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Abstract roll et al., 1999), OpenCCG (White, 2004) and
XLE (Crouch et al., 2007). As handcrafting gram-
mar rules is time-consuming, language-dependent
and domain-specific, recent years have witnessed re-

search on extracting wide-coverage grammars auto-

We describe three PCFG-based models for
Chinese sentence realisation from Lexical-
Functional Grammar (LFG) f-structures. Both
the lexicalised model and the history-based

model improve on the accuracy of a simple
wide-coverage PCFG model by adding lexical
and contextual information to weaken inap-
propriate independence assumptions implicit
in the PCFG models. In addition, we pro-
vide techniques for lexical smoothing and rule
smoothing to increase the generation cover-
age. Trained on 15,663 automatically LFG f-
structure annotated sentences of the Penn Chi-
nese treebank and tested on 500 sentences ran-
domly selected from the treebank test set, the

matically from annotated corpora, for both parsing
and generation. FERGUS (Bangalore and Rambow,
2000) took dependency structures as inputs, and pro-
duced XTAG derivations by a stochastic tree model
automatically acquired from an annotated corpus.
Nakanishi et al. (2005) presented log-linear models
for a chart generator using a HPSG grammar ac-
quired from the Penn-Il Treebank. From the same
treebank, Cahill and van Genabith (2006) automati-
cally extracted wide-coverage LFG approximations

lexicalised model achieves a BLEU score of
0.7265 at 100% coverage, while the history-
based model achieves a BLEU score of 0.7245
also at 100% coverage.

for a PCFG-based generation model.

In addition to applying statistical techniques to
automatically acquire generation grammars, over the
last decade, there has been a lot of interest in a
. generate-and-select paradigm for surface realisation.
1 Introduction The paradigm is characterised by a separation be-

Sentence generation, or surface realisation can Béeen generation and selection, in which symbolic
described as the problem of producing syntactor rule-based methods are used to generate a space
cally, morphologically, and orthographically cor-Of possible paraphrases, and statistical methods are
rect sentences from a given abstract semanticused to select one or more outputs from the space.
logical representation according to some linguistiStarting from Langkilde (2002) who used a n-gram
theory, e.g. Lexical Functional Grammar (LFG)language model to rank generated output strings, a
Head-Driven Phrase Structure Grammar (HPSG?,ubstantial number of traditional handcrafted sur-
Combinatory Categorial Grammar (CCG), Tree Adface realisers have been augmented with sophisti-
joining Grammar (TAG) etc. Grammars, such asated stochastic rankers (Velldal and Oepen, 2005;
these, are declarative formulations of the correspoi¥vhite et al., 2007; Cahill et al., 2007).

dences between semantic and syntactic representait is interesting to note that, while the study of
tions. Traditionally, grammar rules have been cardiow the granularity of context-free grammars (CFG)
fully handcrafted, such as those used in LinGo (Carffects the performance of a parser (e.g. in the form
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of grammar transforms (Johnson, 1998) and lexicatesentation: c(onstituent)-structure and f(unctional)-
isation (Collins, 1997)) has attracted substantial astructure. C-structure takes the form of phrase struc-
tention, to our knowledge, there has been a lot ledare trees and captures surface grammatical config-
research on this subject for surface realisation, a prarations. F-structure encodes more abstract gram-
cess that is generally regarded as the reverse pmoatical functions (GFs) such agiBJect),oBJect),
cess of parsing. Moreover, while most of the reADJUNCT and TOPIC etc., in the form of hierar-
search so far has concentrated on English or Eurohical attribute-value matrices. C-structures and
pean languages, we are also interested in generatibstructures are related by a piecewise correspon-
for other languages with diverse properties, such akence functiony that goes from the nodes of a c-
Chinese which is currently a focus language in parstructure tree into units of f-structure spaces (Ka-
ing (Bikel, 2004; Cao et al., 2007). plan, 1995). As illustrated in Figure 1, given a
In this paper, we investigate three generative-structure noder;, the corresponding f-structure
PCFG models for Chinese generation based aromponentf; is ¢(n;). Admissible c-structures
wide-coverage LFG grammars automatically exare specified by a context-free grammar. The cor-
tracted from the Penn Chinese Treebank (CTB). Ouesponding f-structures are derived from functional
work is couched in the framework of Lexical Func-annotations attached to the CFG rewriting rules.
tional Grammar and is implemented in a chart—style(l) a.
generator. We briefly describe LFG and the basic
generation model in Section 2. We improve the

