
Elliptic Curve Cryptography on Modern Processor

Architectures

Neil Costigan

B.Sc., M.Sc.

A thesis submitted for the degree of

Ph.D.

to the

Dublin City University

Faculty of Engineering and Computing

School of Computing

Supervisor: Prof. Michael Scott

June, 2009

Declaration

I, Neil Costigan, hereby certify that this material, which I now submit for assessment
on the programme of study leading to the award of Ph.D. is entirely my own work and has
not been taken from the work of others save and to the extent that such work has been
cited and acknowledged within the text of my work.

Name: Neil Costigan.
ID: 52165809.
Date: June, 2009.

The original work in this thesis is as follows:

1. Chapter 2 is my own work derived from my MSc. thesis.

2. Chapter 4 is joint work with Scott. This was part of a C class project at The Irish

Centre for High-End Computing (ICHEC) 2007. Presented at ICHEC Seminar 2008

Frontiers in Computational Science.

3. Chapter 3 is joint work with Scott and Abdulwahab. Presented at the Workshop

on Cryptographic Hardware and Embedded Systems 2006 (CHES 2006) Yokohama,

Japan.

4. Chapter 5 is my own work.

5. Chapter 6 is joint work with Scott. Presented at the Workshop on Software Perfor-

mance Enhancement for Encryption and Decryption 2007 (SPEED 2007) Amsterdam,

the Netherlands. Updated and presented at Special-purpose Hardware for Attacking

Cryptographic Systems (SHARCS 2007), and to appear in the Proceedings of the

9th International Workshop on State-of-the-Art in Scientific and Parallel Computing

(PARA 2008) Trondheim, Norway.

6. Chapter 7 is my own work.

7. Chapter 8 was joint work with Schwabe. To appear in the Proceedings of AfricaCrypt

2009.

c© Neil Costigan. All Rights Reserved. June, 2009.

iii

Acknowledgements

I would like to thank my supervisor Mike Scott for giving me the opportunity to join

his team. Mike, giving the best advice ever to a PhD student, told me to “follow your nose”

not realising it would land me in Sweden with a new baby.

Mum, Dad, Paul, Carolyn, Joe, David, & Ann-Katrine Mattsson for all their support.

My colleagues at the School of Computing especially Noel, Augusto, Claire, Hego, & Wesam.

Gerry & Caroline for helping so much with the final push.

CryptoJedi himself; my co-author Peter Schwabe.

IRCSET who sponsored my research work.

The staff and students of Lule̊a Technical University Sweden, especially Matt Thurley, for

their help during my time as Guestdocktorand.

Residents & friends of 12 Middle Mountjoy St. Dublin for good good times.

Most of all to Vicki & Klara-Jo for putting up with me.

Abstract

Elliptic Curve Cryptography (ECC) has been adopted by the US National Security

Agency (NSA) in Suite “B” as part of its “Cryptographic Modernisation Program ”. Ad-

ditionally, it has been favoured by an entire host of mobile devices due to its superior

performance characteristics. ECC is also the building block on which the exciting field

of pairing/identity based cryptography is based. This widespread use means that there is

potentially a lot to be gained by researching efficient implementations on modern proces-

sors such as IBM’s Cell Broadband Engine and Philip’s next generation smart card cores.

ECC operations can be thought of as a pyramid of building blocks, from instructions on a

core, modular operations on a finite field, point addition & doubling, elliptic curve scalar

multiplication to application level protocols.

In this thesis we examine an implementation of these components for ECC focusing on a

range of optimising techniques for the Cell’s SPU and the MIPS smart card. We show

significant performance improvements that can be achieved through of adoption of ECC.

Contents

1 Preface 2

2 Crypto 101 3

2.1 Cryptographic concepts . 3

2.2 Some building blocks used in Modern Cryptography. 4

2.2.1 Modular arithmetic . 4

2.2.2 Prime numbers . 4

2.2.3 Chinese Remainder Theorem . 5

2.2.4 Groups . 7

2.3 Types of cryptography . 8

2.3.1 Symmetric Key . 8

2.3.2 Asymmetric Key . 9

2.4 Commonly used asymmetric algorithms . 12

2.4.1 RSA . 12

2.4.2 ECC . 14

2.4.3 Pairings . 19

2.4.4 Pairing-friendly elliptic curves . 21

2.5 Identity Based Encryption (IBE) . 23

2.6 Integer representation . 27

2.6.1 Elliptic-Curve Diffie-Hellman key exchange (ECDH) 27

2.6.2 Montgomery arithmetic . 28

3 Implementing Cryptographic Pairings on Smartcards 30

3.1 Introduction . 31

3.2 The SmartMIPSTM architecture . 32

3.3 Calculating the Pairing . 34

3.3.1 The BKLS pairing algorithm . 35

3.3.2 The Ate pairing algorithm . 36

ii

CONTENTS

3.3.3 The BGOhES pairing algorithm . 38

3.4 Implementation Issues . 39

3.5 Results . 40

3.6 Does pairing delegation make sense? . 42

3.7 Conclusions . 43

4 Pairing Friendly Curves Search 44

4.1 Introduction . 44

4.2 Calculating Pairing Friendly curves . 45

4.3 Implementation . 46

4.3.1 Hardware . 46

4.3.2 Software . 47

4.4 Results and Future Work . 49

5 The Cell Broadband Engine 51

5.1 Introduction . 51

5.2 The Cell Broadband Engine . 52

5.2.1 The Cell’s SPU . 53

5.2.2 Multi-instruction sets . 58

5.2.3 The Cell as a Hardware Security Module 58

5.3 Development . 60

5.3.1 Direct Memory Access . 61

5.3.2 Vector Programming . 61

5.3.3 Usage Models . 63

5.3.4 Compilation . 63

6 Accelerating SSL with the Cell Broadband Engine 65

6.1 Why SSL? . 65

6.1.1 OpenSSL . 66

6.2 Architecture . 67

iii

CONTENTS

6.3 RSA/CRT . 70

6.4 Results . 71

6.5 Conclusions and Future Work . 74

7 Utilising the Cell’s SPU for ECC 76

7.1 Introduction . 76

7.1.1 Modular Components . 77

7.1.2 Multi-precision Tookits . 77

7.1.3 ECC Hierarchy . 79

7.1.4 Suitable Curve . 80

7.2 Multiply bottleneck . 81

7.2.1 Behind a 64-bit Multiply . 81

7.3 Implementation . 83

7.3.1 ECC Performance Bottleneck . 83

7.3.2 Approach . 83

7.3.3 Automatic Code Generation . 85

7.3.4 Using MPM . 86

7.3.5 Results . 87

7.4 Branch Prediction . 87

7.5 Future Work . 91

8 Fast Elliptic-Curve Cryptography on the Cell Broadband Engine 92

8.1 Introduction . 92

8.1.1 How these speeds were achieved . 94

8.2 The curve25519 function . 95

8.2.1 The curve25519 function . 95

8.3 The MPM library and ECC . 95

8.3.1 Fp arithmetic using the MPM library 95

8.3.2 What speed can we achieve using MPM? 96

8.4 Implementation of curve25519 . 97

iv

CONTENTS

8.4.1 Fast arithmetic . 98

8.4.2 Representing elements of F2255−19 . 98

8.4.3 Reduction . 102

8.5 Results and Comparison . 104

8.5.1 Benchmarking Methodology . 104

8.5.2 Results . 106

8.5.3 Comparison . 106

A Glossary 118

B Code Generation 121

C Multiple-precision Arithmetic 125

C.0.4 Modular reduction . 127

v

List of Algorithms

2.1 The Montgomery ladder for x-coordinate-based scalar multiplication on the

elliptic curve E : By2 = x3 +Ax2 + x . 28

2.2 One ladder step of the Montgomery ladder 29

3.1 Function g(.) . 35

3.2 Computation of the Tate pairing e(P,Q) on E(Fp) : y2 = x3 +Ax+B where

P is a point of prime order r on E(Fp) and Q is a point on the twisted curve

E′(Fp) . 35

3.3 Function g(.) . 37

3.4 Computation of the Ate pairing a(P,Q) on E(Fp) : y2 = x3 +Ax+B where

P is a point of prime order r on the twisted curve E′(Fp2) and Q is a point

on the curve E(Fp) . 38

3.5 Computation of ê(P,Q) on E(F2m) : y2 + y = x3 + x+ b : m ≡ 3 (mod 8) case 39

6.1 RSA Decryption using Chinese Remainder Theorem modified for the IBM

MPM unsigned restrictions. 71

7.1 MPM Multiply function . 87

7.2 MPM Multiply function 256-bit unrolled . 87

8.1 Structure of the modular reduction . 103

8.2 Structure of a Montgomery ladder step (see Algorithm 2.2) optimized for

4-way parallel computation . 105

C.1 Multiple-precision Addition . 125

C.2 Multiple-precision Subtraction . 126

C.3 Multiple-precision Multiplication . 126

C.4 Multiple-precision Squaring . 127

C.5 Classic Modular Multiplication . 128

C.6 Reduction modulo m = bt − c . 129

1

In the landscape of extinction,

precision is next to godliness.

Samuel Beckett 1
Preface

In this thesis we review a selection of the numerous public key cryptographic algorithms

and demonstrate how they can be optimised by capitalising on improvements in modern

processor design.

In Chapter 2, we commence by performing a review of public key cryptography. We

continue by reviewing the mathematics behind the best-known techniques. In Chapter 3 we

discuss design considerations when implementing cryptographic pairings inside a modern

smart card. In Chapter 4 we outline work undertaken to identify pairing friendly curves

using super-computing resources. In Chapter 5 we review the design of the Cell Broadband

Engine. In Chapter 6 we outline performance gains for SSL achieved by utilising a specialist

multi-core processor. Finally in Chapters 7 and 8 we describe techniques used to achieve

speed records when using Elliptic Curve Cryptography on a synergistic processor.

2

2
Crypto 101

This chapter outlines the background to the mathematics of cryptography, details a num-

ber of the standard algorithms, multi-precision arithmetic, and evolves to a description of

Elliptic Curve Cryptography.

2.1 Cryptographic concepts

As a background to cryptography and an introduction to security protocols, we would like

to provide an historic example of an algorithm called the Caesar Cipher attributed to Julius

Caesar the 1st Roman Emperor from 61BC to 44BC. The algorithm is a very simple but

effective example of the principles involved in the encryption of messages.

In the Caesar cipher the algorithm is a simple symbol swap. All the letters of the

alphabet A through W are substituted with the character three places after it in sequence,

with X, Y and Z been represented by A, B, C. Hence A is represented by D, N by Q etc.

For example the message “ATTACK GAUL ” can be encoded to “DWWDFN JDXO”. A

simple backward step of subtracting 3 places lets one arrive at the original message. This

is a crude cipher on which the success of keeping the content secret depends on the casual

observer having no knowledge of the algorithm (the simple alphabet switch) and the offset

(3). Simple improvements include having a jumbled up alphabet (A=B, B=Z, C=N etc.)

as a look-up table with both sides knowing the new lookup table and possibly having an

3

CHAPTER 2. CRYPTO 101

increment on the offset in some formula also agreed by the participants. The fundamentals

of modern cryptography build on these simple ideas of message, algorithm and key.

Messages can be transformed to numbers via simple ASCII (American Standard Code

for Information Interchange) representation of the characters making up the message. This

is where each character/letter of the message is represented by a well known number (a=97,

b=98, z= 122 etc.) and in computers these numbers are represent by binary (1 or 0) bits.

Operations which transform these ASCII numbers are equivalent to transforming the

original message they represent. There are other methods of cryptography but the math-

ematical methods described below are believed to be the strongest. Modern cryptography

relies upon the mathematics of making transformation operations, which are hard to invert,

even when one knows the transformation used. For example the well known RSA method

which is based on the difficulty of integer factorisation, or the El Gamal method which is

based on the difficulty of the discrete logarithm problem.

2.2 Some building blocks used in Modern Cryptography.

2.2.1 Modular arithmetic

Modular arithmetic deals with a set of integers where if N is positive then the numbers

modulo N are the set of numbers ∀ i | 0 ≤ i < N . If two numbers have the same remainder

when divided by the modulo N then we say they are congruent modulo N .

An everyday example of modular arithmetic is the set of hours on a clock

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11 mod 12. So if it is two o’clock and we add three hours it is

five o’clock as it will also be in fifteen plus two hours

(15 + 2 mod 12 = 5).

Two of the most popular public key algorithms use modular exponentiation as their

underlying mathematical process.

2.2.2 Prime numbers

Webster’s New Collegiate Dictionary defines a prime as follows:

4

CHAPTER 2. CRYPTO 101

Prime \’prim\ n [ME, fr. MF, fem. of prin first, L primus;

akin to L prior] 1 : first in time : ORIGINAL 2 a :

having no factor except itself and one <3 is a ~ number> b :

having no common factor except one <12 and 25 are relatively ~> 3 a :

first in rank, authority or significance : PRINCIPAL b :

having the highest quality or value <~ television time>

Simply put, a prime is a number that has exactly two positive integer factors, 1 and

itself.

Eratosthenes (275-194 B.C., Greece) devised a ‘sieve‘ to discover prime numbers. Using

this method to find all the prime numbers first write down all the positive whole numbers.

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 etc.

Then you take away all the number that are multiples of 2 , then all the numbers that

are multiples of 3, then 4, 5, 6, 7 and so on (numbers known as composite numbers).

The numbers that are left are prime numbers.

2 3 5 7

11 13 17 19

23 29

31 37 etc.

Prime numbers have fascinated mathematicians for centuries. The problem is no one

has yet determined a method to predict the sequence of prime numbers. The only known

method is brute force (exhaustive search) i.e going through all possibilities. Picking a

number large enough brings us to primes that are usable in cryptography.

2.2.3 Chinese Remainder Theorem

The ancient (4th century AD) Chinese mathematician Sun-Tsu solved the problem of iden-

tifying those integers x that leave remainders 2, 3 and 2 when divided by 3, 5, and 7. One

5

CHAPTER 2. CRYPTO 101

solution is x = 23, and all solutions are of the form 23 + 105k for arbitrary integers k [26].

The Chinese Remainder Theorem (CRT) expressed in terms of integers modulo m.

x ≡ r1(mod m1)

x ≡ r2(mod m2)

x ≡ r3(mod m3)

...

x ≡ rn(mod mn)

then there is a unique solution X, for x lying between 0 and m1 m2 m3 ... mn, and the

general solution is congruent to X (mod m1 m2 m3 ... mn).

Let

P =
n∏

i=1

mi

and, for all i ∈ N (1 ≤ i ≤ n), let yi be an integer that satisfies

yi ·
P

mi
≡ 1 (mod mi)

Then one solution of these congruences is

x0 =
n∑

i=1

aiyi ·
P

mi

Any x ∈ Z satisfies the set of congruences if and only if it satisfies

x ≡ x0 (mod P)

Used by the ancient Chinese to count large numbers of troops, one use of the CRT is

to do arithmetic on large numbers by choosing a set of moduli m1 m2 m3 ... mn and then

treating each number as a set of remainders r1 r2 r3 ... rn rather than a sequence of digits.

Subsequently one does the arithmetic and recovers the solutions by using the CRT [97].

6

CHAPTER 2. CRYPTO 101

2.2.4 Groups

A group is a set of numbers with an operator. This is a relatively simple group to illustrate

the properties useful for cryptography. The numbers 1 to 4 and an operator being multiply

×.

[×, 1, 2, 3, 4 mod 5]

The group is closed when the answer is always within the group

(3 × 2) = 6 mod 5 = 1

The group has an identity which is a number which when applied by the operator does not

change the element.

2× 1 = 2

It is associative

(2× 3)× 4 = 2× (3× 4) mod 5

Every element has an inverse

(3× 2) = 6 = 1 mod 5

A group is cyclic if it has a member that when subjected to repeated applications of the

operator will give every member of the set

2 = 2 mod 5 = 2

2× 2 = 4 mod 5 = 4

2× 2× 2 = 8 mod 5 = 3

2× 2× 2× 2 = 16 mod 5 = 1

7

CHAPTER 2. CRYPTO 101

In order to identify how many times to apply the operator to get 3, one must simply keep

applying it -a method known as exhaustive search.

2× 2× 2 = 3 mod 5

This is relatively simple since this group has 4 members. The groups that we use have

approximately 2512 elements. So the approach outlined would be too time consuming.

Therefore the determination of x given 2x in the group is very difficult.

The point here is that applying the operation N times is easy. Finding out how many

times the operation was applied is computationally too expensive. This is a one way func-

tion.

y = gx mod p

The formula can be used to generate elements of the group over the field Fq. In this

context g can be described as the generator of the group. The number of elements in the

group will be a divisor of p− 1. In our example 2 is a generator of the group of order 4 over

F5.

2.3 Types of cryptography

There are two main types of mathematical cryptography

• Symmetric or secret key

• Asymmetric or public key

2.3.1 Symmetric Key

Symmetric key is a relatively easy concept to understand. Essentially one party (the en-

cryptor) uses a secret key to a mathematical function which encrypts the plaintext message

to a secure form. The message is passed to the decrypter who uses the same key to apply

8

CHAPTER 2. CRYPTO 101

Figure 2.1: Symmetric Key (source [33])

an inverse mathematical function which decrypts the message returning it to its original

plaintext. The principal issue in symmetric cryptography is the secure transport of the key

between the parties. Examples include DES, IDEA, & AES.

2.3.2 Asymmetric Key

Background

Asymmetric key cryptography is a more complex concept to grasp but is generally more

useful for application level security. The key is broken up into two parts known as the public

key and the private key. The public key is used to encrypt the message and the private key

to decrypt. Asymmetric is popularly known as public key cryptography.

The original discovery of methods suitable for public key cryptography have traditionally

been attributed to Diffie, Hellman & Merke in 1977, more commonly known as the Diffie-

Hellman [32] method. However in 1997 history has corrected itself with the declassification

of papers from the British secret services which lay claim to the fact the James Ellis probably

9

CHAPTER 2. CRYPTO 101

Figure 2.2: Asymmetric Key (source [33])

invented and that Clifford Cocks probably discovered a method for public key cryptography

long before Diffie et al. But, suitable to persons working inside the intelligence services,

they kept the claim to themselves. GCHQ (now CESG [18]) have since backed up their

claims with documentary evidence [35]. The American equivalent (NSA) have claimed an

even earlier idea but evidence is scant. Background to this interesting story is in Wired

magazine [62] where Diffie (a colorful character in his own right) visits a retired Ellis and

brings him to a pub in England attempting to prise the real story out of him. Ellis is too

humble (and clever !) and leaves Diffie none the wiser but doubtful of his own place in

history.

Technical

Asymmetric key protocols are commonly based on the one-way function.

y = gx mod p where p is a prime.

10

CHAPTER 2. CRYPTO 101

Assume g and p are public. Then given x finding y is easy. However given y to find x is

assumed to be very hard. This is based upon the fact that certain problems are intractable.

The issues with the above equation (also written as x = logg(y)) is known as the discrete

logarithm problem (DLP). Based on this we can build asymmetric key encryption. The

function looks simple and it would seem that with a simple try every x or brute force attack

would yield y. However, for acceptable levels of protection to make such an attack unfeasible

it is required to use a p with at least 1024 bits and the exponent x with at least 160 bits.

The size of p is referred to as the field size, and x as the group order size. The field

size is so much larger than the order size as index-calculus methods exist for solving the

discrete logarithm problem, which require a relatively large field size to resist. There are

faster methods than brute force search (for example so called “square root methods” like the

Pollard rho and Pollard Lambda algorithms), but they are still computationally infeasible

for numbers of cryptographic size.

As an alternative to the one way function a “hard problem” exists on an Elliptic Curve.

y = x3 +Ax+B mod p

Take a point on the curve P (x, y). Then assume P is used as a public group generator.

Y = xP

This also represents a strong one-way function. If we know x then calculating Y is

easy. However given Y finding x is difficult. This is basically the same Discrete Logarithm

problem. The advantage of using Elliptic Curves is that index calculus methods used to

attack the modular equation are not known and hence both the field and order sizes can be

as low as 160 bits for practical security. This lower bit size reduces computation overhead

and allows for efficient use in restricted devices such as mobile phones or smart cards.

The advantage of all this asymmetric cryptography lies with the property that pos-

sessing the public key provides little clue to the private key allowing the public key to be

freely published to allow anyone to encrypt to the holder of the private key. This unique

11

CHAPTER 2. CRYPTO 101

property overcomes the limitations of symmetric cryptography which requires prior “key

swapping” before use. However this advantage comes with a performance penalty. Asym-

metric algorithms are significantly more computationally expensive than symmetric and

are not suitable to encrypt large amounts of data taking too long a time for real-time data

communications such as a Virtual Private Network (VPN) or an email system.

The solution is to use another more efficient algorithm such as a symmetric algorithm

to perform the bulk data encryption and use the public key methods to encrypt the key(s)

and transport them with (usually by simply attaching them to) the encrypted data. This

hybrid solution is used by most common protocols such as SSL, SSH, IpSec and S/Mime.

For practical purposes a combination of the two methods provides both practical per-

formance together with ease of use.

2.4 Commonly used asymmetric algorithms

2.4.1 RSA

Background

Discovered in 1977 and named after its inventors, Ron Rivest [78], Adi Shamir and Leonard

Adleman, RSA [76] encryption is based on the difficulty of the integer factorisation problem,

and transforms the message M into the number C

C = M e mod N

The numbers e and N are the two public numbers created and published. They are your

public key. As before the message M can be simply the digital value of a block of ASCII

characters.

The formula states: multiply the Message M by itself e times, then divide the result by

the number N and save only the remainder. The remainder that we have called C is the

encrypted representation of the message.

12

CHAPTER 2. CRYPTO 101

Example Application

Alice publishes the public key numbers e = 29 and N = 77. Bob wants to send Al-

ice the message “I have it”. In decimal ASCII the message is 73321049711810132105116.

Break this number string into smaller blocks less then N as per the following

73 32 10 49 71 18 10 13 21 05 11 6

To encrypt these blocks, apply the formula

C = M e(mod N)

to each block.

Technical Overview

Here we present a description due to Mao [63]

As before we deal with Bob attempting to send a message to Alice.

Key Set-up.

Alice creates her public and private key pair thus

1. Choose two large random prime numbers p and q such that | p |<| q |

2. Compute N = pq

3. Compute φ(N) = (p− 1)(q − 1)

4. Choose a random integer e < φ(N) such that gcd(e, φ(N)) = 1 and compute the

integer d such that ed ≡ 1(mod (φ(N)))

5. Publicise (N, e) as her public key, discarding p, q and φ(N) and keeping d as her

private key. e can be small but d must be impossible to guess.

To encrypt to Alice

To send a message M < N to Alice, the sender Bob creates a ciphertext C by

13

CHAPTER 2. CRYPTO 101

C ←M e(mod N)

For Alice to decrypt

To read the ciphertext C from Bob, Alice computes

M ← Cd(mod N)

Efficient decryption

The Chinese remainder theorem 2.2.3 can be used to yield efficient algorithms for RSA

decryption and can be more efficient (in terms of bit operations) than working modulo N .

2.4.2 ECC

Background

Another form of “hard problem” that mathematicians have found useful to the field of

cryptography is that of Elliptic Curves.

The discovery of the use of Elliptic Curves for public key cryptography can be attributed

independently to Neil Koblitz [58] and Victor Miller [68] who both made discoveries in 1985.

Technical Overview

Note: Curves can be defined in Affine (2 dimensions) or Projective (3 dimensions co-

ordinates) - The equations we present are in Affine co-ordinates.

To follow general cryptographic convention we use curves of the form

y2 = x3 + a× x+ b mod p

This means we are only allowed to use the integers from zero to p− 1 as input.

For example let us take an equation with p = 11, a = 4 and b = 7.

14

CHAPTER 2. CRYPTO 101

Figure 2.3: Elliptic Curve

y2 = x3 + 4x+ 7 mod 11

The group of points of interest are those with (x, y) coordinates which satisfy this equa-

tion, plus the point at infinity (denoted by O).

To add two points on a curve, it is not possible to simply add the coordinates to find a

point which still satisfies the curve equation.

However there are a set of rules which one can apply for curves of this type.

