielded the correct result. 

Another example in which the formula not only gives a quantitative figure for the 

motion of the car, but also determines the qualitative description of the motion, is 

shown in Figure 6.6 below.  The student uses the formula incorrectly to calculate the 

speed of the ball at three different times coming to the conclusion that the ball is 

moving with a decreasing speed. 

 

Figure 6.6:

 

A formula is used to incorrectly find different speeds at different points on a straight 
trend-line on a distance-time graph. The student comes to the conclusion that the motion of the object 
is non-uniform. 

6.3.3 Other distractions from interval reasoning  

Another difficulty that students often have is applying incorrect reasoning to 

determine the relative motion of two objects. An inability to apply (or lack of 

experience with) interval reasoning results in the student using the relative distance 

between two cars as the relative speed. For one car passing out another a student 

gives the answer shown in Figure 6.7. 
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Figure 6.7:

6.4 The labs 

 Neither using a formula or interval reasoning, this student uses the relative 
positions of the cars to come to the conclusion that they are traveling with equal speed. 

 

In order to correctly answer the question, the student must recognise that both cars 

are travelling with constant speed, and that car A is moving more spaces in each time 

interval than car B. (Alternatively, they could see that the separation of cars changes 

by a constant amount over equal time intervals.) Thus, at all instances, including 

instance 2, car A is travelling with a greater speed than car B. In total 50% of 

students identify the cars as travelling with equal speeds when side by side in pre-

tests. 

 

6.4.1 Investigating motion using interval reasoning 

The previous sections have shown that students often use formulae, be it correctly or 

incorrectly, to solving kinematics problems. Use of formulae often bypasses a more 

fundamental understanding of motion. 

In both the uniform and non-uniform motion labs, in order to strengthen students’ 

model and their ability to apply it, we have adopted an approach that focuses on 

interval reasoning. We use three simple investigations to allow students to become 

familiar with and understand a simple approach of breaking down the motion of 

objects into relevant intervals.  Because graphing was integrated into the labs, there 
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is some duplication of exercises discussed in Chapter 5, but this time shown in a 

more general context. 

 

6.4.2 The uniform motion lab: setting up uniform motion 

Interval issues addressed: 
 Using interval reasoning to classify the type of 

motion of an object 
 Distinguishing between the type of motion and the 

magnitude of the speed 
 Use interval reasoning to investigate uniform 

motion of an object in two dimensions 
 Investigating the use of an appropriate formula to 

describe uniform motion 

 

At the start of the lab, students use a simple model for testing whether an object is 

travelling with uniform motion. They are asked to predict if a ball rolling down a flat 

track would roll with constant speed. Students verify their prediction quantitatively 

by measuring the time it takes to traverse the first and second halves of the track, as 

shown in Figure 6.8. 

 

 

 

A large number of students neglect to consider that the friction of the track is going 

to slow down the ball when making predictions such as “We predict that the speed 

will remain constant once it reaches the track”. As a result, many students prove 

their hypothesis incorrect.  However, even after they have obtained motion that is 

Figure 6.8:Setup for uniform motion lab, with a track, ramp and a ball. 
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clearly non-uniform, students often ask “if it is ok to ignore friction”.  This is 

disconcerting at first, but understandable in the light of their experience in school 

discussed in Chapter 1. 

The students then adjust the slope of the track until the friction is compensated for 

and uniform motion is indeed obtained. They are then asked to test whether the 

position that the ball is released on the ramp will affect whether the motion of the 

ball is uniform or not, as shown in Figure 6.9.  (The difference in rolling friction is 

so small that the motion remains uniform.)  To answer this question successfully, the 

student must differentiate between the magnitude of the motion and the type of 

motion (i.e. uniform or non-uniform) 

 

Figure 6.9: The side view of a ball on a ramp. The ramp sits on the track. The ball has been 
moved further up the ramp. The student investigates whether the motion of the ball on the 
track now changes from being uniform. 
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6.4.3 The uniform motion lab: obtaining values for speed 

Four measurements are made for position as the balls rolls down a track with 

uniform motion. As shown in Figure 6.10, two separate variables are used to record 

the position of the ball: xi is the position of cube i measured from the bottom of the 

ramp, and di

 

 

 

 is measured from the end of the track. 

cube 

Figure 6.10:The track is divided into four equal lengths using cubes. The motion of the ball 
is considered from the instant the ball reaches the bottom of the ramp. Two graphs are 
drawn: one with x versus time and the other with d versus time for the same motion. 

 

The measurements are recorded in a table that is provided to the students (Figure 

6.11). Thus, two sets of data are obtained for the same uniform motion of the ball.  

The students are then asked to construct two different graphs as shown in Figure 

6.12. 

 

Table 2.1: _______________________________________________________________ 

 
x(cm) d (cm) t1 (s) t2   (s) tav (s) 

1       
2       
3       
4       

 

Figure 6.11: The table provided to students to fill in. t1 stands for the first measurement of time.  
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Figure 6.12: The motion of Figure 6.11 represented by distance-time graphs. 

 

Written descriptions of approaches to measure speed are given by hypothetical 

Students 1 and 2 in Figure 6.13.  Students are explicitly asked to write out the two 

calculations proposed by Student 1 using some or all of the variables xA, xB, tA, and 

tB, and then using some or all of the variables dA, dB, tA, and tB.  They then carry out 

the calculations proposed by Student 2. 

  

t 

t 

xi 

di 
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Table 2.2: _______________________________________________________________ 

 
Quantity value 

x  A 
x  B 
t  A 
t  B 
d  A 
d  B 

 

Student 1: “The speed of the ball is constant.  I can calculate this speed 
either by dividing distance over time at point A, or at point B – it does 
not matter.” 

Student 2: “The speed between A and B is given by the distance 
travelled between points A and B, divided by the time taken to travel 
from A to B.” 

Student 3: “I think you’re both right – you’re saying the same thing in 
a different way.” 

Figure 6.13: Hypothetical student discussion of how to obtain speed from the distance-time 
graphs of Figure 6.12. 

 

In doing so, they are confronted with the fact that Student 1’s formula gives different 

values for the speed at different times (Figure 6.14), whereas Student 2’s formula 

does give a constant value (Figure 6.15). In this way  we hope the students discover 

the inadequacy of the formula that many of them use to quantify the speed of an 

object from a graph. 
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Figure 6.14: A scanned student’s answer in which they use the approach of Student 1 (see 
Figure 6.13. 

Students are asked to describe explicitly why the values for the speed should be the 

same, and are then asked to choose which of the students appears to have used a 

correct method.  Some students still hold on to the belief that “speed is distance over 

time” ,because “that is the correct formula”. However, most now articulate that 

Student 2 uses a correct method. It is common in the lab that students’ are surprised 

or disconcerted when they find that student’s 1 method of using the simple ratio does 

not give the same results for the two different graphs.   

Figure 6.15: A scanned student’s answer in which they use the approach of Student 2 (see 
Figure 6.13. 
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We have found it useful to insert two tutorial-type exercises at this point.  First, 

students have to discuss which of the graphs of Figure 6.16 represent uniform 

motion.  Then they are to determine the speed of the ball undergoing the motion 

represented by the graph of Figure 6.17.  In this question, they are again aided by a 

hypothetical student conversation. 

 

 

 

 

 

 

 

 

  

Figure 6.16: Four graphs representing uniform motion. 

 

 

 

 

 



116 
 

 

 

 

 

 

 

 

Student 1: “I know that the speed of the ball was constant, because we 
got a straight line graph.” 

Student 2: “I agree.  You can see that the ball gets closer to the edge by 
30 cm every 0.5 seconds, so the speed of the ball is 0.6 m/s.” 

Student 3: “I think the ball is slowing down.  Speed is distance over 
time.  After half a second, the ball was 1.1 m from the edge, so 
the speed was 2.2 m/s.  Then after one second, the ball was 
80 cm from the edge, so the speed was 0.8 m/s.” 

6.4.4 The uniform motion lab: two-dimensional motion 

Figure 6.17: Hypothetical student discussion of how to obtain speed from the distance-time 
graph shown.  Students are to discuss each statement. 

 

In Section 3 of the uniform motion lab, students are given a setup on which a ball 

rolls down track that has been laid diagonally across a piece of paper (Figure 6.18). 

Students are asked to consider the following hypothesis: “While the ball is rolling 

with constant speed along the track, it will take equal amounts of time to traverse 

each segment on the paper”. 
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They are given a sheet of marked paper and told to set up their experiment.  While 

the experiment is very close to the experiment they performed earlier, this is the first 

instance in which students are given the freedom to design their experiment.  

Drawing a table and comparing the time it takes for the ball to travel each segment 

allows for the hypothesis to be tested. Again an understanding of intervals and how 

the times will compare for each traversed segment are used to strengthen this 

approach to analysing simple motion. 

 

Figure 6.18: 

6.4.5 The uniform motion lab: from graph to lab 

A track is laid out across a piece of paper. The paper is marked so that the 
lengthways direction is divided into four equal lengths. 

 

In the final section of the lab, students further strengthen their graph reading skills by 

recreating the motion of two balls given in the graph of Figure 6.19.  They are 

guided to finding the right set up by being asked whether the balls travel at constant 

speed, at the same speeds, start at the same time; which one finishes first, and 

whether the balls overtake each other. 
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Figure 6.19: 

6.4.6 Non-uniform motion labs: one- and two-dimensional motion 

Distance-time graph for two balls rolling along two tracks. 

Interval issues addressed: 
 Using interval reasoning, quantitatively verify non-

uniform motion 
 Applying interval reasoning to non-uniform motion 

in two directions 

 

In the non-uniform motion lab, the equipment is manipulated by the students so that 

the ball slows down rolling up a ramp in a one-dimensional motion.  The motion 

takes place over about two seconds, which is enough to show quantitatively that the 

ball slows down without a need to use formal error analysis.  They apply interval 

reasoning to select the right graph to represent the motion, as discussed in Chapter 5. 

In the second part of the lab, students first set up a board so that the motion along the 

long side of the board is uniform by putting N 1 cm tall cubes under two corners of 

the board, as shown in Figure 6.20a. They then set up the board so that the motion 

along the short side is accelerated, by putting 3 cubes under two of the corners, as 
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shown in Figure 6.20b.  Finally, they arrange the board so that there are N, N+3, 

three, and zero cubes under each of the four corners in such a way that the two 

previous setups are superposed, as shown in Figure 6.20c. 

 

Figure 6.20: a)

In the “combined” set-up of Figure 6.20c, students observe that the motion 

lengthways is still uniform, and the motion sideways is still accelerated.  As a result, 

Cubes added to achieve uniform motion in lengthways direction. b) Cubes 
added to achieve uniform motion in lengthways direction. c) Superposition of the setups of 
Figures a and b. 
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the ball takes a curved path. This experiment aims to get students to see for 

themselves that the motions in two dimensions are independent of each other. 

 

6.4.7 Non-uniform motion labs: from track to graph 

The last section of the non-uniform motion lab again gives students the opportunity 

to relate laboratory set-up to graph.  Students are told that a ball is released from rest 

on the hypothetical track of Figure 6.21. They are asked to consider the following: 

• On what, if any, of the segments does the ball travel with constant speed? If 

there is more than one such segment, how do the speeds on these segments 

compare? 

• On what, if any, of the segments does the ball travel with increasing speed? 

If there is more than one such segment, how do the initial speeds and the 

accelerations on these segments compare? 

• On what, if any, of the segments does the ball travel with decreasing speed?  

If there is more than one such segment, how do the initial speeds and the 

accelerations on these segments compare? 

 

 

 

Figure 6.21: Ball on hypothetical track. 
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Based on their answers, students are then to identify which of the five distance-time 

graphs of Figure 6.22 correspond to the motion of the five parts of the track. 

 

 

Figure 6.22: 

References  

Five distance-time graphs to be matched up with the motion of Figure 6.21. 

 

Finally, the students patch the five segments together in one distance-time graph. 

Throughout the labs we have tried to engage students by asking questions that force 

them to use interval reasoning and thereby tying the shape of the graph to the 

experiment. Also we use questions that are specifically aimed to address difficulties 

that we found in chapter 4 and were already known from chapter 3.   

1. Woolnough J.,(2000), How students Learn to Apply Their Mathematical 
Knowledge to Interpret Graphs in Physics? Research in Science Education, (30) 
3, 259-267 
 

2. Beichner R. J. (1994), Testing Student Interpretation of Kinematics Graphs, 
American Journal of Physics (62) 8, 750-762  

 
3. Rosenquist M. L. and McDermott L. (1987), A conceptual approach to teaching 

kinematics. American Journal of Physics (55) 5, 407-415. 
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Chapter 7: Results 

7.1 Linear qualitative water level graphs 

7.1.1 Overview 

As discussed in Chapter 4, a set of qualitative assessments was designed and 

delivered to students in which they had to draw appropriate trend lines to represent 

water level changing against time as a beaker is filled. The trend lines are drawn on 

blank water level versus time graphs (provided in the question) with labeled axes 

that have no numbers. All questions were set around water being poured in at a 

constant rate into two beakers. The beakers either differed in shape or height or the 

objects that they contained. The difficulties that we have found most students 

commonly have are laid out in Chapter 4. The approaches that are taken in the labs 

to specifically improve students’ general ability in this area are set out in Chapter 5.  

In this section the pre-test questions set before students enter the labs and post-test 

results for linear graph questions asked after completing the labs are compared. The 

pre- and post-test questions are similar or even identical, but the same question is 

never asked pre and post of the same group of students.  