P — NP VP
[TsuBx|] [1=l]

baseline PCFG model by weakening the indepen- b vp — W NP
dence assumptions in two disambiguation models in [1=11 [ToBxl]
Section 3. Section 4 describes the smoothing algo- ¢ NP — NR NN
rithms adopted for the chart generator and Section 5 [Tabs=]] [T=l]
gives the experimental details and results. d NP — NR

[1=1]

2 LFG-Based Generation

(1) shows a miniature set of annotated CFG rules
(lexical entries omitted) which generates the c- and
Lexical Functional Grammar (Kaplan and Bres{-structure in Figure 1. In the functional annotations,
nan, 1982) is a constraint-based grammar formafq) refers to the f-structure associated with the local
ism which postulates (minimally) two levels of rep-c-structure node;, i.e. ¢(n;), and () refers to the

2.1 Lexical Functional Grammar



Model Grammar Rule Conditions

PCFG VP[1=]] — VV[1=]]NP[t0oBX]] VP[1=]], {PRED, SUBJ OBJ}
HB-PCFG | VP[1=]|] — VV[1=]]NP[t0oBX]] VP[1=]], {PRED, SUBJ, OBJ}, TOP
LEX-PCFG | VP(&IL)[1=]] — W(&I)[1=INP(&#)[ToBx]] | VP(&I)[1=]], {PRED, SUBJ OBJ}

Table 1: Examples of f-structure annotated CFG rules (fraynde 1) in different models

f-structure associated with the mothérY node of phenomena. Methodologies such as lexicalisa-

ng, i.e. (M (n;)). tion (Collins, 1997; Charniak, 2000) and tree trans-
_ formations (Johnson, 1998), weaken the indepen-
2.2 Generation from f-Structures dence assumptions and have been applied success-

The generation task in LFG is to determine whicully tO_ parsing and ShOW”_ signifieant improvements
sentences correspond to a specified f-structurBVer simple PCFGs. In this section we study the ef-
given a particular grammar, such as (1). KaplalfPC_t of such methods in LFG-based generation for
and Wedekind (2000) proved that the set of string&ninese.

generated by an LFG grammar from fully speci5q A History-Based M odel
fied f-structures is a context-free language. Based ] o
on this theoretical cornerstone, Cahill and van GenT—he history-based (HB) approach which incorpo-
abith (2006) presented a PCFG-based chart genef’é}:[es more con_text information has worked well
tor using wide-coverage LFG approximations autol Parsing _(COH'nS’ 1997; Charniak, 20_00)' Re-
matically extracted from the Penn-Il treebank. Th(?embllng history-based models for parsing, Hogen
LFG-based statistical generation model defines e al. (2007) presented a history-based generation

conditional probabilityP(T'|F), for each candidate M°de€l to overcome some of the inappropriate inde-
functionally annotated c-structure tre& (which pendence assumptions in the basic generation model

fully specifies a surface realisation) given an f-Of (Cahill and van Genabith, 2006). The history-

structureF’. The generation model searches for th_gased model increases the conte>§t by simply includ-
Thes: that maximisesP(T|F) (Eq. 1). P(T|F) is ing the perent grammanoal funetlo@F of the f-
then decomposed as the product of the probabilitiesérucwre m_edd_ltlon to the localk-linked feature set

of all the functionally annotated CFG rewriting rules the conditioning context (E_q. 3)_' The f-_structure
X — Y (conditioned on the left hand side (LHg) 2nnotated CFG rule expanding in the history-
and local features of the corresponding f—structurgased moEIeI is shownin the second line (HB-PCFG)
¢(X)) contributing to the tred” (Eq. 2). The first of Table 1.

line (PCFG) of Table 1 shows the f-structure anno-

tated CFG rule to expand noag in Figure 1. P(T|F) = HP(X — Y|X, Feats,GF)  (3)
X =YinT
Tyest = argmax P(T|F 1 Feats = {a;]a; € $(X)}
best = axgmax P(T1F) @) 3F (f GF) = 6(X)

The history-based model is motivated by English
P(T|F) = [ P(X = Y|X,Feats) (2) data, for example, to generate the appropriate case
X =YinT for pronouns in subject position and object position,
Feats = {alai € 9(X)} respectively. Though Chinese does not distinguish
cases, we expect the f-structure parent GF to help
predict grammar rule expansions more accurately in
The basic generation model presented in (Cahithe tree derivation than the simple PCFG model. We
and van Genabith, 2006) used simple probabiligwill investigate how the HB model performs while
tic context-free grammars. However, the indepermigrating it from English to Chinese data.
dence assumptions implicit in PCFG models may ithe parent grammatical function of the outermost f-
not be appropriate to best capture natural languageucture is assumed to be a dummy GFp.

