
Revisiting the Cache Effect on Multicore Multithreaded Network Processors

Zhen Liu1, Jia Yu2, Xiaojun Wang1, Bin Liu3, and Laxmi Bhuyan2

1Dublin City University
{liuzhen, wangx}@eeng.dcu.ie

2University of California, Riverside
{jiayu, bhuyan}@cs.ucr.edu

3Tsinghua University
liub@tsinghua.edu.cn

Abstract

Caching mechanism has achieved great success in
general purpose processor; however, its deployment in
Network Processor (NP) raises questions over its
effectiveness under the new context. In this study, we
thoroughly evaluate the performance of caches in NP
with architectural features like multicore, multithread,
and integrated packet interface. Our major findings
include: (1) In general, a sufficiently large cache
effectively reduces the number of memory requests and
improves the utilization of the NP computation power.
(2) The lower efficiency of private caches caused by
duplicate information deteriorates the NP performance
under certain circumstances. (3) The appropriate
cache block size is constrained by the low spatial
locality of network applications. (4) For workloads
involving large amount of data movement, increasing
cache size cannot bring more benefits when the
bottleneck in interconnection bus is reached. In short,
caching mechanism in NP can be helpful under
appropriate usage.

1. Introduction

Network processor (NP) has emerged as a
successful platform to meet the simultaneous demands
of high packet forwarding performance and great
programming flexibility for network equipments. This
is achieved by the employment of architectural features,
such as multicore, multithread, optimized instruction
set, and integrated network interface, that are adapted
to the characteristics of packet processing.

Compared with general purpose processor (GPP),
the optimization of memory access latency in NP has a
higher priority than bandwidth. Integrated memory
controllers that support devices with shorter access
latency are often integrated. However, long access
latency still exists due to the contention caused by
multiple working threads and co-processors reference.
In Intel IXP2800, reading 16-byte of data from off-chip
DRAM takes up to 295 cycles at a 1.4 GHz working

frequency [1]. This long latency will severely hurt the
NP performance if it cannot be effectively reduced or
hidden.

Instead of caching mechanism, traditional NP often
employs multithreading as the latency hiding
technique. The main reasons include: (1) People often
believe that there is no sufficient locality in network
applications. (2) Caches reduce the average access
delay at the expense of deteriorated worst-case
performance. The unpredictable nature of caching
cannot meet the stringent timing requirement of
network processing [2].

However, compared with multithreading, caches
demand much less memory bandwidth and reduce the
pressure on interconnection bus. Moreover, cache is
transparent to programmer which reduces the software
complexity. Therefore, a growing number of NPs
begin to incorporate caching into their design. For
example, in Cisco Toaster2, a prefetchable written-
delayed small cache is equipped for each of the 16
processing elements (PEs). And AMCC nP3700 has a
nonblocking cache shared among all of the PEs [3].

Note that the memory access patterns of network
applications are quite different from common
programs. Even if caching has received increasing
attentions in NP design, systematic analysis of its
effectiveness under the context of packet processing is
still lacking. Previous works either focus on specific
applications or based on the architecture of GPP. This
leads to the need of revisiting its effectiveness in a
multicore multithread NP for a larger range of network
applications. In this research, we strive to give answers
to the following two questions:

 How does caching mechanism interact with other
architectural features such as multicore and
multithreading? Is caching beneficial for NP?

 How to tune the parameters of cache to achieve
best performance for NP?

In this paper, we carry out a detailed performance
analysis of caching mechanism in NPs. The simulation
is based on Intel IXP1200, which includes all the
prevailing architectural features such as optimized

11th EUROMICRO CONFERENCE on DIGITAL SYSTEM DESIGN Architectures, Methods and Tools

978-0-7695-3277-6/08 $25.00 © 2008 IEEE

DOI 10.1109/DSD.2008.41

317

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

instruction set, multiple PEs, multithread, multiple
types of memory devices and enhanced packet
interface. The workloads are carefully selected to
represent different types of applications, ranging from
basic router functions, network security, to
sophisticated switching. They also cover computation-
intensive and memory-intensive applications. Real-life
packet traces are employed as input to acquire more
accurate locality information in network traffic of
different link speed.

2. Related works

Previous study typically focuses on basic IP
forwarding functions such as route lookup and packet
classification, which are only a small subset of
programs to be executed on network processors. Tzi-
cker Chiuch, et al. proposed several strategies to
reduce miss rate in a specially designed route cache
[4]. Kaushik Rajan, et al. suggested an effective
scheme for caching of Level Compressed trie (LC-trie)
nodes to speedup route lookup [5]. Jun Xu, et al.
discussed the hardware design and policy selection for
the caching of packet classification results [6].

