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Abstract
The focus of the material presented in this PhD thesis is the development of

stochastic Direct and Inverse Monte-Carlo-based models for drug dissolution.

Drug dissolution from different carriers is a complex phenomenon. Limited

knowledge is available on some of the underlying constituent processes, which re-

stricts development of mechanistic models. Monte Carlo techniques permit the

treatment of certain structures and events in a probabilistic manner. The thesis ex-

amines a number of possible ways of using Monte Carlo both (1) to explore modelling

for the dissolution of Drug Delivery Systems and (2) to reconstruct general system

behaviour during dissolution, using noisy drug delivery data. Further, important in-

vestigations on the determination of factors responsible for noise and quantification

of noise levels, are reported.

In the first part of the thesis, an investigation of MC-based methods in the

field of Drug Delivery is given, with the complexity of drug dissolution and design

explored and the contribution of the MC approach reported. The use of Direct

MC and Stochastic Cellular Automata models in the simulation of dissolution from

pharmaceutical compacts or related phenomena are discussed, together with various

features and requirements.

The principal objective here is to extend use of Direct Monte Carlo techniques in

simulating drug delivery from compacts of complex composition, taking into consid-

eration special features of the dissolution in an in vitro environment. After examining

the existing MC models for drug delivery, the need for more sophisticated models

is described. Exploratory modelling is proposed in order to address the problems

of dissolution related to certain drug carriers with complex internal morphology

and difficult-to-predict dissolution profiles. Phenomena such as local interactions of

dissolving components, development of wall-roughness at the solid-liquid interface,

diffusion through occlusions and pores and moving concentration boundary layers

xvii



were examined and directly accounted for in the model. As a result, new models

have been developed for: i) matrix soluble drug carriers and ii) bioerodible polymeric

micro- and nanospheres for controlled release of proteins. The simulations provide

results in acceptable agreement with different drug release profiles obtained during

laboratory experiments. The novelty of this work consists in including new features

of experimental system complexity in the frame of simple and user-friendly Direct

MC models, indicating that the Direct MC technique can be very helpful in exploring

design parameters in the field of drug delivery.

The other major axis of the thesis investigates use of Monte Carlo in data recon-

struction and noise quantification. The problem posed was whether it is possible to

extract detailed dynamic distributional knowledge about a dissolving pharmaceuti-

cal system composed from many small entities, when the researcher is provided with

insufficient experimental data. A model based on Inverse Monte Carlo simulations

was designed to exploit Bayesian principles in retrieving the desired features, such as

particle size distribution. Importantly, this work demonstrates that Inverse Monte

Carlo methods are capable of reconstructing underlying characteristics of drug car-

riers involved, even when dissolution profiles available rely on sparse data sets.

The models proposed in this thesis are currently being incorporated in a large-

scale project in collaboration between the DCU research team and the Hospital for

Special Surgery, New York. The project focuses on developing therapeutic implants

with controlled drug release, specifically designed for the regeneration of severely

damaged tissues.
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Chapter 1

Introduction

1.1 Introduction to Modelling Drug Dissolution

Pharmaceutical Drug Delivery Systems (DDS) are systems which deliver a drug into

the body. A DDS consists of one or several bio-active agents (the drug(s)), and one

or several excipients, which are substances forming the vehicle or medium for the

administration of the active agents. The dissolution profile of the drug molecule can

be controlled with a wide range of excipients.

The ultimate aim of a DDS is to undergo dissolution in a biological medium

(eg.: gastro-intestinal tract for tablets, biological tissues for implants etc.) and, as

released, to undergo absorption. The release of the drug and the ultimate absorption

must take place at appropriate rates, in order to ensure the desired effect on the

organism. In many drug delivery applications, the release of the excipient (involving

diffusion, dissolution, erosion or other mechanisms) determines the release of the

bio-active agents. Some modern formulations are very complex, and the relationship

between the formulation and process variables and the release profiles are not entirely

understood.

From performance considerations, it is important to investigate the effects of

factors related to the composition, design and manufacturing process (Göpferich

and Langer, 1995), on the phenomenological behaviour of a drug delivery system.
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In vitro dissolution testing is very important in terms of designing, developing and

testing new formulations, (Siepmann and Peppas, 2001; Crane et al., 2004b), and

can be regarded as the first step to modelling the dissolution in vivo. The dissolution

profile in vitro has to satisfy certain criteria established by the pharmacopoeias1.

Depending on the design and delivery goals of a particular DDS, formulation

development and optimisation may require a significant amount of time and effort,

as well as financial investment (Sirisuth and Eddington, 2002). The direct benefit of

producing accurate models for in vitro dissolution is reduction in the laborious drug

formulation studies and the minimisation of costs associated with them. This can

be achieved by investigating how design parameters such as composition, porosity

and device geometry affect the resulting kinetics of drug release (Siepmann and

Peppas, 2001) and by selecting only the most interesting candidate parameters to

be varied during in vitro experimentation (Zygourakis and Markenscoff, 1996). In

addition, modelling can lead to the development of better scientific understanding

of the behaviour of systems studied.

The following sections briefly discuss problematic aspects associated with the

field of drug dissolution, and indicate a number of different modelling approaches

taken to provide insights in this active research area.

1.2 Drug Delivery Systems. Examples

In the field of drug development various materials, manufacturing techniques and

release mechanisms are used to achieve different drug release profiles. Mass transport

mechanisms involved in drug delivery include, but are not limited to: diffusion,

dissolution, combined diffusion and dissolution, water-triggered transport (swelling),

degradation/erosion, as well as phenomena intrinsic to osmotic, magnetic or electric

effects (Siepmann, 2001).
1a book published usually under the jurisdiction of government, listing drugs, their formulas,

methods for making medicinal preparations, requirements and tests for their strength and purity,
and other related information.
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a. b. c.

Figure 1.1: Schematic representation of behaviours of different types of DDS, where
the excipients are: a) inert matrix. b) bio-erodible. c) swellable.

The simplest DDS are probably soluble immediate release systems. These may

contain one or more soluble ingredients, with more or less different solubilities, which

dissolve relatively quickly. Even in these cases, a combination of elements with

dramatically different solubilities generate dissolution profiles, which are not readily

predictable. In these drug delivery systems the main release mechanism is diffusion

and the release rate of the drug is maintained as desired, by the suppressing or

enhancing effect of an excipient.

Over the last decades much research has been carried out on sustained release

drug delivery systems, (Siepmann and Göpferich, 2001; Ungaro et al., 2004). Sus-

tained release systems are characterised by a very careful use of excipients in order

to control, or programme, the release of the active molecule. This type of DDS is

extremely important when the release of an agent is to be delivered in very small

quantities over large times, to avoid toxicity related to large amounts of drug. The

sustained delivery is also of extreme interest for the areas of medicine involved in

prolonged, localised or targeted treatment. For example, sustained drug delivery

systems are used, among other applications, in vaccines for delivering antigens, in

cancer treatment for delivering the chemotherapeutic agents and in tissue repair-

ing implants for delivering growth factors. Considerable progress has been made in

medical sciences, toward the advancement of sustained medical therapies, through

the application of various biodegradable or biocompatible polymers. The behaviour

of controlled release delivery devices consisting of polymers and other agents can
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become very complex.

To illustrate, a water soluble drug, incorporated in a hydrophobic, inert matrix

system with channels and pores, (e.g. ethylcellulose, hydrogenated castor oil), is

mainly released by diffusion through the polymer into the surrounding medium,

Figure 1.1, (a). The release rate of the incorporated drug will depend not only on

the particle size and the particle size distribution of the ethylcellulose used, but also

on process variables, such as the compaction pressure used in manufacturing the

compact (which results in larger or smaller pores in the matrix).

In drug delivery, which is primarily controlled by the erosion of the excipient,

Figure 1.1, (b), consisting of bio-erodible polymers, the self-erosion of the matrix is

the principal release mechanism (Costa and Lobo, 2001). Device performance de-

pends strongly on the erosion behaviour of the used materials, available in various

forms (e.g. different molecular weights). All bio-erodible polymers have character-

istic times of erosion. These permit formulation of laws describing the erosion and

prediction of monomer or drug release. Descriptions of this kind of DDS are given

in Siepmann and Göpferich (2001).

Some of the the most complex examples of drug delivery systems are those con-

trolled by a hydrophilic swellable/erodible excipient, behaving as a reservoir-type

controlled-release device, 2 Figure 1.1, (c). The most important characteristic of this

kind of system is that, by diffusion of water into the hydrophilic polymeric matrix,

the compact swells, radically changing its form and dimensions. The water-soluble

incorporated drug molecules, diffuse both within and outside the device, through the

disentangled chains of the polymer (Siepmann and Peppas, 2001; Siepmann et al.,

2000).

These and other phenomena, such as superposition, synergies or coexistence of

these physico-chemical effects, need to be taken into consideration when formulating

realistic models.
2 A DDS with the aim of maintaining a uniform dose over a specified period of time
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1.3 The Scope of the thesis

There are four main sections to this thesis:

Chapter 2 opens with an overview of considerations and chronology in modelling

DDS. The rest of the chapter reviews and investigates how Monte Carlo (MC) tech-

niques, which have been used in simulating various complex systems throughout the

last decades, were initially used in the field of Drug Delivery. This chapter considers

what aspects of the complexity of drug dissolution and design can benefit from this

particular approach, reporting and examining existing Direct MC and Stochastic

Cellular Automata modelling efforts, used to simulate dissolution of pharmaceutical

compacts or related phenomena.

Chapter 3 is a methodology chapter. It focuses on elaborating the principles

outlined in Chapter 2 and in particular deals with the probabilistic methods for

drug dissolution, used in this work.

In Chapter 4, the developments outlined in Chapter 2 are expanded, with focus

on new work developed during our research. The problem posed is the in vitro

dissolution of a binary drug delivery system, consisting of a poorly soluble drug

dispersed in a matrix of highly-soluble acid excipient. Modelling challenges related

to both the internal morphology of the DDS and the external in vitro environment are

discussed in this context. A review of the current models, which attempt to describe

the behaviour of this DDS, shows how this apparently simple pharmaceutical system

is difficult to reduce to empirical or mechanistic modelling. Cellular Automata and

MC methods are proposed for analysing this DDS as a complex many-body system,

in both qualitative and quantitative terms.

Much of the material presented in Chapters 2 and 4 has been published in the pro-

ceedings of the International Conference of Complex Systems, France, 2005 (Barat

et al., 2005) and in SIMPAT, Elsevier (Barat et al., 2006a,b). These are included in

Appendix 4.

Chapter 5 further explores the complexity involved in DDS behaviour, by in-
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vestigating protein dissolution from swellable, insoluble and bio-erodible micro- and

nanospheres for sustained delivery, Figure 1.1, (c). This system has been chosen

for several reasons: first of all, it’s medical application is of utmost importance and

secondly, as indicated, it is one of the most complex DDS. The model developed for

the more complex system can be reduced, by simplification, to simulate a DDS such

as that illustrated in Figure 1.1, (a), or easily upgraded for a DDS such as that in

Figure 1.1, (b). As there are many parameters that control the behavior of such

systems, a broad sensitivity analysis is performed. The strengths of the model are

discussed, together with detailed practical considerations for its use for various types

of swellable bioerodible micro- and nanospheres.

Many DDS, including the drug delivery systems studies in Chapter 4, are not

used individually, but in groups (or agglomerations), which act like many particle

systems, where particles have similar general properties but vary slightly in their

physical appearance.

Chapter 6 changes consideration from individual direct study of pharmaceuti-

cal compacts to analysing effects of agglomerations of small DDS on the resulting

dissolution profiles. Very often, only general data, such as the fraction of dissolved

therapeutic agent, are easily obtainable from such systems, whereas dynamical pa-

rameters such as size changes and form of the constituent DDS are hard to trace and

observed with difficulty, rendering the system akin to a black box. Inverse Monte

Carlo techniques for elucidating the unknown parameters of a dissolving multiple

particle system are proposed and tested in this chapter.

Finally Chapter 7 presents the overall summary and conclusion of the work in

the thesis. Recommendations for future developments, upgrades, improvements and

studies, arising from the present work, are proposed.

References and Appendices 1-4, containing several implementation details, a glos-

sary of terms, the list of notations used in Chapter 6 and our published papers

respectively, are given at the end of the thesis.

6



Chapter 2

Literature Review of

probabilistic models for drug

dissolution.

This chapter opens with a general overview on the approaches taken over the last

two decades for the problem of modelling drug dissolution. Overall, the conclusion is

that modelling the newest drug delivery systems (with complex structure) requires

development of new and more adaptable methods in order to achieve a satisfactory

resolution. The focus of the present thesis is on exploring and developing proba-

bilistic methods for simulating drug dissolution and this provides the context for the

remainder of this chapter. A summary of the most relevant examples from literature,

for probabilistic simulations used to study drug delivery or related systems, is given

here, outlining the main principles of the methods used. A broader description on

the MC and other methodologies (CA, multi-agent) is presented in Chapter 3.

2.1 General overview

The introduction section illustrates that the topic of drug release is subject to con-

siderable diversity, so that modelling and simulating the processes involved have
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many ramifications. In seeking a better understanding of the phenomena of mass

transport, the literature presents a wide range of models - from simple ones: such

as the empirical and semi-empirical, to the more complex: such as those involving

mechanistic theories.1 In contrast to mechanistic mathematical models, empirical

models quantifying drug release from delivery systems are not so directly based on

the exact description of all the real physical processes involved. Empirical models can

only describe the resulting, measurable drug release rates (Siepmann and Göpferich,

2001), but do not give a clear insight into the physics of the drug dissolution process.

In order to build a mechanistic model, one has to be aware of both the major

processes governing the system and the basic mass transport mechanisms involved

in drug release. Such models should be able to provide knowledge about the sys-

tem’s behaviour and are generally powerful with respect to simulating the effect

of the device design variables on the resulting drug release kinetics (Siepmann and

Göpferich, 2001). Most existing mechanistic models are based on mathematical

equations, which describe the mass transport phenomena taking place while the

drug is released. A spectrum of mathematical theories, describing drug release from

controlled/immediate-release delivery systems, is available (Siepmann, 2001): for re-

views see (Siepmann and Peppas, 2001; Siepmann and Göpferich, 2001; Narasimhan,

2001; Costa and Lobo, 2001).

However, most of the present day pharmaceutical compacts typically show much

more complex behaviour than those initially modelled by non-linear mathematical

equations, and have few simplifying properties which permit the use of non-linear

dynamics. For example, a drug delivery system consisting of two or more components

which arrange in a matrix structure is not tractable by differential equations because

these generally only function well with continuous and homogeneous spatial and

temporal conditions. Pores or several components arranged in a matrix fashion imply
1 A mechanistic model should have as many features of the primary system built into it, as

observations and data allow; that is, the model should be consistent with the observed behaviour of
the system and be predictive about its future behaviour under the effect of perturbation, (Balant
and Gex-Fabry, 2000).
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abrupt spatial discontinuity. The whole picture is made even more complex by the

presence of one or more moving boundaries, as the components dissolve. In addition,

it is seldom a trivial task to identify the most important factors (within formulation

components and process parameters), to be addressed in improving the drug release

model. In consequence, in the case of multi-component matrix systems or porous

systems, the use of mechanistical models based on differential equations involves

making simplifications leading to a poor resolution of the system investigated.

In addressing the growing complexity in the drug delivery field, recent research

has seen the development of less traditional methods, which consider alternative

ways of looking at the drug dissolution. For example stochastic approaches (Chen

et al., 1998), such as direct and inverse Monte Carlo (MC) methods and probabilistic

Cellular Automata (CA), are based on the idea that the drug release process is often

subject to random fluctuations.

Monte Carlo (MC) methods and simulation techniques are algorithms used for

solving various kinds of computational problems using random numbers (or rather

pseudo-random numbers), in a sampling procedure. Such methods contrast with

deterministic algorithms, like molecular dynamics or direct numerical solutions (eg.:

Finite Elements, Finite Differences etc.). MC methods are rooted in concepts of

statistical randomisation and sampling2 and were first used to address many-body

problems in the middle of the 20th Century.

The term "Monte Carlo" comes from the game of roulette, which exploits random

outcomes of final ball position in a spinning wheel. Similarly, Monte Carlo methods

randomly select values to create scenarios of a problem. These values are taken

from within a fixed range and selected to fit a probability distribution. MC can be

considered in either direct or indirect terms, (Feng, 1997). Monte Carlo methods

are useful in cases where other traditional methods, like differential equations and
2 Sampling experiments are based on the generation of random numbers, followed by various

arithmetic and logical steps, which are often highly repetitive, hence highly amenable to handling
by computer. In the same way, the power of methods, which contain many variables, has grown
with the increase in computer power.
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empirical methods fail providing the necessary resolution into the problem, with

the limitation that they can get very computationally intensive. Details on MC

technologies can be found in Chapter 3.

A Cellular Automataton is a discrete model, consisting of a regular grid of cells,

each in one of a finite number of states. The grid can be in any finite number of

dimensions. Time is also discrete, and the state of a cell at time t is a function of the

states of a finite number of cells (called its neighborhood) at time t−1. The advantage

of probabilistic CA and direct MC is the possibility of making a simplified, but direct

representation of the system studied, which can aid in understanding the importance

of a number of microscopic effects in monitoring the model’s evolution over time.

These methods are of special interest in modelling porous compacts with complex

and non-homogeneous inner structure, such as mixtures of constituents with various

particle sizes and very different behaviours when exposed to a dissolution medium.

Further details on the CA techniques are presented in Chapter 3.

Methods for optimisation in drug design based on artificial neural networks and

genetic algorithms also exist (e.g. (Sun et al., 2003; Vaithiyalingam and Khan,

2002; Takayama et al., 1999; Chen et al., 1999; Takahara et al., 1997)). When the

relationships between drug release profiles and formulation and process factors is

not linear and, moreover, is not well understood, artificial neural networks have the

advantage of mapping the relationship between variables and responses, such as drug

release profiles, through learning or training processes (Sun et al., 2003).

2.2 Review of Direct Monte Carlo techniques applied to

dissolution problems

2.2.1 Methods for dissolution of various types solids

Of the many applications of direct MC to different fields of physics, (Landau and

Binder, 2000), one is solid dissolution. Both crystalline and amorphous solids are
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used in drug manufacture. Crystalline solids are arranged in fixed geometric patterns

or lattices, have an orderly arrangement of units and are practically incompressible.

Amorphous solids have randomly oriented molecules. They are supercooled liquids

where the molecules are arranged in a random manner. Some examples of solid

dissolution investigated using direct MC are given below:

Polycrystalline solid

Srinivasan (1997) applied a direct MC method, using a 2D or 3D hexagonal computa-

tion grid for the dissolution of a polycrystalline solid in liquid with sink 3properties.

The solid is represented by a labelled circular or spherical region on the grid, placed

in the middle of a “liquid” labelled area. Dissolution itself is modelled as a change

in energy. The probabilistic process is carried out by selecting a cell at random and

allowing it to change to liquid state. If there is a decrease in the total energy asso-

ciated with the cell, it is allowed to stay in the liquid state, otherwise, it reverts to

solid . This model permitted a parametric study of the influence of interface energies

on the dissolution of the solid.

Glass

Santra et al. (1998) have investigated glass dissolution in water by treating glass as a

random binary system with highly different solubilities. As in the previous example,

this model permits for re-crystallisation of the components. For a finite volume of

glass exposed to the liquid, the simulation resultes in an initial rapid dissolution, fol-

lowed by a pseudo equilibrium, with a steady-state of glass porosification continuing

at a lower, but constant speed. As we shall see later, porosification is a process which

occurs during drug dissolution from some pharmaceutical compacts, as well. In the

case of a porous solid dissolving in a liquid, the solid-liquid interface can be viewed

as an irregular area of fractal nature, rather than a 1D linear front, where dissolution
3 The liquid is considered to be infinite. No matter how much solute it accepts, the concentration

of the solute in the sink liquid is set to zero.
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through pores is different from dissolution at the surface. Cellular Automata and

direct MC techniques can directly model these physical situations, demonstrating

their advantage in modelling porosification, over differential equation-based meth-

ods, which necessarily focus on global effects and common parametrisation, without

directly considering the dynamics of the intimate structure of the materials. The

MC model above has, for example, permitted a better detailed understanding of the

physical processes in glass dissolution.

Calcite

A kinetic Monte Carlo technique which simulates the dissolution and growth of

calcite in flowing water is described by Williford et al. (2004). Boundary layer

problems are taken into consideration and the diffusion in the fluid is treated by a

random walk sub-model. The model is divided into a grid, where each square cell is

one calcite lattice unit and represents a site. Each site can be occupied by either a

solid phase or by molecules that have been desorbed. Quantitative agreement with

measured step velocities was best when the boundary layer parameters were given

physically reasonable values, indicating self-consistency of the MC model, (Williford

et al., 2004).

2.2.2 Methods for Controlled Release: Applications of Polymers

Controlled release drug delivery involves usually extremely slow release over a long

period of time, according to a desired profile. This is achieved, for example, by

incorporating the drug into slowly eroding polymers. As mentioned in Chapter 1, the

systems formed have quite complex behaviours, which are not trivial for mechanistic

modelling.

Controlled release is mostly based on bio-erodible polymers. Depending on the

properties of the polymer, the release device can be surface-eroding or bulk-eroding.

In the case of surface-eroding devices, polymer degradation is much faster than water
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Figure 2.1: Bulk erosion versus surface erosion.

intrusion in the polymer bulk, so that degradation occurs mainly at the outermost

polymer layers. This is why erosion affects only the surface and not the inner parts

of the matrix, (Siepmann and Göpferich, 2001). Polyanhydrides and polyketals are

examples of surface eroding polymers. On the other hand, bulk eroding polymers

erode slowly and water uptake by the system is much faster than polymer degra-

dation. In this case, erosion is not restricted to the polymer surface, because the

entire system is rapidly hydrated and polymer chains are cleaved throughout the

device, (Siepmann and Göpferich, 2001). Good examples of bulk-eroding polymers

are poly(lactide) (PLA) and poly(lactide-co-glicolide) (PLGA). The difference be-

tween the behaviours of bulk- and surface-eroding polymers is schematised in Figure

2.1. Examples of MC modelling in controlled release are dealt with briefly in the

methodology chapter (Chapter 3). In outline, they include4:

Bio-erodible polymer matrix (GL)

Göpferich and Langer (1995) (GL) have approached the problem of monomer re-
4Each example is accompanied by a mnemonic label to facilitate their presentation
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lease from bio-erodible polymer matrices using a Monte Carlo - mechanistic method,

where the structural problem is addressed by MC and the dynamics of the disso-

lution of the components are accounted for both by differential equations and MC.

The way the sampling techniques are used to simulate erosion of polymer and poros-

ity dynamics is elaborated in the methodology chapter (Chapter 3). The fit of the

GL model to the experimental data of relative monomer release was found to be in

good quantitative agreement with the experimental results for a number of cases,

and in good qualitative agreement for other cases. Other authors, like Ramtoola and

Corrigan (1987); Healy and Corrigan (1992) discussed, without however proving it,

the possibility that the pH inside the pores have an influence on the overall release

kinetics. The GL model confirmed a previous hypothesis, that the quite unexpected

dissolution profiles obtained in the experimental part of the study (Göpferich and

Langer, 1995), were due to pH effects inside the pores. From our viewpoint, this work

also demonstrate the ability of MC methods to assist in realistic hypothesis formu-

lation and testing when analysing microscopic interactions in the drug dissolution

process.

Layered bio-erodible polymer matrix filled with drug (G1)

In (Göpferich, 1997a), the author uses a similar model (G1) for a slightly different

situation. The problem is to model matrices consisting of several layers of two

different erodible polymers (polyanhidride and poly(D,L-lactic acid)). Only one of

these polymers is loaded with drug. It has to release the drug in two different phases,

due to the layers. Figure 2.2 illustrates how the author represents a 3D cylinder in

2D: the grid divides the cross section into individual polymer pixels of the same

volume. This is achieved by decreasing the length ∆x of the sites from the grid, in

the radial direction, proportional to the root of the increasing radius. Extensions

of the G1 model to 3D also exist, (Göpferich, 1995). These variants show that MC

models are amenable to be upgraded and extended in order to model both variety
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and complexity exhibited by the experimental DDS fields.

Bulk-eroding system (G2)

The problem of controlled release devices containing erodible polymers with com-

pletely different erosion mechanisms, (surface erosion and bulk erosion), has also been

addressed using a MC approach, G2, (Göpferich, 1997b). The matrix is composed of

several layers of polymers, characterised by different erosion mechanisms,(note that

the previous model related only to the same mechanism, and two different erosion

rates). The layers are: a surface-eroding core (charged with drug), a bulk-eroding

mantle (drug-free) and a surface-eroding crust (drug-loaded).

The following distinctions are made between surface-eroding polymer layers and

bulk-eroding layers, in order to simulate their different erosion behaviour:

• A surface-eroding polymer site begins to erode only when it comes into contact

with the buffer solution.

• Conversely, all the sites of a bulk-eroding polymer have a chance to begin their

erosion, as soon as at least one site, (representing the bulk-eroding polymer),

comes into contact with the erosion medium.

This model (G2) gave results in agreement with experiment and illustrated again

how MC can be used in modelling problems prevailed by composition of elements

and heterogeneity.

In Chapter 5 we address modelling release from PLGA microspheres using MC

multi-agent techniques. PLGA is a bulk-eroding polymer used for the manufactur-

ing of nano- and microparticles for controlled release devices with many practical

applications.
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Generalised model for bio-erodible systems (ZM)

A new type of Cellular Automata method to simulate release from bio-erodible de-

vices, was discussed by Zygourakis and Markenscoff (1996) as a generalised model

for surface-eroding DDS, with a view to designing pharmaceutical formulations with

optimal release characteristics. The DDS of any shape and the liquid around it was

represented as a computational grid, which is designed as a dynamic system with

transient behaviour. Microscopic mechanisms of dissolution were defined in terms of

local relations between the sites. The ZM model can accept two or three solid com-

ponents, related to amorphous or crystalline bio-erodible polymers, characterised by

different erosion rates. In contrast to the GL model, (Göpferich and Langer, 1995),

where the diffusion of monomer, in spite of the heterogeneous environment, is treated

by differential equations, this is not the case for the ZM model, and the quantities

of matter are treated as discrete. The erosion rates can be made dependent on the

micro-environment of the sites concerned.

Possible porosity of the device, with various sizes of the pores is taken into ac-

count. The authors discuss methods for time normalisation, together with averaging

and normalising the dissolution rates, in order to be able to compare the simulation

results with experimental data. The simulation analysis showed how overall release

rates are affected by intrinsic dissolution rates, drug loading, porosity and the dis-

persion of the drug in the bio-erodible matrix. The authors also suggest that a drug

design approach, which combines computer simulations and laboratory experimenta-

tion, is likely to significantly reduce laboratory experimentation and the associated

time and costs.

Swellable systems (LC)

Controlled release devices made of swellable polymer were noted to have the most

complex behaviour of all systems considered.
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Figure 2.2: Computational grid to simulate a 3D cylinder in 2D

Lee and Chakraborty (2002) studied the diffusion of copolymers5 through random

disordered media at a molecular level, using kinetic Monte Carlo methods (model

LC). They investigated possible interactions of the polymeric chain with the fixed

obstacles constituting a medium. Study of polymer behaviour is relevant to under-

standing the behaviour of swellable compacts, (see Section 1.1). In controlled release

applications of polymers, a solute is molecularly dispersed in a polymer phase. In

the presence of a thermodynamically-compatible solvent, swelling occurs and the

polymer begins to release its contents to the surrounding fluid, (Narasimhan, 2001).

The kinetics of the drug release process can be decisively affected by the polymer

swelling, due to external penetrant uptake, (Grassi et al., 2000). This release pro-

cess can be controlled either by solute diffusion or by polymer dissolution. In this

case the presence of permanent entanglements in the polymers becomes significant,

(Narasimhan, 2001).

In the LC model, the polymer is modelled by a chain of spherical beads placed and

equilibrated on a 3D lattice partitioned into sites. The lattice sites can be occupied

by spherical obstacles. Each MC step consists of an attempt to move chosen beads

from the chain. Each movement is accepted or rejected according to the Metropolis

criterion, with probability dependent on the quantity 4U . This quantity represents
5A polymer formed when two (or more) different types of monomer are linked in the same

polymer chain.
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the difference of energy between the old and new chain position. The simulations

resulted in a number of interesting effects. For example, the authors found that

above a threshold temperature, polymers containing monomers, which are attracted

to sites from the medium, are more mobile than those which exhibit repulsive or

neutral interactions. The effect is found to be related to the construction of the

disordered medium. This study permitted a better understanding of how polymer

sequence influences the dynamics of polymers in quenched disordered media.

2.2.3 Monte Carlo in the study of parameter design for drug de-

livery systems

Often, the semi-empirical Weibull function is chosen to fit different kinds of dissolu-

tion data, because it provides the best fit to simulated data. Equation (2.2.1) gives

the Weibull function, with a and b - constants. These constants are believed to be

connected to the shape of the releasing device, (Antal et al., 1997).

Mt

M∞
= 1− e(−atb) (2.2.1)

where Mt and M∞ represent the amounts of drug released at time t and the

total amount of drug contained in the DDS, respectively. Recently, Kosmidis et al.

(2003a) have used MC methods to model the drug release from various cylindrical

and spherical matrices. The authors investigated the physical significance of the pa-

rameters of the Weibull function, by performing MC simulations for different precise

geometries and fitting the function to the results.

The drug delivery device is simulated by labeling the desired shape on a com-

putational grid. Each site of the grid, belonging to the device, can accommodate

certain numbers of particles. Diffusion is defined in terms of the random movement

of a particle to a random nearest-neighbour site with equal probability. Further,

each decision corresponds to an arbitrary time-unit (Monte-Carlo step), which can

be shown to correspond to a real-time unit, (Kosmidis et al., 2003a). Assuming that
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the drug inside the device undergoes classical Fickian diffusion, the parameters a

and b could be expressed as a function of the total surface of the device S, the total

volume of the device V , the diameter of the molecules involved, 4l, and the mean

free time τ6. The disadvantage of using this approach of describing dissolution from

pharmaceutical devices by the Weibull function, and directly calculating the values

of a and b as indicated in Kosmidis et al. (2003a), is that 4l and τ usually remain

unknown because determining their values is quite difficult.