The rules are (see Smart [91])

• Rule 1: O +O = O

• Rule 2: (x1, y1) +O = (x1, y1)

• Rule 3: (x1, y1) + (x1,−y1) = O

15

CHAPTER 2. CRYPTO 101

• Rule 4: if x1 6= x2, (x1, y1) + (x2, y2) = (x3, y3) where

x3 = (β2 − x1 − x2) mod p

y3 = (β(x1 − x3)− y1) mod p

β = ((y2 − y1)/(x2 − x1)) mod p.

• Rule 5: if y1 6= 0, (x1, y1) + (x1, y1) = 2(x1, y1) = (x3, y3) where

x3 = (β2 − 2x1) mod p

y3 = (β(x1 − x3)− y1) mod p

β = ((3x21 + a)/(2y1)) mod

We recommend Nigel Smart’s “Introduction to Cryptography” [91], Wenbo Mao’s “Modern

Cryptography” [63] Menezes “Elliptic Curve Cryptography” [66].

Applying these rules, two points on the curve may be added to yield a third point also

on the curve. For example in the figure above point P + Q = (P +Q) on the curve.

Note 1 : : Should we detect, in our calculations, a divide by zero we can stop and say

the result is the point at infinity (O).

Note 2 : The point at infinity (O) acts like zero in regular addition : Add a point to the

point at infinity we get the original point. This is the additive identity for the group.

Note 3. Prime Modulus. The group is cyclic, it has a generator function such that

when this function is applied to any member of the group, it will only result in another

member of the group. If applied to all members of the group then it will produce another

set containing all members of the original group. Interestingly the output sequence of the

results of the application of the generator is random. See [96].

16

CHAPTER 2. CRYPTO 101

Figure 2.4: Point Addition . (source [64])

Note 4 : Multiplication

Take a point P an (x, y) point and multiply it by an integer d. dP is d× P and we can

break down d× P to (P + P + ...P) i.e. P added to itself d times. Then apply the rules of

addition. In the illustrated figure 3P = P + P + P .

This integer d is called a scalar as opposed to the coordinate (point) P .

What does all this mean to cryptography ?

We take an elliptic curve (i.e. modulus p and parameters a and b) and a point on this curve

P .

Then, take a scalar d and find dP to get another point on the curve Q.

We keep d secret. We can use the curve (p, a, b) and points P,Q as the public key. The

challenge for any attacker is to find d. No-one has found a sub-exponential algorithm to be

able to compute d. This is another manifestation of the discrete logarithm problem.

If the modulus p is large enough (200 bits or so) then it would take today’s supercom-

17

CHAPTER 2. CRYPTO 101

Figure 2.5: 2× P , 3× P source [64])

puters several thousands of years. This is the basis for the application to cryptography.

Scalar multiplication on an elliptic curve is relatively easy, but the inverse, which is

extremely hard.

To illustrate we will consider Key agreement using Elliptic Curve Diffie-Hellman.

Diffie-Hellman is a technique to allow unauthenticated key agreement using exponentia-

tion. The security rests on the intractability of the Computational Diffie-Hellman problem

and the Discrete Logarithm Problem.

• Alice calculates her curve and makes p, a, b and a point P public.

• She generates some random da and keeps this secret.

• Alice sends Bob Qa which is equal to daP .

• Bob gets Alice’s public components and generates his own random db.

• He calculates Qb by computing dbP .

• Bob then computes a secret value S = dbQa.

• Since Qa is just daP what Bob has computed is S = dbdaP .

18

CHAPTER 2. CRYPTO 101

• He sends Alice Qb and Alice uses this to compute her secret value S = daQb.

• Since Qb is dbP , what Alice has done is to compute S = dadbP this is the same as

Bob computed.

So Alice and Bob can “secretly” get to the same point on the curve S, by using this

protocol. A simple method to extract a key is just to ignore the y coordinate and take

the x coordinate as a number. This derived number can be used as a key. Bob can use

this secret value to make an AES encryption key. Alice can use the method outlined above

to get the same encryption key. So what Bob encrypts, Alice can decrypt. The Attacker

Eve intercepting this exchange just knows p, a, b, P,Qa, and Qb. The only way for Eve to

determine S is to get either da or db which Alice and Bob are holding secret.

To get d calculate one of the d’s by using the fact that she knows either

Qa = daP and she knows Qa and P

OR

Qb = dbP and she knows Qb and P .

This is exactly the discrete logarithm problem of ECC as outlined above.

ECC key size and RSA key size

The main stumbling block to the wide spread usage of public key cryptography is the com-

putational overhead of traditional PKC based on RSA. ECC supports equivalent security

levels with less computational overhead. ECC has smaller key sizes and signatures. ECC is

often used in mobile, embedded, and sensor networks for its power characteristics. For more

material on ECC the reader is referred to [45] and [13]. The US standards body (NIST)

has issued guidelines for equivalent key length usage

2.4.3 Pairings

Joux [55] and Sakai, Ohgishi & Kasahara [82] independently proposed using properties of

pairing-mapping functions applied to cryptography to establish ID-based PKI. Initially the

area of pairings had been discounted as holding no promise for cryptographic applications.

19

CHAPTER 2. CRYPTO 101

ECC key size RSA key size Key size AES key size

bits bits ratio bits

163 1024 1:6

256 3072 1:12 128

384 7680 1:20 192

512 15360 1:30 256

Table 2.1: NIST guidelines for public key sizes for AES

It wasn’t until the Joux publication [55] that countered this claim that this whole area was

opened to researchers culminating with Boneh & Franklin’s much publicised paper in 2001.

Let G1 and G2 denote two groups of prime order q, where G1, with an additive notation,

denotes the group of points on an elliptic curve; and G2, with a multiplicative notation,

denotes a subgroup of the multiplicative group of a finite field.

Multiplicative groups will be represented here as Z∗n, which is the set of positive integers

less than n and relatively prime to n under multiplication modulo n. An integer is relatively

prime to another if their only common positive divisor is 1. For example, 8 and 15 , though

not prime numbers, are relatively prime.

A pairing is a computable bilinear map between these two groups. Two pairings have

been studied for cryptographic use. They are the Weil1 pairing and the Tate pairing .

For the purposes of discussion, we let ê denote a general bilinear map, i.e. ê:G1×G1 → G2,

which can be either a modified Weil pairing or a Tate pairing.

In this notation the Diffie-Hellman (DH) solution described above is a tuple in G1 as

(P, xP, yP, zP)→ G1 for some x, y, z (chosen at random) → Zq∗

satisfying z = xy mod q.

Properties of Pairings

Bilinear: If P, P1, P2, Q,Q1, Q2 ∈ G1 and a ∈ Z∗q , then ê(P1 + P2, Q) = ê(P1, Q).ê(P2, Q),

and ê(P,Q1 +Q2) = ê(P,Q1).ê(P,Q2).

Non-degenerate: There exists a P ∈ G1 such that ê(P, P) 6= 1.

1Pronounced “Vay”. Andre Weil in the 1940’s.

20

CHAPTER 2. CRYPTO 101

Computable: If P,Q ∈ G1, one can compute ê(P,Q) in polynomial time.

Since pairings were discovered, new protocols for identity-based encryption [14], [81],

short signatures [15] and identity-based signcryption [65]. We do not attempt to provide a

complete history here, but instead refer the interested reader to the Pairing-based Crypto

Lounge [7].

2.4.4 Pairing-friendly elliptic curves

When it comes to the selection of elliptic curves suitable for pairing-based cryptography, one

is currently limited to either the supersingular curves or certain special non-supersingular

curves of prime characteristic. A basic requirement is that the selected elliptic curve should

have a small embedding degree, or security multiplier, denoted as k. In this chapter, it will

be assumed that k is even.

If the curve was defined over a finite field of size q, G is mapped to a subgroup of a

finite field of size qk for some integer k. The smallest such integer k is called the embedding

degree.

Therefore, for cryptographic purposes a pairing-friendly elliptic curve over a finite field

consists of the finite set of points (including a point at infinity) on a curve which can be

described by one of

E(Fpm) : y2 = x3 +Ax+B

E(F2m) : y2 + y = x3 + x+ b

E(F3m) : y2 = x3 − x+ b

In the first case, the curve can be either supersingular, with an embedding degree of

k = 2, or nonsupersingular with m = 1 and any finite embedding degree [13]. In the second

case, the curve is supersingular and has a maximum embedding degree of k = 4, where

b = 0, 1. In the third case, the curve is also supersingular with a maximum embedding

degree of k = 6, and where b = ±1.

21

CHAPTER 2. CRYPTO 101

As is common in elliptic curve cryptography over E(Fq), one wants to work with a group

of points of prime order r, where r | q+1−t the total number of points on the curve (denoted

#E), and where t is the trace of the Frobenius, with |t| 6 2
√
q (the Hasse condition) [66].

These points then form a prime order cyclic abelian group. This group size needs to be large

enough to avoid various generic attacks on the elliptic curve discrete logarithm problem and

therefore, at a minimum, r should be 160-bits. The embedding degree k is related to this

group of points on the elliptic curve by the condition that k is the smallest positive integer

such that r | (qk − 1). A further security requirement for these elliptic curves is that Fqk ,

where q = p, 2m or 3m, should be an extension field of sufficient size to prevent an index

calculus attack on the discrete logarithm problem in that field. So, at a minimum, k. lg(q)

should be 1024 bits.

We therefore have the interesting constraints that r can, at most, be approximately

as big as q (due to the Hasse condition), with lg(r) a minimum of 160, and that k. lg(q)

should then be at least 1024. One obvious feasible solution would be to choose lg(r) ≈ 170,

r = q+ 1− t, and k = 6 so that 6. lg(q) ≈ 1024. This explains the early popularity of curves

of characteristic 3 with k = 6. This also has the advantage of keeping the size of the elliptic

curve as small as those required for standard ECC while still attaining the minimum levels

of index calculus security. However, another valid and popular choice would be to use a

supersingular [14] or non-supersingular curve [85] over Fp, with lg(r) = 160, lg(p) = 512

and k = 2.

In the case of fields of low characteristic, the security situation is rather unclear. As first

pointed out by Coppersmith [25], the discrete logarithm problem in F2m is somewhat easier

than it is over a prime characteristic field. According to the current record holder [95], who

was able to calculate discrete logarithms for m = 607, it would require m ≈ 1200 to obtain

a greater level of security than 1024-bit RSA. Interpolating into the tables provided by

Lenstra [60] would suggest that 1300 bits would be sufficient. Page, Smart and Vercauten

[75] have since observed that the record for prime field discrete logarithms is 398 bits [61],

607/398 = 1.53.

A pairing is denoted as e(P,Q), where P is taken as a point of order r, usually on E(Fq),

22

CHAPTER 2. CRYPTO 101

and Q is a point on E(Fqk) linearly independent of P . The pairing evaluates naturally as

an element of order r in Fqk . Its most important cryptographic property is its bilinearity

e(aP, bQ) = e(P,Q)ab

If Q should be linearly dependent on P and P ∈ E(Fq), then the pairing is degenerate

and e(P,Q) = 1, and thus, for example, e(P, P) = 1. On a supersingular curve, it is

usual to exploit the existence of a distortion map ψ(.) that maps a point from E(Fq) to a

linearly independent point on E(Fqk). Now both P and Q can be linearly dependent points

from the same group of order r on E(Fq) and the distorted pairing can be calculated as

ê(P,Q) = e(P,ψ(Q)). This pairing has the additional, and sometimes useful, property that

ê(P,Q) = ê(Q,P), which is implied by the condition that ê(P, P) 6= 1.

2.5 Identity Based Encryption (IBE)

In 1984, Shamir [88] (the ‘S’ in RSA) proposed the first identity-based signature scheme

and outlined a solution to this key distribution / certificate management problem calling it

Identity Based Encryption (IBE). However, he didn’t have an implementation.

The idea was that if any string can be a public key, then one could use an identifier of

the recipient to be the public key in which case one doesn’t need to locate the public key

associated with an identity. The identity is the key. Furthermore, one can use the “identifier

string” combined with something like a date/time and encrypt messages to be read into the

future.

Our friends Alice and Bob are to communicate in this system. Bob can simply use Alice’s

email address (alice@wonderland.com) and the public parameters of a trusted third party

as the public key to encrypt the message. When Alice receives the message, she contacts

the trusted third party (KDC key distribution center), validates herself and receives the

private key associated with her identity.

Shamir’s proposed IBE remained an elusive “holy grail” for cryptographers until Cocks

[22] working at the British secret service GCHQ discovered a method relying on quadratic

23

CHAPTER 2. CRYPTO 101

residues. Unfortunately this method is impractical for widespread use because of the band-

width overheads. It has recently come to light that two Japanese researchers Sakai and

Kasahara [81] also made a significant discovery relevant to IBE using pairings but due to

language barriers their implementation wasn’t widely known.

In 2001, Boneh and Franklin [14] announced a more viable method using the Weil pairing

(See. 2.4.3) This method, while demonstrable, still lacked a pragmatic implementation

which could be considered widely usable. Optimizations of the pairing mathematics were

proposed by Barreto-Kim-Lynn-Scott [2] in 2002 which moved the processing overheads

close to that of the widely used RSA algorithm. These optimizations involved

• Point tripling for super-singular elliptic curves over F3m .

• Removal of irrelevant operations from conventional algorithms.

Background

An IBE system involves, using the language of Boneh & Franklin’s seminal paper 2 a set of

four algorithms.

Setup: A key generator (KDC) which runs a ‘setup’ algorithm to generate global system

parameters and a master-key which the KDC keep safe. The whole security of the

system relies on the safekeeping of this master-key in a device sich as a hardware

security module.

Extract: The KDC runs an extract algorithm inputting the user’s identity (or any bit

string) and using the master-key from the setup. The output is the users private-key

associated with the users identity. Its important that the private-key is transported

to the user in a safe manner and that the KDC has made a full examination of the

user credentials before issuing a key corresponding to those credentials.

Encrypt: A probabilistic algorithm. Any user encrypts using the global system parameters

and public key ID. The output is the ciphertext.

2Extended abstract in [14]

24

CHAPTER 2. CRYPTO 101

Decrypt: This process takes the ciphertext from the encrypt function, global system pa-

rameters and the private key issued by the KDC. The output is the corresponding

plaintext.

Boneh & Franklin’s paper provides a random oracle security proof for their IBE method.

Hence, it is secure against an adaptive chosen ciphertext attack assuming the hardness of

the so-called Bilinear Diffie Hellman problem.

Technical

The following description is from Mao [63].

Set-up

1. Generate two groups G1,G2 of prime order q and a mapping-in-pair e : G1
2 → G2.

choose P and element in G1.

2. Pick s ∈∪ Zq and set Ppub ← [s]P ; s is the master key.

3. Using a strong hash algorithm F : {0, 1}∗ → G1. to map the identity string ID to an

element in G1.

4. Specify another suitable hash algorithm H : G2 → {0, 1}n.

The KDC keeps s as the system master-key and publishes the parameters.

(G1,G2, e, n, P, Ppub, F,H)

Private Key Generation (= Extract)

Let ID denote an authenticated and validated user’s identity (it can be any string)

1. Compute QID ← F (ID). This is an element in G1 and is the users public key.

2. Set the users private key dID as [s]QID.

Encryption

To send an encrypted message, obtain the system parameters (G1,G2, e, n, P, Ppub, F,H).

Using them, compute QID = F (ID). To encrypt M ∈ {0, 1}n pick r ∈U Zq and compute

25

CHAPTER 2. CRYPTO 101

gID ← e(QID, [r]Ppub) ∈ G2,

The ciphertext is C ← ([r]P,M
⊕
H(gID)).

Decryption

To decrypt C using ID’s private key dID as [s]QID, compute M = V
⊕
H(e(dID, U)).

Other “hard problems”

As mentioned above the Diffie-Hellman (DH) tuple in G1 is a tuple (P, xP, yP, zP) ∈ G4
1

for some x, y, z chosen at random from Zq satisfying z = xy mod q.

Computational Diffie-Hellman (CDH) problem: Given the first three elements in

a DH tuple, compute the remaining element. The CDH assumption: no algorithm

exists running in expected polynomial time which can solve the CDH problem with

non-negligible probability.

Decision Diffie-Hellman (DDH) problem: Given a tuple (P, xP, yP, zP) ∈ G4
1 for

some x, y, z chosen at random from Zq, decide if it is a valid DH tuple. If a pairing

can be calculated then this can be solved in polynomial time by verifying the equation

ê(xP, yP) = ê(P, zP).. Note that this is contrast to the situation in the simple finite

field where the DDH problem is also complex. This is also difficult on an elliptic curve

if a pairing cannot be calculated; that is if the elliptic curve is not pairing-friendly.

Bilinear Diffie-Hellman (BDH) problem: Let P be a generator of G1. The BDH

problem in G1,G2, ê is given (P, xP, yP, zP) ∈ G4
1 for some x, y, z chosen at random

from Zq, compute W = ê(P, P)xyz ∈ G2.

The following description of multi-precision algorithms is primarily derived from the

Handbook of Elliptic and Hyperelliptic Cryptography ([23] Chapters 10 and 11), and the

Handbook of Applied Cryptography ([67] Chapter 14). However, it is equally well presented

in Crandall ([27] Chapter 9), Smart ([91] Chapter 11 Section 11.5), and Rodŕıguez-Henŕıquez

et al ([79] Chapter 5).

26

CHAPTER 2. CRYPTO 101

2.6 Integer representation

The fundamental mathematical layer of most cryptographic systems is the integer ring Z

([23] Chapter 10). On top of the integer ring, it is possible to build finite fields then

elliptic curves and other sets. Efficient elliptic curve implementations therefore rely on

implementing efficient integer arithmetic. General purpose computers can only operate on

relatively small integers. In order to facilitate the large integers required by cryptography,

we need to build special representation (multi-precision) on top of the basic integer types.

Then we need to use efficient algorithms for arithmetic using these multi-precision integers.

Let b ≥ 2 be an integer called the base or the radix. Every integer u > 0 can be written

in a unique way as the sum

u = un−1b
n−1 + ...+ u1b+ u0

provided 0 ≤ ui < b and un−1 6= 0. This is what is known as the b representation of u and

is denoted by (un−1...u0)b. The ui’s are the digits of u.

This representation is generally present in high-level programming languages as a data

structure wrapping an array of base-type integers. However, no standards exist for these

data structures so small differences in subtle areas, such as ordering or padding, cause

interoperability problems. See Chapter 6 Section 6.2 and Chapter 7 Section 7.1.2 for further

discussion on multi-precision toolkits and internal representation.

2.6.1 Elliptic-Curve Diffie-Hellman key exchange (ECDH)

Let F be a finite field and E/F an elliptic curve defined over F. Let E(F) denote the group

of F-rational points on E. For any P ∈ E(F) and k ∈ Z we will denote the k-th scalar

multiple of P as [k]P .

The Diffie-Hellman key exchange protocol [32] can now be carried out in the group

〈P 〉 ⊆ E(F) as follows: User A chooses a random a ∈ {2, . . . , |〈P 〉| − 1}, computes [a]P and

sends this to user B. User B chooses a random b ∈ {2, . . . , |〈P 〉| − 1}, computes [b]P and

sends this to user A. Now both users can compute Q = [a]([b]P) = [b]([a]P) = [(a · b)]P .

27

CHAPTER 2. CRYPTO 101

The joint key for secret key cryptography is then extracted from Q; a common way to do

this is to compute a hash value of the x-coordinate of Q.

2.6.2 Montgomery arithmetic

For elliptic curves defined by an equation of the form By2 = x3 + Ax2 + x, Montgomery

introduced in [72] a fast method to compute the x-coordinate of a point R = P +Q, given

the x-coordinates of two points P and Q and the x-coordinate of their difference P −Q.

These formulas lead to an efficient algorithm to compute the x-coordinate of Q = [k]P

for any point P . This algorithm is often referred to as the Montgomery ladder. In this

algorithm the x-coordinate xP of a point P is represented as (XP , ZP), where xP = XP /ZP ;

for the representation of the point at infinity see the discussion in Appendix B of [9]. See

Algorithms 2.1 and 2.2 for a pseudocode description of the Montgomery ladder.

Algorithm 2.1 The Montgomery ladder for x-coordinate-based scalar multiplication on
the elliptic curve E : By2 = x3 +Ax2 + x

Input: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Output: (X[k]P , Z[k]P) fulfilling x[k]P = X[k]P /Z[k]P

t = dlog2 k + 1e
X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← t− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← ladderstep(X1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← ladderstep(X1, X2, Z2, X3, Z3)

end if
end for
return (X2, Z2)

Each ‘ladder step‘ as described in Algorithm 2.2 requires 5 multiplications, 4 squarings,

8 additions and one multiplication with the constant a24 = (A + 2)/4 in the underlying

finite field.

28

CHAPTER 2. CRYPTO 101

Algorithm 2.2 One ladder step of the Montgomery ladder

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)2
X[2]P ← t6 · t7
Z[2]P ← t5 · (t7 + a24 · t5)
return (X[2]P , Z[2]P , XP+Q, ZP+Q)

end function

29

3
Implementing Cryptographic Pairings on

Smartcards

Background

Smart cards have been used for many different purposes over the last two decades, from

simple prepaid credit counter cards used in parking meters, to high security identity cards

intended for national ID programs. Their wide spread use in banking cards and GSM/3G

mobile phones has possibly made them the most common form of computing device on the

planet. One of the overriding design criteria for a smart cards is to keep them low cost. The

various cards look similar as the physical interfaces are defined by a simple ISO standard.

Under the hood only the most expensive models have processors and storage which allow

for the computation required for public key cryptography. Cards designed for security

applications tend to have relatively expensive, tamper resistant, dedicated cryptographic

co-processors whose design tends to be limited to a small set of algorithms. That said, the

form factor and secure execution environments make smart cards the ideal identity token.

For Identity based encryption to gain wide spread acceptance it was essential that pairings

be seen to work inside these constrained devices.

30

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

3.1 Introduction

Pairings on elliptic curves are fast coming of age as cryptographic primitives for deployment

in new security applications, particularly in the context of implementations of Identity-

Based Encryption (IBE). In this chapter we describe the implementation of various pairings

on a contemporary 32-bit smart-card, the Philips HiPerSmartTM, an instantiation of the

MIPS-32 based SmartMIPSTM architecture. Three types of pairing are considered, first the

standard Tate pairing on a nonsupersingular curve E(Fp), second the Ate pairing, also on a

nonsupersingular curve E(Fp), and finally the ηT pairing on a supersingular curve E(F2m).

We demonstrate that pairings can be calculated as efficiently as classic cryptographic prim-

itives on this architecture, with a calculation time of as little as 0.15 seconds.

The appreciation that the Weil and Tate pairings can be used for constructive cryptographic

application has caused a minor revolution in cryptography. After a flurry of research results

involving new protocols based on new but plausible security assumptions, it is time for the

first commercial applications to start appearing. The final, and perhaps most demanding,

niche for the implementation of many cryptographic protocols is in the smart-card, a con-

strained computing environment in which private keys can be adequately protected. It is

the purpose of this chapter to demonstrate that such implementations are perfectly feasible.

There have been two previous reported implementations of pairings on smartcards, the

first in the form of an announcement by Gemplus (Now Gemalto) [41], and the second in

a paper by Bertoni et al. [11]. There have also been proposals for implementations, such

as that by Granger et al. [43], which would require special supporting hardware. Bertoni

et al. report a timing of 752 milliseconds on a 33MHz ST22 32-bit smartcard [11], for the

same level of security as considered here.

As our chosen smart-card has special support for multiprecision arithmetic over Fp, and

over F2m , we will restrict our attention here to these two cases, although the field F3m has

undoubted advantages (with its nice embedding degree k = 6) and has received considerable

attention in the context of pairing based cryptography [43].

31

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

3.2 The SmartMIPSTM architecture

The SmartMIPSTM specification is of an instruction-set enhanced version of the popular

RISC MIPS32 architecture The enhancements are designed to improve the performance

of popular cryptographic algorithms, and are largely those envisaged and described by

Großschädl and Savas [44]. It is interesting to note that this new generation of 32-bit

smartcards do not employ a classic cryptographic co-processor, with its restricted and spe-

cialised set of operations, but rather use carefully selected instruction set enhancements,

which when combined with the improved overall performance of the 32-bit chip, permit

standard cryptographic algorithms to be executed with sufficient speed. It is also fortu-

nately flexible enough to efficiently support new algorithms that were not envisaged when

the processor was being designed.

