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Abstract
The main focus of this work is to contribute to the development of iterative
solvers applied to the method of moments solution of electromagnetic wave
scattering problems.

In recent years there has been much focus on current marching iterative
methods, such as Gauss-Seidel and others. These methods attempt to march
a solution for the unknown basis function amplitudes in a manner that mim-
ics the physical processes which create the current. In particular the forward
backward method has been shown to produce solutions that, for some two-
dimensional scattering problems, converge more rapidly than non-current march-
ing Krylov methods. The buffered block forward backward method extends
these techniques in order to solve three-dimensional scattering problems. The
convergence properties of the forward backward and buffered block forward
backward methods are analysed extensively in this thesis. In conjunction, sev-
eral means of accelerating these current marching methods are investigated
and implemented.

The main contributions of this thesis can be summarised as follows:

• An explicit convergence criterion for the buffered block forward back-
ward method is specified. A rigorous numerical comparison of the con-
vergence rate of the buffered block forward backward method, against
that of a range of Krylov solvers, is performed for a range of scattering
problems.

• The acceleration of the buffered block forward backward method is in-
vestigated using relaxation.

• The efficient application of the buffered block forward backward method
to problems involving multiple source locations is examined.
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• An optimally sized correction step is introduced designed to accelerate
the convergence of current marching methods. This step is applied to the
forward backward and buffered block forward backward methods, and
applied to two and three-dimensional problems respectively. Numerical
results demonstrate the significantly improved convergence of the for-
ward backward and buffered block forward backward methods using
this step.
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Chapter 1

Introduction

Computational electromagnetics (CEM) is the discipline of modelling the in-
teraction of electromagnetic (EM) fields with physical objects and the envi-
ronment. The CEM application addressed in this thesis is EM wave scatter-
ing. The solution of EM scattering problems is of fundamental importance in
numerous fields such as integrated circuit design [1], medical imaging [2, 3],
wireless communication networks modelling [4, 5] and antenna design [6, 7].

Maxwell’s equations underpin all computational electromagnetic techniques.
They define how electromagnetic fields behave over time, and at each point
in space. Maxwell’s equations are a set of four partial differential equations
(PDE) which describe the relationship between the electric field, magnetic field,
electric current and electric charge [8–11]. When modelling an electromagnetic
system the solution of Maxwell’s equations for the unknown electric fields and
magnetic fields is the ultimate objective. There are many ways to find solutions
to Maxwell’s equations. Unfortunately, owing to the complexity of Maxwell’s
equations their analytical solution exists only for a few simple problems. For
instance, analytical solutions exist for structures such as homogeneous circular
cylinders or spheres. This limitation creates a necessity to approximately solve
Maxwell’s equations using numerical techniques.

In this thesis we employ numerical methods to solve full-wave formula-
tions of complex electromagnetic scattering problems. For large problems it
has been necessary to use asymptotic methods, such as those based on the
Uniform Theory of Diffraction [12,13]. Such techniques are approximate how-
ever, being based on an assumption of vanishingly small wavelength. In con-
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trast full-wave methods offer a rigorous numerical analysis of complex scat-
tering problems regardless of the frequency of the problem. However, the
computational burden associated with solving such full-wave formulations
using numerical techniques is extremely significant. This is compounded by
the growing need to consider wide bandwidths, such as those associated with
Ultra-Wideband [14]. As such the development of faster full-wave solutions to
wave scattering problems is an important area of research at present, allowing
a more diverse range of scattering problems to be tackled.

Specifically, we apply surface integral equation methods to the problem of
wave scattering. In integral equation formulations the induced sources, on
or throughout the scatterer, are the unknowns to be determined as opposed
to the electric/magnetic field in the surrounding space as used by differential
equation formulations [15]. The main advantage of integral equation methods
is that they usually involve fewer unknowns than differential methods. In
particular, in this thesis, we use the electric field integral equation (EFIE) to
model scattering problems. The EFIE has the advantage of being applicable to
both open and closed bodies [11].

The numerical solution of the EFIE is achieved by applying the Method of
Moments (MoM). The efficient numerical solution of the EFIE, when discre-
tised using the MoM, is a key topic in computational electromagnetics. The
MoM discretises the EFIE by modelling the unknown surface current density
as a linear combination of basis functions and by applying a testing proce-
dure [16]. The application of the MoM results in a dense linear complex val-
ued matrix equation ZJ = V, where J represents the unknown basis function
amplitudes to be solved (note that is convention in CEM to represent the the
unknown basis function amplitudes J in upper case). However, for large prob-
lems the MoM matrix equation is impossible to store, let alone directly solve by
inverting the impedance matrix Z. Instead iterative solvers are used to solve
the matrix equation as these require no explicit storage of the impedance ma-
trix (the required elements of the impedance matrix are made on the fly) but
instead sequentially build a solution for the unknowns, J, until some conver-
gence criteria is met.

The most common class of iterative solvers are based on the generation of
Krylov sub-spaces such as the method of conjugate gradients, developed by
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Hestenes and Stiefel [17], and its many variants [18–20]. Krylov methods have
been favoured due to their robust convergence properties. In the limit of infi-
nite numerical precision, Krylov methods are guaranteed to converge to an ex-
act solution in at most N steps, where N is the number of basis functions used
to discretise the scatterer in question. However, in recent years there has been
much focus on iterative solvers based on stationary methods, such as Gauss-
Seidel and others [21]. Stationary methods are those that do not generate a new
iteration matrix for each iteration. Stationary methods are often termed current
marching methods as they attempt to march a solution for the unknown basis
function amplitudes in a manner that mimics the physical processes which
create the current. In particular the forward backward (FB) method [22], also
referred to as the method of ordered multiple interactions (MOMI) [23], has
been shown to produce solutions that, for some two-dimensional scattering
problems, converge more rapidly than Krylov methods [24]. However, they
have also proven to be inherently less robust than Krylov methods, as conver-
gence is not guaranteed for some ill-conditioned problems regardless of the
number of steps taken. The buffered block forward backward (BBFB) method
presented in [25] extends these techniques in order to solve three-dimensional
scattering problems. The convergence properties of the FB and BBFB station-
ary methods are analysed extensively in this thesis. In conjunction, several
means of accelerating these stationary methods are investigated and imple-
mented. The forward backward method and the buffered block forward back-
ward methods, applied to both two and three dimensional scattering problems
respectively, form a focal point of this thesis.

We conclude this section with summaries of the material in each of the
remaining chapters.

Chapter 2 outlines the basic electromagnetic theory needed to define and
understand the class of scattering problems of interest.

Chapter 3, recognising that analytic solutions to integral equations are re-
stricted to a handful of simple problems, introduces the numerical solution
techniques that must be adopted for more general scattering problems. In par-
ticular, a comprehensive review of the most popular Krylov solvers used in
the solution of MoM matrix systems is given.

Chapter 4 introduces the FB and BBFB stationary methods, where an ex-
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plicit convergence criterion for the BBFB method is detailed and examined. A
rigorous numerical comparison of the convergence rate of the BBFB method
against that of a range of Krylov solvers is performed. In addition, some ex-
tensions and applications of the BBFB method are investigated. Specifically
the acceleration of the BBFB method is examined via the introduction of a re-
laxation parameter ω. Also, the efficient application of the BBFB method to
problems involving multiple source locations is explored.

Chapter 5 outlines how the convergence of stationary methods depend on
the size of the eigenvalues of the iteration matrix. Stationary methods display
rapid convergence when the eigenvalues of the associated iteration matrix are
small. Conversely when the eigenvalues are large they display poorer conver-
gence and can diverge. We introduce a hybridised version of the FB method
that helps to circumvent the poor convergence of the method in the latter case.
This is achieved by introducing an optimally chosen correction in a direction
dependant on the eigenvectors associated with the largest eigenvalues of the
iteration matrix. This technique is extended to the BBFB method for three-
dimensional scattering problems. Numerical results are provided in order to
demonstrate the improved convergence of the hybridised FB and BBFB meth-
ods.

Chapter 6 outlines the conclusions of this thesis and identifies areas which
may warrant further investigation.

1.0.1 Contribution

It is the aim of this work to contribute to the development of stationary itera-
tive solver techniques which can be used in order to efficiently solve the matrix
system generated by application of the MoM to the EFIE. The main contribu-
tions of this thesis are described in Chapters 4 and 5 and can be summarised
as follows:

• The forward backward and buffered block forward backward methods
are presented. An explicit convergence criterion for the BBFB method is
specified. A rigorous numerical comparison of the convergence rate of
the BBFB method, against that of a range of Krylov solvers, is performed
for a range of scattering problems.
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• The acceleration of the BBFB method is investigated using relaxation. In
addition the source independent nature of the BBFB is examined.

• An optimally chosen correction step is introduced that is designed to
accelerate the convergence of stationary methods. This step is applied
to the FB and BBFB methods, and applied to two and three-dimensional
problems respectively. Numerical results demonstrate the significantly
improved convergence of the FB and BBFB methods when used with this
step.

1.0.2 Notation

Bold letters denote matrices and vectors while lower-case italics denote scalars.
The Euclidean norm is denoted by ‖ · ‖.

5



Chapter 2

Electromagnetic Theory

This chapter describes the formulation of the electric field integral equation
(EFIE) from Maxwell’s equations. The EFIE will be used extensively through-
out this thesis. Results are also provided in order to validate the EFIE formu-
lation used in this thesis. In addition, we give a brief review of the various
computational electromagnetic solvers.

2.1 Differential Form of Maxwell’s Equations

The differential form of Maxwell’s equations are

∇× E = −M− ∂B
∂t

(2.1)

∇×H = J +
∂D
∂t

(2.2)

∇ ·B = %m (2.3)

∇ ·D = %e (2.4)

The definitions of the field quantities are;

E is the electric field (volts/meter),
H is the magnetic field (amperes/meter),
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D is electric flux density (coulombs/square meter),
B is the magnetic flux density (webers/square meter),
J is the electric current density (amperes/square meter)
M is the magnetic current density (volts/square meter)
%e is the electric charge density (coulombs/cubic meter),
%m is the magnetic charge density (webers/cubic meter).

All these field quantities are assumed to be a function of space and time, that is
for example E = E(x, y, z; t). Equation 2.1 states that a time-varying magnetic
flux induces an electric field with rotation. Equation 2.1 is known as Fara-
day’s law. Equation 2.2 states that a time-varying electric flux, also known as
displacement current, generates a magnetic field. Equation 2.2 without the dis-
placement current term is known as Ampere’s law. Equations 2.3 and 2.4 are
consequences of Gauss’ law, which is a statement of the conservation of flux.
Equation 2.4 implies that the electric flux D is produced by a charge density
%e. The magnetic current density M and magnetic charge %m, introduced in
Equations 2.1 and 2.3 respectively, do not physically exist [13].

2.1.1 Integral Equation Form of Maxwell’s Equations

The integral form of Maxwell’s equations can be derived from Equations 2.1 -
2.4 by applying the Stokes’ and divergence theorems [13]. For any arbitrary
vector A Stokes’ theorem states that the line integral of the vector A, along a
closed path C, is equal to the surface integral of the dot product of the curl
of the vector A with the normal to the surface S that has the contour C as its
boundary. The Stokes’ theorem can be given as

∮

C

A · dl =

∫∫

S
(∇×A) · ds (2.5)

The divergence theorem states that for any arbitrary vector A, the closed sur-
face integral of the normal component of the vector A over a surface S, is equal
to the volume integral of the divergence of A over the volume V enclosed by
S. The divergence theorem can be stated as

©
∫∫

S
A · ds =

∫∫∫

V
∇ ·Adv (2.6)
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Using Stokes’ theorem, we can re-write Equations 2.1 - 2.2 in integral form as

∮

C
E · dl = −

∫∫

S
M · ds− ∂

∂t

∫∫

S
B · ds (2.7)

∮

C
H · dl =

∫∫

S
J · ds +

∂

∂t

∫∫

S
D · ds (2.8)

where we assume that S is fixed. Using the divergence theorem, we can re-
write Equations 2.3 - 2.4 in integral form as

©
∫∫

S
B · ds =

∫∫∫

V
%m · dv = qm (2.9)

©
∫∫

S
D · ds =

∫∫∫

V
%e · dv = qe (2.10)

where qm and qe are the total electric and magnetic charge respectively.

2.2 Time-Harmonic Form of Maxwell’s Equations

In many practical systems the electromagnetic fields described in Equations 2.1-
2.4 are time-harmonic, where the time variations can be described by cos (wt) [26].
A generic electromagnetic field which is time harmonic can be expressed as,

A(x, y, z; t) = Re
[
A(x, y, x)ewt

]
, (2.11)

where A is a complex vector which is only a function of position. Similarly,
the instantaneous electromagnetic field vectors E , H, D, B, J , M, and % are
related to their corresponding complex forms E, B, D, B, J, M, and ρ by equa-
tions similar to Equation 2.11. Maxwell’s equations for time harmonic fields in
a homogeneous medium can hence be given in differential form by,

∇× E = −M− ωB (2.12)

∇×H = J + ωD (2.13)

∇ ·B = ρm (2.14)
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∇ ·D = ρe (2.15)

where

B = µ0µrH D = ε0εrE

εr and µr are the relative permittivity and relative permeability of a material,
both of which may be functions of position. ε0 (farads/henries) and µ0 (hen-
ries/meter) are respectively the values of permittivity and permeability for
free space and are given by

ε0 = 8.854× 10−12 µ0 = 4π × 10−7 (2.16)

The permittivity ε and permeability µ of a material is expressed relative to the
free space values as,

µ = µ0µr ε = ε0εr (2.17)

The electric current density J can be expressed in terms of

J = Ji + Jc (2.18)

where Ji and Jc are the impressed electric current density and the conduction
electric current density respectively. Jc is related to the electric field E by

Jc = σE (2.19)

where σ is the conductivity of the medium (siemens/meter). For free space

σ = 0 (2.20)

In addition to Equations 2.12 - 2.15, there is another equation which relates
the variations of J and ρ. This equation is referred to as the continuity equation
and it takes the form

∇ · J = −∂ρ

∂t
(2.21)

This continuity equation can be derived from Maxwell’s equations.
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2.3 Solution of Maxwell’s Equations in Homogeneous Space

In homogeneous space, the solution for the electric and magnetic fields de-
scribed by Equations 2.12 - 2.15 must also satisfy the vector wave equations

∇2E + k2E = ∇×M + wµJ +
1

ε
∇ρe (2.22)

∇2H + k2H = −∇× J + wµM +
1

µ
∇ρm (2.23)

where k =
√

w2µε. The parameter k is known as the wavenumber of the
medium. In order to simplify the solutions of Equations 2.22 and 2.23, the
electric and magnetic fields are expressed in terms of the magnetic vector po-
tential A and the electric vector potential F [9, 13].

2.3.1 Magnetic Vector Potential

In a source-free region, Equations 2.12 - 2.15, are of simpler form where J =

M = ρe = ρm = 0. Therefore, using the vector identity, ∇ · (∇×A) = 0, we
can define

BA = µHA = ∇×A (2.24)

where subscript A indicates the fields due to the A potential. Substituting
Equation 2.24 into Equation 2.12 gives

∇× EA = −wBA = −w∇×A (2.25)

which can also be written as

∇× (EA + wA) = 0 (2.26)

Using the vector identity ∇× (−∇φe) = 0 and Equation 2.26 we can write

EA = −∇φe − wA (2.27)

where φe represents an arbitrary electric scalar potential. In order to express
Equation 2.27, in terms of A, we define
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∇ ·A = −wεµφe (2.28)

Therefore we can write

EA = −wA− 
1

wµε
∇ (∇ ·A) (2.29)

2.3.2 Electric Vector Potential

In a source-free region ∇ · D = 0. Therefore using the vector identity, ∇ ·
(−∇× F) = 0, we can define

EF = −1

ε
∇× F (2.30)

where subscript F indicates the fields due to the F potential. Substituting
Equation 2.30 into Equation 2.13 we can write

∇×HF = wεEF = −w∇× F (2.31)

which can also be written as

∇× (HF + wF) = 0 (2.32)

Using the vector identity ∇× (−∇φm) = 0 and Equation 2.31 we can define

HF = −∇φm − wF (2.33)

where φm represents an arbitrary magnetic scalar potential. In order to express
Equation 2.33 in terms of F, we define

∇ · F = −wεµφm (2.34)

Therefore we can write

HF = −wF− 
1

wµε
∇ (∇ · F) (2.35)
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2.3.3 Mixed Potential Integral Formulation

The field solutions in the presence of sources are obtained by solving the fol-
lowing equations

E = EA + EF (2.36)

H = HA + HF (2.37)

Equations 2.36 - 2.37 can be expressed in terms of A and F such that

E = −wA− 
1

wµε
∇ (∇ ·A)− 1

ε
∇× F (2.38)

H =
1

µ
∇×A− wF− 

1

wµε
∇ (∇ · F) (2.39)

By substitution into Equations 2.12 - 2.15 for a homogeneous medium, the
magnetic vector potential and the electric vector potential can be shown to
satisfy

∇2A + k2A = −J (2.40)

∇2F + k2F = −M (2.41)

A solution to Equations 2.40 and 2.41 for A and F can be written in the form

A =
µ

4π

∫

V
J

e−k|r−r
′ |

|r− r′| dv
′

(2.42)

F =
ε

4π

∫

V
M

e−k|r−r
′ |

|r− r′| dv
′

(2.43)

where

G
(
r, r

′
)

=
e−k|r−r

′ |

4π|r− r′| (2.44)

is the three-dimensional homogeneous space Green’s function. r and r
′ repre-
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sent the position of the source and the observation point respectively. |r − r
′|

represents the distance from any point in the source to the observation point.
The Green’s function of a wave equation is the solution of the wave equation
for a point source. And when the solution to the wave equation due to a point
source is known, the solution due to a general source can be obtained by the
principle of linear superposition [10].