Jayaram Mudigonda, et al. extends their work to a
wider range of network applications and their work is
most related with ours [7]. But their experiments were
based on SimpleScalar tools which simulate GPP [8].
Although they modify the source code to support more
than one thread, the contentions between memory
requests from several PEs, and the interaction among
PEs, different types of memory devices, and packet
interface can not be simulated. Moreover, their major
evaluation metric is hit ratio of caching, which is not
equal to the performance of network processor.

3. Experiment methodology

3.1. Simulator and parameters

We use NePSim 1.0 as the base simulator, which
has been validated to Intel IXP1200 network processor
[9]. We extended the simulator to support cache
mechanism. Coherence among private caches is
maintained by software. In IXP1200, sending and
receiving packets are implemented by software. These
operations are nontrivial and consume large amount of
instructions. In order to focus on packet processing, we
added an automatic packet loader into the Media
Interface to relieve the effect of these routine I/O tasks
on the NP performance.

The modified architecture of the simulated network
processor is shown in Figure 1, in which MicroEngine
(ME) is a terminology for PE used in Intel IXP series

products. Table 1 presents the major parameters. If not
specifically mentioned, the cache block size is 8-byte
and the thread number per ME is four. In our
experiments, the improved hit rate caused by cache set
associative only slightly affects the NP performance.
Therefore, only direct-mapped cache is discussed here.

3.2. Workloads

The workloads used in our study are ported from
the benchmarks provided by NePSim 1.0. They are
four representative network applications:

1) Internet Protocol Forwarding (ipfwdr). It
validates IP header and performs a longest prefix
match (LPM) algorithm using trie lookup. Four bits are
taken from the destination IP address at a time.

2) Network Address Translation (nat). It uses the
source IP address to compute an index, which serves in
a hash table lookup to retrieve the replacement address
and port.

3) Message Digest algorithm (md4). It takes the
packet as input and produces as output a 128-bit
“fingerprint”. This program is intended for digital
signature applications such as Secure Sockets Layer
(SSL) or firewall.

4) Uniform Resource Locator routing (url). It
performs a string-matching algorithm on the packet
payload against a number of string patterns stored in

Figure 1. Architecture of the simulated NP.

Table 1. Simulator parameters.
ME frequency 696 MHz
Pipeline depth 5

Data cache direct-mapped, 1-cycle latency,
write through, no refilling

SRAM bus bandwidth 116 MHz × 32 bit
SDRAM bus bandwidth 116 MHz × 64 bit

SDRAM bus DDR? No
SDRAM banks 4

SDRAM access latency
8.62 ns row access
8.62 ns column access
17.24 ns precharge

Media Interface bandwidth 80 MHz × 64 bit

318

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

SRAM. This program is the base of content-switching
applications.

Figure 2 illustrates the instruction mix profile and
raw code size of the selected programs. Table 2 gives
the percentage of instructions executed from each of
the major instruction categories. We can see that these
programs differ in size and instruction distribution.
ALU operations are the most frequently used (54.86%
on average) for all of the four applications. But their
memory operations exhibit significant difference. In
ipfwdr and nat, only several fields in packet header are
needed while in md4 and url, the whole packet should
be loaded from SDRAM. For ipfwdr and nat, the major
memory operations are table searches, which are not
needed in md4. In url, the pattern table and auxiliary
data structure are stored in SRAM.

3.3. Packet traces

We utilize four packet traces collected by National
Laboratory for Applied Network Research (NLANR)
from Internet exchange points [10]. BWY is located at
the edge of the network and has an ATM OC3c link
connected to its Internet Service Provider (ISP). UFL
monitors all the information entering and leaving the
campus of University of Florida. It employs a Packet
Over SONET (POS) OC12c link. Abilene-I and
Abilene-III (short for a-i and a-iii in Table 3) are
OC48c and OC192c backbone traces.

The source and destination IP addresses in the
packet traces published by NLANR are renumbered to
maintain anonymity. This process retains flow pattern;
but the renumbered IP addresses cannot be found in
either the route table or nat table. To solve this
problem, for each unique IP address, we randomly
generate a new IP address according to the prefixes in
route table or nat table. Another problem with the
packet traces do not contain packet payload that are
needed for md4 and url. Hence, we add random content
to the packet and extend them to the length specified in
packet header.