The main idea is that an extended ACX|HI|LO triple of registers can be used to accu-

mulate the partial products that arise when employing the popular Comba/Montgomery

technique for multi-precision multiplication [44]. This is supported by a modified MADDU

instruction which carries out an unsigned integer multiplication and addition to the triple

register. Another important addition to the instruction set is the inclusion of a MADDP in-

struction which supports binary polynomial multiplication, and which therefore supports

field multiplication over F2m . For many years algorithms over this field have been disad-

vantaged with respect to the field Fp by the absence of such an instruction in standard

processors. The addition of this instruction finally “levels the playing field”, and allows the

full potential of fast arithmetic over the field F2m to be realised.

One disadvantage of the MIPS architecture for multi-precision integer arithmetic is the

lack of a carry flag, and specifically an add-with-carry ADC instruction. In fact it takes 5

instructions just to process one digit in a multi-precision integer addition in order to handle

the carry-in and carry-out correctly, not including memory loads and stores. Note however

that this is not an issue in F2m as in this context addition is carry-free.

When considering the performance of any processor the CPU performance equation [46]

is relevant

32

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

CPU Time =
Number of Instructions× Average Clocks Per Instruction

Clock Speed in cycles per second

As instantiated by the Philips HiPerSmartTM our targeted processor is characterised by

• A five stage pipeline

• Maximum clock speed of 36MHz

• 2k Instruction cache

• 256k Flash memory

• 16k RAM memory

Figure 3.1: Philips HiPerSmart Development Rig

One of the most significant attributes from a programming point of view is the small

size of the 2-way associative instruction cache. The MIPS processor as described in [46] is

very much designed as a classic RISC processor, which can benefit enormously from loop-

unrolling as is indeed the default behaviour of GCC -O3 compiler optimization. However

this is entirely inappropriate with such a small instruction cache. Cache misses are very

expensive, and are the main reason for increased CPI (Clocks-Per-Instruction), leading to

33

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

poorer performance. Ruthless loop unrolling can dramatically decrease overall instruction

count, but only at the cost of much poorer CPI.

While the majority of instructions can complete one pipeline stage per clock tick, certain

combinations of instructions will cause a stall in the pipeline. Most of these stalls can be

identified and avoided by instruction scheduling (re-ordering). A typical cause for such a

stall might be the latency of a multiply instruction like MADDU. However as pointed out in

[44] these potential performance hits can be avoided if we use the right algorithm. While

such pipeline stalls increase CPI, they do so in a fashion which is independent of the clock

speed. Cache capacity misses must happen given the small size of the cache, and furthermore

conflict misses are inevitable given that the cache is only 2-way associative. These cache

misses exact a cost in wasted cycles which can increase dramatically with clock speed, as

the access time of main memory becomes much slower than the 1-cycle access time of a

cache hit.

3.3 Calculating the Pairing

We consider the scenario in which a smart-card is required to carry out IBE decryption, using

either the IBE method of Boneh and Franklin [14] or the method of Sakai and Kasahara

as described in [19]. In both cases the critical calculation to recover the plaintext is of

the pairing e(A,B), where A is the recipient’s private and constant key, and B is a public

and variable value associated with the ciphertext. For provable chosen ciphertext security

an additional point multiplication is required in both cases, but this is multiplication of a

constant point and so fast methods can be used. We omit a formal description of either

scheme and instead refer the interested reader to the referenced material.

Much effort has been made to optimize the Tate pairing. In this work we will describe an

implementation of the pairing over a prime order finite field Fp using the BKLS algorithm [2],

as described by Scott [85], an implementation of the Ate pairing [47], and an implementation

over the small characteristic field F2m using the ηT pairing approach described in [5]. In

all cases we will exploit the setting in which the pairing is to be calculated to maximize

34

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

performance.

3.3.1 The BKLS pairing algorithm

All algorithms for calculating a pairing are elaborations and improvements of the basic Miller

algorithm [69]. This particular variation [2] has general applicability to pairing-friendly

elliptic curves E(Fp), either supersingular or non-supersingular. In this case we choose

to use an embedding degree of 2 with a non-supersingular curve, very much following the

description given in [85]. We use the same non-supersingular curve as described there, where

p is a 512-bit prime number and r is the low Hamming weight Solinas prime 2159 + 217 + 1.

The point Q is handled as a point on the twisted curve E′(Fp). Since p = 3 mod 4, elements

of the extension field Fp2 such as m can be described as mR+imI , where i is the“imaginary”

square root of the quadratic non-residue −1.

The helper function g(.) calculates the line functions required by Miller’s algorithm, and

returns a value in Fp2 . This function in turn requires a function A.add(B) which adds the

elliptic curve points A = A + B using standard methods, and returns the slope of the line

joining A and B.

Algorithm 3.1 Function g(.)

Input: A,B,Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return yi − λi(xQ + xi)− i.yQ

Algorithm 3.2 Computation of the Tate pairing e(P,Q) on E(Fp) : y2 = x3 + Ax + B
where P is a point of prime order r on E(Fp) and Q is a point on the twisted curve E′(Fp)

Input: P,Q
1: m = 1
2: A = P
3: n = r − 1
4: for i← blg(r)c − 1 downto 0 do
5: m = m2 · g(A,A,Q)
6: if ni = 1 then m = m · g(A,P,Q)
7: end for
8: m = m̄/m
9: return V(p+1)/r(mR)

35

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

After the Miller loop, the value of m needs to be subject to a final exponentiation to

the power of (p − 1)(p + 1)/r. This is done in two parts – first we calculate mp−1 using

a conjugation and a division, and then we use a Lucas sequence to raise this value to the

power of (p+ 1)/r. The returned value is thus compressed to a single element in Fp [86].

Observe that the parameter P is in effect being multiplied by its group order r using

a standard double-and-add method. The points generated as a result of this process (the

xi and yi in the g(.) function), and the associated line slopes λi, can be precalculated and

stored if P is a constant, which it will be in the context under consideration here – in fact

its the IBE private key of the card-holder.

Therefore we will precompute and store the points (xi, yi, λi) that arise in the mul-

tiplication of P by r. This results in a much simplified algorithm, where the expensive

A.add(B) function is no longer required and curve points can be represented using simple

affine coordinates.

3.3.2 The Ate pairing algorithm

The Ate pairing [47] is calculated faster than the Tate pairing over non-supersingular curves

E(Fp) if lg(t)/ lg(r) is less than one, as it uses a truncated Miller loop of length lg(t) instead

of lg(r) as required above. It was once considered “natural” when implementing the Tate

pairing on non-supersingular curves with embedding degree k ≥ 4, that the first parameter

P should be on the the curve defined over the base field E(Fp) and that the second parameter

Q should be a point on a twist of the curve E′(Fpk/d), where d can always be 2 [4], but

can be as high as 6 for certain curves, such as the BN curves [6]. The authors of [47]

however observed that, rather counter-intuitively, the Ate pairing idea works best with P

on E′(Fpk/d) and Q on E(Fp). In our application this swapping of roles is not an important

issue, as P will be fixed and its multiples can be precalculated and stored as above. More

important is the fact that we can get away with a possibly much shorter Miller loop, and

still calculate a viable bilinear pairing.

To exploit the Ate pairing we first need a family of elliptic curves which have the required

properties. Not only must they be pairing-friendly, but to get the full advantage we want

36

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

lg(t) < lg(r). The best that can be hoped for is that lg(t)/ lg(r) = 1/ deg(Φk(x)), where

Φk(x) is the k-th cyclotomic polynomial [47]. So for a k = 12 curve such as that described

in [3], the loop may be shortened to as little as one-quarter size. However for our targeted

level of security, k = 12 is too big. Consider instead the family of elliptic curves defined by

x = (Dz2 − 3)/4, t = x+ 1, r = x2 + 1

p = (x3 + 13x2 + 26x+ 13)/25, #E = ((x+ 13)r)/25

It can easily be verified that these parameters define a family of pairing-friendly elliptic

curve with embedding degree k = 4, and with complex multiplication by −D. Note that

r = Φ4(x), and that lg(t)/ lg(r) = 0.5 which is optimal, and so we can leverage the maximum

advantage from the Ate pairing idea with a half-length loop. The actual parameters of a

curve in the form y2 = x3 + Ax + B can then be found using the method of complex

multiplication [54]. By choosing random z such that p is prime and 256 bits in length, then

we can easily find a value for r which has a 160-bit prime divisor. In this way the conditions

that k. lg(p) = 1024 and lg(r) = 160 can be satisfied. For our particular curve, t − 1 has

a relatively low Hamming weight of 31, and the discriminant D = 259. The full algorithm

can now be given

Algorithm 3.3 Function g(.)

Input: A,B,Q
1: let A = (xi, yi), Q = (xQ, yQ)
2: λi = A.add(B)
3: return i2yQ − i(i2yi/2 + λi(i

2xi/2 + xQ))

In this case the function g(.) returns a value in Fp4 and the Ate pairing returns a

compressed value in Fp2 . Since we choose p = 5 mod 8, −2 is a quadratic non-residue in Fp

and
√
−2 is a quadratic non-residue in Fp2 , elements in Fp4 can be represented as a pair of

elements in Fp2 , m = mR + imI with i = (−2)1/4 [73]. In the function g(.), points on the

twisted curve E′(Fp2) must first be converted to coordinates on E(Fp4), which explains the

apparent complexity of this function. However given that these can all be precalculated,

37

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

Algorithm 3.4 Computation of the Ate pairing a(P,Q) on E(Fp) : y2 = x3 + Ax + B
where P is a point of prime order r on the twisted curve E′(Fp2) and Q is a point on the
curve E(Fp)

Input: P,Q
1: m = 1
2: A = P
3: n = t− 1
4: for i← blg(n)c − 1 downto 0 do
5: m = m2 · g(A,A,Q)
6: if ni = 1 then m = m · g(A,P,Q)
7: end for
8: m = m̄/m
9: return V(p2+1)/r(mR)

this is not an issue in practice.

3.3.3 The BGOhES pairing algorithm

On the supersingular curve

E(F2m) : y2 + y = x3 + x+ 1

where m is prime and m = 3 mod 8, the number of points is 2m + 2(m+1)/2 + 1 [5]. For

our choice of m = 379, this value is a prime. A suitable irreducible polynomial for the field

F2379 is x379 + x315 + x301 + x287 + 1. This supersingular curve has an embedding degree

of k = 4. To represent the quartic extension field F24m , we use the irreducible polynomial

X4 +X + 1.

Recall that in a characteristic 2 field with a polynomial basis, field squarings are of linear

complexity. Furthermore on this supersingular curve, point doublings require only cheap

field squarings (using affine coordinates). Therefore we can anticipate that calculations on

this curve will be very efficient.

A distortion map for this particular supersingular curve is ψ(x, y) = (x+ s2.y+ sx+ t),

where t = X and s = X +X2 [66]. A major insight from [5] is that the Tate pairing can be

calculated from the more primitive ηT pairing, which requires a half-length loop compared

to the Duursma-Lee method [34], with considerable computational savings. The algorithm

38

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

as described benefits from unrolling the loops times 2, in which case each iteration costs

just seven base field multiplications. The final exponentiation looks a little complex, but

in fact can be accomplished with only 4 extension field multiplications, (m + 1)/2 cheap

extension field squarings and some nearly-free Frobenius operations.

Algorithm 3.5 Computation of ê(P,Q) on E(F2m) : y2 + y = x3 + x+ b : m ≡ 3 (mod 8)
case
Input: P,Q
Output: ê(P,Q)

1: let P = (xP , yP), Q = (xQ, yQ)
2: u← xP + 1
3: f ← u · (xP + xQ + 1) + yP + yQ + b+ 1 + (u+ xQ)s+ t
4: for i← 1 to (m+ 1)/2 do
5: u← xP , xP ←

√
xP , yP ←

√
yP

6: g ← u · (xP + xQ) + yP + yQ + xP + (u+ xQ)s+ t
7: f ← f · g
8: xQ ← x2Q, yQ ← y2Q
9: end for

10: return f (2
2m−1)(2m−2(m+1)/2)+1)(2(m+1)/2+1)

Since P will be fixed, all the square roots in this algorithm can be precalculated and

stored with some savings. With this modification, our implementation is largely the same

as that described in [5].

3.4 Implementation Issues

Our implementation makes use of the MIRACL multiprecision library [84]. This library

is friendly towards those attempting implementations in a constrained environment, like a

smartcard. Typically a big number library forces allocation of memory for big variables

from the heap. In a constrained environment however a heap is a luxury that often cannot

be afforded. Therefore allocation from the stack is appropriate. Header file definitions were

used to cut down the amount of code required. This was supplemented with some manual

pruning of unwanted functionality.

For optimal performance MIRACL includes a mechanism for generating unrolled Comba

code for modular multiplication, squaring, and reduction with respect to a fixed modulus,

including specific support for the SmartMIPSTM processor. However as pointed out above,

39

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

fully unrolled code is inappropriate in an environment where the instruction cache is very

small. Therefore we found it necessary to take the automatically generated (and correct)

code, and to roll it up again into tight loops, much as described in [44]. Extra manually

written inline assembly code was provided to support fast squaring in F2m using the MADDP

instruction, and short unrolled assembly language code was provided for fast field addition

in F2m . With these exceptions, the rest of the code was written in standard C.

Precomputation was used to advantage in all cases. The amount of ROM required to

store precomputed values was 31232, 25036 and 18432 bytes respectively, for the Tate, Ate

and ηT pairing. The RAM requirement in all cases was comfortably with 16K available,

typically requiring only half of that. As stack memory is inherently re-usable, a simple

restructuring of the programs could reduce this requirement still further.

3.5 Results

We present our results in a series of tables. As well as the timings for the pairings, we

include timings for (non-fixed) point multiplications and pairing exponentiations, these

as often relevant to pairing based protocols. For each of the three implementations we

assume projective coordinates are used for point multiplication, as field inversions which are

required for affine point addition are very slow on the smartcard. The point multiplication

is taken over the base field E(Fq) using a random 160-bit multiplier. Field exponentiation

is of the pairing value to a random 160-bit exponent. For the E(Fp) cases we use Lucas

exponentiation (also known as a “Montgomery powering ladder”) of the compressed pairing,

while for the E(F2379) case we use standard windowed exponentiation, as we believe these

to be the fastest methods in each case.

Our hardware emulator is only cycle accurate up to 20.57MHz, and so we estimate

the timings for the maximum supported speed of 36MHz, using linear interpolation for

CPI. For comparision purposes we include figures for 1024-bit RSA decryption (using the

Chinese Remainder Theorem), and timings on a standard PC (note that these are faster

than previously reported timings, due to their implementation in C rather than C++).

40

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

Table 3.1: Instructions required (% icache misses) - Philips HiPerSmartTM

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3705344 (10.9%) 7753341 (7.3%) 8156645 (15.8%)

Point Mult. 2589569 (9.6%) 7418768 (6.1%) 2663217 (17.5%)

Field exp. 1551117 (11.4%) 1364124 (7.2%) 1614016 (15.7%)

RSA decryption 4372772 (3.4%)

Table 3.2: Clock cycles required/CPI/time in seconds @ 9 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4311454/1.16/0.48 9104450/1.17/1.01 10860479/1.33/1.21

Point Mult. 3118344/1.20/0.35 8529176/1.15/0.95 3739596/1.40/0.42

Field exp. 1924596/1.24/0.21 1593313/1.17/0.18 2122221/1.31/0.24

RSA decryption 4740271/1.08/0.53

Table 3.3: Clock cycles required/CPI/time in seconds @ 20.57 MHz

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4590712/1.24/0.22 9755457/1.26/0.47 12207440/1.50/0.59

Point Mult. 3391127/1.31/0.16 9049457/1.22/0.44 4278858/1.61/0.21

Field exp. 2118707/1.37/0.10 1705365/1.25/0.08 2374885/1.47/0.12

RSA decryption 4880323/1.12/0.24

Table 3.4: Clock cycles required/CPI/time in seconds @ 36MHz (estimated)

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 4891054/1.32/0.14 10467010/1.35/0.29 13621597/1.67/0.38

Point Mult. 3677188/1.42/0.10 9570210/1.29/0.27 4847055/1.82/0.13

Field exp. 2326675/1.50/0.06 1814285/1.33/0.05 2630846/1.63/0.07

RSA decryption 5072415/1.16/0.14

41

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

Table 3.5: Timings in milliseconds on 3GHz Pentium IV

E(F2379) ηT pairing E(Fp) Tate pairing E(Fp) Ate pairing

Pairing 3.88 2.97 3.16

Point Mult. 1.82 3.08 1.17

Field exp. 1.14 0.54 0.62

RSA decryption 1.92

The most surprising and significant observation to be made is that the ηT pairing can

be calculated as quickly as a standard RSA decryption, for approximately the same level of

security. As expected CPI goes up as clock speed increases, as we are punished more heavily

for cache misses. This has less impact on algorithms that spend more time in tight loops,

and hence disadvantages the ηT and Ate pairings with their more elaborate structures and

higher extension fields. Note that RSA, due to its simplicity, suffers least from increasing

CPI.

3.6 Does pairing delegation make sense?

The idea of securely delegating the calculation of a pairing to the terminal was considered

in [20]. This was motivated by the assumption that the pairing calculation might be too

resource consuming to be carried out on a smartcard. Here we present a slightly modified

version of the method described in Section 6.2 of [20]. In the context of IBE decryption the

calculation of e(A,B) involves a constant and private A (in fact the IBE private key), and

a public B (in fact part of the ciphertext). It is assumed that the smartcard also has stored

a random secret point Q and the value of e(A,Q).

• The card generates random x,y,and z, and queries the following pairings to the ter-

minal.

α1 = e(x−1A,B), α2 = e(yA, z(B +Q))

42

CHAPTER 3. IMPLEMENTING CRYPTOGRAPHIC PAIRINGS ON SMARTCARDS

• The card computes

eAB = αx
1

• The card checks that

αr
1 = 1, αxyz mod r

1 = α2/e(A,Q)yz mod r

If successful the protocol outputs e(A,B) = eAB. Observe that two of the point multi-

plications are of the fixed point A. These may be calculated offline, or at the very least can

benefit from fast methods for fixed-point multiplication. Also e(A,Q)yz can be precalcu-

lated, or calculated using fixed-base exponentiation [67]. So the major online cost will be of

3 exponentiations and one point multiplication. From the tables above it is clear that the

ηT pairing is so fast that delegation is unlikely to be beneficial. The standard Tate pairing

(k = 2) implementation suffers badly as point multiplication is over a large 512-bit field.

However in the case of our Ate pairing implementation, with its smaller 256-bit field size,

it appears that delegation might be beneficial.

3.7 Conclusions

We have demonstrated for the first time that cryptographic pairings can be implemented

just as quickly as classic public key cryptographic operations on a standard smartcard,

hence clearing the way for their more widespread adoption. The issue of pairing delegation

has been investigated, and it appears that despite the efficiency of our implementations, it

may be advantageous in certain circumstances.

43

4
Pairing Friendly Curves Search

4.1 Introduction

The work carried out for Chapter 3 left many major questions about how cryptographic

pairings would be used in practice. Many researchers developed protocols which assumed

an implementation “black box” that would be fast, robust, secure, and implement standards

akin to the Public-Key Cryptography Standards (PKCS) [80] or NIST standard curves (see

Section 7.1.4) for interoperability etc. However, it is early days with respect to the industrial

acceptance of pairing base cryptography.

In order to further the adoption of the field of pairing based cryptography, we attempted

to reduce the overhead for researchers by solving an open problem of locating pairing friendly

elliptic curves (Section 2.4.4) by systematically documenting all available curves in a wide

search space using super-computing resources. An open problem to its successful adoption

is the arbitrary selection of elliptic curves by different research teams, often without under-

standing critical security and/or performance issues associated with their choice. We tried

to produce the definitive list of known “friendly” curves for use by research and industry

worldwide. At the present time, finding even one such candidate “friendly” curve can take

a number of days on a standard PC. We used the computation power available at the “Irish

Centre for High-End Computing” (ICHEC) [53] to pre-compute suitable curves to embed

in low-end applications such as the smart card applets. Overall, from start to finish, the

44

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

project duration was 9 months.

4.2 Calculating Pairing Friendly curves

Freeman Scott and Teske [38] published a taxonomy that encompasses all of the construc-

tions of pairing-friendly elliptic curves currently in existance. Their paper outlines three

general methods to find solutions that have been proposed.

• 1. The MNT/Freeman idea (MNT/F) [70], [37]

• 2. The Barreto-Lynn-Scott/Brezing and Weng idea (BLS/BW) [3], [16]

• 3. The Scott-Barreto idea (SB) [87]

In order to find a pairing friendly elliptic curve, it is imperative to find a curve such

that q|pk − 1, where q divides the number of points on the curve n. However, if we are

to find an actual curve we also require the parameters of the curve (n, p and t) to satisfy

the CM condition (Complex Multiplication See [27]). This is that 4p − t2, or equivalently

4n− (t− 2)2, should factor as DV 2, where D is relatively small, less than about 1012. Bear

in mind that n = p+ 1− t.

Now the the pairing friendly condition q|pk−1 can be transformed to the condition that

q|Φk(t−1), where Φk is the k-th cyclotomic polynomial [3]. The k-th cyclotomic polynomial

is the new factor that appears in the factorisation of Φk(x). For example:

Φ1(x) = (x− 1)

Φ2(x) = (x+ 1)

Φ3(x) = x2 + x+ 1

Φ4(x) = x2 + 1

....

Φ12(x) = x4 − x2 + 1

45

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

One approach to finding pairing friendly curves is to try and satisfy the polynomial

equation

DV (x)2 = 4c(x)× Φk(t(x)− 1)− (t(x)− 2)2

for some cofactor c(x) (which would ideally be 1), some t(x), and a small value for D.

However it is also sufficient that q should divide some factor of Φk(t(x)− 1), and so if this

factors into two or more irreducible polynomials, these polynomial factors can also be used

as candidates.

One approach [70], [37] is to try and force the RHS of the CM equation to be a quadratic

in x. Should this be the case, solutions can readily be found, as the CM equation can be

forced into the form of the well-known Pell equation.

A second approach is to use a brute force search through c(x) and t(x) to find a satis-

factory solution. For example if we choose c(x) = ((x− 1)2)/3, and t(x) = x+ 1, then the

RHS of the CM equation simplifies to 3((x− 1)(2x− 1)/3)2, and so we have a satisfactory

solution with D = 3 [3].

Our search programs typically attempted to search through the space of c(x), t(x), k and

D to find pairing-friendly curves.

4.3 Implementation

4.3.1 Hardware

DCU

We initially constructed a small test cluster based on a 24 450Mhz Intel Celerons to fine tune

the application and discover potential resource requirements. This cluster was configured

to run OSCAR [74], a Beowulf-type, high-performance computing cluster compatible with

more commercial super-computing resources. One of OSCAR’s strengths is that it is possible

to install multiple message passing interface (MPI) implementations on one cluster and

easily switch between them. While this facilitated our development ramp-up speed, our

46

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

Figure 4.1: DCU cluster

hardware set-up was too undersized to address the specific problem.

ICHEC

Figure 4.2: ICHEC

We then moved our code to ICHEC whose mission is to provide high-performance com-

puting (HPC) resources for researchers in Irish third-level institutions. We successfully

applied for class C level resources which allowed us to use 25,000 Core Hours on Opteron

2.4GHz CPUs.

4.3.2 Software

We designed a reusable framework using MPI, NTL and GnuMP which could plug-in any

polynomial factoring program. The configuration established an embedding degree, avail-

able number of terms for the polynomial and a range for the co-efficient of each term.

