
 1

Abstract— Meeting the future requirements of higher

bandwidth while providing ever more complex functions,

future network processors will require a number of methods of

improving processing performance. One such method will

involve deeper processor pipelines to obtain higher operating

frequencies. Mitigation of the penalty costs associated with

deeper pipelines have achieved by implementing prediction

schemes, with previous execution history used to determine

future decisions. In this paper we present an analysis of

common branch prediction schemes when applied to network

applications. Using widespread network applications, we find

that unlike general purpose processing, hit rates in excess of

95% can be obtained in a network processor using a small 256-

entry single level predictor. While our research demonstrates

the low silicon cost of implementing a branch predictor, the

long run times of network applications can leave the majority

of the predictor logic idle, increasing static power and

reducing device utilization.

I. INTRODUCTION

S the Internet has evolved, the functions required by a

modern Network Processor (NP) have developed from

simple packet forward to tasks requiring complex data

processing such as packet classification and network

security, while also meeting the higher bandwidth

requirements of an expanding network. Typically, solutions

such as increasing parallelization and hardware offloading

have been employed as a means of meeting these

requirements.

Firstly, parallelization provides a means of massively

increasing performance via additional Process Engines

(PEs), while also retaining the flexibility vital to network

processor architectures. Secondly, hardware acceleration

provides another mechanism of reducing latency and

increasing processing throughput, with computational

intensive tasks such as encryption or deep packet inspection

implemented on dedicated hardware. Both solutions present

difficulties which must be examined. While increased

parallelization provides additional resources, the demand

placed on the memory and IO subsystem also scales, along

with the difficulty associated with programming a massively

parallel system (i.e. task partitioning, load balancing). On

the other hand, hardware offloading presents a major

challenge to one of the original design considerations of a

network processor, namely flexibility. Ultra-high

performance accelerators will tend implement optimized

versions of a particular algorithm, reducing the flexibility

afforded to the programmer as well as making the

incorporation of future developments and improvements

difficult.

Therefore, it is with this in mind that we examine if some

of the future processing requirements can be met by

improving the performance of the RISC PEs instead of

increasing the number of PEs implemented or implementing

hardware acceleration. Previous works within the NP design

space [1, 2, 3] have focused on examining the effectiveness

of more complex processor design techniques such as

superscalar or cache, with commercial NP architectures

such as Cavium OCTEON[4] incorporating dual-issue PEs

along with a coherent cache memory. Following this trend,

it can be expected that more complex design techniques will

increasingly be needed to meet future NP requirements. One

such method of increasing PE performance is via a deeply

pipelined architecture.

Deeper instruction pipeline allows additional performance

to be extracted by dividing instructions into smaller and

faster tasks which can then operate in parallel. For reasons

of the costs associated with the parallel architecture and

need for on-chip peripheral components, it is typical to see

relatively shallow pipelines within the PEs used in NP

designs. By implementing deeper processor pipelines,

additional performance to be extracted from a NP design,

providing the branch penalty associated deeper processor

pipelines can be minimized. This branch penalty occurs

when a program flow instruction such as a conditional

branch alters the program counter, requiring a delay while

the condition is evaluated. While a shallow pipeline can

absorb this penalty via pipeline stalls, the performance loss

of such solutions would be prohibivately expensive in a

deeply pipelined processor. Within general purpose

processor, the most common solution to the problem has

been to implement some form of branch predictor which

attempts to calculate the outcome of a branch without

having to insert stall instructions. The objective of this

paper is to examine if such prediction techniques can be

implemented in network processors as a means of extracting

addition NP performance via deeply pipelined.

The rest of this paper is organized as follows; In Section II

we present a brief overview of branch prediction. Section

III details the simulation framework employed, with Section

IV detailing the branch characteristics, predictor

performance and limitations of these solutions. Finally, a

summary and conclusion are presented in Section V.

Branch Prediction for Network Processors
David Bermingham, Zhen Liu, Xiaojun Wang

Network Innovations Center

School of Electronic Engineering

Dublin City University

Ireland

Email: David.Bermingham@eeng.dcu.ie

 Bin Liu
Institute of Networking

Dept of Computer Science and Technology

Tsinghua University

Beijing, P.R China

Email: liub@tsinghua.edu.cn

A

2008 International Conference on Microelectronics

1-4244-2370-5/08/$20.00 ©2008 IEEE 466
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:38:25 UTC from IEEE Xplore. Restrictions apply.

 2

II. BRANCH PREDICTION

With branch operations comprising a large amount of

executed instruction [6], the number of stall cycles required

constitutes a sizable lost processing time. Indeed, the work

in [6] found for the MIPS architecture it was shown branch

induced NOPs comprised 8% of the total instruction

executed. In general, there are two types of branch

prediction mechanism available. The first, static prediction

[7], attempts to utilize a heuristic approach at compile time

as a means of determining if a branch will be taken or not,

e.g assuming forwarding branches not are taken while

backward branches are taken. More complicated branch

predictions schemes attempt to gather run-time information

when making decisions.

