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Abstract:
The paper is concerned with the electromagnetic

scattering from a three-dimensional inhomogeneous
dielectric object. In particular, the paper compares
the use of a Buffered Block Forward Backward
(BBFB) algorithm to the use of the commonly
employed weak form of the CG-FFT method for the
numerical solution of the resultant Electric Field
Integral Equation (EFIE). The BBFB method is
based on the spatial segmentation of the dielectric into
smaller pieces. Results are shown which illustrate the
convergence of the algorithm and its superior
performance to the CG-FFT.

1. Introduction
The paper is concerned with electromagnetic scattering

from an inhomogeneous dielectric. Because of the
inhomogeneous nature of the body, the surface
equivalence principle cannot be applied and hence the
problem is formulated in the form of a volume integral
equation. For two-dimensional problems, the solution
methods involve the use of the Method of Moments with
pulse expansion functions and point matching [1-2].
While initial solution approaches involved the
computational and memory intensive numerical inversion
of a matrix, more recent work has employed the
significantly more efficient iterative techniques such as
the Conjugate-Gradient Fast-Fourier Transform
(CG-FFT)[3]. For three-dimensional (3D) scatterers,
however, the use of the basic Method ofMoment method
with pulse expansions functions is inappropriate [4].
Hence, approaches such as the weak form of the
conjugate gradient method or the Pre-corrected-FFT
technique have been proposed [5-7]. In this paper, a
physically inspired iterative solution technique is
implemented. This method is the Buffered Block
Forward Backward (BBFB) iterative method that was
introduced and developed in [8-9]. However, in that work,
only conducting bodies were examined. The technique
may be used in conjunction with any initial formulation -
the weak form of the integral equation as proposed in
Zwamborn [5] or with the tetrahedral modelling method

as proposed in Schaubert et al. [12] and [7]. In this
contribution, the method proposed by Zwamborn [5] for
discretisation is employed.

2. Formulation
Consider a 3D inhomogeneous dielectric medium

illuminated by a monochromatic source. The scattering
problem is formulated as a domain integral equation over
the object domain. The vectorial position in the three
dimensional space is denoted by x = (x, y, z). The
complex permittivity ofthe dielectric at any point is given
by:

£(X) = £r(X)£o+ i
Co-

(1)

Here, £r is the relative permittivity of the dielectric
with respect to the homogeneous embedding of
permittivity -O and a is the electric conductivity. cv is the
angular frequency. The incident electric field is denoted
as E= (E', E%, E').

E (x) = £(x) exp(ik0O.x) (2)
The total field in the scattering domain is the sum of the
incident and the scattered electric fields. k,

(0 J(£Co0)
The scattering problem is formulated as a domain

integral equation for the unknown electric flux density D
= (D, Dy, D)

D(x) 2
Ei(x) = - (ko - VV.)A(x)

£(X)
The vector potential A is expressed as:

A(x) =
I

G(x - x' )x(x' )D(x' )dx'
co X'E V

(3)

(4)

where G is the three-dimensional Green's function given
by:

G(x) =
exp(ik0 xl)

% is the normalised contrast function defined as:

(5)
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(x) =(X)-o£(X)
(6)

The domain integral equation (3) is in its strong form
and is discretized and converted to its weak form using
the testing and expansion procedure described in [5]. A
uniform mesh is utilised with grid widths of Ax, Ay, Az in
the x, y, and z directions, respectively. Mm, N, and P'p are
the total number of subdivsions that are chosen in the x, y,
and z directions, respectively. The result from
discretisation and conversion to weak form is a matrix
equation of the form:

e' =Ld (7)

where e' follows from E' and d follows from D in

eqn. (3). L is the matrix relating the quantities ei and d.

3. CG-FFT Solution technique
In theory, the matrix equation in (7) may be solved by

inversion ofL matrix. However, this is only practical if
the dimension of L is small. Thus, this caveat limits its
application. To overcome this limitation, iterative
methods such as the conjugate gradient method (CGM)
[10] or the more advanced CG-FFT method and its
various forms [11] have been applied. These methods
reduce the computation time and memory requirements
significantly. However, there is as yet no specific
computational tool deemed to surpass all others. In
this paper, the Buffered Block Forward Backward
algorithm proposed in [8] and furthered developed in [9]
is employed. Results highlight its efficiency, accuracy
and ease of use.