47

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

Table 4.1: K=34 16 CPUs 5 terms

cpu time mem (kb) vmem (kb) wall time

62 : 05 : 26 1, 539, 924 1, 918, 304 04 : 11 : 39

The solution set is found by means of a set of custom written polynomial factoring

programs which have been developed in standard C++ on Linux with output in text format

to standard file type. Subsequently, through the course of a class C project on ICHEC we

managed to further optimise the processing to be more aware of the resources available

(master/slave model for MPI). The application is designed to grow with the substantial

CPU resources required but has modest memory and data storage overheads. The class C

module environment platform comprised mpich/gcc. However, we do believe the application

to be portable to any Unix, MPI or compiler environment.

There is a dependence on the math libraries NTL and GnuMP

• NTL : A Library for doing Number Theory

• Gnu MP : GNU Multiple Precision Arithmetic Library.

Our code is C++ and Assembly. It is not dependent on a specific number of CPUs

but adapts to the number provided by the scheduler. There is little dependency between

nodes during execution except for internal job creation and some I/O blocking when a

rare result hit occurs. This limited communication between nodes restricts the network

and memory loads. It is difficult to fully determine the performance characteristics of our

system as execution requirements depend on false positives passing tests, which require

some computation, but later are rejected by failing subsequent tests.

With our experiments, we typically segmented our jobs to run on 16 nodes. Each unit

of work 1 used CPU time outlined in Table 4.3.2.

With the class C proposal our width (range of coefficients) was usually ±12 and we

worked with 5 terms in a polynomial. We would normally use between 16 and 32 of these

runs to satisfy a search space which is about 1984 CPU hours per experiment. We had

1based on the MNTF method

48

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

Table 4.2: K=10 32 CPUs 8 terms

cpu time mem (kb) vmem (kb) wall time

432 : 16 : 35 62, 496, 600 94, 722, 904 23 : 34 : 35

3 different experiment tests to run all with similar computation overhead. This gave us

roughly 6000 hours total CPU time. We also needed some development time and therefore

ran some of the experiments on our own limited cluster.

4.4 Results and Future Work

Our class C project did validate known curves, but also found a number of new (or new

variations) of known curves. However, from these results we’ve established that the wider

space used (from our estimation of what would fit inside a class C project’s CPU time)

didn’t produce any significantly different results.

Future work

For the future, we would see a ICHEC class B project where we aim to flatten the search

space by reducing the range of coefficients but extend the depth by increasing the number

of terms. That is set the range at ±3 but with 8 terms rather than the existing 4. This will

greatly increase the computations per experiment. Table 4.4 lists an equivalent execution

to Table 4.3.2 with the 4 extra terms added.

This increases to about 7 times the computation required per unit of work. Rolling this

through the various experiments, we would see a total of about 42, 000 hours for perfect

running experiments. We could also attempt a small number of larger runs with the width

set at ±12 and with up to 12 terms on likely polynomials (where most of the results have

been so far).

Future work would include conducting more refinement on our program code to introduce

checkpoints and restart capabilities to allow for better use of resources if, for whatever reason

a job fails to complete, it would be possible to restart from last know good position.

49

CHAPTER 4. PAIRING FRIENDLY CURVES SEARCH

Runtime

Each attempt at mapping a search space takes about 24 wall hours. As previously stated,

we require about 16 runs for each of the 3 experiments to gather enough data to produce a

judgement and potentially enough for publication. We would then attempt to completely

document the full space by completing missing runs.

Chapter Acknowledgements

We wish to thank the SFI HEA Irish Centre for High-End Computing (ICHEC) for the

provision of computational facilities and support.

50

5
The Cell Broadband Engine

Background

While working with the super-computing resources in our search for pairing friendly curves

(Chapter 4), we became aware of ambitious plans from IBM/Toshiba/Sony to launch a

new processor which would challenge the performance levels achieved by current super-

computers. The published specifications indicated that these processors were very inter-

esting from a cryptographic point of view and that this radical design could break all

existing speed records. While our research focus switched from slow constrained devices to

a processor design with seemingly unlimited scalability, the techniques for optimal efficient

utilisation were very similar.

5.1 Introduction

Recently, the major performance chip manufacturers have turned to multi-core technology

as the more cost-effective alternative to ever increasing clock speeds. Well known examples

of multi-core architectures include the Intel Core Quad and AMD Phenom X4 X2 range

of chips. IBM have introduced the Cell Broadband Engine (more commonly referred to as

Cell) as their next generation CPU to feed the insatiable appetite modern multimedia and

number crunching applications have for processing power.

51

CHAPTER 5. THE CELL BROADBAND ENGINE

The Cell is the “Wicked Smart”1 technology at the heart of Sony’s Playstation 3TM.

The Cell contains a number of specialist synergistic processor units (SPUs) optimised for

multimedia processing and offers a rich, vector processing based API to developers. The

specialised hardware design for gaming will always deliver performance gains compared to

a more generic processor for its specific domain. Multi-precision number manipulation for

use in cryptography is a considerable distance away from this domain.

We started this project in 2005 before any Cell hardware existed. IBM released a full,

cycle accurate simulator that could run linux inside a virtual machine hosted on a linux

platform enveloped inside a Tk/Tcl environment that allowed for close monitoring of the

instructions as they ran. The SDK is extremely powerful and a great example of a modern

linux development environment. It allows one to configure processor descriptions such as

instruction latency times for what-if scenarios for theoretical CPUs.

In November 2006 Sony made the Cell available inside the Playstation 3. It was released

initially in Japan and North America, with a European release in March 2007. While not

fully supported by the IBM SDK, we were anxious to see our code run on actual physical

hardware. We imported a Japanese model, quickly reformatting it to run Linux, and we

installed the SDK to see if our simulated ‘theoretical‘ matched the actual results. We were

not disappointed (and possibly had the first playstation 3 in Ireland!). Later, IBM provided

a number of academic institutions with Cell blade resources accessible on the web.

5.2 The Cell Broadband Engine

The Cell has a unique architecture combining a traditional central processor and specialised

high performance processors similar to those found in graphics cards (GPUs). These pro-

cessing units are combined across a circular high bandwidth bus (204 GB/s) [48] offering a

multi-core environment with two-instruction sets and enormous processing power. Central

to the Cell is a 3.2 GHz 64-bit Power Processing Unit (PPU). The PPU is a variant (970)

of the G5/PowerPC product line, a RISC driven processor found in IBM’s servers and Ap-

ple’s last generation PowerMac range. This PPU works as the primary processor and as

1“Wicked Smart” is an advertising slogan used by Sony

52

CHAPTER 5. THE CELL BROADBAND ENGINE

Figure 5.1: Cell Simulator

supervisor for the other cores.

The Cell can be found in the Sony Playstation 3 and the IBM QS20 and QS21 blade

server series. Note that the CBE in the Playstation 3 makes just 6 out of 8 SPUs available

for general purpose computations. Toshiba equips several laptops of the Qosmio series with

the SpursEngine consisting of 4 SPUs intended for media processing. This SpursEngine can

also be found in a PCI Express card called WinFast pxVC1100 manufactured by Leadtek

which is currently available only in Japan.

5.2.1 The Cell’s SPU

The real power of the Cell is in the ability to harness the additional Synergistic Processing

Units (SPUs). The SPU is a specialist processor with a RISC-like SIMD 2 instruction set

and a large (128) array of 128-bit registers. Each SPU has its own local memory store (LS).

Currently, this LS is limited to just 256K. The SPU can access the LS in the same clock

cycle as its register operations. While the architecture allows for any number of SPUs, a

standard Cell, and those currently in production, has 8 SPUs.

A processor with just 256K, no hardware cache and with no access to I/O doesn’t appear

2Single Instruction Multiple Data

53

CHAPTER 5. THE CELL BROADBAND ENGINE

]

Figure 5.2: Cell BE Die Layout (source IBM marketing material)

54

CHAPTER 5. THE CELL BROADBAND ENGINE

]

Figure 5.3: Cell BE logical diagram

to be anything exciting when compared to the PPU or other modern CPUs. It is the fact

that the Cell offers 8 SPUs on one die all designed to operate in parallel combined with the

ability to work with up to 4× 32-bit integer operations in just one clock cycle (referred to

as SIMD) that make the SPU so interesting. The SPU also contains 2 instruction pipelines

and while the pipelines are not equal, careful management of the order of instructions can

lead to huge amounts of data being processed with very few clock cycles and a very low

clock cycles per instruction (CPI) ratio.

The large register size is ideal for the number crunching operations required for cryp-

tography. However, the fact that the size of the register is too large for most high level

language’s basic types, and that most operations work with, at most, 32-bit sub-sections of

the quadword register, makes development complex. The programmer accesses the registers

through a set of C extensions which operate exclusively on vectors rather than traditional

direct memory access. The C extensions (or intrinsics) also offer a degree of code portability

with similar CPUs such as the Altivec. It is possible to develop small, dedicated, standalone

55

CHAPTER 5. THE CELL BROADBAND ENGINE

SPU applications (spulets). A more interesting, but more complex, model is the capability

of the PPU to call SPU applications through a POSIX threads-like library passing data

through a direct memory access (DMA) library.

The SPU has two pipelines (pipeline 0 and pipeline 1); each cycle it can dispatch one

instruction per pipeline. Whether or not the SPU really dispatches two instructions in a

given cycle is highly dependent on instruction scheduling and alignment. This is subject to

the following conditions:

• Execution of instructions is purely in-order.

• The two pipelines execute disjoint sets of instructions (i.e. each instruction is either

a pipeline-0 or a pipeline-1 instruction).

• The SPU has a fetch queue that can contain at most two instructions.

• Instructions are fetched into the fetch queue only if the fetch queue is empty.

• Instructions are fetched in pairs; the first instruction in such a pair is from an even

word address, the second from an odd word address.

• The SPU executes two instructions in one cycle only if two instructions are in the

fetch queue, the first being a pipeline-0 instruction and the second being a pipeline-1

instruction and all inputs to these instructions being available and not pending due

to latencies of previously executed instructions.

Hence, instruction scheduling has to ensure that pipeline-0 and pipeline-1 instructions are in-

terleaved and that latencies are hidden; instruction alignment has to ensure that pipeline-0

instructions are at even word addresses and pipeline-1 instructions are at odd word ad-

dresses.

The implementations outlined later in this thesis (Chapter 7 and Chapter 8) and the IBM

SDK’s MPM library build the finite field arithmetic on the integer arithmetic instructions

of the SPU. This is due to the fact that single-precision floating-point arithmetic offers

too small a mantissa and that double-precision, floating-point arithmetic causes excessive

pipeline stalls on the SPU and is therefore very inefficient.

56

CHAPTER 5. THE CELL BROADBAND ENGINE

All integer arithmetic instructions (except shift and rotate instructions) are SIMD in-

structions operating either on 4 32-bit word elements or on 8 16-bit halfword elements or

on 16 8-bit byte elements of a 128-bit register.

This simple example is a 4-wide add. Each of the 4 elements in register vector VA is

added to the corresponding element in register VB the 4 results are placed in the appropriate

slots in reg VC. Obviously, this becomes more complex when one considers overflow after

an add.

Figure 5.4: A SIMD Instruction example (source IBM training material)

Integer multiplication is an exception to this rule: The integer multiplication instructions

multiply 4 16-bit halfwords in parallel and store the 32-bit results in the 4-word elements

of the result register.

The following instructions are the most relevant for our implementations; for a detailed

description of the SPU instruction set see [50], for a list of instruction latencies and associ-

ated pipelines see [49, Appendix B].

a: Adds each 32-bit word element of a register a to the corresponding word element of a

register b and stores the results in a register r.

mpy: Multiplies the 16 least significant bits of each 32-bit word element of a register a with

the corresponding 16 bits of each word element of a register b and stores the resulting

four 32-bit results in the four word elements of a register r.

57

CHAPTER 5. THE CELL BROADBAND ENGINE

mpya: Multiplies 16-bit halfwords as the mpy instruction but adds the resulting four 32-

bit word elements to the corresponding word elements of a register c and stores the

resulting sum in a register r.

shl: Shifts each word element of a register a to the left by the number of bits given by

the corresponding word element of a register b and stores the result in a register r.

rotmi: Shifts of each word element of a register a to the right by the number of bits given

in an immediate value and stores the result in a register r.

shufb: Allows to set each byte of the result register r to either the value of an arbitrary

byte of one of two input registers a and b or to a constant value of 0, 0x80 or 0xff.

5.2.2 Multi-instruction sets

One interesting issue with the different architectures of the PPU and SPU is the need for

multi-instruction set binaries. Traditional applications compile individual source modules

and then link the results to bind all program data symbols (variable, types, functions etc.).

But as the SPUs LS memory is physically separate and makes use of wide 128-bit registers,

its program code needs to be compiled and linked separately. Both the SPU and PPU use

standard ELF binary formats. An application’s binary contains 64-bit code for the main

PPU but embedded inside this is an object file with the SPU instructions and data ready

to be pushed to the SPU on a spe_create_thread() call from the PPC. The build process

involves two separate compilers and two linkers. The SPU ELF binary is passed through

an embedspu command which builds a wrapper (a CESOF linkable) to the SPU binary

marking it with PPU compatible symbols. Finally, there is one more link stage which binds

all executables together. Figure 5.5 [21] outlines the build process.

5.2.3 The Cell as a Hardware Security Module

The Cell has been designed with an interesting security architecture [90]. The feature set

suggests it is primarily to aid in the management of digital rights, however, the interface is

also open to third party developers to implement additional security functionality into code

58

CHAPTER 5. THE CELL BROADBAND ENGINE

Figure 5.5: Cell BE build process[21]

running on an SPU. This architecture can be used to make security critical code run in a

protected environment as a Hardware Security Module (HSM). Commercially, most of the

SSL accelerator vendors offer HSM’s in high-end configurations.

To operate in a more protected environment, the critical SSL code can be run in an

SPU in isolated mode. For an SSL accelerator, this means that it is possible to have any

key generation method make use of a cryptographically secure random number generator,

that key data can be protected from other processes running on the Cell, key data can be

encrypted in shared memory locations and program code can check its integrity.

The Cell achieves this level of security by implementing a hardware based process in

which

1. The code and data in an SPU can be executed in physically isolated memory space.

2. There is hardware based code signing (referred to as secure boot) where the integrity

of code about to be executed can be verified.

3. An isolated process in an SPU can use hardware-key based data encryption/decryption

that can only be used by code that has been verified.

4. The random number generator can be configured to use a physical sample source such

59

CHAPTER 5. THE CELL BROADBAND ENGINE

as the Cell Hardware RNG found on some models of the Cell. (note: this functionality

is limited on our PS3 based Cell).

This extra security comes with a performance penalty. Initialisation would be affected by

secure boot, if data were to be stored off SPU. Then there can be runtime overheads in

decryption. The various random number generators degrade in performance as one moves

towards a more random, physical sample-based library. Unfortunately implementation de-

tails are only available under Non-Disclosure Agreement with IBM and so we are not able to

test our SPU acceleration code in this interesting environment. While this should concern

people using our accelerator in production environments, the raw performance figures we

use throughout this paper reflect the speed of the underlying mathematical operations and

would be the same post initialisation.

For further information on the Cell’s HSM see IBM’s Cell resource centre [28]

5.3 Development

For applications like those constructed in Chapter 6 we need to build PPU libraries (32 or

64-bit) that plug into a PPU build of higher layer libraries through defined interfaces. Inside

these libraries we embed an SPU ELF executable which can act upon the 128-bit registers

and utilises IBM’s MPM library. In other cases, where we were more concerned with raw

performance numbers, we can use small spulets. These are SPU ELF binaries, in a minimal

PPU wrapper. These can be looked upon as standalone SPU executables, however, we have

to use separate performance analysis tools when profiling them and unfortunately these

are slightly inaccurate. All these SPU ELF executables need to be under 256K including

all code and data. The multi-core environment with the limitations on code and data size

requires some unconventional, data centric, programming models which the engineering

community are still evolving. The cardinal rule appears to be to offload as much as possible

to the SPUs. Many data intensive multimedia applications employ a model where data is

streamed through a chain of SPUs with each SPU carrying out a specific operation on the

data, then calling another SPU with the processed data. Yet another model makes the

60

CHAPTER 5. THE CELL BROADBAND ENGINE

PPU act as a scheduler pushing data segments and code blobs to any SPU with the PPU

managing the operations and data ordering through double buffering.

5.3.1 Direct Memory Access

As per above, the PPU can access main memory and has instructions to transfer data

between the main memory and its registers. The SPU, on the other hand, works with its

own smaller local store and so to access data from the main memory the SPU goes through a

Memory Flow Controller (MFC) which translates SPU main memory requests over the high

speed bus via a set of DMA channel calls. These DMA calls are directional (read or write),

blocking or non-blocking, can be issued in parallel and can be tagged by the programmer

to allow for identification management of data.

When communicating either the PPU or an SPU can initiate and manage a DMA

transfer. However it is optimal for the SPU to do the protocol management as it can free

PPU clock cycles that can occur if, for example, a number of SPUs have blocking calls.

When the PPU needs to initiate the transfer the procedure is for the PPU to push a pointer

to the SPU with a tag and then let the SPU pull the data from the pointed reference

informing the PPU, via the tag, that it has done so.

5.3.2 Vector Programming

To utilise the full performance of SPU SIMD instructions, a developer works with a combi-

nation of Vector C extensions with assembly-like code. We look at the following extracts to

highlight typical techniques used. We implemented a primitive MADD() commonly used in

cryptographic libraries which fully utilises the 128-bit register by implementing a 64x64-bit

multiply function.

The following intrinsics code fragment is used to fill a quadword with two scalars (in

this case standard C 64-bit unsigned long long) and to splat across a vector. Splat is a

term used when filling a vector with a mask. In a big number context we utilise splats to

allow us operate on different elements of a quadword when filling partial products.

unsigned long long a , b

61

CHAPTER 5. THE CELL BROADBAND ENGINE

vec to r unsigned shor t AB;

AB=(vec to r unsigned shor t) \

s p u i n s e r t (a , (vec to r unsigned long long)AB, 0 x1) ;

AB=(vec to r unsigned shor t) \

s p u i n s e r t (b , (vec to r unsigned long long)AB, 0 x0) ;

/∗ s e l e c t two b y t e s ∗/

const vec to r unsigned char s p l a t s h o r t 1= \

(vec to r unsigned char) (VEC SPLAT U32(0 x80800405)) ;

Here we utilise a C macro to guarantee all vector multiplies (spu_mulo()) are at a 16-bit

level to efficiently use the 16x16-bit multiplier in the SPU.

#d e f i n e MULTIPLY(a , b)\

(spu ex t rac t (spu mulo ((vec to r unsigned shor t) spu promote (a , 0)\

, (vec to r unsigned shor t) spu promote (b , 0)) , 0))

Finally, we implement an elegant speed up technique which can be used when adding a

128-bit value to a 64-bit value where overflow is not a concern. This technique is used in

summing partial products inside the big number multiply.

vec to r unsigned i n t out s , in a128 , in a64 ;

vec to r unsigned i n t sum , c0 , t0 ;

c0 = spu genc (in a128 , in a64) ; // genera te carry b i t s

sum = spu add (in a128 , in a64) ; // add

t0 = spu s lqwbyte (c0 , 4) ; // s h i f t quadword l e f t 4 b y t e s

out s = spu add (sum , t0) ; // add in the carry

Longer, more detailed code segments are attached in Appendix B. This code is the

output of an automated code generator which was written as part of my Ph.D. work. It

was used extensively in the remainder of this thesis and in particular to produce the code

highlighted in Chapter 7.

Code generation was considered as manually unrolling code by cut n paste leads to hard

to find errors. It also offers the most flexibility when considering fixed sizes.

62

CHAPTER 5. THE CELL BROADBAND ENGINE

5.3.3 Usage Models

The multi-core architecture, with small SPU core, allows developers to use concurrency and

produces the interesting code/data models outlined in 5.6. Simply put run in sequence, run

in parallel, or have dedicated parallel processes.

Figure 5.6: Usage models

An enlightening analogy from a coding SPU presentation from Insomniac (the game

developers): Old model :- Large semi truck. Stuff everything in. Then stuff some more.

Then put some stuff up front. Then drive away. New model :- Fleet of Ford GTs taking

off every five minutes. Each one only fits so much. They also say The ultimate goal: Get

everything on the SPUs. Leave the PPU for shuffling stuff around. This appears to the

design paradigm for all Cell developers.

In Chapter 6 we are more concerned with throughput and follow a model of same code

for multi SPUs with the PPU as controller. Whereas in Chapter 7 and Chapter 8, we focus

on models where the SPU is viewed a standalone special purpose CPU.

5.3.4 Compilation

There are two C compilers for the Cell, derived ppu-gcc/spu-gcc combination or IBM’s

commercial XLC. Our experience is that both generate good code, neither is consistently

better than the other and that for critical sections of code, both benefit from manual

optimisation steps. All numbers are quoted with the highest -O3 optimisation flag set.

63

CHAPTER 5. THE CELL BROADBAND ENGINE

Chapter Acknowledgements

For development tools and background information found ourselves repeated turning to

IBM’s DeveloperWorks resource centre and the Cell SDK. We would like to thank the

Cell development community particularly Séan Starke and the IBM team. The authors

acknowledge Georgia Institute of Technology, its Sony-Toshiba-IBM Center of Competence,

and the National Science Foundation for the use of Cell Broadband Engine resources that

have contributed to this research.

64

6
Accelerating SSL with the Cell Broadband Engine

Background

The Cell development environment came pre-loaded with a commonly used open source

network and cryptographic toolkit (see Chapter 6 Section 6.1.1) which is commonly used

for processor benchmarking. It allowed us to compare performance levels of this much antic-

ipated processor with traditional desktop and servers. Initial results were not so impressive

as the toolkit had not been optimised to take advantage of this exciting new design.

6.1 Why SSL?

Despite huge gains in computing performance and bandwidth, the widespread use of secure

communications over the Internet is still essentially limited to SSL connections for password

logins or for credit card payments. Despite this, SSL implementations are widely distributed

and well analysed, making it the de-facto standard for secure communications. The main

reason encryption is limited to logins and payments, and is not ’always on‘, is the perception

that encrypted communication protocols such as SSL place too high demands on bandwidth

and processing power at the server side of the communication and can interrupt the browsing

experience of the client. This chapter sets out to show that with the performance of modern

multi-core hardware devices it is now possible to enable secure channels for a wider range

65

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

of network communications.

6.1.1 OpenSSL

OpenSSL [1] is an open source toolkit released under under a BSD style license and is the

de facto open source SSL toolkit. It is included in virtually all UNIX distributions including

Linux, MacOSXTM, and SolarisTM.

The name OpenSSL is misleading as the toolkit provides a vast array of building blocks

and interfaces from big number routines, cryptographic primitives through to PKI compo-

nents such as certificate authorities and OCSP responders. One of the most useful features

is the ability to factor out processing intensive operations to specialist hardware through

an engine interface. It is through this engine subsystem that we accelerate SSL by using

the Cell SPU’s vector processing capabilities.

SSL operates in two phases: an initial handshake and a symmetric encryption phase.

The purpose of the handshake is to swap identification credentials, algorithm capabilities,

and negotiate a bulk encryption key. The reason for the key negotiation is that asymmetric

cryptography, whilst needed to establish a shared secret, incurs a large computational over-

head compared to a symmetric encryption algorithm. By analysing clock cycles, Zhao et al.

[12] found that 90.4% of the SSL handshake comprises public key operations. Cryptographic

operations take, in total, about 95% of the total CPU load.

Since the CPU load will be heaviest at the server side 1, and since the main computa-

tional load incurred by the server for its part in the handshake is asymmetric decryption,

we focus our attempts on speeding up asymmetric decryption.

Isolating the SSL handshake to measure our improvements is a challenging task as there

are can be many dependencies (network traffic, HTTP server etc.) on a running machine

which make accurate sampling difficult. Fortunately OpenSSL provides the utility openssl

speed which can measure individual algorithms. Using this utility we can demonstrate

improvements to the throughput of the critical algorithms. The SSL protocol supports a

range of asymmetric algorithms, (RSA, DSA, ECC etc.). In this Chapter we focus on RSA

1One server is expected to deal with many clients which makes accurate sampling difficult

66

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

but the improvement is relevant to all.

6.2 Architecture

To fit the OpenSSL engine model, we mirror the operation of a similar engine developed by

Geoff Thorpe of the OpenSSL core team for the GNU Multi-Precision library (GMP) [94].