In this network processor simulator, thread can only
retrieve packets received by a particular port in Media
Interface. Thus, we have to manually allocate these
packets to different port. In our experiment, we define
flow as a set of packets that have the same source and
destination IP addresses and packets belonging to the
same flow are allocated to the same port. In this case,
the cache hit rate of each ME can be improved and the
packet reordering problem is also naturally solved.

4. Performance analysis

4.1. Effectiveness of caching for single ME

In this subsection, we report and analyze the NP
performance of only one ME with different sizes of
data caches. The data structures used in the four
workloads can be divided into the three types: (1)
Packet data and auxiliary data structures such as packet
descriptors. They are private for each packet and have
no temporal localities among different packets. (2)
Application data such as tables and constants. They are
shared by all packets and typically cannot be modified
during packet processing. (3) Global variables such as
the number of exception packets. This is another type
of shared data that can be changed by packet
processing.

Table 3 lists the cache miss rate of the four
workloads with different packet traces. In ipfwdr and
nat, packet data are directly loaded into the register file
of ME from the buffer of Media Interface, without
being cached. Only the route table or nat table are
stored in cache. It can be seen that the cache miss rate
decreases sharply with the cache size. Since nat table is
much smaller than the route table, the cache miss rate
of nat is also much lower than ipfwdr.

In md4, except for some constants, no application
data are needed in the fingerprint calculation. The data
locality comes mostly from the accesses of packet
itself and is much lower than other applications.
Therefore, its cache miss rate is not relevant with cache
size and the speed of packet traces. As can be
demonstrated in the columns for md4 in Table 3, for all
traces, there is almost no change in the miss rate with
the cache size.

ipfwdr nat md4 url
0

100

200

300

400

500

600

700

800

900

699
662

42

Li
ne

s
of

 C
od

e

 Conditional branch
 Unconditional branch
 SRAM operation
 SDRAM operation
 Scratchpad operation
 Immediate load
 ALU operation
 Logical operation
 Others

283

Figure 2. Raw code sizes and instruction mix.

Table 2. Percentage of executed instructions.

Prog. ALU Branch
Immed.

Load Memory Others
ipfwdr 47.2 12.7 11.9 5.00 23.23

nat 56.3 29.7 1.56 7.81 4.69
md4 60.7 1.24 3.29 12.8 21.97
url 55.3 15.6 4.03 17.5 6.58

319

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

In url, both the pattern table and packet payload are
loaded into cache. The miss rate is higher than ipfwdr
and nat, but it still decreases with the increase of cache
size. The cache miss rate stops falling at about 9%,
which is attributed to the low temporal locality in
payload accessing.

Figure 3 presents the packet throughput of the four
workloads with only one ME. In ipfwdr and nat, the
metric is million packets per second (Mpps) because
the two programs are executed on a per-packet basis
and are independent of packet size. While in md4 and
url, the metric is gigabit per second (Gbps) because
they are performed on the entire packet.

It can be found that, with only one ME, adding
cache to NP effectively increases the traffic
throughput. Even with url that achieves the smallest
improvement, a 4 KB cache brings a performance gain
of about 35.96%. Although memory operations only
account for a small percentage of total instructions
executed, their large access latency (over 50 ME cycles
for SRAM and 200 for SDRAM) still makes them a
dominate factor. Even with multiple threads, this long
time to recover from the suspended state increases the

chance of turning all threads into sleep, which make
the ME idle and wastes the processing power. The
introduction of cache greatly reduces this possibility
and improves the utilization rate of ME.

Figure 4 shows the internal statistics of ME
utilization for Abilene-I. The “stalled” state happens if
at least one command queue for memory operations in
the NP becomes full. With only one ME, the number of
memory requests is far from overwhelming a
command queue. Therefore, only “active” and “idle”
state can be observed in this figure.