2.2.4 Monte Carlo in studying fractals and percolation

Fractal dimension provides a suitable concept to describe a complex structure, (e.g.:

an internal surface of a porous system, the roughness of a particle or of a surface,

an organ of interest (e.g. liver, lungs, a tumor and so on). Percolation theory deals

with the statistical formation of clusters, presuming a regular lattice underlying the

system, (Caraballo (2004) and refs.), i.e. when, by the random addition of a number

of objects, a contiguous path which spans the entire system is created, percolation is

said to occur (Landau and Binder, 2000). The percolation threshold is a critical point

describing a phase transition, dependent on the nature of the system, hence percola-

tion is related to fractal dimension, (Stauffer and Aharony, 1992). Leuenberger et al.

(1987) introduced percolation theory to the field of pharmaceutics to explain the me-

chanical properties of certain controlled release compacts. These authors were the

first to consider a compact as a disordered system consisting of particles distributed

at random.

More precisely, a pharmaceutical compact is a heterogeneous binary or multiple

system consisting of different components. Monte Carlo simulations can be success-

fully used to model structures, regarded as the coexistence of clusters of different

species (percolating or not, depending on the volume ratios).

In Kosmidis and Argyrakis (2000), the authors also investigated the benefits of
6 The mean free time reflects the particle’s average speed, which is directly connected to the

temperature of the system.
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the Monte Carlo method, modelling drug release from fractal matrices. They con-

sider the possibility of dissolution when the release device, immersed in gastrointesti-

nal tract fluids, is non-homogeneously penetrated by these fluids. Gastrointestinal

fluids are known to create areas or channels of high-diffusivity inside certain phar-

maceutical compacts. For this reason the authors assume that the device can be

modelled by an "irregular" space rather than a homogeneous Euclidean space. This

so-called fractal space is represented by a percolation cluster at its critical point, with

cyclic boundary conditions. Particles are placed only on the sites of the cluster and

they can perform independent random walks on these sites. The Weibull function is

again found to be the best semiempirical fit to the simulation results.

A direct MC study of the transit flow though the gastro-intestinal tract by Kalam-

pokis et al. (1999), is based around the design of a heterogeneous tube model, which

simulates the villi of the gastro-intestine. The model provided for an empty cylinder

with random dendritic-type internal structures, (another example of fractal space).

The transit flow is simulated using two diffusion models: the blind and the myopic

ant, respectively. The two diffusion models involve two types of biased random walk,

which place different emphasis on the motion toward the output of the tube. The

model seems useful to simulate the transit and absorption process of oral dosage

forms in the gastro-intestinal tract.

2.3 Conclusions

The results from different Monte Carlo modelling approaches, particularly where

these have drawn on extensive computing power, have shown considerable promise

for the area of drug design and drug formulation. Further work is clearly needed,

especially to counter difficulties in calibration of the MC models to real systems, in

order to obtain good quantitative results.

The advantage of MC models in general is that they can address diversity and

offer a straightforward means of specifying and describing micro-structural situations

20



and relationships, thus permitting detailed study of the phenomena occurring at dis-

solution, including the different types of interactions between the components of a

dissolving compact, dissolution through a system of channels and pores, establish-

ment of dissolution boundary layers and so on. In addition, MC models can be easily

modified and adapted to mimic a wide range of physical situations corresponding

to various drug delivery systems. Finally, the evidence from the literature demon-

strates that MC methods offer unexplored potential in the field of DDS. The next

chapter focuses in more detail on the probabilistic methods used through this thesis.

The two chapters which follow present our developments, using direct MC for two

different particular cases of DDS: a soluble system and a bulk-eroding system, while

Chapter 6 uses an inverse MC technique to analyse a DDS composed of multiple

units.
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Chapter 3

Probabilistic methods to

model drug delivery

3.1 Introduction

This chapter deals with the methods and technologies used throughout the thesis

and developed from outlines given in the literature review (Chapter 2). Monte Carlo

(MC) methods, which are the main methodology used in this thesis, are formally

discussed together with their variations and their relevance in this study. A compar-

ison of direct versus inverse MC methods is also drawn. At the end of the chapter,

an insight on a further more sophisticated MC methodology, Sequential Monte Carlo

(SMC), is additionally provided.

3.2 Direct versus Inverse Monte Carlo

In the situation where a near-optimal solution (measured in terms of data fit) to the

nonlinear problem is sought, direct MC is an important technique to consider. In the

case of Direct Monte Carlo, the outcome of the problem is unknown but the ranges,

used to select values for different scenarios for the problem, are assumed based on

the previous knowledge (physical, chemical) on the problem, Figure 3.1, (a).
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In Inverse Monte Carlo simulation, the random selection process is repeated many

times to create multiple scenarios. Each time a value is randomly selected, it forms

one possible scenario and solution to the problem. Together, these scenarios give a

range of possible solutions, some of which are more probable and some less so. When

repeated for many scenarios, the average solution gives an approximate answer to

the problem, Figure 3.1, (b). This estimate can be refined by simulating further

scenarios.

MC methods are extremely important in computational physics and related ap-

plied fields, because phenomena, which are otherwise difficult to quantify, can be

treated as distributions of random numbers. Studies including Higdon et al. (2002);

Huelsenbeck et al. (2001); Mosegaard and Sambridge (2002); Kosmidis et al. (2003a)

and references therein discuss both direct and inverse Monte-Carlo simulations, as

well as a broad range of applications. Both direct and indirect MC methods have

limitations due to their computational complexity and in order to achieve high or-

der of magnitude or high resolution solutions require specialised high performance

computing (HPC) resources, such as bespoke clusters. Given current advances in

HPC technology, this disadvantage of MC methods is continuously diminishing in

importance.

3.3 Direct Monte Carlo and associated methods

3.3.1 General examples

Direct application concentrates on a straightforward simulation of the original prob-

lem. It relies either on the numerical solution defining the system, which can be used

to predict the model properties at different stages (Feng, 1997), or simply on the

hypothetical behaviour of the entities composing the system. Macroscopic properties

of the system as a whole are then obtained at the end as a result of the individual

stochastic behaviour of its elements. For example, an ant-hill is a complex biological
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Figure 3.1: Direct versus Inverse Monte Carlo techniques.
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system which can be simulated with direct MC techniques. Each ant has its indi-

vidual characteristics which can be treated in a probabilistic manner. The direction

in which the ant will move from its present location is unknown, but may depend

on the quantity of food or indicative pheromone left by other ants in the radius of

perception of the given ant. The ant is unaware of the ant-hill, which is defined

by the emergent behaviour of all ants. The total quantity of food accumulated in

the ant-hill is a macroscopic property which may be obtained by applying simple

stochastic characteristics for each ant.

Examples of problems, to which direct Monte Carlo techniques have been applied,

include the study of systems of interacting atoms, the study of radioactive decay,

the simulation of fluid flow from an atomistic perspective (see Landau and Binder

(2000)) and the simulation of traffic on roads (Nagel and Schreckenberg (1992) and

refs.), etc.

3.3.2 Stochastic Cellular Automata techniques

In modelling systems which exhibit complex behaviour, direct MC sampling methods

are often used in the framework of Cellular Automata (CA). CA is an important area

in the field of complexity, which links different domains of traditional sciences. One

main advantage is that CA focuses on system global phenomena through local simple

individual interactions, (Feng, 1997).

Cellular Automata are defined, Chopard and Droz (1998) as an idealisation of

a physical system in which space and time are discrete, and the physical quantities

take only a finite set of values. This basically reduces to representing the system as a

computational grid with specified local relationships, which capture prior knowledge

or theories about the microscopic transient behaviour of the real system. An example

of this would be the intrinsic dissolution rates of the components belonging to a DDS

and dissolution rules, (Zygourakis and Markenscoff (1996) and others. The state of

a site of the grid at a given time depends only on its own state at one previous
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time-step, and the states of its nearby neighbours at the previous time-step, (Feng,

1997). All cells of the lattice have to be updated synchronously, (Feng, 1997).

Historically, the first CA system was introduced in the 1940s when Ulam and

von Neumann developed the idea of using a lattice network for modelling crystal

growth (i.e. to model a self-replicating two-dimensional system, (von Neumann,

1966)). Subsequently, Conway’s “game of Life”, consisting of a CA characterised by

very simple rules resulting in very unexpected emergent patterns, was more formally

extended, (Wolfram, 2002). In the book “Calculating space”, (Zuse, 1970), the author

proposed the idea that the physical laws of the universe are discrete by nature and

that the entire universe can be imagined as the output of a deterministic computation

of a giant cellular automaton. CA techniques have been the subject of extensive

work by a number of researchers over the last 20 years. Early potential was realised

for statistical physics (Wolfram, 2002), as well as for various fields such as biology,

immunology, ecology (Zhang and Liu, 2005; Rohde, 2005; Lichtenegger, 2006) and

others.

When considering the transient behaviour of a system, modelled in the frame-

work of Cellular Automata, one or several dynamic features can be treated either

as deterministic or as stochastic, with sampling based on direct Monte Carlo tech-

niques. The latter idea is obviously applied when the modeller does not have an

exact or complete knowledge about the real system, (which is usually the case).

Allowing evolution through stochastic relations (or rules) specified and statisti-

cally averaging over a number of such samples, it is possible to mimic the global,

macroscopic behaviour of a system. Predictions can then be made about the system’s

behaviour as a function of the initial parameters. This permits the investigation of

how microscopic behaviour of system components gives rise to important macro-

scopic features and emergent behaviours.
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3.3.3 Stochastic multi-particle and multi-agent techniques

Multi-particle systems are systems composed of many particles, having certain char-

acteristics and interacting between themselves and with their environment according

to a number of criteria. When the exact way in which the particles behave is un-

known, they can be modelled according to probability distributions. For example,

in Chapter 4, when modelling a binary soluble drug delivery systems, the two com-

ponents - the drug and the excipient - are represented by particles. Technically, the

particles themselves are represented by positive numbers, which vary on the sites of

a lattice according to probability distributions based on the state and nature of the

particles from the neighbouring sites.

The concept of a multi-agent system is more elaborate. The study of multi-agent

systems (MAS) focuses on systems in which many intelligent agents interact with

each other, (Sycara, 2006). The agents are considered to be independent compu-

tational entities, such as objects developed in an object-oriented programming lan-

guage, software programs or robots. The agents usually have a number of properties

and perform actions in the framework of predefined rules.

The agents are collectively capable of reaching goals that are difficult to achieve

by an individual agent or monolithic system. In the case of a DDS with complex

inner morphology and complex physics of dissolution, different components of the

system, such as different types of macromolecules, can be modelled using agents in

the framework of a multi-agent system.

MAS can be claimed to include other than computational systems, (wikipedia,

2006). Biological organisations (like the ant hill from the previous example or species’

populations), human organizations, society, life and universe in general can be con-

sidered an example of a multi-agent system.

Multi-agent systems can manifest self-organization and complex behaviors even

when the individual strategies of all their agents are simple. The agents can function

by deterministic or stochastic rules. For example, if a molecule has a number of
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directions to move to, the preferred direction can be chosen according to a probability

distribution, using direct MC sampling. In this way, in Chapter 5 of this thesis,

direct MC techniques are used in the framework of a multi-agent system to model

the dissolution from polymeric bulk eroding nano- and microspheres.

3.3.4 Benefits

The benefits of using direct Monte Carlo techniques in drug dissolutions can be the

following:

• Provide a better resolution on dissolution problems characterised by different

inner porous topologies.

• Treat phenomena or quantities not completely known in terms of distribution

densities. Examples of such quantities are the dissolution characteristics of a

component when its solubility and diffusivity strongly depends on the environ-

ment.

• Direct MC can be used combined with cellular automata, multi-particle and

multi-agent techniques to model heterogeneous systems like the DDS.

• Represent the physical system studied as a complex dynamic multi-particle

system with a partially stochastic and transient behaviour, in order to observe

and predict emergent properties like a particular internal morphology of the

system after dissolution has taken place a certain time period or a dissolution

profile.

3.3.5 Direct MC for polymer dissolution

In the literature chapter, we have seen that erosion of bioerodible polymers have

been approached in model labeled GL by using direct MC techniques, Göpferich and

Langer (1995). The MC part involved in treating the dissolution dynamics considers

the polymer erosion as a random phenomenon with the hydrolysis of chemical bonds
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modelled by a Poisson process. The polymer is represented, (Göpferich and Langer,

1995), by a lattice of sites, containing polymer excipient in a continuous state. A

lifetime is assigned to each, where lifetimes of sites are random numbers derived

using a first order Erlang distribution:

e(t) = λe−λt (3.3.1)

where λ is the erosion rate constant and e(t) is the probability that the polymer

will erode completely at time t, after its first contact with the water. When the

lifetime reaches zero, the polymer is considered to have spontaneously degraded to

a crystallised monomer. The process of monomer mass loss can begin. At this

point, the mechanistic part of the model is introduced. Mass loss takes place by

monomer diffusion inside the matrix, described by a differential equation derived

from Fick’s first law (Crank, 1975) and relating the spatio-temporal evolution of the

concentration of diffusing monomer C(x, t) to the evolution of porosity along the

diffusion pathway ε(x, t) and the effective diffusion coefficient Deff (C). As there is

no prior knowledge about the porosity, a probabilistic process is used to calculate

the porosity along the diffusion pathway. The function ε(x, t) represents the element

which links the MC part to the mechanistical part. It is built, based on the state of

the grid described above, in the following way:

ε(x, t) =
1
ny

ny∑

j=1

s(i, j); 1 ≤ i ≤ nx (3.3.2)

s(i, j) takes the value 1 for “eroded” and 0 - for “non-eroded” sites. nx and ny are

the number of sites in respectively x and y directions. Consequently, on one hand,

the concentrations obtained after solving the differential equations are modulated

by the overall value of the porosity, but, on the other hand, they are not based on

the local effects created by the porous heterogeneous morphology. The authors have
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included in the model other differential equations for:

• the velocity of dissolution of the monomer (as a function of the amount of

suspended monomer in the solution).

• the pH effects.

• the boundary conditions.

In another model (G1), Göpferich (1997a) elaborates the previous direct MC

to simulate dissolution of a compact consisting of two different polymers one of

which encapsulates small drug molecules. To address this, the author considered two

different species of polymer sites (pixels): crystalline (pure polymer) and amorphous

(loaded with drug), with individual erosion rate constants λc and λa respectively.

The lifetime t is, on average, higher for crystalline pixels because of their smaller

erosion rate λc. The release of drug was predicted assuming that, whenever a polymer

site erodes, an appropriate amount of hydrophilic drug is spontaneously released

directly into the solution.

A similar approach for the dissolution of polymer will be used in Chapter 5 of

this thesis to model dissolution of protein from bio-erodoble microspheres.

3.4 Inverse Monte Carlo methods for analysis of inverse

problems

3.4.1 Example

Indirect methods are used to solve inversely-posed problems, concentrating on the

unknown causes of a phenomenon, the emergent effects of which are observable. In-

verse MC methods can be defined as representing the solution of a problem as a

parameter of a hypothetical population, and using a random sequence of numbers to

construct a sample of the population from which statistical estimates of the param-

eter can be obtained, (Binder, 1986). For example, we can observe that a number
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of species produce the same protein, but that sequences differ in a certain number

of amino-acids. Aligning these sequences generates a protein sequence alignment,

reflecting the similarities and differences between the species, as an observable effect

of the molecular evolution spanning a certain period of time. If the problem is to

determine the evolutionary (phylogenetic) relationship between the species, or how

the species evolved to produce the observed protein alignment pattern, an inverse

Monte Carlo algorithm can be used, (Huelsenbeck et al., 2001). The evolutionary

relationship between the species can be graphically represented by a phylogenetic

tree. A large population of these trees can be generated using random numbers and

each tree compared to the present amino-acid alignment, (giving statistical estimates

of the probabilities of the evolution pattern, represented by each phylogenetic tree).

Based on the statistical findings, a consensus tree can be built, representing the most

likely evolution pattern characterising the set of proteins.

3.4.2 General issues

Inverse Monte Carlo methods have become important in analysis of nonlinear in-

verse problems where no (or a poor) analytical expression for the forward relation

between data and model parameters is available, and where linearization is unsuccess-

ful (Mosegaard and Sambridge, 2002). Indirect methods solve the related problem

where the direct mathematical treatment is impossible, using random numbers to

generate different states of the related system (Feng, 1997).

The inverse problem is formulated as a search for solutions fitting the data within

a certain tolerance, given by data uncertainties. From the point of view of the tar-

get of the analysis and the formulation of the problem, inverse MC methods can

be divided into two categories: the sampling methods and optimisation methods.

MC sampling is useful when the space of feasible solutions is to be explored, and

measures of resolution and uncertainty of solution are needed, (Mosegaard and Sam-

bridge, 2002). The Bayes theorem or paradigm is often used in order to calculate
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approximate a posteriori probabilities for an inverse sampling problem, (Mosegaard

and Sambridge, 2002). Indirect MC techniques in a Bayesian formulation are used

in Chapter 6 in the context of solving an inverse problem in drug dissolution. Not all

inverse MC inversions adopt the Bayesian viewpoint. The review of Mosegaard and

Sambridge (2002) gives a number of examples from geophysics where sampling of the

parameter space is performed without taking a Bayesian approach. The Metropolis

algorithm and the Gibbs sampler are the most widely used MC samplers for the

sampling methods. In this thesis, the Particle Filtering technique has been used to

solve the dynamical inverse problem posed. This algorithm is described in Chapter

6.

MC optimisation methods are important for searching globally optimal solutions

amongst local optima. Simulated annealing (which can be formulated in a Bayesian

context) and genetic algorithms (non-Bayesian approach) are examples of inverse

MC algorithms for optimisation problems.

The next subsection gives details on the Bayesian formulation.

3.4.3 Bayesian paradigm

The process of refining previous knowledge of the parameters through comparisons

with the data is called empirical updating. It can be performed on the basis of the

classical Bayesian paradigm, which relates probability distributions in the following

way:

Ppost(
−→
θ |−→y ) =

L(−→y |−→θ )P (
−→
θ )

P (−→y )
(3.4.1)

where:

• −→y - a vector containing the available measurements, or the observables.

• −→θ represent the unobserved physical quantities of interest, or the state param-

eters, seeking to give confidence intervals estimates for them.
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• Ppost(
−→
θ |−→y ) is the updated probability of the quantity of interest,

−→
θ , given

that measured y are observed.

• L(−→y |−→θ ) is the likelihood of the model, or the probability of obtaining the data

−→y given the set of parameters
−→
θ and the function F ().

• P (
−→
θ ) is the probability of sampling this particular set of parameters

• P (−→y ) is the probability of observing this particular data set.

3.4.4 Sequential Monte Carlo

In Chapter 6 of this thesis, the target is to reconstruct the dynamic behaviour of the

powder size distribution of a DDS using sequential observed data: a time series of

dissolution points. The Inverse MC technique used is derived from Sequential Monte

Carlo (SMC) methods: a set of flexible simulation-based methods for sampling from

a sequence of probability distributions. These methods were originally introduced

in the early 50’s by physicists and have become very popular over the past few

years in statistics and related fields. For example, they are now extensively used

to solve sequential Bayesian inference problems arising in econometrics, advanced

signal processing or robotics, (SMC, 2006).

One technique of approaching SMC problems is particle filtering. SMC methods

approximate the sequence of probability distributions of interest using a large set

of random samples, named "particles". These particles are propagated over time

using resampling mechanisms. Asymptotically, i.e. as the number of particles goes

to infinity, the convergence of these particle approximations towards the sequence of

probability distributions can be ensured under very weak assumptions. However, for

practical implementations, a finite and sometimes quite restricted number of particles

has to be considered. Much research is therefore devoted to the design of efficient

sampling strategies in order to sample "particles" in regions of high probability mass.
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3.5 Conclusions on the chapter

This chapter presented the methodology related to MC techniques, with the focus on

the specific techniques used throughout the thesis. The following chapters discuses

how MC methods have been adapted to three different drug dissolution problems.
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Chapter 4

Modelling a soluble binary

DDS using direct MC

techniques

4.1 Introduction

In the area of novel drug delivery systems, in vitro dissolution testing is important

in designing, developing and testing new pharmaceutical formulations, (Siepmann

and Peppas, 2001; Crane et al., 2004b). In order to achieve the appropriate concen-

trations of the desired drug in vivo, (i.e. in the target organs and tissues), during

the desired period of time, dissolution profiles in vitro need to satisfy certain cri-

teria, generally established by the pharmacopoeias (Sun et al., 2003; Crane et al.,

2004b). Thus dissolution in vitro can be regarded as the first step toward modelling

in vivo dissolution and absorption. The dissolution rate is measured, in practice,

using one of a number of standard dissolution test methods outlined in international

pharmacopoeias, such as the European Pharmacopoeia (EurPh, 2006) and United

States Pharmacopoeia (USP, 2006). One commonly used dissolution test apparatus

is the Paddle Dissolution Apparatus (see Figure 4.1), known as Apparatus 2, (USP,
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2006).

However, there are a number of difficulties related to in vitro dissolution testing.

Very often, the relationship between the formulation and process parameters of a

pharmacological compact, and its required in vitro dissolution profile, is not entirely

understood, due to the complexity of mass transport at dissolution. Complex mass

transport often results in barely trackable effects, like interactions and synergies.

For these reasons, experimentation associated with the field of drug design is very

costly and time consuming. Thus, modelling drug release can facilitate design of

new products, through predictions and selection of key parameters for experimental

testing, while helping to gain insight on the phenomena involved in the dissolution

process.

Prior to being used to simulate systems such as those involving drug dissolution

and delivery, the combination of direct Monte Carlo techniques and Cellular Au-

tomata have proved useful in the study of many other kinds of systems exhibiting

complex behaviour (Chopard and Droz, 1998; Landau and Binder, 2000). In this

part of the thesis we explore the possibilities of MC modelling, for investigating in

vitro dissolution of a particular class of compacts, used as model drug delivery sys-

tems in Healy and Corrigan (1992). The behaviour exhibited by these compacts in

reactive media is difficult to predict. Besides this diffusion investigation, our model

is designed to capture the particular features of the in vitro environment intrinsic

to a dissolution paddle apparatus. The following two sections are dedicated to the

presentation of the problem and previous solutions proposed. In Sections 3.3 and

3.4 our new MC model is presented and Section 3.5 discusses its validity.

36



Figure 4.1: Schematic representation of the USP (United States Pharmacopoeia)
Paddle Apparatus.

4.2 Multicomponent soluble compacts and the in vitro

environment

4.2.1 Binary compacts

In the area of dissolution modelling of drug delivery systems, multicomponent soluble

systems have not received much attention, despite the fact that solid dosage forms

invariably contain multiple soluble components (Ramtoola and Corrigan, 1987). Sev-

eral theoretical approaches to describing binary systems are due to Ramtoola and

Corrigan (1987) and references therein. In the case of non-ionizable 1 binary sys-

tems, where the components have different solubilities (Csx and Csy) and different

diffusion coefficients (Dx and Dy), at the start of the diffusion process, the two com-

ponents tend to dissolve at rates proportional to their diffusion coefficients. Later

on, only one of the components generally remains at the solid-liquid interface. The
1can non convert into ions
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other component has to dissolve through the porous system formed inside the less

soluble component. Only at the critical mixture ratio, defined by:

Nx

Ny
=

DxCsx

DyCsy
(4.2.1)

will there be no porous layer formed at the surface and both components will

dissolve at a rate equal to that of the pure component. In each case, Nx and Ny

are the original amounts of components x and y. In the general case, the dissolution

rates of the components are calculated according to Fick’s first law (Crank, 1975).

When a steady state is reached, the limiting dissolution rate of the component which

remains at the surface is given by:

Gx =
Dx

h
Csx (4.2.2)

while the dissolution rate of the receding component y is given by:

Gy =
DyCsy

(h + τ
ε )(s1 − s2)

(4.2.3)

where h is the thickness of the diffusion film, τ - the tortuosity with reference to

the complexity of the system of channels which forms in 3D, ε - the porosity (often

unknown) and (s1 − s2) is the thickness of the porous layer formed at the solid-

liquid interface. In the case where the components are ionizable the situation is

more complex, (Ramtoola and Corrigan, 1987). In experiments on the dissolution of

benzoic and salicylic acids in buffered media, the authors found that the dissolution
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rates, particularly for benzoic acid at intermediate weight fractions, were lower than

theoretical rates and explained these in terms of surface pH effects.

Subsequently, Healy and Corrigan (1992, 1996) conducted experimental and the-

oretical studies on the dissolution of soluble ibuprofen/acidic excipient compressed

mixtures in reactive media, using model compacts. These were obtained by first

grinding the two components into powders, mixing the products, and finally com-

pressing them. On dissolving in reactive media, the compacts exhibit complex be-

haviour, in spite of their binary composition. The authors presented a modified

model for dissolution of binary systems of ibuprofen and various acid excipients.

The predicted dissolution rates for the excipients tend to be higher than those ob-

tained experimentally in the case of more soluble acids.

4.2.2 Introduction to the in vitro dissolution medium

4.2.2.1 Dissolution apparatuses

A specific interest of this thesis is to consider the in vitro environment used for dis-

solution testing, as settings of the dissolution apparatuses are known to affect the

process of compact dissolution. In Healy and Corrigan (1992), the in vitro envi-

ronment consisted of a water-jacketed flat-bottomed dissolution apparatus (Healy,

1995), and in Healy and Corrigan (1996), a more standard dissolution apparatus of

USP type 2 has been used (see Figure 4.1).

A standard dissolution apparatus consists of a container, filled with the disso-

lution medium (designed to mimic in vivo conditions), with the compact situated

at the bottom of the apparatus (see Figure 4.1). The dimensions of the apparatus

are such that we can make the assumption that the solvent inside has sink or close-

to-sink properties, (i.e. the system behaves as if the tablet dissolves in an infinite

solvent).2

2 This means that away from the dissolving compact, the concentration of solute in the solvent
can be approximated by zero.
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A paddle is used to stir the buffer solution at a constant rate. The stream created

produces a velocity boundary layer around the compact. There are two mechanisms

of mass transport in the system: diffusion and advection3, the latter due to the

component of the stream velocity oriented along the surface of the compact. This

component is responsible for carrying away quantities of matter proportional to it’s

magnitude. One of the targets of the present work was to build into our Monte Carlo

model both mechanisms of transport above.

4.2.2.2 Velocity and concentration boundary layer

The hydrodynamic conditions of the in vitro environment are such that the velocity

boundary layer at the top of a cylindrical compact is very difficult to describe. Crane

et al. (2004a,b) investigated the velocity boundary layer, as well as the concentration

boundary layer formed around the curved surface of a cylindrical compact in the USP

apparatus, in order to better understand the concentration profiles which form at

the solid-liquid interface on dissolution.

In this study, the component of fluid flow parallel to the curved surface of the

cylinder, is examined. Far away from the compact, the fluid flows at its maximum

velocity: ~U0, but approaching the solid-liquid interface, the velocity decreases to zero

at the surface of the solid, where the “non-slip” condition holds. Hence, the term

velocity boundary layer refers to the small region of space close to the solid immersed

into the flowing liquid, where the flow velocity varies from zero to it’s maximum ~U0,

see Figure 4.2, (a).

As the solid dissolves, a concentration profile is established at the solid-liquid

interface. Since the ratio of the diffusivity D to the kinematic viscosity ν of the

fluid (i.e. of the buffer solution), is very much less than unity, the concentration

boundary layer thickness δc is smaller than the velocity boundary layer thickness δ,

(Crane et al., 2004a). For the immediate solid-liquid interface, in contrast to the
3 The term “advection” refers to the transport of material from one region to another.
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a. b.

Figure 4.2: a) The velocity boundary layer of a non-dissolving solid immersed in a
flowing liquid. b) Velocity and concentration boundary layers for a dissolving solid.
The red curve situated closer to the compact surface indicates the points in space
where concentration of solute in solvent reaches low, close to zero, values.

velocity profile, the concentration is at saturation, decreasing to zero away from the

surface, see Figure 4.2, (b). Thus, by the term concentration boundary layer, we mean

the region of solution in the solid-liquid interface vicinity, where the concentration of

solute in the solvent is greater than zero. The thicknesses of velocity/concentration

boundary layers vary with the distance from the leading edge of the compact, Figure

4.2.

4.2.2.3 Mathematics for boundary layers

The velocity boundary layer thickness for a flat plate4 in an axial flow is given by

the solution of the Blasius equation (Prandtl and Tietjens, 1957; Schlichting, 1979):
4approximation as, from Crane et al (2004a), the boundary layer thicknesses are very much

smaller than the radius of curvature of the cylindrical formulation.
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δ = 3.4
√

xν

U0
(4.2.4)

where x is the distance from the leading edge of the compact (Figure 4.2) and ν

and U0 are defined as previously.

Equation (4.2.5) gives the relation between δc and δ:

δ

δc
= S

1
3
c (4.2.5)

where Sc is the Schmidt number, defined as:

Sc =
ν

D
(4.2.6)

Once the thickness of the concentration boundary layer has been computed, it is

possible to compute the value C∗ of the maximum concentration at each point (y, x),

(Figure 4.2), within the boundary layer. One way to compute the concentration in

the boundary layer is to use a Pohlhausen solution, which approximates the variation

of concentration by either a polynomial, or, in the case of Crane et al. (Crane et al.,

2004b), by a sinusoid:

C∗

Csatur
= 1− sin

(
πy

2δc

)
(4.2.7)

Here, Csatur is the saturation concentration of a given component, C∗ is the

concentration at a given point y within the concentration boundary layer.
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Figure 4.3: Layered compact versus matrix compact

For the purposes of simplification, the problem of in vitro radial dissolution was

investigated in Crane et al. (2004a,b) for simple layered binary systems (with 3 to

5 alternate layers, as in Figure 4.3). The investigation in Crane et al. (2004b) used

numerical methods in combination with a Pohlhausen profile (Equation (4.2.7)), to

model the concentration boundary layer formed around the dissolving cylindrical

device in the USP apparatus.

Numerical results, using Finite Element techniques, depicting the concentration

profile within the boundary layer during a very short period of time, together with

those from a semi-analytical Pohlhausen type approximation to the concentration

boundary layer, have shown good agreement with experimental data, (Crane et al.,

2004b). These studies have demonstrated that the conditions in vitro have an im-

portant impact on the way in which a compact dissolves. However, modelling the

boundary layer for dissolving matrix compacts has never previously been attempted.

It seems that matrix compacts exhibit physics which are less tractable by conven-

tional numerical methods.

4.2.3 Experimental setup

We use the data obtained by Healy and Corrigan (1992) for the dissolution of ibupro-

fen (drug) and a wide range of acid excipients from mixed disks in reactive medium,

(phosphate buffer), as reference.