Using Equation 2.28, 2.34 and Equation 2.21, φe and φm can be expressed as

φe =
1

ε

∫

V
ρe

e−k|r−r
′ |

4π|r− r′|dv
′

(2.45)

φm =
1

µ

∫

V
ρm

e−k|r−r
′ |

4π|r− r′|dv
′

(2.46)

In order to solve for the electric and magnetic fields, A and F must first be
constructed via convolution of J and M with the Green’s function, as evident
from Equations 2.42 and 2.43. ∇φe and ∇φm must also be constructed via con-
volution of ρe and ρm with the Green’s function, as shown in Equations 2.45
and 2.46, where ρ = −w∇ · J. The electric and magnetic fields can then be
solved by Equations 2.38 and 2.39 where the unknowns are J and M. Equa-
tions 2.38 and 2.39 are known as the mixed potential integral equations (MPIE).
This formulation is often preferred in numerical solutions of electromagnetic
fields due to the low order of the derivative.
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2.4 Boundary Conditions

The boundary conditions on the tangential and normal components of the elec-
tric and magnetic fields, at the interface between two arbitrary media, can be
written as

−n̂× (E1 − E2) = Ms (2.47)

n̂× (H1 −H2) = Js (2.48)

n̂ · (E1 − E2) = ρes (2.49)

n̂ · (H1 −H2) = ρms (2.50)

where Ms and Js are the magnetic and electric linear (per meter) current den-
sities respectively. ρms and ρes are the magnetic and electric linear (per meter)
surface (per square meter) charge densities respectively.
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2.5 Electric Field Integral Equation

Consider a source-free region of space containing an inhomogeneity, as illus-
trated in Figure 2.1, illuminated by a time-harmonic electromagnetic field [11].
We can describe the electric field in the vicinity of the scatterer in terms of two
parts, one associated with the primary source and the other with the equiv-
alent induced sources. The field produced by the primary source in the ab-
sence of the inhomogeneity can be termed the incident field Ei. The secondary
equivalent induced sources which radiate in free space yield the scattered field
Es. The secondary induced sources are fictitious and are said to be equivalent
within a region because they produce within that region the same fields as the
actual sources, such as an antenna and transmitter. The sum of the incident
and scattered fields give the original fields in the presence of the scatterer,

E = Ei + Es (2.51)

Assuming the incident field is known, and by combining Equation 2.38 and 2.51,
we can write

E = Ei −
(

wA + 
1

wµε
∇ (∇ ·A) +

1

ε
∇× F

)
(2.52)

We assume that the inhomogeneity, described previously, is a perfect elec-
tric conductor (PEC), as depicted in Figure 2.2. A perfect electric conductor
has zero resistance and σ = ∞. Ms and ρms are equal to zero on the surface of
the PEC scatterer. Thus Equation 2.52 can be re-written as,

E = Ei −
(

wA + 
1

wµε
∇ (∇ ·A)

)
(2.53)

The free charges of a PEC, when subjected to an electric field, distribute them-
selves as surface charge density qes on the surface of the PEC. The surface
charge density qes induces an electric field which is opposite to that of the ap-
plied electric field. Therefore the total electric field within a PEC is zero [13].
The boundary conditions, for the case of the PEC scatterer depicted in Fig-
ure 2.2, can be expressed by

n̂× (
Ei + Es

)
= 0 (2.54)
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n̂× (
Hi + Hs

)
= Js (2.55)

n̂ · (Ei + Es
)

= ρes (2.56)

n̂ · (Hi + Hs
)

= 0 (2.57)

Equation 2.55 states that the discontinuity in the tangential component of
the magnetic field is proportional to the electric current sheet Js. Js is no longer
a true source current but the response to the discontinuity in the tangential
component of the magnetic field across the surface of the scatterer. The elec-
tric field integral equation enforces the boundary condition of Equation 2.54,
which dictates that the tangential electric field must vanish on the surface of a
PEC scatterer. Thus Equation 2.53 becomes

n̂× Ei = n̂×
(

wA + 
1

wµε
∇ (∇ ·A)

)

S
(2.58)

From Equation 2.58 and 2.42 we can state that the incident field induces an
equivalent surface current density Js on the surface S of the scatterer which
in turn radiates the scattered field. Equation 2.58 can be used to find Js at
any point on the scatterer. Once Js is determined, the scattered field can be
found using Equation 2.38. A similar procedure to the one described above can
be applied to Equations 2.38 and 2.48 resulting in the magnetic field integral
equation (MFIE). The EFIE has the advantage of being applicable to both open
and closed surfaces, whereas the MFIE is restricted to closed surfaces [11].
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Figure 2.1: An inhomogeneity illuminated by an incident field.
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Figure 2.2: Electric current and charge density at the surface of a perfect electric
conductor.
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2.6 Validation of EFIE Formulation

Numerical results are presented for surface current distributions induced on
a perfect electrically conducting square flat plate under plane wave illumina-
tion [27,28]. We consider two cases, where the flat plate is of size 0.15λ× 0.15λ

and 1.0λ × 1.0λ. We use the EFIE formulation described previously to model
these scattering problems. The plane wave considered is normally incident
with a frequency of 300MHz. The problem set-up is illustrated in Figure 2.3.

Figures 2.4 - 2.5 and Figures 2.6 - 2.7 show the dominant current distribu-
tion along the two principal cuts, namely AA′ and BB′ from Figure 2.3, of a
0.15λ× 0.15λ and 1.0λ× 1.0λ sized square plate respectively.

The current distribution shown in Figure 2.5 for the 0.15λ × 0.15λ sized
plate, owing to the relatively small size of the problem, is primarily deter-
mined by the edge conditions. The current distribution shown in Figure 2.7
for the 1.0λ× 1.0λ sized plate, is less affected by the edge conditions. The edge
behaviour of this current distribution is confined to a smaller region near the
edges than the 0.15λ×0.15λ sized plate. The results shown in Figure 2.5 and 2.7
replicate those presented by Glisson in [27, 28] (refer to page 415, Figure 5
of [27]).
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Figure 2.3: Square plate illuminated by a normally incident plane wave.
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Figure 2.4: Distribution of the dominant component of current on 0.15λ square
plate.
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Figure 2.6: Distribution of the dominant component of current on 1.0λ square
plate.
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2.7 Computational Electromagnetic Solvers

The two main classes of CEM solvers can be divided into those based on the
solution of the differential form of Maxwell’s equations, and those based on
the solution of the integral form of Maxwell’s equations.

Three main types of differential methods are the finite element method
(FEM) [15, 29–31], the finite difference method (FDM) [32, 33], and the finite
difference time domain (FDTD) method [34]. Differential methods require the
discretisation of Maxwell’s equations over the entire computational domain in
question. Integral equation methods attempt to use the boundary conditions
of a problem to fit boundary values into the integral equation.

Differential methods give rise to larger matrix systems than those gener-
ated from integral equation methods, as the entire computational domain must
be discretised. However the resulting matrix system generated from differen-
tial methods are sparsely populated. In contrast the resulting matrix system
generated from integral equation methods are densely populated. Integral
equation methods are significantly more efficient in terms of computational
resources for problems where there is a small surface/volume ratio.

When the dimensions of the scattering object are many wavelength, high-
frequency asymptotic ray-based techniques can be used to analyse many prob-
lems that cannot be tackled using full-wave methods. Two of the most popular
ray-based techniques include the geometrical theory of diffraction (GTD) [35]
and the uniform theory of diffraction (UTD) [36]. These techniques are an ex-
tension of the classical geometrical optics (GO) method (where only reflected
and refracted rays are considered). The GTD and UTD overcome some of the
limitations of GO by introducing a diffraction mechanism [12, 13].

In this thesis integral equation methods are employed in order to model
electromagnetic wave scattering problems. Specifically, the electric field inte-
gral equation is used.
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Chapter 3

Numerical Solution of EFIE

This chapter presents techniques to discretise the electric field integral equa-
tion into a system of linear equations that can be solved numerically. We also
review several popularly used stationary and non-stationary iterative solvers.
Preconditioning schemes are also briefly discussed.

3.1 Method of Moments

The method of moments (MoM) is a numerical technique used to solve con-
tinuous integral equations, such as the EFIE presented in Chapter 2 [11,16,37].
The MoM converts the continuous EFIE equation into a discrete matrix equa-
tion by the introduction of basis functions and a testing procedure.

We consider an equation of the form

Lf = g (3.1)

where L is the continuous linear integral operator such as the integral operator
of the EFIE. f is the unknown surface current density to be determined and
g represents the known incident electric field. We assume that for a given
excitation there exists a unique solution for f such that

f = L−1g (3.2)

In practice L−1 cannot usually be determined, and f must be solved using
numerical methods such as the MoM instead. An approximate solution of
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Equation 3.1 may be obtained by converting the unknown function f into a
finite series of the form

f ' fN =
N∑

n=1

αnBn (3.3)

where αn are the unknown scalar coefficients to be determined. The set

B = {B1, B2, . . . , BN} (3.4)

in Equation 3.3 is referred to as a N -dimensional basis and can be used to
approximate f in the domain of L. Substituting Equation 3.3 into Equation 3.1
gives

L

N∑
n=1

αnBn ' g (3.5)

where the subsequent residual can be written as

r = L

N∑
n=1

αnBn − g (3.6)

A set of testing functions is given by

T = {T1, T2, . . . , TN} (3.7)

The testing functions form an N -dimensional basis that can be used to approx-
imate any function in the range space of L. A system of linear equations is
obtained by forcing the residual of Equation 3.6 to be orthogonal to the set of
testing functions. We make the residual orthogonal to the set of testing func-
tions by taking their inner product resulting in

N∑
n=1

αn〈Tm, LBn〉 = 〈Tm, g〉 m = 1, 2, . . . , N (3.8)

27



The inner product of two functions T and B is defined as

〈T, B〉 =

∫

V

T ·Bdv (3.9)

Equation 3.8 can be re-written as

N∑
n=1

lmnαn = βm m = 1, 2, . . . , N (3.10)

where

lmn = 〈Tm, LBn〉 (3.11)

and

βm = 〈Tm, g〉 (3.12)

Equation 3.10 represents an N × N matrix equation with N unknowns. This
can be expressed in matrix form as

ZJ = V (3.13)

where

Z =




〈T1, LB1〉 〈T1, LB2〉 · · · 〈T1, LBN〉
〈T2, LB1〉 〈T2, LB2〉 · · · 〈T2, LBN〉

...
... · · · ...

〈TM , LB1〉 〈TM , LB2〉 · · · 〈TM , LBN〉




(3.14)

J =




α1

α2

...

αN




(3.15)
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V =




〈T1, g〉
〈T2, g〉

...

〈TM , g〉




(3.16)

The MoM is often referred to as the weighted-residual method [38] as it is
obtained by forcing the residuals to be orthogonal to the testing functions. Ba-
sis functions can be categorised into subsectional or entire-domain basis func-
tions. Entire-domain basis functions are defined over the entire problem do-
main. In this work we employ subsectional basis functions which are defined
over small cells. Thus applying the MoM, with subsectional basis functions,
requires discretising the scatterer in question into a fine mesh of N cells. We
then associate a basis and testing function with each cell in the mesh, see Fig-
ure 3.1. It should be noted that the MoM applied to EFIE results in Z being a
dense matrix.
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Figure 3.1: Application of the method of moments to a three-dimensional scat-
terer.
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3.2 Basis and Testing Functions

The main issue arising in the implementation of the MoM is the choice of basis
and testing functions [11, 37]. The basis and testing functions chosen should
be linearly independent and able to accurately represent f and g respectively.
Ideally the choice of basis and testing functions should minimise the complex-
ity of evaluating the matrix and vector entries of Equations 3.14 - 3.16.

The special case where we choose the Dirac delta function, δ(r), as our
choice of testing function is known as point matching. Equivalently point
matching can be described as enforcing the boundary conditions at a set of
discrete points on the object. Point matching has the advantage that in the
evaluation of matrix elements no integration is required over the range of the
testing function, only that of the source function. However, as the boundary
conditions are only enforced at discrete points on the object, accuracy can be
an issue. The case where the basis and testing functions are chosen to be iden-
tical is termed Galerkin’s method. This has the advantage of enforcing the
boundary conditions, in an average sense, throughout the entire solution do-
main. In addition, using Galerkin’s method with the EFIE produces matrices
with diagonal symmetry, which permits a 50% reduction in storage and com-
putation [11].

One of the simplest basis functions, applied to two-dimensional problems,
is the pulse, or piecewise constant, function given by

Bn(x) =





1 xn ≤ x ≤ xn+1

0 elsewhere
(3.17)

The pulse function is shown in Figure 3.2 (a). Once the coefficients associated
with each pulse basis function are determined, we can obtain a staircase repre-
sentation of the function we wish to represent. The use of the pulse function is
illustrated in Figure 3.2 (b), where the domain of interest is divided into cells
along the x-axis [13]. For three-dimensional scattering problems we require
the use of more complicated basis and testing functions. Some of the simplest
and most popular basis functions used for three-dimensional scattering prob-
lems include rooftop (RT) and triangular-rooftop functions [11, 27]. Rooftop
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functions are defined on rectangular subdomains where as triangular-rooftop
functions, also termed Rao, Wilton and Glisson (RWG) functions, are defined
on triangular subdomains. RT and RWG basis functions are defined on two
neighboring subdomains and the unknown is associated with the common
edge between these two subdomains. On this common edge the normal com-
ponent of the current is continuous and has a constant value. However, on
the other edges, the current does not have a normal component and hence no
line charges exist at the boundaries of the basis functions. RT basis functions
define the direction of the current as having the same direction, normal to the
defining edge, at every point on the two rectangular subdomains. For RWG
basis functions, the current does not have a constant direction at every point
on the two triangular subdomains [39].

If the solution function has a high level of variation throughout a particular
region, then the use of more complicated higher order basis functions may be
a preferable choice. A range of basis functions are presented in [29,31,40]. The
number of basis functions required in the MoM increases with the electrical
size of the problem under analysis. For smoothly varying bodies, a general
rule of thumb is to apply 10 basis functions per wavelength in order to model
f accurately.
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Figure 3.2: (a) Pulse, piecewise constant, function. (b) Function representation
using pulse, piecewise constant, basis functions.
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3.3 Algorithms for the Solution of Linear Systems

The solution of the dense linear matrix system given by Equation 3.13 is usu-
ally the largest computational task associated with the application of the MoM
to the treatment of electromagnetic scattering problems. The solution of this
matrix system thus limits the size and range of electromagnetic problems that
can be tackled using the MoM. Therefore the development of more computa-
tionally efficient algorithms, to solve Equation 3.13, is a key issue in computa-
tional electromagnetics [37, 41].

