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Abstract 
 

Caching mechanism has achieved great success in 
general purpose processor; however, its deployment in 
Network Processor (NP) raises questions over its 
effectiveness under the new context. In this study, we 
thoroughly evaluate the performance of caches in NP 
with architectural features like multicore, multithread, 
and integrated packet interface. Our major findings 
include: (1) In general, a sufficiently large cache 
effectively reduces the number of memory requests and 
improves the utilization of the NP computation power. 
(2) The lower efficiency of private caches caused by 
duplicate information deteriorates the NP performance 
under certain circumstances. (3) The appropriate 
cache block size is constrained by the low spatial 
locality of network applications. (4) For workloads 
involving large amount of data movement, increasing 
cache size cannot bring more benefits when the 
bottleneck in interconnection bus is reached. In short, 
caching mechanism in NP can be helpful under 
appropriate usage.  
 
1. Introduction 
 

Network processor (NP) has emerged as a 
successful platform to meet the simultaneous demands 
of high packet forwarding performance and great 
programming flexibility for network equipments. This 
is achieved by the employment of architectural features, 
such as multicore, multithread, optimized instruction 
set, and integrated network interface, that are adapted 
to the characteristics of packet processing.  

Compared with general purpose processor (GPP), 
the optimization of memory access latency in NP has a 
higher priority than bandwidth. Integrated memory 
controllers that support devices with shorter access 
latency are often integrated. However, long access 
latency still exists due to the contention caused by 
multiple working threads and co-processors reference. 
In Intel IXP2800, reading 16-byte of data from off-chip 
DRAM takes up to 295 cycles at a 1.4 GHz working 

frequency [1]. This long latency will severely hurt the 
NP performance if it cannot be effectively reduced or 
hidden. 

Instead of caching mechanism, traditional NP often 
employs multithreading as the latency hiding 
technique. The main reasons include: (1) People often 
believe that there is no sufficient locality in network 
applications. (2) Caches reduce the average access 
delay at the expense of deteriorated worst-case 
performance. The unpredictable nature of caching 
cannot meet the stringent timing requirement of 
network processing [2]. 

However, compared with multithreading, caches 
demand much less memory bandwidth and reduce the 
pressure on interconnection bus. Moreover, cache is 
transparent to programmer which reduces the software 
complexity. Therefore, a growing number of NPs 
begin to incorporate caching into their design. For 
example, in Cisco Toaster2, a prefetchable written-
delayed small cache is equipped for each of the 16 
processing elements (PEs). And AMCC nP3700 has a 
nonblocking cache shared among all of the PEs [3]. 

Note that the memory access patterns of network 
applications are quite different from common 
programs. Even if caching has received increasing 
attentions in NP design, systematic analysis of its 
effectiveness under the context of packet processing is 
still lacking. Previous works either focus on specific 
applications or based on the architecture of GPP. This 
leads to the need of revisiting its effectiveness in a 
multicore multithread NP for a larger range of network 
applications. In this research, we strive to give answers 
to the following two questions: 

 How does caching mechanism interact with other 
architectural features such as multicore and 
multithreading? Is caching beneficial for NP? 

 How to tune the parameters of cache to achieve 
best performance for NP? 

In this paper, we carry out a detailed performance 
analysis of caching mechanism in NPs. The simulation 
is based on Intel IXP1200, which includes all the 
prevailing architectural features such as optimized 
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instruction set, multiple PEs, multithread, multiple 
types of memory devices and enhanced packet 
interface. The workloads are carefully selected to 
represent different types of applications, ranging from 
basic router functions, network security, to 
sophisticated switching. They also cover computation-
intensive and memory-intensive applications. Real-life 
packet traces are employed as input to acquire more 
accurate locality information in network traffic of 
different link speed. 
 