The compacts used in the experimentation were cylinders, obtained by compress-

ing 250 mg of powder, having a composition of drug and excipient on a weight-for-
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Figure 4.4: Experimental results
a) Dissolution profiles of the acid excipients from 40:60 ibuprofen/acid excipient
compressed discs. b) Dissolution profiles of ibuprofen from 40:60 ibuprofen/acid
excipient compressed discs. Based on published data, Healy and Corrigan (1992).

weight basis. Previous processing by grinding and sieving the components permits

control of particle size of both drug and excipient powders. The drug and the excip-

ient have dramatically different solubilities and slightly different diffusivities, while

the acid excipient has an effect on the solubility of ibuprofen at dissolution. The

compact dissolves according to the following mechanism: at the dissolution of the

acid excipient, the pH of the buffer decreases and this has a suppressing effect on

the solubility of the other component (the ibuprofen). The dissolution apparatus

consisted of a water-jacketed flat-bottomed 450 ml cylindrical glass vessel. 250 ml

medium was used. The medium was stirred with a 3-blade stirrer immersed to a

depth of 2.5 cm (Healy, 1995).

As an example, Figure 4.4 represents the dissolution of different cylindrical binary

matrix systems: all of them contain ibuprofen (Solubility=6.3 mg/ml, Healy (1995))

and an acid excipient of much higher solubility (see Table 4.1). The left part of

Figure 4.4, (a) represents the dissolution profiles for four different acid excipients.

Figure 4.4, (b) shows the dissolution profiles for the drug, which is ibuprofen in all

cases. It can be observed from Figure 4.4 that the more soluble the excipient, the

more it suppresses the solubility, and therefore the release, of ibuprofen.
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Type of acid excipient Solubility, mg/ml
Adipic 44.4
Succinic 120.4
Maleic 694
Citric 883.6

Table 4.1: Solubilities of the acid excipients, from (Healy, 1995).

4.3 Modelling

4.3.1 Main characteristics of the model

In this investigation, we simulated the dissolution of the binary soluble system pre-

sented in the previous sections, using a 2D lattice and a Monte Carlo algorithm, as

described below. The model specifically takes into consideration both the diffusion

and advection mechanisms of dissolution. The algorithm is implemented in C++

and the library OpenGL (OpenGL, 2006) has been used for the visualisation.

We represent the two solid species by particles with different properties. These

particles can be moved on the sites of the lattice according to specified rules. In this

particular case, we make the assumption that one species dissolves independently

and is referred to as the excipient in the following. Dissolution of the other species,

the drug in our experimental context, strongly depends on that of the former. The

solvent is represented by empty sites. The state ψ(i,j) of a site (i, j) is defined by

the quantity and type of the particles with which it is filled, i.e. the concentrations

CD(i, j) and CE(i, j) of drug and excipient particles, respectively. The state of any

site can evolve in time according to a function, which depends on the concentrations

at the site itself and those in the local neighbourhood (Figure 4.13). The process

of diffusion is simulated merely by the tendency of particles to move to adjacent

sites according to specified rules. Figure 4.5 illustrates the possible states in the

model and their schematic behaviour. The schemes show the benefits of this kind

of model for simulating cases where pores are formed inside a compact by the quick

dissolution of one of the components. The second component has to dissolve through
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these pores and this process is different from dissolution at the surface.

Our main target is to be able to predict the dissolved quantities of either of the

two species, MD(t) and ME(t), at each time step.

4.3.2 Initialisation

The spatial configuration of the DDS is generated as follows:

• For each site of the lattice, which has to be occupied by “matter” in solid state,

a random number uniformly distributed between 0 and 1 is generated.

• If this number is less than or equal to the proportion of drug, this site is

considered as drug. It’s state is assigned ψ(i,j)(t) = |D, and the site is filled

with a number nD of drug particles.

• Otherwise, the site is filled with nE excipient particles and ψ(i,j)(t) = |E.

• In order to simulate the phenomena at the solid-liquid interface, the sites

around the solid are assigned the liquid state: solution. We distinguish two

types of solution states: (i) sites which are situated in immediate proximity

to the solid-liquid interface and which form the concentration boundary layer

with thickness δc, (see Section 4.2.2): ψ(i,j)(t) = |−, and (ii) those far enough

from the dissolving compact and which behave as a sink 5: ψ(i,j)(t) = |s (see

Figure 4.5)

• The sites in the solid which are exposed, through nearest neighbour connec-

tivity, to solution sites, are attributed the following states: leaking drug and

leaking excipient (ψ(i,j)(t) = |+ and ψ(i,j)(t) = |x). From this instant, the

5 The main difference between the boundary layer solution sites and the sink solution sites is that
the first can receive and accommodate diffusing drug and excipient particles, whereas the second
have the concentration of the diffusing species set to zero. This artifact comes from the assumption
that the concentrations in the stirred liquid are so much smaller then the concentrations in the
boundary layer, that these are approximated by zero: C(i,j) = 0 when j = δc. When, in later
stages, particles reach a sink solution site, they will be considered completely dissolved, thus they
will be discarded from the system and their quantities - added to MD(t) and ME(t).
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A.

B.

Figure 4.5: 2D model for a dissolving binary system.
a) Schematic representation of 2D model. The real dimensions are not respected in
the picture.
b) Simplified model of dissolution of a drug-excipient system. The grid represents a
cylindrical tablet in longitudinal cut.

particles from these sites will be allowed to move. The content in particles of

leaking sites can only decrease.

4.3.3 Modelling diffusion

Diffusion refers to the process by which particles (molecules or ions) of different

species move from higher to lower chemical potential (represented by a change in

concentration), as a result of their kinetic energy. In the model we represent the

two solid species by particles. Since the components in the compact have highly

different solubilities, they are expected to dissolve at different rates. For this reason,

we allow for more then one particle to move to an adjacent site. The solubility of
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a given species is modelled by allowing not more than a fixed number of particles,

S = CMAX , on the sites to be considered as filled with solvent. The maximum

allowed concentrations in the solvent, CMAXDrug
and CMAXExcipient

, are proportional

to the real solubilities. This means that:

CMAXDrug

CMAXExcipient

=
SD

SE
(4.3.1)

In addition, the local solubility of a component depends on the local concen-

trations (Healy and Corrigan, 1992). Only the sites in the states ψ(i,j)(t) = |−,
ψ(i,j)(t) = |+ and ψ(i,j)(t) = |x can diffuse. If the site (i, j) is in one of the above

states, the possibility of diffusion is considered by first looking at the kind of particles

about to diffuse: dependent (drug) or independent (excipient) particles.

The decision to permit a batch of particles to diffuse is accepted or rejected by:

• Consulting a gradient-dependent probability, pE in the case of the excipient

(Equation 4.3.2). In the following, (i, j) symbolises the current site and (i∗, j∗)
- the adjacent site to which the possibility of diffusion is considered.

pE =
CE(i,j) − CE(i∗,j∗)

CE(i,j)
(4.3.2)

• Consulting a probability, dependent on the excipient concentration in the

neighbourhood, pD0 ( pD0 = f(
∑

CE(i∗,j∗)), where (i∗, j∗) are all the neigh-

bouring sites) and a further, gradient-dependent probability, pD1(Equation

4.3.3) in the case of the drug particles about to diffuse:

pD1 =
CD(i,j) − CD(i∗,j∗)

CD(i,j)
(4.3.3)

• The diffusion operation itself is performed by calculating the number of par-

ticles of excipient, fE , and those of drug, fD, which will move to each of the

adjacent sites. The number of excipient particles which hop from the site (i, j)
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to the site (i∗, j∗) are given by:

fE = pE ×XE (4.3.4)

where XE is a variable, uniformly distributed between one particle and the

maximum number of particles allowed on the site (i∗, j∗). The quantity of the

particles on a site is limited by the species solubility CMAX , therefore

XE = U(1, CMAXE
− C(i∗,j∗)E

)) (4.3.5)

• A normal distribution can also be used to calculate XE .

In order to perform a synchronous updating of the diffusion operation, we compute

for all the cells on the lattice the incoming and outgoing quantities, and only then

update the actual concentrations and increment the Monte-Carlo time step. After the

update, all the particles which diffuse to sites in a state of sink solution ψ(i,j)(t) = |s,
are considered to be completely dissolved and are discarded from the system. The

values of MD(t) and ME(t) are incremented respectively by the number of either

kind of particles discarded from the system.

4.3.4 Modelling advection

Fine-grained

As mentioned, advection plays an important role in mass transport in the in vitro

environment of the apparatuses used for dissolution testing. The flow created in

these is very complex (Crane et al., 2004a,b; McCarthy et al., 2003). In this model

we make the assumption that there is always a free stream component which is

oriented parallel to the surface of the compact, exposed to the dissolution medium.

If the simulations consider the size of the site to be much smaller then the thick-

ness of the diffusion boundary layer, the advection operation can be performed us-
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ing the Pohlhausen concentration profile (see Section 4.2.2) in a discretized form,

adapted for our lattice model: (C∗
E(i,j), ψ(i,j)(t) = |−). We make the assumption

that a velocity/concentration boundary layer is established at the liquid/solid in-

terface. At the surface, the velocity is zero and thus the concentrations of all the

diffusing species are at saturation. Therefore, in immediate proximity to the solid

surface, there are only diffusion-based phenomena. As we move away from the sur-

face, the velocity increases from zero to it’s maximum ~U0 at the edge of the velocity

boundary layer. At the same time, the concentration decreases, because the flow is

responsible for carrying away quantities of matter proportional to the velocity of the

stream.

In order to simulate the advection process, we consider every solution site within

the boundary layer and the number of particles of drug and excipient aD(i,j) and

aE(i,j) which will be carried away from it by the stream, to symbolise the mass

transport property. The quantities aD(i,j) and aE(i,j) are computed so that, after

they will have been discarded from the system, a Pohlhausen concentration profile

is represented by Equation 4.2.7 in discretized form in the boundary layer region.

After an advection step is performed, there are cells from the boundary layer,

in solution state, which have the outgoing quantities of particles aD(i,j) and aE(i,j),

different from zero. The corresponding update operation consists of a sweep of the

lattice which finds and discards these particles from the system, symbolising the

mass transport due to advection. These values are added respectively to MD(t)

and ME(t), while aD(i,j) and aE(i,j) are re-set to zero. As the tablet dissolves, the

solid-liquid interface recedes in the space.

Coarse-grained

When the size of a site is of the same order of magnitude as the thickness of the

diffusion boundary layer, the advection mass transfer can be performed by inverse

Monte Carlo simulations. We consider that diffusion in the pores and diffusion at
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the surface of the solid does not occur in the same way. At the surface, larger XE

than in Equation 4.3.5 (see previous section) are allowed to diffuse to adjacent sites.

A normal distribution can be used in this case: XE = N(µ, σ), where µ is the mean

and σ - the standard deviation of the distribution. In order to find out µ and σ, it

is possible to:

• Sample values for µ and σ : µi and σi- from, for example, uniform distributions.

• Use these values to perform a simulation and generate a dissolution profile.

• Compare the dissolution profile obtained to the real data.

• Accept µi and σi if the results of the simulations are satisfactory.

• Reject µi and σi in case of unsatisfactory results, re-sample other values, µi+1

and σi+1, and repeat all steps.

4.3.5 Updating

Before beginning any mass transport operation, the following update is performed:

* If ψ(i,j)(t − 1) = |D and this site has any solution |− in the neighbour-

hood, then it becomes a leaking drug site:ψ(i,j)(t) = |+.

* If ψ(i,j)(t − 1) = |E and this site has any solution |− in the neighbour-

hood, then it becomes a leaking excipient site:ψ(i,j)(t) = |x.
* If ψ(i,j)(t − 1) = |P this site has any solution |− in the neighbour-

hood, then this pore, and all the cluster of pores connected to it becomes solution.

If the concentration of a leaking site decreases under the solubility (CMAXD
or

CMAXE
), its state is updated to the solution state. This implies that the particles at

the site are completely dissolved and that the site can begin to receive new particles:

* If





ψ(i,j)(t− 1) = |+
CD(i,j) 6 CMAXD

then ψ(i,j)(t) = |−.
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* If





ψ(i,j)(t− 1) = |x
CE(i,j) 6 CMAXE

then ψ(i,j)(t) = |−.

After the updating phase, the diffusion can begin.

4.4 Results and discussion

A MC time step, corresponding to time t, sequentially applies the operations of

diffusion, advection and updating to all the sites from the lattice. The system is

left to evolve during many MC iterations, incrementing the time value after each

iteration. Samples of MD(t) and ME(t) are taken periodically, in order to plot their

profiles at the end of the simulation.

We average simulation results over a number of initial configurations of the device,

because the spatial packing of the two components in the compact has some slight

effect on the dissolution results. The number of simulation runs needed to obtain an

average depends on the dispersion of the results, which is sensitive to the size of the

lattice used. In the following, 20 simulations were enough to obtain the average on

a lattice of 80× 130 sites.

In this section, we analyse the capacity of the model described above to predict

correct effects of the design parameters, such as initial drug loading, initial poros-

ity, form of the compact etc., on the dissolution rates. Despite strengths, such as

conserving the behaviour encountered in real life (through microscopic content of

the rules specified), any computer solution is prone to develop and exhibit its own

spurious effects. We must therefore investigate the extent to which purely numerical

phenomena may affect the results of the simulations.

4.4.1 The effect of the acid excipient solubility

The suppression effect of the acid excipient is indirectly modelled by defining rules

for dramatically decreasing the diffusing probabilities of the drug in the presence

of local high concentrations of excipient. We have carried out simulations with
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a. System 1: Sd=6, Se=280 c. System 2:Sd=6, Se=44

Red Colour: Dissolving excipient

b. System 1: Sd=6, Se=280 d. System 2: Sd=6, Se=44

Red Colour: Dissolving Drug

Figure 4.6:
Colour code: green - solid excipient, blue - solid drug, yellow - pores, white - solution
in the boundary layer, clear blue - sink solution, shade of red in (a) and (c) - the
concentration of excipient in the boundary layer solution, shade of red in (b) and
(d) - the concentration of drug in the boundary layer solution.

binary systems where the properties of the dependent species (drug) are retained for

all experiments for a range of solubilities SE of the independent and more soluble

species (excipient).

Figure 4.6 compares the behaviour of the system for two different excipients E1

and E2, SE1 > SE2. The properties of the dependent component, the drug, are kept

constant during the two simulations and SE1 > SD, SE2 > SD. All the figures show

the state of a 130× 80 sites compact after 4000 generations. Figure 4.6, (a) and (c)

shows the concentration profiles for, respectively, E1 and E2. In both cases irregular

dissolution fronts are developed, but the extent of their roughness is obviously a

function of the solubility of the excipient. The excipient influences the dissolution
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of the dependent species by filling the free space with its particles and consequently

decreasing the local solubility of the drug. The higher the solubility of the excipient,

the higher the capacity of a solution site to accommodate excipient particles.

For the case of E1, we note that the excipient has strongly receded from the

surface, (Figure 4.6, (a)), and has created a porous layer, through which the poorly-

soluble drug dissolves only in the region where the excipient concentrations are very

low, (Figure 4.6, (b)). The drug dissolves through the pores created by the dissolu-

tion of E1. For E2 very different behaviour is exhibited. The porous layer is much

thinner than in the previous case and the drug boundary has receded inward to a

greater extent. This type of behaviour of binary drug delivery systems has been

observed experimentally and described by Ramtoola and Corrigan (1987).

We have plotted the fraction of the dissolved drug and excipient against the

time, comparing the dissolution profiles of drug and excipient with those obtained

in experiment. The simulated results reproduce well the behaviour observed in the

dissolution of real binary compacts, containing ibuprofen and acid excipient (Healy

and Corrigan, 1992).

Figure 4.7 shows the drug and the excipient profiles for different solubilities

and for two different drug loadings. The porosity of the matrix is kept constant.

Each dissolution curve is obtained by averaging the results of a particular number

of simulations (20), characterised by the same initial parameters but with different

initial configurations of the compact, (the two species are randomly distributed in the

compact for each simulation). The plots show that as the solubility of the excipient

increases, the dissolution of the drug is suppressed to a progressively greater extent.

As in experiment (Healy and Corrigan, 1992), a positive curvature for the drug and

a negative curvature for the excipient are obtained.

With highly-soluble excipients, the dissolution of the drug is very slow at first,

but when almost all the excipient is dissolved, the drug changes its dissolution rate,

as can be seen for some of the profiles in Figure 4.7, (c). In Figure 4.7, (c), the orange
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Figure 4.7: The effect of the solubility of the independent species on the dissolution
of the dependent species

ibuprofen profile corresponds to the micro-environment represented on Figure 4.6 (c)

and the blue profile shows the case of E2, (Figure 4.6, (d)).

We note that suppression of the advection step from this model leads to sim-

ulation results that strongly underestimate the quantities of drug dissolved, hence

taking into consideration environment-related features are important. Figure 4.9

shows the way in which the dissolution results are underestimated especially for

drug used in a binary system with excipients of a lower solubility. Without the ad-

vection operation, it is not possible to obtain profiles for the ibuprofen like those in

combination with adipic or succinic acids. In Figure 4.9, (b) the effect is less clear

because of the scale of the representation, but the dissolution rates of the drug are

still strongly underestimated.
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continuous curves represent simulations where both diffusion and advection have
been taken into consideration.

56



4.4.2 Loading effect

In terms of the effect produced by the drug loading at the initial stages of the

simulation, the more drug the matrix contains, the less excipient is present, hence

the higher the dissolution rates for the drug. Figure 4.8 confirms this theory and

shows more explicitly the effect of the initial loading of drug on the dissolution profile

of the components. The same trend is observed in the experimental data: the greater

the drug loading, the greater the fraction of the total drug mass released.

However, if we produce simulations with an “excipient” of a lower solubility, such

as SE = CMAXE
= 44, the loading effect is directly opposite to the previous case,

(Figure 4.10). For 50% drug loading, a smaller fraction of total drug mass is released

than in the case of 40% of drug. A matrix with lower initial drug loading contains a

higher excipient loading. On dissolution, the excipient creates a certain level of wall

roughness, increasing the dissolution area for the drug and thus enhancing dissolution

of drug, which is not suppressed by the relatively low excipient concentrations.

After performing quantitative simulations (see Section 4.5), directly comparable

to the experimental profiles, this inversion-effect appeared for situations of modelling

mixtures of ibuprofen with adipic and succinic acid, respectively, (see Table 4.1), but

did not appear in the experimental results. The reason for this appears to be that

the model generates values of excipient concentrations which are too low for the case

of 50% drug loading. This may be happening because modelling a 3D problem in

2D, as discussed in section 4.5), is overly-simplistic for the mechanisms involved. We

have also found, when calibrating quantitative models with experimental data from

dissolution of ibuprofen-only compacts, that the method of simulating advection,

(as for results in Figure 4.10), is not sophisticated enough to mimic advection from

experiment. After introducing a correction for the advection, the inversion-effect

disappeared and agreement with the experimental data was obtained.

Among all acids used in experiment, adipic acid is the acid with the lowest
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Figure 4.10: Loading effect for excipients with relatively low solubility
a) Dissolution profiles for the drug. b) Dissolution profiles for the excipient.

solubility 6. The refined quantitative advection-corrected model suggests that the

inversion effect reappears and increases for lower values of the excipient’s solubil-

ity. It is unclear whether this would be confirmed in reality if the corresponding

components were available for experimentations.

4.4.3 The effect of initial porosity

Figure 4.11 presents simulation results for different porosities for dissolution of com-

pacts containing very soluble excipients. The porosity value represents the fraction

of sites in the compact, which are free of particles. For the excipient, a higher poros-

ity value enhances its dissolution rate. This effect increases in proportion to the

excipient solubility, (Figure 4.11, (b) and (d)). In Figure 4.11, (d) the porosity fac-

tor causes the dissolution profiles to be highly dispersed. On the other hand, drug

dissolution is suppressed more markedly for higher porosity at the start of the disso-
6it is the solubilities which are compared instead of the pKa values, because these were very

close for the acids used
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Figure 4.11: Porosity effect for excipients with high solubility

lution phase. This is due to the suppression effect of the excipient, which dissolves

quickly at high porosities.

Figure 4.12 shows the effects of the porosity on a system where the excipient

is less soluble than in the previous case. Trends for the dissolution profiles of the

excipient are similar, but less marked, with less dispersed profiles. However, the

effects of the porosity factor for the drug differ from the previous case. Here, the

higher the porosity, the higher the dissolution rate of the drug, as it exhibits a more

independent behaviour. This means that, for this system, at a given solubility value

of the excipient, the excipient’s influence on the drug’s dissolution is completely

cancelled or inverted, marking a phase transition. As noted in Subsection 4.4.2,
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profiles for the drug from 50:50 drug/excipient matrices. b) Dissolution profiles for
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potential anomalies due to modelling require experimental verification in regard to

whether the effects mentioned are totally model-related, or actually reflect reality.

4.4.4 Neighbourhood effect

We find that different versions of our model may be adapted to simulation of differ-

ent features of the dissolution problem. Two different types of neighbourhoods were

considered, Moore and von Neumann, Figure 4.13, (a). The Moore neighbourhood

seems the most appropriate for our problem, because it permits for additional direc-

tions of particle movement in the 2D space, compensating for a 2D simulation of 3D

reality to some extent. The von Neumann neighbourhood provides good results for

compacts containing more than 50% excipient. When the quantity of the excipient

in the tablet decreases, however, models using the Von Neumann neighbourhood,

although showing correct qualitative results for the drug dissolution, strongly under-

estimate the quantities of dissolved excipient in the buffer solution, see Figure 4.13,

(b). This is an overly-simplistic model-related effect, with under-estimations due to
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Figure 4.13: a) Von Neumann neighbourhood. b) Moore neighbourhood. c) Disso-
lution profiles of adipic acid from 40:60 mixed matrices. Continuous curve: experi-
mental (one point misses from this curve bacause this experimental point misses as
well). Dots: Simulations.

the fact that the slowly-dissolving drug sites, may, at times, completely block the

excipient.

Models based on the Moore neighbourhood, with its eight nearest neighbours,

provide simulations with fewer “trapped excipient” effects. The results presented in

this Chapter are obtained with the Moore Neighbourhood.

4.5 Quantitative simulations

This section presents work done in order to obtain quantitative results. Mainly,

quantifying the models consisted of:

• mapping the experimental binary system into 2D binary lattices, according to

the mean size of the powder particles of drug and excipient.

• computation of input parameters, such as number of particles per site, solubili-

ties, the distribution of the number of excipient particles allowed to transfer to

adjacent sites, time taken for dissolution, time interval of sampling the quanti-

ties of interest, etc according to the physical properties of the two components,

i.e. diffusion coefficients, density ratios.

• calibrating the parameters, related to the advection process, by inverse evalu-

ation, (i.e. sampling, comparing to the experimental data, then re-sampling).
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• establishing how different acid excipients suppress the dissolution of ibuprofen.

We attributed an actual size to the sites from the lattice, equal to the average

diameter of the acid excipient powder fragments (125µm). For the experimental

data available, the average diameter of the ibuprofen powder fragments was of orders

of magnitude smaller than the excipient average diameter of fragments. For this

reason, we assume that the ibuprofen powder simply fills the spaces between the

larger excipient fragments. If the ratio of the coarsest to the finest average fragment

component diameters was closer to 1, the size of the site could be taken as equal to

the diameter of the smallest component, since there is a finite chance that fragments

arrange in a less compact way, allowing for the possibility of a larger initial porosity.

As noted, discretisation is achieved by allowing the sites of the lattice to fill with

“particles”. The diffusivities, densities, and solubilities of the components are used

afterwards to calculate the weight of a virtual particle and the loadings of virtual

particles per site, in order to set input parameters of the simulations. Given that

the experimental results are measured in terms of weight fractions, both drug and

excipient particles are chosen to have the same generic weight mp, (which implies

that they have different volumes). For example, to obtain the results presented below

(Table 4.2), we have made the choice that a virtual particle weighs 2× 10−9 g. This

is actually 1
6 of the maximum possible weight (i.e. at saturation) of the less soluble

element, the ibuprofen, found in the volume of a site of d = 125µm. Then, for each

component, we compute the number of initial particles per solid site, CMAXSolid
and

the maximum number of particles per site at saturation, CMAXLiquid
:

CMAXSolid
=

Vsite × ρcomponent

mp
(4.5.1)

CMAXLiquid
=

Vsite × Scomponent

mp
(4.5.2)
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CMAXSolid
CMAXLiquid

µ ρ (mg/cm3) D (cm2/min)
ibuprofen 1064 6 1 0.98 5.155 ∗ 10−4

adipic acid 933 43 23 1.56 4.567 ∗ 10−4

citric acid 1486 841 142 1.118 4.595 ∗ 10−4

Table 4.2: Input information for quantitative simulations. CMAXSolid
is the number

of particles per solid site and CMAXLiquid
is the number of particles per liquid site

where Vsite is the volume of the site and ρcomponent is the density of the component

and Scomponent is the solubility of the component. Then, given the weight fraction

c = mib
mex

in which the two components are mixed, we compute the way the number

of sites of drug relates to that of excipient:

v =
nbib

nbex
= c× ρex

ρib
(4.5.3)

This equation suggests that for a given formulation characterised by its weight

fraction c, the sites will combine in a volume fraction, v. The Table (4.2) sum-

marises some of the input parameters for the quantitative simulations, as well as

some physical characteristics of the real systems.

The conversion from Monte Carlo time steps to minutes uses Fick’s first law:

dQ

Adt
=

DCs

h
(4.5.4)

where dQ is the amount of drug released, h is the thickness of the diffusion

boundary layer, D is the diffusion coefficient, Cs - the solubility and A is the total

area through which the diffusion takes place, (Costa and Lobo, 2001).

The Monte Carlo time step is taken to be the time needed by a virtual particle

of ibuprofen to make it’s transition to an adjacent site. We took into consideration

the fact that, at the surface of the compact, matter passes into the solvent more

quickly due to the advection. More particles of ibuprofen, nsurface, are allowed to

pass into the solution at the surface of the compact in the same interval of time.

The experimental profile, obtained from the dissolution of an ibuprofen-only tablet,
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was used for the calibration of the distribution of nsurface.

Figure 4.14 compares the simulated data to some of the available experimental

dissolution profiles. The first parts of the Figure, (a) and (b) shows the dissolution

of the ibuprofen in mixture with the adipic excipient which has a relatively low

solubility, Sadipic = 44.4 mg/ml. In Figure 4.14, (c) and (d) the excipient used is the

citric acid, Scitric = 883.6 mg/ml.

The good agreement between the simulated and experimental results motivates

use of the models to find estimates of other quantities of interest, such as the variation

of porosity and thickness of the porous layer, which influence both drug delivery and

mechanical properties of a DDS. It is also important understand the dynamical

features of these parameters for many other applications, as we shall see later in

the thesis. For example, in the cases of therapeutical implants, designers endeavour

to find a good compromise between the drug delivery properties of the implant

and it’s mechanical properties, as the components dissolve from the compact and

form channels and pores. In illustration, Figure 4.16, (a), (b) shows the temporal

dynamics of the porous layer in the case of mixtures of ibuprofen and four different

acid excipients. The thickness of porous layer is given here in terms of number of

sites, but can be easily converted to physical units of length as the diameter of a

site is known. It can be observed that both curves, i.e. the porosity7 and thickness

of the porous layer have the same shape as the receding acid excipient dissolution

profiles (compared to Figure 4.16, (d)).

Limitations

Figure 4.15 shows a typical formulation for which the model is able to predict only

the general trend and not good estimates, such as those obtained in Figure 4.14.

This happens for the cases where the drug loading is high. Two dimensions are not

enough to model such configurations, because for ≥ 50% drug, only a few channels
7The porosity is defined as the ratio between the number of sites labelled as pores and the total

number of sites currently belonging to the device.
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Figure 4.14: Simulated versus experimental dissolution profiles (provided by Healy
et al., TCD, Dublin, a. - (Healy and Corrigan, 1992). b,c,d.- unpublished data).
Continuous lines with filled dots: Dissolution profiles of ibuprofen and excipient from
ibuprofen/acid excipient compressed discs. Empty dots: Quantitative simulated
results corresponding to the experimental situations. Circles: ibuprofen. Squares:
acid excipient.
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Figure 4.15: Simulated versus experimental (provided by Healy et al., TCD, Dublin).
Continuous lines with filled dots: Dissolution profiles of ibuprofen and excipient from
ibuprofen/acid excipient compressed discs. Empty dots: Quantitative simulated
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65



0

10

20

30

40

50

60

0 50 100 150

N
u

m
b

e
r 

o
f 

s
it

e
s

Ib/Adipic

Ib/Succinic

Ib/Maleic

Ib/Citric

0

5

10

15

20

25

30

35

0 50 100 150

N
u

m
b

e
r 

o
f 

s
it

e
s

c=0.3

c=0.4

c=0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0 50 100 150

time (min)

Ib/Adipic

Ib/Succinic

Ib/Maleic

Ib/Citric

a. b.

c.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 20 40 60 80 100 120 140

%
 o

f
 d

is
s

o
lv

e
d

 e
x

c
ip

ie
n

t

d.

time (min)

time (min)time (min)

Dissolution profiles of four different excipientsIb/Succinic acid. Thickness of porous layer

Porosity as f(t)Thickness of porous layer as f(t)

p
o

ro
si

ty

Figure 4.16: Dynamics of the porous layer. a) Thickness of the porous layer as a
function of time. b) Thickness of the porosity as a function of time. c) Thickness of
porous layer as a function of time for different initial drug loadings. d) Dissolution
profiles of the same four excipients, colour and shape code - as for legends of (a) and
(b). Continuous lines with filled dots: experimental. Empty dots: the simulated
results.

form in 2D and are probably not enough for the excipient to escape. It would be

thus a challenging development to extend this work to 3D models to address this

further problem. Experimental data appearing in Figures from this and previous

sections have been published in Healy and Corrigan (1992); Healy (1995) and details

have been kindly provided by the authors.
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4.6 Conclusions

With our simple Monte Carlo model, direct consideration is taken of aspects such

as time-dependent porosity and thickness of porous layer, dissolution through pores,

effects of particle size and distribution, concentration dependent solubilities, receding

solid-liquid interface, dissolution over long periods of time and advection due to the

in vitro environment. Thus, essential features, necessary to reproduce the complexity

observed in the real world problem of in vitro drug dissolution, are captured. We note

that suppression of the advection step from the model leads to simulation results for

the drug profiles which do not accord with experiment, hence environment-related

features need to be incorporated in any realistic model.

The model can also easily be modified to simulate multicomponent compacts; for

example, it can be used to see what happens if a mixture of ibuprofen/acid excipient

is compressed in an inert non-soluble matrix of ethylcellulose, (a material used in

the present day in the manufacturing of controlled release systems). In this case,

it is important to examine percolation phenomena, since both soluble components

dissolve in a fractal space determined by the insoluble component. The flexibility

of the MC approach has been demonstrated for this type of investigation by the

initial models. The next chapter illustrates how a 3D MC model can be used to

model dissolution for a controlled-release complex system, which consists of polymer

encapsulating an active agent in the form of protein macromolecules.