3 Disambiguation Models



3.2 A Lexicalised Mode rather than the head word which plays the main role

Compared to the HB model which includes the parl" determining word order, a back-off to partial lexi-
ent grammatical function in the conditioning con-calisation on the modifier only is also used for bi-
text, lexicalised grammar rules contain more finel'y rules. As a result, the probabilities of lexi-
grained categorial information. To the best of ouf@lised unary and binary CFG rules are calculated
knowledge, lexicalised parsers (Bikel, 2004) outper@S IN Ed. (4) and Eq. (5), respectively.

form unlexicalised parsers for Chinese. The expec-
tation is that a lexicalised PCFG model also works
better than a simple PCFG model in Chinese gen-
eration, considering e.g. prepositional phrase (PP)
modification in Chinese. Some prepositions indicat-

Po(H ()X (h)) = M P(H(h)|X (1))
FAP(H|X)  (4)

ing directions can occur either before or after thels:(Y (¥)H(h)| X (h)) = M P(Y (y)H(h)|X ()
main verbs, for instance both (2a) and (2b) are ac- +AP(Y (y)H|X) + AsP(YH|X) (5)
ceptable in Chinese. However, most PP modifiers
only act as adverbial adjuncts between the subjects where Z Ai =1

1=1

and verbal predicates. For instancé//to” never
follows a verb as exemplified in the ungrammatical

sentence (3b). In principle, grammars binarisation from left-to-

right (left-) or from right-to-left (right-) are equiva-

(2) a X i SU%IF LR lent to represent the original grammar and the prob-
this CLS train rurto Beljing ability distributions. However the head word is the
The train is bound for Beijing. . . .. .
final constituent for most phrasal categories in Chi-
b. X # AR JF nese® In lexicalised model, the head word imme-
this CLS trainto Beijing run diately projects to the top level in a left-binary tree,
3) a ZH AH  HPE W4T and as a_result,_the intermediaXe® nod_es cannot_
Thai president to China make visit be lexicalised with the head word as illustrated in
‘The Thai president paid a visit to China.’ Figure (2b). By contrast, right-binary rules are lex-

icalised and the head word is percolated from the
bottom of the tree (Figure (2c)). Therefore we adopt

the right binarisation method in our generation algo-
In order to model phenomena such as these, wighm.

head-lexicalise our grammar by associating each

non-terminal node with the head wérih the c- 4 Chart Generation and Smoothing
structure tree along the head-projection line. Anon-  Algorithms

terminal node is written aX (x), wherez is the lex-

ical head ofX. The example generation grammard-1 Chart Generation Algorithm

rule in the lexicalised model is shown in the last linere pCcEG-based generation algorithms are imple-
(LEX-PCFG) of Table 1. _ mented in terms of a chart generator (Kay, 1996).

As in CKY chart parsing, generation grammar§p, the generation algorithm, each (sub-)f-structure
are binarised in our chart generator. Thus all grampgexes a (sub-)chart. Each local chart generates

mar rules are either unary of the forfi — H OF  he most probable trees for the local f-structure in
binary X — YH (or X — HY), whereH is the a bottom-up manner:

head constituent arid is the modifier. To handle the _ _

problem of sparse data while estimating rule proba- ® 9enerating lexical edges from the the local GF
bilities, a back-off to baseline model is employed. ~ PRED and some atomic features representing
As, from a linguistic perspective, it is the modifier ~ function words, mood or aspect etc.

b. * 48[ KM YT Uil Xt E
Thai president make visit to China

2\We use a mechanism similar to (Collins, 1997) but adapted 3Except for prepositional phrases, localiser and some Verba
to Chinese data to find lexical heads in the treebank data. phrases.
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Figure 2: Lexicalised binary trees

e applying unary rules and binary rules to generfrom particular surface forms to lemmas, e.g. the
ate new edges until no any new edges can Hexical macro encapsuling the above lexical rule is
generated in the current local chart. {TPRED=$LEMMA, TNTYPE=COMmMoN, NUM=sg},

e propagating compatible edges to the uppeivhich generally associates to common nouns NN in
level chart. the CTB. According to the assumption that unknown

o ) ) words have a probability distribution similar to ha-
For efficiency, the generation algorithm doeg,5y |egomenon (Baayen and Sproat, 1996), we pre-
Viterbi-pruning for each local chart, viz. if tWO gt the part-of-speech of unknown words from in-
edges have equivalent categories and lexical coVefquent words in the training set by automatically
age, only the most probable one is kept. extracting lexical macros corresponding to the par-