To have the SPUs do as much work as possible we chose to overload the RSA_mod_exp()

function and indicate through control flags that the engine should perform full RSA decryp-

tion using the Chinese Remainder Theorem. Figure 6.1 describes the interaction between

the various components. This allows us to potentially parallelise the modular exponentiation

calls. We could approach this a number of ways:

OpenSSL

SPU

PPU Engine

SPU

SPU

Figure 6.1: OpenSSL with Engine and SPUs

1. Have the PPU do the RSA/CRT but invoke SPUs to manage the expensive modular

exponential (mod_exp()). Different SPUs would handle the p and q mod_exp().

2. Have the PPU pass the whole RSA/CRT to an SPU.

3. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing the two

mod_exp() to two other SPUs.

4. Have the PPU pass the whole RSA/CRT to an SPU with this SPU passing one of the

two mod_exp() to another SPU and, in parallel, handle the other.

There are a number of advantages to each. With (1) the amount of data in the DMA

bus is reduced but it breaks the guideline of offloading as much computation as possible to

67

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

an SPU. With (3 and 4) the latency per SSL connection will be reduced but, as it adds

extra DMA data to the bus, the overall maximum throughput will be affected. With (2,

3 and 4) we can double buffer the data transfer, for example passing the p parameter to

the bus while the SPU is processing the q mod_exp(). The double buffering technique

would offer relatively small speed gains. We implemented (1) and (2) and found the initial

speed up to be marginally better but the maximum throughput to be slightly lower. This

is explained by an increased amount of SPU invocations. In an attempt to measure the

maximum throughput we chose to focus on (2).

To maintain compatibility with OpenSSL and other engine implementations we use

notation matching OpenSSL code: dmp1, the decryption exponent modp − 1, dmq1, the

decryption exponentmodq − 1. iqmp is the inverse of q mod p. I0 is the ciphertext. A

decryption exponent d, for a prime p, is a number d, such that med mod p = m or ed =

1 mod (p− 1), where e is the encryption exponent, commonly chosen to be 3 or 65537.

At the RSA initialisation stage OpenSSL passes the (p, q, dmp1, dmq1, iqmp) parameters

to the engine. At this stage we check the parameters, allocate a memory store, fill the store

with local copies of the big numbers ready to pass to an SPU, and then pass the memory

store pointer back through a thread-safe and thread-local memory store. OpenSSL uses this

reference again when making calls to the main overloaded RSA_mod_exp() function with I0

and the same thread memory store parameter. The overloaded mod_exp() extracts the

thread local data, calls an SPU thread, DMA transfers the location and size of the memory

store to the SPU. It then allocates space for the return data from the SPU.

As mentioned above, the SPU thread when activated could either receive all parameters

in a full DMA transfer or, more efficiently, a pointer to the block of big numbers in mem-

ory on the Cell’s main store. By passing the pointer, the SPU’s memory flow controller

effectively takes the memory processing away from the main PPU, further improving the

performance.

At this stage the SPU thread converts the big number set to the IBM MPM format and

carries out the CRT logic. On successful completion it takes the result, pushes it back to

the PPU using the DMA tag that the I0 parameter was sent with, finally cleaning up any

68

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

memory used by the engine and exiting.

Big number representation Unfortunately there is no standard method for big

number representation with most multi-precision systems/libraries choosing variants of

struct {

unsigned int size;

<largest basic type> *words;

}

Subtle differences exist. Be it big endian or little endian ordering of the words, or if the

number structure keeps track of its own data size. The OpenSSL representation is of the

form

struct bignum_st{

BN_ULONG *d;

int top;

int dmax;

int neg;

int flags;

};

BN ULONG represents the largest underlying type and dmax, neg, and flags hold useful

internal management data. On the PPU we can build either a 32-bit or 64-bit binary. We

chose 64 and so BN ULONG is a 64 bit type (unsigned long long). The IBM MPM on

the SPU can utilise the vector quadword register to contain 8 elements of a smaller 16-

bit unsigned short type which it can handle very efficiently in its 16x16 multiplier. For

example a 12 instruction load and store (LS) has a latency of just 6 clock cycles [30]. The

type is implicit and of the simple form

vector * unsigned int;

69

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

Use of the IBM MPM library is, therefore, a little more complicated as one needs to

keep track of the size of each variable and one has to remember that the most significant

word is a zero padded quadword. An example can illustrate.

Take the big number

0x111122223333444455556666777788889999

OpenSSL places this in an array

[0] 66667777 88889999

[1] 22223333 44445555

[2] 00000000 00001111

The IBM MPM library represents this in a 2 quadword array as follows:

[0] 00000000 00000000 00000000 00001111

[1] 22223333 44445555 66667777 88889999

6.3 RSA/CRT

We implement traditional RSA Decryption using Chinese Remainder Theorem but with a

small modification. Because the SPU is restrictive in some respects we need to maintain a

sequence of calls that ensure the results of any modular exponentiation stay positive. We

must also be cognisant of the following:

1. The SPU compiler optimiser is most efficient when there is no branching.

2. The IBM MPM library is intended to work with unsigned numbers.

3. Integer comparison operations (less than, greater than) on negative numbers are un-

defined.

70

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

Algorithm 6.1 RSA Decryption using Chinese Remainder Theorem modified for the IBM
MPM unsigned restrictions.

Input: p, q, I0, dmq1, dmp1, iqmp
Output: r0

1: r1 ← I0 mod q
2: m1 ← r1

dmq1 mod q
3: r1 ← I0 mod p
4: r0 ← rdmp1

1 mod p
5: r0 ← r0 −m1

6: if r0 < 0 r0 ← r0 + p
7: r1 ← r0 · iqmp
8: r0 ← r1 mod p
9: r1 ← r0 · q

10: r0 ← r1 +m1

To overcome these restrictions we assume p is always less than q, a condition OpenSSL

guarantees. The modified algorithm is outlined in Algorithm 6.1. Note We follow OpenSSL

notation found in all engine implementations.

The IBM-MPM library offers an alternative modular exponentiation function which uses

the Montgomery reduction technique. This is more efficient than the classic product then

reduce the result modulo n approach as it keeps the numbers from growing unnecessarily.

See ([67]. Chapter 14)

6.4 Results

Table 6.1 lists timings in cycles counts and milliseconds for the main processor intensive

functions of the RSA/CRT implementation. Two totals are presented: sum of these calls

and an observed timing for all calls including some initialisation and the DMA receive calls.

These timings are made using an engine with just one SPU configured.

We can see that, as expected, the mpm_mont_mod_exp()2 calls represent the bulk of the

time consuming operations. A case could be made for a design that offloaded just this call

to an SPU. Theoretically (from the results of Table 6.1) we can expect the SPU to be able

to process 14.8 4096-bit decryptions in a second. Interestingly (from Table 6.2) we achieve

close to this at 14.1. Obviously there is additional overhead from DMA and the process

2The generic mpm_mod_exp() clocks at 136914856 cycles for a 4096-bit modulus

71

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

function calls cycle count cycles millisecs secs #/sec

big number convert() 7 877 6139 0.00192

mpm mod() 4 77731 310924 0.09716

mpm mont mod exp() 2 93328909 186657818 58.33057

mpm mul() 1 22733 22733 0.00710

mpm sub() 1 704 704 0.00022

mpm add() 1 1116 1116 0.00035

mpm madd() 1 39648 39648 0.01239

sub-total 187039082 0.05845

Total includes other calls 215159632 0.06724 14.87

Table 6.1: RSA/CRT decryption implemented in IBM MPM function calls with cycle count
and time in milliseconds for a 4096-bit key

queue on the main PPU. Cycle counts are from the SDK’s simulator. Unfortunately the

simulator (at this time) cannot measure DMA or PPU latency.

As mentioned previously, to get some sense of the improvements our optimisations have

made we use the openssl speed command on RSA with the engine off (native OpenSSL

on the PPU) and with our engine on utilising the SPU.

Tests are run on a 3.2 GHz Playstation 3 with just 6 SPUs running Fedora with kernel

version 2.6.273. A server/blade Cell system would have up to 16 SPUs. We could expect

the Playstation Cell to deliver a throughput of up to 89 sign/sec and a blade server to go as

high as 237 sign/sec. In reality we observe slightly lower results (Table 6.3). As mentioned

there are number of factors that could skew our observed numbers, mainly the design of

the OpenSSL speed post-processing, DMA overhead and the fact that the PPU is busy

managing the multiprocess queue. OpenSSL is configured for 64-bit PPC/G5 ASM 4.

From Table 6.3 we can see that the overhead of the DMA transfer and the big number

conversion impact the performance improvements just below the 2048-bit key. The benefits

of the 128-bit registers are apparent at 4096-bit level with improvements in the order of

150% (14.1 sign/sec vs. 9.1).

To see the full impact of the multi-core we need to use the -multi [n] option to the speed

3Linux ps3 2.6.27.9-159.fc10.ppc64
4Options: bn(64,64) md2(int) rc4(ptr,char) des(idx,risc1,16,long) aes(partial) idea(int) blowfish(idx) com-

piler: ppu-gcc -DOPENSSL USE MPM SPU -DOPENSSL THREADS -D REENTRANT -DDSO DLFCN
-DHAVE DLFCN H -m64 -DB ENDIAN -DTERMIO -O3 -Wall

72

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

RSA PPU 1 SPU
key length sign sign/sec sign sign/sec

1024-bits 0.003435s 291.2 0.005655s 176.8

2048-bits 0.017541s 57.0 0.015636s 64.0

4096-bits 0.109793s 9.1 0.070915s 14.1

Table 6.2: OpenSSL speed on PPU vs. 1 SPU using IBM-MPM on 3.2GHz Cell

command which can (through fork()) generate multiple simultaneous RSA operations. We

have picked a number (6) of parallel processes to run matching the number of SPUs on the

Playstation 3. It is important to note that the -multi option introduces some small pro-

cessing overhead to the speed command as it uses a fork() invocation whereas the standard

calls are single threaded. Again we compare the PPU with an SPU enabled engine.

We see from Table 6.3 similar overheads impacting the 1024-bit keys. However there is

a huge improvement in 2048-bit (329.7 vs 71.7) and 4096-bit (83.6 vs 9.1).

RSA PPU 6 SPUs
key length sign sign/sec sign sign/sec

1024-bits 0.003435s 291.2 0.001906s 524.7

2048-bits 0.017541s 57.0 0.003033s 329.7

4096-bits 0.109793s 9.1 0.011925s 83.9

Table 6.3: OpenSSL speed on PPU vs. 6 SPUs using IBM-MPM on 3.2GHz Cell, 6 parallel
processes.

While the openssl speed utility running on the 6 SPU Cell inside a Playstation 3 gives

us a solid basis to develop and measure our improvements, Séan Starke at IBM was kind

enough to try our tests in a full 16 SPU dual Cell blade. These results (Table 6.4) are

consistent with the trend from the Playstation 3 results.

RSA 2 PPUs 16 SPUs
key length sign sign/sec sign sign/sec

1024-bits 0.001270s 787.5 0.001509s 662.7

2048-bits 0.006805s 146.9 0.001664s 601.0

4096-bits 0.043944s 22.8 0.005762s 173.6

Table 6.4: OpenSSL speed on 2 PPUs vs. 16 SPUs using IBM-MPM on 3.2GHz Cell, 16
parallel processes.

73

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

6.5 Conclusions and Future Work

We believe that we have pushed the Cell SDK’s IBM-MPM library to its limits. The library

is an excellent demonstration of the power of SPU intrinsics ‘vector’ programming. However,

we believe the introduction of an optimised number library more suited to cryptography

can substantially improve the performance, possibly doubling the figures presented above.

As mentioned the results are based on using generic Montgomery

mpm_mont_mod_exp() function. This function allows for any size parameters, however most

commonly used parameters are based on fixed key lengths (1024, 2048 etc.) These fixed

lengths can offer further optimisations as they always align on the 128-bit boundaries of the

vectors so that the number of partial products to be summed inside any multiplies can be

determined allowing for very efficient carry management.

The multiplication inside the mpm_mont_mod_exp() needs to be examined in more detail.

MPM uses ‘row by row’ operand scanning to do big number multiplies whereas a ‘column by

column’ product scanning technique used by the Comba [24] method would be more suitable

for the large, fixed sized numbers used by cryptography. Furthermore, as the number length

moves beyond 1024-bit the Comba method can be combined with the Karatsuba technique

[57] for further improvement.

OpenSSL uses this Comba/Karatsuba combination at key lengths above 1024-bit irre-

spective of the architecture. We hope to swap out the IBM MPM library and use a fine

tuned version of MIRACL ([84] and Chapter 7, Section 7.1.2) with fixed key sizes on fixed

128-bit alignment, utilising the Comba/Karatsuba speed ups on longer key lengths.

The threshold key length to optimally use the Karatsuba method depends heavily on

the underlying word size and the architecture’s instruction set, specifically how fast the

multiplier is compared to the addition. We hope to examine this threshold in more detail

with the more flexible MIRACL library.

The PPU to SPU data transfers are based on the commonly used DMA transfer usually

associated with streaming and double buffering, it would be an interesting exercise to pre-

load the SPU with the RSA code at initialisation and then use Mailboxes to manage the

74

CHAPTER 6. ACCELERATING SSL WITH THE CELL BROADBAND ENGINE

data transfers. This technique may reduce the data on the high bandwidth bus.

While the openssl speed utility running on the 6 SPU Cell inside a Playstation 3 gives

us a solid basis to develop and measure our improvements, we would like to test the results

on full 16 SPU dual Cell with a commercial grade SSL/HTTP load testing suite.

Commercial, built for purpose, SSL accelerators tend to offer secure key management

capabilities. It would be interesting to examine the full design, and performance impact of

the full HSM outlined in (Section 5.2.3).

Chapter Acknowledgements

We would also like to acknowledge the valuable feedback given by the anonymous reviewers

from the SPEED 2007 (Amsterdam) workshop at which the work described in this chapter

was initially presented.

75

7
Utilising the Cell’s SPU for ECC

Background

The publication of the results achieved at the security protocol level (see Chapter 6) on the

Cell led us to collaborate with a team looking at Pseudo-random number generators on the

Cell for use by super computing packages (such as weather forecast simulators). Our work

focused on developing efficient integer arithmetic routines used by a linear congruential

generator (LCG). The subsequent publication by IBM of an extensive SDK which allowed

third party developers to access the physical random sources on the Cell led to this work

being redundant. We then reused the fast 64-bit integer arithmetic routines by merging

them into a wider toolkit usable inside a cryptographic library with interesting results.

7.1 Introduction

We focus on a range of optimising techniques for the Cell SPU (SPU intrinsics, pipe-line

analysis, branch reduction). We show the significant performance improvements that can

be achieved when first optimising the lowest level multiply, then applying these steps to the

IBM multi-precision (MPM) library at a fixed, relatively small number size as used by ECC

76

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

7.1.1 Modular Components

Alvaro, Kurzak and Dongarra, [59] introduce the idea of a computation micro-kernel for the

SPU where the restricted code & data size of the SPU become important design criteria but

issues such as inter-chip communication and synchronisation are not considered. The kernel

focuses on utilisation of the wide registry and the instruction level parallelism. Furthermore,

for security-aware applications such as those using ECC, there is an interesting security

architecture where an SPU can run in isolation mode, where inter-chip communications,

loading and unloading program code incur significant overhead. We aim to design a small,

fit-for-purpose, micro-kernel suitable for use inside a larger security application, such as a

Hardware Security Module (HSM), perhaps as a key negotiation module for an AES stream

encryptor kernel inside a Cell SPU.

7.1.2 Multi-precision Tookits

High-level programming languages have limits on the size of the native basic data types.

C++, for example, usually has a limit of 64-bits for its largest integer (an unsigned long long).

The SPUs 128-bit register is too large for this type, however, it can hold the result of the

multiplication of the product of a pair of unsigned long longs. To fully utilise the register

size and perform the larger multi-precison math, we use 3rd party libraries. These libraries

fragment the operations on big numbers into smaller “chunks” which fit the processor’s word

length. This deconstruction comes with a performance penalty. The larger the chunk, the

more efficient the library. For example, the SPU hardware multiplier is just 16-bit by 16-bit.

The most efficient method for a.b (64 × 64-bit) multiply is to break them down into 16-

bit sub-words to use a standard school book (classical or “grammar-school” [27] Chapter 9

Section 9.1) multiply via the spu mulo() intrinsic to carry out 4 partial products in parallel.

MIRACL

MIRACL 1 [84] is a portable, light weight, multi-precision library widely used for building

cryptographic toolkits. Its key strength is its ability to get near optimal performance from

1Mike Scott, my supervisor, is the principle behind the MIRACL library.

77

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

any processor and to do so in small, compact code size. It achieves this by allowing a

developer to provide substitute routines in assembly for each particular architecture. We

use this technique to provide routines utilising SPU intrinsics for 64-bit multiply. We then

use this code to produce optimised, unrolled code for 256-bit (SPU or PPU). MIRACL is

the easiest multi-precision library to use for this task as it is implemented in standard C, is

very extensive, well-documented and allows the developer to choose the level of abstraction

from the processor. The level of abstraction (C++, C, assembler) tends to impact on

performance.

Listing 7.1: MIRACL source example

big mir r0 , mir r1 , mir p , mir r1 , mir dmq1 , mir q , mir m1 ;

powmod(mip , mir r1 , mir dmq1 , mir q , mir m1) ;

mir mod (mir r0 , mir r1 , mir p) ;

IBM MPM

As previously mentioned (Chapter 5 Section 5.1), IBM offer a software development kit [29]

containing development tools and code samples including a vector optimised Multi-Precision

Math library (IBM MPM) [51]. The library is limited compared to MIRACL, has had some

“question marks” over the integrity of the reduction algorithm (see Section 7.5), but is very

efficient on the SPU.

Listing 7.2: MPM source example

vec to r unsigned i n t v r1 [N] ;

const i n t mod exp window sz =6;

mpm mod(v r1 , v I0 , s z I0 , v q , s z q) ;

s z r 1=sz q ;

mpm mont mod exp(v m1 , v r1 , v dmq1 , sz dmq1 , v q , sz q , mod exp window sz) ;

78

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

QHASM

Dan J. Bernstein developed qhasm [8] as a “portable” assembly language to help develop

cryptographic functions as close to native CPU assembler as possible. Together with Peter

Schwabe, we ported qhasm to the Cell’s SPU. The results are described in more detail in

(Chapter 8). To quote Bernstein “We need languages that are not portable in the second

sense. Some speed-critical chunks of code are written separately for different CPUs; we

need programming tools that don’t tie the programmer’s hands. It’s no problem if the

resulting code can’t run on more than one CPU.” The result is a powerful ability to describe

cryptographic primitives, required data types and work close to instruction scheduling. The

task is essentially mapping assembly instructions to qhasm code and using a qhasm language

to develop algorithms.

Listing 7.3: qhasm source example

vec128 a3

vec128 shlw0001

a3 = ∗(vec128 ∗) ((binp + 0) & ˜15)

int32323232 a3s1 = a3 << shlw0001

7.1.3 ECC Hierarchy

In ([45] Chapter 5 Section 5.2.1) Hankerson, Menezes & Vanstone outline a hierarchy of

operations in ECC as protocols, point multiplication, elliptic curve addition and doubling

and finite field arithmetic. Fan, Sakiyama & Verbauwhede [36] expand this to describe a

5-layer pyramid of

1. Integrity, confidentially, Authentication

2. EC Scalar Multiplication kP

3. Point addition and doubling

4. Modular operations on Fp

5. Instructions of a w-bit core

79

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

We implement the stack outlined in the ECC hierarchy using Diffie-Hellman key ex-

change as an application at the protocol layer and MIRACL for point multiplication, addi-

tion & doubling. We then provide SPU optimised routines for modular lower layer opera-

tions. We approach this in a various ways and compare the results.

The main issue with symmetric key encryption algorithms, such as AES is the key

distribution problem. In 1976 a solution was proposed by Diffie-Hellman [31] in the same

ground breaking paper they introduced public key cryptography, where the computationally

expensive asymmetric encryption is used to swap keys to be subsequently used by the more

efficient symmetric algorithms.

7.1.4 Suitable Curve

To ease adoption, and allay fears of weakness for certain curves, the US standards body,

NIST, has recommended 15 curves of varying security levels for use by US federal agencies.

Most commercial implementations make use of these curves.

The NIST-256 prime 2256 − 2224 + 2192 + 296 − 1 is unsuitable as 224 is not divisible by

64, so we choose to generate our own elliptic curve over Fp.

As we hope to use the IBM MPM library as a building block for the large number math,

we chose to use a curve defined over Fp where p is 256-bits, a multiple of the SPUs register

size. It is more common for embedded or resource constrained devices to use a 192-bit prime

curve.

For efficient implementation, we choose a modulus that supports fast reduction and A

was fixed at -3. This is a pseudo-mersenne prime of the form 2n − c where c is small.

Unfortunately, pseudo-mersenne prime’s were patented by Crandall while he worked for

Next. Thereafter, they passed to Apple, who have never enforced them. When it came to

standardisation the standards body chose not to use a patented method and use Generalised

Mersenne prime of the form 2n±−2m+..1, where n, m, etc are all divisible by the word length

of the computer. This is not as satisfactory for efficient reduction, but it is unpatented.

We also need the number of points on the curve (the group order) q, to be prime. We

are looking for p to be 256-bits. We first locate c so that 2256 − c where c is small. We find

80

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

that 2256− 189 2 is prime. To locate a suitable curve with this c we use tools included with

MIRACL library [84] which implement some improvements on the Schoof [83] algorithm for

counting points on a Fp) elliptic curve. The Schoof-Elkies-Atkin algorithm finds a number of

suitable curves in approximately one hour on a standard PC. However, we add the additional

constraint the q > p so as to fit inside our 256-bit optimised routines. This extends the

search to approximately one day. These curve-finding utilities require being run just once

and can be reused.

The first suitable curve, in short form Weierstraß, that fits our extended criteria is:

y2 = x3 − 3x+ 1403 mod 2256 − 189 (7.1)

7.2 Multiply bottleneck

At the lowest level, the instructions of a w-bit core, the bottleneck for performance is the

frequency with which it must perform multiply/add (also known as MADD()) operations.

That is d = ((a× b+ c) mod (2128)).

As mentioned before, the large register size is ideal for the number-crunching operations

required for MADD(). However, most operations work with, at most, 32-bit sub-sections of

the quadword register, the integer multiply operations being especially limiting, reducing

to a 16-bit hardware multiplier. This sub-quadword size is suitable for SIMD operations on

media-like data streams like those expected in a PS3 multimedia application. For larger size

integer operations it takes a slight re-factoring to get the most efficient throughput. This

is how standard multi-precision number manipulation is done in all cryptography libraries,

however, in this case, we can take advantage of the parallel nature of the SIMD.

7.2.1 Behind a 64-bit Multiply

In C/C++ for example, using a MADD() with the largest type causes overflow, with the most

significant half of the bits being discarded causing a subsequent loss in integrity. There are

numerous techniques to overcome this issue when using the basic C/C++ types but most

2
2256 − 189 = 115792089237316195423570985008687907853269984665640564039457584007913129639747

81

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

are relatively inefficient.

We present an efficient 64× 64-bit multiplier with full integrity, running at nearly twice

the speed of the most commonly used alternative. This new multiplier still uses the limiting

16-bit hardware multiplier in the SPU but takes full advantage of the Cell SPU’s large

register file.

As the basic multiplier is 16-bit by 16-bit, the most efficient method for a× b (64× 64-

bit) multiply is to break it down into 16-bit (sub-words) arranged as such a3, a2, a1, a0. For

a× b is broken down to 4× 16-bit values using the standard school book multiply described

above and outlined in the documentation of MIRACL [84].

a3 a2 a1 a0

x b3 b2 b1 b0

a3.b0 a2.b0 a1.b0 a0.b0

a3.b1 a2.b1 a1.b1 a0.b1

a3.b2 a2.b2 a1.b2 a0.b2

a3.b3 a2.b3 a1.b3 a0.b3

The first line (a3.b0 a2.b0 a1.b0 a0.b0) can be calculated by re-arranging (shuffling) a in

the 128-bit register as (0|a3|0|a2|0|a1|0|a0) and multiplying this by (0|b0|0|b0|0|b0|0|b0)

0 a3 0 a2 0 a1 0 a0

x 0 b0 0 b0 0 b0 0 b0

a3.b0 a2.b0 a1.b0 a0.b0

This results in (a3.b0|a2.b0|a1.b0|a0.b0), 4 32-bit partial products, which is the first line,

as required. Next, we calculate and store in registers the next 3 lines in exactly the same

82

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

way. We then add the lines and propagate the carries.