67



Chapter 5

3D multi-agent models for

simulating protein release

from PLGA bioerodible nano-

and microspheres

This chapter expands the research, outlined in the previous chapters, to using multi-

particle models on more complex systems. Introducing the particulate systems for

sustained drug delivery, the chapter opens with a detailed presentation of the types

of particulate systems, which are further examined in the thesis, with an emphasis

on modelling and simulation needs in the respective fields and the modelling efforts

described. Further, a multi-agent model for simulating dissolution of macromolecules

from bioerodible spheres is introduced, with a section linking the modelling aspects

of the problem to the design and implementation of the simulation. The Results

Subsection is a summary of a sensitivity analysis performed on the model developed,

discussing the effects of different input parameters on the performance of the sim-

ulations. Several hypotheses about the initial state of the system are put forward,

making the case for discussing various model variants. The scale of the problem is
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discussed, and, finally, a dimensional analysis is performed to validate the model, us-

ing real experimental data taken from Sandor et al. (2001). The conclusions highlight

the novelty and the advantages of the model, while commenting on the disadvan-

tages, the future work and possible improvements.

5.1 Introduction

The goal of all sophisticated drug delivery systems is to deploy medication intact

to specifically targeted parts of the body, through a medium that can control the

therapy’s administration. To achieve this goal, researchers are turning to advances

in the worlds of micro- and nanotechnology, (Vogelson (2001) and others). Nano-

and microspheres (composing the nano- and microparticulates respectively) are par-

ticulate delivery systems of nanometer or micron size ranges respectively, consist-

ing of biodegradable or bioerodible (see Glossary, Appendix 2)1) solids, which can

incorporate therapeutic agents, such as small drugs or macromolecules, (Ungaro

et al. (2004) and references therein). In what follows, these delivery systems will

be referred to simply as spheres. During the last decades, particulates have evolved

from an alternative experimental type of sustained delivery to a prominent class of

drug delivery systems with various applications and many promising future devel-

opments, (Merkle et al., 2002). In the past decade, polymeric devices like nano-

and microspheres, as well as hydrogels (see Glossary) have been shown to be ef-

fective in enhancing specificity of drug targeting, lowering systemic drug toxicity,

improving treatment absorption rates, and providing protection for pharmaceuticals

against biochemical degradation, (Vogelson, 2001). Currently, polymeric micropar-

ticulates have found applications in many key biomedical and drug delivery fields

such as: bone repair, tissue engineering and development (Charlton et al., 2006;

Ungaro et al., 2004; Göpferich, 1995), vaccine delivery, various chemotherapies for
1The glossary of specialist terms is placed, for convenience, at the end of the thesis, in Appendix

2
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localized cancer treatment or the treatment of other diseases like AIDS and tubercu-

losis (Feng and Chien, 2003; ul Ain et al., 2003) and other targeted delivery, (Illum

et al., 2001; Kilic et al., 2005).

Depending on the material used, its degradation or erosion kinetics and the size

distribution of the spheres, various target drug delivery profiles may be considered,

most commonly by administering the spheres through local injections of suitable

dispersion, (Merkle et al., 2002). To date, the biomedical potential of particulate

formulations is far from being fully exploited and explored (Merkle et al., 2002):

the area is growing and expanding, but not as rapidly as it has potential for. Con-

siderable research efforts are needed to exploit the versatile potential of polymeric

particulate formulations. The application fields require concomitantly highly spe-

cific, nontoxic and functional solutions, characterised by delivery times ranging from

weeks to months, making experimental research in particulates extremely time- and

resource-intensive. In this context, complementing experimentation with modelling

and simulation can be both a scientific challenge and an economically viable solution.

The advantages of enriching particulate drug design experimentation with computer

models, are evident when using the simulations for predictions and optimizations in

design, as well as indicating the trends for choosing the best manufacturing param-

eters. Despite the fact that modelling the behaviour of bioerodible particulates is

far from being a trivial problem due to its complexity, collaborative work can lead

to higher performance and improved products in the future, motivating expansion

of in silico research in the area.
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Figure 5.1: Functional groups of: a) PGA b) PLA c) PLGA

5.2 An example of complexity in drug delivery - PLGA

spheres

5.2.1 Composition

Particulates are composed of micro- and nanospheres, which embody small drugs

or macromolecules. These are made of different biodegradable polymers such as

poly(lactide) (PLA) (see Glossary in Appendix 2 and Figure 5.1) or poly(lactide-co-

glycolide) (PLGA) (see Glossary in Appendix 2 and Figure 5.1), or solid lipids such

as physiologically cleavable medium and long-chain diglycerids or triglycerids (see

Glossary).

Interest in using biodegradable materials lies in the fact that the products of

dissolution of the particles are biocompatible (see Glossary) and biodegradable (see

Glossary), hence do not require further manipulation after introduction to the
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body,(Ungaro et al., 2004). This makes particulates suitable for use under mini-

mum invasive surgery (Merkle et al., 2002), providing greater patient convenience

and compliance. The inherent physico-chemical characteristics of the materials (e.g.

chemical nature, composition, molecular weight, hydrophilicity, degradability), ob-

viously affect the final sphere properties.

5.2.2 Use of PLGA in manufacturing

One of the most successful polymers used to produce micro- and nanoparticulates

is PLGA. Besides the fact that it is biodegradable and non-toxic2, this material

has proved capable of easy encapsulation (Feng and Chien, 2003) and subsequent

release of different molecules and macromolecules (especially proteins), in a sustained

manner. Experimental studies by Lam et al. (2000); Feng and Chien (2003); Sandor

et al. (2001), and references therein, demonstrate the potential for encapsulation and

sustained release from PLGA micro- and nanospheres, of a wide variety of proteins

(such as: lysozyme, insulin-like growth factor I, carbonic anhydrase, bovine serum

albumin, alcohol dehydrogenase, thyroglobulin and others).

Another reason for the success of PLGA in particle manufacture is the versa-

tility of its release properties, which can be modified by varying composition (lac-

tide/glycolide ratio), molecular weight and chemical structure (blocked or unblocked

end groups (see Glossary). In this way, a wide range of in vivo life-times of PLGA

can be obtained: from three weeks to over a year, (Ungaro et al. (2004) and others).

In addition, the release properties of the PLGA spheres can be influenced by the

method of fabrication of the protein-loaded PLGA microspheres, because the inter-

nal morphology of the particles depends on the method of microencapsulation (see

Glossary) and Ungaro et al. (2004)). The microencapsulation protocol employed,

(Charlton et al., 2006), allows for variable inner pores and channel sizes inside the

microspheres. Protocols for PLGA particulates are widely described elsewhere, e.g.
2PLGA nanospheres can be 16 times more effective for cell viability than the free drug, (Feng

and Chien, 2003)
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Figure 5.2: a) Sphere morphology obtained by the solid-in-oil-in-water solvent evap-
oration technique, (see Glossary, Appendix 2). b) Sphere morphology obtained by
water- in-oil-in-water solvent evaporation technique (see Glossary). Adapted from
Ungaro et al. (2004).

Ungaro et al. (2004); Sandor et al. (2001); Lam et al. (2000); Charlton et al. (2006).

Moreover, while one method results in the protein solid dispersion within the poly-

meric matrix, other methods yield structures where the protein can be located in

the occlusions and large pores, formed during the production of spheres, (Ungaro

et al., 2004). Figure 5.2 shows different microsphere morphologies. While the oil-

in-water solvent evaporation technique (see Glossary) usually results in protein solid

dispersion within the polymeric matrix (Figure 5.2, (a), water-in-oil-in-water sol-

vent evaporation technique (see Glossary) results in a sphere morphology where the

protein is initially located within large pores (occlusions). Smaller pores are then

formed during PLGA dissolution/erosion, Figure 5.2, (b).

While total control of the pore sizes is still not possible, some studies, such as

Charlton et al. (2006), mention good results such as control over the order of pore

dimension. This is very important, because, as the simulations from the previous

chapter have shown, the porosity of a device can seriously influence its drug release

profile.

Due to their popularity and versatility, it seemed an appropriate and a natural

extension of our earlier work to develop models for PLGA particulate systems, in

the expectation that a large number of practical applications will derive from these

developments in the future.
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5.2.3 Protein release from PLGA spheres

Protein release from PLGA carriers is the subject of work by many research teams,

(Lam et al., 2000; Sandor et al., 2001; Tracy et al., 2001; Ungaro et al., 2004). The

literature shows that the area is mainly focused on how manufacturing parameters

influence outcomes of dissolution experiments, driven by the need to improve the

delivery of effective doses of therapeutic proteins from PLGA spheres.

5.2.3.1 Factors influencing the release of protein

The range of factors responsible for changes (modifications) in the dissolution profiles

generated is broad. Sometimes it is not completely clear which of them has a crucial

impact on the modification of the final dissolution profile (Sandor et al., 2001) and

often the influences of the factors are interconnected:

• In general, the drug release rate from PLGA spheres is controlled by the degra-

dation rate of PLGA co-polymer, (Kang and Singh, 2001; Ungaro et al., 2004;

Batycky et al., 1997). Selecting adequate formulation conditions, such as poly-

mer type and preparation method, can generally regulate degradation rate.

For example, the use of PLGAs of different molecular weight, hydrophilicity

and copolymer composition (the ratio of lactide to glycolide) can change ini-

tial hydration and erosion rate for the matrix, (Kang and Singh, 2001; Ungaro

et al., 2004).

• Another factor that governs the protein release rate is the structure of the

porous environment in the spheres. The sphere processing parameters and

copolymer composition (LA:GA ratio) influence the extent of crystallinity and

therefore the ratio of smaller to larger pores in the sphere, (Batycky et al.,

1997). As already mentioned, the method of sphere preparation and molecule

encapsulation plays a basic role in regulating the porosity factor. As we go on

to show, the type of encapsulated protein also has considerable influence on
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the inner morphology.

• In addition, drug diffusion in the pores influences the drug release profile and is

conditioned by a group of factors such as type of molecule (hydrophilicity, size)

and drug distribution (size distribution of the encapsulated powder particles

and distribution of this powder inside the sphere, Figure 5.2).

It is more difficult to modify the release characteristics of the spheres, once a poly-

mer type and a preparation technique have been selected, (Ungaro et al., 2004). In

this case, control over the release rate may be maintained either by modifying the

internal morphology of the system (the internal porosity) or adding a third compo-

nent that alters drug effective diffusivity in the polymeric matrix, (Ungaro et al.,

2004). For example, the addition of another polymer and tricaprin3 would change

the surface characteristics of spheres from smooth and non-porous to porous and

dimpled, respectively, (Kang and Singh, 2001). The in vitro release profiles showed

that additives significantly increased the early-stage release of the incorporated pro-

tein from the spheres, through increased surface area which enhanced drug passage

from internal aqueous phase to external aqueous phase, (Kang and Singh, 2001).

5.2.3.2 Phases of release

Dissolution of the spheres is characterized by several more or less distinct stages,

but is most often triphasic. On immersing spheres in an aqueous medium, water

penetrates towards the core of the particle and activates drug diffusion through the

inherent micropores of the polymer. The water penetration into the sphere occurs

over a short time, relative to the total time taken for the polymer to erode, (Batycky

et al., 1997).

In the initial release phase, protein adsorbed (see Glossary, Appendix 2) at the

surface of the particle and within pre-existing mesopores may give a burst of macro-
3a fatty acid ester
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Figure 5.3: Phases of release from PLGA microspheres: a) initial burst related to
desorption or dissolution. b) erosion and diffusion. c) mostly erosion and diffusion.

molecule release that is controlled by the rate of macromolecular desorption (see

Glossary), Figure 5.3, (a).

When the spheres are well hydrated, degradation of PLGA copolymers occurs

throughout the volume of the sphere. In the case of a macromolecular drug, the

diffusion through the porous network is strictly limited, due to space considerations,

hence is extremely slow until the pores attain larger sizes. For this reason, the process

of drug release is controlled by degradation rate, and not by diffusion through the

pores. The second typical phase is thus characterized by reduced protein release,

when interconnected pores are emptied of protein, Figure 5.3, (b). Further release

of protein, trapped in the polymer matrix, is largely restricted because of very low

diffusivity, (Kang and Singh, 2001).

The third phase of the in vitro release of PLGA microspheres takes place as a

result of matrix erosion. Usually, the rate in this phase is higher than in the second

phase, (Kang and Singh, 2001; Galeska et al., n.d.), Figure 5.3, (c).

Authors like Kang and Singh (2001) and Sandor et al. (2001), note that the total

amount of incorporated protein may not be released during the total time needed for

the PLGA degradation. It is further suggested that, in some cases, proteins denature

and form insoluble aggregates during in vitro release.
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5.2.4 Example of use of microparticulates in a complex environ-

ment

Particulates can be used in conjunction with other polymeric drug delivery systems

to achieve the desired therapeutic effects. Often, the initial burst effect (Subsection

5.2.3.2) observed in the release from particulates is undesirable because the aim is to

deliver the active molecule at a constant rate, (i.e. linear release profiles). In the case

where the drug has to be delivered locally, semi-degradable porous polyvinyl acetate

(PVA) hydrogels (see Glossary) can be “seeded” with PLGA micro- or nanospheres

(Ungaro et al., 2004), forming therapeutic implants. In this case, the drug does not

reach its target directly after escaping the PLGA microspheres, because it first has

to diffuse through the larger pores of the implant.

One field where considerable research is being carried out is in the development

of implants for the purposes of tissue regeneration. Tissue healing is a complex

process, involving the coordinated activity of many different cell types, molecular

mediators and cellular processes. If something goes wrong with this regulation,

chronic defects and wounds, ulcers and cancers can result. For example, cartilage

tissue, once damaged, either regenerates with great difficulty by itself or does not

regenerate at all. Thus, implantation of biomaterials at tissue-damaged sites offers

a promising solution for the problem of tissue regeneration.

Tissue engineering approaches to this problem typically employ fully degradable

cell-seeded scaffolds to initiate tissue growth within the defect site. In order to

facilitate the ingress of the cells into the scaffolds, these are seeded with growth

factors4 , which initiate cell migration. The ability of the chondrocytes 5 to migrate

is influenced by the type and dose of growth factor to which they are exposed and

the geometry of the microchannels through which the chondrocytes are expected
4These are proteins, normally produced by cells, which are responsible for chemotaxis (migration

of cells to the area of injury), mitogenesis (proliferation of cells to the wound site), and synthesis
(production of collagen and extracellular matrix proteins).

5Cells of cartilaginous tissue.
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to move. The new tissue must acquire the mechanical functionality of the original

tissue, which once filled the defect and fully integrate with surrounding cartilage in

unison with scaffold resorption. Thus far, efforts to integrate engineered tissues with

surrounding cartilage have failed.

The concept of using growth factors to encourage chondrocyte migration into a

hydrogel for the purposes of tissue integration is a new development, currently under

investigation at the Hospital for Special Surgery (HSS), New York, USA. On the one

hand, partially degradable PVA porous hydrogels are used as the main scaffold for

providing a similar mechanical basis to that of healthy cartilaginous tissue, helping

to avoid extension of the damage by minimising the mechanical effort on the wound.

On the other hand, fully degradable PLGA microspheres, seeded with growth factors,

and inserted into the main PVA scaffold, are used for the sustained release of the

growth factor, to attract the colonisation of cells into the pores of the scaffold, Figure

5.4. 6

5.3 State of the art of modelling particulates

The main difficulties in modelling dissolution from PLGA spheres relate first of

all to the complexity and heterogeneity of the porous environment, which includes

variable concentrations of diffusing species within the pores, hence spatially variable

values for diffusion coefficients. Secondly, there is often a lack of detailed knowledge

on the inner structure of the nano- or microenvironment. In many cases, neither

the experimental researcher nor the modeller can measure such quantities as the

protein particle size distribution, porosity within the spheres, percentage weight
6Complementing experimentation in this research, computer modelling is required for predic-

tion of the optimum scaffold and microsphere porous morphology and for growth factor dosage to
facilitate the cell ingress, because i) some experiments cannot be carried out in an integrated way
and/or ii) experimentation is too time-consuming. Modelling both the way in which the drug is
dissolved into the medium and the reaction of the cells to the drug would be of benefit to this type
of medical research. Future work for this part of the research will thus consist of extending the
work done on the PLGA spheres to model diffusion through the scaffold and ingress of cells, and
will be carried out in collaboration with the HSS research team, New York.
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Figure 5.4: Cut through a therapeutical implant seeded with PLGA microspheres,
(Charlton et al., 2006).

of the encapsulated drug or the way that drug particles and pores are spatially

distributed within the spheres. For example, Sandor et al. (2001) shows that the

initial pores are far from being homogeneously distributed inside PLGA nanospheres,

but rather they are organised in strata, whereas Batycky et al. (1997) argue that

drug distribution is not homogeneous throughout the overall volume of a sphere, but

instead coincides with the distribution of the pores. Other information necessary for

modelling, (but difficult to obtain), is the rate of growth or coalescence of smaller

pores or, in another words, the rate of creation of pores of a certain size. This problem

may be susceptible of improvement in future because recently imaging techniques

have improved a lot, (Zhao and Rodgers, 2006). For example, transmission electron

microscopy (TEM) was recently used to elucidate the transient protein distribution in

PLGA microspheres (Zhao and Rodgers, 2006) and the results showed that proteins

were not uniformly distributed.

Efforts to model the behaviour of PLGA spheres are ongoing. However, there

are presently few reports investigating different modelling techniques for protein

dissolution from PLGA spheres. Most of these (outlined in depth below) adapt

differential equations based on Fick’s second law to describe the concentrations of

diffusing molecular species at different space and time points. The problem needs to

79



be defined on the continuum, i.e. continuous and homogeneous morphology-related

variables are required, in order to establish grids for solving the partial differential

equations numerically. However, as noted earlier, the environment in nano- and

microspheres is rather discrete and heterogeneous. In order to adapt the models to

the porous environment of the microspheres, (including initial porosity and time-

dependent growth of porosity), these methods consider the porosity (ε or p) and the

tortuosity (τ) of the microspheres as global parameters, incorporated in the drug

diffusion coefficient D.

5.3.1 Main theories and models

The earliest reference attempting to account PLGA sphere complexity dates from

1997, (Batycky et al., 1997). Targeting microspheres in the size range of tens of

microns, a theoretical approach was developed, which coupled the erosion of PLGA

and monomer release processes to the dissolution of large protein molecules through

the dynamically formed pores. If the actual values of the initial parameters could

be established, the paradigm can be explored and dissolution profiles obtained. The

main assumptions of the model included: all pores taken as randomly distributed

throughout the particle and a range of initial pore sizes with time dependent radii.

A further assumption was that, as microspheres degraded, drug was released by

both desorption and diffusion. Desorption is assumed to originate with the drug,

initially distributed both on the external surface of the sphere and in occlusions

connected to the external surface of the sphere. It is characterised by an initial

surface concentration, C0, of drug and a rate of desorption kd:

∂Csurface

∂t
= −kdCsurface (5.3.1)

Release from the occlusions of the microparticle is prevented until the mean

pore radius R (leading from the occlusions inside the particle to the external bath),

exceeds the characteristic Stokes-Einstein molecular radius of the drug. Thus, drug
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Figure 5.5: Schematic representation of the coupling of the numerical-MC techniques
to model dissolution from PLGA microspheres used in Siepmann et al. (2002)

diffusion is delayed by an induction time sufficient to allow the micropores to coalesce

and permit passage of the drug. Diffusion is characterised by an effective diffusivity

D∗ and by the molar fractions of different monomers composing the scaffold polymer.

Based on these assumptions and the calculation of the overall microporosity and

macroporosity, a kinetic degradation model was proposed, (Batycky et al., 1997),

considering the microspheres as a whole. Expressions for the released mass of

monomer and macromolecular drug as a function of time were then derived and

used in conjunction with experimental data, to deduce the main parameters of the

model such as the rate constant of desorption kd, the surface concentration of ad-

sorbed drug C0, the effective diffusivity D∗ etc. Given these, the model may be used

to make predictions and in fact replicated quite well the dissolution profiles obtained

from PLGA microspheres encapsulating glycoprotein 120 (gp 120), with mean radius

of the order of 20 micrometers.

Subsequently, Siepmann et al. (2002) proposed a partial differential equations

model coupled with a Monte Carlo simulator, (Figure 5.5), to describe drug release

from bioerodoble microparticles.

Numerical analysis was performed on a two dimensional pixel grid, similar to that

represented in Chapter 2, (Figure 2.2), but which described a rotated hemisphere,

with each pixel representing a cylindrical ring. Partial differential equations derived

from Fick’s second law for cylindrical devices, taking into account axial and radial
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mass transfer, were solved on the grid at a sequence of small time intervals. In order

to simulate initial configuration of drug/PLGA and subsequent porosification of the

device, a Monte Carlo simulation was also carried out on a similar grid. Coupling to

the numerical simulation was achieved by making the diffusion coefficient, used in

the differential equations, dependent on the porosity calculated in the Monte Carlo

simulation, Equation (5.3.2). Monte Carlo direct simulation calculates the porosity

as in (Göpferich and Langer, 1995; Göpferich, 1996).

D(r, t) = Dcritε(r, t) (5.3.2)

In Equation (5.3.2), Dcrit represents a critical diffusion coefficient, characteristic

of a specific drug-polymer combination. The Siepmann et al. model has been val-

idated with experimental data from dissolution of a small molecule (5-fluorouracil)

from PLGA microspheres, (Siepmann et al., 2002). Nevertheless, even if using the

porosity information obtained from Monte Carlo simulations, it is still an approx-

imation in 2D, since on rotation of the numerical analysis grid each pixel gives a

cylindrical ring in 3D. Thus, the matrix structure, which reflects reality, where local

effects of both PLGA and pores seem to have a strong influence on the dissolution,

(Sandor et al., 2001), is not reproduced in this model.

The most recent complex model for simulation of drug release from biodegradable

polymeric microspheres is due to Zhang et al. (2003). This develops a theory based

on coexistence inside the microsphere of a virtual solid phase and two real phases:

a liquid phase and an effective solid phase. The liquid phase has a constant volume

V0 and the drug enters it by dissolution and erosion and leaves by diffusion. Actual

diffusion is taken to occur only in this phase. The effective solid phase is used to

simulate actual changes in the solid phase, with its volume V1 taken to be variable

in time. The initial concentration of drug is dispersed in this phase, and leaves it by

dissolution - the process by which drug is dissolved from the polymer matrix into the

solvent. Thus, the decrease of concentration in the effective solid phase, Csol−effective
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depends on the dissolution constant, porosity ε and the drug concentration in the

liquid phase CL as well as saturation concentration, Csat:

∂Csol−effective

∂t
= −kdisε(Csat − CL) (5.3.3)

Hence the rate of dissolution is driven by the difference between the actual and

saturation concentrations. However, this equation describes a similar phenomenon

to that of Equation (5.3.1), work of Batycky et al. (1997). Finally, the virtual

solid phase is introduced to act as a bridge between the two other phases. The

concentration of the virtual solid phase is given by:

Csol−virtual = Csat
V1

V0
(5.3.4)

In this phase, both erosion and dissolution are responsible for the decrease of

the drug concentration. Based on these assumptions, three differential equations

are written, describing the variation in concentration of each of the three phases

and employing three different terms: erosion, diffusion and dissolution. The sign of

the dissolution term can vary depending on whether the concentration of the liquid

phase has reached its saturation value or not. The main parameters of the equations

are the erosion constant Kero and the dissolution constant. Zhang et al. (2003) took

into consideration the three main patterns of polymer erosion found in experiment:

linear, hyperbolic and sigmoid, shown in Figure 5.6.

Assuming that these three patterns are conditioned by different erosion mecha-

nisms, the set of three equations for the concentration can be rewritten with specif-

ically derived erosion terms. In the model of Zhang et al. (2003), an initial porosity

value only is taken and is not considered to be modified over time. Similarly for the

tortuosity7, an interesting point: the drug disperses in the polymer matrix not only

because the macromolecules move through the pores, but also because they move
7a concept first introduced by Higuchi to refer to the straight or twisted form of the channels

83



Figure 5.6: Three different patterns of polymer erosion considered in Zhang et al.
(2003).

through some bottlenecks that are produced by the vibration of the polymer chains,

thus controlling the actual pore size for the passage of macromolecules, (Zhang et al.,

2003). Thus in the case of dissolution through polymeric structures, values of tortu-

osity are much higher than the usual values stated in the literature for other porous

systems, for which these range from 1 to 100. In Zhang et al. (2003) the tortuosity

was found to range from 102 to 105. Zhang et al. (2003) assert that the hyperbolic

erosion model (Figure 5.6) shows reasonable agreement with BSA (bovine serum

albumin) release data, while the sigmoid erosion model shows good agreement with

dextran release data. The dissolution constant (similar to the desorption constant

in Batycky et al. (1997)) and the tortuosity τ were adjusted by Zhang et al. to fit

the experimental result.

5.3.2 Remarks

To the best of our knowledge, no work of integration, generalisation or comparison

of these independent methods has ever been performed. The different methods have
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been validated for particular experimental situations only, and results of the simu-

lation compared against experimental profiles, often ignoring parallel developments.

Future work in the field clearly requires implementation in parallel of the various

methods proposed, with modifications in order to generalise to a number of differ-

ent experimental systems over a range of cases. The work presented here provides

further complementarity, as it investigates dissolution from spheres, by considering

what happens locally, at each point of the microenvironment, at the chosen scale, so

that the microenvironment is taken into account directly. The intent is again to com-

plement experimentation with simulation, (in particular where the former is difficult

if not impossible to perform). After calibration of the models to obtain satisfactory

quantitative matching with experiment, the use of the calibrated models to solve

an inverse problem, is envisaged, as follows: given desired drug dissolution curves,

of particular pharmaceutical interest, the aim is to determine optimal manufacture

features of the spheres, to meet these requirements. The outcome of our multi-agent

approach can then be compared with results provided by the other models. Multiple

analysis, based on different viewpoints can increase the knowledge of the way the

experimental system works and provide meaningful predictions.

5.4 Modelling

In the present work, we seek to understand the phenomena observed for PLGA

spheres, through cellular automata agent-based modeling and probabilistic simula-

tion, where systems are studied both over large temporal scales, (capturing slow

erosion of PLGA) and various spatial configurations (capturing initial as well as

dynamic morphology and inner structure of the spheres). The remainder of the

chapter demonstrates the extent to which the models are able to cover the wide

range of situations that arise from the manipulation of PLGA.
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5.4.1 Reasons for using multi-agent modelling

The aim, as stated, is thus to implement a multi-agent program simulating the be-

haviour of the PLGA micropheres as described previously. The core of the program

requires design of entities (agents), which have simple properties and characteris-

tics. One advantage of multi-agent modelling is thus simplicity of representation

of real space experimental entities by modelled ones. Large protein molecules in a

particular PLGA environment surrounded by dissolution medium can be modelled

as autonomous computational agents which follow certain rules. Portions of PLGA

can also be modelled as agents of a different type, with a separate set of rules. As

pointed out in Chapter 3, the major strength of the multi-agent approach is to ob-

serve and monitor behaviour directly. In our case, the emergent behaviour is the

dissolution profile manifested as a sphere erodes and the proteins dissolve in the

dissolution medium.

The dimensions of the experimental entities involved range from several nanome-

tres (proteins) to several microns (spheres), although dimensions of proteins vary. A

comparatively simple example like the lysozyme (13.4 kDa), has a diameter of 3.2

nm, (Kisler et al., 2001). Diffusion measurements in PLGA micro- and nanospheres

encapsulating lysozymes involve pore sizes < 20 nm, (Sandor et al., 2001), thus it

is relevant, in this case, to describe diffusion in terms of individual random walks

of molecules rather than by transport of matter through surfaces. Table 5.1 shows

the diameters of a number of different proteins across a range of molecular weights.

Experimental studies, (Sandor et al., 2001), have revealed that, in general, the initial

configuration of pores corresponds mostly to sizes of 20 - 80 nm, (proportional to

the size of the encapsulated proteins). On the other hand, other experimental stud-

ies have reported on cases of spheres with initial occlusions much larger than the

Stokes-Einstein diameter of the microencapsulated molecule, (Batycky et al., 1997;

Charlton et al., 2006). However, as long as the proteins undergo very restricted diffu-

sion through pores of i) the same order of magnitude as the proteins themselves or ii)
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Protein Diameter (nm)
lysozyme 3.2
myoglobin 3.5
hemoglobin 5.5

Table 5.1: Examples of protein diameters

slightly larger, but full of diffusing monomers8 ), it is appropriate to treat diffusion

by individual random walks of a certain number of agents (Kosmidis et al., 2003b;

Nicholson and Sychova, 1998). In such cases, multi-agent systems seem reasonable

approximations for the "protein - PLGA - pore" system.

Section 5.7 further discusses the link between the motility of the macromolecules

undergoing restricted diffusion and quantities such as effective diffusivities. Finally,

the multi-agent approach permits in-depth exploration of the problem. Building up,

step by step, nested levels of complexity in the multi-agent system, and compar-

ing the results obtained by simulation, permits the testing of different hypotheses

about the system or can be used to confirm recent experimental work on the inner

configuration of the spheres.

5.4.2 Model assumptions

The assumptions which apply in all models developed are based on experimental

data available. The polymeric particles modelled are considered to be completely

spherical and are modelled in 3D space. The spheres are discretised throughout the

volume into small sites, (as for Chapter 4). Figure 5.7 represents a section through

a sphere during the simulation. The sites are seeded, according to predefined initial

concentrations, with PLGA polymer (red sites) or protein molecules (blue, green and

black dots are the molecules from different depth levels in the sphere). An initial

porosity value in the PLGA bulk material can be considered if necessary (white sites

represent initial pores before hydration). Over time, more pores can be formed,

(brown sites around the spheres represent the erosion medium and the brown sites
8The monomers result from the erosion of the PLGA chains
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Figure 5.7: Section through a microsphere from the simulation. a) initial configura-
tion. b) configuration when the sphere is dissolving.

inside the sphere represent both initial pores after hydration as well as newly formed

pores). Different strategies can be considered for describing the PLGA erosion and

the formation of pores. When a site, filled with polymer, reaches a certain stage of

erosion, it is considered to be a pore. This is a simplification, because monomers

resulting from polymer erosion, occupy the pores as well and restrict diffusion of the

drug molecules.

