
Proceedings of ICCTA2009

EXTRACTION OF FINGERPRINT FROM REGULAR
EXPRESSION FOR EFFICIENT PREFILTERING

Xiaofei Wang 1, Junchen Jiang2, Wei Lin2, Yi Tang2, Xiaojun Wang1, Bin Liu2

1 School of Electronic Engineering, Dublin City University, Ireland
2 Department of Computer Science and Technology, Tsinghua University, Beijing, PRC

xiaofeiw@eeng.dcu.ie

Abstract
Deep packet inspection at high speed has become

extremely important due to its application in a wide
range of network applications, such as network
security and network monitoring. Network intrusion
detection system (NIDS) uses a collection of
signatures of known security threats and viruses to
scan the payload of each packet. Signatures are often
specified in the form of regular expressions (regex),
called patterns, which are traditionally implemented
as finite automata. Deterministic Finite Automata
(DFA) is fast, but requires prohibitive amounts of
memory which limits their practical use. Instead of
matching an incoming packet with each individual
regex in a ruleset, we match the packet with a fixed
substring, called fingerprint, of a regex first. Fixed
string matching is faster and consumes less energy
than regex matching. The fact is that if a packet does
not match with the fingerprint of a regex, it will not
match the regex itself. So fingerprints can be used in
a prefilter engine to filter out those packets and do not
match any of the fingerprints of the regex in a rule set,
which represents normal non-malicious traffic. This
actually reduces the number of regex rules being
matched, which results in increased throughput of the
NIDS. We present a weight scheme to extract a good
fingerprint from a regex. A good fingerprint is the
one that not only indicates the regex uniquely, but
also occurs as less as possible in the matching
procedure. We demonstrate how to use fingerprints
for efficient prefiltering by means of Bloom filters in
practice.

KeyWords: deterministic finite automata, prefilter,
weight scheme, bloom filter, deep packet inspection.

1 Introduction
There is an increasing demand for network devices

capable of examining the content of data packets in
order to improve network security and provide
application-specific services. Deep packet inspection
(DPI) is widely used in intrusion detection systems
for deterring, detecting and deflecting malicious
attacks over the network. Nearly all intrusion

detection systems have the ability to search through
packets and identify contents that match against
known attacks.

There are a wide variety of attacks. Thus each
packet needs to be matched against thousands of
attack signatures. For example, the SNORT [1]
network intrusion detection system (NIDS) has 9182
rules as of October 2008, each contains attack
signatures.

SNORT is a popular open-source intrusion
detection system, with millions of downloads to date.
It can be configured to perform protocol analysis,
content searching and matching on real-time traffic to
detect a variety of worms, attacks and probes.

The goal of the Linux L7-filter [2] is to detect the
application layer protocols. Currently, the L7-filter
application contains 111 application protocol
signatures, contributed by researchers and developers
world-wide.

Bloom filters have recently become popular within
the networking community because they are suitable
for high-speed implementations besides enabling
novel algorithmic solutions to key networking
problems, such as packet forwarding, traffic
measurements and security checking. The primary
use of a standard Bloom filter is for determining set
membership: does an element x belong to a given set
S? Its probabilistic nature makes it produce false
positives; that is, it may declare that x belongs to S
even when this is not the case. But in real
applications, we always try to minimize the false
positives as much as possible.

Because pattern matching is time consuming and
malicious traffic only takes a small percentage of the
whole traffic, it’s not necessary to check every
incoming packet with the whole pattern set, which
may contains complicated regular expressions.
Therefore, in order to speed up the pattern matching
process and utilize the characteristics of the traffic,
prefilter technology help create such an opportunity
to speed up the pattern matching process by replacing
most of regex matching with faster fixed string
(fingerprint) matching.

In this paper, we describe the following two
problems of prefilter engine and propose the
corresponding solutions. Our contributions are:
� The introduction of a weight scheme to choose ________________________________

978-1-4244-4817-3/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

good fingerprint from the extracted substring
candidates of a pattern.
� The introduction of splitting sliding windows
corresponding to the bloom filters for most
frequently occurring string lengths so as to make full
use of the fingerprints more efficiently.

The rest of the paper is organized as follows. The
related works is presented in section II, The problem
descriptions are illustrated in section III. The
methodology is provided in section IV and concludes
the whole paper in section V.

