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Abstract-This paper presents a model order reduction al-
gorithm for the surface electric field integral equation (EFIE)
formulation of the electromagnetic wave scattering problem. The
method allows fast and accurate frequency sweep calculations
of electromagnetic wave scattering from a perfectly conducting
(PEC) three-dimensional object. We apply the Well-Conditioned
Asymptotic Waveform Evaluation (WCAWE) method to circum-
vent the computational complexity associated with the numerical
solution of such formulations. Practical implementation issues
are addressed with numerical examples given to illustrate the
accuracy and robustness of the proposed methods.

I. INTRODUCTION

The surface electric field integral equation in conjunction
with the method of moments (MoM) is a popular frequency
domain technique for analysis of electromagnetic scattering
from homogenous bodies of arbitrary shape [1], [2]. Many
problems, such as the evaluation of radar cross section (RCS),
require the determination of the system response at multiple
frequencies. For such analysis, the surface current density
needs to be calculated at many frequencies. This can be
very time consuming when using traditional frequency domain
numerical methods, based on the solution of a dense matrix
equation, at each frequency [3]. Developments in computa-
tional iterative techniques which incorporate fast algorithms
can alleviate this problem. Acceleration techniques include the
Conjugate Gradient Fast Fourier Transform method (CG-FFT),
the Fast Multipole Method (FFM) [1] and the precorrected
FFT methods.

To alleviate the computational burden of multiple simula-
tions, several alternative approaches have been proposed [3]-
[5]. Many of these focus on using a rational function to
approximate the solution vector and its derivatives at a central
frequency and subsequently exploiting this information to
reconstruct the solution within the frequency band of interest.
This is possible because coefficients of the system matrix
equation, describing the system behaviour, are known func-
tions of frequency. The low order of the approximate system
matrix permits its inverse to be computed with negligible
computational effort. Hence, once the reduced order system
has been constructed the frequency response can be evaluated
at an almost arbitrary number of frequency samples, result-
ing in a significant reduction in computational cost. Pade
via Asymptotic Waveform Evaluation (AWE) [3], [6], Pas-
sive Reduced-order Interconnect macro Modeling Algorithm

(PRIMA) and other model order reduction techniques such
as Pade via Lanczos (PVL) [4] have been used for efficient
solution of a wide variety of linear problems. Extending PVL
and PRIMA to handle systems with nonlinear parameters, such
as frequency dependence can prove prohibitive for large scale
computations. The AWE method, originally developed for
circuit analysis, is a moment matching technique that expands
the solution vector in terms of a Taylor series. The solution for
each unknown and its derivatives are calculated and used to
form the Pade rational function approximation. This in turn is
used to improve the radius of convergence of the Taylor series
in order to reconstruct the solution over a wider frequency
band. However, algorithms such as the Pade via AWE that are
based on explicit moment matching of the frequency response
exhibit certain numerical stability problems and are inherently
ill-conditioned, inevitably leading to stagnation in the moment
matching process [3], [6].

In this paper an efficient and numerical stable projection
based algorithm for model order reduction, called the Well-
Conditioned Asymptotic Waveform Evaluation (WCAWE) and
originally proposed in [5], is applied to the surface inte-
gral equation formulation. This algorithm produces a well-
conditioned and high-order approximation from a single ex-
pansion point with a significantly wider bandwidth than that
obtained from Pade via AWE and its variants. To the knowl-
edge of the authors, the WCAWE technique has not been
previously applied to a MoM solution of the surface IE
formulation. It is the purpose of this paper to investigate the
use of the WCAWE technique to obtain a fast frequency sweep
solution for the current density in a PEC three-dimensional
structure.

II. SURFACE ELECTRIC FIELD INTEGRAL EQUATION
FORMULATION

The work presented in this paper examines scattering from a
three dimensional perfectly conducting object. A time depen-
dence of exp (jwt) is assumed and suppressed. The object is
illuminated by a plane wave and the scattered electric field Es
can be computed from the surface current by the following
electric field integral equation [1], [2], [6] which applies to
points on the surface of the body.

E" -Es
tan tan (1)
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where El (r) = j-wA-V and A,9 are the magnetic vector
and scalar potential respectively. To solve the surface EFIE
numerically the method of moments is applied. The conducting
surface S is discretised and the current on the surface is
expanded using the Rao-Wilton-Glisson (RWG) basis function
fn (r) [2]:

m

J (k, r) Z In (k) fn(r) (2)
n=l

where m is the number of unknowns. Applying a testing pro-
cedure to Equation 1 leads to the following matrix equation:

Finally, equating the coefficients of equal powers of or on
both sides of Equation 7 yields the recursive relation for the
moment vectors:

mn = 1 (k°) L (ko) n

(1 -qO) Zq (ko)mn-q
(8)

where 6qO is the Kronecker delta and ( is a scaling factor
used to improve the conditioning of the Pade coefficient matrix
Hn [3]. This scaling factor is chosen such that all the moments
mn are of the same order of magnitude and is given by:

Z (k)j(k) = v (k) (3)

where v (k) is the incident field vector and Z (k) is a m x
m matrix containing coupling information between the basis
functions. The element in the m'h row and nih column of
Z (k) is given by [2], [6]:

Zmn (k) = jkro JJ fm (r) JJ fn (r') g (r, r') dr'dr

A° J fm (r) JJ (v fn (r')) g (r, r') dr'dr (4)
where g (r, r') denotes the Green's function, given by:

e-3klr-r'l
g(r, r') 4wr r' (5)

Similarly Vm (k) ff fm (r) Ein (k) dr, where Ein, de-
notes the plane wave incident field [2], [6]. k represents the
propagation wave vector of the incident field. Equation 3 can
be solved for j (k) to determine the total unknown current
J (k, r) throughout the scatterer. Once j (k) is obtained, other
quantities, such as the RCS can be computed [1], [6].

III. REVIEW OF ASYMPTOTIC WAVEFORM EVALUATION
VIA PADE' APPROXIMATION

The central goal in AWE is to determine the system behaviour
over a wide frequency range from the solution at one or
several frequency points [3], [6], [7]. This is possible because
coefficients of the matrix equation, describing the system
behaviour, are known functions of frequencies. The AWE
method approximates the frequency response by expanding
j (k) in a Taylor series around ko:

j(k) Zmn (tJ)n (6)
n=O

where mn are the moments of j (k), 0 is the order of the
Taylor series expansion and (J = (k -ko), where ko is the
wave number at the expansion frequency. By substituting
Equation 6 into Equation 3, expanding the impedance matrix
Z (k) and the excitation vector v (k) in a Taylor series, we
can re-write Equation 3 as:

(Znc7n)j(k)
n=O

: (VnJn) -

n=O
(7)

(9)=|m01l2
llmo 12'

Vector vq (ko) denotes the qth derivative with respect to
ko of v (k) evaluated at ko. Similarly, Zq (ko) denotes the
qth derivative of Z (k) evaluated at ko. For the sake of
clarity, Zq (ko),vq (ko) and j (k) will be denoted by Zq,Vq
and j respectively. Once the moment vectors are obtained, the
value of j (k) at other frequencies can be calculated using
Equation 6. However, the use of this expansion is limited
to the radius of convergence of the Taylor series. In such
cases, the rational function approach is used to improve the
accuracy of the numerical solution. The Pade representations
have a larger radius of convergence and therefore can provide
a broader extrapolation as it includes poles as well as zeros
in the response [3]. The aforementioned Pade approximations
are given by:

L+M+1

: mn(nO )
n=O

,L ai ((f)'
1 + =o bj ((o)`

(10)

where the unknown coefficients ai and bj can be determined
from m, by multiplying Equation 10 by the denominator
of the Pade expression. Matching the coefficients of the
equals powers of or leads to a matrix equation containing the
coefficient matrix H, that allows for the solution of bj to be
obtained [3]. Having found the bj, the unknown coefficients
ai can be calculated as:

ai = mi + : bjmi-.
J=1

(1 1)

A. Numerical Instability

The AWE moment matching subspace, M, generated from
the recursive Equation 8, is given by [8]:

(12)

where mn are the moment vectors. It has been well docu-
mented [3], [7], [8] that the process of sequentially evaluating
mn is inherently ill-conditioned leading to instability in the
computation of the Pade approximation. In a direct implemen-
tation, finite precision arithmetic causes each newly created
moment vector mn to converge towards the eigenvectors
that are associated with the dominant eigenvalue of Z0 (ko).
As a result, the moments mn contains only information

Mn = [Ml. M2. ... . Mnl
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corresponding to one eigenvalue of Z0 (ko), even for small
value of n and as a consequence the moment matrix H,
becomes rapidly ill-conditioned. Subsequently, the solution of
Equation 10 becomes unattainable, thus restricting its use to
approximations of relatively low order, typically for values of
n < 20. It is hence, necessary to implement the construction
of the M, bases in a numerically stable way. This is generally
done with the help of an orthogonalization process, whereby
imposing an orthogonality relation among the vectors, linear
independence can be maintained. Consequently, high order
approximations can be constructed.

IV. WELL-CONDITIONED ASYMPTOTIC WAVEFORM
EVALUATION

A proposed approach that avoids the unattractive property
of ill-conditioning of the AWE is the WCAWE [5], [7],
[8], which introduces correction factors that eliminate ill-
conditioning in order to obtain a high order approximation
in a numerically stable manner. Orthogonalised Krylov sub-
space methods such as the Galerkin Asymptotic Waveform
Evaluation (GAWE) [5], can also construct an arbitrarily high
order stable approximation but in some cases will not match
moments [5]. The WCAWE process, outlined in Appendix
(1), rectifies this issue by the introduction of correction terms
in the orthogonalisation process. The columns of M, from
Equation 12 are constructed iteratively by utilizing a modified
Gram-Schmidt process. This procedure is used to orthogo-
nalise m, onto the basis:

Mn1 = [mli, m2, * *, lm-1 (13)

which is achieved by computing the orthogonal projection
of mfn onto span{ml m2 ... Mn -}. This projection is
subtracted from the original vector and the result is normalised
to obtain Mn. This is by construction, orthogonal to all previ-
ously computed vectors mln, ..... . ., Mn l with unit norm. In
this way, the orthogonality of the basis vectors is guaranteed
and the moment matching process can be maintained. The
resultant vector generated in Appendix (1) is given by [5],
[7], [8]:

n = ZO 1 (E (vmelPui (n, m) en-2m) -ZZlMn-1
m=1

n-1

mE ZMn-mPU2 (n,m) en-m) (14)
m=2

where er is the vector with the r'h entry equal to unity. Mn2
and Mn are related by an n x n upper triangular, nonsingular
matrix U created by the coefficients of the Gram-Schmidt
process, and given by:

Mn = MnU-l. (15)

The correction term in Equation 14 is given by [5], [7], [8]:
m

PuW (n, m) 171 U[t:n-m+t-l,t:n-m+t-l] (16)
t=w

where w = 1 or 2. Ultimately, this process results in the
approximation to the solution vector ji for any frequency f
in the range fini < f < frnax given by [5], [7], [8]:

ji= Mn ( 7mMTZTMn) ( 7mMTVT)
m=0 m=0

(17)
Clearly, Equation 17 can be used to efficiently solve over a
wide range of frequencies as it requires the inversion of a
matrix of order n < m for each frequency value.

A. Implementation

Determining the optimum size of the approximation order n,
will result in a more efficient approximation, as the maximum
amount of relevant information will be extracted at an expan-
sion point. An approach used in [5], checks whether an mn+1
vector is largely contained in the space Z0Mn. This will occur
when the iteration process starts to stagnate as no new useful
information will be contained in mn+1 and therefore, it will
not be expected to improve the approximation. This approach
involves monitoring the projection of:

n

Yn+l = Vn -E Zlmn+l-i
1=1

(18)

onto the space Z0M,. To justify the generation of m1+±,
we consider how much of Yn±+ is contained in this space by
forming:

Yn+l = Z0Mn (MnTZ0Mn) 1MTYn+ (19)
and then check if Cn <= tol,, for some tolerance value toln,
where

Cn Y1+±l -Y1n+l2± 2

Yn+d1±2
(20)

If the tolerance tol,, has been met, then mn1+ should not be
generated and the MCAWE process terminated, signalling that
linear independence has been lost.

V. NUMERICAL RESULTS

The first example is a homogeneous square plate of side
length 0.02m, centered at the origin. The plate is illuminated
by an plane wave with broadside incidence Oinc = '/2, Otinc =
0 and polarization axinc = /2. The plate was discretised using
m = 936 cells and the RCS was computed over a band of
frequencies f = 5.0:35.0 GHz with 1.0 GHz increments for
a monostatic setup q5sca = 0. Figure 1 compares the MoM
results against the Pade via AWE with adaptive zeta (n =
20) and WCAWE (n = 24). The Pade via AWE was limited
to only 20 moments as the Pade coefficient matrix became
singular for any greater value of n. Figure 1 shows the RCS
versus frequency with one expansion point at (or = 20.0 GHz.
The increased accuracy of the WCAWE algorithm is clearly
evident as it duplicates the reference solution over the band
of frequencies f = 8:32 GHz with a 1% relative error. While
the Pade is limited to a similar error over the band f = 12:28
GHz. Figure 2 monitors the linear dependence of the generated
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mn by displaying Cn (Equation 20) versus the iteration
number. Termination of the iteration occurs when the pre-
specified tol,n = 10-4 [5] is reached, signalling stagnation
in the WCAWE process. Figure 3 illustrates the RCS for
varying observation angle 0sca = 0:360, for an approximation
frequency at f = 8 GHz.
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VI. CONCLUSIONS

A fast frequency sweep method for a surface integral equa-

tion formulation has been demonstrated using the WCAWE ap-
proach. The WCAWE method provides the flexibility needed
to efficiently handle the short coming of the AWE with Pade;
specifically, the loss of accuracy as n increases due to the
explicit moment matching process and the ill-conditioned Pade
coefficient matrix. Examples were presented which demon-
strate that the WCAWE can produce a numerically stable and
robust high order approximation from a single expansion point
as compared to the Pade via AWE with adaptive zeta. Finally,
an analytical process for monitoring the linear independence
of the generated moment vectors has been applied.

VII. APPENDIX 1. THE MCAWE ALGORITHM

ml-1 = ZO 1v0
U[1,1] = llm 2

ml = nI-u[ll]
for n = 2,..., q

mn1 = Z1 ( `1 (vmeTPul (ni, m) en-1m)
-Z1m12 1-Em=2 ZmMn-mPU2 (n, m) en-m)

for a = 1,..., n 1
HU[cx,n] = mH mn

mnn mn - U [a,n]ma
end a

U[n,n] =lmn12
Mn = nnUT 1

end 12.n,n]
end ni.
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Fig. 3. C (Jsca) RCS for a converged frequency f = 8 GHz.
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