2. Related works 
 

Previous study typically focuses on basic IP 
forwarding functions such as route lookup and packet 
classification, which are only a small subset of 
programs to be executed on network processors. Tzi-
cker Chiuch, et al. proposed several strategies to 
reduce miss rate in a specially designed route cache 
[4]. Kaushik Rajan, et al. suggested an effective 
scheme for caching of Level Compressed trie (LC-trie) 
nodes to speedup route lookup [5]. Jun Xu, et al. 
discussed the hardware design and policy selection for 
the caching of packet classification results [6]. 

Jayaram Mudigonda, et al. extends their work to a 
wider range of network applications and their work is 
most related with ours [7]. But their experiments were 
based on SimpleScalar tools which simulate GPP [8]. 
Although they modify the source code to support more 
than one thread, the contentions between memory 
requests from several PEs, and the interaction among 
PEs, different types of memory devices, and packet 
interface can not be simulated. Moreover, their major 
evaluation metric is hit ratio of caching, which is not 
equal to the performance of network processor. 

 
3. Experiment methodology 
 
3.1. Simulator and parameters 
 

We use NePSim 1.0 as the base simulator, which 
has been validated to Intel IXP1200 network processor 
[9]. We extended the simulator to support cache 
mechanism. Coherence among private caches is 
maintained by software. In IXP1200, sending and 
receiving packets are implemented by software. These 
operations are nontrivial and consume large amount of 
instructions. In order to focus on packet processing, we 
added an automatic packet loader into the Media 
Interface to relieve the effect of these routine I/O tasks 
on the NP performance. 

The modified architecture of the simulated network 
processor is shown in Figure 1, in which MicroEngine 
(ME) is a terminology for PE used in Intel IXP series 

products. Table 1 presents the major parameters. If not 
specifically mentioned, the cache block size is 8-byte 
and the thread number per ME is four. In our 
experiments, the improved hit rate caused by cache set 
associative only slightly affects the NP performance. 
Therefore, only direct-mapped cache is discussed here. 
 
3.2. Workloads 
 

The workloads used in our study are ported from 
the benchmarks provided by NePSim 1.0. They are 
four representative network applications:  

1) Internet Protocol Forwarding (ipfwdr). It 
validates IP header and performs a longest prefix 
match (LPM) algorithm using trie lookup. Four bits are 
taken from the destination IP address at a time.  

2) Network Address Translation (nat). It uses the 
source IP address to compute an index, which serves in 
a hash table lookup to retrieve the replacement address 
and port. 

3) Message Digest algorithm (md4). It takes the 
packet as input and produces as output a 128-bit 
“fingerprint”. This program is intended for digital 
signature applications such as Secure Sockets Layer 
(SSL) or firewall.  

4) Uniform Resource Locator routing (url). It 
performs a string-matching algorithm on the packet 
payload against a number of string patterns stored in 

 
Figure 1.  Architecture of the simulated NP. 

 

Table 1.  Simulator parameters. 
ME frequency 696 MHz 
Pipeline depth 5 

Data cache direct-mapped, 1-cycle latency, 
write through, no refilling 

SRAM bus bandwidth 116 MHz × 32 bit 
SDRAM bus bandwidth 116 MHz × 64 bit 

SDRAM bus DDR? No 
SDRAM banks 4 

SDRAM access latency 
8.62 ns row access 
8.62 ns column access 
17.24 ns precharge 

Media Interface bandwidth 80 MHz × 64 bit 
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SRAM. This program is the base of content-switching 
applications. 

Figure 2 illustrates the instruction mix profile and 
raw code size of the selected programs. Table 2 gives 
the percentage of instructions executed from each of 
the major instruction categories. We can see that these 
programs differ in size and instruction distribution.  
ALU operations are the most frequently used (54.86% 
on average) for all of the four applications. But their 
memory operations exhibit significant difference. In 
ipfwdr and nat, only several fields in packet header are 
needed while in md4 and url, the whole packet should 
be loaded from SDRAM. For ipfwdr and nat, the major 
memory operations are table searches, which are not 
needed in md4. In url, the pattern table and auxiliary 
data structure are stored in SRAM. 
 
