Chrupała, Grzegorz, Dinu, Georgiana and van Genabith, Josef (2008) Learning morphology with Morfette. In: LREC 2008 - Sixth International Conference on Language Resources and Evaluation, 28-30 May 2008, Marrakech, Morocco.
Abstract
Morfette is a modular, data-driven, probabilistic system which learns to perform joint morphological tagging and lemmatization from morphologically annotated corpora. The system is composed of two learning modules which are trained to predict morphological tags and lemmas using the Maximum Entropy classifier. The third module dynamically combines the predictions of the Maximum-Entropy models and outputs a probability distribution over tag-lemma pair sequences. The lemmatization module exploits the idea of recasting lemmatization as a classification task by using class labels which encode mappings from wordforms to lemmas. Experimental evaluation results and error analysis on three morphologically rich languages show that the system achieves high accuracy with no language-specific
feature engineering or additional resources.
Metadata
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Event Type: | Conference |
Refereed: | Yes |
Subjects: | Computer Science > Machine translating |
DCU Faculties and Centres: | Research Institutes and Centres > National Centre for Language Technology (NCLT) |
Official URL: | http://www.lrec-conf.org/proceedings/lrec2008/ |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
Funders: | Science Foundation Ireland, SFI 04/IN/I527 |
ID Code: | 15190 |
Deposited On: | 16 Feb 2010 14:13 by DORAS Administrator . Last Modified 19 Jul 2018 14:50 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
117kB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record