Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Colm Crean, John F. Gallagher* and Albert C. Pratt

School of Chemical Sciences, Dublin City University, Dublin 9, Ireland

Correspondence e-mail: john. gallagher@dcu.ie

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.042$
$w R$ factor $=0.112$
Data-to-parameter ratio $=13.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

2,2'-\{2-[(E)-3-Phenylprop-2-enyl]-2,3-dihydro-1H-isoindol-1,3-diylidene\}dimalononitrile, a π-deficient system for $\pi \cdots \pi$ (1:1) stacking investigations

The title compound, $\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{5}$, derived from cinnamyl alcohol and 2,2'-(isoindolin-1,3-diylidene)bispropanedinitrile, is a heterocyclic TCNQ analogue of interest as an electrondeficient component in charge-transfer complexes. A small perturbation of the four $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ angles from linearity is observed, which are in the range 173.41 (18)-176.3 (2) ${ }^{\circ}$; the $\mathrm{C} \equiv \mathrm{N}$ bond lengths are in the range 1.144 (2)-1.146 (2) \AA. The terminal phenyl group is oriented at an angle of 77.17 (6) ${ }^{\circ}$ to the $\mathrm{C}_{4} \mathrm{~N}$ ring and the $\mathrm{C}=\mathrm{C}$ bond is short, 1.319 (2) \AA. There are no classical hydrogen bonds, although intramolecular $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{N}$ and intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ (arene) interactions influence the crystal-structure packing.

Comment

Organic conductors are currently an important research area in materials chemistry (Martin et al., 1997; Yamashita \& Tomura, 1998), with special interest in the interaction of π deficient and π-excessive materials in $1: 1$ complexes, e.g. TCNQ/TTF, where TCNQ is tetracyanoquinodimethane and TTF is tetrathiafulvalene.

(I)

The bond lengths and angles in the heterocyclic ring of the title compound, (I) (Fig. 1), are similar to those reported previously in related systems (McNab et al., 1997; Brady et al., 1998; Gallagher \& Murphy, 1999; Brady \& Gallagher, 2000). For TCNQ (tetracyanoquinodimethane) systems (280 examples), the average exocyclic $\mathrm{Csp} p^{2}=\mathrm{Csp} p^{2}$ and $\mathrm{Csp}{ }^{2}-\mathrm{Csp}{ }^{1}$ bond lengths are 1.392 (17) and 1.427 (10) \AA, respectively; thus, in (I), the $\mathrm{C} 6 A-\mathrm{C} 7 A, \mathrm{C} 6 A-\mathrm{C} 8 A$, and $\mathrm{C} 6 B-\mathrm{C} 7 B$ and $\mathrm{C} 6 B-$ $\mathrm{C} 8 B$ bond lengths in the range $1.425(3)-1.436$ (3) \AA are normal (Orpen et al., 1994). The four nitrile $\mathrm{C} \equiv \mathrm{N}$ values are from 1.144 (2) to 1.146 (2) A, which compare with the average $\mathrm{C} \equiv \mathrm{N}$ dimension from the literature, 1.144 (8) \AA (Orpen et al., 1994). The exocyclic indolinyl ring $\mathrm{C}=\mathrm{C}$ bond lengths are 1.372 (2) and 1.374 (2) A, which are longer than typical double bonds. The four remaining exocyclic indolinyl cyano $\mathrm{C}-\mathrm{C}$ bond lengths are in the range 1.425 (3) -1.436 (3) \AA and similar

Received 31 January 2001
Accepted 5 February 2001
Online 13 February 2001

Figure 1
A view of (I) with the atomic numbering scheme. Displacement ellipsoids are depicted at the 30% probability level.
to previously reported values. The angles which the $\mathrm{C}(\mathrm{C} \equiv \mathrm{N})_{2}$ groups make with the $\mathrm{C}_{4} \mathrm{~N}$ ring are 7.01 (10) (C6A) and $2.33(10)^{\circ}(\mathrm{C} 6 B)$, demonstrating a small twist from planarity about the $\mathrm{C} 4-\mathrm{C} 6(A / B)$ bonds.