3.3. Packet traces 
 

We utilize four packet traces collected by National 
Laboratory for Applied Network Research (NLANR) 
from Internet exchange points [10]. BWY is located at 
the edge of the network and has an ATM OC3c link 
connected to its Internet Service Provider (ISP). UFL 
monitors all the information entering and leaving the 
campus of University of Florida. It employs a Packet 
Over SONET (POS) OC12c link. Abilene-I and 
Abilene-III (short for a-i and a-iii in Table 3) are 
OC48c and OC192c backbone traces. 

The source and destination IP addresses in the 
packet traces published by NLANR are renumbered to 
maintain anonymity. This process retains flow pattern; 
but the renumbered IP addresses cannot be found in 
either the route table or nat table. To solve this 
problem, for each unique IP address, we randomly 
generate a new IP address according to the prefixes in 
route table or nat table. Another problem with the 
packet traces do not contain packet payload that are 
needed for md4 and url. Hence, we add random content 
to the packet and extend them to the length specified in 
packet header. 

In this network processor simulator, thread can only 
retrieve packets received by a particular port in Media 
Interface. Thus, we have to manually allocate these 
packets to different port. In our experiment, we define 
flow as a set of packets that have the same source and 
destination IP addresses and packets belonging to the 
same flow are allocated to the same port. In this case, 
the cache hit rate of each ME can be improved and the 
packet reordering problem is also naturally solved. 

 
4. Performance analysis 
 

4.1. Effectiveness of caching for single ME 
 

In this subsection, we report and analyze the NP 
performance of only one ME with different sizes of 
data caches. The data structures used in the four 
workloads can be divided into the three types: (1) 
Packet data and auxiliary data structures such as packet 
descriptors. They are private for each packet and have 
no temporal localities among different packets. (2) 
Application data such as tables and constants. They are 
shared by all packets and typically cannot be modified 
during packet processing. (3) Global variables such as 
the number of exception packets. This is another type 
of shared data that can be changed by packet 
processing.  

Table 3 lists the cache miss rate of the four 
workloads with different packet traces. In ipfwdr and 
nat, packet data are directly loaded into the register file 
of ME from the buffer of Media Interface, without 
being cached. Only the route table or nat table are 
stored in cache. It can be seen that the cache miss rate 
decreases sharply with the cache size. Since nat table is 
much smaller than the route table, the cache miss rate 
of nat is also much lower than ipfwdr.  

In md4, except for some constants, no application 
data are needed in the fingerprint calculation. The data 
locality comes mostly from the accesses of packet 
itself and is much lower than other applications. 
Therefore, its cache miss rate is not relevant with cache 
size and the speed of packet traces. As can be 
demonstrated in the columns for md4 in Table 3, for all 
traces, there is almost no change in the miss rate with 
the cache size. 
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Figure 2.  Raw code sizes and instruction mix. 

 

Table 2.  Percentage of executed instructions. 

Prog. ALU Branch 
Immed. 

Load Memory Others 
ipfwdr 47.2 12.7 11.9 5.00 23.23 

nat 56.3 29.7 1.56 7.81 4.69 
md4 60.7 1.24 3.29 12.8 21.97 
url 55.3 15.6 4.03 17.5 6.58 
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In url, both the pattern table and packet payload are 
loaded into cache. The miss rate is higher than ipfwdr 
and nat, but it still decreases with the increase of cache 
size. The cache miss rate stops falling at about 9%, 
which is attributed to the low temporal locality in 
payload accessing. 

Figure 3 presents the packet throughput of the four 
workloads with only one ME. In ipfwdr and nat, the 
metric is million packets per second (Mpps) because 
the two programs are executed on a per-packet basis 
and are independent of packet size. While in md4 and 
url, the metric is gigabit per second (Gbps) because 
they are performed on the entire packet. 