We should point out from the start that no instruction dealt with qualitative water 

level questions at all. Hence any improvement is purely due to transfer from the 

taught materials. Hence, while improved performance can be taken as a strong 

indicator of successful teaching and learning, failure to achieve this is not necessarily 

an indication that the teaching sequence did not work. 
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All questions were given in the academic years 2008/2009 or 2009/2010. The labs 

are broken into four groups, A, B, C and D. Each group are made up of students 

taking different courses in the Faculty of Science and Health, and are all taking 

identical courses as part of their first year in college. With all students answering the 

same pre-test question in section 7.1.2, the post-test question was designed to be a 

variation of the pre-test question and of equivalent difficulty. For all other water 

level questions, the pre-test question is given to two groups and the same question is 

given as a post-test to the other two groups. This allows us to verify that the pre and 

post-test questions are indeed equivalent.   

7.1.2 Two beakers: same height, same rate, different width.  

In the 2008-2009 academic years we set a pre-test question in which water is being 

poured into beakers A and beakers D (Figure 7.1). The pre-test was given to all 

students. Water is poured into each beaker at the same constant rate. The two beakers 

have the same height, so the two lines should end at the same level on the water level 

axis. As beaker D is wider than A, D fills up more slowly than A, so a correct answer 

will show D with a less steep slope than A. It also fills up after A, so it should finish 

further to the right on the time axis. 

We also set a post-test question which consisted of a beaker B with the same 

dimensions as beaker A, but this beaker has a cylinder contained in it. Water again is 

poured into this beaker at the same constant rate as A. The question requires similar 

reasoning to the reasoning behind beaker D filling, but this time the water in B rises 

at a faster constant rate than in A. The line for B should show that both beakers fill to 

the same level, but B fills up before A. 
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Figure 7.1: Beaker A is empty. Beaker D has the same height but a different width. Beaker B is the 
same height as beaker A and contains a regular cylinder. 

In Table 7.1 the pre and post-test results for the slope of the line, the relative end 

time and the relative end level of each trend line are given for both the pre and post 

test questions. 

While there was some improvement in the percentage of students that drew the slope 

correctly, it was notable that the focus in both the pre and the post test was entirely 

on the slope of the line and the time it took to fill, and not on the finishing level, with 

far fewer students representing these quantities accurately. The emphasis in 

answering the question appears to be on representing the differences between how 

the two beakers fill, while neglecting to represent the similarities (i.e. both finish at 

the same level). 

In the pretest, 60% of students correctly constructed graphs with the slope of A 

steeper than D. In the post-test, 75% correctly constructed graphs where the slope of 

B was greater than that of A. Given the similarity in required reasoning, we are 

taking this to be a small but real improvement.  In Table 7.1, we have expressed this 

improvement as a so-called Hake gain h, defined by 

 

h =
correct % post - test -  correct % pretest

100% -  correct % pretest
 



125 
 

In Chapter 4, we saw that some 10% of students drew line D with identical slope to 

A but longer, to represent the different times taken to fill beaker D. The 

corresponding answer for the post-test would see line B shorter than, but as steep as, 

A. This problem seems to have been addressed, as the percentage of students that did 

this dropped from 10% in the pretest to <2% in the post-test. 

The number of students that drew both levels D and A finishing at an appropriate 

level was low in both the pre and the post with 20% in the pretest and 25% in the 

post-test. We do not think that all other students necessarily got it wrong; we suspect 

that many just didn’t think of drawing the graphs to the correct end level. This is 

something that will be investigated in further studies. 

Some 75% in the pre-test, and 80% in the post-test, gave correct finishing times. It is 

unclear whether students deliberately focused on the finishing time. We also must 

consider that a greater slope would likely result in an earlier finishing time, and a 

less steep slope would likely result in a later finishing time. This means we cannot 

definitively say that the higher number of students representing the correct finishing 

time deliberately focused on doing so. 

7.1.3 Two beakers: same rate, same width, different heights. 

Figure 7.2 below shows the same setting as the pretest question of Figure 4.3. 

Beakers A and B are both the same width but beaker B is taller than beaker A. 

Beaker A fills up at the same rate as beaker B so both lines have the same slope. As 

beaker A is smaller, it fills up before beaker B and to a lower level than Beaker B. 

The results for the finishing time, level and position of beaker B are shown in Table 

7.2. The question was given as both a pre and a post-test in the 2009-2010 academic 



126 
 

years. The pretest was given to groups A and C, while the post-test was given to 

groups B and D. Next year, the pre and post test questions will be reversed.  

 

Figure 7.2: Beaker A is the same width as B, but less tall. Both beakers are filled at the same constant 
flow rate. 

 

It is interesting to note that this question was answered much more successfully than 

the previous question, both as a pre- and as a post-test. In fact, this question was 

answered correctly by a higher percentage of students than any other question. It is 

probably significant that in this question the rates at which the water level changed 

were equal. This presumably allowed students a greater opportunity to consider other 

aspects of the graph. 

An increase from 70% to 80% was seen from pre to post-test for correctly 

constructing a straight line graph with identical slopes for A and B. There were 

similar increases from 90% pre to 95% post for students that represented correct 

relative end levels, and 85% pre to 95% for students that represented correct relative 

finishing times for beakers A and B. 
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7.1.4: Different height, same width, fills at the same time.  

We gave a variation on the setup discussed in Section 7.1.3. The beakers are filled at 

constant but different rates, in such a way that A and B are full at the same time. 

Students are to infer that to make this possible, the water level in beaker B must rise 

at a greater rate than beaker A.  So line A should a have a smaller slope than B, and 

finish at the same time. Beaker A should also finish at a lower level than Beaker B. 

 

 

 

Figure 7.3: Beakers A and B are different heights but the same width. Both fill such that they are full 
at the same time. 

 

A comparatively low number of students drew a correct slope for this question in the 

pre and the post-test. With more aspects to consider, students tended to focus on one 

aspect of the line (finishing time and level mostly in this case). Finding the balance 

between the correct finishing levels, time and slope requires some coordination and 

good reasoning. Pre and post-test results are shown in Table 7.3. 

No notable increase was found in the percentage of students that correctly draw 

slope A with a less steep slope than B after instruction. One area of improvement 

was the drop in the number of students that drew curved lines for A or B – down 

from 30% to 15%.  In the pre-test the high number of students that drew curved lines 

instead of straight lines seemed to result from trying to make both lines finish at the 

same point. 
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In the post-test there was a noticeable increase in the number of students that drew 

lines for A and B with equal slopes (up from 5% up to 20%). This increase of 

students drawing equal slopes seems to be as a result of an increased focus on the 

finishing level and finishing times. Correct finishing levels improved from 70% up 

to 85%, and finishing times improved up from 70% up to 80%.  

7.1.5 Two beakers: different height, different width, same rate, C fills before B.   

In a pretest detailed in Chapter 4, a large number of students used the time it took a 

beaker to fill to justify their answers. In all previous questions, the shorter time also 

meant a greater rate of change. It was impossible in these cases to conclusively prove 

a significant number of students were distinguishing between the time it took the 

beaker to fill and the rate of change in the beaker as it was filling. 

Students were asked to draw a qualitative graph to show the water level changing in 

beakers B and C shown in Figure 7.4. Each beaker has water poured into it at the 

same constant rate, and beaker C fills before beaker B. Students were therefore 

required to distinguish between the time it takes for the water to fill up  (time C > 

time B) and the rate  the water level changes in beaker (rate C< rate B). A complete 

piece of reasoning to answer the question is shown in Figure 7.5. A full table of 

results is given in Table 7.4. 

 

 

 

Figure 7.4: Beaker C is wider with less height than beaker B. 
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As Table 7.4 shows, 30% of students in the pre-test and 45% of students after 

instruction constructed a trend line with an appropriate slope for B and C.  There was 

also variation between the different groups with post-test group A in particular 

drawing both the lines with identical slopes. Both pre- and post-test scores were 

lower than any other graph on which the correct answer consisted of two straight 

lines.  

 

 

Figure 7.5: Correct reasoning though the answer is not completely correct. 

There were no gains for pre- and post-test finishing levels, while there were small 

gains for the relative finishing levels and times. Students had significant difficulties 

in finding the balance between the features of the event.  The theme of one feature 

on the graph improving after instruction and others not improving seems to be 

emerging from this and previous questions – see Sections 7.1.2 and 7.1.4.   

The main aim of the question was to evaluate how many students choose to draw the 

slope based on the time it takes a beaker to fill rather than the rate at which it fills. 
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We found that 20% draw trend line C with a greater slope focusing on the time it 

took for beaker C to fill rather than the rate C filled when deciding to draw the slope 

this way. We cannot conclusively prove though that 80% of students connect the 

trend line and the slope of the line as many students emphasized finishing level and 

time over the rate of change in their answer. For instance, 25% of students in the 

post-test and 15% pre-test drew both lines with the same slope. These students 

tended to focus on drawing a correct finishing time and level rather than constructing 

an appropriate slope. 
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Table 7.1: Pre and post test results for water being poured into beakers A and D and A and B respectively (Figure 7.1). D is wider than A but has the same height, and B is identical to A but has 
a cylinder inside. Water is poured into each beaker at the same constant rate. The correct interpretations are shown shaded in on the table. 

 

 

 

Pretest Group A 67 Group B 68 Total 135 Corresponding post-test Group A 61 Group B 62 Total 123 h 

slope D>slope A 15% 11 10% 6 15% 17 slope B<slope A 15% 9 10% 5 10% 14  
slope D=slope A 20% 12 5% 2 10% 14 slope B=slope A 0% 1 5% 2 0% 3 .33 
slope D<slope A 65% 42 60% 42 60% 84 slope B>slope A 75% 46 75% 46 75% 92  
no answer/other 5% 2 25% 18 25% 31 no answer/other 10% 5 15% 9 10% 14  
A straight, D curved 5% 5 5% 5 5% 10 A straight, B curved 0% 0 0% 0 0% 0  
level D>level A 15% 10 20% 15 20% 25 level B>level A 50% 31 45% 27 45% 58  
level D=level A 25% 16 20% 14 20% 30 level B=level A 20% 13 30% 19 25% 32 0.05 
level D<level A 50% 32 55% 37 50% 69 level B<level A 20% 12 25% 16 25% 28  
no answer/other 15% 9 5% 2 10% 11 no answer/other 10% 5 0% 0 5% 5  
time D>time A 80% 55 70% 48 75% 103 time B<time A 75% 47 85% 52 80% 99  
time D=time A 5% 2 10% 7 5% 9 time B=time A 0% 1 5% 4 5% 5 0.18 
time D<time A 0% 1 15% 11 10% 12 time B>time A 15% 8 10% 6 10% 14  
no answer/other 15% 9 5% 2 10% 11 no answer/other 10% 5 0% 0 5% 5  
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Table 7.2: Pre and post test results for water being poured into beakers A and B (Figure 7.2). B is taller than A, but both have the same width. Water is poured into both at the same constant 
rate.  The correct interpretations are shown shaded in on the table. 

 

 

Pretest Group A 65 Group 
C 39 Total 104 Corresponding 

post-test 
Group 

B 53 Group 
D 67 Total 122 h 

slope A >slope B 10% 6 0% 0 5% 6 slope A >slope B 10% 5 5% 3 10% 8 

.33 slope A=slope B 60% 40 80% 32 70% 72 slope A=slope B 75% 39 80% 55 80% 94 
slope A <slope B 20% 11 0% 0 10% 11 slope A <slope B 5% 3 10% 7 10% 10 
no answer 0% 0 5% 2 <5% 2 no answer 0% 0 0% 0 0% 0 

either/both curved 10% 8 15% 5 15% 13 either/both curved 10% 6 5% 4 10% 10  

level A>level B 10% 6 <5% 1 5% 7 level A>level B 0% 0 5% 4 5% 4 
.50 

 
level A=level B 2% 1 5% 2 <5% 3 level A=level B 5% 2 0% 0 <5% 2 
level A<level B 90% 58 90% 34 90% 92 level A<level B 95% 50 95% 65 95% 115 
no answer/other 0% 0 5% 2 2% 2 no answer/other <5% 1 0% 0 1% 1 
time A > time B 85% 55 80% 32 85% 87 time A > time B 95% 50 95% 64 95% 114 

.66 
 

time A =time B 10% 7 15% 5 10% 12 time A =time B 5% 2 1% 1 <5% 3 
time A<time B <5% 2 0% 0 <5% 2 time A<time B <5% 1 5% 4 5% 5 
no answer/other 0% 0 5% 2 <5% 2 no answer/other 0% 0 0% 0 0% 0 
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Table 7.3:  Beaker A and B are the same width, and different heights. Water is poured into each beaker at a different rate so that both beakers fill at the same time. 

Pretest Group C 53 Group D 63 Total 116 
Corresponding 
post-test Group B   Group A   Total 109 h 

slope A >slope B 10% 4 2% 1 5% 5 slope A >slope B 0 0% 6 10% 6 5% 

0 slope A=slope B 5% 3 10% 5 5% 8 slope A=slope B 10 25% 14 20% 24 20% 
slope A <slope B 50% 26 55% 35 55% 61 slope A <slope B 27 60% 34 50% 61 55% 
no answer 0% 0 15% 8 10% 8 no answer 0 0% 0 0% 0 0% 
either/both curved 40% 20 20% 14 30% 34 either/both curved 7 15% 11 20% 18 20%  

level A>level B 5% 2 2% 1 <5% 3 level A>level B 0 0% 2 5% 2 <5% 

.50 level A=level B 20% 9 15% 10 15% 19 level A=level B 7 15% 8 10% 15 15% 
level A<level B 75% 39 70% 42 70% 81 level A<level B 37 85% 55 85% 92 85% 
no answer/other 5% 3 15% 10 10% 13 no answer/other 0 0% 0 0% 0 0% 
time A > time B 15% 7 5% 3 10% 10 time A > time B 1 2% 19 30% 19 20% 

.33 time A =time B 65% 35 75% 48 70% 83 time A =time B 43 100% 45 70% 88 80% 
time A<time B 15% 8 <5% 2 10% 10 time A<time B 0 0% 2 3% 2 <5% 
no answer/other 5% 3 15% 10 10% 13 no answer/other 0 0% 0 0% 0 0% 
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Table 7.4: Beakers C is wider and shorter than beaker A. Water is poured into both at the same constant rate. Beaker C fills before beaker A. 

