

Commercialisation of an Autonomous Phosphate Analyser

Damien Maher¹, John Cleary¹, John Healy¹, Cormac Fay¹, Gary Carroll², Dermot Diamond¹

1. CLARITY: Centre for Sensor Web Technologies, Dublin City University 2. EpiSensor Ltd, Moylish Park, Limerick

Environ 2010, Limerick Institute of Technology,

17th - 19th February 2010

Overview

- Motivation
- Prototype System
- Commercial System
- Communications Platform
- Field Trials
- Conclusions

Motivation

- Phosphates
- Manual collection and sampling
- Limited spatial & temporal resolution
- EU Water Framework Directive¹
- Widespread autonomous sensors
- Real-time monitoring
- Low cost per measurement

1. 'Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy', Official Journal L 327/1, Dec. 2000.

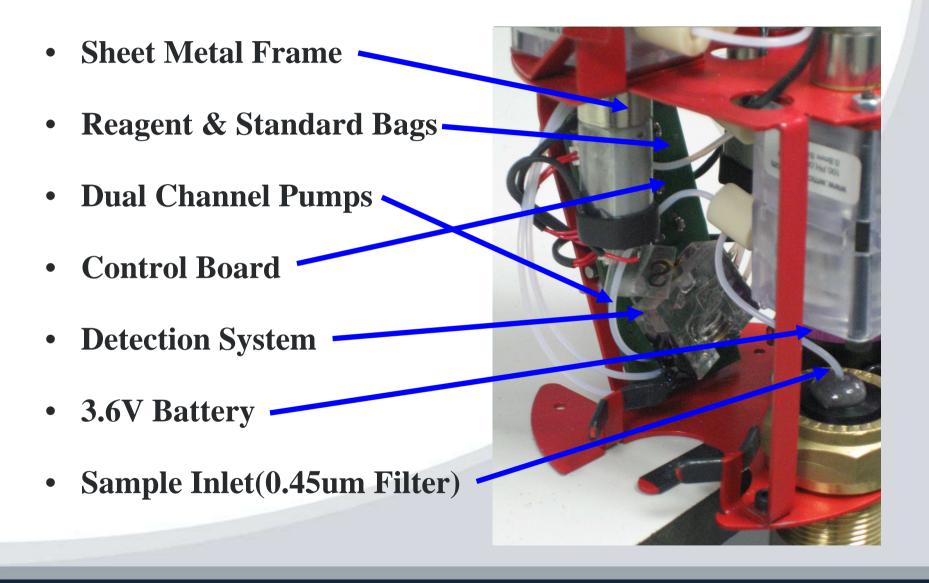
Prototype System

• Portable system²

- Fluid handling
- Microfluidic technology
- Colorimetric detection
- GSM communications
- Yellow method for phosphate detection
- UV LED and photodiode detector
- Two-point calibration

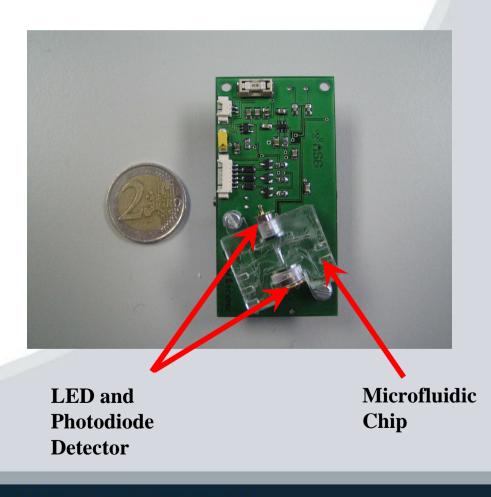
2. C. Slater et al., 'Autonomous field-deployable device for the measurement of phosphate in natural water', in Proc. SPIE, Vol. 6755, 2007.

EPISENSOR Commercial System



Prototype System	Commercial System
Component Cost: € Thousands	Component Cost: € Hundreds
Internal Volume: 15L	Internal Volume: 2.3L
System Mass: 12 kg	System Mass: 1.7kg
Battery: 12V Lead Acid	Battery: 3.6V Lithium
Battery Life: 2 months	Battery Life: 12 months
Comms: GSM Modem	Comms: ZigBee Radio
Delayed Reporting	Real time 'sensor to database'
No Sensor Control	Remote Sensor Control

System Design



Detection System

- Injection Moulded Microfluidic Chip
- UV LED and Photodiode
- Absorbance Measurement
- Waste Storage
- 100ml Reagent, 15ml Standard per 1460 measurements

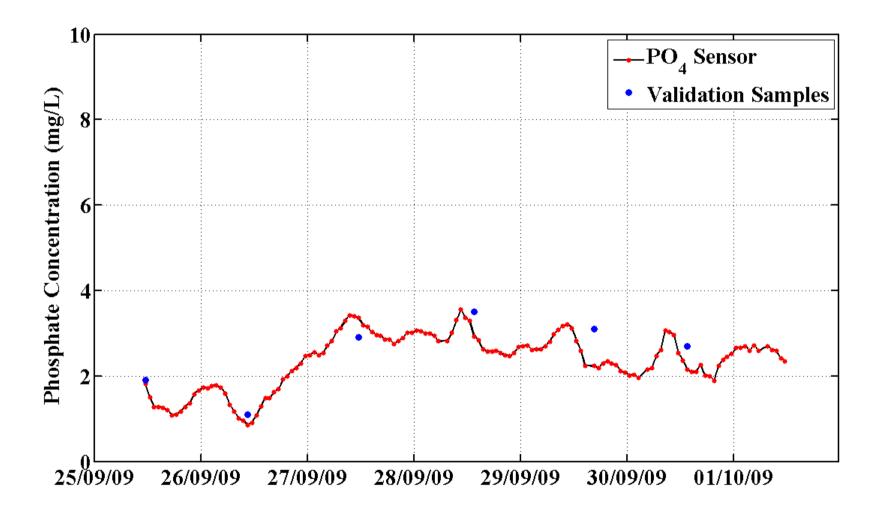
System Performance

- Limit of Detection: 0.1mg/L
- Minimum sample interval: 20 minutes
- Linear response range: 0-50 mg/L orthophosphate
- Point source identification
- Wireless chemical sensor platform
- Ongoing Research into other detection methods

Field Deployment

Broadmeadow Water Estuary,

Swords, Co. Dublin



Field Trial Data

Conclusions

Phosphate Analyser for Water

- Compact
- Long battery life
- Real time monitoring
- Remote sensor control
- Low cost per measurement
- Wireless chemical sensor platform
- Legislation driven market

This work has been supported by

Transforming Irish Industry

Enterprise Ireland, Innovation Partnership Program (IP/2008/544)

Science Foundation Ireland (07/CE/I1147)

Thank You