The MoM matrix equation can be solved by either direct or iterative meth-
ods. Direct solution methods attempt to solve the matrix equation by a finite
sequence of operations such that J = Z−1V, and in the absence of rounding
errors, will deliver an exact solution. Direct methods, such as those based on
LU decomposition [21], usually require in the order of O(N 3 ) floating point
operations (flops), where N is the number of unknowns in the discretised rep-
resentation of the surface current. These methods tend to be more efficient for
small sized problems, where the matrix system can be explicitly stored in the
fast access memory of the computer. However, as direct methods require stor-
age of the matrix system they cannot be used for the solution of electrically
large scattering problems. In addition, it is often difficult to fully exploit direct
methods in situations where special matrix structure or sparsity exists.

Iterative solvers are usually applied to the solution of moderate to large
(in terms of the wavelength) sized scattering problems, where matrices of the
order of thousands to hundreds of thousands must be solved. Iterative meth-
ods require no explicit storage of the linear system but instead sequentially
build the solution until some convergence criterion is met. In the case of a
dense matrix system, their computational cost is usually in the order of O(N 2 )

flops per iteration. For moderate to large sized problems, iterative methods
may be more efficient if the convergence rate is fast. However this is often
difficult to determine in practice. Iterative methods can be categorised into
non-stationary and stationary techniques. Stationary methods are older and
simpler to understand and implement. However, they are usually less robust
than non-stationary methods, as convergence may not be guaranteed in the
case of some ill-conditioned problems [41–43].
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3.4 Non-Stationary Solvers

The computations required in a non-stationary method involve information
that changes at each iteration step. The most common class of non-stationary
solvers are based on the generation of Krylov subspaces [20]. Traditionally
these methods have been favoured due to their robust convergence proper-
ties. The conjugate gradient (CG) method is an example of the simplest and
most popular Krylov technique [17, 44]. It is an effective method for solving
symmetric positive definite systems.

The CG method can be described as a combination of the gradient method
and the method of conjugate directions [21]. In this section we will present
a brief introduction to these techniques in order to derive an understanding
of the CG method. In turn, we will show how various extensions of the CG
method offer the solution to non-symmetric matrix equations, the most pop-
ular methods of which include the conjugate gradient normal equation error
(CGNE) method, the biconjugate gradient (BICG) method and the generalised
minimal residual (GMRES) method [20, 45].

We consider the arbitrary non-singular matrix equation,

Ax = b (3.18)

where A denotes an N ×N matrix, x is the unknown N × 1 column vector to
be determined and b is a known N × 1 column vector. We first consider the
case where A, b and x are real-valued. We let R denote the set of real numbers,
where A ∈ RN×N , b ∈ RN and x ∈ RN . The matrix A is symmetric if

AT = A (3.19)

AT is the transpose of A. A is positive definite if for every non-zero vector x,

xTAx > 0 (3.20)

We now consider the the case where A, b and x are complex-valued. We
define CN×N as the vector space of an N × N complex-valued matrix, where
A ∈ CN×N , b ∈ CN and x ∈ CN . For complex-valued matrices, transposition
becomes conjugate transposition where
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A∗ = ĀT (3.21)

and Ā is the complex conjugate of A. A complex-valued matrix which is equal
to its conjugate transpose is termed a Hermitian matrix [21] where

A∗ = A (3.22)

If A is Hermitian then x∗Ax will be a real value. Thus a Hermitian matrix A

is positive definite if for every non-zero vector x,

x∗Ax > 0 (3.23)

For simplicity we assume all matrices and vectors are real-valued throughout
this chapter. However, the results presented equally apply to complex-valued
matrices and vectors. The scaling, addition and multiplication of complex ma-
trices corresponds exactly to the real case. Equations 3.19 and 3.20 for the real-
values matrices, are analogous to Equations 3.22 and 3.23 for complex-valued
matrices respectively. Any other differences that may be encountered for real
and complex problems will be specifically pointed out.

3.4.1 The Gradient Method

We assume that the matrix A of Equation 3.18 is symmetric and positive defi-
nite. For such a system, it can be shown that solving Equation 3.18, is equiva-
lent to finding the minimum of the quadratic form

φ(y) =
1

2
yTAy − yTb (3.24)

As A is positive definite the surface defined by φ is shaped like a paraboloid
bowl, see Figure 3.3 [21, 46]. The gradient of φ is a vector which, for a given
value of y, points in the direction of maximum slope of φ. The gradient at the
bottom of the paraboloid bowl will be equal to zero. Therefore the minimiser
of φ, which we define as x, will correspond to a point on the bottom of the
paraboloid bowl where the gradient is zero, see Figure 3.3.
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Figure 3.3: The minimum point on the surface is x = A−1b.

The gradient of φ can be written as

∇φ(y) =
1

2
(AT + A)y − b (3.25)

The gradient of an arbitrary scalar function, f (y) = f (y1, y2 . . . , yN), may be
defined as

∇f(y) =




∂
∂y1

f(y)

∂
∂y2

(y)
...

∂
∂yN

f(y)




(3.26)

Due to the fact that A is symmetric we can use the identity that 1
2
(AT +A) = A.

Therefore we can rewrite Equation 3.25 as
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∇φ(y) = Ay − b (3.27)

Applying the minimising condition of ∇φ(x) = 0 to Equation 3.27 now yields
Ax = b, where x is a solution of the original system.

In order to determine the minimiser x, we first choose an initial guess x(0),
and then select suitable directions along which to move in order to get as close
as possible to the solution x. The (k + 1)th step of a non-stationary scheme
which computes x(k+1) can be written as,

x(k+1) = x(k) + α(k)p(k) (3.28)

where x(k) is a previous estimate of the solution and p(k) determines the direc-
tion in which x(k+1) is updated. α(k) is a scalar coefficient which determines
how far to move in the direction of p(k). α(k) should be chosen in order to
minimise φ(x(k)) in the direction of p(k). The various types of non-stationary
iterative methods are characterised by the way in which they determine α(k)

and p(k). The gradient method, also known as the steepest descent method,
chooses p(k) to take the descent direction of maximum slope. The direction of
maximum slope at a point x(k) is given by

∇φ(x(k)) = Ax(k) − b (3.29)

where

r(k) = b−Ax(k) = p(k) (3.30)

r(k) in Equation 3.30 is termed the residual and is a vector which indicates
how far away, and in what direction, we are from the exact solution of b. It is
evident from Equations 3.29 and 3.30 that the residual is also the direction of
steepest descent at x(k). In order to compute α(k) in Equation 3.28 we express
φ(x(k+1)) in terms of α(k) such that

φ(x(k+1)) =
1

2
(x(k) + α(k)r(k))TA(x(k) + α(k)r(k))− (x(k) + α(k)r(k))Tb (3.31)

α(k) minimises φ(x(k+1)) when ∂
α(k) φ(x(k+1)) is equal to zero. Thus differentiat-
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ing Equation 3.31 with respect to α(k) and setting it to be equal to zero gives

α(k) =
r(k)T

r(k)

r(k)T
Ar(k)

(3.32)

The choice of α(k) in Equation 3.32 dictates that the gradient ∇φ(x(k+1)) must
be orthogonal to the previous residual r(k). Two vectors u and v are said to be
orthogonal if

uTv = 0 (3.33)

We demonstrate the orthogonality of the gradient to the previous residual by
considering the computation of α(0). Applying the chain rule to ∂

α(0) φ(x(1)) we
can write

∂

α(0)
φ(x(1)) = ∇φ(x(1))

∂

α(0)
x(1) = ∇φ(x(1))r(0) = 0 (3.34)

Thus it is shown that Equation 3.34 is minimised, or equal to zero, when
∇φ(x(1)) and r(0) are orthogonal. The gradient method can be summarised
for k ≥ 0, where x(0) is chosen to be an initial guess, as

p(k) = b−Ax(k)

α(k) =
r(k)T

r(k)

r(k)T
Ar(k)

x(k+1) = x(k) + α(k)p(k)

The gradient method is extremely simple to implement. However, it is not
very efficient in that it finds itself taking steps in the same direction as previous
steps. For example the gradient method requires a large amount of iterations
for quadratic forms which have relatively flat, steep-sided valley structures.
In this case the method is forced to traverse back and forth across the valley
rather than down the valley. The method of conjugate directions addresses
these issues by finding a solution for x in at most N updates.
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3.4.2 Conjugate Directions

The method of conjugate directions differs from the gradient method in that it
creates a set of N A-conjugate search vectors instead of using Equation 3.30.
Given a positive definite matrix A, we can state that two vectors u and v are
conjugate with respect to A(or A-orthogonal or A-conjugate) if

uTAv = 0 (3.35)

If a set of N search directions, p = {p0,p1, . . . ,pN−1}, are non-zero and A-
conjugate, then they are linearly independent and form a basis for RN .
{p0,p1, . . . ,pN−1} can be said to be a set of conjugate directions with respect to
A. In each direction the method of conjugate directions takes one step that is
equivalent to solving x in that direction exactly. Due to the use of A-conjugate
search vectors a solution for x will be obtained in at most N steps.

The set of A-conjugate search vectors, pi, can be generated by Gram-Schmidt
conjugation [21,46,47]. In order to do this a set of N linearly independent vec-
tors, d = {d0d1, . . . ,dN−1}, is first chosen. To generate pi, we take di and
subtract any components which are not A-conjugate to the previous p vectors,
(see Figure 3.4). We let p0 = d0, and for i > 0 we compute pi as,

pi = di +
i−1∑

k=0

βikpk (3.36)

where βik only exist for i > k. To find the values of βik we obtain the transpose
of Equation 3.36 which results in

piT = diT +
i−1∑

k=0

βikpkT

(3.37)

Taking the inner product of Equation 3.37 with Apj for i > j gives

piT Apj = diT Apj +
i−1∑

k=0

βikpkT

Apj (3.38)

Using the condition of Equation 3.35 gives

piT Apj = 0, i 6= j (3.39)
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yields,

0 = diT Apj + βijpjT

Apj, i > j (3.40)

βij = −diT Apj

pjT Apj
(3.41)

The disadvantage of using Gram-Schmidt conjugation is that, in order to
create a new search vector, all the previous search vectors have to be retained
in memory as evident from Equation 3.37. O(N3) operations are required
to generate a full set of search vectors. This is impractical, particularly in
large systems. If the search vectors are constructed from the basic vectors,
(1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 1), the method of conjugate directions be-
comes equivalent to Gaussian elimination [21, 46]. This procedure involving
the use of A-conjugate search directions is known as the method of conjugate
directions.
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Figure 3.4: Gram-Schmidt conjugation.
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3.4.3 The Conjugate Gradient Method

The CG method differs from the method of conjugate directions in that it uses
search directions which are constructed by conjugation of the residual vec-
tors [17]. The use of the residual vectors in the construction of the search di-
rections have the following advantageous properties;

• ri is orthogonal to all other residuals such that,

riT rj = 0, i 6= j (3.42)

• ri is orthogonal to all previous search directions such that,

riT pj = 0, i > j (3.43)

• ri is A-orthogonal to all previous search directions except pi−1, where

riT Apj = 0, i > j + 1 (3.44)

Therefore each new residual produces a new linearly independent search di-
rection where di = ri in Equation 3.36. Applying the conditions of Equa-
tions 3.42 - 3.44 to the definition of βij in Equation 3.41 yields,

βij =




− riT Apj

pjT Apj
i = j + 1

0 i > j + 1
(3.45)

Using the residuals as the choice of the d vectors in Equation 3.36 reduces all
the β terms to zero except βi,i−1, which we now refer to as βi. Thus unlike the
method of conjugate directions we no longer need to store all the old search
vectors in memory. The search directions, p(k), of the CG method are now
constructed according to,

p(k+1) = r(k+1) + β(k)p(k) (3.46)

Similarly to Equation 3.31, α(k) for the CG method, can be found as being the
value of α that minimises φ(x(k) + αp(k)). Differentiating with respect to α and
setting the derivative to zero gives,
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α(k) =
r(k)T

r(k)

p(k)T
Ap(k)

(3.47)

The residuals can be shown to be updated according to,

r(k) = b−Ax(k) = r(k−1) − α(k−1)Ap(k−1) (3.48)

Note that from Equation 3.48,

Ap(k) = − 1

α(k)
(r(k+1) − r(k)) (3.49)

and therefore we can write β(k) in terms of the residual vector only,

β(k) =
1

α(k)

r(k+1)T

(r(k+1) − r(k))

p(k)T
Ap(k)

=
r(k+1)T

r(k+1)

r(k)T
r(k)

(3.50)

It can be shown from Equations 3.42 and 3.48 that each new residual, r(k), is just
a linear combination of the previous residual and Ap(k−1). Therefore we can
show that the kth-dimensional subspace K(k) spanned by the search vectors is
given by

K(k) = span{p(0),Ap(0), . . . ,A(k−1)p(0)} = span{r(0),Ar(0), . . . ,A
(k−1)r(0)}

(3.51)
It can be shown that each new subspace K(k+1) can be formed by the union of
the previous subspace K(k) and AK(k). This type of subspace is referred to as
a Krylov subspace. It is generated by the repeated application of a matrix to a
vector. The CG method is outlined in Algorithm 3.1.

44



Algorithm 3.1: The Conjugate Gradient Algorithm

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

p(0) = r(0)

f or k ≥ 0

α(k) = r(k)T r(k)

p(k)T Ap(k)
step length

x(k+1) = x(k) + α(k)p(k) kth estimate of the solution

r(k+1) = r(k) − α(k)Ap(k) residual

β(k) = r(k+1)T r(k+1)

r(k)T r(k)
improvement step

p(k+1) = r(k+1) + β(k)p(k) search direction

Terminate when the norm of r(k+1) falls below some specified tolerance.

end
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3.4.4 Conjugate Gradient Normal Equation Error Method

The conjugate gradient normal equation error (CGNE) method is an extension
of the CG method which may be applied to the solution of non-symmetric or
indefinite systems [21]. Instead of solving Ax = b when A is non-symmetric,
we can solve the equivalent system for u instead,

AATu = b (3.52)

where

x = ATu (3.53)

Assuming that A is non-singular, Equation 3.52 is a symmetric positive defi-
nite system. As discussed in section 3.4, A∗ can be equivalently used for AT

when we are dealing with complex matrices. It should be noted that if A is
complex and non-singular then AA∗ is hermitian positive definite [43]. A her-
mitian matrix is a square matrix with complex entries which is equal to its own
conjugate transpose. A Hermitian matrix is positive definite if

x∗Ax > 0 (3.54)

for all non-zero complex vectors x. x∗Ax is always real because A is a Her-
mitian matrix. Once the solution u is obtained from Equation 3.52, the origi-
nal unknown x can be determined by Equation 3.53. It should be noted that
there is a similar method to the CGNE method termed the Conjugate Gradient
Normal (CGNR) Equation Residual method. The CGNR method solves the
equivalent system, AATx = ATb, instead of Ax = b.

The CGNE method is one of the simplest methods to implement for the
solution of non-symmetric systems. Alternative methods such as GMRES and
BICG are significantly more complicated. However, it should be noted that
if A is near singular then ATA will be much more ill-conditioned than A, as
the condition number is squared. Thus the rate of convergence of the CGNE
method may often be poor. The condition number of A is given by,

κ (A) = ‖A‖‖A−1‖ (3.55)
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The N in the CGNE method stems from the fact AAT in Equation 3.52 pro-
duces a normal matrix. A matrix is normal if it commutes with its conjugate
transpose where

ATA = AAT (3.56)

Therefore Equation 3.52 forms a set of normal equations. The E in the CGNE
method is due to the error being minimised at each iterative step of the algo-
rithm.