 

 

Pretest Group 
C   Group D   Total 102 Corresponding 

post-test Group A 61 Group B 62 Total 123 h 

slope B>slope C 40% 15 30% 18 30% 33 slope B>slope C 35% 22 60% 33 45% 55 

0.25 slope B=slope C 15% 5 20% 12 15% 17 slope B=slope C 40% 25 15% 7 25% 32 
slope B<slope C 25% 10 20% 12 20% 22 slope B<slope C 30% 11 20% 12 20% 23 
no answer 10% 3 20% 14 15% 17 no answer 0% 0 <2% 1 1% 1 
either/both curved 15% 6 10% 7 15% 13 either/both curved 10% 7 5% 3 10% 10  
level B>level C 70% 27 50% 32 60% 59 level B>level C 30% 18 75% 41 50% 59 

0.00 level B=level C 10% 3 15% 10 15% 13 level B=level C 5% 4 10% 5 10% 9 
level B<level C 15% 6 10% 6 10% 12 level B<level C 30% 18 15% 7 20% 25 
no answer/other 10% 3 25% 15 20% 18 no answer/other 2% 1 5% 3 5% 4 
time B>time C 70% 27 60% 39 65% 66 time B>time C 65% 42 70% 39 65% 81 

0.00 
time B=time C 15% 5 5% 4 10% 9 time B=time C 5% 2 15% 9 10% 11 
time B<time C 10% 4 10% 5 10% 9 time B<time C 30% 20 10% 5 20% 25 
no answer/other 10% 3 25% 15 15% 15 no answer/other 2% 1 5% 3 5% 4 
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7.2 Water level, non-uniform intervals 
 

 

Figure 7.6: An empty beaker A, pre-test beaker C that contains a cone, post test beaker C  contains a stepped 
cone and post test beaker D contains an inverted cone. 

 

In Section 7.1 all interval changes in water level in the beakers were equal resulting 

in trend lines that were straight. To test our students’ abilities to represent varying 

rates of change we pre-tested students using beaker C of Figure 7.6. Water is poured 

into each beaker at the same constant rate. For the post-test question students were 

shown post-test a different beaker, also labeled C in the post-test (see Figure 7.6) in 

which there is a stepped cone, and a beaker D with an inverted cone. 

In the pre-test 45% of students drew a straight line to represent pre-test beaker C. 

25% of students correctly drew a line that slopes downwards, with 5% incorrectly 

sloping the beaker in the other direction. These results also showed that there were 

significant difficulties for our students to answer this question, with 25% answering 

the question with no answer or an answer that defies categorisation. 

Post-test beaker C had 15% of students answering the question correctly by drawing 

a line that with three line segments getting consecutively less steep. A further 30% of 
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students drew a curve sloping downward to represent the water level filling post-test 

beaker C. The number of students drawing a straight line through the origin also 

dropped by 15% to 30% of students. The number of students that are focusing on 

representing how the water level is changing and not just on the finishing time has 

increased. 

The stepped beaker in post-test beaker C did show that, while more students were 

able to represent the general trend of a changing rate, there seemed to be difficulty 

representing stepped changes in the rate. We note that, while students did encounter 

curved graphs in their instructions, stepped graphs were something they had not 

seen. 

For post-test beaker D, 45% correctly drew the line curving upwards, and 15% 

incorrectly drew the line curving downwards. The number of students that drew a 

straight line to represent post-test beakers C and D encouragingly dropped from 45% 

pre-test to 15% post-test. In both post-test questions there was a noticeable number 

of students that focused on changes in water level and attempted to represent these 

changes using the shape of the line, compared to the large numbers of students in the 

pre-tests that focused in on the time taken for the beaker to fill.  
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Table 7.5: Pre and post test results for non uniform changes in water level in beakers

Pretest Group 
A 67 Group 

B 68 Total 135 Corresponding 
post-test A 

Group 
A 61 combined 61 Corresponding 

post-test B 
Group 

B 62 Total 123 h 

straight line 45% 29 45% 32 45% 61 straight line 30% 18 30% 5 straight line 20% 12 15% 17  
curved up 5% 4 5% 5 5% 9 curved up 5% 4 5% 6 curved down 25% 14 15% 20  
       stepped up 5% 2         
curved 
down 30% 20 25% 17 25% 37 curved down 30% 19 50% 29 curved up 40% 26 45% 55 0.24 

       stepped down 15% 10         
no 
answer/other 20% 14 25% 17 25% 31 no answer/other 15% 8 15% 10 no answer/other 15% 10 15% 20   
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7.3  Interval reasoning and uniform motion of two objects 
 

 

Figure 7.7: The position of cars A and B is shown at four times marked one to four different times. 

 

Parts of the uniform motion lab and the non-uniform motion lab focused on helping 

students to develop an understanding of interval reasoning to describe motion. A 

question based on Figure 7.7 was given to pre- and post-test students over the past 

two years. The same question was given to different groups. Students were asked to 

describe if car A was moving at constant speed, and to compare the speeds of both 

cars A and B at instants 2 and 3. 

There is significant progress to report on all questions. The number of students that 

were able to identify that car A was travelling with a constant speed improved from 

70% in the pre-test to 90% in the post-test. Incorrect answers tended to be because 

students used the relative positions of the cars as an indication of the type of motion, 

i.e. car A is passing out car B so it must be speeding up. 

There was also improvement in the number of students who identified that car A was 

travelling with a greater speed at instant 2: 35% in the pre-test, 55% in the post-test. 

Again the focus was on interval reasoning rather than on the relative positions of the 

cars. There was also an improvement for the number of students that identified that 

car A was travelling with a greater speed at instance 3. 
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Table 7.6: Answers to the questions whether car A was travelling at a constant speed, and how its speed compared to that of car B at instants 2 and 3. 

  Pretest Speed PS 153 2008 (132) Post-test Speed 
(Corresponding Post-test) 2009 (N=67) 2007 (N=67) h 

Speed of A 

Car A is speeding up 20% 30 Car A is speeding up <10% 7 10% 7 

.66 
Car A is slowing down 0% 0 Car A is slowing down 0 0% 0% 0 
Car A is moving at constant 
speed 70% 97 Car A is moving at constant speed 90% 59 90% 60 

It is impossible to tell from the 
information 10% 10 It is impossible to tell from the information < 2% 1 0% 0 

Interval 2 

Car A Speed < Car B Speed 5% 8 Car A Speed < Car B Speed <5% 2 5% 1 

.30 
Car A Speed > Car B Speed 35% 47 Car A Speed > Car B Speed 55% 36 55% 36 

Car A Speed = Car B Speed 50% 69 Car A Speed = Car B Speed 40% 28 40% 29 

No Answer/Other 10% 11 No Answer/Other 5% 1 <2% 1 

Interval 3 

Car A Speed < Car B Speed 5% 9 Car A Speed < Car B Speed 5% 4 <5% 2 

.66 
Car A Speed > Car B Speed 85% 112 Car A Speed > Car B Speed 90% 60 95% 62 

Car A Speed = Car B Speed 5% 6 Car A Speed = Car B Speed 0% 0 <5% 2 

No Answer/Other 5% 9 No Answer/Other < 5% 3 <2% 1 
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7.4  Rates of change and speed 
 

7.4.1 Overview 

Parts of the uniform motion and non-uniform motion labs required students to 

categorise different types of motion as uniform and non uniform, and gave them 

methods of quantifying motion. We set equivalent pre and post-tests that required 

students to analyse a straight line graphs with scaled axes. To test whether students 

had developed a general understanding of the concept of rate of change two types of 

questions were asked.  

• Unfamiliar context: The first graph is one that is unlikely to have been 

encountered by students before. On this graph, water level changes against 

time to represent a pool filling with water.  

• Familiar context: The second, which is likely to have been encountered by 

students, has distance graphed against time to represent the distance of a ball 

to a fixed point. These ideas and concepts have been covered as part of the 

Junior Certificate cycle.  

The term speed is not used for any question that features the graph in an unfamiliar 

context. This means that the student is not led to use learnt-off formulas for speed 

where he or she does not make the connection spontaneously. For each context, 

students are asked if the rate of change is constant or not, and to calculate the rate of 

change at one instant. 

Both questions can be answered using different methods of reasoning. Some of these 

are listed below with examples:  
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1. An example of interval reasoning is shown in Figure 7.8. Changes in the x-

axis are correlated with constant changes in the y-axis. The student can then 

deduce by comparing these changes that the motion is constant while also 

quantifying the motion itself.   

 

Figure 7.8: Interval reasoning to identify that motion of a ball is constant. 

2. Proportionality: similar to interval reasoning, quantitative steps are 

circumvented as the student understands the significance of the shape of the 

line to the interval changes.  

 

Figure 7.9: Proportionality of the changes in distance against time used to reason that the 
ball is travelling with a constant speed. 

 

3. Shape of the line: The graph is a straight line, so the process occurs at a 

constant speed. This is usually learnt off or familiar as the student recognises 

that the rate of change is equal. 
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Figure 7.10: The student identifies that the slope is equivalent to the speed of the ball and 
the slope doesn’t change, then making the connection that that the ball is moving constant 
speed. 

 

4. Students often apply formulas to calculate the speed or rate of change. The 

two most common are y/x and ∆y/∆x, both shown in Figures 7.11a and 7.11b.  

 

 

 

Figure 7.11: a) incorrect and b) correct formula is applied to find the speed for the same question. 

 

The difficulties that students have, and our strategy, are detailed in Chapters 5 and 6. 

 

7.4.2  Quantitative motion: Unfamiliar Context 

Four groups took part in the pre and post test each doing the same course and at an 

equivalent level. Group 1 and 2 took the pre-test while groups 3 and 4 took the post-

test. For both the pre and the post test one group took the negative slope question 

while the other took the positive sloped question. 
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Table 7.7 shows the number (and type) of correct answers for the question “how 

quickly does the water level change at t=30 seconds”, Table 7.8 shows the number 

and type of answers for “Is the water level changing at a constant rate? How can you 

tell?”   

 

 

 

 

 

 

 

Figure 7.12: The water level of water being poured into a swimming pool. 

 

After instruction a negligible gain was found between the pre and post-test, as 45% 

could correctly calculate the rate of change at 30 seconds in the pretest and 50% in 

the post-test questions. Students tended to change patterns with a reduction in the 

number of students having no answer or “other” answers and an increase in the 

number of students that incorrectly use the ratio y/x.  

Table 7.8 shows a breakdown of all the answers and approaches taken by students 

who were asked if the pool was filled at a constant rate. There is some improvement 

from nearly 90% pre to 100% post for students that say that the pool is being filled at 
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a constant rate. The number of students that use interval reasoning increases from 

40% pre to 75% post showing that there is a greater increase in the quality of 

reasoning than the pre and post test correct answers.   

For all the correct answers in Table 7.8, a correlation between the reasoning used to 

come to those correct answers and the reasoning that they used in order to find how 

quickly the pool fills at t = 30 s is given in table 7.9. Of the 60 students that used 

interval reasoning to identify the pool as filling with a constant rate, only 50% 

correctly identified the rate of change at t = 30 s while 15% of these students divided 

both the coordinates. There seems little change in this context from pre to post in 

how students approached finding the rate of change at t = 30 s after using interval 

reasoning to examine if the pool was filling at a constant rate. In Section 7.4.3 we 

see that in a more familiar context, this approach does seem to change.  
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Table 7.7:Pre-test and Post-test results for students when asked to find “How quickly does the water level change” at a particular time. 

 

 

Correct solutions 

Pretest Group 1   Group 2    Total Groups 1 and 2 
(116)   Groups 3 and 4 

(109) h 
Correct 30% 16 30% 16 30% 32 35% 39 

0.17 

Correct apart from a sign 
error 2% 1 0% 0 1% 1 0% 0 

∆x/∆y 0% 0 5% 1 1% 1 0% 0 
Correct but not 5 cm/s (e.g. 
50 cm/10 s) 20% 9 10% 6 15% 15 15% 17 

total correct 50% 26 45% 23 45% 49 50% 56 

Incorrect 
solutions 

y/x or similar 20% 11 20% 11 20% 22 35% 37 

  

unclear 25% 12 15% 7 15% 19 10% 13 

other 10% 5 5% 2 5% 7 5% 3 

no answer 20% 9 20% 10 15% 19 0% 0  
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Table 7.8 :Pre-test and post-test results for students when asked if the pool was filling at a constant speed. There is an increase from 90% correct pre to nearly 100% post. In the pre 40% of 
students used interval reasoning but in the post 75% of students use interval reasoning. 

 

Correct or almost correct 

  Pretest 2009 
Groups 1 and 2     Post test 2009 

Groups 2 and 4    h 

intervals 27 40% intervals 79 75% 

1 

slope, straight line 20 30% slope, straight line 18 20% 

proportional 2 5% proportional 2 <2% 

other constant 9 15% other constant 4 5% 

total correct 58 90% total correct 103 100% 

Incorrect answers 
decreasing 7 10% decreasing 0 0%   
increasing 0 0% increasing 1 <1%  
no answer/unclear 0 0% no answer/unclear 0 0   
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Table 7.9: Pre and post- test results linking what approach students who correctly stated that the water level is changing at a constant rate took to find the a value for the rate of change at 
t = 30 s.  The second column shows that of the 60 students who used interval reasoning to determine that the water level changes at constant rate in the pretest, 50% correctly determined the rate 

of change using a correct method; 15% divided the two coordinates, 20% gave uncategorized answers, and 15% gave no answer. 

