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Abstract — A Block Forward Backward (BFB)
method is described for the computation of electro-
magnetic fields scattered from a collection of inho-
mogeneous bodies. The electric field volume inte-
gral equation is used to formulate the problem. It
is discretised using the method of moments and a
discrete FFT is used to accelerate the matrix vec-
tor multiplications at the heart of the BFB method.
Numerical results confirm that the convergence rate
achieved can be greatly in excess of that obtained
using Krylov methods.

1 INTRODUCTION

The integral equation formulation of electromag-
netic wave scattering problems offers the potential
for machine level accuracy but suffers from high
computational complexity. This is due to the need
to solve a dense linear system in order to com-
pute the amplitudes of the basis functions, situ-
ated on the scatterer surface, or in the case of in-
homogeneous bodies, throughout the scatterer vol-
ume. Once found these amplitudes can be used
to compute the fields throughout the problem re-
gion. The need to use many basis functions to
adequately represent the fast-varying phase of the
fields leads to linear systems of huge order that can-
not be readily inverted (or stored). Instead prac-
titioners use iterative methods which sequentially
refine an estimate of the unknown fields until some
accuracy threshold is met. Iterative methods based
on Krylov subspaces are popular, due to to their
robust convergence properties. However, recent
work has suggested that stationary iterative meth-
ods such as those based on Gauss-Seidel (GS) or
Successive Symmetric Over-Relaxation (SSOR) it-
eration can outperform the Krylov solvers in certain
situations [1, 2, 3, 4]. The latter method (with re-
laxation parameter w set to 1) is commonly referred
to as “forward-backward” (FB) in the Electromag-
netics literature, and we shall refer to it as the
forward-backward method throughout this paper.
Being based on matrix multiplications these sta-
tionary methods can also be accelerated by proper
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incorporation of the Fast Fourier Transform (FFT)
when appropriate. This paper outlines the appli-
cation of block stationary iterative solvers to the
problem of scattering from a collection of inhomo-
geneous bodies embedded in a homogeneous back-
ground medium.

2 VOLUME ELECTRIC FIELD INTE-
GRAL EQUATION

We assume a collection of two-dimensional inho-
mogeneous bodies embedded in an infinite homoge-
neous background medium with electrical parame-
ters (€o, o). The bodies are assumed infinite in the
z direction. The relative permittivity e, (r) is as-
sumed to vary from point to point within each body.
A source radiating with time variation exp(jwt)
produces an incident field which interacts with the
bodies to produce a scattered field which can be ex-
pressed as a volume integral convolving the equiv-
alent polarization currents at each point,

J. (r) = yweo (- (r) = 1) E. (r),

with a Green’s function.
equation is [5]

(1)

The resultant integral

e (r) = —

- N AZ )
oo (e, —1) T (r)

(2)
with
A, (r) =//JZ (r') %ng) (ko |r — ') dS". (3)

Solving for the currents allows us to compute the
scattered fields (and hence total fields) everywhere
in space. The problem is discretised by introducing
N pulse basis functions (defined on identical square
cells) and point matching at the cell centres. This
leads to a dense matrix equation of order V.

ZJ=V. (4)

The matrix and right hand side vector elements are
given by [5]

Ziy = &Ji(koay) H(gz) (koRij) , (5)
o eHD (hyay) — M0 (X))

Zzz - Hl (ko l) kO (er (rl) — 1), (6)
Vi = E.(ri). (7)
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where R;; is the distance between cells ¢ and j,
k = (mnpae) /2 and 1y and ko are the impedance
and wave-number of the background medium re-
spectively. a; is the radius of a circle of equal area
to cell j.