The generation coverage is impacted on by Unycyjar set of f-structure features. The probability of

known wordé_ and unmatched grammar rules inge notential POS tagassociated to a feature sgt
chart generation. We present a lexical smoothing ostimated according to Eq. (6).

and a rule smoothing strategy in the following sub-
sections. count(t, f)

P(tf) = ==
4.2 Lexical Smoothing i count(ts, f)

In LFG f-structure, the surface form of the lemma#3 Rule Smoothing

is represented via lexical rules involving a particularhe coverage of grammar rules increases with the
set of features, e.g. the lemmal‘#/president” is size of training data and in theory all the rules can
represented a§lPRED="j\ #’, TNTYPE=COmmon, pe fully covered by a training set, if it is big enough.
TNUM=sg}. Particular lexical rules can be cap-with limited training resources we have to resort to
tured in general lexical macros abstracting awaj(izzy matching of grammar rules. Two smoothing
~ “We use unknown words as a cover term to refer to all word§trategies are carried out at the level of grammar
occurring in the test set but not in the training set. rules.

(6)



Mathched Grammar Rule

Nonsmooth | VP[1=]] — VV[T=]|] NP[ToBJ|], {SUBJ OBJ, PRED}
Feature smooth VP[1=|] — VV[1=]] NP[t0BX]]

Partial match | VP — VV [10BJ|], {SUBJ OBJ, PRED}

Table 2: Smoothing of CFG rules

e Reducing the conditioning f-structure featuresve randomly select 500 sentences as test data
during rule matching; with minimal sentence length 5 words, maximal
e Applying partial match during rule application. length 80 words, and average length 28.84 words.
The development set also includes 500 sentences
A node in each unlexicalised grammar rilfle—  randomly selected from the development files with
Y H includes two parts: constituent categerguch sentence length between 5 and 80 words. The
as IP, NP, VP etc.; functional f-structure annotatiorc-structure trees of the test and development data
a, such asfsusx|], [1=]] etc. As a heuristic based were also automatically converted to f-structures as
on linguistic experience, we define the order of iminput to the generator.
portance of these elements as follows:

Type with features  without featurgs
X(e)>H(c)>Y(a) >Y(c) > X(a) > H(a) PCEG 22.372 8548
(4) IP[fcomp=]] — NP[IsuBX|] VP[1=]] HB-PCFG 28,487 11,969
_ LEX-PCFG 325,094 286,468
For the above example rule (4), the importance of
the elements is: Table 3: Number of rules in the training set

IP> VP> [1suBs|] > NP> [Tcomp=|] > [1=]] The generation system is evaluated against the

The elements can be deleted from the rules in an inpaw text of the test data in terms of accuracy and cov-
portance order from low to high.The partial rules erage. Following (Langkilde, 2002) and other work
adopted in our system ignore the least important 3n general-purpose generators, we adopt BLEU
elements, viz. the functional annotation of the headcore (Papineni et al., 2002), average simple string
nodeH (a), the functional annotation on LH& (a) accuracy (SSA) and percentage of exactly matched
and constituent category of the modifier nddé).  sentences for accuracy evaluatfonFor coverage
Examples of the two types of smoothed rules arevaluation, we measure the percentage of input f-
shown in Table 2. structures that generate a sentence.