2 Related works
In software implementations, Snort is an open

source rule-driven NIDS. With millions of
downloads to date, Snort is the most widely deployed
NIDS, and has established itself as the de facto
standard of the industry. Snort utilizes the signature,
protocol, and anomaly based methods to perform
deep packet inspection. At the core of Snort is a
multi-pattern matching engine based on the
Wu-Manber algorithm [3] as the prefilter that checks
the payload of the packet against a given set of string
patterns extracted from regular expression patterns. If
one string pattern is matched, the corresponding
regex pattern will be checked at the verification
process. Limited by the software implementation, the
throughput of Snort can only achieve several hundred
Mbps.

In hardware implementation, Bloom filter and
TCAM are used to implement the prefilter.
Dharmapurikar et al [4] proposed a DPI architecture
with multiple parallel Bloom filters. Bloom filter is a
memory efficient hashing structure which can be
used to query if an input string is a member of the
pattern set. The query result can be false positive but
not false negative. The query time is unrelated to the
number of members in the set. The storage space is
linear to the number of members in the set. Simple
string sub-pattern is extracted from each pattern in
the pattern set and divided into several groups based
on the string length. One Bloom filter corresponds to
a group of string-sub patterns. If an input string is
matched by one of the Bloom filters, the input string
will be further verified with the corresponding
original integrated patterns. Bloom filter has two
major drawbacks. Firstly, there should be one Bloom
filter for each pattern length. The hardware cost can
be prohibitive if the number of distinct pattern
lengths is large. Secondly, this method suffers from
the member set explosion problem when it is applied
to regular expressions with character subclasses.
Consider a pcre pattern that specifies 10 digits,
“\d{10}”. To detect this pattern, we need to
enumerate all possible strings with 10 digits, i.e. the
size of the member set is 1010. The length of the bit
vector becomes unmanageable.

TCAM has been widely deployed in Internet
routers for IP address lookup and packet

classification [5]. A TCAM cell can store one of the
three values {0, 1, * (don’t care)}. TCAM has an
advantage in handling case-insensitive strings. The
ASCII code of a lower case letter differs from that of
the corresponding upper case letter at the 3rd most
significant bit. Case-insensitive strings can be
matched by setting the value of that bit to do not care
in the TCAM entry. The word length of TCAM is
limited (the most popular TCAM devices available in
the market support word length of w=18 bytes).
Strings longer than w bytes need to be divided into
multiple segments. In the method of [6], the search
engine maintains a processing window of w bytes
that slides along the input buffer one byte per cycle.
Auxiliary data structures, such as a partial hit list and
a match table, are required to record the matching
status of long strings. For 250MHz TCAM, the
maximum throughput of the search engine is limited
to 2Gbps.

Liu et al proposed an alternative two-stage
approach that allowed the processing window to be
shifted by multiple bytes per cycle [7]. The first stage
is implemented in TCAM while the second stage in
SRAM with an embedded comparator. The w-byte
segment of a pattern {c1, c2 …, cw} is stored in the
TCAM in a staggered manner: {c1, c2 …, cw}, {*, c1,
c2…, cw-1}, {*, *, c1, c2 …, cw-2}, and so on.
Characters in the processing window are compared to
the staggered strings in parallel. The TCAM stage
serves to identify potential matching patterns and the
second stage will verify if the specific pattern can be
found at the given location in the input stream. Liu’s
implementation only supports simple exact match in
the second stage, which is obviously inadequate in
handling pcre patterns found in the Snort rule
database.

Although TCAM offers some advantage in
handling case-insensitive strings, it falls short in
dealing with pcre patterns with character subclasses.
Let’s consider the example where we have a string of
10 digits. A digit can be represented using two 8-bit
patterns, 0011 0xxx and 0011 100x. To detect any
combination of 10 digits, 210 TCAM entries are
needed. A small number of pcre patterns can easily
consume all the TCAM storages.

3 Problem statement
In this section, we first discuss the approaches to

use regular expression matching in packet payload
scanning applications, then present the definition of
fingerprint in prefilter engine area, and finally state
the problem that we have addressed in this paper.