3 BLOCK
SOLVERS

STATIONARY ITERATIVE

Gauss-Seidel iteration [6] solves a matrix equation
by sequentially updating the unknowns J; in the
order i = 1--- N, according to

Z JE = v, A% B for i = 1... N, (8)

where
AP = Nz, (9)
j<i
B = Yz, (10)
j>i

The convergence of the algorithm can be investi-
gated in terms of how the residual error defined by

e® =3m _ g, (11)
evolves from iteration to iteration. Decomposing Z
into its diagonal D, lower triangular L and upper-
triangular U parts

Z=D+L+1U, (12)

it is possible to show that
e = (D+1L) ' ue®, (13)
M@Sek), (14)

The algorithm will converge if the spectral ra-
dius of the iteration matrix M9 is less than one.
Forward-backward (SSOR with relaxation parame-
ter w set to 1) augments each forward sweep with
a backward sweep to yield

o L 1
Z; g2 v, — AlE) )
fori=1---N, (15)
L
Z I+ Vi Al(Hz) _ i)
fori=N---1. (16)

By convention one iteration is assumed to consist of
one forward sweep (half-iteration) followed by one
backward sweep (second half-iteration). The error
evolves with iteration as

et = D+U)T'LMD+L)"'Uue® (17)

M Bek) (18)

In this work we instead apply block versions of the
GS and FB algorithms to problems involving M
distinct inhomogeneous bodies. Let the diagonal
sub-block of the impedance matrix containing in-
teractions between basis functions in the it* body
and basis functions in the j** body be denoted by
Zij, while the unknowns and incident field in the
it" body are given by J; and V; respectively. The
block FB (BFB) scheme updates the currents block
by block according to

< (b4l . (k1) =
jhD _ g (Vz _ alk+3) _B(k)>
fori=1---M, (19)
~(k - (k1Y) s
3 =z (V- Al B
fori=M---1, (20)
where
AW = N"7,5P 21
1 Z Yy o ( )
j<i
BY = Yz, (22)
Jj>i

It is possible to show that the block FB method
outlined in equations (19) and (20) are equivalent
to performing the standard FB (equations (15) and
(16)) to the preconditioned system

PZJ =PV (23)
where P is a block diagonal matrix. The diagonal
blocks of P are given by Zgl fori =1---M. Let
Z, = PZ which has lower triangular, upper trian-
gular and diagonal parts given by L,, U, and D).
The convergence thus depends on

€(k+l) — MBFBﬁ(k), (24)

where the iteration matrix for block FB is given by
MPFE = (Dp + Up)71 L, (Dp + 1‘10)71 Up. (25)

The iteration matrix for the block Gauss-Seidel
method is

MPES = (D, + L,) " U,. (26)

4 IMPLEMENTATION

Each sweep of the block algorithms involves the
computation of matrix vector multiplications of the
form o
Z;; 3, (27)
for i # j. From the definition of the matrix entries
and assuming a regular rectangular grid we see that
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each Zi]- is a Toeplitz block Toeplitz matrix and as
such the multiplication of it and a vector can be effi-
ciently computed using the 2D FFT [5]. In addition
each step of the block algorithms requires that we
pre-multiply a vector by Zi_i Yin equations (15) and
(16). These inverses are pre-computed, stored to
the hard disk and read in as required. This large
amount of pre-computing is justified in that once
stored they can be re-used for many problem con-
figurations involving different source locations.

5 RESULTS

The first problem consists of four square inhomo-
geneous scatterers of side A\g/2 (at f = 300M Hz)
arranged in a row and separated by gaps of 1\. The
incident field is a unit amplitude plane wave trav-
elling in the —j direction. Each scatterer is divided
into 16 rows of 16 cells (256 cells in each body,
yielding 1024 unknowns in total). A nominal value
of €, = 4 was used for each square and each cell
was given a random value for €, within 10% of this
value, that is

€-(r) = (1.04+ 0.2 % (r — 0.5)) x4.0 (28)
where r is a random variable uniformly distributed
on the range [0,1]. Figure 1 displays the loga-
rithm of the absolute values of the eigenvalues of the
MBES and MBFB iteration matrices. We note that
the spectral radius in both cases is less than one,
guaranteeing convergence for this problem. Fig-
ure 2 compares the convergence rates of the block
forward-backward, block Gauss-Seidel and a pre-
conditioned conjugate gradient applied to the nor-
mal equations (CGNE)[5]. The CGNE applies the
standard Conjugate Gradient method to the equa-
tion