It can be found that, with only one ME, adding 
cache to NP effectively increases the traffic 
throughput. Even with url that achieves the smallest 
improvement, a 4 KB cache brings a performance gain 
of about 35.96%. Although memory operations only 
account for a small percentage of total instructions 
executed, their large access latency (over 50 ME cycles 
for SRAM and 200 for SDRAM) still makes them a 
dominate factor. Even with multiple threads, this long 
time to recover from the suspended state increases the 

chance of turning all threads into sleep, which make 
the ME idle and wastes the processing power. The 
introduction of cache greatly reduces this possibility 
and improves the utilization rate of ME. 

Figure 4 shows the internal statistics of ME 
utilization for Abilene-I. The “stalled” state happens if 
at least one command queue for memory operations in 
the NP becomes full. With only one ME, the number of 
memory requests is far from overwhelming a 
command queue. Therefore, only “active” and “idle” 
state can be observed in this figure. 

Table 3.  Cache miss rate for single ME (%).
Size 
(KB) 

ipfwdr nat md4 url 
bwy ufl a-i a-iii bwy ufl a-i a-iii bwy ufl a-i a-iii bwy ufl a-i a-iii 

4 19.6 31.5 25.3 29.3 8.08 21.2 17.6 23.4 12.8 12.3 12.3 12.4 29.5 29.4 29.5 29.0 
8 15.4 23.5 18.8 21.9 4.30 12.4 9.12 15.7 12.8 12.3 12.3 12.4 25.8 25.8 25.9 25.4 

16 2.53 7.52 4.92 6.45 0.63 5.34 4.41 8.21 12.0 12.1 12.1 12.1 19.1 19.2 19.2 18.6 
32 1.51 4.60 2.94 4.19 0.61 1.03 1.20 0.28 11.8 11.9 11.9 11.9 10.4 10.2 10.3 9.85 
64 1.19 2.44 1.73 2.05 0.61 1.03 1.20 0.28 11.6 11.7 11.7 11.7 9.52 9.43 9.44 9.47 
128 0.69 1.48 1.36 1.42 0.73 1.18 1.42 0.56 11.7 11.7 11.7 11.7 9.54 9.43 9.45 9.46 
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Figure 3.  Packet throughput for single ME. 
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Figure 4.  Internal statistics of ME for Abilene-I. 
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Even with four threads, a network processor without 
caching mechanism remains idle for over 50% of time. 
For ipfwdr and nat, a small cache can save a large 
percentage of computation power of ME. For a 16 KB 
cache, the ME keeps busy for 99.64% of time in ipfwdr 
and 98.33% of time in nat. At this point, adding more 
entries to cache can not bring more benefit. On one 
hand, the cache miss rate is hard to improve; on the 
other hand, almost all the available computation power 
of ME has been exploited. 

Similar phenomenon can also be observed in md4 
and url. However, the improvement of ME utilization 
is not as great as in ipfwdr and nat. The percentage of 
active time increases from 54.73% to about 73% under 
all sizes of cache in md4. In url, the maximum 
increment of ME utilization is from 47.78% to about 
89% with a cache larger than 32 KB. This is because in 
these two applications, ME spends a lot of time on the 
packet moving among Media Interface, SDRAM, and 
SRAM. Since this is not relevant with caching, a 
higher cache hit rate can not turn the ME into active. 
Providing more bandwidth on interconnection bus is 
one of the solutions to this problem. 
 

4.2. Effectiveness of caching for multiple MEs 
 

In this subsection, we analyze the effectiveness of 
caching for multiple MEs. If we do not take Non-
Uniform Cache Access (NUCA) into consideration, 
then one cache shared among all MEs has higher hit 
rate than private caches for each ME with the same 
total size. But shared cache has much larger access 
latency. In Intel IXP1200, the latency of the shared on-
chip SRAM is comparable to external SRAM due to 
the contentions on interconnection bus. Hence, we only 
consider private caches and the sizes mentioned 
hereafter refer to the total size of private caches. In our 
workloads, chances of modifying shared information 
such as the number of exception packets are small. 
Therefore, the coherence among local caches is easy to 
be maintained. 