A regular expression describes a set of strings
without enumerating them explicitly. For example,
consider a regular expression: “abc(ac|ad).*bd”.
This pattern matches any packet payload that starts
with abc, followed by ac or ad, and some arbitrary
characters, and finally end with bd.

Regular expression is powerful, however, it is time

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

consuming to generate corresponding DFA and cost
huge memory usage even we could transfer a regex to
a DFA successfully. So some prefilter based
applications have been proposed to enhance the
packet payload scanning speed. The prefilter based
application performs string matching on subparts of a
signature, invoking the matching procedure for the
full regular expression only when a subpart has been
matched. Such as Snort that can achieve good
performance with content filter scheme.

How to select fingerprint is the crucial part of
prefilter engine because it has a direct relationship
with the usefulness or not. Using unambiguous and
unique fingerprint, we could get an agreeable
throughput in NIDS. Contrarily, the prefilter
matching systems become vulnerable and useless if
using bad fingerprints.

Fingerprints are several explicit sub-strings from a
certain regular expression. A good fingerprint is the
one that not only indicates the regex uniquely, but
also occurs as less as possible in the matching
procedure.

For a set of regex patterns, we construct a
“fingerprint DFA”. When certain fingerprints are
matched by “fingerprint DFA”, the DFA of the
original regular expression is looked-up to confirm
whether there is a match in the input sequence.

There are three selection criteria for extracting a
good fingerprint:

1) It is better uniquely identify the corresponding
original signatures.

2) The chance of matching with multiple
fingerprints is small.

3) The occurrence of fingerprint is low, in other
word, the possibility of its corresponding regex
accurate matching being triggered is small, so as to
improve the effectiveness of prefiltering.

As the occurrence of different fingerprints of a
pattern is varying from each other, we need to seek
the fingerprints with the lowest matching possibility.

Here we define the scope of the problem as
follows:

� For a given set of patterns, how to extract a good
fingerprint for each of them?
� How to use the refined fingerprints effectively
in the real applications such as Snort or ClamAV
[8]?
Four fixed substrings could be extracted from the

example pattern “abc(ac|ad).*bd”, i.e., abc, ac, ad
and bd. Each of them is a candidate fingerprint of the
original pattern. Which fixed substring is selected as
a fingerprint for a pattern is not decided
independently from the other patterns in the ruleset.

The procedure is to extract fixed substrings for
each pattern first; then the selection of a fixed
substring as fingerprint for each string is decided
jointly at the same time. The criteria are: 1). each
pattern has a unique fingerprint, i.e. no two patterns
shares the same fingerprint; 2). the fingerprints are
efficient for use in a prefilter engine. For example if

abc is a fixed substring for two patterns, then abc
should not be chosen as fingerprint for any of the
patterns, as if there is a match of abc in the prefilter
engine, it is not clear which pattern should be used
for exact matching.

Taking these factors into account, we present a
weight scheme to evaluate the efficiency of the
fingerprints. In next section, we present a weighting
scheme and an algorithm to extract a good fingerprint
for a pattern.

4 Methodology
L7-filter rule set does not have as many rules as

Snort, so that it is unnecessary to use advanced data
structures like bloom filter. There are only 111 rules
in the newest version L7-filter according to the
statistics released in Dec 2008.

There are 88 rules in L7-filter starting with ‘^’
while 21 rules do not start with ‘^’ but followed by
simple strings. It means that the majority number of
rules can be extracted to fixed contents. As an
example, consider rule poco:
/^\x80\x94\x0a\x01....\x1f\x9e/, which can be extracted
to “\x80\x94\x0a\x01” and “\x1f\x9e”. Nearly 80% of
the L7-filter rule set can be processed via this
method.

Although prefilter engine enhances the
performance of the overall matching system, we have
to say, there still exist some rules that no suitable
fingerprints could be extracted for using in prefilter
engine. For example this rule: “abc|[^de]{10}”, is
split in to two parts by the or symbol ‘|’. We could
not conclude that the incoming stream does not
match the pattern if substring abc has not been found
in it as it matches the second part. However it is hard
to extract a fixed string as fingerprint for the second
part. For accuracy, we consider this kind of rules as
complicated rules and present the following
architecture to guarantee all the situations have been
considered.