A protein molecule can leave its initial location only in the case where one of the

neighbouring sites is a pore (i.e. the molecules can only move through pores). Once

in a porous channel, a molecule cannot leave it, except by escaping the sphere. Due

to the fact that PLGA microspheres usually have a very low content of molecules and

that pores are considered to exist as soon as they are large enough to accommodate

molecules, situations where more than one molecule happen to meet on the same

site are tolerated. When a molecule escapes the sphere, it is counted as dissolved.

The cyan area around the sphere (Figure 5.7) represents the sink solution.

Appendix 1 gives the UML scheme of the C++ program used for the simulation

and other implementation details like the chronology of an iteration, graphical issues

and description of main functions and classes.
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5.4.3 Modelling Erosion

The approach taken to model the polymer erosion is based on Göpferich’s theory

for polymer erosion (Göpferich, 1996). According to this theory, events which occur

independently with some average rate k are modelled by a Poisson process. It is

assumed that the chain cleavage is a random event following Poisson kinetics. The

waiting times t between k occurrences of the Poisson event are Erlang distributed.

f(t, k, λ) =
λktk−1e−λx

(k − 1)!
(5.4.1)

In Equation (5.4.1) k is the shape parameter and λ is the rate parameter. When

k=1, the distribution is a first-order Erlang distribution or an exponential distri-

bution for a positive variable (Equation (5.4.2) and Figure 5.8), used to model the

times between events that happen at a constant average rate:

f(t, λ) = λe−λt (5.4.2)

If the times between bond cleavages are distributed according to Equation (5.4.2),

then the mean lifetime of a single bond is given by t = 1
λ . f(t, λ) gives the probability

that the polymer will erode completely at time t after its first contact with water.

If several Poisson processes are proceeding in parallel, then the whole process

is again a Poisson process (Göpferich, 1997b). In practise, the lifetime t can be

computed using the following relation:

t =
1
λ

ln(U) (5.4.3)

where U is a random number, uniformly distributed between 0 and 1, (Göpferich,

1997b). In order to account for the gradual erosion of the polymer inside the bulk

mass and to achieve a desired pattern of pore growth in models for bulk-eroding
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Figure 5.8: Examples of exponential probability distributions, (wikipedia, 2006).

polymeric systems, (Siepmann et al., 2002; Göpferich, 1997b) used a probabilistic

method based on the concept of dividing the polymeric device into small sites and

attributing a lifetime to each site.

Considering that a site on the lattice erodes as a result of several Poisson processes

which take place in parallel, the first-order Erlang distribution is used to generate

the initial lifetimes of the sites. As the dissolution proceeds, the lifetimes of the

polymer sites begin to decrease. When a lifetime reaches zero the polymer from this

site is considered eroded and the site becomes a pore. In this way, the porosity of the

sphere gradually grows and the release of the drug encapsulated inside the sphere is

facilitated by the diffusion through the newly formed pores. This approach permits

derivation of a relationship between real time and Monte Carlo time through λ, the

inverse of the mean lifetime of a PLGA particle, expressed in s−1.

Theoretically, the rate parameter λ depends only on the nature of the polymer.

However, in practice, λ is related to the size of the site chosen for modelling as

well. On reaching a lifetime value t = 0, the sites are removed from the system,

generating pores of the size of the removed site. Thus, in this discrete model, based

on representing the system as sites, λ describes the rate of pore formation.
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Figure 5.9: Rate parameter as a function of different model resolutions.

Very small pores form quickly. Larger pores form as a result of the coalescence of

smaller pores, (Batycky et al., 1997). A pore becomes significant for the present sim-

ulation once it reaches sizes reasonably larger than the Stokes-Einstein diameter of a

encapsulated drug macromolecule (3-30 nm). Therefore, in the case of nanospheres,

the size of the site can be chosen in this range. In the case of microspheres, though,

it is possible to opt for coarser grained simulations, with larger sites, because as the

number of site in the matrix increases, the problem quickly becomes computationally

very intensive.

Thus, the size of the chosen site may vary between 20-100 nm, according to

cases of interest. Accordingly, for the same type of polymer, a fine grained model

will require larger values of λ than a coarse grained model, Figure 5.9. In conclu-

sion, λ depends on both material characteristics, (the type of PLGA) and model

characteristics (the chosen size of the site).

Modern electron microscopy is able to provide information on pore formation,

(Sandor et al., 2001; Batycky et al., 1997), therefore the rate of formation of pores

of a certain size can be determined. The choice may be that of a site size in the

dimensional range of the Stokes-Einstein diameter of the drug molecule, or, for a

coarser grained simulation, that of setting the average size of the initial pores in the

system to be equal to the size of a site. Thus, the mean lifetime of the sites may

range over different values depending on these initial assumptions and corresponding
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Figure 5.10: a) Evolution of the porosity of a sphere with time when the porosity is
computed using a zero-order Erlang distribution life-time approach b) Mean lifetime
(lt) 1

λ to use in Monte Carlo simulations as a function of the rate of porosity growth.

model choices. Figure 5.10, (a) represents the dynamics of porosity formation using

the model described in the previous sections, on spheres having a diameter of 80

sites and zero initial porosity. At every step, the lifetimes of the sites are decreased

by ∆t=10 minutes.

It can be seen that the lifetime influences the pattern of porosity dynamics,

which is basically hyperbolic, but can be considered linear in the first 15-20 days.

This agrees with Batycky et al. (1997), who found that the porosity grows linearly

with time for the first 15 days of degradation of PLGA spheres. The figure shows

that for λ=0.00002 min−1, (i.e. 1
λ=t=34 days) the porosity of the sphere increases

from 0 to 0.8 over 55 days, a typical experimental life-span of PLGA spheres. The

pores appear quite quickly and result in a sponge-like topology of the system.

Figure 5.10, (b) represents an empirical relationship deduced between the pa-

rameter λ and the initial rate of pore formation. The rate is calculated using the

linear part of the porosity dynamics curve (first 20 days).

Figure 5.11, shows how porosity growth dynamics can affect the release of

molecules from a sphere. The same spheres used for obtaining Figure 5.10 have
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Figure 5.11: Release profiles as a function of the degradation rate λ.

randomly been seeded with particles, from 1 to 4 particles per site, with overall con-

centration of particles c = 0.02. The release profiles obtained correspond to typical

experimental profiles of release of macromolecules from PLGA spheres (Sandor et al.,

2001; Lam et al., 2000). In all cases, a short initial burst is observed, corresponding

to the release of the particles situated on the surface of the sphere. To obtain the

curves from Figure 5.11, the initial porosity was p0 = 0. The effects of choice of

initial porosity value are discussed in Subsection 5.6.2.

The rate parameter λ affects, for each particle, the time during which it remains

trapped in the PLGA. Thus, t = 1
λ is inversely proportional to the rate of release

of the molecules, mainly affecting the convexity of the release curve. With different

lifetimes in the input, the model can generate profiles such as those found in Sandor

et al. (2001) and Lam et al. (2000). From the discussion in this subsection, the

following key points must be considered before setting up the model:

1. The size of molecules encapsulated.
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2. The most suitable initial pore size for the given problem. This size then rep-

resents the size of a site and the resolution of the model.

3. The rate of formation of the pores of interest.

4. Total time of erosion of the spheres and time to when the spheres begin to

disintegrate.

5.4.4 Modelling the internal configuration of the spheres

As noted, modelling the internal configuration of the microspheres consists of la-

belling sites as obstacles or pores in the space delimiting a 3D sphere.

Almost all known modelling approaches available (Zhang et al., 2003; Siepmann

et al., 2002; Vlugt-Wensink et al., 2006; Siepmann and Göpferich, 2001) consider

homogeneous distributions of the pores and of proteins in the spheres, whereas ex-

periments have indicated that this may not realistically describe most cases (Sandor

et al., 2001; Zhao and Rodgers, 2006). The remainder of this subsection presents

three different aspects suggesting that the internal configuration of the spheres might

be subject to heterogeneity.

In the study conducted by (Sandor et al., 2001) on the effect of microencapsu-

lated molecules on the internal structure of micro- and nanospheres, it was revealed

that spheres enclosing smaller proteins appear to have an open branched network

throughout. However, those enclosing larger proteins have pores in the outer layers

and appeared open near the surface, while having a more dense structure in the inner

layers of the sphere, Figure 5.12. At the time of writing, it is still not clear whether

the phenomenon of layered porosity happens only in the case of very small micro-

spheres and nanospheres or whether it is a general trend. It might be worthwhile,

however, to take this aspect into consideration when designing models.

On the other hand, Batycky et al. (1997) discusses another phenomenon which

might happen in the case of microspheres. This reference assumes that adsorption of
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Figure 5.12: a) Control PLGA sphere, no encapsulated molecules b) PLGA sphere
encapsulating carbonic anhydrase, adapted from Sandor et al. (2001).

macromolecules to the surface of the microsphere (or to the large occlusions inside

the spheres) can occur, suggesting an uneven distribution of the macromolecule in

the volume of the sphere. Figure 5.13 shows a recent 3D reconstruction from TEM

images of the transient distribution of albumin in PLGA spheres during erosion,

(Zhao and Rodgers, 2006). If this uneven distribution is realistic, the values of

parameters, obtained by adjusting models premised on a homogeneous distribution

to experimental data (like in (Zhang et al., 2003)), will be biased. A more general

consideration for modelling should thus be that concentrations of macromolecules in

the sphere can be unevenly distributed.

Further, it is necessary to consider whether it is reasonable to assume that PLGA

degrades more quickly in the outer layers of the spheres than in the core. From gra-

dient considerations, the degradation products have higher diffusivity in the mantle

of the sphere than in the core, thus the porosity generation rate might increase more

quickly in the outer layers in comparison to the internal layers.

In this multi-agent investigation, these aspects can be considered in a manner

of increasing complexity, i.e. by dividing a 3D sphere into strata and populating

these with obstacles, pores and molecules in different ways. Figure 5.14 shows the

developmental scheme of the initial model and variants.

To address the stratified initial pore-and-channel configuration problem, (based

on (Sandor et al., 2001)), we consider that the spheres, by manufacture, have a
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a. b.

Figure 5.13: Image of the 3D construction of the protein distribution in ovalbumin
loaded microparticles at a) 30 days and b) 60 days incubation in an in vitro batch
process, (Zhao and Rodgers, 2006).

stratified porosity. However, dynamically, the porosity evolves in the same way as

described in the previous subsection, depending on a mean lifetime parameter t. The

initial porosity p0 is discretised into three strata with decreasing porosities from the

surface to the center, respectively p01, p02, p03. This idea is implemented in model

A.1.

The second step was to consider a stratified concentration of the macromolecule

in the sphere. For the same three strata as previously, the concentration c0 becomes

discretised: c01, c02, c03 (model A.2). This model was considered less realistic than

the combination of A.1 and A.2 (variant A1-2), because there is experimental evi-

dence that the concentration of protein is more likely to follow the porosity (Sandor

et al., 2001; Batycky et al., 1997).

Finally, it was considered worthwhile to look at whether the effects of discretising

λ according to strata could bring benefits to the study (model B).
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Figure 5.14: Developmental scheme of the models and their variants.
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Figure 5.15: Morphology of the spheres in the initial model.

5.5 Results and discussion

A number of dissolution profiles were initially generated with the same settings of the

program and with similar inputs and just the seed for the internal random number

generator changed for each experiment. The mean and standard deviation of the

results were computed in order to verify the reproducibility in generated dissolution

profiles. The choice of an appropriate number of runs to be performed, in order to

obtain a dissolution profile for a set of input parameters, depended on the variability

of the results.

Initially, the choice was made to perform 30 runs with pores the size of one site

scattered randomly on the sphere (diameter=100 sites). One site could accommo-

date not more then one particle (macromolecule). Figure 5.15 represents this initial

configuration. These 30 runs with identical inputs and different seeds indicated that

variation of the generated results was very low. The variation remained low when a

further 30 runs were performed with more then one macromolecule per site. These

preliminary runs indicated that simulations were stable and that for each set of

parameters, a single run was probably sufficient to generate satisfactory results.

A discussion with illustrative quantitative results is available in Subsection 5.6.5,

where the dispersion is discussed as a function of the size of the sphere.
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5.6 Sensitivity analysis

This section follows in continuation to the modelling section and is dedicated to

verifying the effects of the different input parameters of the simulation. Elements

explored in the sensitivity analysis included the distribution of drug particles per site,

lifetimes of the sites, initial porosity, macromolecule concentration and distribution

in the volume of the sphere, the time interval used in the simulation, the influence

of the size of the sphere and the neighbourhood type used in the simulation.

5.6.1 Effect of the distribution of drug particles per site

The method of sphere manufacturing influences protein distribution within the

sphere, i.e. it may be scattered throughout or arranged in small blocks, see Figure

5.2. The aim of the further experimentation is to verify the effect of the distribu-

tion of macromolecules per site on the dissolution profiles. One question, clearly,

is whether simulation shows any difference if a site of the same size accommodates

one or more proteins? To examine this, the proportion of sites loaded with drug,

i.e. concentration, was kept constant; instead, the number of particles per site was

varied. In addition, the mechanism of PLGA erosion was kept constant throughout

all experiments and was taken to be independent of the drug loading of the spheres.

The lifetimes of the PLGA particles were updated every 10 minutes corresponding to

the Monte Carlo time-step and samples were collected every 144 Monte Carlo steps,

(corresponding to one day). The number of particles per site was sampled from a

uniform distribution between a lower and an upper value: U(a1, a2), a1 < a2. At

each run, a2 was increased. The particles released were considered in terms of the

fraction of the initial number of particles in the sphere. From the simulations, it

was found that as a2 increases, the total drug is released at a slightly slower rate.

This may be due to the fact that, while the effective release surface is kept the same

for all experiments, the internal drug loading is increased with each experiment.

This means that a larger loading will be released in larger quantities, but in slightly
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smaller fractions of the total than found for a smaller loading. The next subsections

illustrate, however, that in reality, larger loadings are probably very likely to be

related, by manufacture, to larger effective release surfaces.

5.6.2 Initial porosity and initial macromolecule loading

Here, the focus is again on the effects of the initial morphology of the spheres. The

literature shows that an increase in drug loading results in a corresponding increase

in the release rate, (Lam et al., 2000; Sandor et al., 2001). Sandor et al. have

measured the protein loadings of the nanospheres, as a percentage of the total weight

of nanospheres. The values considered as low loadings were 0.5-1.6 % while high

loadings of protein were 4.8-6.9 %, (Sandor et al., 2001). In our simulation, loadings

are considered in terms of percentages of sites on the lattice containing one or more

particles. Thus, to examine the effects of the initial loadings in a sensitivity analysis

framework, concentrations close to experimental loadings could be considered: these

were 2 %, as well as a high loading of 15 % of the sites contained proteins. Figure

5.16 shows the effect of the initial concentration on spheres having a diameter d=100

sites and mean lifetime 1
λ =69.4 days (λ=0.00001). At every step, the lifetimes

of the sites are decreased by ∆t=10 minutes, Von Neumann neighbourhood being

used. Surprisingly, no significant effect is observed to result from modification of the

loading value. As the figure suggests, for each of the three different initial values of

the porosity, the variations in the concentration do not generate a too wide disparity

of results, (Subsection 5.6.5). Indeed, the concentration has unsignificant influence

on the dissolution profiles which follow. At all concentrations, the trend is given by

the initial porosity p.

In agreement with our simulations, Sandor et al. (2001) suggest that the increase

in the release rate at higher loadings occurs due to initial porosity : at low loadings

(0.5 -1.6 %), small proteins seem to depend on diffusion through pores initially and

on degradation at later times. Spheres with higher loadings, are found to have more
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Figure 5.16: For three different initial porosities, p01=0.05, p02=0.2, p03=0.5, the dis-
solution profile was calculated using two values of the initial concentration, c01=0.02
and c02=0.15. Other model inputs: d=100, λ=0.00001, ∆t=10 min, from 1 to 4
particles per site, (von Neumann neighbourhood).
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Neumann neighbourhood.

interconnecting channels. The authors consider the channels to be the reason why the

higher loaded spheres (4.8-6.9 %) do not exhibit the pronounced shift from diffusion

based to polymer-based release seen with the lower loaded spheres. Although Sandor

et al. (2001) do not provide quantitative evidence on how the initial number of

interconnecting pores and channels increases with the initial protein loading, they

clearly indicate that not only has the molecular weight of the protein an obvious

effect on the initial porosity (larger proteins correlate to larger pores formed in the

carrier spheres), but so has protein loading, (larger loadings correlate with larger

initial porosities).

Figure 5.17 shows how the spheres, with d=100, λ=0.00001, ∆t=10 min, loaded

with particles homogeneously distributed through the sphere (c0=0.02), react to

initial porosity modifications in a Von Neumann neighbourhood environment (the

pores are homogeneously distributed throughout the sphere).
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Simulations were run with porosity values ranging from 5% to 60% sites of the

sphere. The initial loadings of the spheres were kept constant throughout the simula-

tions. As can be observed from Figure 5.17, even quite small variations of the initial

porosity result in different dissolution profiles beginning with ∼day 1 of dissolution.

There is a threshold value for the initial porosity, pth, which separates two differ-

ent types of dissolution behavior. For p<pth two distinct dissolution phases can be

observed, suggested by the change of shape (from convex to concave) of the release

curve:

1. A first phase, corresponding to dissolution governed by diffusion through the

initial pores.

2. A second phase where diffusion is generated by two processes: dissolution

through the initial pores in conjunction with diffusion through pores created

by the erosion process.

In the case of Figure 5.17, pth=0.3. The first phase ends around day 15. Between day

1 and day 15, the dissolution rate is constant and depends on the initial porosity. The

second phase begins after day 15 and continues until the molecules are completely

released from the spheres, around day 60. The dissolution profiles obtained for p<0.3

follow the same pattern as the lysozyme and the carbonic anhydrase at '1.5% initial

loading, (Sandor et al., 2001).

For p0 > pth, there are no distinct phases of dissolution. On Figure 5.17, for

pth=0.3, the profiles obtained have a kinetics pattern like the lysozyme, c0=6%,

alcohol dehydrogenase (1.1 % and 6.9 %) and thyroglobulin (0.5% and 4.8 %).

In relation to experimental values, there is reason to believe that it is not variation

in concentration, but rather the variation of initial porosity, which is the main basis

for modification in dissolution profiles.

In conclusion, as outlined earlier, the simulations strongly support the view that

initial concentration only indirectly influences dissolution profiles. More evidently,
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Stratum1 Stratum2 Stratum3
Depth of stratum (sites) 0.15r 0.25r 0.6r

Porosity 1.5p0 0.7p0 0.3p0

Concentration 1.5c0 0.7c0 0.3c0

Table 5.2: Details on the stratification of the spheres used to obtain the results from
Figure 5.18. r represents the radius of a sphere in number of sites, p0 and c0 are,
respectively, the input porosity and concentration.

there is a correlation with initial porosity resulting, in all probability, from the way

the spheres are manufactured, (with the given combinations of polymer-protein, see

Section 5.2). In general, as the literature provides rather little information on the

porosity in the PLGA spheres used as drug carriers, it can thus be seen that simula-

tion can be a useful tool from this point of view. The above discussion suggests that

it would be useful to dedicate more attention to porosity studies, while investigating

release from PLGA spheres, and better describe the connection that exists between

the concentration of the loaded molecule and the initial porosity resulting from it.

Manufacturing would then be a compromise between the desired quantity of drug

released per unit of time and the desired dissolution profile over the time.

5.6.3 Stratified spheres

It has been shown above that there are grounds to consider cases where pores and

protein concentrations are not homogeneously distributed throughout the sphere,

but, for example, where large porosities at the surface gradually decrease towards

the core of the spheres. Figure 5.14 presents three different variants on the initial

model A. Version A.1 considers only stratified pores, with the porosities decreasing

from the surface towards the centre. Version A.2 considers stratified concentrations

of protein also decreasing from the surface to the core. However, as discussed in

Subsection 5.4.4, it is reasonable to assume that layers with large initial porosities are

correlated with correspondingly larger concentrations too, as described in Batycky

et al. (1997); Ungaro et al. (2004). This is incorporated in version A.1-2.

104



Figure 5.18 shows a comparison between the basic model A and its variants A.1

and A.1-2. Table 5.2 details the width of the strata, deliberately chosen in such a

way that in each variant initial porosity of the generated spheres was almost the

same. Figure 5.18, (a) shows how the three variants behave with reduced initial

porosity. Figures 5.18, (b) and (c) illustrate the behaviour of the three variants for

larger porosities. These results suggest that stratification of the porosity plays a

smaller role than stratification of the concentrations of the molecules. It also argues

for the fact that the internal morphology of the spheres is an important factor to

take into consideration at modelling. According to our model findings, the spheres

illustrated in Figure 5.2, (a) and (b) would provide very different dissolution profiles

when exposed to a dissolution medium.

5.6.4 Influence of the time interval for updating the particles

The physical meaning of the time interval, in which the particles of the model move,

is directly related to the mobility of the particles within the structure. In the case

of a multi-agent model such as the present one, ∆t does not completely reflect the

diffusivity or the effective diffusivity of the macromolecule, but it rather reflects the

potential for diffusion conditional on the pores of the device.

This simulation actually indicates more clearly the mechanisms behind the pro-

files. The smaller ∆t is, the more often the particle is given the chance to update,

i.e. to move to a neighbouring site. Figure 5.19, (a, b, c), (t>20 days), shows that

in the case where the environment permits mobility,(right hand side of the graphs),

different values for ∆t can considerably change the rate of dissolution profile. This

means that even though the PLGA does present an obstacle, the porosity spans the

whole system and on increasing the mobility, the molecules are released extremely

rapidly. We will say that a sphere is said to reach the percolation threshold when

there is a cluster of connected pores spanning the whole sphere. For the left-hand

side of the graphs the situation is very different: ∆t has no effect on the dissolution
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Figure 5.18: Comparison between dissolution through spheres with homogeneous
porosity and spheres with stratified porosity and stratified concentration. The con-
centration strata are superposed on the porosity strata.
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rate, demonstrating a reduced dissolution through unconnected channels.

Figure 5.19, (a) is a particularly good example: the spheres start at zero initial

porosities, but a small initial burst can still be observed. Further, porosity is allowed

to increase slowly, (λ=0.00001). At day 16, when the value of the porosity reaches

the threshold value of pth=0.2, the profiles split according to the different values

of ∆t used, as there are clusters of pores spanning the whole sphere which begin

forming at this point in time.

The following figures show behaviours in stages. These stages are due to the

sequential percolation through the three strata by connected pores. The first stratum

is initially percolated and is the origin of the initial burst. The second stratum is

apparently percolated very quickly after dissolution begins, (before day 10), while

the stage, which can be observed by day 20, is caused by the last stratum reaching

its percolation.

The dissolution patterns obtained with different ∆t are again in good qualita-

tive agreement with a number of profiles obtained experimentally in Sandor et al.

(2001): lysozyme 6.9 %, bovine serum albumin (0.9 % and 5.1 %), Figure 5.19, (c)

or lysozyme (1.6 %) , Figure 5.19, (a).

The choice of ∆t is in agreement with the effective diffusivity of a molecule in a

medium filled with erosion products, such as different monomers. Smaller molecules

have larger effective diffusivities, while larger molecules will be characterised by very

reduced diffusivities, (Sandor et al., 2001).

5.6.5 Influence of the sphere size

Each of the two curves in Figure 5.20 is obtained by calculating the standard devi-

ation over 10 program runs with the same inputs. The figure shows that with the

increase of size of spheres considered, the standard deviation for different runs of the

program converges to a stable value. Even for small spheres, the standard deviation

is very small in comparison to the data values on release. This justifies performing
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Figure 5.19: Effect of the time step used to perform the updating in the simulation.
Model used: A.1-2.
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Figure 5.20: Dynamics of the standard deviation calculated for ten different runs
with the same input parameters for two different sizes of the sphere: d=50 and
d=100 sites.

only one run for each different input situation.

Obviously, particles will be released more slowly from a larger sphere: Figures

5.21, (a) and (b). Usually, the PLGA particulates come in batches of spheres char-

acterised by a certain size distribution, thus it is interesting to use simulation to

analyse the effect on the size distribution on the release profiles. It addition, it is

useful to investigate how variations in the size distribution can affect the overall

dissolution curves. The differences in the profiles obtained with d=50, d=100 and

d=150 suggest that small shifts in the size distribution would result in significant

changes in the release profile.

5.6.6 Influence of the neighbourhood used

The simulation has again been adapted for both Von Neumann and Moore neigh-

bourhoods. The patterns obtained using Moore’s neighbourhood (results not shown)

have the same forms as those obtained with Von Neumann neighborhood. However,

we find that the rate of formation of porous channels has to be extremely slow in
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Figure 5.21: Effect of the size of the sphere on the release profiles. a) initial porosity
p0=0.2 b) initial porosity p0=0.5.

order to obtain sigmoid profiles such as described by Zhang et al. (2003) and il-

lustrated in Figure 5.6, (b). The Moore neighbourhood in 3D involves 18 nearest

neighbours (degrees of freedom) in comparison with only 6 considered with von Neu-

mann neighbourhood and as indicated in Chapter 4, considering a larger number of

nearest neighbours signifies higher degrees of freedom for the molecules movement.

A neighbourhood providing a larger degree of freedom to the molecules could be of

interest when adapting the model to coarser grained simulations, where the size of

the pores considered is of the order of 10−7-10−8 m. Thus, protein macromolecules

can gain access to the pores from more directions, whether by virtue of the inner

sphere structure, or through dissolution through micropores. Intuitively, macrop-

orosity grows much slower than microporosity, thus a combination of the Moore

neighbourhood and slow porosity growth rates can be useful for coarse-grained sim-

ulations. Small molecules have larger effective diffusivities than larger molecules,

thus, the former would be characterised by smaller ∆t and the latter by larger ∆t

for the same initial size of the pore. Additional information is needed about the time

when the spheres disintegrate since this accelerates molecule release.
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Description Variable
Size of the sphere d

Effective diffusivity/mobility of the macromolecules through the pores Deff

Diffusivity of the macromolecules in the solvent D0

Diameter of the macromolecules a

Sphere loading c

Concentration of the macromolecule at different depths od the sphere c01, c02, c03

Size of the pore one wish to consider pd

Initial porosity p0

Pattern of repartition of pores in the volume of the sphere p01, p02, p03

Rate of formation of pores rp

Table 5.3: List of variables desirable to set up correctly the simulations

5.7 Validation with experimental data for quantitative

measurements

To use the model developed for quantitative evaluations or making predictions, initial

knowledge about the microspheres is needed. Table 5.3 gives a list of variables,

characterising the spheres, although as the next subsection shows, not all of these

variables are absolutely necessary to determine dissolution profiles of the spheres.

5.7.1 Dimensional analysis

The target here was to establish a relation between the diffusion coefficient of the

encapsulated species in the matrix and the time interval ∆t, determining how often

the model particles from the spheres need to be updated.

In their article, Zhang et al. (2003) mention two diffusivities: D0 which is the

solute diffusion coefficient in the solvent and Deff the effective solute diffusion co-

efficient in the polymer matrix, depending on the internal morphology of the latter.

Based on this work, the following expression gives the effective diffusivity of a chem-

ical species in a porous medium:

Deff ∼ D0p

τ
(5.7.1)
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p is the porosity and τ is the dimensionless tortuosity of the medium. The

porosity is one measure of the dimensions of the internal morphology, usually in the

range 0.2-0.7 (fraction of volume) for polymers, (Zhang et al., 2003). As stated, the

value of τ is usually between 1 and 100, (Zhang et al., 2003), but in the case of the

PLGA τ reaches much larger values, in the range of 103 − 105, because the drug

molecule has to move through some narrow passageways which are produced by the

vibrations of the polymer chain and control the actual pore size for the passage of

macromolecules, (Zhang et al., 2003).

To verify independently the value for the tortuosity, the literature was examined

for diffusion coefficients and effective diffusion coefficients experiments on PLGA

spheres. Batycky et al. (1997) obtained the effective diffusivity of a protein in PLGA:

Deff = 2.00 × 10−13 cm2

s = 2.00 × 10−17 m2

s . Goodhill (1997) stated that D0 =

3× 10−7 cm2

s = 3× 10−11 m2

s for the diffusion coefficient of a protein of 17 kD (IL-1

beta). Zhang et al. (2003) mention references which published D0 = 8.3×10−11 m2

s for

BSA (bovine serum albumin). With these values of D0, Deff and p and Expression

(5.7.1) the tortuosity τ indeed appears to be of the order of 105.

Fick’s first law can be expressed as the following equation:

J = D
dC

dx
[

kg

m2s
] or [

mol

m2s
] (5.7.2)

where dC = Csat−0. Zhang et al. (2003) give Csat in the range 1-100 kg
m3 . If the site

of the sphere is ∆x , then, for very small sizes of the site, such as 10 nm, the flux

J is in the range of 10−8 − 10−7[ kg
m2s

] = 10−26 − 10−25[ kg
nm2s

]. This quantity can be

expressed as mass per surface of the site: 10−24 − 10−23 [ kg
site−surface×s ].

Zhang et al. (2003) give an example of concentration saturation C0 = 13.5[ kg
m3 ] =

13.5∗10−27[ kg
nm3 ] ' 10−24[ kg

site ]. Thus the time for a site of 10 nm to reach saturation

is t ' 10−24kg/site
10−24kg/(sites)

' 1s. This means that the time a site is occupied by a diffusing

species is of the order of seconds. In conclusion, choosing ∆t for the model in the

range of seconds should provide realistic simulations. Choosing much larger time-
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Variable Value Model
d 200-250 nm 50 sites

Deff N/A ∆t =10min, 1min and 6 sec
D0 N/A not needed here
a '3 nm -

c0 1.6% and 6.9% c0low =0.016
c0high =0.069

c01 /c02 /c03 N/A c0 /0.5c0/0.2c0

pd >20 nm 5 nm/site

p0 N/A p0low =0
p0high =0.3

p01 /p02 /p03 N/A p0 /0.3p0 /0
rp N/A λ = 5 ∗ 10−6

Table 5.4: Summarises the knowledge available on the nanospheres loaded with
lysozyme and the corresponding modelling decisions taken after evaluating this data

steps will slow down the release of the particles, whereas too small time steps will

slow down the run-time of the model. Figure 5.19, (a, b, c) shows how choosing

too large a ∆t, such as 10 and 20 min, influences the dissolution profile, making it

much slower. The effect of choosing ∆t is especially visible when the sphere reaches

percolation and the molecules gain mobility (Subsection 5.6.4) .

5.7.2 Validation with experimental case 1: lysozyme

In this subsection, the models are validated by comparing their performance to real

data. The first experimental data set due to Sandor et al. (2001) relates to a set of

nanospheres encapsulating a very small protein, the lysozyme. Table 5.4 specifies the

knowledge available on this system. It has been decided to use the model labeled as

A.1-2 (stratified pores and stratified concentrations) for the simulation of this case.