Table 4 lists the average cache miss rate for 
Abilene-I with different number of MEs. Since all of 
the four traces exhibit similar patterns, the results of 
only one of them are presented and discussed due to 
space limit. It can be seen that except for md4, the 
cache miss rate falls sharply with the increasing ME 
number. The reason is that in these applications, the 

Table 4.  Average cache miss rate for Abilene-I (%)
Size 
(KB) 

ipfwdr nat md4 url 
2-ME 4-ME 8-ME 2-ME 4-ME 8-ME 2-ME 4-ME 8-ME 2-ME 4-ME 8-ME 

4 33.1 38.3 51.7 23.34 24.2 28.4 12.2 11.8 11.5 37.7 41.2 44.7 
8 23.2 28.7 36.3 16.68 18.1 22.8 12.2 11.8 11.5 28.6 36.8 41.0 

16 16.7 22.0 28.0 11.19 12.5 14.1 12.2 11.8 11.5 25.7 28.1 36.2 
32 4.10 15.8 20.4 5.96 9.24 9.79 12.2 11.8 11.5 19.1 24.6 27.7 
64 2.67 3.41 14.5 0.61 4.35 8.27 11.1 11.5 11.5 10.7 18.5 23.3 
128 1.45 2.08 4.46 0.91 1.28 5.98 10.8 10.4 11.2 8.12 11.7 17.8 
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Figure 5.  Packet throughput for Abilene-I with different number of MEs. 
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major data structure is tables shared by all packets. 
Even if packets of the same flow are allocated to the 
same threads, packets from other flows may access the 
same entries such as the nodes of the route lookup trie. 
When these packets are allocated to different MEs, the 
duplicated table entries in local caches reduce the 
effective cache space. Since md4 only uses some 
constants and privately owned packet data, dividing a 
big cache into several small ones only slightly affects 
the miss rate. 

Figure 5 presents the packet throughput for 
Abilene-I with different number of MEs. Not all 
schemes yield performance improvement over the 
baseline of no caching mechanism. Especially when 
the cache size is small, the packet throughput decreases 
dramatically. For example, with 8 MEs and a total 
cache size of 4 KB, the packet throughput drops from 
6.72 Mpps to 2.90 Mpps in ipfwdr, and from 0.945 
Gbps to 0.498 Gbps in url. 

The deteriorated performance comes from the high 
cache miss rates. Note that cache block is typically 
larger than the size of the data actually needed. For 
example, each cache block can hold two route lookup 

trie nodes. If the additional entry loaded during a cache 
miss will not be used by successive table searches, it 
wastes the bandwidth of the already crowded memory 
bus that is shared among MEs.  

This can be further demonstrated in Figure 6, which 
shows the average ME utilization for Abilene-I with 2 
MEs and 8 MEs. Compared with Figure 4, the average 
utilization of 2 MEs only slightly declines (less than 
20%). Since the computation power is doubled, the 
packet throughput still achieves a considerable 
increase. As the ME number increases to 8, a small 
amount of “stalled” state appears due to the 
contentions in command queue. Although the stalled 
state is hardly seen with the introduction of caches, the 
percentage of active state drops dramatically if the 
cache is not large enough. In the right part of Figure 6, 
the percentage of active state with 8 KB private caches 
is only 18.75, 26.83, 24.47, and 11.11 in the four 
applications. This is in accordance with the 
performance loss in Figure 5. 

When cache size is sufficiently large, i.e. the 
concurrent memory requests do not exceed the 
bandwidth memory busses, the utilization of MEs can 
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Figure 6.  Average ME utilization with 2 MEs and 8 MEs for Abilene-I. 