Each line can be considered as (3H|3L|2H|2L|1H|1L|0H|0L) (H=high, L=low) For the

first line, shuffle this into two registers as (0|0|0|0|3L|2L|1L|0L) and (0|0|0|3H|2H|1H|0H|0)

The sum of these two registers and the 3 other pairs of registers produce the final result

(shifting over by one place each time)

00 00 00 00 3L 2L 1L 0L

+ 00 00 00 3H 2H 1H 0H 00

+ 00 00 00 3L 2L 1L 0L 00

+ 00 00 3H 2H 1H 0H 00 00

+ 00 00 3L 2L 1L 0L 00 00

+ 00 3H 2H 1H 0H 00 00 00

+ 00 3L 2L 1L 0L 00 00 00

+ 3H 2H 1H 0H 00 00 00 00

The optimised SPU intrinsics code for is this can be viewed in listing 3 in Appendix B.

7.3 Implementation

7.3.1 ECC Performance Bottleneck

The performance bottleneck we focus on is the elliptic curve scalar multiplication. This

is implemented using a sequence of point addition and point doubling operations. These

in turn are implemented via a sequence of modular multiplication, squaring, addition and

subtractions. It is these ‘low layer‘ routines that we implement as multi-precision routines

using the SPU intrinsics to get maximum performance from the SPU core.

7.3.2 Approach

Since our goal is to speed up a standard PPU implementation, we first implement a fast, C

based, 64-bit multiply routine to act as our benchmark. Subsequently, we optimise scalar

multiplication at the w-core level by implementing the 64-bit multiply using SPU intrinsics.

83

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

Then, we move up a layer and use modular arithmetic routines provided by the MPM library.

Finally, we remove some inefficiency inside MPM by unrolling loops & removing branches

with MPM derived code for fixed sized 256-bit modular routines. We take a number of

standard approaches, each improving on the last. Separately, we built a test script using

bash and the GNU bc calculator which could test the integrity at each stage.

64-bit Multiply in C

IBM have published an efficient 64-bit multiply implementation utilising [57], suitable for

the PowerPC family of processors. See [17] for details and listing.

compiler cycles instructions CPI M / sec

spu-gcc 223 170 (153) 1.31 (1.46) 14.314

Table 7.1: 64-bit multiply in C. Million Multiplies per second

64-bit Multiply using SPU intrinsics in an inline function

In order to help the compiler achieve optimal code, we apply the SDK cycle accurate

simulator and additional code analysis tools. For example, as the SPU pipelines are not

equal, with operations using a pipe based on the instruction class we examine the SPU

intrinsics code using the SPU timing tool and a pipe depth/dependency table. All integer

operations use an even pipe while the load/stores use the odd pipeline. Carefully interleaving

of the instructions improves the Cycles Per Instruction (CPI) ratio. Note there are two

pipelines, but as as the pipelines are not equal, it is difficult to achieve an optimal 0.5 CPI.

The SDK documentation cites a more reasonable goal of 0.7.

The SPU is interesting in that while it can do one clock cycle parallel operation, it is

relatively inefficient for load / store operations. Branches, in particular, incur long stall

delays. Optimal code limits the amount of movement in and out of registers, and attempts

to flow without ifs, loops, and function calls. To overcome these overheads we use the C

pre-processor to our advantage by:

1. Declaring the vector splat patterns as constant globals.

84

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

2. Loading the 64-bit multipliers into two half’s of a 128-bit vector saving a load().

3. Manually in-lining the full multiply code in a C header file via macros to save a

function call branch, effectively in-lining the C code.

4. Removing loops (unrolling) by manually expanding the vector access rather than

processing via traditional arrays.

See Appendix B listing for code sample. If we implement the school book algorithm in the

most basic fashion where we naively carry out each step of the algorithm but take advantage

of the SIMD we get nearly double throughput.

compiler cycles instructions CPI M / sec

spu-gcc 107 108 (102) 0.99 (1.05) 29.831

Table 7.2: SPU intrinsics. Million Multiplies per second

64-bit Multiply in SPU intrinsics. C Macro

Taking the code one step further, aware that the Cell SPU stalls badly if it incurs branches,

we re-code this as a C macro, moving some constants out and eliminating the function call

branch and we achieve a further gain of about 20%. See Appendix B listing for code sample.

complier cycles instructions CPI M / sec

spu-gcc 89 96 (92) 0.93 (097) 35.865

Table 7.3: C Macro. Million Multiplies per second

7.3.3 Automatic Code Generation

For future reuse, rather than fixing our library at 256-bit, and following on from the expe-

rience of hand unrolling the MPM multiply routines, we developed an automated method

based on code-to-code compiling/code generation techniques for MIRACL.

We used the multiple-precision multiplication algorithm from [67] (Chapter 14 of Section

14.2.3) but we automated the code unrolling to limit the chance of errors which could

85

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

otherwise be introduced by manual methods such as cut and paste, i.e: hard to debug

errors introduced by the excessive code unrolling and index de-referencing. We implemented

a Ruby script to parse C code and do inline substitutions replacing C defines (e.g such as

MADD(N,a,b,c)) with fully unrolled code to calculate N-bit a × b + c. This a × b + c is

based around an optimal 64-bit multiply function created by examining the instruction

dependencies using the SPU timing tool from the SDK where we minimised the number of

loadstore operations and removed all loops and arrays (and array de-referencing).

See B for the Ruby code, a generated 256-bit example, and the fully optimised 64-bit

multiplier.

7.3.4 Using MPM

256-bit mod multiply using MPM

The MPM library provides a number of options such as an alternative modular exponenti-

ation function which uses the Montgomery reduction technique. This is more efficient than

the classic multiply then reduce modulo N approach as it keeps the numbers from growing

unnecessarily. See [67] (Chapter 14). Note that by adding the MPM library to the test

harness we now have the issue of switching big number formats between those used natively

by MIRACL and MPM.

256-bit mod multiply using optimised MPM

MPM doesn’t provide a square() function which is used by the ECC point doubling routines.

Significant optimisations can be made over a multiply if the operands are equal as one can

reuse SIMD partial products saving expensive multiply calls.

The MPM library is provided in source code and is generic for arbitrary size numbers.

But as we know we need 256-bit (and some 512-bit) numbers, we can help the compiler by

providing some domain knowledge and modify the library by editing the source to manually

unroll loops and removing branches.

The MPM multiply function, at a pseudo-high level, follows a pattern of (Algorithm

7.1)

86

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

Algorithm 7.1 MPM Multiply function

INPUT: A[N], B[N]
OUTPUT: Result[2 ∗N]

Variables Declaration as array [0..N]
Initialise Variables [0 to N]
for Outer Loop 0 to N do

for Inner Loop to 0 to N do
end for

end for
Gather results [0 to N]

For 256-bit ECC we can unroll this to a pattern (Algorithm 7.2)

Algorithm 7.2 MPM Multiply function 256-bit unrolled

INPUT: A[N], B[N]
OUTPUT: Result[2 ∗N]

V ariables 1 2 3 4
Initialise 1 2 3 4
Outer1
Inner1
Inner2
Outer2
Inner1
Inner2
Gather 1 2 3 4

Using explicit variable naming as oppose to implicit array calls and fully unrolling the

loop helps both the GCC and IBM XLC compilers.

7.3.5 Results

Table 7.4 giving Performance of the ecurve mult()3

7.4 Branch Prediction

The SPU suffers a high penalty (18 cycles) for misdirected branching. To reduce penalties,

the SPU addresses branch prediction through a set of hint for branch (HBR) instructions

3Tests are run on a 3.2 GHz Playstation 3 with just 6 SPUs running Fedora 7 [77] with kernel version
2.6.21-1.3194.fc7.

87

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

ticks pclocks micro secs

64-bit C 865318 34612720 10843.58

SPU 64-bit function() 823517 32940680 10319.76

SPU 64-bit define 788304 31532160 9878.50

SPU 256-bit unrolled 788304 31532160 9878.50

Standard MPM 618037 24721480 7744.82

Optimised 256-bit MPM 602956 24118240 7555.84

Table 7.4: Results

that facilitate efficient branch processing. At a higher level, the C/C++ Language Ex-

tensions for the Cell provide a builtin expect directive to allow programmers to predict

conditional program statements. For example (Listing 7.4) predicts the a is not larger than

b.

Listing 7.4: Simple branch prediction

i f (b u i l t i n e x p e c t ((a>b) , 0))

c += a ;

e l s e

d += 1 ;

We implemented the prediction inside the code for our special-form moduli (2256− 189)

function where we can branch-predict the small, very unlikely, last check. See the

Montgomery-Multiplication-with-Reduction algorithm (See [27] Algorithm 9.2.13 and Chap-

ter 2 Section C.0.4) (Fast mod operation for special/form moduli) where there is a simple

final check for overflow (if x >= N then x = x−N).

There is a problem with resolution of the run time timers on the PS3 (about 20 cycles)

versus the slow performance of the large number routines inside the cycle accurate simulator,

where the host environment is very slow to run the high computations required. This makes

it complex to get an accurate picture of the success of small improvements.

We observed that branch is taken roughly 1% of the time based on a few million random

inputs to the branch hint code and the prediction code just gives a relatively small, (>1%)

improvement.

88

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

However the conditional subtract at the end of the algorithm also represents a side

channel weakness (See [23] Section 10.4.3). This small improvement is not worth the security

issue.

Listing 7.5: MIRACL code for (x reduced modulo 2256 − 189) with branch prediction

void nc mod256 (MIPD big x , b ig y)

{

i n t i ;

b ig A,B;

mirac l ∗mr mip=get mip () ;

char mem big [MR BIG RESERVE (2)] ; /∗ we need 2 b i g s . . . ∗/

memset (mem big , 0 ,MR BIG RESERVE(2)) ; /∗ c l e a r the memory ∗/

A=mirvar mem (mr mip , mem big , 0) ; /∗ I n i t i a l i s e b i g numbers ∗/

copy (x , mr mip−>w0) ;

B=mirvar mem (mr mip , mem big , 1) ;

i f (b u i l t i n e x p e c t ((mr mip−>w0−>len >4) ,1)) //

i f (mr mip−>w0−>len >4)

{

zero (A) ;

ze ro (B) ;

A−>l en=B−>l en =4;

f o r (i =0; i <4; i++)

{

A−>w[i]=mr mip−>w0−>w[i] ;

B−>w[i]=mr mip−>w0−>w[4+ i] ;

}

mr lzero (A) ;

mr lze ro (B) ;

/∗ A i s bottom h a l f ∗/ /∗ B i s top h a l f ∗/

premult (MIPP B, 0xBD,B) ;

add (MIPP A,B, mr mip−>w0) ;

89

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

}

i f (b u i l t i n e x p e c t ((mr mip−>w0−>len >4) ,1)) //

i f (mr mip−>w0−>len >4)

{

zero (A) ;

A−>l en =1;

A−>w[0]= mr mip−>w0−>w [4] ;

mr lze ro (A) ;

ze ro (B) ;

B−>l en =4;

f o r (i =0; i <4; i++)

{

B−>w[i]=mr mip−>w0−>w[i] ;

}

premult (MIPP A, 0xBD,A) ;

add (MIPP A,B, mr mip−>w0) ;

}

i f (b u i l t i n e x p e c t ((compare (mr mip−>w0 , mr mip−>modulus)==1) ,0)) //

i f (compare (mr mip−>w0 , mr mip−>modulus)==1)

{

subt rac t (MIPP mr mip−>w0 , mr mip−>modulus , mr mip−>w0) ;

}

copy (mr mip−>w0 , y) ;

memset (mem big , 0 ,MR BIG RESERVE(2)) ;

}

90

CHAPTER 7. UTILISING THE CELL’S SPU FOR ECC

7.5 Future Work

Recently, discussions on the IBM Cell developer forum have cast some doubt over the in-

tegrity of the MPM mod() functions. Researchers working at École Polytechnique Fédérale

de Lausanne (EPFL) have found some cases where the reduction functions provided in-

correct results. The replacements offered by IBM appear to work; we have verified them

empirically. However, they do not seem, by examining source code, to be as efficient as the

original code. We intend to further examine the MPM source and swap in our own MPM

compatible routines.

We are still thunking formats between the upper layer (ECC) MIRACL code’s and the

MPM’s big number representation. Our observations, at 256-bit ECC, is that this is a 25%

overhead. Further work would be to attempt tying the large number representation inside

the ECC point multiply and addition algorithms in one format.

91

8
Fast Elliptic-Curve Cryptography on the Cell

Broadband Engine

Background

Our work on ECC on the Cell (Chapter 7) introduced us to Dan Bernstein and the team from

Technische Universiteit, Eindhoven (TU/e). Bernstein has been championing an elliptic

curve (curve25519) which has slightly less security level than standard 256-bit curves but

is very suitable for reduced representation implementations. These reduced representations

would, for example, be able to do addition without any processing of a carry. Our work

with Peter Scwabe exploited these efficiencies on the Cells SPU and, for a time at least,

achieved speed records for ECC.

8.1 Introduction

In this chapter we present a high-speed implementation of elliptic-curve Diffie-Hellman

(ECDH) key exchange for the Cell, which needs 697080 cycles on one SPU for a scalar

multiplication on a 255-bit elliptic curve, including the costs for key verification and key

compression. This cycle count is independent of inputs therefore protecting against timing

attacks.

92

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

This speed relies on a new representation of elements of the underlying finite field suited

for the unconventional instruction set of this architecture.

We also demonstrate that an implementation based on the multi-precision integer arith-

metic functions provided by IBM’s multi-precision math (MPM) library (Chapter 7 Section

7.1.2) and [51]) would take at least 2227040 cycles.

Comparison with implementations of the same function for other architectures shows

that the Cell is competitive in terms of cost-performance ratio to other recent processors

such as the Intel Core 2 for public-key cryptography.

Specifically, the state-of-the-art Galbraith-Lin-Scott ECDH software performs 27370

scalar multiplications per second when using all four cores of a 2.5GHz Intel Core 2 Quad

Q9300 inside a $296 computer 1, while the new software reported in this Chapter performs

27474 scalar multiplications per second on a Playstation 3 that costs just $221. Both of

these speed reports are for high-security 256-bit elliptic-curve cryptography.

This chapter describes a high-speed implementation of state-of-the-art public-key cryp-

tography for the Cell Broadband Engine (CBE). More specifically we describe an implemen-

tation of the curve25519 function, an elliptic-curve Diffie-Hellman key exchange (ECDH)

function introduced in [9].

Implementations of this function have been achieving speed records for high-security

ECDH software on different platforms for example [9] and [40]. Benchmarks of our im-

plementation show that the CBE is competitive (in terms of cost-performance ratio) with

respect to other recent processors such as the Intel Core 2 for public-key cryptography.

Our implementation needs 697080 cycles on one SPU. This includes not only scalar mul-

tiplication on the underlying 255-bit elliptic curve, but also costs for key compression, key

validation and protection against timing attacks. We put our implementation into the pub-

lic domain to maximize the impact of our research. It is available as part of the SUPERCOP

benchmarking suite [10] and at http://cryptojedi.org/crypto/index.shtml#celldh.

1prices quoted use an internet search for cheapest source using google product search April 09

93

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

8.1.1 How these speeds were achieved

As described in (Chapter 7 Section 7.1.3) elliptic-curve cryptography (ECC) is usually

implemented as a sequence of arithmetic operations in a finite field. Chapter 7 described

the obvious approach for the implementation of ECC on the CBE is using the IBM-MPM

or MIRACL libraries for the underlying finite field arithmetic.

However, we will show that the targeted performance cannot be achieved following this

approach, not even with optimizing some functions of the MPM library for arithmetic in

fields of the desired size.

Instead, the speed of our implementation is achieved by

• Parting with the traditional way of implementing elliptic-curve cryptography which

uses arithmetic operations in the underlying field as smallest building blocks,

• Representing finite field elements in a way that takes into account the special structure

of the finite field and the unconventional SPU instruction set, and

• Careful optimization of the code at assembly level.

Related work Implementations of public-key cryptography for the Cell Broadband En-

gine have not yet been extensively studied. In particular we don’t know of any previous

implementation of ECC for the Cell Broadband Engine.

An implementation of the Digital Signature Algorithm (DSA) supporting key lengths

up to 1024 bits is included in the SPE Cryptographic Library [52].

In [89] Shimizu et al. report 4074000 cycles for 1024-bit-RSA encryption or decryption

and 1331000 cycles for 1024-bit-DSA key generation. Furthermore they report 2250000

cycles for 1024-bit-DSA signature generation and 4375000 cycles for 1024-bit-DSA signature

verification.

The Cell Broadband Engine has recently demonstrated its power for cryptanalysis of

symmetric cryptographic primitives [93], [92].

Organization of the Chapter Section 8.2 describes the curve25519 function including

some necessary background on elliptic-curve arithmetic. Chapter 7 describes IBM’s MPM

94

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

library including optimizations we applied to accelerate arithmetic in finite fields of the

desired size. We show that an implementation based on this library cannot achieve the

targeted performance. In Section 8.4 we detail our implementation of curve25519. We

conclude the Chapter with a discussion of benchmarking results and a comparison to ECDH

implementations for other architectures in Section 8.5.

8.2 The curve25519 function

8.2.1 The curve25519 function

Bernstein proposed in [9] the curve25519 function for elliptic-curve Diffie-Hellman key

exchange. This function uses arithmetic on the elliptic curve defined by the equation E :

y2 = x3 +Ax2 + x over the field Fp, where p = 2255− 19 and A = 486662; observe that this

elliptic curve allows for the x-coordinate-based scalar multiplication described above.

The elliptic curve and underlying finite field are carefully chosen to meet high security

requirements and to allow for fast implementation, For a detailed discussion of the security

properties of curve25519 see [9].

The curve25519 function takes as input two 32-byte strings, one representing the x-

coordinate of a point P and the other representing a 256-bit scalar k. It gives as output

a 32-byte string representing the x-coordinate xQ of Q = [k]P . For each of these values

curve25519 is assuming little-endian representation.

For our implementation we decided to follow [9] and compute xQ by first using Algorithm

2.1 to compute (XQ, ZQ) and then computing xQ = Z−1Q ·XQ.

8.3 The MPM library and ECC

8.3.1 Fp arithmetic using the MPM library

In Section 8.2 we described how the upper 3 layers of this hierarchy are handled. Hence, the

obvious next step is to look at efficient modular operations in Fp and how these operations

can be mapped to the SIMD instructions on 128-bit registers of the SPU.

95

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

This task of mapping operations on large integers to the SPU instruction set, is handled

by the vector-optimized multi-precision math (MPM) library [51].

This MPM library is provided in source code and its algorithms are generic for arbitrary

sized numbers. They operate on 16-bit halfwords as smallest units, elements of our 255-bit

field are therefore actually handled as 256-bit values.

As our computation is mostly bottlenecked by costs for multiplications and squarings in

the finite field we decided to optimize these functions for 256-bit input values.

The original MPM multiplication functions were optimsized as outlined in (Chapter 7

Section 7.3.4)

While these manual unroll and branch hint techniques help both the GCC and IBM XLC

compilers it should be noted that, for this unrolled MPM code, the GCC-derived compiler

achieves a 10% improvement over the XLC compiler2.

The MPM library supplies a specialized function for squaring where significant opti-

mizations should be made over a general multiply by reusing partial products. However

our timings indicate that such savings are not achieved until the size of the multi-precision

inputs exceeds 512-bits. We therefore take the timings of a multiplication for a squaring.

8.3.2 What speed can we achieve using MPM?

The Montgomery ladder in the curve25519 computation consists of 255 ladder steps, hence,

computation takes 1276 multiplications, 1020 squarings, 255 multiplications with a constant,

2040 additions and one inversion in the finite field F2255−19. Table 8.1 gives the number of

CPU cycles required for each of these operations (except inversion).

For finite field multiplication and squaring we benchmarked two possibilities: a call

to mpm_mul followed by a call to mpm_mod and the Montgomery multiplication function

mpm_mont_mod_mul. Addition is implemented as a call to mpm_add and a conditional call

(mpm_cmpge) to mpm_sub. For multiplication we include timings of the original MPM func-

tions and of our optimized versions. The original MPM library offers a number of options

for each operation. We select the inlined option with equal input sizes for fair comparison.

2IBM XL C/C++ for Multicore Acceleration for Linux, V10.1. CBE SDK 3.1

96

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

Operation Number of cycles

Addition/Subtraction 86

Multiplication (original MPM) 4334

Multiplication (optimized) 4124

Montgomery Multiplication (original MPM) 1197

Montgomery Multiplication (optimized) 892

Table 8.1: MPM performance for arithmetic operations in a 256-bit finite field

From these numbers we can compute a lower bound of 2227040 cycles (1276M + 1020S

+ 2040A, where M, S and A stand for the costs of multiplication, squaring and addition

respectively) required for the curve25519 computation when using MPM. Observe that this

lower bound still ignores costs for the inversion and for multiplication with the constant.

The high cost for modular reduction in these algorithms results from the fact that the

MPM library cannot make use of the special form of the modulus 2255 − 19; an improved

specialized reduction routine would probably yield a smaller lower bound. We therefore

investigate what lower bound we get when entirely ignoring costs for modular reduction.

Table 8.2 gives numbers of cycles for multiplication and addition of 256-bit integers without

modular reduction. This yields a lower bound of 934080 cycles. Any real implementation

would, of course, take significantly more time as it would need to account for operations

not considered in this estimation.

Operation Number of cycles

Addition/Subtraction 52

Multiplication (original MPM) 594

Multiplication (optimized) 360

Table 8.2: MPM performance for arithmetic operations on 256-bit integers

8.4 Implementation of curve25519

As described in Section 8.2 the computation of the curve25519 function consists of two

parts, the Montgomery ladder computing (XQ, ZQ) and the inversion of ZQ.

We decided to implement the inversion as an exponentiation with p−2 = 2255−21 using

97

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

the same sequence of 254 squarings and 11 multiplications as [9]. This might not be the

most efficient algorithm for inversion, but it is the easiest way to implement an inversion

algorithm which takes constant time.

The addition chain is specialized for the particular exponent and cannot be implemented

as a simple square-and-multiply loop; completely inlining all multiplications and squarings

would result in an excessive increase of the overall code size. We therefore implement

multiplication and squaring functions and use calls to these functions.

However for the first part, the Montgomery ladder, we do not use calls to these functions

but take one ladder step as smallest building block and implement the complete Montgomery

ladder in one function. This allows for a higher degree of data-level parallelism, especially

in the modular reductions, and thus yields a significantly increased performance.

For the speed-critical parts of our implementation we use the qhasm programming lan-

guage ([8] and Chapter 7 Section 7.1.2), which offers us all flexibility for code optimization

at assembly level, while still supporting a more convenient development environment than

plain assembly. We extended this language to also support the SPU of the Cell Broadband

Engine as target architecture.

In the description of our implementation we will use the term ‘register variable‘. Note

that for qhasm (unlike C) the term register variable refers to variables that are forced to be

kept in registers.

8.4.1 Fast arithmetic

In the following section we will first describe how we represent elements of the finite field

F2255−19 and then detail the three algorithms that influence execution speed of curve25519

most, namely finite field multiplications, finite field squaring and a Montgomery ladder step.

8.4.2 Representing elements of F2255−19

We represent an element a of F2255−19 as a tuple (a0, . . . , a19) where

a =

19∑
i=0

ai2
d12.75ie. (8.1)

98

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

We call a coefficient ai reduced if ai ∈ [0, 213 − 1]. Analogously we call the representation

of an element a ∈ F2255−19 reduced if all its coefficients a0, . . . , a19 are reduced.