The spheres have been analysed by electron microscopy and they appear compact

and non-porous. This means that the pores, if these exist, have diameter < 20 nm

i.e. below the resolution levels of the microscopy technique, (Sandor et al., 2001).

For the simulations, we chose to consider the existence of very small pores of 5 nm

in diameter, just above the Stokes-Einstein diameter of the lysozyme (3 nm). Given
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the diameter of the sphere d and the diameter of the pore pd it was decided to

run the simulations with spheres of 50 sites in diameter, (i.e. taking 5 nm as the

diameter of one site). The λ parameter was chosen to be 5 × 10−6s−1. It was not

known if the pores were organised in strata or not, but given that in slightly larger

nanospheres, (encapsulating larger molecules, such as carbon anhydrase), porosities

are known to be stratified, it is assumed here that spheres carrying lysozyme have

stratified porosities as well. The strata in the model are organised as:

1. A surface stratum to the depth of r1 =3 sites, characterised by maximum

porosity and maximum concentration (Table 5.4)

2. A second stratum (r2 =12 sites) with a lower porosity hence a low concentra-

tion.

3. A core of a radius r3 of 10 sites which is not porous at all and encapsulates a

correspondingly reduced concentration of molecule.

As information about the effectiveness of the lysozyme in PLGA matrix is un-

known, three different values of 4t are chosen, close to the approximate value ob-

tained by dimensional analysis (see Subsection 5.7.1). The best results are still

obtained with the smallest time step: 4t=6 s, (Figure 5.22). In this Figure, the

points indicating a slow release experimental curve correspond to an initial loading

of 1.6% and the curve of very fast release has been obtained by Sandor et al. (2001)

with an initial loading of 6.9%.

5.7.3 Validation with experimental case 2: carbonic anhydrase

This subsection summarises results obtained with the model calibrated to simulate

release of carbonic anhydrase from microspheres of size '1 µm, described, like previ-

ous spheres, in Sandor et al. (2001). This type of sphere has a different initial internal

morphology to the case examined previously. Transmission electron micrographs of

PLGA microspheres encapsulating carbonic anhydrase are shown in Figure 5.12, (b).
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Figure 5.22: Experimental lyzosyme release versus simulated drug release from
biodegradable microspheres. Red rhombi represent the experimental points from
Sandor et al. (2001). Continuous curves show simulated results obtained with dif-
ferent ∆t values.

These spheres have larger diameters than the previous ones and a somewhat differ-

ent internal morphology to those encapsulating lyzosyme. Figure 5.12, (b) shows

that the spheres are characterised by quite large internal pores and channels, which

appear to be much larger then the protein diameter (carbon anhydrase). It is for

this reason that in models C to C.1.2, (Figure 5.14,) models the initial pores were

permitted to be larger than one site in size. Figure 5.23, (a) shows a cross-section

through a sphere generated with model C. In addition, it is considered that most

molecules are initially concentrated in these pores, as argued in Batycky et al. (1997);

Ungaro et al. (2004). To simulate carbonic anhydrase release, model variant C.1.2.

(Figure 5.14) has been used. In this version, most of the proteins are situated in

the occlusions, but some are trapped in the bulk PLGA as well. The occlusions are

slightly stratified, such that they are more prevalent at the surface of the spheres,

in order to replicate the pattern observed in Figure 5.12, (b). Table 5.5 shows the

information available on spheres as well as corresponding decisions about the model

parameters.
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a)

b)

Figure 5.23: a) Internal morphology of the spheres for simulating dissolution of
carbon anhydrase from PLGA spheres of ' 1µm diameter. b) Experimental car-
bonic anhydrase versus simulated drug release from biodegradable microspheres.
Red rhombi represent the experimental points from Sandor et al. (2001). Continu-
ous curves show simulated results obtained with different ∆t values.
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Variable Value Model
d 1000-1200 nm 100 sites

Deff N/A ∆t =10min and 1min
D0 N/A not needed here
a ~10 nm -

c0 1.2% and 6% c0low =0.012
c0high =0.006

c01 /c02 /c03 N/A follows the occlusions
pd 1-60nm 10 nm/site, 30 nm/occlusion

p0 N/A p0low =0.14
p0high =0.33

p01 /p02 /p03 N/A 2strata: r1 = 5, r2 = 45 sites and 3p0 /p0

rp N/A λ = 5 ∗ 10−6, but could have used a smaller value

Table 5.5: Summarises the knowledge available on the nanospheres loaded with
lysozyme and the corresponding modelling decisions taken after evaluating this data

Figure 5.23, (b) illustrates performance of model version C.1.2 to simulate the

experimental data obtained by Sandor et al. (2001). The simulated slow release

curve has been obtained with an initial porosity of 0.14 and the quick release curve:

with initial porosity p0=0.33. The curves have been obtained by running the model

for a single sphere. The experimental data were based a population of spheres with

average diameter of 1 µm. It should be noted that models A and B (see Figure

5.14) did not succeed in obtaining the types of curves provided by model C and its

variants.

5.8 Conclusion

This chapter presented an exploratory framework for modelling dissolution of pro-

teins from PLGA microspheres. It has been shown that the initial model (A) can

be modified to simulate a number of experimental situations. For the PLGA micro-

spheres, the results obtained in the work presented above are in good agreement with

the original experimental work of Sandor et al. (2001). The two experimental cases

discussed in the validation subsection were the most problematic for modelling. The

models developed can be easily used to simulate other cases of other protein dissolu-
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tion from PLGA microspheres presented in Sandor et al. (2001) and elsewhere. We

elaborate on three different aspects of future work related to the PLGA micro- and

nanospheres in Chapter 7, considering:

• Optimisations from a technical point of view making possible broader use of

models A-C and their variants.

• Extending the models to other types of bioerodible nanospheres as the role of

the latter grows in modern pharmaceutics.

• Project outline for a particular case: using and extending the models developed

to simulate the experimental work described in the example from Subsection

5.2.4, where the bioerodible spheres are used in conjunction with other type of

polymer to form therapeutical implants for damaged tissues.
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Chapter 6

Reconstruction of particle

size distributions of

particulate polydisperse

systems from in vitro

dissolution data

6.1 Introduction

This chapter continues investigation of drug delivery systems which are composed of

many particles for all or part of their dissolution process. In the previous chapter,

the way in which bulk eroding spheres for sustained release show different release

profiles as a function of their size was demonstrated. While the previous chapter con-

centrated on the microscopic behaviour of each component of a particulate system,

following interaction with the dissolution medium and ways by which the carrier

particles release their active content, the present chapter, on the other hand, exam-

ines a delivery system composed entirely of particles. In other words, the dissolution
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profiles, obtained from such systems, are treated both in terms of (i) size distribution

of the component particles and (ii) interactions of these particles in the in vitro or

in vivo environments for dissolution.

In contrast again with the previous chapter, (which dealt with direct problems,

with solution based on a complete description of cause and effect), this chapter

looks at an inverse problem, where solution implies determination of unknown causes

behind certain dissolution profiles, based on observation of outcomes.

The chapter begins by examining the problems related to the dissolution pro-

files from multisized multiparticle systems, focusing on multiple sources of noise in

these data. Next, the Bayesian paradigm is proposed for reconstruction of unob-

served parameters and noise quantification for these data. An Inverse Monte Carlo

technique is put forward to handle the inverse problem, using sampling. A proof of

concept algorithm is described for a general case of a particulate system, in order to

extract information from the experimental dissolution profiles. The aim is thus to

reconstruct the parameters of the system (e.g. the size distribition), and to assess

its noise levels, at different stages of the dissolution.

In order to validate the theory, in the absence of detailed experimental data,

dissolution data are simulated within known parameter values and against known

endpoints. Finally, the Inverse Monte Carlo algorithm is adapted for these partic-

ular "artificial" cases and a sensitivity analysis is carried out to evaluate algorithm

performance. Finally, conclusions are drawn and future work outlined.

6.1.1 Examples of multi-particle drug delivery systems

Many kinds of particulates, not just those composed of micro- and nanospheres

(presented in Chapter 5), are made up of multiple particles. Many solid dosage forms,

such as the majority of immediate release tablets, are other than non-disintegrating.

Rather they disintegrate into smaller fragments and particles during the course of

the dissolution test in vitro or during in vivo dissolution. In contrast to bulk eroding
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particulates, these particles decrease in size as the dissolution proceeds, changing the

thickness of the dissolution boundary layer at each point in time. Another example

of dosage forms that consist of separate particles are in-suspension formulations or

solid-liquid dispersed systems.

Studies have shown (Simoes et al., 1996a; Almeida et al., 1997) that the particle

size distribution strongly influences the dissolution profiles, as the size of the particle

is obviously related to the surface exposed to the dissolution medium. Noting that

the dissolution of powdered drugs was far from well understood, Almeida et al. (1997)

evaluated a number of existing models on multi-particle systems in conjunction with

an extensive experimental study. This provided detailed information about the size

distributions involved. More precisely, three different size fractions of a widely-used

sparingly soluble drug - ibuprofen - were fully characterised with regard to particle

size distribution, specific surface area, density, solubility and diffusion coefficient.

Dissolution profiles were obtained using a technique that counts and sizes particles -

the Coulter counter technique (see ref. Coulter (2006)) - which is capable of directly

tracking the number and size of the particles in suspension throughout time. The

study (Almeida et al., 1997) concluded that most of the assumptions of the evaluated

models were actually not valid for the experimental conditions, thus the profiles

generated by the models fitted the data extremely poorly, (Almeida et al., 1997).

For other cases, however, it is harder to verify directly the assumptions of exist-

ing models and postulate more correct hypotheses, as the only visible (or observed

results) are the dissolution profiles, (see example below, Subsection 6.1.2). In such

cases, the problem can be inversely posed: "what are the unobserved system parame-

ters, which result in the observed dissolution profile?". The undetermined parameters

this study focuses on are the size distribution of the constituent particles and the

dynamics of this distribution during the dissolution process.
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6.1.2 Nature and quality of in vitro obtained data

The backward or retrospective study aims to reconstruct unobserved parameters us-

ing observed dissolution data. Thus it is worthwhile examining more closely the data

observable from multi-particle pharmaceutical systems and discussing their nature

and quality.

The USP Type II Apparatus is widely used in performing in vitro dissolution

testing of newly developed drug delivery systems, (Chapter 4). Typically, experi-

mental data from the USP apparatus II would be dissolution profiles, representing

i) the time series of fractions of dissolved solute in the solvent or ii) the time series

of solid matter remaining in the solvent.

Numerous reports in the literature describe high variability in test results, even

for dissolution apparatus calibrator tablets, (Baxter et al. (2005) and references

therein). Healy et al. (2002), Crane et al. (2004a), Baxter et al. and other studies

show that, under normal stirring conditions, flow behaviour is both time-dependent

and highly heterogeneous. Hydrodynamic conditions, while not turbulent, are di-

rectly related to the strain and shear rates, which determine the thickness of the

dissolution boundary layer, which in turn limits the mass transfer rates on tablet or

particle surfaces. Thus, fluctuations in the flow introduce variability in the evolu-

tion of the processes, which are affected by hydrodynamics: shearing of the tablet

surfaces, disintegration of tablets and de-agglomeration rate of the particles, suspen-

sion and mixing of tablet fragments and, finally, mass transfer from the solid to the

liquid.

In illustration, Baxter et al. (2005) have performed experiments with three

distinct types of tablets: non-disintegrating, slowly-disintegrating and rapidly-

disintegrating. All were found to exhibit statistically significant dissolution rates

when the tablets were fixed in two different locations. In particular, rapidly-

disintegrating tablets, containing the drug prednisone, have the greatest sensitiv-

ity to tablet position in the vessel, (e.g. an off-centered position yields an almost
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two-fold difference in the dissolution rate).

In many cases, published experimental dissolution profiles are averages of pro-

files obtained for different trials, performed under similar conditions, so that they

represent the general behaviour of the system, but are contaminated with noise from

the point of view of determining underlying unobserved parameters.

Generally, the number of parameters relating to the dissolution profile is large

relative to the number of available data points in the resulting dissolution profile.

For example, one can imagine all possible trajectories that the different types of

particles can take, crossing regions in space, characterised by different shear rates

etc. and the different ways size distribution can evolve according to flow conditions

in different locations of the vessel. In conclusion, noise in the dissolution profiles is

thus associated both with the measurement procedures and the system state fluctu-

ations through the different experiments performed. Therefore, when modelling the

dissolution process, rather than being entirely deterministic, it can be considered

to consist of a deterministic part and a stochastic part, by incorporating a level of

uncertainty into the model.

The Appendix 3 gives a complete list of the notations and the abbreviations used

throughout this chapter. The notations are as well introduced at the appropriate

places as the discussion progresses, thus the reader can take note of the titles of

different subsections classifying the symbols, and return to the appropriate one if

necessary.

6.2 Theoretical Bayesian framework for the dissolution

problem

In this section, a Bayesian framework for parameter reconstruction and noise quan-

tification is proposed for drug delivery systems which exhibit certain amounts of

variability in their dissolution profiles, consistent with a set of data for the dosage
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form used, and the USP dissolution apparatus. The target types of drug delivery

systems, as noted, are:

• soluble or surface eroding particulate polydisperse systems

• disintegrating tablets

The objective is to examine the effects of changing particle size, particle size distribu-

tion and particle density on inversely simulated results, as compared with experimen-

tal results. Mass transfer rates or cumulative proportions of solute for different kinds

of particulate systems or disintegrating systems can be determined experimentally

and compared with the predictions made by modelling and simulations.

The problem posed is a good example of an inverse problem (for a review see

Mosegaard and Sambridge (2002)), because in some cases of DDS in the USP ap-

paratus II and other conditions it is difficult and time-consuming to assess the size

distributions and other parameters at different times of the dissolution. Moreover,

the time-dependent flow conditions of the dissolution apparatus are such that it is

not completely obvious towards what particular distribution the particles will evolve

to at any next time step. As in many other inverse problems, the problem of a multi-

particle system dissolving in the USP apparatus is thus underspecified : i.e. many

initial states could produce similar fits to the data. It can be assumed that the

parameters characterising the size distribution at a given time-step are not fixed but

follow some probability distributions, whereas the transition from one distribution to

the next one, associated with the next time step, is a stochastic process rather than

a deterministic one, (Subsection 6.1.2). In other words, the aim of the following is

to estimate model parameters, related to the size distributions and their variability,

from experimental measurements. The assumption is that these parameters are not

fixed but follow some statistical distribution. Posing the problem in this way sat-

isfies the Bayesian framework, (Meyer and Millar (1999a); Meyer and Christensen

(2000a); Ramachandran and Kandlikar (1996); A. Voutilainen and Kaipio (2001).
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The Bayesian theory has been described and studied in many instances, e.g.

Davies (1998), the review of Mosegaard and Sambridge (2002) and references therein.

It permits the production of a large range of possible initial states, by reporting

on posterior distributions or confidence intervals of parameters. Finding posterior

probability distributions amounts to finding the conditional probabilities that cer-

tain values of the unobserved parameters are taken, after the relevant experimental

evidence is taken into account. The Bayesian view of a measurement is that of a

process of extracting additional knowledge from it, consisting of refining previous

knowledge of physical parameters by:

1. narrowing their distribution of probability, by repeatedly sampling from it,

2. assessing the posterior distribution of the model parameters, given this mea-

surement.

The following subsection develops these ideas.

6.2.1 Observation model and time evolution model

Probability distributions corresponding to parameters of the particle size distribution

at each time step are explored. The unobserved data are modelled by the state

parameters or the vector state
−→
θt at time t. If yt represents the experimental data,

the problem amounts to how to relate the vector state
−→
θt to yt. This relationship

can be built up using a number of factors. Mainly it is a deterministic relating

the concentrations of solute in the solvent and the size of the particles. Additional

information, such as that originating from e.g. visual images of disintegrating or

disintegrated dissolving compacts or powder might also be incorporated if available.

But usually this is not enough, because there are factors, whose effect on yt unknown,

and as stated above, yt might contain noise, related to either of:

• spatially heterogeneous hydrodynamic conditions
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• measurement error.

• model-related error.

The inverse model can take the form:

yt = F (
−→
θ t) + ut

F () is a deterministic functional relationship between the state parameters at

time t. ut is some noise component. For simplicity, it can be chosen to be Gaussian

with zero-mean, but this is not always the case. For example, at each point in time

the variance of uyt can be weighted by the experimental measurement error range

exhibited in the experimental part, as in Meyer and Millar (1999a,b).

In order to introduce into the model the system’s time evolution in time and to

be able to use feedback mechanisms (such as a Markov Chain1), the following can

be introduced:

yt = F (
−→
θ t, ψ) + uyt (6.2.1)

−−→
θt+1 = G(

−→
θ t) +−→vt (6.2.2)

where ψ represents some extra parameters, the nature of which can be related

e.g. to particle shape. Equation (6.2.2) describes the time evolution of the model. It

is composed of two terms: a stochastic term −→vt and a deterministic term G(
−→
θ t). The

deterministic term is a functional relationship describing update of the vector state
1A Markov chain describes at successive time steps the states of a system. The changes of state

are called transitions. The Markov property means that the conditional probability distribution of
the state in the future, given the state of the process currently and in the past, depends only on its
current state and not on its state in the past.
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between time j and j + 1. The stochastic term, vt, accounts for additive dynamical

noise factors, which can be related to either of:

• the speed of evolution of the states of the system.

• the time-dependent flow conditions.

• the correctness of the time-evolution model G.

The extra Equation (6.2.1) also provides the basis for intervention in the simulation

on the basis of a priori knowledge or gross deviations of the new F (
−→
θ t, ψ) from ex-

pected results. Figure 6.1 gives a schematic representation of the material described

above.

The previous knowledge of the parameters can be refined by through comparisons

with the data, by performing what is calledempirical updating. It can be performed

on the basis of the classical Bayesian paradigm, which relates probability distribu-

tions as presented in the methodology chapter (Chapter 3). In this particular case

the measurements are a time-series of dissolution data, with a single value for each

time-moment t: yt and
−→
θ represent the unobserved physical quantities of interest,

or the state parameters, seeking to give confidence intervals estimates for them.

Assuming that the noise ut is Gaussian and depends on yt, then at each discrete

time step j, the likelihood probability distribution is given by:

Ppost(yj |−→θ ) =
1

σyj

exp(− 1
2σyj

(yj − F (
−→
θ j)2) (6.2.3)

where σyj is the variance of the random variable ut.

Generally, sampling Ppost(−→y |−→θ ) can be performed by generating values for F (
−→
θ )

corresponding to a sample of
−→
θ taken from P (

−→
θ ) . The functional relationship

F () for different
−→
θ is accepted or rejected depending on whether it predicts the

experimental data −→y within a certain tolerance threshold. This is an example of
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Figure 6.1: Diagram summarising the concept of modelling the problem of particu-
late dissolution from a stochastic point of view.
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feedback mechanism. Section 6.4 provides more details on how different
−→
θ can be

sampled.

6.2.2 Time evolution model

6.2.2.1 Particle size distributions

Parametric distributions Despite their tendency to be oversimplistic, log-normal

and normal parametric distributions are quite good as first approximations for mod-

elling the particle size distribution of different systems consisting of many particles.

As well, there are examples in literature, where log-normal and normal distributions

are used to describe different pharmaceutical polydisperse systems (Almeida et al.

1997 and references therein).

The log-normal function has also been used by Ramachandran and Kandlikar

(1996) and Voutilainen and Kaipio (2005) for estimation of aerosol size distribu-

tions. Here is an illustration of practical application of the log-normal distribution

as a parametric approximation for the size distribution function. The distribution

is assumed to vary over time as the dissolution takes place, while, for simplicity

reasons, at each new time step j + 1, the distribution has again a log-normal shape,

characterised by a new vector of parameters
−→
θ j+1 . From the previous section, the

objective is clearly to estimate these parameters as the solution of a time-discrete

problem: i.e. to estimate values of the unknown parameters
−→
θj at each time instant

j, j = 1, ...,m.

For a log-normal distribution, the number concentration of particles in a size

range [x, x + dx] is:

N totj = f(x;
−→
θ ) =

Ntotj

µlnσj

√
2π

exp(−1
2
(
lnx− lnµj

lnσj
))dx (6.2.4)

where Ntotj is the total number of particles at time j, µj and σj are the mean and

standard deviation of the distribution at time instant j, respectively. Thus, for each
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time instant j, there are these unknown parameters to determine, and the vector of

unknown parameters at the instant j is defined as follows:
−→
θ j = (Ntotj , lnµj , lnσj),

as in Ramachandran and Kandlikar (1996); Voutilainen and Kaipio (2005). Through-

out the rest of this study, normal distributions will be considered because it will be

based on data from Almeida et al. (1997), who argue for normal size distributions

on the particles used in their study. Hence, hereafter
−→
θ j = (Ntotj , µj , σj).

Equation (6.2.2) relates the parameters characterising the particle size distribu-

tion at instant j to those, characterising it at j + 1. The equation thus describes

the transition (Ntotj , µj , σj) → (Ntotj+1 , µj+1, σj+1). In order to find a way to de-

fine this transition, a technique to update the decreasing diameters of the particles

deterministically, as they dissolve, is needed, i.e. the function G() from Equation

(6.2.2). The subject of the following subsection is to discuss ways in which classical

diffusion models can contribute to writing the deterministic part of Equation (6.2.2)

for the time evolution of the size distribution.

Non-parametric distributions In cases where experimental data are not

amenable to modelling by parametric distributions, non-parametric models can also

be used to model the size distributions in the case of polydisperse systems. In prac-

tice, these distributions are represented by using a discretisation of the range of

particle sizes (diameters in this case) in n intervals, as in A. Voutilainen and Kaipio

(2001). Each interval is characterised by the minimum, xmin,i and maximum, xmax,i

or by the mean value, xi = xmax,i−xmin,i

2 , where i = 1...n. The idea is to associate

with each size interval (xmin,i , xmax,i), the number of particles in this size range,

Ni, or the proportion of particles is this size range, Ni
Ntot

.

It is possible to deduce the parameters of the associated normal or log-normal

distributions using definitions for the geometrical mean and variance:
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µ =

n

∑

i = 1

xi
Ni

Ntot
(6.2.5)

σ2 =

n

∑

i = 1

(xi − µ)2
Ni

Ntot
, (6.2.6)

6.2.2.2 Dissolution models

Classical dissolution models have proved quite satisfactory when applied to short

dissolution periods and equally sized particles (Almeida et al., 1997). Most diffusion

models describing the dissolution kinetics for particulate systems are a result of the

integration of the Noyes-Whitney equation (Noyes and Whitney, 1897):

dC

dt
=

Dα

hV
(C − CS) (6.2.7)

where dC
dt is the rate of variation of concentration of solute, CS is the concentra-

tion at saturation, D is the diffusion coefficient, independent of the concentration

and normal to the solid surface, α is a shape factor related to the general shape of

the particle and h is the thickness of the diffusion layer outside the solid surface (the

boundary layer).

The boundary layer is the result of a simple two state model where two types

of molecular flux (from the particle surface, along the surface normal, into the bulk

and the opposite) are considered. The two types of molecular flux are diffusive (near

the surface) and convective (in the bulk liquid) (Rost and Quist (2003); McMahon

et al. (2003); Crane et al. (2004a)). The boundary layer thickness at a point varies

inversely with the stirring rate. Rost and Quist (2003) considers that, since the

boundary layer is a result of a simplification, it’s exact thickness is of little interest.

References in (Rost 2003) indicate that the boundary layer thickness is in a range
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h ' 30 − 60 µm under normal stirring conditions. However, recent studies (Crane

et al. 2004a; McMahon et al. 2003) show that the boundary layer thickness depends

both on the stirring conditions and the shape and size of the solid immersed into

a stirred liquid. In the case of the USP apparatus II, as mentioned above, the

boundary layer thickness depends strongly on the flow conditions in the apparatus.

Some assumptions of the Noyes-Whitney model are:

• fairly intense stirring

• monosized particles

• constant area available for dissolution

A number of models have been obtained by integrating Equation (6.2.7), but the

three conditions mentioned are still required for all models deduced.

The following relations give, for a fixed number N of very small monosized par-

ticles, the total weight of suspended solids at the time j + 1, wj+1 :

w
2
3
j+1 = w

2
3
j −N

2
3 k∆t, k =

2D

3k
α(

6
πρ

)
1
3 CS (6.2.8)

As the particles are assumed monodisperse, their area, exposed to the dissolution

buffer, is directly proportional to a fraction of the weight of the solid: w
2
3 . It was

noted (Higuchi and Hiestand, 1963), that the boundary layer is proportional to the

particle diameter, especially for quite small particles. Thus h = kd in this particular

model, ∆t is the time elapsed between two consecutive time points j and j +1 and d

is the diameter of the particle (other parameters are defined as for Equation (6.2.7)).

For larger particles, the following equations were found to be more suitable:

w
1
3
j+1 = w

1
3
j −N

1
3 k∆t, k =

2D

3hxcrit
α(

6
πρ

)
2
3 CS (6.2.9)

In this model, h is considered constant, thus approximately independent of the

particle size. xcrit is the critical diameter. The model given by Equation 6.2.9 can

132



be applied for particles larger than this critical value.

Simulations based on models, where the surface exposed to the dissolution

medium does not vary with time, give good agreement with experimental data,

but only for short time periods, corresponding to the beginning of the dissolution

process. Simoes et al. (1996b) clearly indicate that truly monosized systems do not

exist in practice and rules, which account for the polydisperse nature of the real

powders, have to be followed.

In order to satisfy the three conditions under which the diffusion model can

be applied (intense stirring, monosized particles, constant surface area), time dis-

cretisation and a split of the particle size distribution in classes can be performed.

Equations (6.2.8) and (6.2.9) can be applied to each size class at each time point, as

in Almeida et al. (1997). After each time interval, a new value of xi can be computed:

xnew,i = (
6ωt+∆t,i

ρNiπ
)

1
3 (6.2.10)

For each time step, it is thus possible to analyse the initial distribution, and for

each size class, to apply the diameter updating equation (6.2.10) as G(
−→
θj ), beginning

with the upper range of diameter values. If xnew,i < xmin,i, then a number of

particles, Ni, is discarded from the class i and assigned to another size class, or

completely discarded from the system if the particles are too small.

Because of fluctuations in the hydrodynamics in the apparatus, this updating

may not reflect particularly well the exact way in which the particles pass through

different size classes. As stated earlier, this is one of the reasons why the stochastic

term −→v t is being used in Equation 6.2.2.

With the newly-obtained distribution, Equations (6.2.5) and (6.2.6) can be used

to calculate the following new vector of parameters:

−→
θ new,j = (Nnewtotj , µnew,j , σnew,j) = G(

−→
θj )
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The following transition probability from one state of the system to the another,

is also refereed to as transition kernel, i.e. a “probability distribution”-oriented in-

terpretation of Equation (6.2.2):

P (
−→
θ j+1|−→θj ) = N(G(

−→
θ j+1), Γj) (6.2.11)

Γj =




γ2
Ntotj

0 0

0 γ2
µj

0

0 0 γ2
σj




(6.2.12)

It represents the probability distribution of the vector of parameters
−→
θ j+1 ,

given the value of
−→
θj . The matrix Γj represents the noise term vt from Equation

6.2.2. In order to obtain the probability distribution for
−→
θ j+1 one has to solve

Equation (6.2.11), which is far from being a trivial task, (Meyer and Millar, 1999b;

Voutilainen and Kaipio, 2005). Examples of techniques to solve it are sampling the

joint distribution given by Equation (6.2.11), using a Monte Carlo Technique like

the Gibbs Sampler or Particle Filtering, ((Mosegaard and Sambridge, 2002; Meyer

and Millar, 1999b; Voutilainen and Kaipio, 2005).

6.2.3 Particle Filtering

As mentioned in Chapter 3, particle filtering is a Sequential Monte Carlo method,

for sampling from a sequence of probability distributions. Here, particle filtering is

adapted for our specific drug dissolution problem.

Equation (3.4.1) can be developed in the following way:

Ppost(
−→
θj |y1:j) =

L(yj |−→θj )P (
−→
θj |y1:j−1)P (y1:j−1)

P (y1:j |y1:j−1)P (y1:j−1)
=

L(yj |−→θj )P (
−→
θj |y1:j−1)

P (y1:j |y1:j−1)
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∼ P (yj |−→θj )P (
−→
θj |y1:j−1) (6.2.13)

P (θj |y1:j−1) =
∫

P (
−→
θj |−→θ j−1)P (

−→
θ j−1|y1:j−1)d

−→
θ j−1 (6.2.14)

The probability of the state parameters at time j or the proposal density is given

by Equation (6.2.14), where the probability of the current state is driven according to

a family of independent events which are all possible:
−→
θ j−1, or all possible previous

states and P (
−→
θ j−1|y1:j−1) is the posterior probability at step j − 1. As solving

Equation (6.2.13) is a multidimensional integration problem, Monte Carlo techniques

can again be used.

The distribution P (
−→
θ j−1|y1:j−1) can be represented by a rich sample, which

approximates it. Suppose such a sample is available, and let {−→θ (k)
j−1, k = 1, ..., p} be

such a sample from the marginal distributions p(
−→
θ j−1|y1:j−1) 2. Using the evolution

density, a sample {−→θ k
j } can be obtained. If

−→
θ k

j−1 is one member of the sample

{−→θ k
j−1, k = 1, ...,m}, then we first compute the corresponding values of wk

t+∆t,i,

then update the corresponding particle size distribution and use the evolution density

P (
−→
θ j |−→θ k

j−1) in order to generate a new value for
−→
θ k

j , as described in the previous

section. To summarise:

−→
θ k

j−1 → wk
t+∆t,j−1 → Gk(

−→
θ j−1) → transition kernel → −→

θ k
j → wk

t+∆t,j (6.2.15)

Having generated the new sample, we approximate P (
−→
θ k

j 1:j):

2We consider the distribution of Ntotj−1,µj−1 and σj−1 (and as the remainder of the chapter will
show, possibly other parameters) which are jointly distributed random variables. The marginal dis-
tribution of one of the members of the vector

−→
θ j−1 is the probability distribution of , say Ntotj−1 ,

ignoring information about the other members of the vector, such as µj−1and σj−1 A marginal
distribution would be theoretically calculated by summing or integrating the joint probability dis-
tribution over µj−1and σj−1.
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P (
−→
θ k

j |y1:j) =
L(yj |−→θ k

j )

p

∑

k = 1

L(yj |−→θ (k)
j )

(6.2.16)

The likelihood for each member of the sample is calculated according to Equation

(6.2.3) where

F (
−→
θ k

j ) =

n

∑

i = 1

wk
t+∆t,j,(i) (6.2.17)

This represents the total quantity of mass transferred into the solution at time

step j, given the size distribution
−→
θ j for all size classes i and the dissolution model

defined by the Equations (6.2.8) and (6.2.9).