 

Table 5.  Average cache miss rate with 64 KB caches of fifferent block sizes for Abilene-I (%) 
Blk 
(B) 

1-ME 2-ME 4-ME 8-ME 
ipfwdf nat md4 url ipfwdr nat md4 url ipfwdr nat md4 url ipfwdr nat md4 url 

4 1.45 1.54 15.2 10.2 1.94 1.00 15.1 11.2 2.24 4.87 16.0 18.7 11.8 10.0 16.5 22.9 
8 1.73 1.20 11.7 9.44 2.67 0.61 11.1 10.7 3.41 4.35 11.5 18.5 14.5 8.27 11.5 23.3 

16 2.36 0.86 10.0 9.14 3.58 0.55 9.46 11.0 4.61 2.78 9.47 19.0 19.3 4.95 17.6 21.5 
32 3.36 0.42 14.5 10.7 4.81 0.28 14.4 13.9 6.35 1.41 13.9 23.0 26.3 2.44 13.7 25.5 
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Figure 7.  Packet throughput for Abilene-I with 64 KB caches of different block sizes. 
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be greatly improved. For example, in ipfwdr, the 
packet throughputs for 1 ME, 2 MEs, 4MEs, and 8 
MEs with 128 KB caches exhibit an almost linear 
increase of 3.40 Mpps, 6.66 Mpps, 13.20 Mpps and 
22.91 Mpps. 
 
4.3. Impact of cache organizations 
 

In this subsection, we discuss the impact of cache 
organizations on NP performance. Table 5 lists the 
average cache miss rate for Abilene-I with 64 KB 
caches of different block sizes. In ipfwdr, trie node is 
of 4-byte and it is unlikely to access successive trie 
nodes in one route lookup. Therefore, the cache miss 
rate is lowest when the block size is 4-byte. In nat, the 
hash table entry is organized in a unit of 64-byte and 
the table search is often completed within one entry. So 
the cache hit rate gets higher with the block size.  

For md4 and url, the variation of cache miss rate is 
a little complicated. In this implementation, the 
dominate memory operations are SRAM accesses. In 
md4, packet payload is loaded into SRAM 16-byte at a 
time. Although the pattern table entry is organized as 
32-byte, typically only part of the information of one 
entry are needed. Hence, the lowest miss rate occurs at 
8-byte or 16-byte according to the ME number.  

Table 5 reveals the spatial locality of the network 
applications, which typically exists within one table 
entry in these applications. Although the access pattern 
among different entries depends on the table 

organization and the implementation of searching 
algorithms, it can be inferred that the spatial localities 
of these network applications are much lower than 
common programs. 

Figure 7 shows the packet throughput for Abilene-I 
with 64 KB caches of different block sizes. When the 
ME number is small, the sight difference in cache miss 
rates does not affect the packet throughput too much 
for ipfwdr and nat. But if the cache miss rate is large, 
even minor variations can greatly change the 
performance. In url, the average cache miss rate for 4 
MEs with 64 KB local caches ranges around 20%, 
while the packet throughputs for the cache block sizes 
of 4-byte, 8-byte, 16-byte and 32-byte are 1.85 Gbps, 
1.30 Gbps, 0.82 Gbps, and 0.33 Gbps. This is because 
big block size increases the miss penalty. When the 
reduced cache miss rate can not compensate the 
enlarged average memory access latency, the network 
processor performance is eventually deteriorated. 
 
4.4. Impact of thread number 
 

This subsection discusses the relationships between 
cache and thread number. Figure 8 compares the 
packet throughput with different number of threads and 
MEs for Abilene-I. Figure 9 presents the internal 
statistics of single ME with one and two threads for 
Abilene-I.  

For applications that have a relatively high cache hit 
rate such as ipfwdr and nat, the efficiency of 
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Figure 8.  Packet throughput with different number of threads and MEs for Abilene-I. 
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multithread decreases quickly as more threads are 
added. In some cases, using a big cache is equivalent to 
using more threads or MEs. For instance, a ME with a 
single thread and a 16 KB cache has a comparable 
packet throughput with a ME with two threads and an 
8 KB cache (about 2 Mpps).  

Since the cache hit rate is hard to improve for md4 
and url, adding more threads is much more effective 
for reducing the idle state percentage of MEs. In md4, 
adding more threads doubles the packet throughput 
easily. In url, the equivalent configurations can also be 
found and when the cache size is smaller than 32 KB, 
one 4-thread ME yields more packet throughput than 
two 2-thread MEs. 
 