Dynamic predictors retain a history of previous branch

outcomes which are then used to determine if a future

branch prediction will likely be taken. Ideally, the histories

of n previous branches are maintained in an array of n * 2-

bit sequential saturating counters. Together, these counters

form the Pattern History Table (PHT). Using the result of

previous branch evaluations, the saturating counters count

from strongly not-taken to strongly taken. Addressing the

PHT is achieved using either the branch address (Bimodal)

or via a global Branch History Table (BHT) (Gag [8]), or a

combination of both Gshare [9]. An example of a Gshare

based dynamic predictor is shown in figure 1, with the

branch and program counter address used to create an

XOR’ed index into the pattern table. Since different

branches may map to the same entry in the PHT, a number

of solutions have been proposed which attempt to solve this

interference issue, such as the Gap predictor which

implements m PHTs in parallel. In [10], a number of highly

parallel architectures where proposed, with the PAg scheme

implementing a per-address BHT and the PAp predictor

implementing both a per-address BHT along with m PHTs.

Along with these schemes, a combining approach [9] can be

used. However, when compared to the small cache-less area

cost of a PE these three solutions require a large amount of

transistors to implement. Further information on branch

prediction schemes can be found in [11, 12].

Within network processing design space, work presented

[2] has briefly examined on the topic of branch prediction

for network processors. It was demonstrated how

performance increases of up to 15.7 % could be achieved.

However the predictors examined in this work are

prohibitively expensive for used in a PE. Although the exact

silicon cost will vary from one technology to another, an

approximate cost for implementing a branch predictor on a

RISC-type PE is shown in appendix A.

III. EXPERIMENT METHODOLOGY

Using the ARM execution unit found in the Simplescalar

toolset [14], we implement a simulation framework which

attempts to more closely model the demands of a network

processor. Shown in figure 2, the simulation model removes

operations which would not be seen in real network

applications such as file IO or system calls. Packets

buffered within the interface unit before being moved to

packet memory. Once processing is complete, packets are

transferred back to the interface unit for egress. By

removing such operations from the simulated applications,

we ensure that only those branches core to application

functionality are included in any simulation results.

In all, 16 network applications are evaluated. The

applications simulated are summarized in Table I. Broadly

speaking, network applications are divided into Header

Processing Applications (HPA) and Payload Processing

Applications (PPA). While header applications such as IP

forwarding will tend to use data such as addresses or packet

length during conditional operations, payload processing

tasks such as IP encryption will tend to function using only

the payload length. A detailed overview of these

applications and algorithms can be found in [1 – 3, 5].

Network traces are obtained from [15]. However since

these traces must clear sensitive information such as IP

address or payload data, we derive semi-synthetic traces

from these seeds, with random payload data inserted along

with mechanism for rebuilding packets flows. The use of

valid random IP address ensures that the branch predictors

are tested for the worst case scenario, since a trie-based

structure is highly conditional. To ensure a broad analysis of

Fig.1. Gshare type branch predictor

Fig.2. Simulation Framework

TABLE I

TARGET APPLICATIONS

Applications Algorithm

Forwarding LC-Trie, Radix, Hash

Classify RFC, EGT-WPC, Hicuts

Queue DRR

Metering TBM, TrTCM

IPsec-Encryption AES-CBC, CAST-CBC

IPsec-Authentication SHA-1, MD5

Error CRC32, Reed-Solomon

467
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:38:25 UTC from IEEE Xplore. Restrictions apply.

 3

predictor behavior, three different traces are selected which

comprise the packet variation seen on IP networks. While

the OC-12 AMP trace contains a large proportion of large

packets (~60% > 1000 Bytes), the slower OC-3 TXS trace

contains almost entirely small packets (~80 < 64 Bytes).

Along with the more average OC-192 PSC trace, this length

distribution will determine if packet length and predictor

performance are related.

IV. EXPERIMENTAL RESULTS

Depending on the underlying target architecture, previous

analysis of network processor workloads [1-4] has found

that branch instruction comprise between 7.2% and 17% of

applications. However, the dual nature of network

applications is hidden by an average view, with header

applications requiring conditional operations as a means of

traversing a trie or decision structure, while payload

applications tending to implement conditional operations as

a means of processing control loops, e.g. process

while(offset !=packet length). By examining the

conditional operations executed we can see that for payload

tasks, a single branch type will comprise the vast majority

of conditional operations. On the other hand, routing or

classification tasks require multiple branches to process a

single packet this branch behavior translates into higher

branch interference.