As described in section (Chapter 5 Section 5.2) the Cell Broadband Engine can only

perform 16-bit integer multiplication, where one instruction performs 4 such multiplications

in parallel. In order to achieve high performance of finite field arithmetic it is crucial to

properly arrange the values a0, . . . a19 in registers and to adapt algorithms for field arithmetic

to make use of this SIMD capability.

Multiplication and Squaring in F2255−19

As input to field multiplication we get two finite field elements (a0, . . . , a19) and (b0, . . . , b19).

We assume that these field elements are in reduced representation. This input is arranged

in 10 register variables a03, a47, a811, a1215, a1619, b03, b47, b811, b1215 and b1619

as follows: Register variable a03 contains in its word elements the coefficients a0, a1, a2, a3,

register variable a47 contains in its word elements the coefficients a4, a5, a6, a7, and so on.

The idea of multiplication is to compute coefficients r0, . . . , r38 of r = ab where:

r0 =a0b0

r1 =a1b0 + a0b1

r2 =a2b0 + a1b1 + a0b2

r3 =a3b0 + a2b1 + a1b2 + a0b3

r4 =a4b0 + 2a3b1 + 2a2b2 + 2a1b3 + a0b4

r5 =a5b0 + a4b1 + 2a3b2 + 2a2b3 + a1b4 + a0b5

r6 =a6b0 + a5b1 + a4b2 + 2a3b3 + a2b4 + a1b5 + a0b6

r7 =a7b0 + a6b1 + a5b2 + a4b3 + a3b4 + a2b5 + a1b6 + a0b7

r8 =a8b0 + 2a7b1 + 2a6b2 + 2a5b3 + a4b4 + 2a3b5 + 2a2b6 + 2a1b7 + a0b8

...

This computation requires 400 multiplications and 361 additions. Making use of the

99

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

SIMD instructions, at best 4 of these multiplications can be done in parallel, adding the

result of a multiplication is at best for free using the mpya instruction, so we need at least

100 instructions to compute the coefficients r0, . . . , r38. Furthermore we need to multiply

some intermediate products by 2, an effect resulting from the non-integer radix 12.75 used

for the representation of finite field elements. As we assume the inputs to have reduced

coefficients, all result coefficients ri fit into 32-bit word elements.

We will now describe how the coefficients r0, . . . , r38 can be computed using 145 pipeline-

0 instructions (arithmetic instructions). This computation requires some rearrangement of

coefficients in registers using the shufb instruction but with careful instruction scheduling

and alignment these pipeline-1 instructions do not increase the number of cycles needed for

multiplication. From the description of the arithmetic instructions it should be clear which

rearrangement of inputs is necessary.

First use 15 shl instructions to have register variables

b03s1 containing b0, b1, b2, 2b3,

b03s2 containing b0, b1, 2b2, 2b3,

b03s3 containing b0, 2b1, 2b2, 2b3,

b47s1 containing b4, b5, b6, 2b7 and so on.

Now we can proceed producing intermediate result variables

r03 containing a0b0, a0b1, a0b2, a0b3 (one mpy instruction),

r14 containing a1b0, a1b1, a1b2, 2a1b3 (one mpy instruction),

r25 containing a2b0, a2b1, 2a2b2, 2a2b3 (one mpy instruction),

r36 containing a3b0, 2a3b1, 2a3b2, 2a3b3 (one mpy instruction),

r47 containing a4b0 + a0b4, a4b1 + a0b5, a4b2 + a0b6, a4b3 + a0b7 (one mpy and one mpya

instruction),

r58 containing a5b0 + a1b4, a5b1 + a1b5, a5b2 + a1b6, 2a5b3 + 2a1b7 (one mpy and one mpya

instruction) and so on. In total these computations need 36 mpy and 64 mpya instructions.

As a final step these intermediate results have to be joined to produce the coefficients

r0, . . . r38 in the register variables r03, r47,. . . r3639. We can do this using 30 additions

if we first combine intermediate results using the shufb instruction. For example we join

100

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

in one register variable the highest word of r14 and the three lowest words of r58 before

adding this register variable to r47.

The basic idea for squaring is the same as for multiplication. We can make squaring

slightly more efficient by exploiting the fact that some intermediate results are equal.

For a squaring of a value a given in reduced representation (a0, . . . , a19), formulas for

the result coefficients r0, . . . , r38 are the following:

r0 =a0a0

r1 =2a1a0

r2 =2a2a0 + a1a1

r3 =2a3a0 + 2a2a1

r4 =2a4a0 + 4a3a1 + 2a2a2

r5 =2a5a0 + 2a4a1 + 4a3a2

r6 =2a6a0 + 2a5a1 + 2a4a2 + 2a3a3

r7 =2a7a0 + 2a6a1 + 2a5a2 + 2a4a3

r8 =2a8a0 + 4a7a1 + 4a6a2 + 4a5a3 + a4a4

...

The main part of the computation only requires 60 multiplications (24 mpya and 36

mpy instructions). However, some partial results have to be multiplied by 4; this requires

more preprocessing of the inputs, we end up using 35 instead of 15 shl instructions before

entering the main block of multiplications. Squaring is therefore only 20 cycles faster than

multiplication.

During both multiplication and squaring, we can overcome latencies by interleaving

independent instructions.

101

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

8.4.3 Reduction

The task of the reduction step is to compute from the coefficients r0, . . . r38 a reduced

representation (r0, . . . , r19). Implementing this computation efficiently is challenging in

two ways: In a typical reduction chain every instruction is dependent on the result of the

preceding instruction. This makes it very hard to vectorize operations in SIMD instructions

and to minimise latencies.

We will now describe a way to handle reduction hiding most instruction latencies but

without data level parallelism through SIMD instructions.

The basic idea of reduction is to first reduce the coefficients r20 to r38 (producing a

coefficient r39), then add 19r20 to r0, 19r21 to r1 and so on until adding 19r39 to r19 and

then reduce the coefficients r0 to r19.

Multiplications by 19 result from the fact that the coefficient a20 stands for a20 · 2255

(see equation (8.1)). By the definition of the finite field F2255−19, 2255a20 is the same as

19a20. Equivalent statements hold for the coefficients a21, . . . , a39.

The most time consuming parts of this reduction are the two carry chains from r20 to

r39 and from r0 to r19. In order to overcome latencies in these chains we break each of

them into four parallel carry chains, Algorithm 8.1 describes this structure of our modular

reduction algorithm.

Each of the carry operations in Algorithm 8.1 can be done using one shufb, one rotmi

and one a instruction. Furthermore we need 8 masking instructions (bitwise and) for each

of the two carry chains.

In total, a call to the multiplication function (including reduction) takes 444 cycles, a

call to the squaring function takes 424 cycles. This includes 144 cycles for multiplication

(124 cycles for squaring), 244 cycles for reduction and some more cycles to load input and

store output. Furthermore the cost of a function call is included in these numbers.

Montgomery ladder step

For the implementation of a Montgomery ladder step we exploit the fact that we can op-

timize a fixed sequence of arithmetic instructions in F2255−19 instead of single instructions.

102

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

Algorithm 8.1 Structure of the modular reduction

Carry from r20 to r21, from r24 to r25, from r28 to r29 and from r32 to r33
Carry from r21 to r22, from r25 to r26, from r29 to r30 and from r33 to r34
Carry from r22 to r23, from r26 to r27, from r30 to r31 and from r34 to r35
Carry from r23 to r24, from r27 to r28, from r31 to r32 and from r35 to r36

Carry from r24 to r25, from r28 to r29, from r32 to r33 and from r36 to r37
Carry from r25 to r26, from r29 to r30, from r33 to r34 and from r37 to r38
Carry from r26 to r27, from r30 to r31, from r34 to r35 and from r38 to r39
Carry from r27 to r28, from r31 to r32 and from r35 to r36

Add 19r20 to r0, add 19r21 to r1, add 19r22 to r2 and add 19r23 to r3
Add 19r24 to r4, add 19r25 to r5, add 19r26 to r6 and add 19r27 to r7
Add 19r28 to r8, add 19r29 to r9, add 19r30 to r10 and add 19r31 to r11
Add 19r32 to r12, add 19r33 to r13, add 19r34 to r14 and add 19r35 to r15
Add 19r36 to r16, add 19r37 to r17, add 19r38 to r18 and add 19r39 to r19

Carry from r16 to r17, from r17 to r18, from r18 to r19 and from r19 to r20
Add 19r20 to r0

Carry from r0 to r1, from r4 to r5, from r8 to r9 and from r12 to r13
Carry from r1 to r2, from r5 to r6, from r9 to r10 and from r13 to r14
Carry from r2 to r3, from r6 to r7, from r10 to r11 and from r14 to r15
Carry from r3 to r4, from r7 to r8, from r11 to r12 and from r15 to r16

Carry from r4 to r5, from r8 to r9, from r12 to r13 and from r16 to r17
Carry from r5 to r6, from r9 to r10, from r13 to r14 and from r17 to r18
Carry from r6 to r7, from r10 to r11, from r14 to r15 and from r18 to r19
Carry from r7 to r8, from r11 to r12 and from r15 to r16

This makes it much easier to make efficient use of the SIMD instruction set, in particular,

for modular reduction.

The idea is to arrange the operations in F2255−19 into blocks of 4 equal or similar in-

structions, similar meaning that multiplications and squarings can be grouped together and

additions and subtractions can be grouped together as well. Then these operations can be

carried out using the 4-way parallel SIMD instructions in the obvious way; for example for

4 multiplications r = a · b, s = c · d, t = e · f and u = g ·h we first produce register variables

aceg0 containing in its word elements a0, c0, e0, g0 and bdgh0 containing b0, d0, e0, g0 and so

on. Then the first coefficient of r, s, t and u can be computed by applying the mpy instruc-

tion on aceg0 and bdfh0. All other result coefficients of r, s, t and u can be computed in a

103

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

similar way using mpy and mpya instructions.

This way of using the SIMD capabilities of CPUs was introduced in [42] as ‘digit-slicing‘.

In our case it not only makes multiplication slightly faster (420 arithmetic instructions

instead of 576 for 4 multiplications), it also allows for much faster reduction: The reduction

algorithm described above can now be applied to 4 results in parallel, reducing the cost of

a reduction by a factor of 4.

In Algorithm 8.2 we describe how we divide a Montgomery ladder step into blocks of

4 similar operations. In this algorithm the computation of ZP+Q in the last step requires

one multiplication and reduction which we carry out as described in the previous section.

The computation of a ladder step again requires rearrangement of data in registers using

the shufb instruction. Again we can hide these pipeline-1 instructions almost entirely by

interleaving with arithmetic pipeline-0 instructions.

One remark regarding subtractions occurring in this computation: As reduction expects

all coefficients to be larger than zero, we cannot just compute the difference of each coeffi-

cient. Instead, for the subtraction a− b we first add 2p to a and then subtract b. For blocks

containing additions and subtractions in Algorithm 8.2 we compute the additions together

with additions of 2p and perform the subtraction in a separate step.

In total one call to the ladder-step function takes 2433 cycles.

8.5 Results and Comparison

8.5.1 Benchmarking Methodology

In order to make our benchmarking results comparable and verifiable we use the SU-

PERCOP toolkit, a benchmarking framework developed within eBACS, the benchmarking

project of ECRYPT II [10]. The software presented in this Chapter passes the extensive tests

of this toolkit showing compatibility to other curve25519 implementations, in particular the

reference implementation included in the toolkit.

For scalar multiplication software, SUPERCOP measures two different cycle counts:

The crypto_scalarmult benchmark measures cycles for a scalar multiplication of an arbi-

104

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

Algorithm 8.2 Structure of a Montgomery ladder step (see Algorithm 2.2) optimized for
4-way parallel computation

t1 ← XP + ZP

t2 ← XP − ZP

t3 ← XQ + ZQ

t4 ← XQ − ZQ

Reduce t1, t2, t2, t3

t6 ← t21
t7 ← t22
t8 ← t4 · t1
t9 ← t3 · t2
Reduce t6, t7, t8, t9

t10 = a24 · t6
t11 = (a24− 1) · t7

t5 ← t6 − t7
t4 ← t10 − t11
t1 ← t8 − t9
t0 ← t8 + t9
Reduce t5, t4, t1, t0

Z[2]P ← t5 · t4
XP+Q ← t20
X[2]P ← t6 · t7
t2 ← t21
Reduce Z[2]P , XP+Q, X[2]P , t2

ZP+Q ← XQ−P · t2
Reduce ZP+Q

trary point; the crypto_scalarmult_base benchmark measures cycles needed for a scalar

multiplication of a fixed base point.

We currently implement crypto_scalarmult_base as crypto_scalarmult; faster imple-

mentations would be useful in applications that frequently call

crypto_scalarmult_base.

Two further benchmarks regard our curve25519 software in the context of Diffie-

Hellman key exchange: The crypto_dh_keypair benchmark measures the number of cycles

to generate a key pair consisting of a secret and a public key. The crypto_dh benchmark

measures cycles to compute a joint key, given a secret and a public key.

105

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

8.5.2 Results

We benchmarked our software on hex01, a QS21 blade containing two 3200 MHz Cell

Broadband Engine processors (revision 5.1) at the Chair for Operating Systems at RWTH

Aachen University. We also benchmarked the software on node001, a QS22 blade at the

Research Center Jülich containing two 3200 MHz PowerXCell 8i processors (Cell Broadband

Engine (revision 48.0)). Furthermore we benchmarked the software on cosmovoid, a Sony

Playstation 3 containing a 3192 MHz Cell Broadband Engine processor (revision 5.1) located

at the Chair for Operating Systems at RWTH Aachen University. All measurements used

one SPU of one CBE.

SUPERCOP benchmark hex01 node001 cosmovoid

crypto_scalarmult 697080 697080 697040

crypto_scalarmult_base 697080 697080 697080

crypto_dh_keypair 720120 720120 720200

crypto_dh 697080 697080 697040

Table 8.3: Cycle counts of our software on different machines

8.5.3 Comparison

To give an impression of the power of the Cell Broadband Engine for asymmetric cryptog-

raphy we compare our results on a cost-performance basis with ECDH software for Intel

processors.

For this comparison we consider the cheapest hardware configuration containing a Cell

Broadband Engine, namely the Sony Playstation 3, and compare the results to an Intel-

Core-2-based configuration running the ECDH software presented in [39]. This is currently

the fastest implementation of ECDH for the Core 2 processor providing a similar security

as curve25519. Note that this software is not protected against timing attacks.

SUPERCOP reports 365363 cycles for the crypto_dh benchmark (this software is not

benchmarked as scalar-multiplication software). Key-pair generation specializes the scalar

multiplication algorithm for the known basepoint; the crypto_dh_keypair benchmark re-

ports 151215 cycles.

106

CHAPTER 8. FAST ELLIPTIC-CURVE CRYPTOGRAPHY ON THE CELL
BROADBAND ENGINE

To estimate a price for a complete workstation including an Intel Core 2 Quad Q9300

processor we determined the lowest prices for processor, case, motherboard, memory, hard

disk and power supply from different online retailers using Google Product Search yielding

$296 (Mar 30, 2009).

To determine the best price for the Sony Playstation 3 we also used Google Product

Search. The currently (Mar 30, 2009) cheapest offer is $221 for the Playstation 3 with a 40

GB hard disk.

The Sony Playstation 3 makes 6 SPUs available for general purpose computations. Us-

ing our implementation running at 697080 cycles (crypto_dh on cosmovoid) on 6 SPUs

operating at 3192MHz yields 27474 curve25519 computations per second. Taking the $221

market price for the Playstation as a basis, the cheapest CBE-based hardware can thus

perform 124 computations of curve25519 per second per dollar.

The Q9300-based workstation has 4 cores operating at 2.5GHz, using the above-

mentioned implementation which takes 365363 cycles, we can thus perform 27368 joint-key

computations per second. Taking $296 market price for a Q9300-based workstation as a

basis, the cheapest Core-2-based hardware can thus perform 92 joint-key computations per

second per dollar.

Note, that this comparison is not fair in several ways: The cheapest Q9300-based work-

station has for example more memory than the Playstation 3 (1GB instead of 256MB).

On the other hand we only use the 6 SPUs of the CBE for the curve25519 computation,

the PPU is still available for other tasks, whereas the performance estimation for the Core-

2-based system assumes 100% workload on all CPU cores.

Furthermore hardware prices are subject to frequent changes and different price-

performance ratios are achieved for other Intel or AMD processors.

In any case the above figures demonstrate that the Cell Broadband Engine, when used

properly, is one of the best available CPUs for public-key cryptography.

107

Bibliography

[1] OpenSSL library. Open source library, 1988. http://www.openssl.org.

[2] Barreto, P., Kim, H., Lynn, B., and Scott, M. Efficient algorithms for pairing-

based cryptosystems. In Advances in Cryptology – Crypto’2002 (2002), vol. 2442 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 377–87.

[3] Barreto, P., Lynn, B., and Scott, M. Constructing elliptic curves with pre-

scribed embedding degrees. In Security in Communication Networks – SCN’2002

(2002), vol. 2576 of Lecture Notes in Computer Science, Springer-Verlag, pp. 263–273.

[4] Barreto, P., Lynn, B., and Scott, M. On the selection of pairing-friendly groups.

In Selected Areas in Cryptography – SAC 2003 (2003). to appear.

[5] Barreto, P. S., Galbraith, S. D., Héigeartaigh, C. O., and Scott, M. Effi-

cient pairing computation on supersingular abelian varieties. Des. Codes Cryptography

42, 3 (2007), 239–271.

[6] Barreto, P. S., and Naehrig, M. Pairing-friendly elliptic curves of prime order. In

Selected Areas in Cryptography: 12th International Workshop, SAC 2005 (Kingston,

Canada, LNCS Vol. 3897, Feb. 2006), pp. 319–331.

[7] Barreto, P. S. L. M. The pairing-based crypto lounge. http://paginas.terra.

com.br/informatica/paulobarreto/pblounge.html.

[8] Bernstein, D. J. qhasm: tools to help write high-speed software. http://cr.yp.

to/qhasm.html (accessed Jan 1, 2009).

[9] Bernstein, D. J. Curve25519: new Diffie-Hellman speed records. In Public Key

Cryptography – PKC 2006 (2005), vol. 3958 of Lecture Notes in Computer Science,

Springer, pp. 207–228.

[10] Bernstein, D. J., and (editors), T. L. eBACS: ECRYPT benchmarking of cryp-

tographic systems, Nov 2008. http://bench.cr.yp.to/ (accessed Jan 1, 2009).

108

BIBLIOGRAPHY

[11] Bertoni, G. M., Chen, L., Fragneto, P., Harrison, K. A., and Pelosi,

G. Computing tate pairing on smartcards, 2005. http://www.st.com/stonline/

products/families/smartcard/ches2005_v4.pdf.

[12] Bhuyan, Z. I. S. M. L. Anatomy and performance of SSL processing. In Proc. IEEE

Int. Symp. Performance Analysis of Systems and Software (2005), pp. 197–206.

[13] Blake, I., Seroussi, G., and Smart, N. Elliptic Curves in Cryptography. Cam-

bridge University Press, London, 1999.

[14] Boneh, D., and Franklin, M. Identity-based encryption from the Weil pairing.

extended abstract. In Crypto ’2001 (2001), vol. 2139 of Lecture Notes in Computer

Science, Springer-Verlag, pp. 213–229.

[15] Boneh, D., Lynn, B., and Shacham, H. Short signatures from the Weil pairing.

In Advances in Cryptology – Asiacrypt’2001 (2002), vol. 2248 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 514–532.

[16] Brezing, F., and Weng, A. Elliptic curves suitable for pairing based cryptography.

Designs, Codes and Cryptography 37 (2003), 133–141.

[17] Cavanna, C. The Power Architecture Time Base register in 64-bit Linux, April 2007.

http://www.ibm.com/developerworks/linux/library/pa-timebase/.

[18] CESG Communications and Electronic Security Group. http://www.cesg.

gov.uk.

[19] Chen, L., and Cheng, Z. Security proof of sakai-kasahara’s identity-based encryption

scheme. In In Proceedings of Cryptography and Coding 2005, LNCS 3706 (2005),

Springer-Verlag, pp. 442–459.

[20] Chevallier-Mames, B., Coron, J.-S., McCullagh, N., Naccache, D., and

Scott, M. Secure delegation of elliptic-curve pairing, 2005. http://eprint.iacr.

org/2005/150.

109

BIBLIOGRAPHY

[21] Chow, A. C. Programming the Cell Broadband Engine. Embedded Systems De-

sign (2006). http://www.embedded.com/columns/showArticle.jhtml?articleID=

188101999.

[22] Cocks, C. An identity based encryption scheme based on quadratic residues. In VIII

IMA International Conference on Cryptography and Coding (2001), vol. 2260 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 360–263.

[23] Cohen, H., and Frey, G., Eds. Handbook of Elliptic and Hyperelliptic Curve Cryp-

tography. Discrete Mathematics and its Applications. Chapman & Hall/CRC, 2006,

ch. 10, Integer Arithmetic, Christophe Doche. K.H. Rosen, series editor.

[24] Comba, P. G. Exponentiation cryptosystems on the ibm pc. IBM Syst. J. 29, 4

(1990), 526–538.

[25] Coppersmith, D. Fast evaluation of logarithms in fields of characteristics two. In

IEEE Transactions on Information Theory (1984), vol. 30, pp. 587–594.

[26] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to

Algorithms. MIT Press and McGraw-Hill, 2001.

[27] Crandall, R., and Pomerance, C. Prime Numbers: a Computational Perspective.

Springer-Verlag, Berlin, 2001.

[28] DeveloperWorks, I. Cell Broadband Engine resource center. http://www.ibm.

com/developerworks/power/cell/.

[29] DeveloperWorks, I. Cell Broadband Engine SDK. http://www.ibm.com/

developerworks/power/cell/.

[30] DeveloperWorks, I. Cell Broadband Engine SDK programming handbook v1.0,

2006. http://www.ibm.com/developerworks/power/cell/.

[31] Diffie, W., and Hellman, M. New directions in cryptography. IEEE Transactions

on Information Theory 22 (1976), 644–654.

110

BIBLIOGRAPHY

[32] Diffie, W., and Hellman, M. E. New directions in cryptography. IEEE Transac-

tions on Information Theory IT-22, 6 (Nov 1976), 644–654. http://citeseer.ist.

psu.edu/diffie76new.html.

[33] Donald E. EastlaKe, K. N. Digital cryptography: A subtle art. Sample Chapter,

2002. http://www.awprofessional.com/articles/article.asp?p=29054&seqNum=

4.

[34] Duursma, I., and Lee, H.-S. Tate pairing implementation for hyperelliptic curves

y2 = xp − x + d. In Advances in Cryptology – Asiacrypt’2003 (2003), vol. 2894 of

Lecture Notes in Computer Science, Springer-Verlag, pp. 111–123.

[35] Ellis, J. History of ID-PKI. Web page with links to slides, 2001. http://www.cesg.

gov.uk/.

[36] Fan, J., Sakiyama, K., and Verbauwhede, I. Elliptic curve cryptography on

embedded multicore systems. In Workshop on Embedded Systems Security - WESS

2007 (Salzburg, Austria, 2007), pp. 17–22.

[37] Freeman, D. Constructing pairing-friendly elliptic curves with embedding degree 10.

In 10th Workshop on Elliptic Curves in Cryptography (ECC 2006) (2006), Springer-

Verlag, pp. 452–465.

[38] Freeman, D., Scott, M., and Teske, E. A taxonomy of pairing-friendly elliptic

curves. Journal of Cryptology .

[39] Galbraith, S. D., Lin, X., and Scott, M. Endomorphisms for faster elliptic curve

cryptography on a large class of curves. In EUROCRYPT ’09: Proceedings of the

28th Annual International Conference on Advances in Cryptology (Berlin, Heidelberg,

2009), Springer-Verlag, pp. 518–535.

[40] Gaudry, P., and Thomé, E. The mpFq library and implementing curve-based key ex-

changes. In Proceedings of SPEED workshop (2007). http://www.loria.fr/~gaudry/

publis/mpfq.pdf.

111

BIBLIOGRAPHY

[41] Gemplus. ID based Cryptography and Smartcards, 2005. http://www.gemplus.com/

smart/rd/publications/pdf/Joy05iden.pdf.