As is shown in Figure 1, when incoming streams
arriving at the prefilter engine for those patterns that
have fixed substring as fingerprint, they are detected
by the prefilter engine and split as two parts: matched
traffic and unmatched traffic. The former one is to be
send to the corresponding regex whose fingerprint
has been matched in the Prefilter Engine (PE) to
make an accurate matching. Similarly, the
unmatched traffic after PE is send to the
corresponding regexes which do not have
fingerprints to make an accurate matching. If the
regex is matched by regex accurate matching engine
(AE), NIDS will issue an alarming message to users
to indicate the incoming traffic is a malicious one.
Otherwise it is a normal traffic.

4.1 Evaluate fingerprint via a weighting sheme

We set the default weight of each candidate
fingerprint as the reciprocal of the numbers of

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

fingerprint candidates in the corresponding pattern.
Take the previous pattern as an example,
“abc(ac|ad).*bd”, there are 4 fingerprint candidates,
so the weight of each of the four fingerprint
candidates is 1/4 = 0.25.

matched by
PE

Prefilter Engine
(PE)

packets
Regex accurate
matching Engine
(AE) whose
fingerprints not
matched in the
PE

no

Regex accurate matching
Engine (AE) whose fingerprints
matched in the PE

yes

matched by
AE

matched by
AE

no

yes

no

yes

Un-malicious
traffic

Malicious
traffic

Figure 1 Architecture of prefilter engine
The Levenshtein distance [9] between two strings

is given by the minimum number of operations
needed to transform one string into the other, where
an operation refers to an insertion, deletion, or
substitution of a single character.

For example, If s is "test" and t is "test", then
LD(s,t) = 0, because no transformations are needed.
The strings are already identical. If s is "test" and t is
"tent", then LD(s,t) = 1, because one substitution
(change ‘s’ to ‘n’) is sufficient to transform s into t.
The greater the Levenshtein distance, the more
different the strings are.

We denote the similarity
as 1 - LD(s, t) / max(|s| , |t|) , LD(s, t) is an
abbreviation of the value of Levenshtein distance
between string s and t, |s|means the length of string
s.

Pseudo-code of weight calculation and
modification is given in Algorithm 1.
__________________ ____________________________
For each pattern Pi in rule set

extract the candidates Si,j of Pi
set weight Wi,j for Si,j respectively
add Si,j into static candidates rule set C� according

to different groups
End

For any pair of candidate Si,j and Sm,n in different
groups of C�

// Sm,n is the nth candidate of Pattern Pm

Wi,j := the weight of Si,j
Wm,n := the weight of Sm,n
calculate the similarity s between Si,j and Sm,n
// abs[] is the absolute value function

Wm,n := abs[Wm,n – Avg(Wm,n + Wi,j)*s] if Sm,n
contains Si,j

Wi,j := abs[Wi,j – Avg(Wi,j + Wm,n)*s] if Si,j
contains Sm,n

Update Wm,n , Wi,j of C�

End

Algorithm 1 Pseudo-code of fingerprints evaluation

After the above procedure, we make a loop for
each pattern to get the fingerprint candidate that has
the biggest weight value in this pattern. The
fingerprint result set can be considered a basic and
direct fixed string rule set in prefilter engine.

We take the following example to illustrate the
above algorithm. Given 4 real patterns (0 4)iP i� �
of Snort:

P1 = /^USER\s[^\n]*?%[^\n]*?%/;
P2 = /^USER\s+y049575046/;
P3 = /^Content-Type\s*\x3a\s*image\x2fgif/;
P4 = /^Content-Type\x3a\s*application\x2fsmi.*?

<area[\s\n\r]+href=[\x22\x27]file\x3ajavascr
ipt\x3a/,

 For each pattern in a ruleset, extract fixed
substrings as candidate fingerprints for the pattern.
We could extract 4 corresponding groups substring
candidates , (0 4;0)i jS i j� � � as following:

� �1 1,1:P S USER���� �� ;

� �2 2,1 2,2: , y049575046P S USER S���� � �� � ;

�3 3,1 3,2: Content-Type, image,P S S���� � �� � ��

�3,3 gifS � ;