The hydrogen bonding in (I) is dominated by intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interactions and close contacts (details in Table 2). There are two intramolecular C (arene) $\mathrm{H} \cdots \pi(\mathrm{C} \equiv \mathrm{N})$ interactions with $\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 2 A$ and $\mathrm{C} 15-$ $\mathrm{H} 15 \cdots \mathrm{~N} 2 B \quad \mathrm{C} \cdots \mathrm{N}$ distances of 3.390 (3) and $3.390(2) \AA$, respectively. A $\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 3 A$ intramolecular contact is present $\left[\mathrm{C} 1 \cdots \mathrm{~N} 3\right.$ A 3.401 (2) \AA and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N} 139^{\circ}$]. A C$\mathrm{H} \cdots \pi$ (arene) interaction is also present, $\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cg} 1$, where $C g 1$ is the centroid of $\{\mathrm{C} 21-\mathrm{C} 26\}^{\mathrm{i}}$ [symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; details in Table 2]. The closest $\mathrm{C} 14 \cdots \mathrm{C} 26^{\mathrm{i}}$ contact distance is 3.696 (2) \AA with a C14-H14 \cdots Cg1 angle of 121°.

Experimental

The title compound was prepared by the 5 d reaction under argon of DIAD (diisopropylazodicarboxylate) ($0.37 \mathrm{~g}, 1.9 \mathrm{mmol}$), triphenylphosphine ($0.49 \mathrm{~g}, 1.9 \mathrm{mmol}$), 2,2'-(isoindolin-1,3-diylidene)bispropanedinitrile $\quad(0.25 \mathrm{~g}, \quad 1.9 \mathrm{mmol}$) (Farbenfabriken Bayer Aktiongesellschaft, 1968), cinnamyl alcohol ($0.25 \mathrm{~g}, 1.9 \mathrm{mmol}$) in 40 ml tetrahydrofuran. 2,2'-(Cinnamylisoindolin-1,3-diylidene)bispropanedinitrile, (I), was isolated as an orange crystalline material after column chromatography (m.p. 469-471 K uncorrected). IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3049,2372,2335,2224,1563,1465,1407,1228,1146$, $1109,983,775,723 ;$ UV-Vis $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max }(\varepsilon): 552$ (5250), 459 (6667), 414 (38333), 392 (39167), 249 (47083) nm; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \delta$, CDCl_{3}): 8.75 ($m, 2 \mathrm{H}$, aromatic), 7.85 ($m, 2 \mathrm{H}$, aromatic), 7.37 ($m, 2 \mathrm{H}$, aromatic), 7.30 ($m, 3 \mathrm{H}$, aromatic), $6.50(d, J=16 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(m$, $1 \mathrm{H}), 5.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\delta \mathrm{C}, \mathrm{CDCl}_{3}$): 156.8, 135.0, 134.8, 134.0, $130.9,128.8,128.7,126.9,126.0,120.5,113.1,112.3,62.1,47.8$.

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{13} \mathrm{~N}_{5}$
$M_{r}=359.38$
Monoclinic, $P 2_{1} / n$
$a=14.3872(18) \AA$
$b=8.2696$ (10) \AA
$c=16.1442(15) \AA$
$\beta=108.327$ (7) ${ }^{\circ}$
$V=1823.4$ (4) \AA^{3}
$Z=4$