Applying the CG algorithm to Equation 3.52 we obtain the CG iteration for
the u variable as follows:

α(k) =
r(k)T

r(k)

q(k)T AATq(k)

u(k+1) = u(k) + α(k)q(k)

r(k+1) = r(k) − α(k)AATq(k)

β(k+1) =
r(k+1)T

r(k+1)

r(k)T
r(k)

q(k+1) = r(k+1) + β(k+1)q(k)

The above equations can be written in terms of the original variable x(k) =

ATu(k) by defining the vector p(k) = ATq(k). The resulting algorithm is known
as the CGNE method and is outlined in Algorithm 3.2. The CGNE method
requires the computation of three inner products and two matrix-vector prod-
ucts per iteration.
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Algorithm 3.2: The Conjugate Gradient Normal Equation Error Algorithm

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

p(0) = AT r(0)

for k ≥ 0

α(k) = r(k)T r(k)

p(k)T p(k)
step length

x(k+1) = x(k) + α(k)p(k) kth estimate of the solution

r(k+1) = r(k) − α(k)Ap(k) residual

β(k+1) = r(k+1)T r(k+1)

r(k)T r(k)
improvement step

p(k+1) = AT r(k+1) + β(k)p(k) search direction

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.4.5 Generalised Minimal Residual Method

The generalised minimal-residual (GMRES) method is an extension of the min-
imal residual (MINRES) method [48] (which can only be applied to symmetric
problems) to non-symmetric problems [49]. In the CG method, the residuals
form an orthogonal basis which yields the Krylov subspace,
span{r(0),Ar(0), . . . ,A(k−1)r(0)}. This basis can be constructed using only three-
term recurrences. Such a three-term recurrence also suffices for generating the
residuals. In turn each new search vector in the CG method is constructed
from a two-term recurrence involving the previous search direction and the
last computed residual vector (see Algorithm 3.1 for details). However, for
non-symmetric systems the search vectors can no longer be formed using short
recurrences, and instead all previously computed search vectors in the orthog-
onal sequence have to be stored in memory. In GMRES the search vectors are
formed using the Arnoldi algorithm, which is outlined in Algorithm 3.3. It can
be shown that after k steps of the Arnoldi algorithm we have the following
factorisation,

AQ(k) = Q(k+1)H̃(k) (3.57)

where Q(k) denotes the N×k matrix formed by the first k orthonormal Arnoldi
vectors, {q(1),q(2), . . . ,q(k)}. Orthonormal vectors are orthogonal vectors of
unit magnitude. H̃(k) is the (k + 1) × k upper-left section of a Hessenberg
matrix H given by

H(k) =




h11 h12 · · · · · · h1N

h21 h22 · · · · · · hN

0
. . . . . . ...

... . . . . . . ...

0 · · · · · · . . . ...

0 · · · · · · 0 hN,N




(3.58)

and
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H̃(k) =




h11 h12 · · · · · · h1k

h21 h22 · · · · · · h2k

0
. . . . . . ...

... . . . . . . ...

0 · · · · · · hk,k−1 hkk

0 · · · · · · 0 hk+1,k




(3.59)

We express x(k) in terms of the Arnoldi vectors such that

x(k) = x(0) + Q(k)y(k) (3.60)

In the kth step of GMRES y(k) is chosen in such a way as to minimise the resid-
ual norm, ‖b −Ax(k)‖. From examination of Equation 3.60 the residual norm
can be expressed as

‖r(k)‖ = ‖b−A(x(0) + Q(k)y(k))‖,
= ‖r(0) −AQ(k)y(k)‖ (3.61)

If

q(1) =
r(0)

p(0)
(3.62)

where p(0) = ‖r(0)‖, we can write Equation 3.61 as

‖r(k)‖ = ‖p(0)q(1) −AQ(k)y(k)‖ (3.63)

Substituting Equation 3.57 into Equation 3.63 yields

‖r(k)‖ = ‖p(0)q(1) −Q(k+1)H̃(k)y(k)‖,
= ‖Q(k+1)

(
p(0)e(1) − H̃(k)y(k)

)
‖ (3.64)

Since the column vectors of Q(k+1) are orthonormal we can state that
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‖r(k)‖ = ‖p(0)e(1) − H̃(k)y(k)‖ (3.65)

where e(1) = (1, 0, 0, 0, . . . , 0)T . e(1) is referred to as the first vector. Therefore,
y(k) is the solution to a (k + 1) × k least squares problem. Thus the GMRES
iterate is given by x(k) = x(0) + Q(k)y(k). The GMRES method is outlined in
Algorithm 3.4.

y(k) is inexpensive to compute since it requires the solution of a (k + 1)× k

least squares problem, where k is typically small. The upper Hessenberg least
square problem of Equation 3.65 can be efficiently solved using Givens rota-
tions [21]. The GMRES method has the advantage that the residual norm can
be computed without the iterate explicitly being formed. Thus the computa-
tionally expensive action of forming the iterate need only be done when the
residual meets some defined convergence criterion.

The GMRES algorithm involves the computation of a matrix-vector prod-
uct at each iteration. In addition to the matrix-vector product, O(kN) flops
must be computed at the kth iteration. The amount of vector-vector multiplies
and the overall storage required by the algorithm increases with each iteration.
Therefore the GMRES method must be restarted after a certain number of it-
erations, i.e. when the overall storage of the algorithm becomes excessive. If
the GMRES method can only be run for k steps, then x(k) will be used as the
initial vector for the next GMRES sequence. The successful application of the
GMRES method is centered around the choice of when to restart.
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Algorithm 3.3: The Arnoldi Iteration

Initial steps:
r(0) = b−Ax(0)

h10 = ‖r(0)‖
k = 0

while hk+1,k 6= 0

q(k+1) = r(k)

hk+1,k

k = k + 1

r(k) = Aq(k)

for (i = 1 : k)

hik = qiT r(k)

r(k) = r(k) − hikq
(i)

end
hk+1,k = ‖r(k)‖
end
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Algorithm 3.4: The Generalised Minimal-Residual Method

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

h10 = ‖r(0)‖
k = 0

while hk+1,k > 0

q(k+1) = r(k)

hk+1,k

k = k + 1

r(k) = Aq(k)

for (i = 1 : k)

hik = q(i)T

r(k)

r(k) = r(k) − hikq
(i)

end
h(k+1,k) = ‖r(k)‖
Compute y(k) the minimiser of ‖h10e

(1) − H̃(k)y(k)‖
x(k) = x(0) + Q(k)y(k)

end
x = x(k)
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3.4.6 The Biconjugate Gradient Method

The biconjugate gradient (BICG) method can be used to solve non-symmetric
problems. Unlike the CG, CGNE and GMRES methods, the BICG method no
longer provides a minimisation [20,41]. The BICG method can be compared to
the CG method, except that it replaces the orthogonal sequence of residuals by
two mutually orthogonal sequences. As such the sequence of search directions
in the CG method has now become two sequences in the BICG method, given
by,

p(k+1) = r(k+1) + βkp(k) p̃(k+1) = r̃(k+1) + βkp̃(k) (3.66)

The sequence of residuals in the CG method has become two sequences in the
BICG method, given by,

r(k+1) = r(k) − αkAp(k) r̃(k+1) = r̃(k) − αkAT p̃(k) (3.67)

The choices α(k) and β(k) in the BICG method are given by,

α(k) =
r̃(k)T

r(k)

p̃(k)T Ap(k)
β(k) =

r̃(k+1)T
r(k+1)

r̃(k)T r(k)
(3.68)

The definitions of α(k) and β(k) ensure the bi-orthogonality conditions are sat-
isfied,

r̃iT rj = p̃iT Apj = 0, i 6= j (3.69)
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The BICG method is outlined in Algorithm 3.5. The generation of the search
vectors in the BICG method is relatively cheap and unlike GMRES the stor-
age requirements do not grow with each iteration. The accuracy of the BICG
method is often comparable with GMRES, but at twice the number of matrix-
vector products per iteration. However, the convergence behavior of BICG can
be erratic, and the method may even break down in certain situations. Vari-
ous extensions of the BICG, which attempt to address these issues, have been
proposed and include the conjugate gradient squared method (CGS) and the
biconjugate gradient stabilised method (BICGSTAB) [41, 42].

The CGS method avoids using the transpose of A in an attempt to obtain a
faster rate of convergence than the BICG method. The CGS method does con-
verge more quickly than the BICG method for many problems. However, the
method is less robust than BICG and may quickly diverge for ill-conditioned
systems. The BICGSTAB method is like the CGS method except it attempts to
avoid its often erratic convergence pattern.
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Algorithm 3.5: The Biconjugate Gradient Method

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

Choose r̃(0) such that r(0)r̃(0) 6= 0

p(0) = r(0)

p̃(0) = r̃(0)

for k ≥ 0

α(k) = r̃(k)T r(k)

p̃(k)T Ap(k)

x(k+1) = x(k) + α(k)p(k)

r(k+1) = r(k) − α(k)Ap(k)

r̃(k+1) = r̃(k) − α(k)Ap̃(k)T

β(k) = r̃(k+1)T r(k+1)

r̃(k)T r(k)

p(k+1) = AT r(k+1) + β(k)p(k)

p̃(k+1) = AT r̃(k+1) + β(k)p̃(k)

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.5 Stationary Solvers

Stationary iterative schemes attempt to solve Ax = b by the following updat-
ing process [20, 41]

x(k+1) = Mx(k) + f (3.70)

where M is an N ×N matrix called the iteration matrix and f is a N × 1 vector
obtained from b. M and f can be expressed as,

M = I−Q−1A (3.71)

f = Q−1b (3.72)

where I is the identity matrix and Q is the splitting matrix. Any iteration that
can be written in the form of Equation 3.70 is said to be a stationary method
since M and f do not depend on the iteration count k. Different definitions
of Q define the different stationary iterative techniques. We aim to choose a
splitting such that M has a small spectral radius. The size of the spectral radius
of M will determine the speed of convergence. The choice of x(0) has no effect
on the ability of a stationary method to converge to within a desired tolerance
of x. However, the choice of x(0) will effect the number of iterations required
to reach that solution.

To aid in the discussion of stationary methods we express A as

A = U + L + D (3.73)

where U and L are N ×N size matrices containing the upper and lower trian-
gular portions of A respectively. D is a N ×N matrix containing the diagonal
elements of A.
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U, L and D can be expressed as

U =




0 a12 · · · · · · a1N

0 0 a23 · · · ...

0 0 0 · · · aN−2,N

...
...

... . . . aN−1,N

0 0 · · · 0 0




(3.74)

L =




0 0 · · · · · · 0

a21 0 · · · · · · ...

a31 a32
. . . · · · 0

...
...

... 0 0

aN1 aN2 · · · aN,N−1 0




(3.75)

D =




a11 0 · · · · · · 0

0 a22 · · · · · · ...

0 0
. . . · · · 0

...
...

... . . . 0

0 0 · · · 0 aN,N




(3.76)
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3.5.1 Jacobi Iteration

The most basic stationary scheme is Jacobi iteration. The component-wise
form of the Jacobi iteration can be written as

x
(k+1)
i =

bi −
∑
j 6=i

ai,jx
k
j

aii

i = 1, . . . , N (3.77)

aij , xi and bi are respectively elements of A, x and b. The notation in Equa-
tions 3.74 - 3.76 can be used to rewrite the Jacobi iteration of Equation 3.77 in
vector form as

x(k+1) = −D−1(L + U)x(k) + D−1b (3.78)

It can be shown from Equations 3.70 and 3.77, that for the Jacobi method

M = −D−1(L + U) (3.79)

and

Q = D (3.80)

Each iteration of the Jacobi method involves updating each variable once.
Although the method is easy to understand and implement, the convergence is
slow. Each iteration of the Jacobi method requires N2 flops. The Jacobi method
is outlined in Algorithm 3.6.
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Algorithm 3.6: Jacobi Iteration

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

for k ≥ 0

for i = 1, . . . , N

σ = 0

for j = 1, . . . , N

if j 6= 1

σ = σ + aijxj
(k)

end if

end

xi
(k+1) = (bi−σ)

aii

end

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.5.2 The Gauss-Seidel Iteration

Similarly to the Jacobi iteration, the Gauss-Seidel iteration updates the ith com-
ponent of the current approximate solution in the order i = 1, 2, . . . , N . How-
ever, in the Gauss-Seidel method the approximate solution of x

(k+1)
i uses the

elements of x(k+1) that have been updated and the elements of x(k) that have
yet to be advanced to iteration k + 1. Thus the Gauss-Seidel method uses the
most current estimate of xi where available. The component-wise form of the
Gauss-Seidel iteration can be written as

x
(k+1)
i =

1

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
i = 1, · · · , N (3.81)

Equation 3.81 can be written in vector form as

x(k+1) = − (D + L)−1 Ux(k) + (D + L)−1 b (3.82)

It can be shown from Equation 3.70 and 3.82, that for the Gauss-Seidel method

M = − (L + D)−1 U (3.83)

The Gauss-Seidel method is simple to apply and generally converges faster
than the Jacobi method. Each iteration of the Gauss-Seidel method requires N2

flops. The Gauss-Seidel method is outlined in Algorithm 3.7.
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Algorithm 3.7: Gauss-Seidel Iteration

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

for k ≥ 0

for i = 1, . . . , N

σ = 0

for j = 1, . . . , i− 1

σ = σ + aijxj
(k+1)

end

for j = i + 1, . . . , N

σ = σ + aijxj
(k)

end

xi
(k+1) = (bi−σ)

aii

end

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.5.3 Successive Over Relaxation

Successive Over Relaxation(SOR) is a variant of Gauss-Seidel, where a relax-
ation parameter ω is introduced in order to speed up convergence. The choice
of optimum relaxation parameter is not readily known and depends upon the
spectral properties of A. Typically ω ranges between 0 and 2, where 0 < ω < 1

is referred to as under-relaxation, and 1 < ω < 2 is over-relaxation. The
component-wise form of the SOR iteration can be written as

x
(k+1)
i =

ω

aii

(
bi −

∑
j<i

aijx
(k+1)
j −

∑
j>i

aijx
(k)
j

)
+ (1− ω) x

(k)
i i = 1, . . . , N

(3.84)

Equation 3.84 can be written in vector form as

x(k+1) = (D + ωL)−1 [−ωU + (1− ω)D]x(k) + ω (D + ωL)−1 b

(3.85)

It can be shown from Equation 3.70 and 3.85, that for the SOR method

M = (D + ωL)−1 [−ωU + (1− ω)D] (3.86)

The SOR method can gives better convergence than Gauss-Seidel, assum-
ing a good choice of ω. However, for other values of ω the SOR method may
fail where as the Gauss-Seidel method may converge. Therefore relaxation is
really only useful for those scenarios where A has a definitive form that is
re-used for repeated solution. Each iteration of the SOR method requires N2

flops. The SOR method is outlined in Algorithm 3.8.
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Algorithm 3.8: Successive Over Relaxation Iteration

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

for k ≥ 0

for i = 1 . . . N

σ = 0

for j = 1 . . . , i− 1

σ = σ + aijxj
(k+1)

end

for j = i + 1, . . . , N

σ = σ + aijxj
(k)

end

xi
(k+1) = x

(k)
i + ω

(
bi−σ
aii

− x
(k)
i

)

end

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.5.4 Symmetric Successive Over Relaxation

An iteration of Symmetric Sucessive Over Relaxation (SSOR) consists of the
SOR step in Equation 3.85 followed by a backward step. The component-wise
form of the SSOR iteration can be written as

x
(k+ 1

2)
i =

ω

aii

(
bi −

∑
j<i

aijx
(k+ 1

2)
j −

∑
j>i

aijx
(k)
j

)
+ (1− ω) x

(k)
i i = 1, . . . , N

(3.87)

x
(k+1)
i =

ω

aii

(
bi −

∑
j<i

aijx
(k+ 1

2)
j −

∑
j>i

aijx
(k+1)
j

)
+ (1− ω) x

(k+ 1
2
)

i i = N, . . . , 1

(3.88)

Equations 3.87 - 3.88 can be written in vector form as

x(k+ 1
2) = (D + ωL)−1 [−ωU + (1− ω)D]x(k) + ω (D + ωL)−1 b

(3.89)

x(k+1) = (D + ωU)−1 [−ωL + (1− ω)D]x(k+ 1
2
) + ω (D + ωU)−1 b

(3.90)

It can be shown from Equation 3.70 and Equations 3.89 - 3.90, that for the SSOR
method

M = (D + ωL)−1 [−ωU + (1− ω)D] (D + ωU)−1 [−ωL + (1− ω)D] (3.91)

Each iteration of the SSOR method requires 2N2 flops. The convergence rate of
the SSOR method, with optimal choice of ω is usually slower than that of the
SOR method. The SSOR method is primarily used as a preconditioning tech-
nique. The SSOR method forms the foundation of the forward backward [23]
and buffered block forward backward [25] methods that are the focus of this
thesis. The SSOR method is outlined in Algorithm 3.9.