[42] Grabher, P., schädl, J. G., and Page, D. On software parallel implementation of

cryptographic pairings. In Selected Areas in Cryptography – SAC 2008 (2009), vol. 5381

of Lecture Notes in Computer Science, p. 34âĂŞ49. to appear.

[43] Granger, R., and Stam, M. Hardware and software normal basis arithmetic for

pairing based cryptography in characteristic three. IEEE Transactions on Computers

54 (2005), 852–860.

[44] Großschädl, J., and Savas, E. Instruction set extensions for fast arithmetic in

finite fields GF(p) and GF(2m). In CHES (2004), pp. 133–147.

[45] Hankerson, D., Menezes, A. J., and Vanstone, S. Guide to Elliptic Curve

Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[46] Hennessy, J., and Patterson, D. Computer Architecture - a Qualitative Approach

(third edition). Morgan Kaufmann, 2003.

[47] Hess, F., Smart, N., Vercauteren, F., and Berlin, T. U. The eta pairing

revisited. IEEE Transactions on Information Theory 52 (2006), 4595–4602.

[48] IBM DeveloperWorks. Cell broadband engine architecture and its first im-

plementation, Nov 2005. http://www.ibm.com/developerworks/power/library/

pa-cellperf/.

[49] IBM DeveloperWorks. Cell Broadband Engine Programming Handbook (version

1.1), April 2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

7A77CCDF14FE70D5852575CA0074E8ED.

[50] IBM DeveloperWorks. SPU assembly language specification (version

1.6), Sep 2007. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

EFA2B196893B550787257060006FC9FB.

112

BIBLIOGRAPHY

[51] IBM DeveloperWorks. Example library API reference (version 3.1), Sep 2008.

http://www.ibm.com/developerworks/power/cell/documents.html.

[52] IBM DeveloperWorks. SPE cryptographic library user documentation 1.0, Sep

2008. http://www.ibm.com/developerworks/power/cell/documents.html.

[53] ICHEC. The Irish Centre for High-End Computing :-ICHEC. http://www.ichec.ie/.

[54] IEEE Std 1363-2000. Standard specifications for public-key cryptography. IEEE

P1363 Working Group, 2000.

[55] Joux, A. A one round protocol for tripartite Diffie-Hellman. In Algorithm Number

Theory Symposium – IVth Sympisium (2000), I. W. B. Ed., Ed., vol. 1838 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 385–394.

[56] Karatsuba, A., and Ofman, Y. Multiplication of multiple numbers by means of

automata,. Doklady Akad. Nauk USSR, vol. 145, no. 2, pp. 293-294, 1962 (in Russian).

[57] Knuth, D. E. The art of computer programming, volume 2 (3rd ed.): seminumerical

algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[58] Koblitz, N. Elliptic curve cryptosystems. Mathematics of Computation 48, 177

(1987), 203–209.

[59] Kurzak, J., Buttari, A., and Dongarra, J. Solving Systems of Linear Equations

on the CELL Processor Using Cholesky Factorization. IEEE Transactions on Parallel

and Distributed Systems (2007). To appear. LAPACK Working Note 184.

[60] Lenstra, A. K. Unbelievable security. Matching AES security using public key sys-

tems. In Advances in Cryptology – Asiacrypt 2001 (2001), vol. 2248, Springer-Verlag,

pp. 67–86.

[61] Lercier, R. Discrete logarithms in GF(p). Posting to NMBRTHRY List, 2001.

[62] Levy, S. The open secret. Wired 07, 04 (April 1999).

113

BIBLIOGRAPHY

[63] Mao, W. Modern Cryptography: Theory and Practice. Prentice-Hall, PTR. HP press,

Upper Saddle River, New Jersey, USA, 2004.

[64] McCullagh, N. http://www.computing.dcu.ie/~nmcculla.

[65] McCullagh, N., and Barreto, P. S. L. M. Efficient and forward-secure identity-

based signcryption. Cryptology ePrint Archive, Report 2004/117, 2004. http:

//eprint.iacr.org/2004/117.

[66] Menezes, A. Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers,

1993.

[67] Menezes, A. J., van Oorschot, P. C., and Vanstone, S. A. Handbook of Applied

Cryptography. CRC, http://www.cacr.math.uwaterloo.ca/hac/, October 1996.

[68] Miller, V. Uses of Elliptic Curves in cryptography. In Advances in Crytology -

CRYPTO ’85, H. Williams, Ed., pp. 417–426.

[69] Miller, V. Short programs for functions on curves. unpublished manuscript, 1986.

[70] Miyaji, A., Nakabayashi, M., and Takano, S. New explicit conditions of elliptic

curve traces for FR-reduction. IEICE Transactions on Fundamentals E84-A, 5 (2001),

1234–1243.

[71] Montgomery, P. L. Modular multiplication without trial division,. Mathematics of

Computation 44, 170 (1985), 519–521.

[72] Montgomery, P. L. Speeding the Pollard and elliptic curve methods of factorization.

Mathematics of Computation 48, 177 (1987), 243–264.

[73] Nogami, Y., and Morikawa, Y. A fast implementation of elliptic curve cryptosys-

tem with prime order defined over fp8 , 1998. http://www.trans.cne.okayama-u.ac.

jp/nogami-group/papers/kiyou(2).pdf.

[74] OSCAR. Open source cluster application resources :- OSCAR. http://svn.oscar.

openclustergroup.org/trac/oscar.

114

BIBLIOGRAPHY

[75] Page, D., Smart, N. P., and Vercauteren, F. A comparison of MNT curves and

supersingular curves. Cryptology ePrint Archive, 2004. http://eprint.iacr.org/

2004/165.

[76] R. Rivest, A. S., and Adleman., L. A method for obtaining digital signatures

and public-key cryptosystems. In Communications of the ACM (1978), vol. 21(2) of

Communications of the ACM, ACM, pp. 120–126.

[77] Redhat. Fedora Core 7. http://fedoraproject.org/.

[78] Rivest, R. L. Founder RSA security and professor electrical engineering MIT. http:

//theory.lcs.mit.edu/~rivest/.

[79] Rodŕıguez-Henŕıquez, F., Saqib, N. A., D́ıaz-Pèrez, A., and Koc, C. K.

Cryptographic Algorithms on Reconfigurable Hardware (Signals and Communication

Technology). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[80] RSA Data Security, Inc. PKCS #1: RSA Encryption Standard, June 1991. Version

1.4.

[81] Sakai, R., and Kasahara, M. ID based cryptosystems with pairing on elliptic

curve. Cryptography ePrint Archive, Report 2003/054, 2003. http://eprint.iacr.

org/2003/054.

[82] Sakai, R., Ohgishi, K., and Kasahara, M. Cryptosystems based on pairing. The

2000 Symposium on Cryptography and Information Security, Okinawa, Japan, 2000.

[83] Schoof, R. Elliptic curves over finite fields and the computation of square roots

mod p. Mathematics of Computation 44, 170 (apr 1985), 483–494.

[84] Scott, M. MIRACL Multiprecision Integer and Rational Arithmetic C/C++ Library.

http://www.shamus.ie.

[85] Scott, M. Computing the Tate pairing. In CT-RSA (2005), vol. 3376 of Lecture

Notes in Computer Science, Springer-Verlag, pp. 293–304.

115

BIBLIOGRAPHY

[86] Scott, M., and Barreto, P. Compressed pairings. In Advances in Cryptology –

Crypto’ 2004 (2004), vol. 3152 of Lecture Notes in Computer Science, Springer-Verlag,

pp. 140–156. Also available from http://eprint.iacr.org/2004/032/.

[87] Scott, M., and Barreto, P. S. Generating More MNT Elliptic Curves. Des. Codes

Cryptography 38, 2 (2006), 209–217.

[88] Shamir, A. Identity-based cryptosystems and signature schemes. In Springer-Verlag,

Lecture Notes in Computer Science (1984), vol. 30 of Lecture Notes in Computer Sci-

ence, Springer-Verlag, pp. 47–53.

[89] Shimizu, K., Brokenshire, D., and Peyravian, M. Cell Broadband Engine sup-

port for privacy, security, and digital rights management applications. White paper,

IBM, Oct 2005. http://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

3F88DA69A1C0AC40872570AB00570985.

[90] Shimizu, K., Hofstee, H. P., and Liberty, J. S. Cell Broadband Engine processor

vault security architecture. IBM Journal of Research and Development 51, 5 (Sept.

2007), 521–528.

[91] Smart, N. Cryptography: An Introduction. Mcgraw-Hill College, December 2004.

[92] Sotirov, A., Stevens, M., Appelbaum, J., Lenstra, A., Molnar, D., Osvik,

D. A., and de Weger, B. MD5 considered harmful today, Dec 2008. http://www.

win.tue.nl/hashclash/rogue-ca/ (accessed Jan 4, 2009).

[93] Stevens, M., Lenstra, A., and de Weger, B. Nostradamus – predicting the

winner of the 2008 US presidential elections using a Sony PlayStation 3, Nov 2007.

http://www.win.tue.nl/hashclash/Nostradamus/ (accessed Jan 4, 2009).

[94] SWOX / Free Software Foundation. GNU Multiple Precision Arithmetic Li-

brary. http://gmplib.org/.

116

BIBLIOGRAPHY

[95] Thomé, E. Computation of discrete logarithms in F2607 . In Advances in Cryptology

– Asiacrypt’2001 (2001), vol. 2248 of Lecture Notes in Computer Science, Springer-

Verlag, pp. 107–124.

[96] Weisstein, E. W. Group generators. From MathWorld–A Wolfram Web Resource.

http://mathworld.wolfram.com/GroupGenerators.html.

[97] Wells, D. Prime numbers; the most mysterious figures in math. John Wiley & Sons,

2005.

117

A
Glossary

ADC Add with Carry

AES Advanced Encryption Standard

Altivec Floating point and integer SIMD instruction set designed and owned by Apple

BDH Bilinear Diffie-Hellman

CDH computational Diffie-Hellman

CPI Cycles per instruction

CRT Chinese Remainder Theorem

DDH Decision Diffie-Hellman

DES Data Encryption Standard

DH Diffie?Hellman

DLP Discrete logarithm problem

DMA Direct memory access

ECC Elliptic curve cryptography

ECDH Elliptic-Curve Diffie-Hellman key exchange

118

APPENDIX A. GLOSSARY

ELF Executable and Linkable Format

GCHQ UK Government Communications Headquarters

GMP Gnu Multi Precision

GPU Graphics Processing Unit

HSM Hardware security module

IBE Identity Base Encryption

ICHEC Irish Centre for High-End Computing

IDEA International Data Encryption Algorithm

IpSec Internet Protocol Security

KDC Key Distribution Centre

LS Local Store

MADDU Multiply and Add Unsigned

MIPS Microprocessor without Interlocked Pipeline Stages

MIRACL Multi-precision Integer and Rational Arithmetic C/C++ Library

MPM IBM multi-precision library

NIST National Institute of Standards and Technology

NSA National Security Agency

NTL Number Theory Library

OpenSSL Open Source toolkit implementing the Secure Sockets Layer

PKCS Public-Key Cryptography Standards

POSIX Portable Operating System Interface

119

APPENDIX A. GLOSSARY

PPC PowerPC Performance Optimisation With Enhanced RISC Performance Computing

PPU Power Processor Unit

RISC Reduced Instruction Set Computer

RSA Public key algorithm invented by Rivest, Shamir and Adleman

S/Mime Secure/Multipurpose Internet Mail Extensions

SIMD Single Instruction, Multiple Data.

SPU Synergistic Processing Unit

SSH Secure Shell

SSL Secure Sockets layer

VPN Virtual Private Network

120

B
Code Generation

The Ruby script in Listing B.1 is used to parse C/C++ files.

Listing B.1: Ruby code for multi-precision multiply

r e q u i r e "ftools"

u n l e s s ARGV[0]

p r i n t "mmadd.gen usage: maddgen file.c file.c\n"

e x i t

end

de f expand madd (nn , a , b , c)

n = (nn/64)−1

f o r i in (0 . . n)

p r i n t "\n\ncarry=0;\n"

f o r j in (0 . . n)

mu l t i p l y each d i g i t o f y by x [i]

z [i+j] , carry = (x [i]∗ y [i] + carry + z [i+j])

pr in t "muldvd2_v(_x[#{i}],_y[#{j}],&carry ,&_z[#{i+j}]);\n"

end

pr in t "_z[#{n+i+1}]=carry;\n"

end

end

fh = F i l e . open (ARGV[0]) t ex t = fh . read () fh . c l o s e

t ext . gsub ! (/(MADD\ () (. ∗ ?) (\b\d+\b) (\b\d+\b) (\b\d+\b) (\) ; \ n)/m) {

121

APPENDIX B. CODE GENERATION

expand madd ($2 . t o i , $3 , $4 , $5)

}

The C/C++ code listed in B.2 holds tokens such as MADD.

Listing B.2: C code to be parsed

{

MADD(256 5 6 7) ;

}

Expands to produce the C code in Listing B.3

Listing B.3: Generated 256-bit multiply as C code

{

car ry =0;

muldvd2 v (x [0] , y [0] ,& carry ,& z [0]) ;

muldvd2 v (x [0] , y [1] ,& carry ,& z [1]) ;

muldvd2 v (x [0] , y [2] ,& carry ,& z [2]) ;

muldvd2 v (x [0] , y [3] ,& carry ,& z [3]) ;

z [4]= carry ;

car ry =0;

muldvd2 v (x [1] , y [0] ,& carry ,& z [1]) ;

muldvd2 v (x [1] , y [1] ,& carry ,& z [2]) ;

muldvd2 v (x [1] , y [2] ,& carry ,& z [3]) ;

muldvd2 v (x [1] , y [3] ,& carry ,& z [4]) ;

z [5]= carry ;

car ry =0;

muldvd2 v (x [2] , y [0] ,& carry ,& z [2]) ;

muldvd2 v (x [2] , y [1] ,& carry ,& z [3]) ;

muldvd2 v (x [2] , y [2] ,& carry ,& z [4]) ;

muldvd2 v (x [2] , y [3] ,& carry ,& z [5]) ;

z [6]= carry ;

car ry =0;

muldvd2 v (x [3] , y [0] ,& carry ,& z [3]) ;

122

APPENDIX B. CODE GENERATION

muldvd2 v (x [3] , y [1] ,& carry ,& z [4]) ;

muldvd2 v (x [3] , y [2] ,& carry ,& z [5]) ;

muldvd2 v (x [3] , y [3] ,& carry ,& z [6]) ;

z [7]= carry ;

r e turn 0 ;

Where muldvd_2_v() is a wrapper for a 64× 64-bit multiply core in Listing B.4

Listing B.4: 64-bit C code wrapper

#d e f i n e muldvd2 v (a , b , c , rp) \

{ \

AB=(vecto r unsigned shor t) s p u i n s e r t (a , (vec to r unsigned long long)AB, 0 x1) ; \

AB=(vecto r unsigned shor t) s p u i n s e r t (b , (vec to r unsigned long long)AB, 0 x0) ; \

C=(vecto r unsigned i n t) s p u i n s e r t (∗ c , (vec to r unsigned long long)C, 0 x01) ; \

SPU MULDVD2 V(AB,C,& r e s u l t ,∗ rp) ; \

∗ rp=spu ext rac t ((ve c u l l ong2) r e s u l t , 0 x1) ; \

∗ c=spu ext rac t ((ve c u l l ong2) r e s u l t , 0 x0) ; \

}

and the code in Listing B.5 SPU_MULDVD2_V(); is unrolled and ordered for optimal

instruction ordering

Listing B.5: 64-bit multiply as spu intrinsic code unrolled and ordered

\ l s t s e t { l a b e l=code : : 6 4 bitUnRol led }

#d e f i n e SPU MULDVD2 V(AB,C, rp , usb) \

{ \

rp v=(vec to r unsigned i n t) s i f r o m u l l o n g (usb) ; \

rp v=spu rlmaskqwbyte (rp v ,−8) ;\

b0=s p u s h u f f l e (AB,AB, s p l a t s h o r t 0) ; \

b1=s p u s h u f f l e (AB,AB, s p l a t s h o r t 1) ; \

A=s p u s h u f f l e (AB,AB, sp la t shor tA1) ; \

p0=spu mulo (A, b0) ; \

b2=s p u s h u f f l e (AB,AB, s p l a t s h o r t 2) ; \

p1=spu mulo (A, b1) ; \

b3=s p u s h u f f l e (AB,AB, s p l a t s h o r t 3) ; \

h0=s p u s h u f f l e (p0 , p0 , sp la t shor tH0) ; \

123

APPENDIX B. CODE GENERATION

l 0=s p u s h u f f l e (p0 , p0 , sp l a t sho r tL 0) ; \

p2=spu mulo (A, b2) ; \

p3=spu mulo (A, b3) ; \

MPM ADD FULL 2 CARRY(psum0 , l0 , h0) ; \

h1=s p u s h u f f l e (p1 , p1 , sp la t shor tH1) ; \

l 1=s p u s h u f f l e (p1 , p1 , sp l a t sho r tL 1) ; \

MPM ADD FULL 2 CARRY(psum1 , l1 , h1) ; \

h2=s p u s h u f f l e (p2 , p2 , sp la t shor tH2) ; \

l 2=s p u s h u f f l e (p2 , p2 , sp l a t sho r tL 2) ; \

MPM ADD FULL 2 CARRY(psum2 , l2 , h2) ; \

h3=s p u s h u f f l e (p3 , p3 , sp la t shor tH3) ; \

l 3=s p u s h u f f l e (p3 , p3 , sp l a t sho r tL 3) ; \

MPM ADD FULL 2 CARRY(psum3 , l3 , h3) ; \

MPM ADD FULL 1 CARRY(psum0 , psum0 , psum3) ; \

MPM ADD FULL 2 CARRY(psum1 , psum1 , psum2) ; \

MPM ADD FULL NO CARRY(psum0 , psum0 , psum1) ; \

MPM ADD FULL 2 CARRY(∗ rp , psum0 ,C) ; \

MPM ADD FULL 2 CARRY(∗ rp ,∗ rp , rp v) ; \

}

with MPM_ADD_FULL_2_CARRY() in Listing B.6

Listing B.6: 128-bit vector added to 64 bit integer with optimal carry

#d e f i n e MPM ADD FULL 2 CARRY(out s , in a128 , i n a64) { \

c0 = spu genc (in a128 , i n a64) ; \

sum = spu add (in a128 , i n a64) ; \

t0 = spu s lqwbyte (c0 , 4) ; \

c0 = spu genc (sum , t0) ; \

sum = spu add (sum , t0) ; \

t0 = spu s lqwbyte (c0 , 4) ; \

o u t s = spu add (sum , t0) ; \

}

124

C
Multiple-precision Arithmetic

Computers have optimized operations (Compare, Add, Subtract, Bitwise Shift etc.) for

single-precision integers. We build on these operations to provide the required basic oper-

ations of Add, Subtract, Multiply and Squaring on non negative numbers. The underlying

algorithms outlined here are generally referred to as schoolbook methods and assume pos-

itive numbers. We assume the base b is the same. In practice, it is usually a power of 2

(28, 216, 232 etc.).

Multiple-precision Add

Algorithm C.1 Multiple-precision Addition

Input: x and y, where x has n+ 1 digits.
Output: w = x+ y, of size n+ 1 words.

1: carry ← 0.
2: for i from 0 to n do
3: wi ← (xi + yi + carry) mod b
4: if (xi + yi + carry) < b then carry ← 0 otherwise carry ← 1.
5: end for
6: wn+1 ← carry.
7: Return ((wn+1wn....w1w0)).

125

APPENDIX C. MULTIPLE-PRECISION ARITHMETIC

Algorithm C.2 Multiple-precision Subtraction

Input: x and y, where x has n+ 1 digits and x ≥ y.
Output: w = x− y, of size n words.

1: carry ← 0.
2: for i from 0 to n do
3: wi ← (xi − yi + carry) mod b
4: if (xi − yi + carry) ≥ 0 then carry ← 0 otherwise carry ← −1.
5: end for
6: Return ((wnwn−1....w1w0)).

Multiple-precision Subtract

When working with integers of different lengths, we must pad the smaller number with 0s

to make them the same length.

Multiple-precision Multiplication

Algorithm C.3 Multiple-precision Multiplication

Input: x and y, where x has n+ 1 digits, and y has t+ 1 digits.
Output: w = x.y, of size n+ t words.

1: for i from 0 to (n+ t+ 1) do
2: wi ← 0.
3: end for
4: for i from 0 to t do
5: carry ← 0.
6: for j from 0 to n do
7: (uv)b ← wi+j + xj × yi + carry.
8: wi+j ← v.
9: carry ← u.

10: end for
11: wi+n+1 ← u.
12: end for
13: Return ((wn+t+1....w1w0)).

It is Step 7, the inner product operation, that is the computationally expensive opera-

tion. On some processors a special instruction exists to help accelerate this operation.

In some cases, the schoolbook method outlined in Algorithm C is not optimal. There

are a number of alternatives. One method, by Karatsuba [56], can be faster depending on

the size of the arguments and the underlying processor architecture.

Squaring is a special case of multiplication whereby inner product operation can be

126

APPENDIX C. MULTIPLE-PRECISION ARITHMETIC

reused saving clock cycles.

Multiple-precision Squaring

Algorithm C.4 Multiple-precision Squaring

Input: x where x has t digits.
Output: w = x2, of size 2t words.

1: for i from 0 to (2t− 1) do
2: wi ← 0.
3: end for
4: for i from 0 to (t− 1) do
5: (uv)b ← w2i + xi × xi
6: w2i ← v,
7: carry ← u.
8: for j from (i+ 1) to (t− 1) do
9: (uv)b ← wi+j + 2xj × xi + carry,

10: wi+j ← v,
11: carry ← u.
12: end for
13: wi+n+1 ← u.
14: end for
15: Return ((w2t−1w2t−2....w1w0)).

Squaring takes only (n2 + n)/2 single-precision multiplications versus n2 for general

multiplications. In practice, Algorithm C is about 20% faster than the general multiplication

u× v (See [23] Section 10.3.3).

C.0.4 Modular reduction

Generally, we are more concerned with operations on the set of integers Z modulo m where

m is positive.

Modular addition and subtraction

Modular addition and subtraction are the simplest to perform. Subtraction is the same as

Algorithm C.2 if x ≥ y. If x and y non-negitive numbers with x, y > m then

1. x+ y > 2m;

2. if x ≥ y then 0 ≤ x− y < m; and

127

APPENDIX C. MULTIPLE-PRECISION ARITHMETIC

3. if x < y then 0 ≤ x+m− y < m;

Modular Multiplication is more complex. The obvious algorithm is simply to calculate

the remainder on division by m (Algorithm C.0.4)

Algorithm C.5 Classic Modular Multiplication

Input: x and y and modulus m.
Output: x× y mod m

1: Compute x× y using Algorithm C
2: Compute remainder r when x× y is divided by m
3: Return ((r)).

Montgomery Reduction

Algorithm C.0.4 is not the most efficient method for multiply - reduction. Better algorithms

exist in which the steps of multiplication and reduction are interleaved. Furthermore Mont-

gomery [71], in 1985, introduced an algorithm that can derive the result without performing

a division by the modulus m. Montgomery used an ingenious representation of the residue

class modulo m. This algorithm replaces division by n operations with division by a power

of 2 which is extremely efficient on computers due to the numbers being represented in

binary form.

Modular reduction for moduli of special form

When the modulus has a special form that can make it easier to factor, that can be especially

chosen for efficient computation, we can employ yet another reduction algorithm.

128

APPENDIX C. MULTIPLE-PRECISION ARITHMETIC

Algorithm C.6 Reduction modulo m = bt − c
Input: A base b, positive integer x, and a modulus m = bt − c, where c is an l-digit base b

integer for some l < t.
Output: r = x mod m.

1: q0 ← (x/bt),
2: r0 ← x− q0bt,
3: r ← r0,
4: i← 0,
5: while qi > 0 do
6: qi+1 ← (qic/b

t),
7: ri+1 ← qic− qi+1b

t,
8: i← i+ 1,
9: r ← r + ri.

10: end while
11: while r ≥ m do
12: r ← r −m.
13: end while
14: Return ((r)).

129