So, at the end of one step, an array containing the couples {
−→
θ k

j , P (
−→
θ k

j 1:j)} is

available. This can be used to draw the marginal probability distributions for each

element (for the next step) in the vector
−→
θ k

j and to compute:

• The maximum likelihood estimate, given by the mode of the obtained posterior

distribution.

• The minimum variance Bayes estimate or the minimum a posteriori estimate:

θ̂j =

p

∑

k = 1

(
−→
θ k

j P (
−→
θ k

j 1:j)) (6.2.18)

The standard deviation of the expected value is given by:
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ŝ−→
θ j

=

p

∑

k = 1

((
−→
θ k

j − θ̂j)2P (
−→
θ|kj y1:j)) (6.2.19)

6.3 Data

Situations for which inverse modelling is suitable vary from case to case. In the

absence of real and complete dissolution data, it was decided to simulate a dissolution

experiment and to use the results for testing/validating the modelling technique

presented for reconstruction of unobserved data.

Subsection 6.2.2.2 presented the deterministic theory suggested in Almeida et al.

(1997) to model dissolution in a particulate system, by updating the particle size

distribution as the particles dissolve. Almeida et al. (1997) used the Coulter multi-

sizer experimental technique to count and size the particles from the powders used.

The results showed fairly normal distributions of the particle sizes. The methodol-

ogy proposed to describe the dissolution of these powders, uses the experimentally-

determined characteristics of the drug and takes into account the polydisperse nature

of the powder.

As the size distributions experimentally-determined are not available, the

Almeida et al. method was used to generate the data for the validation of the

proposed inverse theory. As real distributions of ibuprofen particles were found to

be normally distributed, the size distribution is kept normal in the direct simula-

tion. The generated normal distributions are discretised: the numbers of particles

are recorded for each interval ∆x of the size range.

6.3.1 Inputs and outputs

The direct simulation needs as input the following parameters:

• the mean of the initial distribution, µ0
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• the standard deviation of the initial distribution, σ0

• the total number of particles from the initial distribution, Ntot0

• the range of the distribution

• the length of the intervals ∆x for the discretisation of the distributions

• the total time of simulation, ttot

• time interval for the time discretisation, ∆tdirect

• time interval for sampling the parameters, ∆tsampling

The outcomes are four vectors available to the user:

Simulation of observed data:

• the weight of the solid mass in the solvent at each ∆tsampling: y(t) =

(y1, ..., yk, ..., yp).

Simulation of unobserved data:

• the means of the distributions at each ∆tsampling: µ(t) = (µ1, ..., µk, ..., µp)

• the standard deviations of the distributions at each ∆tsampling: σ(t) =

(σ1, ..., σk, ..., σp) - unobserved.

• the total number of particles in the solvent at each ∆tsampling: Ntot(t) =

(Ntot 1..., Ntot k, ..., Ntot p) - unobserved.

6.3.2 Data generation

To generate the data, the initial distribution of particles is generated first, using µ0,

σ0 and Ntot 0. Figure 6.3 shows two examples of initial distribution of the particle

size. The orange solid circles, in Figures 6.3, (a) and (b), show the initial distribution
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Figure 6.2: Flowchart of the algorithm used to generate the initial data. Adapted
from Almeida et al. (1997).
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of particles with µ0=25 µm, σ0 = 10 and Ntot 0 = 2 × 106. Figures 6.3, (c) and (d)

show, in orange solid circles as well, the initial distribution with µ0= 45 µm, σ0 = 10

and Ntot0 = 106. Each size class, defined by (xmin,i, xmax,i), contains a number of

particles Ni. The flowchart in Figure 6.2 summarises the algorithm used in the data

generation.

After the initial distribution is generated, the weight of each of these size classes

is calculated using formulas proposed by Almeida et al.:

w0,i = Niρ
π(xmax,i − xmin,i)/2

6
(6.3.1)

where Ni is the number of particles in class i, ρ is the density and xmax,i−xmin,i

is the diameter of the particles from the class i.

Once the initial weights of each class are available, Equations (6.2.8) and (6.2.9)

are used to update the weights as a function of 4tdirect, the previous weights, the

diameters, the number Ni of particles in each size class, the density of the solid ρ,

the diffusion coefficient D, the thickness of the diffusion layer h and the shape factor

α.

After the updated weights in each size class are calculated, Equation (6.2.10) is

used for updating the diameters in each size class. If the updated diameters do not

belong to their previous size class any more, a corresponding swap of class follows. If

the updated diameters are smaller than a critical value, the particles are considered

as dissolved. In this way, both the weights of each size class and the shape of the

histogram have undergone modification corresponding to ∆tdirect and the system is

ready to be re-updated at a new increment of the time counter.

Figure 6.4 shows two examples of generated data sets. Table 6.1 summarises

the input parameters used for generating the data sets. The difference between

them depends on the input value for ∆tdirect. Ten different simulations have been

performed with the same inputs, but with different seeds for the random number

generator, which was used in the method for generating the initial distribution. The
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Figure 6.3: Dynamics of the size distribution.
a) µ0 = 25µm, updating each ∆tdirect=1s.
b) µ0 = 25µm, updating each ∆tdirect=200s.
c) µ0 = 45µm, updating each ∆tdirect=1s.
d) µ0 = 45µm, updating each ∆tdirect=200s.
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Figure 6.4: Two data sets obtained by simulation with the input parameters indicated
in Table 6.1. The fine data set corresponds to ∆tdirect = 1s and the coarse data set
corresponds to ∆tdirect = 200s.
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Ntot0 µ0 (µm) σ0 ttot(s) ∆tdirect(s) ∆x(µm) tsampling

100000 45 10 3600 1 and 200 1 200 in both cases

Table 6.1: Inputs for the direct simulation.
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Figure 6.5: Coefficient of variation for a) the weight of the particles b) the mean of
the size distribution.

curves represented in Figure 6.4 are obtained by computing the averages for the four

output parameters: the weight of the solid w(t), the mean of the distribution µ(t),

the standard deviation of the distribution σ(t) and the total number of particles in

the distribution Ntot(t). The variability of the generated data, related to the initial

histogram, is much reduced, in comparison with the means of the values, as shown

by the coefficients of variation 3 illustrated on the Figure 6.5.

6.3.3 Discussion

6.3.3.1 Data structure

As indicated in Table 6.1, the sampling is done, in both directly simulated data sets,

at a sampling interval tsampling= 200 s. As seen in Figure 6.4, there is a difference

between the data simulated using a small time step (referred to as fine-grained direct

simulation) and the data obtained using a larger one (referred to as coarse-grained
3Coefficient of variation cv is a measure of dispersion of a probability distribution. It is defined

as the ratio of the standard deviation σ to the mean µ.
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direct simulation). In the case of fine step simulations the same number of particles

dissolves more quickly. In addition, the fine step simulations show more variability in

the tails of the distribution compared to the coarse step simulations. The remainder

of this section first discusses the structure of the data, giving some interpretations

of its dynamic behaviour and then concludes how can it be used for verifying the

inverse algorithm.

The fine simulations therefore seem to represent more exactly what happens in

the solution. In the algorithm for the generation of the direct data, (presented in

the previous section, at every time step ∆tdirect), the new weight for each size group

of particles is computed. Two cases can occur for group i:

1. wt+1 > 0. Based on this, the new diameter is established and Ni particles are

moved, if the case, to the corresponding size group. This case is most likely to

occur when ∆tdirect is small enough, and the Ni particles are large enough not

to completely dissolve during this value of ∆tdirect.

2. wt+1 = 0. This means that Ni particles have dissolved completely during

∆tdirect. In this case, all of the particles are directly discarded from the sys-

tem. The problem of large ∆t is that this situation occurs very often and, as

a result, the system is solving more slowly.

In fine step simulations, case 1 mostly applies. Most particles, especially large ones,

smoothly move from class to class until they are discarded. Conversely, when a large

time step is used, in the case of coarse step simulations, case 2 occurs more often.

For example, size class i contains Ni=15 particles which can dissolve in 50 s. With

∆tdirect=1 s, the particles dissolve completely only by passing from class to class,

over 50 s. However, with time step ∆t=200 s the particles lose their weight instantly

without traveling through size classes and the rest of the time left in this time step

nothing more happens.

This implies that, if one computes the weights using a coarser algorithm, accu-
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mulation of error is inevitable. Figure 6.4 shows the dissolution profiles in coarse

and in fine simulations. The fluctuations of the µ at tail end of the fine step sim-

ulation is probably due to the small number of size classes remaining populated at

the end of the dissolution. In Figure 6.3, which illustrates how the shape of the

distribution changes over the time, it can be seen that, especially at the end of

the dissolution, fine step simulations tend to have fewer populated size classes then

coarse step simulations. In simulations where ∆tdirect=1 s, size distributions tend

to organise themselves into fewer classes than when simulating with coarser time

steps. In fact the distributions obtained with fine and coarse time steps are almost

equivalent, but coarse simulations supress the detailed picture. The difference is that

size distributions from coarse step simulations tend to organise into more classes.

Figure 6.6 shows how the number of populated classes varies with the time as a

function of the chosen ∆tdirect.

The distributions generated with fine time steps are closer to the real data be-

cause they satisfy the conditions4 for which the Equations (6.2.8) and (6.2.9), used

in the algorithm, apply, (Subsection 6.2.2.2 and Almeida et al. 1997). However, the

fact that for ∆tdirect = 1 s the distributions are not well defined, with fewer pop-

ulated size classes, argues for the fact that the simulated data which are closest to

the real data are probably those with 3 s < ∆t < 10 s.

In addition, Figure 6.3 illustrates how the distributions switch from being normal

to disordered at the end of the dissolution, as the number of unpopulated classes in-

crease. Correspondingly, sampling from a normal distribution at all dissolution times

while performing inverse simulations will affect the quality of the reconstruction.

6.3.3.2 Implications for inverse simulations

In inverse simulations, comparison needs to be made with observed data (yj) at

every ∆tinverse, whether the (yj) are either directly simulated or experimental results.
4 constant area available for dissolution is assured by the small time steps in the simulation
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Figure 6.6: Number of populated classes of the size distribution as a function of time
and the time step used for the simulation.

Consequently ∆tinverse is dictated by available experimental ∆t. In real experiments

these data are collected at quite sparse time intervals. For example, in Almeida et al.,

data on the state of the system is collected every 100 or 200 s. The time step of

experimental data collection implies that the likelihood can be evaluated only at

those time points, where data are available to perform computation. For this reason

this work supplements sparse experimental points by using directly simulated data

and ∆tdirect is input by the user.

As discussed above, it is better to generate this data (yt) with rather small

∆tdirect, as ∆tdirect> 10 s is shown to generate error-prone results. In contrast, for

inverse simulations, distributions are re-updated and re-sampled at ∆tinverse which

is quite large, meaning that the model definitely accumulates error. This error is

part of the error vt (Equation 6.2.2), related to the validity of the evolution model

G(t).

The target here is to check if the inverse simulation will permit reconstruction of

the original, fine-step generated unknown parameters.
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6.4 Modelling

6.4.1 Adapting the Particle Filtering algorithm to the problem

Subsection 6.2.3 presented the theoretical premises for inverse Monte Carlo sam-

pling. It has been shown how a dissolution problem can be put into a Bayesian

framework and how it’s dynamic part can be handled through a “transition kernel”.

The target of Bayesian analysis is to determine the posterior probability distribu-

tion Ppost(
−→
θ |y), w (the probability distribution of the parameters of interest given

the model and the observed data). It has also been shown that Ppost(
−→
θ |−→y ) can

be written as a product (Equation 6.2.13) of the likelihood density P (yj |−→θ j) and

the prediction density P (
−→
θ j |−→y 1:j−1), of the set of parameters

−→
θ at time point j,

given previous experimental data −→y 1:j−1. This distribution is also referred to as the

prior distribution at each time step j. In most cases it is not possible to analytically

solve the stochastic Equation (3.4.1) (Meyer and Christensen, 2000b; Voutilainen and

Kaipio, 2005), and this is why various sampling techniques have been developed and

applied (for review on various sampling techniques see Mosegaard and Sambridge,

2002). For example, one could employ a basic importance resampling (SIR) filter

(Mosegaard and Sambridge, 2002) so that the prediction density P (
−→
θj |y1:j−1) is first

sampled and the likelihood density P (yj |−→θj ) is then evaluated at each sample to

obtain importance weights (Voutilainen and Kaipio, 2005), which are a measure of

the likelihood of the given sample. Figure 6.7 summarises the process described in

this subsection.

In order to avoid evaluating the likelihood density at each sampled point and

getting trapped in the neighbourhood of local maxima of the likelihood distribution,

an alternative way of performing the computations has been presented in Subsection

6.2.3. The remainder of this subsection summarises the way in which particle filtering

was applied in the algorithm written for this study.
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Figure 6.7: Diagram summarising the particle filtering process used in this chapter.
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Assuming that:

{−→θ (k)
j , k = 1, ..., p} (6.4.1)

is a sample from the marginal filtering density P (θj |y1:j−1), a population of size p

of quadruplets of the parameters of interest (Nk
totj , µ

k
j , σ

k
j , αk

j ), k = 1, ..., p is then

available. The parameter α is the shape factor, (discussed in detail in the following

subsection). Each quadruplet defines a possible discrete particle size distribution at

time j. These size distributions will be further referred to as “histograms”, to avoid

confusion with the probability distributions for parameters discussed in this section.

For each histogram from the population, k, the theoretical weight wk
j (given by

Equation (6.2.17)) at time j is computed. In comparing wk
j to yj , given by the

experimental points, an importance weight ωk
j (omega) is assigned to each sample

−→
θk
j , using the normal likelihood density, defined in Equation (6.2.3) and Equation

(6.2.16). The minimum variance Bayes estimate is given by the expectation of the

posterior density function (joint filtering density), P (
−→
θj |y1:j), which can be approxi-

mated by a weighted sum of the samples, Equation (6.2.18) , i.e:

θ̂j =

p

∑

k = 1

−→
θk
j ωk

j (6.4.2)

The sample (
−→
θ

(k)
j ) from the marginal prediction densities P (

−→
θ j |−→y 1:j) is used

to generate a sample (
−→̃
θ

(k)
j+1) from the prior prediction density at the next time

step P (
−→
θ j+1|y1:j), using the deterministic part defined by the Equations (6.2.8),

(6.2.9) and (6.2.10) and the transition kernel defined by a modified form of Equation

(6.2.11):

P (
−→
θ j+1|−→θ j) = N(θ̂j+1, Γj+1) (6.4.3)

where θ̂j+1 is the minimum variance Bayes estimate for the sample (
−→̃
θ

(k)
j+1) and

149



Γj+1 are some conveniently chosen standard deviation values. Now the loop is closed

because a new sample, given in Equation (6.4.1) for time j+1 is obtained by sampling

from Equation (6.4.3).

6.4.2 Shape factor

The shape factor α features in both Equations (6.2.8) and (6.2.9), and is needed

to calculate the evolution of the weight of the particulate system over time. It is

normally an unknown constant parameter and the inverse simulation will be used to

estimate the distribution of its most probable values.

At the beginning of the simulation, the shape factor is sampled from a uniform

distribution. The difference between this parameter and other estimated parameters

is that it does not undergo any modification by transition to the following step,

i.e. in the next time step it can be sampled from the same uniform distribution as

initially, or from a normal distribution centred on the previous estimate. The uniform

distribution leads to the most conservative estimate of uncertainty; i.e., it gives the

largest standard deviation. The value of the shape factor, obtained (Almeida et al.,

1997) by fitting simulated data to experimental points, is found to be α=4.1.

6.4.3 Credibility intervals

In a Bayesian framework, credibility intervals are the equivalent of confidence inter-

vals in normal inference. Finding a 100(1 − β)% credibility interval means finding

an interval of the form (
−→
θa,

−→
θb ) such that:

∫ −→
θb

−→
θa

ppost(
−→
θ |−→y )dθ = 1− β, (6.4.4)

where β is small, usually chosen such that there is at least 95% probability of the

estimated parameters being in the intervals (
−→
θ a,

−→
θ b). Suppose the unknown (poste-

rior) distribution is N(mean, stdev), with known stdev and the prior distribution is
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N(mean0, stdev0). In order to find out the credibility interval, an independently and

identically distributed sample, (
−→
θ1, ...,

−→
θp) from N(mean0, stdev0) has to be available.

In this context, the posterior distribution for the mean is, (Small, 2006):

N




mean0

stdev2
0

+ pθ̄
stdev2

p
stdev2 + 1

stdev2
0

,
1

p
stdev2 + 1

stdev2
0


 (6.4.5)

where θ̄ is the average the sample (
−→
θ1, ...,

−→
θp) and the 95% credibility interval for

the mean is, (Small, 2006):

mean0

stdev2
0

+ pθ̄
stdev2

p
stdev2 + 1

stdev2
0

± 1.96
(

p

stdev2
+

1
stdev2

0

) 1
2

(6.4.6)

In the context of the present model, samples from the posterior distribution

Ppost(
−→
θ |y) are not directly available. This distribution is sampled using the following

distribution P (
−−→
θj+1|−→θj ) = N(θ̂j+1, Γj+1). In addition, a particle filtering technique

is used to compute the minimum variance Bayes estimates θ̂j (Equation (6.2.18))

and its standard deviation ŝ (Equation (6.2.19)), using the weights evaluated for the

previous sample. Then, the interval (
−→
θ1, ...,

−→
θp) consists of a single value which is θ̂j .

meanprior is used to designate the mean of the prior distribution for sampling at the

given step, thus meanprior = mean0. In this case Equation (6.4.6) becomes:

meanprior

γ2 + θ̂j

ŝj

1
ŝj

+ 1−→γ 2
j+1

± 1.96


 1

1−→γ 2
j+1

+ 1
ŝj




1
2

(6.4.7)

where ŝj is the standard deviation for the minimum Bayes estimate and
−−→
γ2

j+1 is

the standard deviation of the prior distributions, (the values from the diagonal of

the matrix Γj+1).
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6.4.4 Results and Discussion

This section shows results from the implementation in C++ of the material presented

above. First, the choice and influence of the prior distributions for the parameters are

discussed, the likelihood distribution is introduced, then the effect of the size of the

sample populations chosen to perform the inverse simulations is analysed. Results,

obtained with directly simulated data obtained using both fine and coarse time steps

are then presented. At the end of the section, the obtained results on the credibility

intervals, together with the distributions for the parameters, are illustrated.

In the following reconstructions, based on inverse simulations, the sampling time

step was chosen at ∆tinverse=200 s (see Subsection 6.3.3.2), while the sampling time

step used in the directly simulated data for the prior distribution, ∆tdirect = 1s (fine-

grained time step) and the number of samples p = 2000, unless otherwise specified

in the text.

6.4.4.1 Effect of the prior distributions

From Section 6.4.1, the transition from one step to another is achieved by using the

transition kernel, and is described by the expression: P (
−→
θ j+1|−→θj ) = N(θ̂j+1,Γj+1)

(Equation 6.4.3). This equation describes how each of the parameters is sampled, at

a new time, by first performing a deterministic dissolution step (Equations (6.2.8),

(6.2.9) and (6.2.10)), based on the parameters sampled at the previous step and

their weights, (obtained using a normal likelihood distribution, specified in Equation

(6.2.17) and discussed in Section 6.4.4.2) and finally, by calculating and applying the

minimum Bayes estimate (Figure 6.7). In the first step, initial distributions for the

four parameters need to be specified. Table 6.2 shows the prior distributions used

to obtain the results shown in the following sections.

To avoid confusion with values from the other sections, meanprior is the mean of

the prior distribution for sampling at the given step, (the four values of the vector

θ̂j+1), γ’s are the standard deviation of this distribution (figuring on the diagonal of
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Parameter Distribution meanprior γ min max

Ntot0 Normal 100000 100 90000 110000
µ0 Normal 45 2 0 47
σ0 Normal 10 1 8 12
α Uniform NA NA 1 7

Table 6.2: Initial prior distributions for the parameters
−→
θ 0.
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Figure 6.8: Effect of the prior distributions on the total number of particles Ntot.

the matrix Γj+1: γNtotj
, γµj , γσj and γαj ) and min and max are the minimum and

the maximum limits of the distributions (in the case where they are truncated).

Table 6.3 specifies the prior distributions used for all following steps of the sim-

ulation. They have been chosen, based on the structure of the data and on best-

performance basis as well. In the case of the parameter Ntot, the standard deviation

of its prior distribution is chosen to be directly proportional to its predicted value,

because throughout the dissolution process, this parameter spans a very large range

of values. In the case of the other parameters, their standard deviation γj+1 can also

be set proportional to the value of the predicted values θ̂j+1. However, in comparison

to Ntot, these do not take a large range of values, so constant values for γj+1 have

been chosen, based on the mean values.

Figure 6.8 shows the effect of different priors for the parameter Ntot, charac-

terised by their different standard deviations, in the inverse simulation. As shown in
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Parameter Distribution meanprior j+1 γj+1 minj+1 maxj+1

Ntotj+1 Normal N̂totj+1 0.001×N̂totj+1 0 N̂totj+1

µj+1 Normal µ̂j+1 3 0 45
σj+1 Normal σ̂j+1 3 0.5×σ̂j+1 15
αj+1 Normal α̂ 3 0 10

Table 6.3: Initial prior distributions for the parameters
−→
θ j+1.

Case 1 Case 2 Case 3
γNtotj+1 0.001× N̂totj+1 0.01× N̂totj+1 0.1× N̂totj+1

Label on Fig. 6.8 small middle large
Quality of fit to the data good best poor

Table 6.4: Three cases of marginal prior distribution for Ntot.

Table 6.4, the prior chosen for Case1 has the smallest value among the three cases

examined: γNtotj+1 = 0.001× N̂totj+1. In Figure 6.8, (a) it can actually be seen that

Case2 tends to perform better than Case 1, yielding a result which is the closest to

the direct Ntot profile. However, as the overlapping credibility intervals of the Case

1 and Case 2 experiments show, these are not significantly different. On the other

hand, Case 3 demonstrates that when the prior for Ntot becomes too general, this

produces a too rapid decrease of the value of the parameter Ntot over time, Figure

6.8, (a). The credibility intervals shown in Figure 6.8 are those obtained for this

last experiment and it can be seen that the direct Ntot profile is outside these inter-

vals. The wrong direction for reconstruction, as illustrated on Figure 6.9 (left-hand

side), is “fuelled” by picking smaller Ntot in combination with larger values for the

mean µ of the size distributions, Figure 6.8, (b). Thus, a “loose” prior distribution

for Ntot conditions a good reconstruction of the evolution profile of the “observed”

weights yj in the system, but does not reconstruct correctly the distributions of more

problematic parameters like those included in the vector
−→
θj .
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6.4.4.2 The likelihood distribution

As mentioned earlier, at each step of the inverse simulations, the marginal conditional

distributions (for the parameters included in the vector
−→
θj ) are sampled and the

likelihood distribution is used in conjunction with sample values in order to obtain

importance weights, (Equations (6.2.3), (6.2.17) and (6.2.16) and Figure 6.7). The

likelihood distribution used for the testing of the theory here is equivalent to the

following: wij − yj ∼ N(0, 0.1yj) for all j except the last two values (j = 3200 s and

j = 3400 s) because for these particular values the distribution is very variable and

not Gaussian any more, so we choose wij − yj ∼ N(0, 2).

Actually, it is not strictly correct to use a Gaussian likelihood distribution in

the case where we use directly simulated data with a fine time step, rather than

an experimental dissolution profile. This is because fluctuations obtained with the

coarse-grained time step of the inverse simulation are definitely biased, (the coarse

time stepping makes the dissolution slower, see Figure 6.4). However, in this work

the normal distribution has been chosen for the likelihood because the target is to

investigate performance of the theoretical Bayesian reconstruction approach for a

drug dissolution problem, rather than to fine-tune for acceptable levels of bias. The

results of the simulations have shown quite good performance for the Gaussian-based

likelihood used.

6.4.4.3 Effect of the size of population on variability of the estimated

parameters

At each time step of the particle filtering, a population, size p, of histograms is

generated by the inverse simulator. Typically, the value of p (chosen by the user)

has to be large enough to assure convergence of the simulation, but small enough not

to render the simulation too computationally intensive. In this subsection, sensitivity

analysis on the effects of the size of the sample (population) is performed.

The simulation was allowed to run for five different sizes: p1=100, p2=500,
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Ntot0 µ0 (µm) σ0 ttot(s) ∆tinverse(s) ∆x(µm) p

100000 45 10 3601 200 1 100, 500, 1000, 2500, 5000

Table 6.5: Inputs used for verifying the effects of the population size used in the
inverse simulations

Figure 6.9: Typical error source due to using marginal distributions instead of joint
distributions for the priors. Both size distributions are likely to be selected by the
algorithm.

p3=1000, p4=2500, p5=5000, with the fine-grained simulated data as input, Table

6.5. For each size p, the program was computed over 25 runs with different seeds.

The average M25 runs and the standard deviation sd25 runs for each of the estimated

parameters were computed. These results have been compared for the five different

population sizes and over the entire period of dissolution.

The main observation from the results is that, with increase of population size,

the simulations converge better, as shown in Figure 6.10 and 6.11, (b, d). These Fig-

ures illustrate that standard deviations obtained over 25 runs decline as the number

of individuals in the population increases up to p5=5000. It can be observed that

parameters µ, σ and shape parameter α are quite stable, especially in the first two

thirds of the dissolution process. In the last third of the simulation, higher standard

deviations are observed. This is due to the structure of the data: note that it was

shown that at the end of the dissolution process the size distribution departs from

Gaussian and becomes quite disordered (see the distribution from Figure 6.3, (c,

d) and the coefficients of variation in Figure 6.5, (a, b)). From this point of view,

the data is reconstructed well with p larger then 100. The parameter Ntot behaves

differently to the other three parameters: it is most variable in the middle of the
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reconstruction. Reasons for this are that at the start and end the number of particles

is respectively very large and very small, but in the middle it can fluctuate because

of the way the likelihood of the sampled parameters is computed. For simplicity

reasons, the marginal probability of the whole quadruplet is considered, meaning

that both situations indicated on Figure 6.9 may still be possible. The parameter σ

and well selected marginal prior distributions specified at each step keep this effect

under control though. Figures 6.10, (a, b) show, however, that the variability of

Ntot in the middle of the simulation does not distort results in a major way and the

adopted strategy of particle filtering is still valid.

6.4.4.4 Effect of the quality of the data presented to the inverse simula-

tion

In this subsection, two different prior dissolution profiles are used for the in-

verse MC simulator. The first y1(t) is generated with 4tdirect=1s and sampled

at 4tsampling =200 s. The second set of direct data, y2(t), is generated with a

coarse time-step 4tdirect= 200 s and sampled at the same intervals as previously:

4tsampling =200 s. This second y2(t) contains more "measurement error" than y1(t).

From Figure 6.12 it can be observed that the inverse simulation reconstructs

fine-grained y1(t) with more difficulty than coarse-grained y2(t), because for y2(t):

4tdirect=4tinverse. However, even if the time-step of the kernel of inverse simulations

is coarse, the figures show that the simulation is able to reconstruct the parameters

due to the priors. It can also be observed that the correction is made gradually,

so that the estimated values for the number of particles get better towards the end

of the simulation. The average shape factor α obtained with fine-grained time step

prior, is 4.6 and with a coarse-grained time step prior is 4.7, (compared to the real

shape value α = 4.1).
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Figure 6.10: Effects of the population size on the average values of the estimated
parameters Ntot and µ. Figures show the parameters averages over 25 simulations
(a, c), the standard deviations indicated on the curves correspond to the standard
deviations obtained for the smallest population p1=100.
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Figure 6.11: Effects of the population size on the average values of the estimated
parameters σ and α. Figures show the parameters averages over 25 simulations
(a, c), the standard deviations indicated on the curves correspond to the standard
deviations obtained for the smallest population p1=100.
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Figure 6.12: Comparison between inverse simulations obtained using a fine time step
prior dissolution profile and inverse simulations obtained, using a coarse time step
prior dissolution profile.
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Figure 6.13: Credibility intervals for the estimated parameters are given by the
dotted curves.
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6.4.4.5 Credibility intervals

Credibility intervals depend strongly (Section 6.4.3) on the prior distributions (Sub-

section 6.4.4.1) chosen for the parameters at each time step. Figure 6.13 shows the

variation in the credibility intervals obtained over the whole period of dissolution for

the four analysed parameters. The direct data presented for the inverse simulation

was the fine-grained time step direct simulations.

6.5 Summary, conclusions and ideas for future work.

This project involved the use of MC simulations to model drug dissolution from

DDS consisting of a large number of small particles. Regardless of the specific

purpose of the DDS (immediate or sustained release), its physical properties (soluble

or bioerodible) or the medium of dissolution (various in vitro environments or in

vivo environment), multi-particle Drug Delivery Systems result, at dissolution, in

variability related to their particle-size distribution and the way different particles

interact with the dissolution medium. The aim of this work was to increase our

understanding of how the multi-sized dissolving particles cause variability in the

dissolution profiles.

In this purpose, a theoretical Bayesian framework has been proposed. The dis-

tribution of particles at different times of the dissolution, as well as the noise com-

ponents it gives rise to, are considered unknown and stochastic. The stochastic part

is incorporated in the deterministic relationship between the dissolution parameters

and the dissolution profiles. The prototype inverse MC program, implemented to val-

idate the theory, and needing subsequent upgrading for various specific experimental

settings, was tested using simulated dissolution data. This data was considered to

be sufficiently variable to be used by the inverse MC. Hence, no variability specific

to any dissolution medium was added at the data generation.

Nevertheless, the inverse MC model is intended to aid in elucidating dissolution
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of multi-particle systems in the widely-used paddle dissolution apparatus, in order

to understand the inherent variability associated with its test conditions therein, as

well as with the particle distribution.

The inverse MC model developed here was shown in conjunction with well-

detailed sensitivity analysis, in order to illustrate its function and was shown to

perform quite well at reconstructing time-series of particle size distributions. The

results of the sensitivity analyses suggest that prior knowledge about the system is

of utmost importance for model performance, because it is involved in setting the

marginal prior distributions for the unobserved parameters for sampling at each new

time step. Therefore, in the case of modelling any particular in vitro or in vivo

system, any extra knowledge about it is extremely valuable. Some ideas related to

using extra knowledge about particulate systems dissolving in the USP apparatus are

proposed in the Future Work Section from the following overall concluding Chapter

7.