Table 3. Cache miss rate for single ME (%).
Size
(KB)

ipfwdr nat md4 url
bwy ufl a-i a-iii bwy ufl a-i a-iii bwy ufl a-i a-iii bwy ufl a-i a-iii

4 19.6 31.5 25.3 29.3 8.08 21.2 17.6 23.4 12.8 12.3 12.3 12.4 29.5 29.4 29.5 29.0
8 15.4 23.5 18.8 21.9 4.30 12.4 9.12 15.7 12.8 12.3 12.3 12.4 25.8 25.8 25.9 25.4

16 2.53 7.52 4.92 6.45 0.63 5.34 4.41 8.21 12.0 12.1 12.1 12.1 19.1 19.2 19.2 18.6
32 1.51 4.60 2.94 4.19 0.61 1.03 1.20 0.28 11.8 11.9 11.9 11.9 10.4 10.2 10.3 9.85
64 1.19 2.44 1.73 2.05 0.61 1.03 1.20 0.28 11.6 11.7 11.7 11.7 9.52 9.43 9.44 9.47
128 0.69 1.48 1.36 1.42 0.73 1.18 1.42 0.56 11.7 11.7 11.7 11.7 9.54 9.43 9.45 9.46

0 4 8 16 32 64 128
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

Pa
ck

et
 T

hr
ou

gh
pu

t (
M

pp
s)

Cache Size (KB)

 BWY
 UFL
 Abilene-I
 Abilene-III

0 4 8 16 32 64 128

3
4
5
6
7
8
9

10
11

Pa
ck

et
 T

hr
ou

gh
pu

t (
M

pp
s)

Cache Size (KB)

 BWY
 UFL
 Abilene-I
 Abilene-III

(a) ipfwdr (b) nat

0 4 8 16 32 64 128
0.7

0.8

0.9

1.0

1.1

1.2

1.3

Pa
ck

et
 T

hr
ou

gh
pu

t (
G

bp
s)

Cache Size (KB)

 BWY
 UFL
 Abilene-I
 Abilene-III

0 4 8 16 32 64 128

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pa
ck

et
 T

hr
ou

gh
pu

t (
G

bp
s)

Cache Size (KB)

 BWY
 UFL
 Abilene-I
 Abilene-III

(c) md4 (d) url

Figure 3. Packet throughput for single ME.

0 4 8 16 32 64128 0 4 8 16 32 64128 0 4 8 16 32 64128 0 4 8 16 32 64128
0

20

40

60

80

100
Cache Size: KB Active Stalled Idle

M
E

 U
til

iz
at

io
n

(%
)

natipfwdr md4 url

Figure 4. Internal statistics of ME for Abilene-I.

320

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

Even with four threads, a network processor without
caching mechanism remains idle for over 50% of time.
For ipfwdr and nat, a small cache can save a large
percentage of computation power of ME. For a 16 KB
cache, the ME keeps busy for 99.64% of time in ipfwdr
and 98.33% of time in nat. At this point, adding more
entries to cache can not bring more benefit. On one
hand, the cache miss rate is hard to improve; on the
other hand, almost all the available computation power
of ME has been exploited.

Similar phenomenon can also be observed in md4
and url. However, the improvement of ME utilization
is not as great as in ipfwdr and nat. The percentage of
active time increases from 54.73% to about 73% under
all sizes of cache in md4. In url, the maximum
increment of ME utilization is from 47.78% to about
89% with a cache larger than 32 KB. This is because in
these two applications, ME spends a lot of time on the
packet moving among Media Interface, SDRAM, and
SRAM. Since this is not relevant with caching, a
higher cache hit rate can not turn the ME into active.
Providing more bandwidth on interconnection bus is
one of the solutions to this problem.

4.2. Effectiveness of caching for multiple MEs

In this subsection, we analyze the effectiveness of
caching for multiple MEs. If we do not take Non-
Uniform Cache Access (NUCA) into consideration,
then one cache shared among all MEs has higher hit
rate than private caches for each ME with the same
total size. But shared cache has much larger access
latency. In Intel IXP1200, the latency of the shared on-
chip SRAM is comparable to external SRAM due to
the contentions on interconnection bus. Hence, we only
consider private caches and the sizes mentioned
hereafter refer to the total size of private caches. In our
workloads, chances of modifying shared information
such as the number of exception packets are small.
Therefore, the coherence among local caches is easy to
be maintained.

Table 4 lists the average cache miss rate for
Abilene-I with different number of MEs. Since all of
the four traces exhibit similar patterns, the results of
only one of them are presented and discussed due to
space limit. It can be seen that except for md4, the
cache miss rate falls sharply with the increasing ME
number. The reason is that in these applications, the

Table 4. Average cache miss rate for Abilene-I (%)
Size
(KB)

ipfwdr nat md4 url
2-ME 4-ME 8-ME 2-ME 4-ME 8-ME 2-ME 4-ME 8-ME 2-ME 4-ME 8-ME

4 33.1 38.3 51.7 23.34 24.2 28.4 12.2 11.8 11.5 37.7 41.2 44.7
8 23.2 28.7 36.3 16.68 18.1 22.8 12.2 11.8 11.5 28.6 36.8 41.0