7123 =7V, (29)

where pre-multiplication by the conjugate trans-
pose Z! ensures that the system on the left hand
side is Hermitian positive definite. The precondi-
tioner used was the matrix P as described in section
3. Figure 2 plots the logarithm of the normalised
error §(F) against iteration number for each method
where

50 — 1ZI®) = V]|

IVl

It is seen that both the stationary block methods
lead to convergent results in fewer iterations than
the preconditioned CGNE. The BGS error reaches
machine precision in roughly 70 iterations, while
BFB reaches the threshold at around 20 (equivalent
to roughly 40 BGS iterations). The computational
advantage is all the greater when one considers that

(30)

the computational cost of each step of the station-
ary methods is less than that of the preconditioned
CGNE.

The second problem involves 12 bodies of side
Ao (f = 300MHz) arranged in three rows of 4,
each separated by 5)\g. In this case the total num-
ber of unknowns is equal to 12288. The permit-
tivity values are chosen as in the last example and
the incident wave was the same. Figure 3 shows
the log of the error for the block Gauss-Seidel and
block forward-backward methods for this example.
Again, they display rapid convergence, reaching
machine precision in under 40 and under 20 iter-
ations respectively.

It should be noted that the algorithm was also
applied to bodies which were closer together than
in the two examples given. In these cases the re-
sults were mixed, and in many cases the block sta-
tionary methods diverged. Research is ongoing for
these cases to see how the algorithms’ behaviour
can be improved in these cases. The incorporation
of a buffer zone such as is described in [2] and the
use of relaxation parameters are two ideas being
investigated.

Eigenvalues of block SSOR and block GS iteration matrix
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Figure 1: Eigenvalues of the iteration matrices

6 CONCLUSIONS

Numerical results have been presented illustrating
the application of block stationary iterative meth-
ods to the computation of wave scattering from a
collection of inhomogeneous bodies. The stationary
methods are shown to produce convergent results
with fewer iterations than the CGNE a Krylov-
subspace based solver. Future work will concen-
trate on modification of the stationary methods to
ensure convergence in situations where it presently
diverges.

946

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 14,2010 at 15:18:18 UTC from IEEE Xplore. Restrictions apply.



Acknowledgments

This publication has emanated from research con-
ducted with financial aid from Science Foundation
Ireland.

— BGS emor References
BFB error
— - Preconditioned CGNE

[1] J. C. West and J. M. Sturm, “On iterative
approaches for electromagnetic rough-surface
scattering problems” IEEE Trans. AP. Vol. 47
No. 8, August 1999, pp.1281-1288

[2] C. Brennan and D. Bogusevschi, “Convergence
analysis for buffered block forward-backward
(BBFB) method applied to EFIE”, IEEE
Intl. Ant. Prop. Symp. July 2006,Albuquerque,
U.S.A.

ca [3] D. A. Kapp and G. S. Brown,“A new numer-
ical method for roughsurface scattering calcu-

Figure 2: Convergence rates for first example. Solid lations, IEEE Trans. Antennas Propagat., vol.

line (-) BGS method, dotted line (.) BFB, dash-dot 44, pp. 711721, May 1996.

(-.) preconditioned CGNE. [4] D. Holliday, L. L. DeRaad, Jr., and G. J. St-
Cyr, “Forwardbackward: A new method for
computing low-grazing angle scattering, IEEE
Trans. Antennas Propagat., vol. 44, pp. 722729,
May 1996.

[5] A. F. Peterson, S. L. Ray and R. Mittra
“Computational methods for Electromagnet-
ics”, IEEE Press ISBN 0-7803-1122-1.

[6] G. Golub C. van Loan , “ Matrix computa-
tions”, 3rd edition, The Johns Hopkins Univer-
sity Press, London.

Norm of error
!
>

T
— BGS error
BFB error

Norm of error
|
&

L L L L L L L L L
10 20 30 40 50 60 70 80 90 100

Figure 3: Convergence rates for second example.
Solid line (-) BGS method, dotted line (.) BFB.
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