65



Algorithm 3.9: Symmetric Successive Over Relaxation Iteration

Initial steps:
Guess x(0)

r(0) = b−Ax(0)

for k ≥ 0

for i = 1, . . . , N

σ = 0

for j = 1, . . . , i− 1

σ = σ + aijxj
(k+ 1

2
)

end
for j = i + 1, . . . , N

σ = σ + aijxj
(k)

end
xi

(k+ 1
2) = x

(k+)
i + ω

(
bi−σ
aii

− x
(k)
i

)

end
for i =, N . . . , 1

σ = 0

for j = 1, . . . , i− 1

σ = σ + aijxj
(k+ 1

2
)

end
for j = i + 1, . . . , N

σ = σ + aijxj
(k+1)

end
xi

(k+ 1
2) = x

(k+1)
i + ω

(
bi−σ
aii

− x
(k+ 1

2)
i

)

end

Terminate when the norm r(k+1) falls below some specified tolerance.

end
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3.6 Preconditioning

The rate at which an iterative method converges is dependant on the spectral
properties of the coefficient matrix. The larger the condition number of A the
slower the system Ax = b will be to converge to a solution for some iterative
solver. The use of a preconditioner attempts to transform the linear system to
be solved into one with more favourable spectral properties [41, 50]. Apply-
ing a preconditioner, P, that approximates A in some way, gives rise to the
transformed system

P−1Ax = P−1b (3.92)

The solution of Equation 3.92 is the same as the original system, but the condi-
tion number of the coefficient matrix P−1A may be less than that of the original
matrix A.

When choosing a preconditioner the trade-off between the cost of con-
structing and applying the preconditioner and the gain in convergence speed
must be considered. If P = A, in Equation 3.92, the situation has not been im-
proved since this requires the complete factorisation of A. In some cases the
application of a preconditioner is absolutely necessary as the iteration method
applied to the original system will not converge.

Several common types of preconditioner used are based on the iteration
matrices of stationary methods. The Jacobi preconditioner is simply the diago-
nal of A, whereas the Gauss-Seidel preconditioner is the lower triangular part
of A. Block forms of Jacobi and Gauss-Seidel preconditioners also exist [21].
Other well know preconditioning techniques are based on the SOR and SSOR
methods. Preconditioners based on stationary methods have been shown to
improve the convergence of Krylov methods [50–52].

Another popular class of preconditioners used are those based on Incom-
plete LU Factorisation (ILU). ILU factorisation computes a sparse lower tri-
angular matrix L and a sparse upper triangular matrix U so that the residual
matrix, R = LU − A, satisfies certain constraints such as having null entries
in some locations [42]. ILU preconditioners are simple to apply. However, the
storage of the L and U matrices is a drawback [53].

Multigrid (MG) techniques can also be used as preconditioners. For sta-
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tionary solvers, the components of the errors in the directions of the eigenvec-
tors of the iteration matrix corresponding to the large eigenvalues are damped
very rapidly. These eigenvectors are known as high frequency modes. Con-
versely the error components associated with low frequency modes are damped
less quickly. However, many of these low frequency modes are mapped into
high frequency modes when a given problem is discretised using a coarser
mesh. Therefore MG methods are based on the idea of effectively reducing the
distribution of low frequency errors by moving to a coarser mesh. This process
can be repeated with the help of recursion, using a hierarchy of meshes [42].
MG methods can improve the convergence of Krylov methods, although they
may require implementations that are specific to the physical problem under
investigation [54].
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Chapter 4

Buffered Block Forward Backward
Method

In this chapter, we discuss the various stationary methods from which the
BBFB method has evolved and their application to EM wave scattering prob-
lems. We also present the BBFB algorithm and its application to three-dimensional
scattering problems. Numerical results are provided to compare the conver-
gence rate of the BBFB method against that of a range of Krylov solvers. In
addition we demonstrate how the BBFB method can be efficiently applied to
scattering problems involving multiple source locations. The acceleration of
the BBFB method via the introduction of a relaxation parameter ω is also ex-
amined.

4.1 Application of Stationary Methods to Electromagnetic Wave

Scattering

As mentioned previously, solvers based on the generation of Krylov sub-spaces
have been favoured due to their robust convergence properties [41]. However,
in recent years there has been much focus on iterative solvers based on station-
ary methods, such as Gauss-Seidel and others [21].

Kapp and Brown introduced the method of ordered multiple interactions
(MOMI) in [23]. This method is termed the method of ordered multiple in-
teractions because the scattering terms are grouped in the iteration according
to the direction (either forward or backward) of the scattering on the surface.

69



The MOMI presented in [23] was applied to MFIE formulations of problems
involving scattering from PEC surfaces that are single valued and rough in
one-dimension. For a single valued function each element of the functions’s
domain maps to a single, well-defined element of its range. The MOMI proved
very effective in solving such problems, and was shown to reduce the amount
of computation time required compared to LU decomposition by a factor of N

3
.

Adams and Brown have also extended the MOMI to a large number of two-
dimensional PEC rough surface scattering problems formulated in terms of
the combined field integral equation (CFIE) [55, 56]. The MOMI when applied
to these problems provided a rapidly convergent iterative solution. Adams
and Brown also applied the MOMI to two-dimensional closed body scattering
problems using the CFIE method in [57]. However, in this case it is shown
that the MOMI algorithm diverges when applied to a circular cylinder scat-
terer more than a few tenths of a wavelength in radius and independent of the
interaction ordering used. Tran also extended the MOMI to two-dimensional
PEC scattering problems in [58]. It was found that the MOMI works well for
a selection of perfectly conducting two-dimensional surfaces with Gaussian
statistics and correlation. However, the method performed poorly, even di-
verging in some cases, when applied to resonant surfaces. The presence of
surface resonance means that there are multiple scattering events with multi-
ple changes in direction occurring on the surface. In addition, the convergence
of the MOMI algorithm depended strongly on the order in which the current
elements were updated. Adams and Brown investigated the use of the MOMI
applied to dual-surface magnetic field integral equation (DMFIE) [59] formu-
lations of two-dimensional closed body PEC scatterering problems in [60]. The
DMFIE method avoids the poor conditioning of the MFIE resulting from the
internal resonance problem. It is shown in [60] that the MOMI applied to DM-
FIE formulations of closed bodies produces rapidly convergent results.

A functionally identical approach to the MOMI algorithm, termed the for-
ward backward method, was presented by Holliday et al. in [22, 61]. The
MOMI and the forward backward method are often termed current marching
methods as they attempt to march a solution for the unknown basis function
amplitudes across the surface of the scatterer. The MOMI and forward back-
ward methods are mathematically equivalent to the SSOR method with relax-
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ation parameter ω set to one [24].
The Spatial Decomposition Technique (SDT) developed by Umashankar et

al. [62, 63] and the Progressive Numerical Method (PND) [64, 65] are two tech-
niques, which like the forward backward method, also divide the surface of
the scatterer into multiple sections. The surface currents are then computed
separately for each section. Therefore the maximum size of the method of mo-
ments system matrix that needs to be inverted is reduced. The PNM method
differs from the SDT method in that it introduces the concept of overlapping
regions. These are introduced in order to dampen the edge effects produced
by the artifical decomposition of the scatterer into sections. A similar tech-
nique to the SDT, PNM and MOMI methods is the multiple sweep method
of moments (MSMM) introduced by Torrungrueng and Newman in [66]. The
MSMM is a recursive method in which the scatterer surface is divided into
P sections containing approximately N

P
unknowns per section. The currents

on the sections are found in a recursive fashion until they converge to an ac-
ceptable level of accuracy. The MSMM attempts to perform the recursion so
that the first sweep accounts for the dominant scattering mechanisms, while
subsequent sweeps account for higher order mechanisms. It is found in [66]
that the MSMM method produces rapidly convergent results when applied to
scattering from a resistively loaded two-dimesional PEC flat plate.

The buffered block forward backward (BBFB) method extends these tech-
niques in order to solve three-dimensional scattering problems described by
the EFIE. The BBFB method discretises the scatterer surface into regions. A so-
lution for the current is then marched forward from region to region followed
by a backward march from region to region. The BBFB method includes the in-
teractions between neighbouring regions, so called buffers, in order to reduce
the artificially induced edge effects. In this chapter, we detail and examine an
explicit convergence criterion of the BBFB method. A rigorous numerical com-
parison of the BBFB method’s convergence rate against other iterative solvers
is also performed. All scattering problems examined are planar in geometry
and vary in terms of condition number. The varying condition number of the
problems under examination allows the robustness of the BBFB method to be
tested. In addition, the BBFB method is easily applied to structures that are
planar in geometry.
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4.2 Review of Block Stationary Methods

The forward backward method, in a similar fashion to the SSOR method, con-
sists of a forward sweep through the unknowns i = 1, . . . , N followed by a
backward sweep in the order i = N, . . . , 1. The (k + 1)st step of the forward
backward algorithm takes place in two stages and is given by

ZiiJ
(k+ 1

2)
i = Vi −

∑
j<i

ZijJ
(k+ 1

2)
j −

∑
j>i

ZijJ
(k)
j for i = 1, . . . , N (4.1)

ZiiJ
(k+1)
i = Vi −

∑
j<i

ZijJ
(k+ 1

2)
j −

∑
j>i

ZijJ
(k+1)
j for i = N, . . . , 1 (4.2)

It should be noted that the terms

∑
j<i

ZijJ
(k+ 1

2)
j

in Equations 4.1 - 4.2 need only be computed once per iteration of the forward
backward method. Equations 4.1 - 4.2 can be written compactly as

(D + L)J(k+ 1
2) = V −UJ(k) (4.3)

(4.4)

(D + U)J(k+1) = V − LJ(k+ 1
2) (4.5)

where D, L and U are the diagonal, lower triangular and upper triangular
submatrices of Z respectively, with Z = D + L + U. We can define the error at
step k, for the forward backward method as

ε(k) = J− J(k) (4.6)

The error can be shown to evolve as

ε(k) = MFBε(k−1), (4.7)
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where MFB is the iteration matrix defined by

MFB = (D + U)−1 L (D + L)−1 U (4.8)

The algorithm will converge if limk→∞ ‖ε(k)‖ = 0. We let ΛFB represent the
eigenvalues of MFB. Thus the convergence of the method is ensured if the
spectral radius,ρ, of the iteration matrix is less than one where

ρ
(
MFB

)
= max

{‖λ‖ : λ ∈ ΛFB
}

(4.9)

A block version of the FB method proceeds by dividing the basis functions
into M local non-overlapping groupings. The algorithm steps sequentially
through the groups and at each step simultaneously updates the basis ampli-
tudes within a particular group by solving a local matrix equation. The right
hand side vector for this matrix equation represents an updated incident field
equal to the original incident field plus electric fields scattered from all other
groups. In particular it solves

J̃
(k+ 1

2)
i = Z̃−1

ii

(
Ṽi −

∑
j<i

Z̃ijJ̃
(k+ 1

2)
j −

∑
j>i

Z̃ijJ̃
(k)
j

)
for i = 1, . . . ,M (4.10)

J̃
(k+1)
i = Z̃−1

ii

(
Ṽi −

∑
j<i

Z̃ijJ̃
(k+ 1

2)
j −

∑
j>i

Z̃ijJ̃
(k+1)
j

)
for i = M, . . . 1 (4.11)

where Z̃ij is a submatrix of Z containing the interactions between the basis
functions in groups i and j (see Figure 4.1). J̃i contains the unknown basis
amplitudes in group i while Ṽi contains the incident field information for all
basis domains in group i. Z, J and V can be expressed as

Z =




Z̃11 Z̃12 Z̃13 . . . Z̃1M

Z̃21 Z̃22 Z̃23 . . . Z̃2M

Z̃31 Z̃32 Z̃33 . . . Z̃3M

Z̃41 Z̃42 Z̃43 . . . Z̃4M

...
...

...
...

...

Z̃M1 Z̃M2 Z̃M3 . . . Z̃MM




(4.12)
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J =




J̃1

J̃2

J̃3

J̃4

...

J̃M




(4.13)

Ṽ =




Ṽ1

Ṽ2

Ṽ3

Ṽ4

...

ṼM




(4.14)

The block FB procedure can be shown to be equivalent to applying the FB
algorithm of Equations 4.1 and 4.2 to the pre-conditioned system ZpJ = Vp

where

Zp = PZ (4.15)

Vp = PV, (4.16)

and P is a block diagonal matrix whose M diagonal blocks are given by Z̃−1
ii for

i = 1 · · ·M . The convergence of the block forward backward method thus de-
pends on the spectral radius of the iteration matrix in Equation 4.8 associated
with Zp.
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Figure 4.1: Discretision of the scatterer into subregions.
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4.3 Application of BBFB Method

As discussed previously, stationary methods have been applied to a range of
two-dimensional scattering problems, where they have been shown to be com-
petitive against Krylov subspace based solvers [24]. Applying the block for-
ward backward (BFB) algorithm to scattering from three-dimensional objects
is more complicated however as the spectral radius of the iteration matrix is
generally greatly in excess of one, leading to rapidly divergent results. [25]
identified the divergence as being due to the introduction of spurious diffrac-
tion effects at the edges of the groupings. These effects are present in the two-
dimensional case also but are less severe. [25] showed how the incorporation
of some redundant computations in the form of buffer regions could dampen
these effects sufficiently to allow the algorithm to converge. We identify buffer
regions for each subregion (see Figure 4.2) which are those areas of the scat-
terer immediately adjacent to the boundary of the subregion in the direction
that we are marching the solution. Note that the definition of the buffer region
thus depends on whether we we are on the forward or backward sweep of the
iterative process.

The incorporation of the buffer region allows the currents in the buffer re-
gion to couple with the currents in their associated group, thereby alleviating
some of the unwanted truncation effects. The algorithm proceeds by sequen-
tially solving the matrix equations

ỸiiĨ
(k+ 1

2
)

i = W̃i − L̃
(k+ 1

2
)

i − Ũ
(k)

i for i = 1 · · ·M (4.17)

ỸiiĨ
(k+1)

i = W̃i − L̃
(k+ 1

2
)

i − Ũ
(k+1)

i for i = M · · · 1, (4.18)

Ỹii supplements Z̃ii with information about the interaction between basis func-
tions in i and those in the appropriate (forward or backward) buffer region b(i).
Ỹii can be given by

Ỹii =


 Z̃ii Z̃ib(i)

Z̃b(i)i Z̃b(i)b(i)


 (4.19)
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The left hand side unknown and incident field vectors are given by

Ĩ
(k)

i =


 J̃

(k)
i

J̃b(i)


 W̃i =


 Ṽi

Ṽb(i)


 (4.20)

J̃
(k)

i is the kth estimate of the basis function amplitudes in group i while J̃b(i)

holds temporary solutions to the unknown basis function amplitudes in the
appropriate buffer region b(i). They are temporary in that they are only com-
puted in order to control the spurious diffraction effects within group i. The
actual BBFB estimate for the currents in b(i) are computed whenever the algo-
rithm computes the currents within the group containing b(i).

L̃
(k)

i and Ũ
(k)

i contain information about currents coupled from other groups
to group i.

L̃
(k)

i =




i−1∑
j=1

ˆ̃ZijJ̃
(k)
j

i−1∑
j=1

ˆ̃Zb(i)jJ̃
(k)
j




Ũ
(k)

i =




M∑
j=i+1

ˆ̃ZijJ̃
(k)
j

M∑
j=i+1

ˆ̃Zb(i)jJ̃
(k)
j




(4.21)

ˆ̃Zij is obtained by taking Z̃ij and setting to zero the interaction between any
basis function in subregion j that is also contained in the appropriate buffer
region b(i). Such interactions have already been accounted for when exam-
ining the interactions between subregion i and its buffer region. It should
be noted that the local problem (consisting of a group and its buffer region)
sub-matrices Ỹii can be explicitly pre-computed and stored along with their
inverses. This pre-processing greatly enhances the computational efficiency
with which Equations 4.17 and 4.18 can be solved. While the physical reason-
ing behind the efficiency of the BBFB is appealing we now present a detailed
analysis which explains how the introduction of redundant computations can
improve convergence.

77



Figure 4.2: Subregions along with buffer regions to ensure the convergence of
the BBFB method.
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4.4 Convergence Analysis

The buffered scheme outlined in Equations 4.17 and 4.18 is equivalent to ap-
plying a block FB method to the following augmented system.