In spite of the proposed theory and the fact that the implemented prototype

deals with a non-disintegrating particulate system, both theory and inverse MC

model can benefit from integrating the behaviour of disintegrating pharmaceutical

systems. The most interesting and challenging part of modelling a disintegrating

system will correspond to building up the transition kernel of the model, because it

will involve abrupt jumps in the number of particles at each time step considered.
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Chapter 7

Summary, Conclusions and

Future Work

7.1 Introduction

The purpose of this research was to explore complex system modelling in the field

of stochastic drug dissolution. Many methods have been applied to model different

aspects of the dissolution problem, but increasing research on biomaterials and their

potential for sustained drug release is continuously challenging modellers to focus

their energies on the development of new simulation techniques and new models to

help optimise but also to complement the large amount of experimental work per-

formed. This thesis begins with a description of the multi-factorial problems posed

by drug dissolution and underlines a number of cases which required particular atten-

tion from modelling, which are the multi-component soluble devices for immediate

release, bioerodible swellable polymeric (PLGA) for sustained release and drug deliv-

ery systems composed of a large number of small particles (particulates) for any kind

of release. Next it concentrates on the reasons for choosing to explore probabilistic

techniques in the field of drug dissolution. Novel modelling efforts using direct and

indirect Monte Carlo techniques for pharmaceutical or other systems showing some

similarity are described subsequently.
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This body of research either develops the work of others or breaks new ground in

the area of probabilistic methods for drug dissolution. The thesis takes an exploratory

approach to the problem by developing multiple versions of probabilistic models for

various cases of DDS. Throughout the previous chapters it has been clearly shown

that the internal morphology of many drug delivery systems plays a key-role in the

release of the active molecule. Multi-particle direct Monte Carlo methodologies were

considered appropriate for the investigation for three main reasons:

• they permitted the internal configurations and physical properties of many drug

delivery systems to be accessed, described and modelled in a straightforward

way.

• they permitted treating the physical phenomena, which are unobserved and

unquantified, as distributions of probability.

• they have a very high potential for modelling increasing complexity and can

be implemented on parallel architectures for more optimal results.

This thesis builds on the idea, initially proposed by Kosmidis et al. (2003b), of repre-

senting drug delivery systems as multi-particle systems. Direct Monte Carlo methods

were proposed by these authors as appropriate techniques to simulate the processes

undergoing at dissolution of a drug carrier, while subsequently partially developed

by Göpferich and Langer (1995); Zygourakis and Markenscoff (1996) and others.

The present work is based on the consideration that multi-particle MC methods

have received insufficient attention to date, and can, with appropriate formulation

and implementation (specific to both experiment and targeted goals and outcomes),

prove to be a useful tool for many practical applications in drug dissolution. The

principal focus of modelling drug delivery remains that of reducing the costly and

time-consuming experimental work. Advanced models can help reduce the amount

of animal testing involved. Used in conjunction with other methods or by them-

selves, MC simulation methods are shown to be capable of eliminating possible gaps
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in the knowledge of the devices in question, by validating the modeller’s theoretical

assumptions about them.

7.2 Summary of findings

7.2.1 Internal insight into Drug Deliver Systems

In the light of findings to date, two new experimental situations were explored from

the point of direct Monte Carlo modelling.

Much of the focus in this work has been on an experimental binary system,

consisting of poorly-soluble drug, dispersed in a matrix of highly-soluble acid ex-

cipient (with experimental results from School of Pharmacy, TCD). On dissolution,

the acid excipient develops certain mechanisms, based on local changes in the pH

of the medium, which strongly influence drug release. The model developed di-

rectly accounts for effects, such as local interactions of the dissolving components,

development of wall-roughness at the solid-liquid interface, moving concentration

boundary layer and solid-liquid interface and mass transport by advection. This

model is totally novel, because multi-component soluble systems for immediate re-

lease have never been analysed using multi-particle CA and MC modelling, even if

the internal morphology of such DDS represents a typical physical system which can

be analysed with CA. Considering the heterogeneous nature of the in vitro environ-

ment, the probabilistic approach to advection was shown to be an appropriate tool

for handling the problems encountered. The sensitivity analysis on the method and

quantitative results illustrated that this approach has a large potential for future

work. In particular, the work related to probabilistic way of analysing advection,

(even if the idea was simple), showed very good agreement with experimental data.

Hence, making the existing models more sophisticated we could anticipate consider-

able benefits in modelling more delicate in vitro situations.

The second experimental system examined was that of bioerodible micro- and
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nanospheres encapsulating large molecules such as proteins (with results from San-

dor et al. (2001). It has been shown that these drug carriers can only be modelled

with difficulty. Thus, original work in this thesis involves modelling dissolution of

PLGA spheres using 3D multi-agent computational systems. The Direct MC models

developed showed qualitative results which were in strong agreement with experi-

mental dissolution profiles. Subsequently, the models were refined in order to take

account of details characterising particular experimental systems. Major attention

and modelling work has been directed towards implementing multiple theoretical

hypotheses about the PLGA nanospheres, such as: distribution of protein in the

spheres, distribution of pores in the spheres, distributions of protein in the pores,

resulting in several versions of the main implementation.

Results demonstrated that Direct MC models can give very good quantitative

agreement with experiment and hence can be used by the pharmaceutical researcher

for predictions and optimisations. The following modelling features are innovative

and open new ground for large amounts of future work:

• very fine-grained modelling for PLGA nanospheres.

• effects of different internal morphologies can be examined very closely.

• use of agents for modelling the proteins.

As this research concluded, other very recent work by a research team from Holland

((Vlugt-Wensink et al., 2006)) came to light. They approach a similar problem

of proteins encapsulated in a polymer with different properties to that of PLGA,

through a similar methodology of treating the encapsulated drug molecules as moving

particles. In parallel with the work carried out in DCU, this demonstrates the

increasing interest of MC multi-particle models in this context. Nevertheless, the

work presented in this thesis demonstrates an in-depth investigation of a number of

aspects of the sustained release PLGA DDS problem, specifically by implementing
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model’s versions for spheres with stratified porosities, spheres initially characterised

by large occlusions and spheres encapsulating molecules of different sizes.

The computational requirements of both models mainly depend on the size of

the lattice. For example, the multi-agent model for protein dissolution from PLGA

spheres runs on an Intel(R) Pentium(R) 4 CPU, 2.8 Ghz, 512 MB RAM processor

for about 30 min for cube lattices with edges of 50 sites and about 90 min for

cube lattices with edges of 100 sites. The computational requirements of this model

equally increase proportionally to the number of agents present in the system. Thus,

as already stated, parallelisation of the two models can be interesting if fine-grained

simulations of relatively large drug delivery systems are necessary.

7.2.2 Populations of DDS

In the final part of the thesis, an alternative viewpoint has been taken. As opposed

to Chapters 2, 4 and 5, which mostly investigated the drug carriers in relation to

their internal morphology and physical properties, Chapter 6 considers how the drug

delivery system, composed of an agglomeration of small units, behaves as a whole,

in order to analyse the effects of the distributions of different entities present, on the

drug release curves. A Bayesian framework has been proposed for analysing these

particulate systems and Inverse Monte Carlo techniques have been used to explore

features of the problem.

The model reported was shown to be capable of retrieving knowledge from ex-

perimental data, specifically time series of dissolved quantities of drug, originating

from a system composed of many particles dissolving simultaneously. At different

time-steps of the dissolution, the parameters of the particle size distribution are

considered as random variables. A deterministic function based on classical equa-

tions for drug dissolution is used to assess the relation between the particle size

distribution and the amount of dissolved drug in the solution. The inaccuracy in

the dynamics of the model is considered stochastic and represented by noise factors.
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In comparing simulated results and experimental dissolution results, the unknown

particle size distributions are re-updated in order to obtain their reconstruction at

the end of the simulation, within a previously specified error range.

This approach not only serves to round off and complement existing research, it

also brings to the area of drug dissolution similar work from other areas, and serves

to demonstrate how the little information available from experimentation may be

separated from the various noise sources. While, up to now, the dissolution process

has produced data containing relatively little information and considerable error,

the work in this thesis has shown how the former can be increased and the latter

minimised through the use of novel or existing probabilistic methods.

7.3 Future Work

This research substatially advances the field of drug release modelling through a

number of new developments based on both Direct and Inverse MC methods, which

also demonstrate their considerable potential for future in this context. Some of

these features are presented in what follows.

7.3.1 Optimisation and technical enhancements for the direct MC

models

As a 3D multi-agent program, the dissolution simulator is very computationally

intensive and time consuming. The computing resources needed grow extremely

rapidly with the 3D matrix size and as the concentration of molecules in the spheres

increases. Future work will involve optimisation of the program in order to obtain

better performance on larger lattices. The results, presented in Chapter 5, for ex-

ample, have been obtained from simulations with single spheres. However, as noted

previously, microsphere populations are typically large. In most studies involving

PLGA spheres, efforts are made to maintain variability as low as possible for the
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micro- or nanospheres size distributions, (Kilic et al., 2005), in order to have more

prediction control over the release profiles obtained. However, in some particular

cases, the spheres have extensive size distributions1. Hence it is ultimately of inter-

est to monitor how a larger population of spheres behaves. Running the simulations

for any model (A to C), for populations of spheres of different sizes, can be parti-

tioned to run on a distributed memory cluster. For example, the Irish Centre for

High-End computing (ICHEC, 2006) offers researchers use of two clusters consisting

of more than 300 computing nodes (CPUs). A considerable amount of work has

already been done in this direction, in the form of a number of programs generat-

ing code to simulate the dissolution of a distribution of spheres of different sizes, or

of different internal morphologies on a PC cluster. The simulation for each sphere

runs on a separate CPU. One problem with using a remote cluster is related to the

fact that it is often the case that the simulation is interrupted for technical or other

reasons. Thus, important future work will also be to implement and incorporate

program tools for saving the current states of the simulation in the event of a crash

and for re-reading this information from a file, in re-loading the parameters and re-

launching the the simulation. Several save files (corresponding to different types of

objects) are necessary to re-launch the simulation.

Another interesting optimisation which permits time-saving is use of the MPI

(Gropp et al., 1999) components or tools in order to parallelise the simulations. As

these use very small time steps, they are very time-consuming. The model for the ma-

trix soluble systems would also benefit from an MPI parallelisation as well, because

it simulates quite large delivery systems composed from microgranules requiring a

very fine-grained approach. A lot of memory is needed for such a simulation, thus

using parallel processors would facilitate the task and permit simulations for more

life-like internal morphologies untreatable by a single processor.
1see Figure 5.4 from the example given in Subsection 5.2.4, (Charlton et al., 2006)

170



Figure 7.1: Schematic representation of the main phases of the research related to
the therapeutical implants seeded with PLGA microspheres for sustained release of
growth factors. The figure shows at what level the modelling and simulation will
intervene.

7.3.2 Bioerodible implants

As described in Subsection 5.2.4, PLGA protein-loaded microspheres are used not

only on their own, but also in conjunction with other delivery systems. The model

presented in Chapter 5 will be used in future for optimising the experimentation

undertaken to design therapeutical implants for damaged cartilage. To facilitate

this, the present work must be enhanced through more flexible coding.

The PVA scaffold seeded with microspheres is a porous material where the pro-

teins escaping from the microspheres diffuse in order to facilitate the ingress of cells.

The case is described in Subsection 5.2.4 and schematised in Figure 7.1.

Protein diffusion through the pores of the scaffold is a problem on a different

scale to that treated in Chapter 5. In the scaffold, diffusion takes place at a much

larger scale and can be tackled more easily in terms of mass transport and concentra-

tions rather than random walks of individual particles. A differential equation-based

model will be solved on a computational grid and one of the Monte Carlo models

presented above will be used to simulate, at each time step, the quantities of protein
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made available by the erosion of the PLGA microspheres.

Once the approximate concentration of growth factor in the pores of the PVA

scaffold is available, these results will be redirected to a 3D multi particle Monte

Carlo simulation where the particles will represent the cells moving according to the

concentration gradients. Figure 7.1 illustrates this future research plan.

7.3.3 Perspectives in PLGA nanospheres research

An important point to make here is that the existing models are readily adaptable

to modifications in order to account for properties of other types of DDS. In this

section we outline other possible applications.

Presently, nanotechnology is beginning to play a considerable role in drug de-

sign. PLGA nanospheres offer a very promising and very powerful technique for

drug transport in many important medical fields. Given the major challenges this

methodology is now facing, careful and detailed studies are required for every ex-

ample case. In contrast to existing models for bioerodible spheres discussed earlier,

the models presented in this thesis are specifically designed for very small scales (i.e.

nano-level).

The study of Kilic et al. (2005) proposes PLGA nanospheres as one approach

to improve both pharmacokinetics and pharmacodynamics of large size neurophar-

maceuticals for the treatment of the diseases of the central nervous system (CNS).

These results demonstrate that a stable drug formulation could be prepared, utilising

PLGA nanospheres as a potential delivery system, (and with the potential to perform

much better than other drug delivery methods). The results of this study showed

that formulations with different neuropharmaceutical content exhibited different re-

lease profiles. Most anti-cancer drugs have limitations in clinical administration due

to their poor solubility and other physicochemical and pharmaceutical deficiences.

They require the use of additives or excipients, which often cause serious side effects.

Moreover, intravenous injection and infusion are unavoidably associated with consid-
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Figure 7.2: Illustration of the modelling approach chosen for the optimisation of
therapeutical implants.
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erable fluctuations of drug concentration in the blood. Therefore, the drugs can only

be administered over a limited dosage and time period. Nanoparticles of biodegrad-

able polymers and other bioadhesive materials might be an ideal alternative carrier,

Feng (2006). The nanospheres are often coated with other type of polymers in order

to obtain desired special release effects, Hawley et al. (1997); Illum et al. (2001);

Stolnik et al. (1994). For example, nanospheres are utilised to produce excellent tar-

geting of drugs and diagnostic agents to regional lymph nodes, Hawley et al. (1997).

Depending on their surface characteristics, the distribution of the nanospheres can

be significantly modified and the lymph node localisation dramatically enhanced by

coating their surfaces with PLA:PEG co-polymers or by producing co-precipitate

nanospheres of PLGA and PLA:PEG. PEG-coated magnetite nanospheres with dif-

ferent surface characteristics can also be utilised to target a diagnostic agent to

regional lymph nodes, Illum et al. (2001).

Thus, further developments of the models A-C, simulating dissolution for

nanospheres, might consider:

1. Possible interactions between pharmaceutical agents and the polymer compos-

ing the nanosphere.

2. Studying the effect on release profiles of coating spheres with different polymer

types .

3. Investigation of nanospheres composed of a mixture of two or more types of

polymers

4. Completing the work on models for spheres composed of surface-eroding poly-

mer. To date this model has been qualitatively validated only as a part of

the present work, due to lack of quantitative validation with experimental

data. The qualitative model has to be calibrated against experimental data

and quantitative agreement of at least the same quality as in Chapter 5 is

desirable.
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7.3.4 Inverse simulations

The work performed in Chapter 6 explores the use of Inverse Monte Carlo techniques

in the field of Drug Delivery to elucidate unknown parameters and optimise the

design of particulate drug delivery systems. Inverse simulations were performed and

tested only on simulated data, which sought to postulate researchable parameter

values for the size distribution and particle densities for particulates. The present

model did not incorporate into the model any details related to the USP dissolution

environment (such as: paddle rotation speed, dimensions of the vessel, dissolution

medium viscosity etc). It would be interesting, however, to test the inverse MC

technique on real data, and especially to calibrate this model for the particular

environment of the USP apparatus in order to better understand the dissolution

process in conjunction with its flow/mixing patterns.

The data available can be enriched by digital camera images of changes in the

USP over the time period of the dissolution test. As in vitro experimental data,

recorded on a digital camera, are noisy from an image analysis point of view, they

must be processed to remove the visual noise due to movement of the compact in

the apparatus. The data thus obtained would form a convenient time series for the

dissolution and could be used for refinement of the inverse MC model.

The investigation of particulate systems can tie in with a study on disintegrating

compacts. In this case the solid compact disintegrates, breaking into smaller particles

or granules which then move around and dissolve within the test device. Again, the

ability of the model to simulate changes in compact properties can be investigated.

These developments will bring about an increased understanding of how different

formulation types behave in the USP paddle dissolution apparatus. This will also aid

in understanding the sources of variability in the device that may lead to variable dis-

solution results in practice, helping choosing appropriate test conditions for in vitro

dissolution studies which may be then successfully correlated with corresponding in

vivo results for the development of in vivo - in vitro correlations (IVIVC’s).
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7.4 Concluding remarks

In conclusion this thesis reports a major step forward in investigating and quantifying

a range of aspects of the drug dissolution problem, viewed as random phenomenon.

The work opens up perspectives for future research on drug and treatment mecha-

nisms, further applications of these investigations and future collaborations, target-

ing the drug dissolution field in general, and nanotechnology used for pharmaceutical

reasons in particular.
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Appendix 1

Main features and implementation aspects

Several main principles and programming methods have been used to write the code

to implement the model. Modelling is based on the UML scheme represented in

Figure 3. Classes are used to represent every element in the virtual world, hence the

full power of object-oriented programming can be brought to bear on the problem.

A graphical interface is available for following the phenomena which occur during

simulation.

Description of the main classes

• The class lattice .

This is the main class of the program because it initiates the whole set of objects and

causes them to evolve, by update orders. In practice, this class contains a matrix

of pointers to objects of class place . On initiation, this matrix is populated. Each

element then corresponds to an object of class border (objects filling the border

of the virtual world) or common (objects filling the ordinary inner places of the

virtual world). The main construction of the lattice takes place using a classical

constructor method using default parameters, the method adapt() allows the user

parameters to be considered and the method fill() populates the matrix with the

elements inherited from place (commonand border ). The creation of the objects

of class obstacle (which model the PLGA bulk) on the sites is implemented by

the method fill_obstacle . This method results in a random population of

obstacles in certain predefined zones of the object lattice (contained within a

sphere). Once the lattice is constructed, it needs to be updated: all sites belonging

to it are accessed in turn in order to determine whether their elements need to be

updated. This is implemented by the update() method which screens the lattice

(visiting each site), for possible objects to update. Finally the class contains different
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Figure 3: UML scheme of the simulation. Only the most important elements are
shown.
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methods permitting the passing of necessary information to other code making calls

to this class. In this way, the program main() can ask the lattice for information

on its composition. Also, the objects present on the lattice can access information

which is needed (e.g. List of neighbouring sites for an inner site of the lattice).

• The class molecule .

This class contains the essentials of the dynamics of the program. An object of the

class molecule represents a computational entity which models a large protein or

small group of molecules, according to how the program is being used. The concept

linked list data structure 2 has been used in this class. The molecules from one site of

the lattice are linked in such a way that each molecule knows its nearest neighbours.

This data structure permits an easier and more rapid update than in Chapter 3 3, by

processing recursively different treatments. The design of the movement and action

of an entity is implemented through the following:

• The classic constructor method, which permits the construction of n molecules

on a given site, in the linked list mentioned earlier. Choice_place() is one

of the main methods of implemented: it permits the molecules to chose the site

to move to (according to a procedure of highest score in the case the molecule

can move to more than one site).

• unlink() and link() manage the linked lists of molecules. When a molecule

is moving, it executes its unlink() method which permits it to leave its

current chain. Then it calls the method link() which links it to the chain

of the arrival site. The choice is to link the molecule between the site and the
2In computer science, a linked list is one of the fundamental data structures used in computer

programming. It consists of a sequence of nodes, each containing arbitrary data fields and one
or two references (“links”) pointing to the next and/or previous objects (nodes). A linked list is
a self-referential datatype because it contains a pointer or link to another data of thesame type.
Linked list permit insertion or removal of nodes at any point in the list, but do not allow random
access wikipedia (2006).

3The technique of programming the particles as a linked list has been compared to the methods
used for the particles in the previous chapter. The linked list performed better in the case where a
site is populated with a small number of particles.
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first molecule (to avoid going through the whole list before linking to the last

molecule).

• update() is the function called by the lattice during global update. It is

a recursive function which permits the sphere to update not only the given

molecule, but also all the molecules linked to this first molecule. Globally, the

update function calls all the functions described earlier to permit the update

of the molecule and thus its movement.

• set_update() is a switchstate function, which is used to toggle the update

state of each molecule from 0 to 1 each time the molecule performs a movement

on the lattice.

Chronology of an iteration

In order to check if programmed entities were performing correctly, a graphical in-

terface has been designed and it can be used, in particular to visualise the initial

morphologies of the spheres, as well as the way in which molecules behave after each

simulation update. The graphical interface has been programmed using OPENGL.4.

The implementation of updates benefited the most from the use of OPENGL.

The use of the non-graphical mode (from command-line) permits to perform a given

number of iterations, without graphically illustrating the state of the sphere, for the

sake of rapidity of computation. This permits to verify the state of the erosion of

the sphere and its porosity pattern after n iterations.

The iterations of the program are globally controlled by the method

glutMainLoop() if a graphical interface is being used and the method update()

in versions which do not use the graphical illustrations. At each time step, the

update() function of the lattice is called. The method makes a call to the
4OPENGL OpenGL (2006) is a powerful graphical library, permitting both the creation of graph-

ical primitives and implementation of 3D-engine functions. A 3D-engine can be defined as a set of
structures, functions and algorithms used to visualize, after many calculations and transformations,
3D objects on a 2D screen.
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update() method of the lattice, which, as noted, updates each of the objects

present on the matrix. Then, if applicable, the update of the graphical interface

OpenGL is performed. In the update() method of the lattice, each site is queried

on the existence of a molecule or of an obstacle. If an object exists, it is updated by

making a call to its update function, (through the encapsulation principle). After

being updated, the molecules are restored tp their state of "non-updated". As the

update is made in a site by site fashion, the update state must be controlled during

an iteration to avoid multiple updates of a molecule. The restore is also recursive,

as the lattice has direct access only to the first molecule of a site. The update of

the graphics is implemented by the function draw_lattice() which implements,

when called, a screening of the lattice to test the existence of different types of ob-

jects on each site, and to represent a graphical element relevant to the presence of a

given type of objects.
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Appendix 2

Glossary of terms

Biocompatibility - the quality of not having toxic or injurious effects on biological

systems, the ability of a material to perform with an appropriate host response in a

specific application.

Biodegradable - capable of decaying through the action of living organisms.

Blocked and unblocked end groups - hydrocarbon end groups and free acid end

groups respectively.

Desorb - departure from the surface to which (a substance) is adsorbed. ( adsorb

- to gather (a gas, liquid, or dissolved substance) on a surface in a condensed layer).

Diglycerides and Tryglycerides - Glycerides are esters formed from glycerol and

fatty acids. Glycerides have three hydroxyl functional groups which can be esterified

with one, two or three fatty acids to form monoglycerides (Figure 4) diglycerides

and triglycerides.Vegetable oils and animal fats contain mostly triglycerides, but are

broken down by natural enzymes (lipases) into mono- and diglycerides and free fatty

acids.

Method of microencapsulation - there are several methods of encapsulation avail-

able. Among them solvent evaporation extraction methods are the most widely

employed in the case of therapeutic peptides and proteins. The polymer is dissolved

in an appropriate organic solvent immiscible with water (e.g. methylene chloride,

ethyl acetate) and the solution dispersed in an aqueous continuous phase containing

a stabilizer. Other methods also exist, like cryogenic and non-aqueous microencap-

sulation methods, particularly suitable to maintain protein integrity during encap-

sulation and achieve high protein encapsulation efficiencies, (Ungaro et al., 2004).

• Solid in oil in water (s/o/w) - encapsulation technique where hydrophilic drugs

are incorporated as solid micronised pardticles (e.g. freeze-dried proteins) sus-

pended in an organic phase.
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Figure 4: Monoglyceride formula

• Water in oil in water (w/o/w) - encapsulation technique where hydrophilic

drugs are emulsified in the organic phase as a water solution - that is the

double or multiple emulsion technique.

Poly(glycolic)acid (PGA) and poly(lactic acid) (PLA) - aliphatic polyesters of

poly(a-hydroxy acids). These polymers and their associated copolymers are perhaps

the most common biodegradable synthetic polymers known and have been used in

drug delivery, bone osteosynthesis and tissue engineering of skin.

Poly(lactic-co-glicolide acid) (PLGA) - a Food and Drug Administration (FDA)

approved copolymer which is used in a range of therapeutic devices, owing to

its biodegradability and biocompatibility. PLGA is synthesized by means co-

polymerization of two different monomers, the cyclic dimers (1,4-dioxane-2,5-diones)

of glycolic acid and lactic acid.

Polyvinyl acetate (PVA) - a rubbery synthetic polymer. It is prepared by poly-

merization of vinyl acetate, Figure 5.
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a)  

Figure 5: Polyvinyl acetate formula
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Appendix 3

Notations and abbreviations used in the Chapter

This appendix gives a complete list of the notations and the abbreviations used

throughout Chapter 6.

General

• t - the time variable.

• j - the index of the time variable at which time is discretised. j = 1, ..., m.

• yt - the experimental data (measurement) observed at time t. In this study yt

stands for the measured weight of the particles in the solution at time t.

• wj - weight of the agglomeration of solid matter (undissolved particles) in

solution at time j, calculated using a deterministic model.

• Ntot,j - total number of particles at time j.

• µj and σj - mean and standard deviation respectively of the size distribution

at time j.

• −→θj - vector of all physical state parameters which are considered unobserved

and are to be reconstructed. Example:
−→
θj = (Ntot,j , µj , σj).

• x - diameter of a particle.

• i = 1...n - Index representing size classes.

• xi = xmax,i−xmin,i

2 , average value of the diameters of particles in size class i.

• Ni - number of particles in class i.

• Ni
Ntot

- proportion of particles in this size range i.
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For Bayesian observational and time-evolution models

• F () - model relating observed data to unobserved parameters. In this case

F () is a functional relationship between observed experimental data and state

parameters at time t.

• ut - zero - mean Gaussian noise component, possibly related to: i) spatially het-

erogeneous hydrodynamic conditions, ii) measurement error, iii) model related

error.

• yt = F (
−→
θ t, ψ) + ut - observation model - in other words a probabilistic way

to relate the observed data and the unobservable parameters by incorporating

a certain level of noise.

• ψ - some extra noise parameters. Its meaning is that there might be other

factors than
−→
θ t, conditioning the observation of yt.

• G() - time-evolution model - in other words a deterministic way to relate the

state parameters
−→
θt at time t to state parameters

−→
θ t+1 at time t + 1.

• −→v t - stochastic term, accounting for additive dynamical noise factors, which

can be related to either of: i) the speed of evolution of the states of the system

ii) the time-dependent flow conditions iii) the accuracy of the time-evolution

model G().

• −→θ t+1 = G(
−→
θt ) + −→v t - time evolution model - Markov chain - stochastically

relates the evolution of the state parameters based on the previous state.

• Bayesian paradigm: Ppost(
−→
θ |−→y ) = L(−→y |−→θ )P (

−→
θ )

P (−→y )
.

• Ppost(
−→
θj |yj) - updated probability of the unobserved parameters of interest,

−→
θ j , given that yj is observed.

• L(−→y |−→θ ) - likelihood of the model, or the probability of obtaining the data

−→y given the set of parameters
−→
θ and the function F (). In the particu-
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lar case of this study it has been chosen that: L(−→y |−→θ ) = P (−→y |−→θ ) =

1
σyj

exp(− 1
2σyj

(yj − F (
−→
θj )2).

• P (
−→
θ ) - probability of sampling this particular set of parameters - usually based

on prior knowledge about the studied case.

• P (−→y ) - probability of observing/measuring this particular data set.

• σyj - variance of the random variable ut, which represents the noise in the

observation model.

• Transition kernel - distribution of
−→
θ j+1 given

−→
θ j . In this particular study it

has been chosen as: P (
−→
θ j+1|−→θ j) = N(G(

−→
θ j), Γj).

• Γj+1- matrix having on its diagonal the variances of the prior distributions

(prior to comparing them to the observations) of the unobserved parameters
−→
θ j+1.

• γj+1 - standard deviation of the prior distributions of the unobserved param-

eters (the values from the diagonal of the matrix Γj+1).

• θ̂j - minimum variance Bayes estimate or the minimum a posteriori estimate.

• ŝ−→
θj

- standard deviation of the expected value.

For the deterministic time-evolution model for a particulate drug

delivery system

• xcrit - critical diameter: different models G() are applied for particles larger or

smaller than this critical value for the particle diameter.

• C - concentration of solute in the solvent.

• dC
dt - time rate of variation of concentration of solute.
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• CS - saturation concentration.

• D - diffusion coefficient, independent of the concentration.

• α - a shape factor related to the general shape of the particle.

• h - thickness of the diffusion layer outside the solid surface (the concentration

boundary layer).

Notations involved in generating data with direct simulations

• µ0 - mean of the initial distribution

• σ0 - standard deviation of the initial distribution.

• Ntot0 - total number of particles from the initial distribution.

• ∆x - length of the spatial intervals for discretisation of the distributions.

• ∆tdirect - length of the time intervals for the time discretisation in generating

data.

• ∆tsampling - sampling time intervals when generating direct data.

• ttot - total time for a direct or an inverse simulation.

• cv - coefficient of variation.

For inverse simulations

• p - sample size.

• k - index of a member from the sample.

• ∆tinverse - length of the time intervals for the time discretisation in inverse

simulations.
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• (Nk
totj , µ

k
j , σ

k
j , αk

j ), k = 1, ..., p - example of one member of the sample popula-

tion from the inverse simulation.

• ωk
j (omega) - importance weight of a member of a sample. Evaluated on the

basis of the likelihood.

• {−→θ (k)
j , k = 1, ..., p} sample from the p(

−→
θj |y1:j).

• (
−→̃
θ

(k)
j+1) - sample from the prior prediction density at the next time step

(p(
−→
θ j+1|y1:j)).

• Transition kernel - P (
−→
θ j+1|−→θ j) = N(G(

−→
θ j), Γj) = N(θ̂j+1, Γj+1).

• γj+1 - standard deviation of the prior distributions of the unobserved pa-

rameters (the values from the diagonal of the matrix Γj+1: γNtotj+1 , γµj+1 ,

γσj+1 ,γαj+1).

• θ̂j+1- vector of means of the marginal prior distributions.

• min and max - lower and upper boundaries of the intervals for sampling θj+1.

• (
−→
θa,

−→
θb ) - a 100(1− β)% credibility interval.

• β - a small number, usually chosen such that there is at least a 95% probability

100(1− β)% that the estimated parameter is found.

• Mx runs and sdx runs - average and standard deviation of the reconstructed

parameters obtained at different runs of the simulation.

• ttot - total time for a direct or an inverse simulation.
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