�4 4,1 4,2: Content-Type, application,P S S���� � �� �

�4,3 4,4area javascriptS S� 	��� � .
As defined, If there are Ni candidate fingerprints

for pattern Pi, then each candidate fingerprint FPi,j (j
= 1 to Ni) is assigned an initial weight Wi,j = 1/Ni:

1 11:P W�� �� ��
�
���
 ;

2 2,1 2,2:P W W���� ��� ���
� ������ ;

3 3,1 3,2 3,3:P W W W���� ��� ���� ��
� ������

4 4,1 4,2 4,3 4,4:P W W W W���� ��� ���� ��� �
� ������� .
Then we add all the candidates and their weight of

each pattern into set C� according to different groups:
1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

: { { },
{ },
{ },
{ }}

C S
S S
S S S
S S S S

�� ��� �� �� 	
� �

� � 	���	�� 	���� �

� �� 	���	�� 	���	�� 	���� �

� � 	����	�� 	����	�� 	����	�� 	�����
Iteratively we calculate the similarity s for any two

pair candidates in different groups and modify their
corresponding weight. Calculate a similarity s
between FPi,j and each candidate fingerprints FPm,n
of all other patterns in the ruleset, update Wi,j and
Wm,n as follows:

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

1,1

2,1 2,2

3,1 3,2 3,3

4,1 4,2 4,3 4,4

: { { },
{ },
{ },
{ }}

C S
S S
S S S
S S S S

�� ��� �� �� 	�
�� �

� � 	����	�� 	���� �

� �� 	����	�� 	���	�� 	����� �

� � 	�
��	�� 	�

�	�� 	���	�� 	�
��

.

We make a loop for each pattern to get the
fingerprint candidate that has the biggest weight
value in this pattern. As a result, the good fingerprint
could be selected as: 1,1S for 1P , 2,2S for 2P 3,3S
for 3P and 4,3S for 4P .

4.2 Splitting sliding windows

How to use the refined fingerprint set reasonable is
the main problem next step. Some solutions have to
be considered to utilize the above fixed strings
efficiently.

Dharmapurikar et al. proposed a hardware
architecture based on parallel Bloom filters for
network packet inspection [4]. In order to perform
the input streaming detection, the original
architecture is designed to use multiple Bloom filters
each of which detects strings of a unique length [10].
However, the more Bloom Filters we use the more
processing time and resources it takes. To reduce the
number of Bloom Filters, a few sliding windows are
constructed to process the continuous input streams
and flows by the n popular string lengths of these
rules.

For instance, we take Snort rule sets as an example.
Snort works by matching traffic patterns to its rules,
stored in a rule set. The captured packets are passed
through a packet decoder, which determines which
protocol is in use for a given packet and matches the
payload data against allowable behavior for patterns
of that protocol. The content keyword is one of the
important features of Snort. It allows the user to set
rules that search for specific content in the packet
payload and trigger response based on that data.

By extracting those unique content keywords from
snort rule set, we can get string length distribution in
Figure 2.

Figure 2. String length distributions in snort V2.8.4.

Obviously, there are four types of length which
dominate the whole length distribution of patterns.
Here we set n equals to 4. Thereafter only 4-byte BF,
7-byte BF, 36-byte BF and 180-byte BF will be

constructed. To make efficient use of Bloom filters,
strings are clustered with different lengths in a group,
and strings are truncated to the length of the shortest
string in the group. For instance, all the string length
more than 7 but less than 36 will be truncated to 7
from the beginning of each string. Specially, content
fields of less than 4 bytes will be rewritten to get rid
of its ambiguous character. Furthermore, one special
small test engine is added to detect the length which
is less than 4 bytes in simple rules.

Similarly, as is shown in Figure 3, we can see that
there is various pattern length distributions in
ClamAV rule set. Here we use main.ndb rule set in
ClamAV.

0

2000

4000

6000

8000

10000

12000

2
1

1
2

0
2

9
3

8
4

7
5

6
6

5
7

4
8

3
9

2
1

0
1

1
1

0
1

1
9

1
2

8
1

3
7

1
4

6
1

5
5

1
6

4
1

7
3

1
8

2
1

9
1

2
0

0
2

0
9

2
1

8
2

2
7

2
3

6
2

4
5

2
5

6
2

6
5

2
7

5
2

8
5

2
9

9
3

0
9

3
2

3
3

3
9

3
5

8
3

7
3

3
9

5
4

1
5

4
4

3
4

7
5

5
3

9
5

9
5

6
7

1

#
S
tr
in
gs

byte

Figure 3 Pattern length distributions of main.ndb in
ClamAV 0.95.1.