4. Buffered Block Forward Backward (BBFB)
algorithm.

The essence ofthe basic BBFB algorithm is to split the
scatterer into smaller blocks or subregions numbered
from 1 .M or to decompose the L matrix into submatrices,
denoted by Li, . The submatrices give the interactions

between subblocks i and j. A single iteration of the
Backward/Forward algorithm involves solving the
following two equations:

i- M

Liidi(k) = eil- dLijdj(k) - ZLYijdj(k - 1) (8)
j=1 j=i+l

i- M

Liidi(k+l) = j-X Ljdj(k) - X Lijdj(k + 1) (9)
j=1 j=i+l

e land d are subvectors of e' and d. dk refers to the kth
estimate of d.

Equation (8) is termed a forward sweep. Equation (9)
is termed a backward sweep. Note that the right hand side
of equations (8) and (9) is modified to include the effects
of the most up to date estimates ofd1 .

Now, for 3D analysis, equations (8) and (9) may
have to be modified to avoid the inaccuracies that occur
due to spurious edge effects [8]. These edge effects arise
due to the treatment of each subblock as a physically
isolated scatterer. Thus unless the edge of the subblock
coincides with an edge of the overall scatterer, edge
effects occur. The effects would propagate and
consequently, distort the computation if not suppressed.
To eliminate this problem, buffer regions immediately
adjacent to the subregion are identified. The inclusion of
buffer regions suppresses the spurious edge effects that
occur with 3D scatterers if the standard form of the
forward backward method (eqns. 8 and 9) is employed
and thus results in greater accuracy. The revised forward
and backward sweeps are:

i-l
Liidi(k) =ei Y L ijdj(k) -

j=l

M

Z YLidj(k-1)
j=i+l,job(i)

(10)

Liidi(k+l) =e- ZLijdj(k)- ZLijdi(k+1) (11)
j=l,jo b(i) j=i+l

where b(i) denotes the buffer region immediately adjacent
to the boundary of the subregion, i.

Lii= [Lb(i)i Lb(i),b(i) d [']] b(i) ]

Subr(egion i Buffer i

Complete
Block

Forward sweep - *

Complete
Block

* - Backward sweep

Fig. 1. The Buffered Block Forward Backward Method.

Fig. 1 shows the forward backward scheme
inclusive of buffer regions. The black regions denote the
selected subblock regions during a forward and backward
sweep while the grey regions denote the buffer zones.

While the quantity db(i) is redundant, the minimal
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amount of increased computational overload results in an
accurate algorithm and a far faster level of convergence.
Each sweep of the BBFB is solved using the CG method.

5. Recursive implementation
It is possible to apply the BBFB method as just

described in a recursive manner to enable efficiency to be
maintained as the scatterer size increases. For example,
consider a 3D cube (see Appendix). The cube may be
considered as a stack of planes or slices. The BBFB
method may proceed on a slice by slice basis (ie one slice
or plane is chosen as one subregion). However, the
computational requirements associated with the solution
of eqns. 10 and 11 with this selection may become quite
onerous as the size increases and buffers are included.
For this reason, the forward backward sweeps in eqns. 10
and 11 may each be treated as local problems. Each slice
is divided into strips. The local problem is then solved by
a series of forward and backward sweeps across the set of
strips in the slice.

6. Convergence Analysis
In order to ascertain if the buffered block forward

method will converge for a specific type of segmentation,
it is necessary to perform a convergency test. Suppose the
BBFB algorithm is applied to a complete block either the
complete scatterer (eg. 3D cube) if no recursive step is
included or a specific subregion, (e.g. slice of the cube) if
recursive steps are required. The block consists of m
subblocks. The ith subblock is of size ni. The forward
sweep ofthe BBFB method may be written as the forward
sweep of an unbuffered block forward backward sweep
as follows where the subscript b refers to the buffer
quantities. iii is an nix ni matrix.

LI I L12 0 0 L13 0 ...