Data collection

Bruker P4 diffractometer

$\omega-2 \theta$ scans
4331 measured reflections
3367 independent reflections
2630 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.012$
$\theta_{\text {max }}=25.5^{\circ}$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.112$
$S=1.06$
3367 reflections
253 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0529 P)^{2}\right. \\
& \quad+0.3178 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.469(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.495(2)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.386(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.319(2)$
$\mathrm{N} 1-\mathrm{C} 5$	$1.388(2)$	$\mathrm{C} 3-\mathrm{C} 21$	$1.471(2)$
$\mathrm{N} 2 A-\mathrm{C} 7 A$	$1.145(2)$	$\mathrm{C} 4-\mathrm{C} 6 A$	$1.374(2)$
$\mathrm{N} 3 A-\mathrm{C} 8 A$	$1.146(2)$	$\mathrm{C} 4-\mathrm{C} 11$	$1.460(2)$
$\mathrm{N} 2 B-\mathrm{C} 7 B$	$1.144(2)$	$\mathrm{C} 5-\mathrm{C} 6 B$	$1.372(2)$
$\mathrm{N} 3 B-\mathrm{C} 8 B$	$1.145(2)$	$\mathrm{C} 5-\mathrm{C} 16$	$1.461(2)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 4$	$125.99(12)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6 B$	$125.80(14)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 5$	$123.11(12)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 11$	$107.12(12)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 5$	$110.82(12)$	$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 16$	$106.81(12)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$113.84(13)$	$\mathrm{N} 2 A-\mathrm{C} 7 A-\mathrm{C} 6 A$	$176.3(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$126.34(15)$	$\mathrm{N} 3 A-\mathrm{C} 8 A-\mathrm{C} 6 A$	$175.3(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 21$	$126.82(16)$	$\mathrm{N} 2 B-\mathrm{C} 7 B-\mathrm{C} 6 B$	$175.81(18)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 6 A$	$126.02(15)$	$\mathrm{N} 3 B-\mathrm{C} 8 B-\mathrm{C} 6 B$	$173.41(18)$
$\mathrm{C} 4-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$-102.16(17)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 21$	$-174.28(16)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$81.50(18)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 21-\mathrm{C} 22$	$-1.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$6.6(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 21-\mathrm{C} 26$	$176.66(17)$

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).
Cg1 is the centroid of $\{\mathrm{C} 21-\mathrm{C} 26\}^{\mathrm{i}}$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 3 A$	0.97	2.61	$3.401(2)$	139
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{~N} 2 A$	0.93	2.59	$3.390(3)$	145
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{C} 7 A$	0.93	2.45	$3.019(3)$	119
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{~N} 2 B$	0.93	2.59	$3.390(2)$	145
$\mathrm{C} 15-\mathrm{H} 15 \cdots \mathrm{C} 7 B$	0.93	2.46	$3.015(2)$	119
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.93	3.20	$3.984(2)$	143
Symmetry code: $(\mathrm{i}) \frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.				

In (I), all H atoms bound to C atoms were treated as riding, with SHELXL97 (Sheldrick, 1997) defaults for C-H lengths and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methylene H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the remainder. Examination of the structure with PLATON (Spek, 1998) showed that there were no solvent-accessible voids in the crystal lattice.

Data collection: XSCANS (Bruker, 1994); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: NRCVAX96 (Gabe et al., 1989) and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996) and PLATON (Spek, 1998); software used to prepare material for publication: NRCVAX96, SHELXL97 and WordPerfect macro PREP8 (Ferguson, 1998).

JFG. thanks Dublin City University for the purchase of a Bruker $P 4$ diffractometer.

References

Brady, F. \& Gallagher, J. F. (2000). Acta Cryst. C56, 1407-1410.
Brady, F., Gallagher, J. F. \& Kenny, P. T. M. (1998). Acta Cryst. C54, 1523-1525.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Bruker (1994). XSCANS. Version 2.2. Bruker AXS Inc., Madison, Wisconsin, USA.
Farbenfabriken Bayer Aktiongesellschaft (1968). French Patent No. 1537299. Ferguson, G. (1998). PREP8. University of Guelph, Canada.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.
Gallagher, J. F. \& Murphy C. (1999). Acta Cryst. C55, 2167-2169.
Martin, N., Segura, J. L. \& Seoane, C. (1997). J. Mater. Chem. 7, 1661-1676.
McNab, H., Parsons, S. \& Shannon, D. A. (1997). Acta Cryst. C53, 1098-1099.
Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. \& Taylor, R. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi \& J. D. Dunitz. Weinheim, Germany: VCH Publishers.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1998). PLATON. University of Utrecht, The Netherlands.
Yamashita Y. \& Tomura, M. (1998). J. Mater. Chem. 8, 1933-1944.