ZaugJaug = Vaug (4.22)

where

Zaug =




Z̃11 Z̃1b(1)
ˆ̃Z12 0 ˆ̃Z13 0 · · · ˆ̃Z1M 0

Z̃b(1)1 Z̃b(1)b(1)
ˆ̃Zb(1)2 0 ˆ̃Zb(1)3 0 · · · ˆ̃Zb(1)M 0

ˆ̃Z21 0 Z̃22 Z̃2b(2)
ˆ̃Z23 0 · · · ˆ̃Z2M 0

ˆ̃Zb(2)1 0 Z̃b(2)2 Z̃b(2)b(2)
ˆ̃Zb(2)3 0 · · · ˆ̃Zb(2)M 0

...
...

...
...

...
...

...
...

ˆ̃ZM1 0 ˆ̃ZM2 0 ˆ̃ZM3 0 · · · Z̃MM Z̃Mb(M)

ˆ̃Zb(M)1 0 ˆ̃Zb(M)2 0 ˆ̃Zb(M)3 0 · · · Z̃b(M)M Z̃b(M)b(M)




(4.23)

and

Jaug =
[

J̃1 J̃b(1) J̃2 J̃b(2) · · · J̃M J̃b(M)

]T

(4.24)

Vaug =
[

Ṽ1 Ṽb(1) Ṽ2 Ṽb(2) · · · ṼM Ṽb(M)

]T

(4.25)

where the vertical and horizontal lines are included to emphasise the block
nature of this system. Note that the buffer regions used for each group can
differ between the forward sweep and the backward sweep and as such the
composition of Zaug,Jaug and Vaug can differ between sweeps. Let Zf be the
augmented matrix for the forward sweep, while Zb is the augmented matrix
for the backward sweep. As seen in the previous section the performance of
the block FB applied to Equation 4.22 is identical to the forward backward al-
gorithm of Equations 4.1 and 4.2 applied to a preconditioned version of Equa-
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tion 4.22. The preconditioner is a block diagonal matrix whose diagonal blocks
are the inverse of the diagonal blocks of Zaug namely


 Z̃ii Z̃ib(i)

Z̃b(i)i Z̃b(i)b(i)



−1

Let Zpf be the thus pre-conditioned version of Zf while Zpb be the thus pre-
conditioned version of Zb. We identify Dpf ,Lpf and Upf as the diagonal, lower
triangular and upper triangular parts of Zpf with similar interpretations for
Dpb,Lpb and Upb. We can thus define the iteration matrix MBBFB for the BBFB
method as

MBBFB = (Dpb + Upb)
−1 Lpb (Dpf + Lpf )

−1 Upf (4.26)

The BBFB method will thus converge for a particular problem if the groups and
buffer regions are chosen such that the spectral radius of the iteration matrix
ρ (MBBFB) is less than one. However, the task of computing the spectral radius
of the iteration matrix is as computationally intensive as the original problem
of finding a solution for J. It should be noted that the structure of the iteration
matrix for the BBFB method is only dependent on the geometry of the scatterer,
its decomposition into subregions and the choice of buffer regions. As such
if a suitable decomposition can be found that yields a convergent result, the
resultant algorithm will converge for all source locations. This further justifies
the computational expense of pre-computing and storing the local problem
inverses Ỹ−1

ii .
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4.4.1 Validation of Convergence Criterion

In order to verify the convergence criterion outlined in the last section we
apply the BBFB method to a range of three-dimensional scattering problems,
with particular attention being paid to the convergence rate of each problem
and the properties of the corresponding iteration matrix. We also analyse the
effect of varying the buffer region and subregion sizes on the performance of
the BBFB method, for each scattering problem. The scattering problems con-
sist of two PEC plates each of size 2λ by 2λ hinged together at a common edge
with varying angle α. Specifically the angle, α, between the plates was varied
between 45o and 180o (see Figure 4.3). The incident source is a dipole located
at (0,−11√

3
,10), where we assume a Cartesian coordinate system. A total of 1890

RWG basis functions [27] were employed for each problem with f = 300MHz.
The scattering structures can be subdivided into rows of basis functions, where
each row spans the width of the scattering structure. Each row contains 53 ba-
sis functions. The subregion and buffer region sizes are thus defined by the
number of basis functions in a set number of rows.

Table 4.1 details the dimensions of buffer regions and subregions, applied
to the BBFB algorithm, for various values of α. In addition the spectral radius
of the iteration matrix is given for each problem. A measure of the conver-
gence rate for each buffer region and subregion dimension investigated is also
given in Table 4.1. Specifically the log10 of the error is computed after 108 mul-
tiplications. It should be noted that the convergence rate is examined after a
number of multiplications rather than iterations. This is due to the fact that the
amount of multiplications required in one iteration of the BBFB method differs
depending on the specific subregion and buffer region sizes used. For example
increasing the buffer region size for a set problem increases the computational
cost of the matrix-vector multiplies in each iteration.

It is evident from Table 4.1 that the choice of buffer regions and subregion
sizes are crucial to the performance of the BBFB algorithm. If each group does
not have an adequate buffer region, in order to dampen the spurious edge ef-
fects as previously discussed, then the BBFB method will diverge for a given
problem. This corresponds to a spectral radius of the iteration matrix in ex-
cess of one, as seen in Table 4.1 for subregion/buffer region sizes of 159/53,
159/106 and 318/53 basis functions. Conversely the BBFB converges for all
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subregion and buffer region sizes, where the spectral radius of the iteration
matrix is found to be less than one, as evident from Table 4.1. A trade off be-
tween rapid convergence and increased computational burden must be found
when choosing subregion and buffer region dimensions. The optimum choice
of subregion and buffer region size is obviously one in which offers the fastest
convergence of the method with the least amount of computation. Figure 4.5 il-
lustrates this concept for a cross-section of subregion and buffer region dimen-
sions applied to the BBFB method for α = 45o. It is evident from Figure 4.5 that
increasing the buffer region size associated with a subregion, while increasing
the computational cost per iteration, can improve the over-all convergence rate
of the BBFB method. The results outlined in Table 4.1 validate the convergence
criterion for the BBFB method outlined in the previous section.
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Figure 4.3: BBFB method applied to three-dimensional wedge.
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4.5 Comparison of BBFB Method Against Other Iterative Solvers

In order to evaluate the performance of the BBFB method we consider four of
the most popular Krylov solvers, namely the CGNE, BICGSTAB and GMRES
methods [42]. The CGNE, BICGSTAB and GMRES methods can all be applied
to non-symmetric systems. These methods guarantee convergence, in the case
of infinite numerical precision, for a general problem in N steps. However,
for large problems N steps may obviously be impractical. The CGNE and
BICGSTAB algorithms require approximately three and five inner products
respectively with two matrix-vector products per iteration. The GMRES algo-
rithm requires approximately one matrix-vector product per iteration. How-
ever, the amount of vector-vector multiplies and the overall storage required
by the algorithm increases with each iteration. Therefore the GMRES method
must be restarted after a certain number of iterations, i.e. when the overall
storage of the algorithm becomes excessive [42].

It was shown in the previous section that each forward backward sweep of
the BBFB method is equivalent to a point by point forward backward sweep
applied to a preconditioned version of the augmented matrix equation (see
Equation 4.22). The preconditioner, Paug, applied to the augmented matrix
equation is a block diagonal matrix whose diagonal blocks are the inverses
of the diagonal blocks in Equation 4.23. We apply a similar level of precon-
ditioning to the CGNE, BICGSTAB and GMRES methods in order to offer a
fair comparison to the BBFB method. Specifically we apply a block diagonal
preconditioner, PK , to the CGNE, BICGSTAB and GMRES methods. PK con-
tains approximately the same number of elements as Paug. The elements of
PK correspond to the equivalent block diagonal elements of the Z matrix. The
inverse of PK can easily be found by computing the inverse of each diagonal
block respectively [21]. The resulting inverse is consequently block diagonal.

The use of a preconditioner increases the amount of computation per iter-
ation required by the CGNE, BICGSTAB and GMRES solvers. However as the
inverse of PK is block diagonal only the elements in the diagonal blocks will
contribute to any extra matrix-vector computations.
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4.5.1 Numerical Results for BBFB method

In order to evaluate the performance of BBFB method, against the CGNE,
BICGSTAB and GMRES methods, we examined the rate of convergence of the
methods when applied to a range of three-dimensional scattering problems.
The problems investigated are all assumed to be PEC hinged plates (wedge),
with varying angle α, similar to the problem set-up shown in Figure 4.3. We
consider wedges of size 4λ× 2λ and 6λ× 3λ.

For the 4λ× 2λ sized wedge a total of 1890 RWG basis functions [27] were
employed for each problem. Each subregion was composed of 318 basis func-
tions and a buffer region composed of 106 basis functions was employed. For
the 6λ × 3λ sized wedge a total of 4293 RWG basis functions [27] were em-
ployed for each problem. Each subregion was composed of 720 basis func-
tions and a buffer region composed of 240 basis functions was employed. The
convergence of the algorithms was determined by examining the log10 of the
relative residual error, ε, which is given by ε(k) = ‖V−ZJ(k)‖

‖V‖ .
As previously discussed, each solver requires a different amount of com-

putation in an iteration. Therefore we plotted the convergence of the methods,
for each problem, in terms of multiplications. Note the convergence was not
plotted in terms of matrix-vector multiplies as the BBFB method, due to the
inclusion of buffering, has larger size matrix-vector multiplies than those of
the Krylov methods.

4.5.2 Case of 4λ× 2λ Sized Wedge

It is evident from Figure 4.6 that the performance of the BBFB method is im-
proved when applied to problems with the best conditioning. This can be seen
by the fact that for α = 180o in Figure 4.6 (f), which is the best conditioned
system, the best results for the BBFB method are obtained. Conversely for
α = 22.5o in Figure 4.6 (a), which is the worse conditioned system, the poor-
est results for the BBFB method are obtained. It is apparent from Figure 4.6
that the BBFB method converges to machine level accuracy faster than the
preconditioned CGNE, BICGSTAB and GMRES methods for each scattering
problem examined. The GMRES method is shown to be the most competitive
solver next to the BBFB in Figure 4.6, with the BICGSTAB and CGNE methods
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both showing much slower convergence. Similar results, for two-dimensional
rough-surface scattering problems problems, comparing non-stationary and
stationary methods are given in [24].

4.5.3 Case of 6λ× 3λ Sized Wedge

The results for the 6λ × 3λ sized wedge are depicted in Figure 4.7. The sys-
tems with the best conditioning in Figure 4.7 are ordered according to α =

180o, 135o, 90o and 45o. The BBFB method in Figure 4.7 is shown to produce
more favourable convergence results for the better conditioned systems. The
BBFB method converges to machine level accuracy faster than preconditioned
CGNE, BICGSTAB and GMRES methods for α = 90o, 135o and 180o in Fig-
ure 4.7 (b), (c) and (d) respectively. However, it is also evident from Figure 4.7
(a) that when α = 45o the BBFB method diverges. The Krylov solvers are
shown to be more robust than, and outperform, the BBFB method in this case.
The divergence of the BBFB method in Figure 4.7 (a) can be remedied by in-
creasing the buffer region size associated with each subregion.

88



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

−10

−8

−6

−4

−2

0

2

No. of Multiplications

lo
g 10

ε(k
)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
8

−14

−12

−10

−8

−6

−4

−2

0

2

No. of Multiplications

lo
g 10

ε(k
)

(b)

Figure 4.6: Comparison of BBFB, CGNE, BICGSTAB and GMRES iterative
solvers applied to 4λ× 2λ sized wedge. (a) α = 22.5o. (b) α = 45o.
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Figure 4.6: Comparison of BBFB, CGNE, BICGSTAB and GMRES iterative
solvers applied to 4λ× 2λ sized wedge. (c) α = 90o. (d) α = 112.5o.
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Figure 4.6: Comparison of BBFB, CGNE, BICGSTAB and GMRES iterative
solvers applied to 4λ× 2λ sized wedge. (e) α = 135o. (f) α = 180o.
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Figure 4.7: Comparison of BBFB, CGNE, BICGSTAB and GMRES iterative
solvers applied to 6λ× 3λ sized wedge. (a) α = 45o. (b) α = 90o.
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Figure 4.7: Comparison of BBFB, CGNE, BICGSTAB and GMRES iterative
solvers applied to 6λ× 3λ sized wedge. (c) α = 135o. (d) α = 180o.
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4.6 Discussion of BBFB Algorithm and Results

The application of the BBFB method to three-dimensional scattering problems
was presented in detail. An explicit convergence criterion for the BBFB method
was derived and its effect on scattering problems examined. The convergence
properties of the BBFB method were shown to depend on the eigenvalues of
the BBFB methods iteration matrix. Numerical results were also provided to
support any conclusions drawn.

The BBFB method was applied to several three-dimensional PEC scattering
problems and compared against a number of Krylov solvers, specifically the
BICGSTAB, GMRES and CGNE methods. It was shown that the BBFB method
converged to machine level accuracy faster than the Krylov solvers for the ma-
jority of the problems examined. However, the BBFB method was also shown
to be less robust than the Krylov methods, failing to converge in one particu-
lar case. We can conclude from the results presented in this chapter that the
convergence of the BBFB method depends strongly on the conditioning of the
system in question. The BBFB method showed the best performance when
applied to well-conditioned planar scattering problems.

We have demonstrated that the BBFB method is a competitive solver against
Krylov methods for a range of three-dimensional PEC scattering problems.
The choice of the BBFB method or Krylov method for a given problem may
therefore depend on whether fast convergence or robustness is desired. In
addition, the BBFB method may be less straightforward to apply to complex
geometries than Krylov methods, as the subregions and buffer regions may be
harder to define.
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4.7 The Efficient Application of the BBFB Method to Problems

Involving Multiple Source Locations

We demonstrate how the BBFB method can be efficiently applied to scattering
problems involving multiple source locations. The scattering problems consid-
ered are a PEC three-dimensional flat plate and wedge, similar to the problem
set-up of Figure 4.3. A half-wave vertical dipole was chosen as the source. The
position of the source was varied around a sphere of radius 10λ away from the
scatterers. The centre of this sphere corresponds to the centre of the scattering
objects, located at (0, 0, 0) in terms of x, y and z coordinates respectively. The
scattering structures considered are of size 2λ × 1λ where f = 300MHz. The
scattering structures were discretised into 9 discretisations per wavelength and
297 rooftop basis functions, defined on rectangular cells, were used [11]. Each
subregion consisted of 27 cells contained in three strips and each buffer region
consisted of 18 cells contained in 2 strips. The BBFB algorithm was applied
to each problem and allowed to run for 100 iterations for each source posi-
tion. The error term log10 ε(k) was noted after each iteration, and in this case
is given in terms of J, such that ε(k) = ‖J−J(k)‖

‖J‖ , where J is the exact solution
for the basis function amplitudes. The iteration matrix for each problem was
also computed and the associated eigenvalues examined. Figure 4.8 depicts
the absolute values of the eigenvalues of the iteration matrix, on a logarith-
mic scale, for the flat plate and wedge problems just described. We note from
Figure 4.8 that the maximum eigenvalues, and therefore the spectral radius, of
the iteration matrices for the two problems are both less than one. Specifically,
the spectral radius of the flat plates iteration matrix is 0.5477 and 0.5489 for
the wedges iteration matrix. Thus both problems are expected to converge to
a solution for J when the BBFB method is applied, independent of where the
source is positioned.

Figure 4.9 shows the convergence, i.e. computed value of log10 ε(k) after
each iteration, of the BBFB method for a range of source locations when ap-
plied to the two structures. It is apparent from Figure 4.9 that the solution con-
verges for the two problems, independent of the position of the source around
a sphere of radius 10λ from the structures. Table 4.2 details dipole coordinates
and the corresponding final error term for a wider range of source locations
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than that given in Figure 4.9, i.e. points on a sphere of radius 2λ, 10λ, 100λ and
1000λ away from the structures. The final error terms given in Table 4.2 clearly
show that the solution converges, for both flat plate and wedge, regardless of
the angle or distance of the dipole away from the scatterers.