16 16.7 22.0 28.0 11.19 12.5 14.1 12.2 11.8 11.5 25.7 28.1 36.2
32 4.10 15.8 20.4 5.96 9.24 9.79 12.2 11.8 11.5 19.1 24.6 27.7
64 2.67 3.41 14.5 0.61 4.35 8.27 11.1 11.5 11.5 10.7 18.5 23.3
128 1.45 2.08 4.46 0.91 1.28 5.98 10.8 10.4 11.2 8.12 11.7 17.8

0 4 8 16 32 64 128
0

4

8

12

16

20

24

P
ac

ke
t T

hr
ou

gh
pu

t (
M

pp
s)

Cache Size (KB)

 1 ME
 2 MEs
 4 MEs
 8 MEs

0 4 8 16 32 64 128

0
4
8

12
16
20
24
28
32
36

P
ac

ke
t T

hr
ou

gh
pu

t (
M

pp
s)

Cache Size (KB)

 1 ME
 2 MEs
 4 MEs
 8 MEs

(a) ipfwdr (b) nat

0 4 8 16 32 64 128
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
ac

ke
t T

hr
ou

gh
pu

t (
G

bp
s)

Cache Size (KB)

 1 ME 2 MEs
 4 MEs 8 MEs

0 4 8 16 32 64 128

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

P
ac

ke
t T

hr
ou

gh
pu

t (
G

bp
s)

Cache Size (KB)

 1 ME 2 MEs
 4 MEs 8 MEs

(c) md4 (d) url

Figure 5. Packet throughput for Abilene-I with different number of MEs.

321

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

major data structure is tables shared by all packets.
Even if packets of the same flow are allocated to the
same threads, packets from other flows may access the
same entries such as the nodes of the route lookup trie.
When these packets are allocated to different MEs, the
duplicated table entries in local caches reduce the
effective cache space. Since md4 only uses some
constants and privately owned packet data, dividing a
big cache into several small ones only slightly affects
the miss rate.

Figure 5 presents the packet throughput for
Abilene-I with different number of MEs. Not all
schemes yield performance improvement over the
baseline of no caching mechanism. Especially when
the cache size is small, the packet throughput decreases
dramatically. For example, with 8 MEs and a total
cache size of 4 KB, the packet throughput drops from
6.72 Mpps to 2.90 Mpps in ipfwdr, and from 0.945
Gbps to 0.498 Gbps in url.

The deteriorated performance comes from the high
cache miss rates. Note that cache block is typically
larger than the size of the data actually needed. For
example, each cache block can hold two route lookup

trie nodes. If the additional entry loaded during a cache
miss will not be used by successive table searches, it
wastes the bandwidth of the already crowded memory
bus that is shared among MEs.

This can be further demonstrated in Figure 6, which
shows the average ME utilization for Abilene-I with 2
MEs and 8 MEs. Compared with Figure 4, the average
utilization of 2 MEs only slightly declines (less than
20%). Since the computation power is doubled, the
packet throughput still achieves a considerable
increase. As the ME number increases to 8, a small
amount of “stalled” state appears due to the
contentions in command queue. Although the stalled
state is hardly seen with the introduction of caches, the
percentage of active state drops dramatically if the
cache is not large enough. In the right part of Figure 6,
the percentage of active state with 8 KB private caches
is only 18.75, 26.83, 24.47, and 11.11 in the four
applications. This is in accordance with the
performance loss in Figure 5.

When cache size is sufficiently large, i.e. the
concurrent memory requests do not exceed the
bandwidth memory busses, the utilization of MEs can

0

20

40

60

80

100
Cache Size: KB8 MEs Active Stalled Idle

A
ve

ra
ge

 M
E

U
til

iz
at

io
n

(%
) 2 MEs Active Stalled Idle

urlmd4natipfwdrurlmd4natipfwdr

6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 3216840 64 12
8

Figure 6. Average ME utilization with 2 MEs and 8 MEs for Abilene-I.