Using a 512-entry Gshare predictor, we see in Table II

that header applications such as RADIX can have up to

30% interference, highlighting the fact that about a third of

the 512-entries have more than one branch mapped to this

location. At the same time, 27.7% of table entries are not

used during execution. With NP applications running for

long periods without change, an optimized solution should

minimize this idle logic. Solution such as better hash

indexing may therefore improve performance of a Gshare

predictor, possibly optimizing the hashing function for

small input sequences along with more compact tables.

With static power comprising an ever more important

component of digital design, the long run-time of network

processor applications can result in significant device

under-utilization.

A. Branch Pattern History Table Size

As was previously discussed in section II, branch

prediction schemes for network processors are only viable if

the cost of implementing the hardware is significantly lower

than the cost associated with the PE. To examine this, we

analyze the prediction rates for a simple bimodal predictor

as the table size is increased. For space, header (HPA) and

payload (PPA) processing applications are averaged

together. From table III it can be seen that a small table

footprint and good performance can be achieved with a

Pattern History Table of either 256 or 512-entries, with a

512-entry PHT providing only 0.46% increase over the 256-

entry table. Since these applications will tend to be

optimized for processing bandwidth, branch instructions

will only represent control operations, such as the loop

while counter is less than the packet length shown above. In

this case we can see that the random distribution of packet

lengths seen in IP traffic does not affect branch prediction

performance in network applications. An example of this

can be seen in the performance of an application such as the

AES algorithm which utilizes as 16-Byte block size. Since

the algorithm will have to execute at least three times for

every packet (40-byte minimum packet), the prediction

counters will tend towards to strong taken, with only the

final loop miss-predicting.

The small application code associated with network

applications results in predictor saturation above 1024

entries, significantly below the 16K-entries found in [12] to

be required for general purpose processing. However there

remains a sizable performance difference between HPA and

PPA tasks, with a similar predictor providing almost 7%

less correct predictions when executing RADIX (88.9%)

routing compared to any PPA task (>95.8%).

Utilizing a 256-entry PHT, we examine whether a Per-

Address scheme such as PAp can provide a means of

increasing PPA prediction rates. From figure 4 it can be

seen that above 8 BHT entries, the per-address PAp scheme

does provide a mechanism for increasing HPA prediction

rates. With 128 (n=7) first level entries allowing for the

performance difference between HPA and PPA task to be

narrowed to ~1%.

Finally, using an optimum PHT table size of between 8

and 9, along with a first level shift register of 128 we

analyze the performance of some of the prediction schemes

proposed in previous work, along with a trivial ‘always

taken’ static predictor. From table III it can be seen that a

Gshare based predictor provides optimum performance,

with a 256-entry PHT provide the best performance at the

lowest silicon cost.

TABLE II

BRANCH BEHAVIOR

Task
Branch

Distribution
Interference

Entries

Not Used

AES 74.3% 8.3% 78.7%

MD5 99.8% 0.6% 50.1%

EGT 25.8% 13.6% 59.2%

RADIX 31.2% 30.5% 27.7%

LCTRIE 33.9% 16.4% 50.2%

TABLE III

PREDICTOR PERFORMANCE

Address Hit Rate %
Application

HPA PPA AVG

Trival (Always Taken) 76.89 68.07 86.97

Bi-256 88.31 94.99 91.06

Bi-512 89.04 94.99 91.49

GAg – 256 93.38 95.05 94.06

GAg – 512 91.50 95.75 93.25

Gshare – 256 94.61 96.23 95.28

Gshare – 512 93.66 97.64 95.30

GAp – 512/8 93.00 94.78 93.73

PAp – 128/256 93.10 96.78 94.62

PAg – 4/4/256 90.10 95.52 92.33

468
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:38:25 UTC from IEEE Xplore. Restrictions apply.

 4

V. CONCLUSION

With increasing demands placed on network processors,

additional performance must be extracted from all aspects

of NP design. Implementing deeply pipelined PEs provides

one such method, however such processors can result in

lower performance when executing highly conditional code.

In this paper we have examined which branch prediction

schemes are applicable to the small RISC PEs found in

Network Processors. Our work finds that unlike general

purpose processing, NP applications can provide similar

performance with a PHT requirement 64-times smaller.

While schemes such as a 256-entry Gshare predictor can

provide prediction rates of over 95% on average, our

research also highlights that although a 256-entry table

might be cheap to implement, the static nature of network

applications could result in a PHT being severely under-

utilized.