Figure 4.10 depicts the exact scattered field, computed along a straight line
from (−20, 10, 1.5) to (20, 10, 1.5) in terms of x, y and z coordinates respectively,
for a metal wedge of length 8λ and width 4λ where f = 300MHz. Figure 4.10
also shows the scattered field computed using the values of J obtained on
the 2th, 4th and 10th iteration of the BBFB algorithm. The incident field is a
plane wave which is polarised in the x̂ direction and propagating in the −ẑ

direction. The wedge was discretised into 9 discretisations per wavelength and
2835 rooftop basis functions were used. Each subregion consisted of 639 cells
contained in nine strips and each buffer region consisted of 213 cells contained
in three strips. It is evident from Figure 4.10 that the BBFB method essentially
produces an exact solution for the scattered field in 10 iterations. However, an
acceptable level of accuracy is reached after 4 iterations. The BBFB method is
thus effective in producing accurate solutions to scattered field computations
in relatively few iterations.

4.7.1 Discussion of Source-Independant Results

The ability of the BBFB method to converge for a particular problem is de-
pendent on the maximum eigenvalues of the associated iteration matrix. The
structure of the iteration matrix is independent of the incident field as this only
affects the structure of the V matrix. Thus, if the subregions and buffer zones
are chosen, so that the iteration matrix of a problem has a spectral radius less
than one, the BBFB method will converge regardless of source position. This
is confirmed in Figure 4.9 and by the results shown in Table 4.2. These results
show that for two given problems, whose iteration matrices satisfy the crite-
rion for convergence, the solution for J is independent of source position. It is
also worth noting that as the position of the source does not affect the Z matrix,
the submatrices, Ỹii, of Equation 4.19 can be pre-processed for a given scatterer
and efficiently re-used for multiple source locations.
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Figure 4.8: The absolute values of the eigenvalues of the iteration matrices.
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Figure 4.10: Solution of the scattered field computed along a straight line from
(−20, 10, 1.5) to (20, 10, 1.5) in terms of x, y and z coordinates respectively, for
a metal wedge of size 8λ × 4λ. The exact solution of J, used to compute the
scattered field, was obtained by directly inverting Z such that J = Z−1V.
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4.8 Buffered Block Forward Backward Method with Relaxation

The use of a relaxation parameter ω to accelerate the convergence of the for-
ward backward method is discussed in [21]. In what follows relaxation is ap-
plied to the BBFB method to investigate if the convergence rate of the method
can be improved.

It can be easily shown that relaxation applied to the forward backward
method is equivalent to the symmetric successive over relaxation method de-
fined by Equations 3.87 - 3.88. In a similar manner to the forward backward
algorithm, the BBFB method with relaxation becomes

ỸiiĨ
(k+ 1

2
)

i = ω(W̃i − L̃
(k+ 1

2
)

i − Ũ
(k)

i ) + (1− ω)ỸiiĨ
(k)

i i = 1, . . . , M (4.27)

ỸiiĨ
(k+1)

i = ω(W̃i − L̃
(k+ 1

2
)

i − Ũ
(k+1)

i ) + (1− ω)ỸiiĨ
(k+ 1

2
)

i i = M, . . . , 1 (4.28)

where Ỹii, W̃i, L̃i and Ũi have the same meanings as those defined by Equa-
tions 4.19 - 4.21. In a process similar to the procedure outlined by Equa-
tions 4.22 - 4.26 we can express the iteration matrix of the BBFB with relaxation
as

MBBFB(ω) =

(Dpb + ωUpb)
−1 ((1− ω)Dpb − ωLpb) (D + ωLpf )

−1 ((1− ω)Dpf − ωUpf )

(4.29)

The definitions of Dpf , Lpf , Upf , Dpb, Lpb and Upf are the same as those defined
in Equations 4.22 - 4.26.

The convergence of the BBFB with relaxation depends on the eigenvalues of
the iteration matrix MBBFB(ω). In particular if the spectral radius, ρ(MBBFB(ω))

is less than one the solution will converge to the correct answer. In addition we
expect that values of the relaxation parameter ω that lead to a smaller spectral
radius should lead to a more rapid convergence.
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4.8.1 Numerical Results for BBFB with relaxation

We consider a simple example of plane wave scattering from a square flat
metallic plate lying in the xy-plane, where we assume a Cartesian coordinate
system. Referring to Figure 4.11 the incident field is propagating in the ẑ direc-
tion and the electric field is polarised in the x̂ direction. Each side of the plate
is of length 1λ (where f = 300MHz). The plate was discretised with 9 dis-
cretisations per side and rooftop basis functions, defined on rectangular cells,
were applied in the x̂ and ŷ directions [11]. For the purpose of applying the
BBFB the forward direction was chosen as ŷ. Each group consisted of the 27
cells contained in three strips running in the x̂ direction. The buffer region con-
sisted of the strip of cells immediately adjacent to the group, in the direction
of the sweep.

The BBFB algorithm with relaxation was applied with varying values of
ω in the region 0.65 < ω ≤ 1.0 and, each time, allowed to progress for 25
iterations. For each value of ω we noted the final error log10 ε(k=25), in terms of
J, where ε(k) = ‖J−J(k)‖

‖J‖ . The spectral radius of the iteration matrix MBFBB was
also computed for each value of ω. Figure 4.12 shows the final error values
and Figure 4.13 shows the spectral radius for corresponding values of ω. We
note that the BFBB converges in all cases as the spectral radius of the iteration
matrix is less than 1 for all values of ω. The convergence rate is optimised by
choosing a value of ω just under 0.8 where it is noted that the spectral radius
is minimised, as expected.

In order to gauge whether forward-backward schemes constitute an im-
provement over standard Gauss-Seidel we repeated the experiment, but in-
stead used a buffered block Gauss-Seidel (BBGS) method, see Figures 4.12 -
4.13. As each SSOR iteration is equivalent to two Gauss-Seidel steps we noted
the final error after 50 iterations, in order to keep the computational costs com-
parable. We also computed the spectral radius of the corresponding iteration
matrix. We note that the buffered block Gauss Seidel method does not con-
verge in all cases, most notably when relaxation is not used (ω = 1) where
the spectral radius is greater than 1. However, when relaxation is applied the
buffered block Gauss-Seidel method converges faster, provided ω < 0.9.
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Figure 4.11: Set-up for numerical example.
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Figure 4.12: BBFB and BBGS. Error after 25 iterations using various values of
ω.
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Figure 4.13: BBFB and BBGS. Spectral radius of iteration matrix versus ω.
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Chapter 5

Improved Forward Backward
Method

In this chapter we present an improved forward backward technique for the
solution of two-dimensional scattering problems. We extend this technique to
the BBFB method for the solution of three-dimensional scattering problems.
Numerical results are presented in order to demonstrate the accelerated con-
vergence of the improved forward backward and BBFB methods.

5.1 Introduction

It has been shown in [24] and Chapter 4 that stationary methods converge
to a high level of accuracy quicker than Krylov methods for a range of two
and three-dimensional scattering problems. However, the convergence of such
methods is not guaranteed, and problems can be encountered when dealing
with sharply varying geometries where the matrix system is ill-conditioned.

The convergence of the forward backward method depends on the size of
eigenvalues of the associated iteration matrix. The forward backward method
displays rapid convergence when the eigenvalues of the associated iteration
matrix are small. Conversely when the eigenvalues are large it displays poorer
convergence. The dependance of convergence on the eigenvalues of the spec-
tral radius is shown in section 5.3. In this chapter an improved forward back-
ward method is presented that helps to circumvent the poor convergence of
the forward backward method in the latter case by occasionally introducing
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an optimally chosen correction in a direction dependant on the eigenvectors
associated with the largest eigenvalues of the iteration matrix. Numerical re-
sults are presented in order to demonstrate the improved convergence of the
improved forward backward method.

5.2 Improved Version of Forward Backward Method

The forward backward algorithm is given by Equations 4.1 - 4.2. The kth esti-
mate of J in the forward backward method is equal to the exact value of J plus
an error ε(k) as given by,

J(k) = J + ε(k). (5.1)

It can be shown [21] that ε(k) evolves as,

ε(k) = Mε(k−1) (5.2)

where the iteration matrix M for the forward backward method is defined as,

M = (D + U)−1L(D + L)−1U

where D, L and U are the diagonal, lower triangular and upper triangular
submatrices of Z respectively, with Z = D + L + U. ε(k) can be defined in terms
of λn and en, the eigenvalues and (unit norm) eigenvectors of M respectively.
The initial error is given by,

ε(0) =
N∑

n=1

β(0)
n en

and subsequent errors by,

ε(k) =
N∑

n=1

λk
nβ(0)

n en =
N∑

n=1

β(k)
n en. (5.3)

The condition of equation 5.3 holds for the case where the iteration matrix
considered is non-defective. A matrix is non-defective if it has a complete basis
of eigenvectors and can be diagonalised under a matrix transformation [67].

Equation 5.3 suggests that the forward backward method is effective at re-
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moving error components in the direction of eigenvectors with small λn. Such
components are scaled by λn at each iteration and thus quickly decay. Con-
versely the method is poor at removing error components in the direction of
eigenvectors with large λn. Indeed in cases where the spectral radius of M is
greater than 1 the forward backward method will diverge. For large values of
k, ε(k) is therefore dominated by the eigenvectors associated with the largest
eigenvalues of M. For k large and assuming the eigenvalues are ordered 1
(smallest modulus) to N (largest modulus), we can approximate ε(k) in terms
of the m eigenvectors with the largest eigenvalues such that

ε(k) '
N∑

n=(N−m)

β(k)
n en. (5.4)

In such situations it would be beneficial to take an optimally chosen step in
a compromise direction depending on the direction of eN−m, . . . , eN , rather
than waiting for the error to slowly decay by the repeated premultiplication
by M. In order to identify such situations when the error is dominated by
several eigenvectors1, whose eigenvalues are large and similar in value, the
improved FB method examines the last three estimates of J, at each iteration,
and computes the update correction used at the last two steps, that is,

ζ(k−2) ≡ J(k−2) − J(k−3) = ε(k−2) − ε(k−3) (5.5)

ζ(k−1) ≡ J(k−1) − J(k−2) = ε(k−1) − ε(k−2). (5.6)

We refer to the normalised update vectors as ζ̂. We can investigate the direc-
tion of the last two update correction vectors by computing,

η = |ζ̂(k−1) · ζ̂(k−2)|. (5.7)

If η is above some defined threshold (0.99 is used in the results section) then it
suggests that the condition outlined in Equation 5.4 applies to ε(k−1). Further-
more the direction ζ̂

(k−1)
is in a compromise direction dependant on eN−m, . . . , eN .

The next estimate for J should therefore incorporate an optimised correction

1For very large values of k the error can be expressed as ε(k) ' β
(k)
N eN
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in the direction ζ̂
(k−1)

, that is,

J(k) = J(k−1) + αζ̂
(k−1)

(5.8)

where α is chosen to minimise the norm of the residual error,

r(k) = ZJ(k) −V, (5.9)

= Z
(
J(k−1) + αζ̂

(k−1)
)
−V, (5.10)

= r(k−1) + αZζ̂
(k−1)

, (5.11)

= r(k−1) + αχ(k−1) (5.12)

where χ(k−1) = Zζ̂
(k−1)

. Expanding the complex valued α as α = αre + jαim

allows us to write the norm of r(k) as,

‖r(k)‖ =

(
N∑

n=1

(r(k−1)
n +αreχ(k−1)

n +jαimχ(k−1)
n )(r

(k−1)
n + αreχ

(k−1)
n + jαimχ

(k−1)
n )

)1/2

.

(5.13)
Minimising Equation 5.13 with respect to the real and imaginary parts of α

gives,

αre =

−
N∑

n=1

(
χ

(k−1)
n r(k−1)

n + χ(k−1)
n r

(k−1)
n

)

2
N∑

n=1

χ
(k−1)
n χ(k−1)

n

(5.14)

αim = j

N∑
n=1

(
χ̄

(k−1)
n r

(k−1)
n − χ

(k−1)
n r(k−1)

n

)

2
N∑

n=1

χ
(k−1)
n χ(k−1)

n

. (5.15)

The terms αre and αim can be easily calculated from Equations 5.14 and 5.15
and the current updated appropriately. In practice the error will have been
reduced, but not to zero, and we continue with several more iterations of the
forward backward method, before attempting another optimised correction
and so on. The computational cost of the extra optimising correction step is
dominated by the computation of α, which costs two matrix-vector products.
The improved FB method is illustrated in Figure 5.1.
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Figure 5.1: Improved Forward Backward Method.
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5.3 Examination of the Error in the Improved FB Algorithm

In order to demonstrate the theory presented in the last section, we apply the
improved FB method to a small scattering problem, for which we can rapidly
compute the exact answer J, and examine the error at each iteration of the
method. Specifically, we compute how much each eigenvector of the iteration
matrix contributes to the error at each step.

In order to examine the error in terms of the eigenvectors of the iteration
matrix, we first compute ε(0), using Equation 5.1, such that

ε(0) = J(0) − J

where J(0) is chosen to be an initial guess. We then compute the N eigenvec-
tors of the iteration matrix M, and make a corresponding matrix P whose nth

column is the nth eigenvector of M. We can therefore write Equation 5.3, in
matrix and vector form, as

ε(0) = Pβ(0) (5.16)

Rearranging Equation 5.16 yields

β(0) = P−1ε(0) (5.17)

where β(0) is a N×1 vector. The nth component of β(0) represents how strongly
the nth eigenvector of M contributes to ε(0). Subsequent values of β can be
given as

β(k) = P−1ε(k) (5.18)

Therefore, by examining β(k) in Equation 5.18 we can determine which eigen-
vectors most strongly contribute to the error at the kth iteration of the improved
FB method.

The small problem considered, in order to demonstrate the improved FB
method, is a 10λ PEC two-dimensional flat plate. The flat plate is discretised
with 128 basis functions. We allow the improved FB method to run for 20

iterations. Figure 5.2(a) shows the convergence of the improved FB method.
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Figure 5.2(b) shows the values of η computed at each iteration of the improved
FB method. It is evident from Figure 5.2(b) that at iteration number 3, 12 and
19 the threshold value of η > 0.99 is reached. It is apparent from Figure 5.2(a)
that an optimally sized step is taken at iteration number 3, 12 and 19 of the
improved FB method. The values of η in Figure 5.2(b) show that the update
vectors lose their approximate collinearity after each optimised step is taken.

For iterations 2 and 3, 11 and 12, 18 and 19 (before and after each optimised
step is taken) we examine which components, n, of β(k) have the largest ab-
solute value. We also examine the absolute value of the corresponding eigen-
value. The information for iterations 2 and 3, 11 and 12, 18 and 19 is given
in Tables 5.1, 5.2 and 5.3 respectively. We also would like to note that the
eigenvalue of M with the largest absolute value corresponded to n = 3 where
|λ3| = 515.03 × 10−3. The eigenvalue with the smallest absolute value corre-
sponded to n = 123 where |λ123| = 240.03 × 10−3. We also found that the 2nd,
4th, 6th and 5th, eigenvalues of M, have the 2nd, 3rd, 4th and 5th largest absolute
value. It is apparent as k increases, from Tables 5.1 - 5.3 that eigenvectors 3, 2, 4,
6 and 5, associated with the largest eigenvalues of M, significantly contribute
to the error.