5 Experimental Results Table 4 reports the initial experiments on the sim-
ple PCFG, HB-based PCFG and lexicalised PCFG
Our experiments are carried out on the newlynodels. The results in the left column evaluate all
released Penn Chinese treebank version 6ifput f-structures, the right column evaluate only
(CTB6) (Xue et al., 2005), excluding the portion ofthose f-structures which yield a complete sentence.
ACE broadcast news. We follow the recommendegthe results show that the lexicalised model outper-
splits (in the list-of-file of CTB6) to divide the forms the baseline PCFG model. The HB model is
data into test set, development set and training s¢he most accurate for complete sentences, but with
The training set includes 756 files with a total ofreduced coverage compared to the other two mod-
15,663 sentences. The CTB trees of the training SBls. However the low coverage of sentences com-
were automatically annotated with LFG f-structurepletely generated due to unknown words and un-

equations following (Guo et al., 2007). Table 3matched rules makes the results unusable in prac-
shows the number of different grammar rule types____
extracted from the training set. From the test files, ®We are aware of the limitations in fully automatic evalua-
tion metrics, and in an ideal scenario, we would complentent t
*Howeverc anda on the same node can't be deleted at theBLEU and SSA scores by a human evaluation. Unfortunately,
same time. this is beyond the scope of the current paper.



All Output Strings Complete Output Sentences
Coverage ExMatch BLEU  SSA| Coverage ExMatch BLEU  SSA
PCFG 100% 7.2% 0.5401 0.6261 36.40%  19.78% 0.7101 0.7687
HB-PCFG 100% 8.60%  0.5474 0.62811 34.80%  24.71% 0.7513 0.8092
LEX-PCFG| 100% 9.40%  0.5687 0.6537 | 37.00% 25.41% 0.7431 0.8024

Table 4: Results without smoothing

All Output Strings Complete Output Sentences
Coverage ExMatch BLEU  SSA| Coverage ExMatch BLEU  SSA
PCFG 100% 11.00% 0.6894 0.7240 94.20%  11.68% 0.7047 0.7388

»

HB-PCFG 100% 11.80% 0.7108 0.7348 94.00% 12.55% 0.7284 0.75(Q
LEX-PCFG| 100% 14.00% 0.7152 0.7595 | 94.40% 14.83% 0.7302 0.7754

Table 5: Results with lexical smoothing

Partial match Feature smooth
Complete SentencesCoverage ExMatch BLEU  SSA| Coverage ExMatch BLEU  SSA
PCFG 97.20% 11.32% 0.7022 0.7356 100% 11.20% 0.7021 0.7330
HB-PCFG 96.20% 12.27% 0.7263 0.7498 100% 12.00% 0.7245 0.7413
LEX-PCFG 97.80% 14.31% 0.7265 0.7696 100% 1420% 0.7265 0.7675

Table 6: Results with lexical and rule smoothing

tice. 6 Conclusion and Further Work

We have presented an accurate, robust chart genera-

Table 5 gives the results with lexical smoothing. - |
The coverage for complete sentences increases r for Chinese based on treebank-based, automati-

nearly 60% absolute for all models. The increase‘aally acqgired LFG resources. .Our model improyes
coverage also improves the overall results evaluatée ba.lse_llne provided by (Cahill and van Genabith,
against all sentences. The HB model performs bett@pQG)' (i) accuracy is mcreased.by. creatlng. ‘f" I¢X|—
than the simple PCFG model in nearly all respect§2/iseéd PCFG grammar and enriching conditioning

and in turn the lexicalised model comprehensivel&ontex'[ with parent f-structure features; and (ii) cov-
outperforms the HB model erage is increased by providing lexical smoothing

and fuzzy matching techniques for rule smoothing.

The final results with both lexical smoothing and The combinational explosion of grammar rules
rule smoothing by two different strategies are tabuencountered in the chart generator is similar to that
lated in Table 6. The left column provides the resultin parsing. In the current system, we only keep the
of smoothing by partial match and the right columrmost probable realisation for each input f-structure.
the results by reducing conditioning f-structure feaAn alternative model in line with the generate-and-
tures. All results are evaluated for completely genselect paradigm, would pack all the locally equiva-
erated sentences only. The feature smoothing rkent edges in a forest and re-rank all the realisations
sults in a full coverage of 100%, while slightly de-by a separate language model. This might help us to
grading the quality of sentences generated comparegtduce some errors caused in our current model, for
with partial match smoothing. We feel the tradeoffinstance, the generation of function words in fixed
at the cost of a small decrease in quality is still wortphrases. As shown in ex. (5), the function word
the full coverage. Throughout the experiments, th&2 " is incorrectly generated asf¥”. This is be-
lexicalised model exhibits consistently better perforeause they share the same part-of-speech DEG in
mance than the unlexicalised models, which proveSTB, however /" has a much higher frequency
our intuition that successful techniques in parsinghan “2.” in Chinese text and thus has a higher prob-
also work well in generation. ability to be generated.
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