Approaches to 
correctly 

identifying 
constant rate 

intervals slope slope + interval other total 

Approaches to 
finding the rate at 

t = 30 s 

Pre 
(N=60) 

Post 
(N=60) 

Pre 
(N=35) 

Post 
(N=18) 

Pre 
(N=6) 

Post 
(N=20) 

Pre 
(N=12) 

Post 
(N=6) 

Pre 
(N=113) 

Post 
(N=104) 

∆y/∆x or similar 50% (30) 55% (32) 35% (12) 40% (7) 50% (3) 60% (12) 35% (4) 50% (3) 45% (49) 50% (54) 

y/x or similar 15% (8) 30% (18) 30% (11) 50% (9) 0% (0) 30% (6) 10% (1) 35% (2) 20% (20) 35% (35) 

other 20% (12) 15% (8) 25% (8) 5% (1) 15% (1) 10% (2) 40% (5) 15% (1) 25% (26) 10% (12) 

no answer 15% (10) 5% (2) 10% (4) 5% (1) 35% (2) 0% (0) 15% (2) 0% (0) 15% (18) 5% (3) 
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7.4.3 Quantitative motion: familiar context of speed 

In pre- and post-test questions students were given the graph of Figure 7.13.  

 

Figure 7.13: The distance of a ball from a fixed point P. 

 

In the academic year 2009/2010, four groups took part in the pre- and post-test. Each 

group took take the same labs at different times. All students were participants in the 

revised first year physics labs.  Group 1 and 2 took the pre-test while groups 3 and 4 

took the post-test. For the pre-test groups 1 and 2 were given questions on Figure 

7.13. They were post tested with a similar graph with negative slope. Pre-tests and 

post-tests were reversed for groups 3 and 4.  

Table 7.10 shows the pre and post-test assessment results for students asked to find 

the speed of the ball at t = 1 s. The pre-test shows that there is an improvement in the 

pre-test data from a low of 20% to 40%. Both low pre and post test figures are as a 

result of 70% of students in the pre-test and 60% of students in the post test 

persisting to calculate speed by using the y/x or d/t formula. The results demonstrate 

the level of difficulty that the question had for the students in the labs.  
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However, Table 7.10 also shows a significant gain from 70% pre-test to 100% post-

test saying that the graph represented a ball travelling with uniform motion. This 

gain was not entirely unexpected as a part of the labs focused entirely on straight line 

uniform motion graphs. 

There was also a more encouraging shift in the reasoning that the student used to 

come to the conclusion that the ball was travelling with a constant motion. In the pre-

test 20% of students used interval reasoning, but in the post-test 80% used interval 

reasoning as at least part of their answer. 40% of the pre-test answers consisted of an 

explanation that focused on the straight shape of the line, this drops to 20% post-test. 

Overall it was encouraging to note how more students after instruction used interval 

reasoning to not only analyse the type of motion but also to quantify the speed of 

motion. 

Table 7.12 details how students that correctly analyse the motion of the ball as being 

constant and categorises their correct answers under the headings of intervals, slope, 

intervals & slope, other, total. For each heading, the approaches taken by these 

students to finding the speed of the ball at t = 1 s are analysed. For students who used 

interval reasoning to say that the ball was moving with constant motion, 20% went 

on to correctly calculate the speed of the ball at t = 1 s in the pre-test and 45% went 

on to successfully calculate the speed of the ball at t = 1 s in the post-test. Students 

were more likely to use interval reasoning in both questions after instruction.
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Table 7.10: Pre and post test results with reasoning for finding the speed of the ball at t=1second 

  
  Pretest 2009 

(N=194)   Post-test 2009 
(N=123)  h 

Correct reasoning 

Correct 3 <2% 42 35% 

0.25 

Correct apart from a sign error 37 20% 0 0% 

∆x/∆y 0 0% 0 0% 

Correct but not 5 cm/s (e.g. 50 
cm/10 s) 2 <1% 5 5% 

total correct 42 20% 47 40% 

Incorrect 
approaches 

y/x or similar 134 70% 76 60%  

unclear 14 10% 0 0%  

other 4 <2% 0 0%  

no answer 42 20% 47 40%  
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Table 7.11: Pre and post test results for the question “ is the motion constant or  not constant” 

      Pretest 2009 (N=192)   Post-test 2009 (N=104) h 

Correct answers and 
reasoning 

constant 10% 17 5% 4 

.99 

straight 40% 75 20% 18 

interval 20% 43 60% 60 

proportional <5% 4 <5% 2 

sl + int 0% 0 20% 19 

total correct 70% 139 100% 103 

Incorrect answers 

increasing <5% 3 <5% 1  

decreasing 25% 49 0% 0  

don't know <5% 1 0% 0  
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Table 7.12: Pre and post- test results linking what approach students who correctly stated that the speed of the ball is constant took to find the speed of the object at t = 1 s.  The second column 
shows that of the 31 students who used interval reasoning to determine that the speed of the ball is constant in the pretest, 20% correctly determined the speed of the ball using a correct method; 

70% divided the two coordinates, and a further 10% gave uncategorized answers. 

Approaches to 
correctly 

identifying 
constant speed 

intervals slope slope + interval other total 

Approaches to 
finding the speed 

at t = 1 s 

Pre 
(N=31) 

Post 
(N=47) 

Pre 
(N=58) 

Post 
(N=34) 

Pre 
(N=1) 

Post 
(N=17) 

Pre 
(N=15) 

Post 
(N=2) 

Pre 
(N=108) 

Post 
(N=100) 

∆y/∆x or similar 20% (6) 45% (21) 35% (20) 55% (18) 0% (0) 40% (7) 15% (2) 0% (0) 25% (28) 45% (46) 

y/x or similar 70% (22) 55% (26) 60% (35) 45% (16) 100% (1) 60% (10) 65% (10) 100% (2) 65% (71) 55% (54) 

other 10% (3) 0% (0) 5% (2) 0% (0) 0% (0) 0% (0) 15% (2) 0% (0) 5% (7) 0% (0) 

no answer 0% (0) 0% (0) 0% (1) 0% (0) 0% (0) 0% (0) 5% (1) 0% (0) 0% (2) 0% (0) 
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7.4.4 Context-free slope 

We asked students to calculate the slope of the line in y,x-graphs like those of Figure 

7.14. We find that in the pretest, merely 45% of 205 students correctly calculate the 

slope (excusing sign errors).  A further 25% calculate y/x, 15% give other answers 

and 25% cannot answer the question at all. Many of the students who did not give an 

answer at all commented that it is not possible to calculate the slope at a point. 

Post-test results for a similar question but with a positive slope show a very high 

gain, to over 85% correct answers by 191 students, a Hake gain of 0.8.  Less than 

10% still adhere to the procedure y/x.  These results show that our teaching of 

interval reasoning has been very successful.  However, there is a strong suggestion 

that incorrectly assimilated prior knowledge gets in the way of this reasoning when 

applying it to a setting involving speed, distance, and time, either implicitly or 

explicitly. 

 

 

 

 

 

 

Figure 7.14: Context-free slope question. Students are asked to give the slope of the line 
drawn at the point indicated. 
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Chapter 8: Conclusion 

 

Organising our labs so that they incorporate elements of open and guided inquiry in a 

flexible approach has broadened the aims of the lab to include both conceptual and 

skills development. It is possible that a guided inquiry course that targeted 

conceptual development only would yield better pre/post test data, and without the 

focus on conceptual development students could have arrived at open inquiry earlier 

and gained more experience with it. However, our approach has consistently and 

reproducibly achieved gains in both inquiry aspects and conceptual development, in 

an environment that students find enjoyable and stimulating. 

Having assessment in the affective domain appears to have been mutually beneficial 

for both ourselves and the students. From our point of view, a set of labs was 

developed which would most likely have been further away from a correct level for 

these students without this type of assessment. Students in return had a more 

enjoyable and motivating experience in the labs and were able to fully benefit from 

the materials that we developed. It is hard to imagine that research-based 

development in which we only relied on assessment in the cognitive domain would 

have been as successful when developing this set of labs. 

Understanding and developing graphing skills from different perspectives was an 

important part of the work that we carried out in the labs. One of the problems we 

identified and tried to remedy was students calculating speed or rate of change with 

the simple ratio of y/x or d/t. It was surprising to find that of the science students 

coming into the labs, only 20% of students could calculate the slope of a linear 

distance-time graph at a point, and only 45% in a context-free setting. Through 
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focusing on interval reasoning, we managed to improve the post-test scores in the 

context-free setting to almost 90%, but much more modest gains were made in the 

questions pertaining to uniform motion and another numerical question on rate of 

change, that of a swimming pool filling up or being drained. 

The context-free post-test results show that students had the ability to answer these 

questions completely and correctly, but a formula-led approach to solving these 

problems appears to have been a block. It is remarkable that nearly three quarters of 

students use interval reasoning to correctly identify a straight line graph as 

representing a process that takes place at a constant rate in post-tests, and yet seeing 

half of these students abandon their reasoning when asked to find a numerical value 

for the rate of change or speed at a point on the same graphs both in a familiar 

context and unfamiliar context. How students learnt kinematics from an introductory 

stage in school appears to be an important part of how they develop their reasoning 

approaches and strategies. 

It would seem that strongly emphasising formulas in early introductory physics 

curriculum before students develop intuitive and robust reasoning models for 

kinematics is an area that needs to be carefully looked at.  In our labs we have 

implemented an engaging inquiry lab experience that we feel could be built on and 

adapted to second level teaching. 

Another aspect of graphing that we found important was that of testing and 

developing a general graphing literacy. We did this by getting students to represent 

simple situations using qualitative graphs as both pre and post-tests. We have found 

that students have significant difficulties with changing rates, a focus on time, a 

preconceived shape of a graph as being a straight line through the origin and often 
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become unnecessarily distracted by other physical features of a graph. It is almost 

certain that a contributory factor to these difficulties is the limited use for and narrow 

range of graphs that students have encountered before they enter university. Most 

graphs at second level are straight line graphs through the origin, and interaction 

with graphs (as with general experimentation) is limited to cookbook instructions. 

These approaches appear to do little or nothing when it comes to helping students to 

interpret graphs, or use them beyond the lab. 

Even if a more traditional approach to teaching is maintained, these issues could be 

addressed in part by students experiencing a wider range of graph types (different 

shaped trend lines throughout their instruction). More focused exercises that deal 

with students’ misconceptions and ideas can be also incorporated in lab and general 

instructional design. 

The instruction we have developed has shown some improvements with developing 

graphing literacy. It follows from our research that other areas could be focused on 

and enhanced, such as abrupt rates of change, finishing points of a line, and how 

multiple features of a line can be used to represent multiple features of an event. 

However we feel that our instructional approaches are a good example of how labs 

can be used to empower students with a better graphing literacy. Clearly the concept 

or idea of graphing literacy is an incredibly rich area for research, both in terms of 

how we evaluate the impact of our research, and how we develop it. 

Future work will continue to reinforce pre and post-test data discussed in this thesis 

while making further improvements to the materials. It is hoped that other 

institutions will implement our labs to obtain to cement the validity of the research 

beyond the setting in which it was obtained.  We feel there is wide scope for 
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extending many aspects of this project, especially in the area of interval reasoning, to 

second level students.  



 
EXPERIMENT P4 

 
 

INVESTIGATION OF ELASTICITY 
 
Objectives 
1. To investigate the elasticity of various materials by examining to what extent they 

obey Hooke's Law. 
2. To investigate periodic motion for a spring. 
 
Background 
 
Elasticity is a physical property of material objects that determines how easily an object may 
be deformed by stretching, bending, or compressing and still return to its original shape. It is 
said to be more elastic if it restores itself more precisely to its original configuration. A rubber 
band is easy to stretch, and snaps back to near its original length when released, but it is not as 
elastic as a piece of piano wire. The piano wire is harder to stretch, but would be said to be 
more elastic than the rubber band because of the precision of its return to its original length. A 
real piano string can be struck hundreds of time without stretching enough to go noticeably 
out of tune. 
 
A spring is an example of an elastic object - when stretched, it exerts a restoring force which 
tends to bring it back to its original length. Automobile suspensions, playground toys and 
even retractable ball-point pens employ springs. Most springs have an easily predicted 
behaviour when a force is applied i.e. as the spring is extended or compressed. Hooke's Law, 
as commonly used, states that the force F a spring exerts on a body is directly proportional to 
the displacement Δl of the system (extension of the spring).  

F = -kΔl 
where k is the spring constant and the magnitude depends on the spring, being large for stiff 
springs and small for easily stretched springs. For wires or columns, the elasticity is generally 
described in terms of the amount of deformation (strain) resulting from a given stress 
(Young’s Modulus). 
  
Hooke's Law applies as long as the material stress (applied force) does not pass a certain point 
known as its proportional limit. Beyond this point there is no longer a linear relationship 
between the applied force and the spring extension, but up a point called the elastic limit the 
spring will still return to its original length once the force is removed. However, if the spring 
is stretched beyond its elastic limit, it does not return to its original length upon removal of 
the applied force but remains permanently deformed (like bending a paper clip). 
Application concept: Tendons in the human body connect muscles to your bones. These 
tendons can stretch and contract similar to an elastic band and are what causes our limbs to 
move. 
 

 
Now answer questions A1 through A2 on the answer sheet 
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Experiment 1:  Hooke’s Law 

 
Materials for which the deformation is proportional to the applied force are said to obey 
Hooke's Law. It is the objective of this present experiment to examine a range of materials 
generally classified as elastic and to investigate to what extent they obey Hooke's Law. 
 