5. Conclusions 
 

In this work, we systematically studied the 
effectiveness of caching mechanism in a multicore and 
multithreaded NP. We find that caches can release the 
pressure on shared memory buses and increase the PE 
utilization rates. But inappropriate cache organization 
can worsen the performance of NP due to high miss rate 
or large bus bandwidth consumption. Several 
hardware/software improvements to current NP design 
can help achieving higher performance. 

• The data structure design should take the cache 
organization into consideration to fully utilize its 
characteristics such as the block size. 

• The thread allocation policy should be designed to 
reduce the duplication among private caches if 
more than one PE is supported. 

• PEs can be organized in small clusters and share 
the same local cache in their clusters to enhance the 
efficiency of caches. 

Future research in this direction will take the cost of 
cache into consideration, including chip area and 
power consumption. Code optimization for data/thread 
allocation will also be made in order to improve cache 
performance. 
 
6. Acknowledgement 
 

This work is supported by Irish Research Council 
for Science, Engineering and Technology (IRCSET) 
Embark Initiative postdoctoral research funding for 
2007~2009, and Science Foundation Ireland (SFI) 
China-Ireland Science and Technology Collaboration 
Research Fund. This work is also partly supported by 
National Natural Science Foundation of China 
(60573121, 60625201), Cultivation Fund of the Key 
Scientific and Technical Innovation Project, Ministry 
of Education, China (705003), Specialized Research 
Fund for the Doctoral Program of Higher Education of 
China (20060003058), 863 Hi-tech Research and 
Development Program of China (2007AA01Z216). 
 
7. References 
 
[1] Intel IXP2800 Network Processor Hardware Reference 
Manual, Intel Inc., May 2003. 
[2] M. Venkatachalam, P. Chandra, and R. Yavatkar, “A 
highly flexible, distributed multiprocessor architecture for 
network processing”, Computer Networks, 41(5), 2003, pp. 
563-586. 
[3] P. Crowly, M.A. Franklin, H.Hadimioglu, and P.Z. 
Onufryk (Ed.), Network Processor Design: Issues and 
Practices, volume 1, Morgan Kaufmann, 2003. 
[4] T. Chiueh, and P. Pradhan, “Cache Memory Design 
for Internet Processors”, IEEE Micro, 20(1), 2000, pp. 
28-33. 
[5] K. Rajan, and R. Govindarajan, “A Heterogeneously 
Segmented Cache Architecture for a Packet Forwarding 
Engine”, Proceedings of ICS’05, 2005, pp. 71-80. 
[6] J. Xu, M. Singhal and J. Degroat, “A Novel Cache 
Architecture to Support Layer-Four Packet Classification at 
Memory Access Speeds”, Proceedings of IEEE 
INFOCOM’00, vol. 3, 2000, pp. 1445-1454. 
[7] J. Mudigonda, H.M. Vin, and R. Yavatkar, “Managing 
Memory Access Latency in Packet Processing”, Proceedings 
of SIGMETRICS 2005, 2005, pp. 396-397. 
[8] http://www.simplescalar.com/. 
[9] Y. Luo, J. Yang, L.N. Bhuyan, and L. Zhao, “NePSim: A 
Network Processor Simulator with a Power Evaluation 
Framework”, IEEE Micro, 24(5), 2004, pp. 34-44. 
[10] Passive Measurement and Analysis Project, National 
Laboratory for Applied Network Research. 
http://moat.nlanr.net/pma. 

0

20

40

60

80

100
Cache Size: KB

urlmd4natipfwdrurlmd4natipfwdr

6432168

12
84

2 THs  Active  Stalled  Idle

0

 
M

E 
U

til
iz

at
io

n 
(%

)
1 TH  Active  Stalled  Idle

6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840

Figure 9.  Internal statistics of single ME with one and two threads for Abilene-I. 

324

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore.  Restrictions apply. 