1121 L122
i21*
L3I

L1mi

LIm d,
dbl

db2

Lmm iLdm

-lel
-i
eb
e2

eb2

-em I
or Lfdf =ef (12)

This forward sweep is that of a block forward method.
The subscriptfdenotes the forward sweep. However, it is
equivalent to the forward sweep of a standard point to
point forward backward method applied to a
preconditioned version of eqn. 12. The preconditioner
matrix, Pf, is a block diagonal matrix whose elements are

formed by taking the inverses of the diagonal blocks in
eqn. 12. Performing this preconditioning operation
results in the following matrix equation for d:

PfLfd=Pfe' or Yd = A (13)

Similarly, the backward sweep of the block FB algorithm
is equivalent to the backward sweep of a standardpoint
to point forward backward method applied to a matrix
equation of the form:

Wd = B (14)
Based on eqns. 13 and 14, the iteration matrix for the
BBFB method may be defined as:

M = (Dw + UwY) ILw(Dy+LyY1U (15)
Dw , Uw Lw Dy Uy Ly are the diagonal, upper
triangular and lower triangular parts of the W and Y
matrices, respectively. The error after the complete kth
BBFB sweep is 8(k) = d* d (k) where d* is the exact
solution. Hence, the relationship between progressive
errors is:

8 (k+1) =M6 (k) (16)

Consequently, the BBFB method applied to a specific
segmentation will converge if the absolute value of the
eigenvalues ofM is less than 1.

7. Summary ofBBFB Algorithm

1. Decide if the scatter size necessitates a recursive
implementation.

2. Select the appropriate initial selection of subblocks
and associated buffers.

2. Confirm convergence for the selection of subblocks.
3. Apply BBFB as in eqns. 10 and 11.
4. Repeat application of the backward forward sweeps

until the tolerance criterion is met.

8. Test Cases and Results
The first test case is a double layered inhomogeneous

spherical dielectric with its origin at the center of the
scattering domain. The radii of the inner and outer
spheres are taken to be koa1 = 0.163 and k0a2 = 0.314,
respectively. The relative permittivities and
conductivities are taken to be Cr1= 72, ,r2= 7.5 and

a,= 0.9 S/m and U2= 0.05 S/m respectively. The
frequency of operation is taken to be 100 MHz. The
incident field is a uniform plane with parameters:

ex = IV/m, Cy =0, £z = 0 (17)
ox= 0y =0 0 z=-I (18)

The second test case is a homogeneous lossless
dielectric cube with its origin at the center of the
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scattering domain and of side length 2a = 0.2 AO . The
relative pernittivity is taken as Er= 9.0. The frequency
of operation is 100 MHz. The parameters of the incident
wave are:

ex = lV/m, Cy = 0, Cz = 0 (19)
ox = 0, oy = 0, oz = 1 (20)

The matrix equation in (7) is solved initially for both
test cases using the weak CG-FFT method described in
[5-6]. The subdivision size or mesh size is 7x7x7. The
numerical convergence is measured by finding the
nornalized root mean square error in satisfying equation
(7):

Err = r(n) (21)
r(O)

where r(n) = e- Ldn . As stated in [6], this is a global
error quantity. (n denotes the nth iteration).

The BBFB method is then applied to both test cases.
To compare the methods, a specific level of accuracy is
set and the time taken by each method to achieve this is
given in Table 1. All computations were performed on a
Workstation running with Intel Xeon processors of 3.9
GHz.

The BBFB method is seen to be significantly faster
than the CG-FFT Technique.

Table 1. Computation time for test cases
Iteration time Iteration

Test Needed in time needed
Case Accuracy CG FFT(Sec) in BBFB

(See)

1 1o-05 2 1

2 o005 10 2

9. Conclusions
The paper has presented a Buffered Block Forward

Backward algorithm that is applicable for scattering
problems involving 3D inhomogeneous dielectrics. Two
test cases are considered - an inhomogeneous lossy
dielectric sphere and a homogeneous dielectric cube.
Results confirm that a greater level of efficiency for a
comparable level of accuracy is achieved using the
buffered BBFB method
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Divide cube into
slices

Divide t
slice into stnps

Fig. Al Further division of subregions to facilitate
greater efficiency
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