Apparatus 
Rubber cord    Metre stick   mass hanger  
Steel spring    Retort stand   10 g and 100 g masses 
 
Procedure 
1. Fix one end of the rubber cord to the retort stand and the other to a mass hanger.  
2. Measure the relaxed length l of rubber cord with no mass attached. 
3. Determine a suitable range of masses over which to measure the extension of the 

rubber cord. 
4. Successively apply the masses (M) onto the rubber cord and record the length l and the 

extension (Δl) in each case to get at least 8-10 readings.  
5. Take care not to overload the cord otherwise permanent deformation can result. 
6. Plot a graph of extension (in mm) versus mass (in kg) for the rubber cord. Indicate on 

the graph the region (if any) where Hooke's Law is satisfied. For this region, measure 
the slope (S) in mm kg-1.    

7. Connect the steel spring to the retort stand and repeat steps 1-6 for the steel spring.  
 
Note: Graphs should be plotted in accordance with the guidelines given in Appendix 1. 
 

 
Now answer questions A3 through A9 on the answer sheet 

 
 
Analysis 
 
When a mass M is suspended from a spring, the 
spring extends by an amount Δl so that the 
downward force (Mg) is balanced by the upward 
restoring force Fs of the spring (see Figure 1). The 
mass is at rest in its equilibrium position. 
  i.e.      Fs = -Mg 
Because extension is linearly proportional to load (as 
you discovered in Expt. 1 -- Hooke's Law) it follows 
that the restoring force Fs must be linearly 
proportional to extension.     Thus, 

  Fs          =   -kΔl      
  ∴  Mg       =     kΔl         Figure 1. Spring at 
equilibrium. 
  i.e.  Δl         = (g/k)M 
k is a constant -- termed the spring constant 
 
Therefore the slope of the graph Δl vs M (as plotted in Experiment 1) enables the ratio g/k to 
be determined. 
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Experiment 2: Periodic Motion 
 

If an elastic object is stressed and released it will oscillate periodically about its equilibrium or 
rest position. Examples of such objects are a musical string instrument, a saw blade clamped 
at one end or a mass attached to a spring. 
 
It is the purpose of this experiment to investigate how the periodic time of an oscillating 
spring may be used to deduce a value for g, the acceleration due to gravity. 
 
Apparatus 
Steel spring   Stopclock   mass hanger 
Metre stick   Retort stand   100 g and 10 g masses 
 
Procedure 
1. Set up the steel spring on the retort stand and attach a 100 g mass. Measure the time 

for 30 oscillations and take the average value to get the periodic time T. Include the 
mass of the hanger in your value of M. 

2. Gradually increase the mass M, measuring T in each case. Record 8-10 readings 
taking care not to over-stretch the spring. 

3. Plot a graph of T2 (in s2) vs M (kg) on graph paper.  
4. From the slope of the T2 vs M graph, determine g the acceleration due to gravity using 

Equation 4. (S is already known from Experiment 1).  
5. From the intercept determine the effective mass m of the spring. Pay particular 

attention to units here. 
 

 
Now answer questions A10 through A17 on the answer sheet 

 
 
Analysis 
 
The motion of a body that oscillates back and forth is defined as Simple Harmonic Motion if 
there exists a restoring force F that is opposite and directly proportional to the distance x that 
the body is displaced from its equilibrium position. If Hooke’s Law holds for a spring, then 
the motion of masses vibrating up and down on the spring should be simple harmonic motion. 
If the mass, when hanging from the spring, is given a small additional displacement x from its 
equilibrium position and then released, the spring will exert a net force F = -kx which tends to 
restore the mass to its equilibrium position. The constant of proportionality k is called the 
spring constant and can be found by subjecting the spring to an applied force and measuring 
the amount that the spring stretches. 
 
It is clear that at all positions of the mass's motion, the net force on the mass M is directed 
towards the equilibrium position. As a result the mass M undergoes repetitive vertical 
oscillations about the equilibrium position. The periodic time for these vibrations may be 
determined in the following way. 
  F = M d2 x/d t2   (Newton’s 2nd Law)    and F = -kx   

   M d∴ 2 x/d t2  = -kx 

 or  M d2 x/d t2  + kx = 0        (1) 
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We can show, by direct substitution, that x = A sinωt satisfies Equation 1 if A (maximum 
Amplitude) and ω (angular frequency) are constants. 

dx/d t = ωAcos ωt 
 and      

d2 x/d t2 = -ω2 A Sin ωt
 
Therefore Equation 1 becomes 
-Mω2 A Sin ωt + kA Sin ωt = 0 
If this is to be true for all t we must have 

 ω2 = k/M          i.e. ω =
M
k

   

We can help to visualise the motion by plotting x  Figure 2.  Simple Harmonic Motion 

x = A   

against t as in figure 2. 
 
We see that the motion repeats itself with a periodic time, with the time for one oscillation 
called the period T, given by: 

T = 
k
M2 = 2

π
ω
π

     (2) 

 
The frequency f of the oscillations is the number of oscillations per unit time and is the 
reciprocal of the period, f=1/T, and is given by: 

M
k

2
1 =f
π

 

 
We have shown already that the slope S of the Δl vs M graph is equal to g/k in Experiment 1.     

Thus,      k  = g/S    and  
g

MS2 = T π

We have ignored the mass of the spring itself in the above analysis. This may be taken into 
account by writing: 

g
S)m + M(2 = T π     (3) 

where m is the "effective mass" of the spring. 
On squaring Equation we obtain 

 
 
 
         (4) g

Sm4M
g

S4T
22

2 π
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ π
=

 
This equation is in the form y = mx + c. Therefore, if the periodic time T is measured for 
various masses M, a graph of T2 vs M should give a straight line  
� the slope of which is 4π2 S/g                  (knowing S enables g to be determined) 
� the intercept of which is 4π2mS/g    (knowing S and g enables m to be determined.) 
Reference 
Giancoli, Physics, Fifth Edition, Chapter 9. 
Young and Freedman, University Physics, Ed. 9, Chapters 6 and 13. 
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Name:    Class:   Group:    Date: 

EXPERIMENT P4 – ANSWER SHEET 
Elasticity of Materials: (1) Hooke’s Law (2) Periodic Motion 

 
A1. List three (other) examples in everyday life where materials that exhibit elasticity are used. 
________________________________________________________________________________

________________________________________________________________________________ 

________________________________________________________________________________ 

 
A2. Keeping everything else the same, how do the following changes affect the ‘stiffness’ of a 
spring? 
 
• Increasing the length of the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the diameter of the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the number of turns in the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the density of the wire in the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the force applied to the spring? (  ) increases  (  ) decreases  (  ) no effect 
 
A3. Tabulate your measurements for the rubber cord. 
 

Mass  
M (kg) 

Length  
l (mm) 

Extension  
Δl (mm) 

   
   
   
   
   
   
   
   
   
   

 
 
A4. Plot a graph of Extension in mm versus Mass in kg for the rubber cord on graph paper.  
 
 
A5. What is the slope of the graph drawn in part A4 above?    _____________mm kg-1? 
 

How does this value relate to the "stiffness" of the rubber cord used? 
____________________________________________________________________________ 
 
What is the spring constant k of the rubber cord, including units? 
____________________________________________________________________________ 
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A6. Tabulate your measurements for extension and for the steel spring. 

Mass  
M (kg) 

Length 
 l (mm) 

 

Extension Δl (mm) 
 
 

   
   
   

   
   
   
   
   
   
   

 
A7. Plot a graph of Extension in mm versus Mass in kg for the steel spring on graph paper. 
 
A8. What is the slope of the graph S drawn in part A7 above? ______________ mm kg-1? 
 

What is the spring constant k of the steel spring, including units?  
 
____________________________________________________________________________ 

 
  
A9. State what you deem to be the most important sources of error other than human error in 

order of importance. Include an estimate (in percents or absolute value) of its effect.  
 
Source of error Estimate (% or SI units) 
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A10. Make a sketch of an oscillating mass on a spring and indicate the following positions: 
a. At which point(s) does the mass on a vibrating spring have the greatest acceleration? 
b. At which point(s) does it have the least acceleration? 
c. At which point(s) does the mass have the largest force exerted on it? 
d. At which point(s) does the mass have the smallest force exerted on it? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A11. Keeping everything else the same, how do the following changes affect the period of 
oscillation? 
 
• Increasing the length of the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the spring constant of the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the amplitude of the vibration? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the force applied to the spring? (  ) increases  (  ) decreases  (  ) no effect 
• Increasing the density of the wire in the spring? (  ) increases  (  ) decreases  (  ) no effect 
 
 
A12. Tabulate your measurements for mass M and Period T for the steel spring. 
 

Mass  
M (kg) 

Time for 30 oscillations 
(s) 

Period 
T (s) 

Period Squared 
T2 (s2) 
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A13. Plot a graph of Period Squared T2 in s2 versus Mass in kg for the steel spring on graph paper. 
 
 
A14. What is the slope of the graph drawn in A13 above, including units?    _______________  
 
Using the value of S from A8 above, determine the value of g, the acceleration due to gravity? 
________________________________________________________________________________ 
 
 
A15. What is the y-intercept of the graph drawn in part 11 above, including units? _________ 
 
Using the value of S from A8 and the value of g from A14 above, determine the value of effective 
mass m of the spring? 
________________________________________________________________________________ 
 
 
A16.  Measured mass of spring in kg (using balance) ____________________________ 

  Calculated effective mass of spring in kg (from A15)____________________________ 

  Ratio of effective mass to actual mass  ____________________________ 

Why do you think the effective mass of the spring varies from actual mass of the spring? 
________________________________________________________________________________ 

________________________________________________________________________________ 

________________________________________________________________________________ 

 
 
A17. State what you deem to be the most important sources of error other than human error in 

order of importance. Include an estimate (in percents or absolute value) of its effect.  
 
Source of error 

 

Estimate (% or SI units) 

  

  

  

  

  

  

 
 

 30
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Experiment 1: Making a spring balance 

There are many common examples of springs used in our everyday lives, such as the springs 

used in cars to ease the shock of the bumps on the road. 

In  the  following  experiment  you  will  examine  springs  and  use  your  observations  in  the 

construction of a spring balance. 

 

Section 1: Experimental apparatus 

Check  that you have  two different  springs, a  retort  stand with  clamp, a metre  stick, a mass 

hanger and six 20 gram disks; if not, notify a tutor. 

Before you begin  the experiment,  take some  time  to discover some properties of  the springs.  

For example, you may want to try the following: 

 Holding one end of  the  spring  in your hand, hang  some objects  from  the other end and 

observe what happens. 

 Add more objects and again observe the results. 

 Compare the two springs to each other. 

 

i. Make notes on your  investigations  in  the  space below.   Use  the  space  at  right below  to 

draw an illustration. 

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________

__________________________________________________________ 
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Section 2: Preparing the experiment 

i. Set up the equipment as shown in Figure 2.1 

at right.  Take one of the springs (which we 

will call Spring 1 from now on) and attach it 

to  the  retort  stand  by  hooking  the  spring 

onto the clamp. 

While  the  spring  is  attached  to  the  retort 

stand  as  shown  in  the  diagram  at  right, 

measure the position of the top of the spring 

and the position of the pointer.   From these 

data, calculate the initial length of the spring 

in centimetres.  Enter the values in Table 2.1 

below. 

ii. Remove Spring 1.   Replace  it with Spring 2 

and make  the  same measurements.    Enter 

the values in Table 2.1 below. 

Figure 2.1:  Retort stand with spring and ruler. 

Table 2.1:  Initial length of springs. 

 
  Spring 1  Spring 2 

Position of top of spring     

Position of pointer     

Initial length     
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Section 3: Experimental procedure 

To  follow on with  the construction of your 

spring balance  it  is necessary  to  investigate 

the  stiffness of  each  spring.   The  following 

steps  will  allow  you  to  achieve  this  and 

enable you  to  compare  the  springs  to  each 

other. 

i. Attach Spring 1  to  the retort stand as  in 

Section 2,  and  hook  the  mass  hanger 

onto  the  other  end  of  the  spring  as 

shown in Figure 3.1 at right. 

Measure the new length of the spring as 

you  did  in  Section 2,  and  calculate  the 

extension  (change  in  length)  of  the 

spring.    Enter  your  measurements  for 

Spring 1 in Table 3.1 below. 

Figure 3.1:  Retort stand with spring and mass hanger. 

 

Figure 3.2:  Illustration of the extension of a spring. 

Table 3.1:  Length of springs with mass hangers attached. 

  Spring 1  Spring 2 

Position of top of spring     

New position of pointer     

New length of spring     

Extension     
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ii. Add  one  20 gram  disk  to  the mass  hanger.   Measure  the  new  position  of  the  pointer 

accurate to 1 mm, and calculate the new  length of the spring and  its extension (change  in 

length).  Enter your values in Table 3.2 below.  

Note:   The column  ‘extension’ should contain  the difference between  the  initial  length of 

the spring without the mass hanger from Table 2.1, and the new length. 

iii. Add  five more  20 g  disks,  one‐by‐one,  to  the mass  hanger  and  record  the  new  lengths 

(accurate  to  1 mm)  for  each disk  in Table 3.2 below.    In  the  column  labelled  ‘total mass 

added to mass hanger’, calculate the total mass added due to the 20 g disks. 

Table 3.2:  Measurements for Spring 1. 

object 

added 

total mass added 

to mass hanger (g) 

new pointer 

position (cm) 

new spring 

length (cm) 
extension (cm) 

disk 1  20       

         

         

         

         

         

 

iv. Starting  from  Section 2,  repeat  the  same  procedure with  Spring 2.    Record  the  data  in 

Table 3.1 on the previous page and in Table 3.3 below. 