There are 58574 patterns in it while 69237 fixed
strings after extraction according to wildcards. The
candidates’ number which extracted from patterns by
wildcard is shown in Table 1.

Table 1 Selected DFA groups of different size
wildcard # of patterns
* 4580
{} 6152

3325

Since we have more fingerprint candidates in
ClamAV, it is unavoidable to meet conflicts when the
string is truncated to small length. In this situation,
we shift one character from left to right to test if there
is an occurrence in the original fingerprint sets.

This prefilter engine could filter 22.8%
un-malicious data. To analyze the factors that
influence the filtering ratio, we record matched
keywords during the process. Some simple characters,
such as, ‘a’ and ‘u’ are found in the recorded result
file. This is because multiple content fields exist in
some rules, such as the backdoor in snort V2.8.4.
These multiple content keywords, like: content:
“from|3A|”, content: “a” have significant influence
on the filtering ratio. By rewriting or refining these
rules, we could get an agreeable filtering ratio of
approximate 62.5% of un-malicious data.

To make this architecture robust, we can train it via
adjusting the settings of bloom filter. We know that
the filtering ratio will be different for different input
data. Then some bad traffic that has been detected
previously can be used to train our prefilter engine.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

We can also mix malicious part with normal trace to
make this training.

5 Conclusions
We introduced the basic concept of prefilter and

how it works in NIDS. A weight scheme has been
presented to choose good fingerprint from the
extracted substring candidates of a pattern.

We used fingerprints extracted with our algorithm
in the patterns of Snort and did experiment with real
trace. According to the statistics of our simulations,
the filter ratio can reach up to 60% if the whole
engine has been trained well. It has been showed that
this engine could enhance the capabilities of
general-purpose IDS solutions.

There are some issues to be thought about in future.
For example, if a new pattern is added to a rule set, in
which all patterns have their fingerprints been
decided already, then when select a fingerprint for
the newly added pattern, it would be inconvenient to
update the existing fingerprints for the patterns in the
original ruleset. So a solution is needed to be found to
choose a good fingerprint for the newly added pattern
without changing the fingerprints of the patterns in
the original ruleset.

Acknowledgements
This work is supported by NSFC (60625201,

60873250), the Cultivation Fund of the Key
Scientific and Technical Innovation Project, MoE,
China (705003), the Specialized Research Fund for
the Doctoral Program of Higher Education of China
(20060003058), 863 high-tech project
(2007AA01Z216,2007AA01Z468), and
Enterprise-Ireland.

References
[1] Snort system, http://www.snort.org

[2] L7-filter. http://l7-filter.sourceforge.net/, 2008

[3] S. Wu, U. Manber, “Fast text searching
allowing errors”, Commun. of ACM, Vol. 35,
No. 10, pp. 83-91, 1992.

[4] Dharmapurikar Sarang, Krishnamurthy
Praveen, Sproull Todd S., et al. Deep packet
inspection using parallel bloom filters. IEEE
Micro, 2004, 24(1): 52-61.

[5] D. Pao, Y. K. Li and P. Zhou, “Efficient packet
classification using TCAMs”, Computer
Networks, Vol. 50, Issue 18, pp. 3523-3535,
Dec. 2006.

[6] F. Yu, R. H. Katz, and T. V. Lakshman,
“Gigabit rate packet pattern-matching using
TCAM”, IEEE Int. Conf. on Network
Protocols 2004.

[7] R.-T. Liu, C.-N. Kao, H.-S. Wu, M.-C. Shih,
N.-F. Huang, “FTSE: The FNP-like TCAM
Searching Engine”, IEEE Symp. on Computers
and Communications, 2005.

[8] http://www.clamav.net/

[9] http://www.merriampark.com/ld.htm

[10] Sarang Dharmapurikar and John W.
Lockwood,“Fast and Scalable Pattern
Matching for Network Intrusion Detection
Systems” IEEE Journal on Selected Areas in
Commuications, vol. 24, no. 10,OCTOBER.
2006.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:35:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