APPENDIX

Following a similar architecture to the ARM 9TDMI

processor, the transistor cost of the PE can be estimated at

111,000 [12]. Assuming additional registers are needed for

context switching, data transfer, etc, we can determine the

cost of a single ‘shared-master’ 16 * 32-bit register bank as

32 + (16 *32) latches, or ~6500 transistors per bank. With 7

additional banks for context switching, along with a 2 banks

for SRAM and DRAM transfers, the total cost of this PE is

at least ~182,000 transistors. With 2-bit up/down saturating

counter requiring 28 transistors to implement, a 2KB (or

8K-entry) would require over 229,000 transistors to

implement. The 2-KB bimodal examined in [12] is therefore

too expensive to implement next to a simple RISC PE,

while more complex predictors such as a 2-level predictor

or combining predictor would occupy significantly more

area than the processor. When examining branch predictor

performance on network processor architectures, the

fundamental question is not whether performance increases

can be extracted from such solutions, but if such predictors

are justified relative to the small footprint of the PE.

ACKNOWLEDGMENT

This work is co-founded by the SFI China-Ireland Research

collaboration Fund and the China/Ireland Science and

Technology Collaboration Research Fund

(2006DFA11170).

REFERENCES

[1] B. K. Lee and L. K. John, “Npbench: A benchmark suite for ontrol

plane and data plane applications for network processors,” in ICCD ’03:

Proceedings of the 21st International Conference on Computer Design.

Washington, DC, USA: IEEE Computer Society, 2003, p. 226.
[2] G. Memik and W. H. Mangione-Smith, “Evaluating network

processors using netbench,” Trans. on Embedded Computing Sys., vol. 5,

no. 2, pp. 453–471, 2006

[3] T. Wolf and M. Franklin, “Commbench-a telecommunications

benchmark for network processors,” in ISPASS ’00: Proceedings of the

2000 IEEE International Symposium on Performance Analysis of Systems

and Software. Washington, DC, USA: IEEE Computer Society, 2000, pp.

154–162.

[4] Cavium Inc, http://www.cavium.com

[5] D. Bermingham, A. Kennedy, X. Wang, and L. Bin, “An analysis of

network processor workloads,” proceedings of the 2007 China-Ireland

International Conference on ICT (CIICT07), pp. 354–361, 2007.

[6] R. F. Cmelik, S. I. Kong, D. R. Ditzel, and E. J. Kelly, “An analysis of

mips and sparc instruction set utilization on the spec benchmarks,” ACM

SIGOPS, vol. 25, no. Special Issue, pp. 290–302, 1991.

[7] J. Lee and A. Smith, “Branch prediction strategies and branch target

buffer design,” IEEE Computer, vol. 17, no. 1, pp. 6–22, Jan. 1984.

[8] S.-T. Pan, K. So, and J. T. Rahmeh, “Improving the accuracy of

dynamic branch prediction using branch correlation,” ACM SIGPLAN,

vol. 27, no. 9, pp. 76–84, 1992.

[9] S. McFarling, “Combining Branch Predictors, Tech. Rep. TN-36, June

1993. [Online]. Available: http://www.hpl.hp.com/techreports/Compaq-

DEC/WRL-TN-36.pdf , last accessed on 21st June 2008.

[10] Tse-Yu Yeh and Yale N. Patt. “Alternative implementations of two-

level adaptive branch prediction”, IEEE Computer Society Press

Instruction-level parallel processors – pp 150-160, 1995.

[11] M.-C. Chang and Y.-W. Chou, “Branch prediction using both global

and local branch history information,” Computers and Digital

Techniques, IEE Proceedings -, vol. 149, no. 2, pp. 33–38, Mar 2002.

[12] K. Thangarajan, W. Mahmoud, E. Ososanya, and P. Balaji, “Survey

of branch prediction schemes for pipelined processors,” System Theory,

2002. Proceedings of the Thirty-Fourth Southeastern Symposium on, pp.

324–328, 2002.

[13] S. Furber, ARM System-on-Chip Architecture. Boston, MA, USA:

Addison-Wesley Longman Publishing Co., Inc., 2000.

[14] D. Burger, T. M. Austin, and S. W. Keckler, “Recent extensions to

the simplescalar tool suite,” ACM SIGMETRICS Perform. Eval. Rev., vol.

31, no. 4, pp. 4–7, 2004.

[15] National Laboratory for Applied Network Research (NLANR),

http://www.nlanr.net/, last accessed on 21st June 21, 2008.

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12

H
it

R
a
te

 %

Pattern History Table Size (2
n
)

HPA
PPA

AVERAGE

Fig.3. Predictor Hit Rate for varying Pattern History Table Sizes

 88

 90

 92

 94

 96

 98

 100

 0 1 2 3 4 5 6 7 8

H
it

R
at

e
%

Branch History Table Size (2
n
)

HPA
PPA

AVERAGE

Fig.4. Predictor Hit Rate for varying Branch History Table Sizes

469
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:38:25 UTC from IEEE Xplore. Restrictions apply.