Table 3.3:  Measurements for Spring 2. 

object 

added 

total mass added 

to mass hanger (g) 

new pointer 

position (cm) 

new spring 

length (cm) 
extension (cm) 

disk 1  20       

         

         

         

         

         

 

Make sure you discuss your answers with a tutor before you proceed. 
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Section 4: Graphical analysis 

This section deals with graphing the data you have gathered. 

i. Add the data you have gathered for both springs to the graph below.  You should plot the 

change in length of the spring in centimetres on the vertical axis and the total mass added 

to the hanger in grams on the horizontal axis.  Draw the best fit line for the data plotted for 

each spring.  Clearly label each line.  

Figure 4.1:  Graph representing the extension of the two springs 

for different masses added to the hanger. 

Experiment 1: Extension vs Total Mass Added to Mass Hanger
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ii. Suppose  you were  to  carefully  add  a  continuous 

stream of sand to the mass hanger when there are 

two disks attached to it.  Use a pencil to indicate in 

your graph how  the  length of  the spring changes.  

Explain. 

_____________________________________________

_____________________________________________

_____________________________________________

_____________________________________________

_____________________________________________ 

As  you  were  drawing  your  graph,  did  you 

consider the following points? 
Figure 4.2:  Adding sand to the mass hanger. 

 What quantities are plotted in the graph? 

 What if you added a total of 20 g of sand? 

 What if you added the sand more quickly? 

 

Adjust your graph if necessary. 

 

Section 5: Slopes 

In  everyday  language we may  use  the word  ‘slope’  to  describe  a  property  of  a  hill  or  a 

mountain.  For example, we may say that a hill has a steep or a gentle slope. 

 

Figure 5.1:  Three hills. 

i. Rank the three hills of Figure 5.1 from greatest to smallest height. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Rank the three hills from steepest to gentlest slope. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

In your own words, explain the difference between the height and the slope of a hill. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Generally, the slope tells you by how much the value on the vertical axis changes for a certain 

change of the value on the horizontal axis.  The slope of a graph is used to highlight important 

properties of a specific experiment. 

ii. Examine  the  graph  you  have  drawn  in  Section 4  and  describe  in  your  own words  the 

‘steepness’ of the slopes for Spring 1 and Spring 2. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

How can you use the slopes of the two best fit lines to compare the stiffness of the springs? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Section 6: Making a spring balance 

The investigations you have carried out in the 

previous  sections  can  now  be  used  to 

construct your spring balance. 

i. Set up the same experiment as in Section 2 

with  the  mass  hanger  attached  to  the 

spring. 

Attach  an  object  that  is  not  heavier  than 

the six slotted disks combined (e.g., a key, 

or a pen) to the mass hanger. 

Measure  the  extension  of  the  spring  and 

record  your  data.    Think  carefully  about 

how  you  calculate  the  extension:  what 

value should you use for the initial length? 

Figure 6.1:  Measuring the mass of an unknown object. 

________________________________________________________________________________

________________________________________________________________________________ 

ii. Use  your  graph  of  Figure 4.1  to  determine  the mass  of  the  object  you  put  on  the mass 

hanger.  Describe how you did this. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. To obtain  the most accurate value  for  the mass of your object, which  spring  should you 

use?  Explain.  If necessary, use the other spring to do this. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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iv. Measure  the mass of your object on a digital spring balance  in  the  laboratory.   Enter  the 

value in Table 6.1 below and compare this value to the mass you found using your balance. 

Table 6.1:  Mass of the object attached to the mass hanger. 

Mass of object 

Spring Balance (g)  Digital Spring balance (g) 

   

 

Do you think the spring balance you made is a good one? 

________________________________________________________________________________

________________________________________________________________________________ 

 

Section 7: Further analysis 

To analyse graphs further we can consider the following case: 

On  a  nice  summer’s  day  Dan  decides  to walk  up  the mountain  nearby  his 

house, which has a constant slope.  Being an eager climber Dan decides to bring 

his altimeter so he can tell his height above sea level.  However he doesn’t make 

any readings until he has walked 100 m  from his house and his altimeter  tells 

him that he  is 200 m above sea  level.   After 200 m he  is 250 m above sea  level, 

after 400 m he  is 350 m above sea  level and after 500 m he reaches a height of 

400 m above sea level. 

i. Complete the graph below.  Add a best fit line which you feel represents the case above. 

 

Figure 7.1:  Graph representing a mountain walk. 
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ii. Dan walks back home.   If the slope  is steady, can you use the graph to find the height of 

Dan’s house above sea level?  If so, how? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

The  points where  the  best  fit  line meets  the  horizontal  and  vertical  axes  are  known  as  the 

intercepts of the graph.  Like the slope of the graph, intercepts often relate useful information 

about an experiment. 

iii. Refer to the graph that both of you drew in Section 4 on page 5.   If you have not done so 
already, extend the best fit lines for each spring until they intersect both axes. 

iv. Suppose you took one disk off the mass hanger.  How could you use the graph to find the 

new extension of the spring? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

If all 20 g disks were removed, would the spring attain its initial length?  Explain how you 

can tell from the graph.  Is there still mass attached to the spring? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Make sure you discuss your answers with a tutor before you leave the lab. 

v. Enter  the values at which  the best  fit  lines  for Spring 1 and Spring 2  intersect  the vertical 

axis in Table 7.1 below. 

Table 7.1:  Intercepts with vertical axis. 

 
Spring  Vertical intercepts (cm) 

1   

2   
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Does  the measurement  for  each  spring  correspond  to  any measurement  that  you  have 

previously taken?  If so, state the measurement.  (Hint:  Take a look at your measurements 

from Section 3, pages 3 & 4.) For this experiment, what does this value tell you about the 

experiment? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

vi. Now look at where the best fit lines of Springs 1 and 2 intersect the horizontal axis.  When 

analysing the graph you saw that the extension varies regularly as disks are removed from 

the hanger.  Imagine removing the hanger.  How would you trace the change in length of 

the spring on the graph? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Write down  the values where  the best  fit  lines  for Spring 1 and 2  intersect  the horizontal 

axis in Table 7.2 below.  What units should you use? 

Table 7.2:  Intercepts with horizontal axis. 

Spring  Horizontal intercepts (   ) 

1   

2   

 

vii. How much mass is attached to the spring at the horizontal intercept?  Discuss in your own 

words what the horizontal intercept tells you about this experiment.  Make sure to discuss 

the sign (positive or negative) of the intercept. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Make sure you discuss your answers with a tutor before you leave the lab. 
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Experiment 4: Making a grandfather clock 

Check  that  you  have  at  your  disposal:  a  retort  stand,  a 

piece  of  string,  four  different  metal  cubes,  a  cork,  a 

protractor, two spring balances, and a stopwatch. 

 

Section 1: Exploration 

i. Set up the string, one of the metal cubes, the cork, the 

protractor and the retort stand as shown  in Figure 1.1.  

Get the cube to swing over a range of angles and string 

lengths. 

You do not need to make accurate measurements here 

–  just  observe  the  motion  in  a  qualitative  way.  

Describe the motion below.  Try different cubes. 

Figure 1.1:  Experimental set‐up. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

ii. In  the  remainder  of  this  experiment,  you will  investigate  the  time  it 

takes  for  a  block  to  swing  a  set  number  of  times  under  different 

conditions.    For  example,  you  will  investigate  the  effects  of  having 

cubes  with  different  mass  attached  to  the  string.    Based  on  your 

observations, decide on the values for the length of the string, number 

of  swings  and  starting  angle  you will  use  in  this  experiment.    (One 

swing counts as the bob swinging from the position on one side over to 

the other and back to its original position.) 

Figure 1.2:  Illustration of a swing. 
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Table 1.1:  Fixed quantities for the quantitative pendulum experiment of Section 2. 

Quantity & symbol  Value 

Number of swings for your experiment (between 1 and 15), N  

Fixed starting angle for your experiment,   

Fixed length of the string, lstring   

 

Comment on your decisions. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Describe in some detail the control of variables in this experiment. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. Many  students  in  the  class  are  likely  to have  chosen different values  for  the number of 

swings, N, the starting angle, , and the length of the string.  Suppose you had chosen the 
same  starting  angle  and  length  of  string  as  another  student,  but  had  picked  a different 

number of swings. 

Based  on  your  explorations  thus  far,  do  you  think  you would  have  found  the  same  or 

different values  for  the  time  tN  it  takes  to complete N swings?    If  the  times are different, 

could you manipulate your data in a straightforward way that allows you to compare the 

experimental results? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Section 2: Graphs and motion 

Figure 2.1 below charts the position of a ball on a taut string in an experimental set‐up like that 

of Section 1.  The angle between the string and the vertical is considered positive when the ball 

is to the right of the vertical and negative if it is to the left. 

 

Figure 2.1:  Graphical representation of the motion of an object on a taut string. 

i. Could this graph represent the motion of the object of Section 1?  Explain how you can tell. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

ii. Using only  the graph of Figure 2.1,  compare  the motion of  the ball  in  terms of direction 

(clockwise or anticlockwise) and how quickly the object moves during the following pairs 

of  intervals.    (Hint:   You may  find  it useful  to attach one of  the blocks  to  the string and 

execute the motion while answering the questions below). 

a. Interval A and interval B 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 
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b. Interval A and interval C 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

c. Interval A and interval F 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

d. Interval C and interval E 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

iii. Now pull the object through a small angle while keeping the string taut.  Release the object 

and  let  it  swing  freely.   Which of  the  three graphs below best  represents how  the angle 

between the string and the vertical changes with time?  Explain briefly. 

 

Figure 2.2:  Three possible graphical representations of the motion  

of a freely swinging object on a string. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Section 3: The effect of mass on the swing of a pendulum 

The period of a pendulum is defined as the time it takes to complete one swing.  In this section 

you will investigate the effect of mass on the period. 

i. Put forward a scientific hypothesis that predicts how mass affects the period of a swing.  It 

is  not  important whether  your  hypothesis  turns  out  to  be  correct; what matters  is  the 

process of  checking your hypothesis.   You  should  therefore not  change your hypothesis 

after you carry out the experiment. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

What aspects of your hypothesis make it scientific?  

________________________________________________________________________________

________________________________________________________________________________ 

Plan an experiment to test your hypothesis. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

 

Make sure you discuss your plans with a tutor before you continue. 

 

ii. Set  the  pendulum  swinging,  and  record  the  time  tN  it  takes  to  complete N  swings.  

Repeat the experiment for the four cubes of different mass m.  Use the spring balances 

to measure  the mass  of  each  cube  as  accurately  as possible.   Record  your  results  in 

Table 3.1 below, then use your data to calculate the period T of the motion. 
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Table 3.1:  Measurements taken at fixed length and starting angle. 

m (g)  m (kg) tN (___) T (___) 

   

   

   

   

 

It is unlikely that you got the exact same period for each of the four blocks.  Do you think 

that the differences are significant?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. Consider the following two hypotheses: 

Hypothesis A: “The greater the mass, the greater the period of the swing.” 

Hypothesis B: “Mass does not affect the period of the swing.” 

Do the results of your experiments prove either hypothesis?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Do the results of your experiments support either hypothesis?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Do the results of your experiments falsify either hypothesis?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

A25



Experiment 4:  Making a grandfather clock  47 

Developed by the Physics Education Group, CASTeL, Dublin City University  Winter 2009 

Section 4: The effect of length on the swing of a pendulum 

In this section you will investigate how the length of the pendulum affects the time taken for a 

set number of swings.  

i. Put forward a scientific hypothesis that predicts how length affects the period of a swing. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Plan an experiment to test your hypothesis. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

 

Make sure you discuss your plans with a tutor before you continue. 

 

ii. Adjust  the  experiment  such  that  the  pendulum  length  is  15 cm.  

All lengths should be measured from the centre of the cube to the 

pivot  (i.e.,  the bottom of  the  cork).   Set  the pendulum  swinging, 

and record  the  time  tN  it  takes  to complete N swings  in Table 4.1 

below.    Increase  the  length  in  steps  of  10 cm  and  repeat  the 

experiment for as many different lengths as you can. 

 

Figure 4.1:  Measuring the length of a pendulum. 
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Table 4.1:  Pendulum data taken at fixed mass and starting angle. 

l (cm) l (m)  tN (___) T (___)

       

 

Do your results support or falsify your hypothesis?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. Use your data from Table 4.1 to find the change in period ΔT for every change in pendulum 
length.  For example, if you recorded a period of 0.78 s for a 15 cm pendulum length and a 

period of 0.98 s for a 25 cm pendulum length, you would enter ‘0.20’ in the first row of the 

last column of Table 4.2. 

 
Table 4.2:  Changes in period with changing length. 

l1 (cm) to l2 (cm)  Δl (cm) ΔT (___)

15 to 25 

25 to 35 

10   

 

Does  the period change by  the same amount  for each 10 cm  increase  in  the  length of  the 

pendulum?  If not, do you think the differences are significant?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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iv. In  an  experiment  similar  to 

yours, a student only took four 

data  points.    She  changed  the 

length  of  the  pendulum  by 

equal amounts each time. 

Figure 4.2  at  right  shows  four 

possible  graphs  for  her  data.  

Each  graph  shows  how  the 

period  of  the  pendulum 

changes  when  the  length  is 

changed. 

Assuming  her  data  follow  a 

similar pattern  to yours, which 

graph best represents her data?  

Explain  how  the  arrows  help 

you obtain an answer. 

Figure 4.2:  Possible best fit lines to show how the  

period of a pendulum varies with its length. 

________________________________________________________________________________

________________________________________________________________________________ 

For the other three graphs, describe what data you would need to obtain them. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

v. Plot your data  in Figure 4.3 overleaf.     Use your graph  to estimate how  long you would 

need  to  make  the  pendulum  to  get  a  period  of  1.0 s,  and  verify  your  estimate 

experimentally.  You have then put together some of the essentials of a grandfather clock. 