We conclude that as k increases, the error is mainly composed of contri-
butions from several dominant eigenvectors of M, with similarly sized eigen-
values. The optimised step, ζ̂

(k−1)
, taken is then in a compromise direction

broadly in the direction of the sum of these contributions.
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Figure 5.2: (a) Convergence of improved FB method. (b) The iteration number
versus η. η > 0.99 is threshold to apply optimised step.
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k = 2 k = 3

|β(2)
n | × 10−6 n |λn| × 10−3 |β(3)

n | × 10−6 n |λn| × 10−3

325.04 20 441.78 7.74 6 501.89

320.08 21 440.74 6.71 2 512.63

245.83 23 440.00 4.81 24 463.54

205.83 18 444.82 3.77 5 494.24

179.36 19 443.14 3.49 26 405.47

154.69 17 446.85 2.93 21 440.74

128.90 22 439.55 2.79 28 414.08

100.95 15 452.00 2.55 20 441.78

73.30 13 458.83 2.48 23 440.00

71.93 16 449.23 2.42 8 479.19

Table 5.1: At iterations 2 and 3 we denote the components, n, of βn with the
largest absolute value. Correspondingly the absolute value of the nth eigen-
value of M is given.
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k = 11 k = 12

|β(11)
n | × 10−9 n |λn| × 10−3 |β(12)

n | × 10−9 n |λn| × 10−3

32.02 2 512.63 1.15 6 501.89

31.18 6 501.89 1.13 2 512.63

13.45 5 494.24 1.03 5 494.24

10.23 24 463.54 0.87 24 463.54

8.83 3 515.03 0.68 8 479.19

6.74 8 479.19 0.64 21 440.74

5.40 10 481.46 0.56 20 441.78

4.51 26 405.47 0.54 23 440.00

4.18 21 440.74 0.51 26 405.47

4.17 4 503.36 0.44 11 467.70

Table 5.2: At iterations 11 and 12 we denote the components, n, of βn with the
largest absolute value. Correspondingly the absolute value of the nth eigen-
value of M is given.
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k = 18 k = 19

|β(18)
n | × 10−12 n |λn| × 10−3 |β(19)

n | × 10−12 n |λn| × 10−3

20.54 2 512.63 0.85 6 501.89

18.52 6 501.89 0.82 5 494.24

15.65 5 494.24 0.74 24 463.54

8.64 24 463.54 0.65 8 479.19

8.28 8 479.19 0.62 21 440.74

4.76 21 440.74 0.54 20 441.78

4.63 11 467.70 0.52 23 440.00

4.38 10 481.46 0.44 11 467.70

4.23 20 441.78 0.39 26 405.47

4.03 4 503.36 0.35 2 512.63

Table 5.3: At iterations 18 and 19 we denote the components, n, of βn with the
largest absolute value. Correspondingly the absolute value of the nth eigen-
value of M is given.
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5.4 Results

The modified version of the FB method was applied to a range of two-dimensional
scattering problems. All scattering problems were assumed to be perfect elec-
tric conductors illuminated by an infinite line-source located at (0, 25) and ori-
ented in the z direction. The frequency used was f = 300MHz. The scattering
problems, illustrated in Figure 5.3, were 200λ in length and 2048 basis func-
tions were applied in order to discretise the scatterers. We also applied the im-
proved FB method to a 1000λ two-dimensional flat plate discretised with 10000

basis functions. As discussed in the previous section a threshold of η > 0.99

was used to identify when the current updates were predominantly in a single
direction. Upon reaching this threshold the optimised correction as outlined in
the previous section was applied. This optimised correction was then followed
by more steps of the forward backward method until such time as η > 0.99 at
which point a further optimised step was taken and so on.

The convergence of the modified FB method, applied to the problems in
Figure 5.3, was compared against the standard FB method and a range of
Krylov solvers which included the CGNE, BICGSTAB and GMRES methods [42].
The CGNE and BICGSTAB algorithms require three and five inner products
respectively with two matrix-vector products per iteration. The GMRES algo-
rithm requires one matrix-vector product per iteration. However, the amount
of inner product multiplies and the overall storage required by the algorithm
increases with each iteration. Therefore the GMRES method must be restarted
after a certain number of iterations, when the overall data storage becomes ex-
cessive. The forward backward method requires two matrix-vector products
per iteration, with each optimised step taken counted as an extra three inner
products and two matrix-vector products. The determination of the threshold
condition at each iteration step of the modified forward backward method re-
quires the computation of one inner product. Thus, there is a different amount
of computation involved in each iteration of these various solvers. As such
we plot the convergence of these methods in terms of matrix-vector products
rather than number of iterations. We ignore the contributions of the inner
product multiplies in these methods, as they are computationally inexpensive
compared to the dense matrix-vector multiplies.
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The convergence of the various algorithms was analysed by calculating the
log10 of the relative residual error, ε(k) = ‖V−ZJ(k)‖

‖V‖ , at each iteration.

5.4.1 Two-Dimensional Case

The results for the problems depicted in Figure 5.3 are illustrated in Figure 5.4.
It is evident from these results that the modified FB method gives better con-
vergence in all cases than the standard FB method which in turn outperforms
the CGNE, BICGSTAB and GMRES solvers.

By way of illustrating some of the concepts described previously the η val-
ues, calculated at every iteration of the improved forward backward method,
are shown in Figure 5.5 for the two-dimensional scattering problems depicted
in Figure 5.3. It clearly shows the update vectors converging in direction (η ap-
proaching 1) whereupon an optimised step is taken in the direction ζ̂ and the
update vectors lose their approximate collinearity. In all cases the stagnation
seen from approximately iteration 30 onwards corresponds to machine preci-
sion having been reached (corresponding to approximately 60 matrix-vector
multiplies in Figure 5.4).

The results for the two-dimensional flat plate of size 10000λ are shown in
Figure 5.6. It is evident that the improved FB method follows the same trend
as the results given by Figures 5.4 - 5.5. The improved FB method is shown to
perform better than the standard FB, CGNE, BICGSTAB and GMRES solvers.

5.4.2 Three-Dimensional Case

The optimised correction step discussed in this paper can also be used in con-
junction with other stationary solvers and applied to the solution of more
general scattering problems. For example the step can be combined with the
BBFB method, discussed in [25], and hence applied to the solution of three-
dimensional scattering problems. We apply the BBFB method, with and with-
out the optimised correction step, to three-dimensional scattering structures.
In what follows the structures are wedges of size 4λ × 2λ with varying angle
α. The set-up of these problems is illustrated in Figure 4.3. A total of 1890
RWG [27] basis functions were employed for each problem. Each subregion
was divided into 318 basis functions and a buffer region composed of 106 ba-
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sis functions was employed. The results for the BBFB method and improved
BBFB method are illustrated in Figure 5.7. The η values, calculated at every
iteration of the improved BBFB method, are shown in Figure 5.8.

The convergence of the various methods shown in Figure 5.7 were plot-
ted in terms of multiplications, as the BBFB method due to the inclusion of
buffering, has larger size matrix-vector multiplies than those of the Krylov
methods. The optimised step in the improved BBFB method also has different
size matrix-vector multiplies than those required in an ordinary iteration of the
standard BBFB method. It is apparent from Figure 5.7 that the BBFB method
outperforms the CGNE, BICGSTAB and GMRES solvers. These Krylov solvers
are suitably preconditioned with a block diagonal preconditioner.

It is evident from Figure 5.7 (a), (b), (c) and (d) that the BBFB method used
in conjunction with the optimised step gives significantly better convergence
than that of the BBFB method alone for the case of α = 22.5o, 45o, 90o and
112.5o. However, in the case of α = 135o and 180o (see Figure 5.7 (e) and (f))
the improved BBFB method performs the same as the BBFB method, i.e. no
optimised correction steps are taken. If we examine Figure 5.8 it is evident,
that for α = 135o and 180o, the threshold of η > 0.99 is never reached. It should
be noted that we have varied the threshold value for η in the improved BBFB
method, for these two cases, such that 0.8 < η < 0.99. We have found that
the performance of the BBFB method did not improve when the threshold η

was chosen to be less than 0.99. The BBFB either failed to take an optimised
step for the values of η tested, or when a step was taken the improvement in
convergence did not outweigh the extra computation required to compute the
optimised step.

The BBFB and improved BBFB were also applied to a 10λ × 10λ sized flat
plate discretised by 9940 rooftop basis functions. Each subregion was divided
into 625 basis functions and each buffer region was composed of 141 basis
functions. The results for the 10λ × 10λ sized flat plate are illustrated in Fig-
ure 5.9. The improved BBFB is shown to preform marginally better than the
BBFB method.
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Figure 5.3: Two-dimensional scattering problems.
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Figure 5.4: Comparison of FB, Mod FB, CGNE, BICGSTAB and GMRES iter-
ative solvers applied to two-dimensional scattering problems (a) and (b) of
Figure 5.3.
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Figure 5.4: Comparison of FB, Mod FB, CGNE, BICGSTAB and GMRES iter-
ative solvers applied to two-dimensional scattering problems (c) and (d) of
Figure 5.3.
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Figure 5.5: The iteration number versus η for two-dimensional scattering prob-
lems problems (a) and (b) of Figure 5.3. η > 0.99 is threshold to apply opti-
mised step.
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Figure 5.5: The iteration number versus η for two-dimensional scattering prob-
lems problems of (c) and (d) of Figure 5.3. η > 0.99 is threshold to apply opti-
mised step.
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Figure 5.6: (a) Comparison of FB, Mod FB, CGNE, BICGSTAB and GMRES
iterative solvers applied to a 1000λ two-dimensional PEC flat plate. (b) The
iteration number versus η for 1000λ two-dimensional PEC flat plate. η > 0.99
is threshold to apply optimised step.
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Figure 5.7: Comparison of BBFB, Mod BBFFB, CGNE, BICGSTAB and GMRES
iterative solvers applied to three-dimensional scattering problems. (a)= 22.5o.
(b)= 45o.
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Figure 5.7: Comparison of BBFB, Mod BBFFB, CGNE, BICGSTAB and GMRES
iterative solvers applied to three-dimensional scattering problems. (c)= 90o.
(d)= 112.5o.
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Figure 5.7: Comparison of BBFB, Mod BBFFB, CGNE, BICGSTAB and GMRES
iterative solvers applied to three-dimensional scattering problems. (e)= 135o.
(f)= 180o.
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Figure 5.8: The iteration number versus η for three-dimensional scattering
problems problems. η > 0.99 is threshold to apply optimised step. (a)= 22.5o.
(b)= 45o.
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Figure 5.8: The iteration number versus η for three-dimensional scattering
problems problems. η > 0.99 is threshold to apply optimised step. (c)= 90o.
(d)= 112.5o.
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Figure 5.8: The iteration number versus η for three-dimensional scattering
problems problems. η > 0.99 is threshold to apply optimised step. (e)= 135o.
(f)= 180o.
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5.5 Conclusions

We have presented an improved forward backward technique with an opti-
mised correction step designed to counter the slower convergence of error
components in the direction of the eigenvectors associated with the largest
eigenvalues of the iteration matrix. Numerical results were presented demon-
strating the improved convergence of the modified forward backward method,
both when compared to standard forward backward, but also to several Krylov
subspace solvers. It was also shown that the optimised correction step could
be applied to more general three-dimensional scattering problems using the
BBFB method. Numerical results demonstrated the improved convergence of
the modified BBFB method when compared to the standard BBFB method and
to several Krylov solvers.
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Chapter 6

Conclusions

The main focus of this work is to contribute to the development of iterative
solvers applied to the MoM solution of EM wave scattering problems. In par-
ticular it concentrates on the acceleration of stationary methods.

In recent years there has been much focus on stationary iterative meth-
ods, such as Gauss-Seidel and others. These are often termed current marching
methods as they attempt to march a solution for the unknown basis function
amplitudes in a manner that mimics the physical processes which create the
current. In particular the forward backward method, also referred to as the
method of ordered multiple interactions, has been shown to produce solutions
that, for some two-dimensional scattering problems, converge more rapidly
than non-stationary Krylov methods. However, they have also proven to be
inherently less robust than Krylov methods. The buffered block forward back-
ward method extends these techniques in order to solve three-dimensional
scattering problems. The convergence properties of the FB and BBFB station-
ary methods were analysed extensively in this thesis. In conjunction, several
means of accelerating these stationary methods were investigated and imple-
mented.

Chapter 4 introduced the FB and BBFB stationary methods, where an ex-
plicit convergence criterion for the BBFB method was presented. The BBFB
method was applied to a range of three-dimensional PEC scattering problems
and compared against a number of preconditioned Krylov solvers. It was
demonstrated that the BBFB method converged, to a high degree of accuracy,
in fewer iterations than the Krylov solvers for the majority of the scattering
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problems examined. In particular, the BBFB method performed best when ap-
plied to well-conditioned systems. However, it was also evident that, in the
case of ill-conditioned systems, the BBFB sometimes failed to converge. The
choice of the BBFB method or Krylov method for a given problem may there-
fore depend on whether fast convergence or robustness is desired.

Chapter 4 also investigated some extensions and applications of the BBFB
method. Specifically the acceleration of the BBFB method via the introduction
of a relaxation parameter ω was examined. Numerical results were presented
in order to demonstrate that the performance of the BBFB is improved when
applied with an optimum value of the relaxation parameter. We also explored
the efficient application of the BBFB method when applied to scattering prob-
lems involving multiple source locations. The structure, and therefore conver-
gence properties, of the iteration matrix for the BBFB method was found to be
only dependent on the geometry of the scatterer, its decomposition into sub-
regions and the choice of buffer regions. As such if a suitable decomposition
can be found that yields a convergent result, the resultant algorithm will con-
verge for all source locations. This further justifies the computational expense
of pre-computing and storing the local problem inverses involved in the BBFB
algorithm.

Chapter 5 outlined how the convergence of stationary methods depends
on the size of the eigenvalues of the iteration matrix. Stationary methods
display rapid convergence when the eigenvalues of the associated iteration
matrix are small. Conversely when the eigenvalues are large they display
poorer convergence. We presented a hybridised version of the FB method that
helps to circumvent the poor convergence of the method in the latter case.
This was achieved by introducing an optimally chosen correction in a direc-
tion dependant on the eigenvectors associated with the largest eigenvalues of
the iteration matrix. Numerical results were presented demonstrating the im-
proved convergence of the hybridised forward backward method, both when
compared to standard forward backward, but also to several Krylov subspace
solvers for a range of two-dimensional scattering problems. It was also shown
that the optimised correction step could be applied to more general three-
dimensional scattering problems using the BBFB method. Numerical results
demonstrated the improved convergence of the modified BBFB method when
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compared to the standard BBFB method and to several Krylov solvers.
There are several avenues of further research, on the work presented in

this thesis, which may be explored. The use of the FB and BBFB methods with
the Fast Fourier Transform (FFT) warrants investigation. The FFT is limited
to simple geometries, such as flat plates which have convolutional symmetry.
The FFT reduces the number of computations required to perform a matrix-
vector multiply, for an iterative solvers, from O(N2) to O(NlogN), where N

is the number of basis functions used to discretise the scatterer. The forward
backward and BBFB solvers are particularly good at solving well-conditioned
MoM matrix systems, such as those resulting from planar structures. There-
fore the forward backward and BBFB methods, used in conjunction with the
FFT, should prove an over-all more efficient solver for well-conditioned flat
structures. For more complex problems the BBFB method could be applied
with the Fast Multipole Method (FMM).

The FB and BBFB methods were applied to relatively simple geometries in
this research. Future work could include the application of the FB and BBFB
methods to more complicated scattering geometries. In addition, we only con-
sidered scattering from PEC scatterers in this research. As such, the FB and
BBFB methods could be applied to more diverse scattering problems, such as
scattering from dielectric structures. The FB and BBFB methods could also be
applied to MFIE and combined field integral equation (CFIE) formulations of
electromagnetic wave scattering problems.
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Appendix A

Definitions and Proofs

This Section introduces some basic definitions and proofs that are used in this
work.

Span

Given a collection of vectors U = {u1,u1, . . . ,uq}, the set of linear combina-
tions of these vectors is a subspace and is referred to as the span of U [21, 47]:

span{U} = span{u1,u2, . . . ,uq} = {
q∑

n=1

αnun : αn ∈ R} (A.1)

Range

The range of a matrix R (Z) is defined as the span of the columns of Z.

Independence

A set of vectors {u1,u1, . . . ,uq} are linearly independent if
q∑

n=1

αnun = 0 im-

plies α(1 : q) = 0. Otherwise, a nontrivial combination of the ui is zero and
{u1,u1, . . . ,uq} is said to be linearly dependent [21, 47].
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Basis

A basis is a set of vectors that, in a linear combination, can represent every
vector in a given vector space, and such that no element of the set can be rep-
resented as a linear combination of the others [21, 47].

Definition A.0.1. A basis U of a subspace W is a linearly independent subset of
W that spans W.

Orthogonal Basis

A set of vectors U = {u1,u2, . . . ,uq} is said to be an orthogonal set if each pair
of distinct vectors from the set are orthogonal, that is, if uj · uq = 0 whenever
j 6= q [47, 68].

Theorem A.0.1 (Orthogonal Basis [68]). If U = {u1,u2, . . . ,uq} is an orthogonal
set of nonzero vectors, then U is linearly independent and hence is a basis for
the subspace spanned by U.

The set of vectors U are said to be orthonormal if every vector of U has a 2-
norm equal to unity [47, 68].

Orthonormal Matrix

Theorem A.0.2 ( [47, 68]). An m × n matrix U has orthonormal columns if and
only if UTU = I.

This theorem is particularly usefully when applied to square matrices. An
orthonormal matrix is a square invertible matrix U such that U−1 = UT . A
square matrix Q ∈ Cn is unitary if U−1 = UH .
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