Predicted length:  _________ 

Experimental length:  _________ 
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Figure 4.3:  Variation of the period of your pendulum with length. 
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Experiment 3: Uniform motion 

Make sure  that you have at your disposal: a double  track, a metre stick,  two balls  (marbles), 

two ramps, ten cubes, and a stopwatch. 

 

Section 1: Exploration 

Set up the track as in Figure 1.1 below.  You will use only one ball and one of the ramps.  Use 

the ramp to set the ball in motion and let it roll along the track.  (Hint:  It is useful to block the 

ball at the end of the track.) 

 

Figure 1.1:  Flat track with ramp for uniform motion experiment. 

i. Predict if the ball will speed up, slow down or travel at constant speed as it rolls along the 

track after is released from a point on the ramp.   You need only consider the time when 

the ball is on the track, not when it is on the ramp. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Use the metre stick to divide the portion of the track the ball rolls on into two segments of 

equal length.  Use two of the cubes as markers; do not use pen or pencil to mark the track.  

Allow the ball to run from a point at least halfway up the ramp.  

Starting  the stopwatch when  the ball gets onto  the  track, record  the  time  it  takes for  the 

ball to reach each of the cubes in Table 1.1 on the next page.  Start the stopwatch when the 

ball gets onto the track.  Then calculate the time it took the ball to get from the first to the 

second cube. 
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Note:  You can record both times with one roll of the ball if you follow this procedure: 

1. To start the stopwatch, press the right button.  The timer will start. 

2. When the ball passes the first cube, press the left button.   The timer seems to stop but 

does not. 

3. When the ball passes the second cube, press the right button. 

4. To read the time when the ball passed the second cube, press the left button again. 

5. To reset the stopwatch, press the left button once more. 

 

Table 1.1:  Time it takes the ball to traverse different segments of the track. 

Time to reach first cube   

Time to reach second cube   

Time to get from first to second cube   

 

ii. Check if your prediction was correct.  If not, give a likely reason why your prediction was 

incorrect. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. Plan an experiment to  investigate the effect of the angle of the track on the motion of the 

ball on  the  track.   As before, divide  the  track  into  two equal segments.   Use some of  the 

other cubes to change the angle of the track (see Figure 1.2). 

 

Figure 1.2:  Angled track with ramp for uniform motion experiment. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Describe how you plan  to control  the variables as much as possible, and how you made 

your measurements as accurate as possible. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Adjust the angle of the track by changing the number of cubes under one end of the track 

(see  Figure 1.2).   With  the  track  divided  in  two, make measurements  to  determine  for 

which number of cubes you get closest to uniform motion. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iv. Release the ball from 1 cm below the original position on the ramp.  Predict if the ball will 

travel in uniform motion, will accelerate, or will slow down along the track.   Also predict 

whether it will travel faster, slower, or with the same speed. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Repeat the experiment using the same set‐up, but release the ball from its new position on 

the ramp.  Enter your results in Table 1.2 below. 

Table 1.2:  Time it takes the ball to traverse different segments of the track from a different position. 

Time to reach first cube   

Time to reach second cube   

Time to get from first to second cube   
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Does  the position  from which you release  the ball affect whether  it  travels with constant 

speed along the track? 

________________________________________________________________________________

________________________________________________________________________________ 

 

Section 2: Motion at constant speed 

i. Set up  the  track  such  that  the ball  is  in uniform motion  (i.e.,  the ball  rolls with  constant 

speed). 

Again  using  cubes, mark  off  four  segments  of  equal  length  between  the  start  and  end 

points on  the  track as  shown  in Figure 2.1.    If you are  to  release  the ball  from  the  same 

point on the ramp as before, is it possible to predict how much time it will take for the ball 

to reach each cube?  If so, calculate the length of each time interval. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

 

Figure 2.1:  Angled track with five cubes.  The distances x and d are shown for the first cube. 

Measure the distance from each of the blocks to the ramp, x, and the distance to the edge of 

the track nearest the ramp, d.  Carry out the experiment, and record the time it takes for the 

ball to reach each of the four cubes in Table 2.1, which you should give an appropriate title.  

Carry out your experiment at  least  twice  to obtain an average  for each of  the  times you 

measured. 

Table 2.1: _______________________________________________________________ 

 

cube  x (cm)  d (cm)  t1 (s)  t2 (s)    tav (s) 

1             

2             

3             

4             
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ii. Plot the motion recorded in Table 2.1 in two different ways in the distance‐time graphs of 

Figure 2.2  below.    In  distance‐time  graphs,  time  is  plotted  on  the  horizontal  axis while 

distance is plotted on the vertical axis.  In the top graph, plot a distance‐time graph for the 

distance  from  the ball  to  the  ramp  (i.e., plot  x  against  t).    In  the bottom graph, plot  the 

distance  from  the  ball  to  the  edge  of  the  track  nearest  the  ramp  (d  against  t).    In both 

graphs, t=0 when the ball leaves the ramp. 

 

Figure 2.2:  Distance‐time graph for ball rolling along a track with constant speed.  Top: measured 

from the ramp.  Bottom:  Measured from the edge of the track nearest the ramp. 
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iii. Take two points on the top graph of Figure 2.2 that are quite far apart.  Label those points 

A and B, and enter the values for the distance, xA and xB, and time, tA and tB,  in Table 2.2 

below. 

Read values for the distance to the edge of the track at times tA and tB, dA and dB, from the 

bottom graph, and enter your values in Table 2.2. 

Table 2.2: _______________________________________________________________ 

 

Quantity value 

xA   

xB   

tA   

tB   

dA   

dB   

 

iv. Consider the following student conversation. 

Student 1:  “The speed of the ball  is constant.   I can calculate this speed either by 

dividing  distance  over  time  at  point A,  or  at  point  B  –  it  does  not 

matter.” 

Student 2:  “The speed between A and B is given by the distance travelled between 

points A and B, divided by the time taken to travel from A to B.” 

Student 3:  “I think you’re both right – you’re saying the same thing in a different 

way.” 

In the space below, write out the two calculations proposed by Student 1 using some or all 

of the variables xA, xB, tA, and tB.  In each case, obtain a numerical value. 

 

In the space below, write out the two calculations proposed by Student 1 using some or all 

of the variables dA, dB, tA, and tB.  In each case, obtain a numerical value. 
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In the space below, write out the calculation proposed by Student 2 using some or all of the 

variables xA, xB, tA, and tB.  Obtain a numerical value. 

 

In the space below, write out the calculation proposed by Student 2 using some or all of the 

variables dA, dB, tA, and tB.  Obtain a numerical value. 

 

Explain why the two graphs of Figure 2.2 must represent motion with the same speed. 

________________________________________________________________________________

________________________________________________________________________________ 

Which of  the calculations above give(s) you  the numerical value of  the speed of  the ball?  

Explain briefly. 

________________________________________________________________________________

________________________________________________________________________________ 

With which, if any, of the three students do you agree?  Explain. 

________________________________________________________________________________

________________________________________________________________________________ 
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v. In Graphs 1‐4 in Figure 2.3 below, t1, t2, t3, and t4 represent four equal time intervals, while 

x1, x2, x3, and x4  represent the corresponding change in distance during each time interval.  

Which of the graphs represent(s) uniform motion?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

 

Figure 2.3:  Four graphs representing motion of an object. 

What is different about the motions each graph represents?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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vi. Three students have carried out an experiment similar  to yours.   They have plotted  their 

results in the graph shown in Figure 2.4 below. 

 

Figure 2.4:  Distance‐time graph for ball rolling along a track with constant 

speed obtained in an experiment similar to yours. 

Consider the following three statements made by the students: 

Student 1:  “I  know  that  the  speed  of  the  ball  was  constant,  because  we  got  a 

straight line graph.” 

Student 2:  “I  agree.   You  can  see  that  the  ball  gets  closer  to  the  edge  by  30 cm 

every 0.5 seconds, so the speed of the ball is 0.6 m/s.” 

Student 3:  “I  think  the ball  is slowing down.   Speed  is distance over time.   After 

half  a  second,  the  ball  was  1.1 m  from  the  edge,  so  the  speed  was 

2.2 m/s.  Then after one second, the ball was 80 cm from the edge, so the 

speed was 0.8 m/s.” 

With which student(s) do you agree?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Section 3: Two‐dimensional uniform motion 

i. Obtain a sheet of paper divided lengthways into four segments of equal length.  Place the 

long side of the sheet parallel to the long side of the table, and place the track on the sheet 

such  that  the  location where ball gets onto  the  track  lies directly above one corner of  the 

sheet, and the end point of the track  is above the diagonally opposite corner.   Make sure 

the ball travels in uniform motion along the track. 

Figure 3.1: Grid for investigation of motion in two dimensions. 

ii. Consider the following hypothesis: 

“While the ball is rolling with constant speed along the track, it will take equal amounts 

of time to traverse each segment on the paper.” 

Set up an experiment to test this hypothesis.  Record your results in Table 3.1 below.  

Table 3.1:                  

 

iii. Do the results of your experiment confirm of falsify the hypothesis? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

A39



Experiment 3:  Uniform motion  37 

Developed by the Physics Education Group, CASTeL, Dublin City University  Winter 2009 

When the track is placed diagonally across the sheet, you can think of the motion of the ball as 

consisting  of  two  components:  one  component  parallel  to  the  long  side  of  the  sheet 

(“lengthways”), and one component parallel to the short side of the sheet. 

iv. While  the  ball  is  rolling with  constant  speed  along  the  track,  can  you  consider  it  to  be 

moving with constant speed in the lengthways direction also?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

v. Turn the sheet over to the side that is divided sideways into three segments of equal length.  

Investigate whether  the  ball  travelling  at  constant  speed  along  the  track  is  travelling  at 

constant speed in the sideways direction.  Enter your data in Table 3.2 below. 

Table 3.2:                  

 

What conclusion do you draw from your investigation? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Section 4: Two balls 

i. Imagine two tracks, A and B, are set up beside each other.  Figure 4.1 shows distance‐time 

graphs for two balls moving on the tracks in a single experiment. 

 

Figure 4.1:  Distance‐time graph for two balls rolling along two tracks. 

ii. Using Figure 4.1 only, answer the questions below with a brief explanation. 

a. Do both balls travel with constant speed? 

_____________________________________________________________________________

_____________________________________________________________________________ 

b. Do both balls travel with the same speed? 

_____________________________________________________________________________

_____________________________________________________________________________ 

c. Do both balls start at the same time? 

_____________________________________________________________________________

_____________________________________________________________________________ 

d. Which ball passes the end point on the track first? 

_____________________________________________________________________________

_____________________________________________________________________________ 
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e. Does one of the balls overtake the other? 

_____________________________________________________________________________

_____________________________________________________________________________ 

iii. Set up an experiment that allows you to reproduce the motion of the two balls displayed in 

Figure 4.1 as accurately as possible.  Report on your work below. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Experiment 5: Non‐uniform motion 

In this experiment you will investigate non‐uniform motion in one and two dimensions.  Make 

sure that you have at your disposal: a 2 foot by 4 foot board, a ball (marble), a ramp, a sheet of 

paper, about twenty cubes, and a stopwatch. 

WARNING! 

You will be asked to support the board in various ways.  The board is quite heavy – make sure 

your fingers do not get caught under the board.  You may find it useful to put a small 

(dispensable) object under the board for safety. 

 

Section 1: Getting started 

i. Place  the  ramp  and  the  sheet  of  paper  (pre‐marked  with  lines  25 cm  apart  in  the 

lengthways direction) on the board as shown in Figure 1.1 below.  Use the board, the cubes 

and the ramp to set up an experiment to investigate non‐uniform motion. 

When  the  ball  gets  onto  the  board,  it  should  clearly  slow  down  as  it  travels  along  the 

length  of  the  board.   The ball  should  reach  the  100 cm  line  and  take between  1.5 and 

2.0 seconds to do so.  Adjust the number of cubes under the board if necessary. 

 

Figure 1.1:  Arrangement of ramp, board and sheet of paper to investigate non‐uniform motion. 

Describe your set‐up in some detail.   What are the variables over which you have control 

that affect the motion of the ball along the track?  How did you ensure your experiment can 

be carried out repeatedly and give reproducible results? 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________
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________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

ii. Record  the  time  it  takes  the ball  to  reach  the  lines  at  50 cm  and  100 cm  from  the  ramp.  

Then calculate the time it took the ball to get from the 50 cm line to the 100 cm line.  Repeat 

the experiment and calculate the average times in each case. 

Table 1.1:  Time it takes the ball to traverse different segments of the board. 

  Attempt 1  Attempt 2  Average 

Time to reach 50 cm       

Time to reach 100 cm       

Time to get from 50 cm to 100 cm       

 

Section 2: Measuring change in motion 

i. If you are  to release  the ball  from  the same point on  the ramp as before,  is  it possible  to 

predict how much  time  it will  take  for  the ball  to reach each of  the  lines at 25 cm, 50 cm, 

75 cm, and 100 cm from the ramp?  If so, calculate each time.  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Record the time it takes for the ball to travel 25 cm, 50 cm, 75 cm, and 100 cm in Table 2.1 

below.  You should give the table an appropriate title. 

Table 2.1: ______________________________________________________ 
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ii. Shown in Figure 2.1 below are three possible best fit lines for your data. 

 

Figure 2.1:  Possible best fit lines to the data in Table 2.1. 

Which of the graphs above best represents the motion of the ball as it travels up the board?  

Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iii. Plot  the motion you  just  recorded  in a distance‐time graph  in Figure 2.2 overleaf.   Time 

should be plotted on the horizontal axis, distance on the vertical axis.   Decide whether to 

draw a straight‐line through the points or a smooth curve.  Explain your choice. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 
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Figure 2.2:  Motion of a ball on an incline. 

iv. In your prelab you practiced the use of tangents to determine the slope of a curved line at a 

specific point.  Use this technique to determine the speed of the ball at four different points 

along the track.  (They do not have to be the points at which you measured the times). 

You can determine two of the speeds while your partner determines the other two.  Record 

the  speeds  you  obtained  along with  their  corresponding  time  in  a  suitably  titled  table 

below.  Include your partner’s results in your table. 

Table 2.2:                     
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Section 3: Two‐dimensional motion 

i. Set up the equipment as in Figure 3.1 below in such a way that uniform motion is attained 

when the ball is released from the ramp.  (Hint:  You will probably need to raise the short 

side of the board by three to six cubes to achieve uniform motion.  You will need to verify 

how many cubes exactly you need.) 

Adjust the height from which you release the ball so that it takes about 1.6 seconds for the 

ball to travel between the 0 cm and 100 cm lines.  Taking measurements at two points, e.g. 

the 50 cm and 100 cm lines, will suffice.  Enter your data in Table 3.1 below. 

 

Figure 3.1:  Cubes added to achieve uniform motion. 

 
Table 3.1:  Parameters when the ball is in uniform motion. 

  Attempt 1  Attempt 2  Average 

No. of cubes needed for uniform motion, N       

Time to reach 50 cm       

Time to reach 100 cm       

Time to get from 50 cm to 100 cm       

 

ii. Remove  the N  cubes.   Now  raise  the  long  side  of  the  board  by  placing  two  three‐cube 

stacks under the board as shown in Figure 3.2. 

 

Figure 3.2:  Cubes used to raise the board for accelerated motion. 
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Release  a  ball  from  rest  near  the  high  side  of  the  board.   Do  not  use  the  ramp  here. 

Investigate qualitatively the motion of the ball on its release. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

 

You have  seen  that by  raising  the  short  side by N  cubes, uniform motion  is  attained  in  the 

lengthways direction.   When you  raised  the  long  side by  three  cubes,  the ball undergoes  a 

different  type of motion  in  the sideways direction.   Now you will  investigate what happens 

when we do both simultaneously. 

iii. Combine the two effects achieved in Parts 1 and 2 of this section by adding the number of 

cubes (N) needed to achieve uniform to the same corners as in Figure 3.1.  As a result, you 

should have one corner with no cubes under it, one corner with 3 cubes, one corner with N 

cubes, and one corner with N+3 cubes: see Figure 3.3 below. 

 

Figure 3.3:  Adding N cubes to two corners the set‐up of Figure 3.2. 

Move  the  ramp  to  the high  side of  the paper as  shown.   Release  the ball  from  the  same 

point on the ramp.  Sketch path the ball takes in Figure 3.4 below. 

 

Figure 3.4:  Top view of the observed path of the ball on the board. 
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Investigate quantitatively whether the ball speeds up, slows down, or moves with constant 

speed in the lengthways direction.  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Investigate quantitatively whether the ball speeds up, slows down, or moves with constant 

speed in the sideways direction.  (You need to flip over the sheet of paper.)  Report on your 

investigation. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Does  it seem  to be possible  to change  the motion of  the ball  in  the  lengthways direction 

without changing its motion in the sideways direction?  Explain. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

iv. A student makes the following statement: 

“I measured that it took the ball less time to traverse the second segment in the sideways 

direction than the first, but my measurements are not exact.  It is impossible to tell if the 

motion of the ball in the sideways direction is uniform or not.” 

Do  you  agree with  this  student?    If  not,  explain  how  you would  try  to  persuade  the 

student. 

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________

________________________________________________________________________________ 

Make sure you discuss your answers with a tutor before you leave the lab. 
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Section 4: Representing non‐uniform motion in a graph 

i. Figure 4.1  shows  a  ball  on  a hypothetical  track  consisting  of  five  segments 1‐5  of  equal 

length.  The ball is released with zero initial speed from the top of segment 1. 

 

Figure 4.1:  Side view of a hypothetical track and a ball. 

a. On what,  if any, of  the segments does  the ball  travel with constant speed?   If  there  is 

more than one such segment, how do the speeds on these segments compare?  Explain. 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

b. On what, if any, of the segments does the ball travel with increasing speed?  If there is 

more than one such segment, how do the initial speeds and the accelerations on these 

segments compare?  Explain. 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

c. On what, if any, of the segments does the ball travel with decreasing speed?  If there is 

more than one such segment, how do the initial speeds and the accelerations on these 

segments compare?  Explain. 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 
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ii. Figure 4.2 below shows five different distance‐time graphs A‐E.  All graphs have the same 

scale, and each represents the motion of the ball on one of the segments. 

 

Figure 4.2:  Five distance‐time graphs.  The scales on each graph are the same. 

Use  your  answers  to  part i  above  to  identify which  graph  represents  the motion  on 

what segment of the track.  Explain briefly. 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

d. Sketch  the  shape of  the distance‐time graph  for  the  entire motion  along  the  track  in 

Figure 4.3 below. 

 

Figure 4.3:  Distance‐time graph for the ball on the track of Figure 4.1. 

Make sure you discuss your answers with a tutor before you leave the lab. 
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Experiment 9: Bouncing balls 

Check that you have at your disposal: a pingpong ball, a meter stick, a retort stand with clamp, 

and a stopwatch. 

 

Section 1: General comments 

This is the first investigation that you will carry out in the physics labs.   You will first set up 

investigations into two prescribed aspects of the motion of a bouncing ball.  In the last section, 

you will investigate any aspect you choose. 

The structure of each investigation is a lot like what you have done in the labs so far.  For each 

of the investigations you will carry out, think about the following issues: 

 What do I need to measure to verify my hypothesis? 

 How can I achieve control of variables? 

 How many different measurements will I make? 

 How many repeat measurements will I make? 

 How can I make your experiment as accurate as possible? 

 Is the accuracy of your experiment sufficient to falsify or confirm my hypothesis? 

 

Notes on how to write your reports are given in the Appendix. 

 

Section 2: Multiple bounces 

In this section you will investigate how the maximum height reached by the ball changes after 

successive bounces on the floor or table. 

You are to investigate two hypotheses: 

Hypothesis 1:  “The  maximum  height  reached  by  the  ball  decreases  by  the  same 

amount after every bounce.” 

Hypothesis 2:  “The  ratio  of  maximum  heights  reached  by  the  ball  on  successive 

bounces is constant.” 
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A few hints to help you with the investigation: 

 Ensure  that  the height  from which you drop  the ball and  the maximum height  it reaches 

after the first bounce are approximately constant 

 Make measurements for a reasonable number of bounces 

 Repeat the experiment a reasonable number of times, and average your results  

 State whether you have falsified or confirmed the hypothesis 

 Plot the maximum height against the number of bounces (i.e., plot the maximum height on 

the vertical  axis  and  the number of bounces on  the horizontal  axis).   You may  treat  the 

release height as the height after zero bounces.  Explain what sort of line you drew. 

 

Section 3: Drop time and rise time 

When you drop a ball from a height, it takes a certain time to reach the floor or table (which we 

will call the drop time), before it bounces back up and rises to a different height.   We will call 

the time it takes the ball to get from the floor or table to its highest point the rise time. 

You are to investigate the following hypothesis: 

“The rise time is greater than the drop time.” 

A few hints to help you with the investigation: 

 Ensure  that  the height  from which you drop  the ball and  the maximum height  it reaches 

after the bounce are approximately constant 

 Measure the drop and rise times in such a way that e.g. your reaction time when using the 

stopwatch does not impede interpretation of your results.  For best results, place the metre 

stick in a retort clamp on the table and measure the drop time to the floor. 

 Repeat the experiment a reasonable number of times, and average your results 

 State whether you have falsified or confirmed the hypothesis 

 

Section 4: Further investigations 

In  this  section, you are  free  to  carry out any  investigation on bouncing balls  that you  like – 

provided  it has something  to do with physics, and  it doesn’t  interfere with others – with  the 

materials  available  in  the  lab. To  give  you  some  ideas,  you  could  investigate  the  following 

questions: 

 How does the drop time change when the ball is released from different heights? 

 How much time elapses between successive bounces? 

 Do balls bounce differently off different materials? 

 Does the horizontal speed of a ball affect the drop time? 

 Does a drop affect the horizontal speed of a ball? 

 Is there a relationship between the incident and rebound angles?   
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There  are  many  more  experiments  you  can  do,  and  many  variations  to  the  experiments 

suggested  above.    Remember  that  this  is  a  two‐and‐a‐half  hour  lab:  you must  finish  your 

individual reports on your investigation(s) before leaving the lab. 

You  will  be  graded  on  the  quality  of  your  scientific  hypothesis,  your  data,  the  way  you 

represented your data, your conclusions, and the clarity of your report. 

 

Appendix:  Reports 

Your report on your investigations should contain the following elements: 

 A brief introduction which includes the hypothesis that you wish to put to the test 

 A  description  of  the  experiment.  To  help  you  describe  the  experiment  consider  the 

following points: 

 Use of diagrams to show the set‐up is recommended! 

 Include a discussion of the control of variables. 

 How many different measurements will you make? 

 How many repeat measurements will you make? 

 How did you make your experiment as accurate as possible? 

 Your results, including tabulated data and graphs. Write a brief discussion considering the 

following points: 

 Is your best‐fit line a smooth curve or a straight line?  Why did you choose one over the 

other? 

 Can useful information (e.g., slope, intercept, etc.) to be gleaned from the graph? 

 A conclusion – can you confirm or reject your hypothesis? 

 How does the shape of the graph or your data verify or falsify your hypothesis? 

 Is the accuracy of your experiment sufficient to decide either way? 

 

Your individual report is due at the end of the lab session. Give each investigation a title and 

use  headings  for  the  different  sections  within  each  investigation  (e.g.,  introduction, 

experimental set‐up, results and discussion, conclusion). 
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Experiment 10: The Egg Bungee  

Check that you have at your disposal: a spring, a slotted mass set, a metre stick with clamps 

and a retort stand.  

 

Section 1: Introduction 

In this experiment, the challenge is to get an egg that is attached to a spring (bungee) to fall as 

close  to  the  table  as  possible without breaking.   You will  only  get  the  egg  after  you  have 

collected data  that allows you  to predict  from what height you  should  release  the egg.   All 

eggs  in  the  lab  have  a  mass  between  50 and  95 g.    You  will  measure  the  mass  and  the 

dimensions of the egg after you have collected all other data. 

Your investigation falls into three sections: 

 Preliminary observations & questioning 

 Collection of data  that will  allow you  to predict how  close  the  egg will get  to  the  table 

without hitting it 

 The egg bungee jump and evaluation 

 

All questions should be answered on blank sheets of paper, each with your name and date on 

it. 

Notes on how to write your reports are given in the Appendix. 

 

Section 2: Preliminary observations 

As always, you are encouraged to plan your experiment and explore your experimental set‐up 

before making measurements.  Make sure your investigations include the following points: 

 Drop  the mass  hanger  from  an  unstretched  spring.   Observe what  happens when  you 

change  some  of  the  variables.    Discuss  what  variables  you  changed  and  what  you 

observed. 

 Discuss the challenges in accurately recording the minimum distance of the mass hanger to 

the table.  What is the easiest way for you to record the distance? 

 Draw free body diagrams to describe the forces on the mass hanger just before you let go of 

the mass hanger, just after you let go of it and it is in free fall, and when the spring is at its 

maximum extension. 
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Section 3: Collection of data 

In  this  section, you  should plan an experiment  in which you collect data  that allows you  to 

predict  how  close  the  egg  will  get  to  the  table  without  hitting  it  when  released  from  n 

unstretched spring.    (Hint:   You may  find  it useful  to  represent  the data  in graphical  form.) 

Your description that you hand up should include: 

 Your experimental set‐up, and how you used it to record your data 

 Why the set of data that you recorded is suitable in allowing you to get the egg as close as 

possible to the table without breaking  

 Why you need to know the mass and the dimensions of the egg (you will measure these in 

Section 4) 

 All relevant data presented in suitable form (tables, graphs, etc.) 

 

Section 4: Egg Bungee and Evaluation 

For  this part of  the  investigation you will be given your egg.   Record any necessary 

measurements  of  the  egg  that  you  need.   Vernier  calipers  and  a mass  balance  are 

available. 

Before you make the egg do a bungee jump, explain in detail the setup that you think 

will get the egg as close to the table as possible without breaking it. 

Carry out your experiment.  How far was the egg away from the table or did the egg 

hit the table?  Evaluate your prediction and discuss any ways in which you could have 

improved on it in hindsight. 
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Appendix:   Reports 

Your report on your investigations should contain the following elements: 

 A brief introduction which includes the hypothesis that you wish to put to the test 

 A description of the experiment.  Consider the following points: 

 Use of diagrams to show the set‐up is recommended! 

 Include a discussion of the control of variables. 

 How many different measurements will you make? 

 How many repeat measurements will you make? 

 How did you make your experiment as accurate as possible? 

 Your results, including tabulated data and graphs.  Considering the following points: 

 Is your best‐fit line a smooth curve or a straight line? 

 Can useful information (e.g., slope, intercept, etc.) be gleaned from the graph?  

 A conclusion – can you confirm or reject your hypothesis? 

 How does the shape of the graph or your data verify or falsify your hypothesis?  

 Is the accuracy of your experiment sufficient to decide either way? 

Your individual report is due at the end of the lab session.  Give each investigation a title and 

use  headings  for  the  different  sections  within  each  investigation  (e.g.,  introduction, 

experimental set‐up, results and discussion, conclusion). 
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