Table 5. Average cache miss rate with 64 KB caches of fifferent block sizes for Abilene-I (%)
Blk
(B)

1-ME 2-ME 4-ME 8-ME
ipfwdf nat md4 url ipfwdr nat md4 url ipfwdr nat md4 url ipfwdr nat md4 url

4 1.45 1.54 15.2 10.2 1.94 1.00 15.1 11.2 2.24 4.87 16.0 18.7 11.8 10.0 16.5 22.9
8 1.73 1.20 11.7 9.44 2.67 0.61 11.1 10.7 3.41 4.35 11.5 18.5 14.5 8.27 11.5 23.3

16 2.36 0.86 10.0 9.14 3.58 0.55 9.46 11.0 4.61 2.78 9.47 19.0 19.3 4.95 17.6 21.5
32 3.36 0.42 14.5 10.7 4.81 0.28 14.4 13.9 6.35 1.41 13.9 23.0 26.3 2.44 13.7 25.5

1 ME 2 MEs 4 MEs 8 MEs 1 ME 2 MEs 4 MEs 8 MEs
0

5

10

15

20

25

30

35

Pa

ck
et

 T
hr

ou
gh

pu
t (

M
pp

s) Block Size 4-Byte
 Block Size 8-Byte
 Block Size 16-Byte
 Block Size 32-Byte

natipfwdr
1 ME 2 MEs 4 MEs 8 MEs 1 ME 2 MEs 4 MEs 8 MEs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

P
ac

ke
t T

hr
ou

gh
pu

t (
G

bp
s) Block Size 4-byte

 Block Size 8-byte
 Block Size 16-byte
 Block Size 32-byte

md4 url
(a) (b)

Figure 7. Packet throughput for Abilene-I with 64 KB caches of different block sizes.

322

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

be greatly improved. For example, in ipfwdr, the
packet throughputs for 1 ME, 2 MEs, 4MEs, and 8
MEs with 128 KB caches exhibit an almost linear
increase of 3.40 Mpps, 6.66 Mpps, 13.20 Mpps and
22.91 Mpps.

4.3. Impact of cache organizations

In this subsection, we discuss the impact of cache
organizations on NP performance. Table 5 lists the
average cache miss rate for Abilene-I with 64 KB
caches of different block sizes. In ipfwdr, trie node is
of 4-byte and it is unlikely to access successive trie
nodes in one route lookup. Therefore, the cache miss
rate is lowest when the block size is 4-byte. In nat, the
hash table entry is organized in a unit of 64-byte and
the table search is often completed within one entry. So
the cache hit rate gets higher with the block size.

For md4 and url, the variation of cache miss rate is
a little complicated. In this implementation, the
dominate memory operations are SRAM accesses. In
md4, packet payload is loaded into SRAM 16-byte at a
time. Although the pattern table entry is organized as
32-byte, typically only part of the information of one
entry are needed. Hence, the lowest miss rate occurs at
8-byte or 16-byte according to the ME number.

Table 5 reveals the spatial locality of the network
applications, which typically exists within one table
entry in these applications. Although the access pattern
among different entries depends on the table

organization and the implementation of searching
algorithms, it can be inferred that the spatial localities
of these network applications are much lower than
common programs.

Figure 7 shows the packet throughput for Abilene-I
with 64 KB caches of different block sizes. When the
ME number is small, the sight difference in cache miss
rates does not affect the packet throughput too much
for ipfwdr and nat. But if the cache miss rate is large,
even minor variations can greatly change the
performance. In url, the average cache miss rate for 4
MEs with 64 KB local caches ranges around 20%,
while the packet throughputs for the cache block sizes
of 4-byte, 8-byte, 16-byte and 32-byte are 1.85 Gbps,
1.30 Gbps, 0.82 Gbps, and 0.33 Gbps. This is because
big block size increases the miss penalty. When the
reduced cache miss rate can not compensate the
enlarged average memory access latency, the network
processor performance is eventually deteriorated.

4.4. Impact of thread number

This subsection discusses the relationships between
cache and thread number. Figure 8 compares the
packet throughput with different number of threads and
MEs for Abilene-I. Figure 9 presents the internal
statistics of single ME with one and two threads for
Abilene-I.

For applications that have a relatively high cache hit
rate such as ipfwdr and nat, the efficiency of

0 4 8 16 32 64 128
0
1
2
3
4
5
6
7

0 4 8 16 32 64 128
0
2
4
6
8

10
12
14
16
18

Cache Size (KB)

P
ac

ke
t T

hr
ou

gh
pu

t (
M

pp
s)

Cache Size (KB)

 1ME, 1TH 1ME, 2THs 1ME, 4THs 2MEs, 1THs 2MEs, 2THs 2MEs, 4THs

P
ac

ke
t T

hr
ou

gh
pu

t (
M

pp
s)

(a) ipfwdr (b) nat

0 4 8 16 32 64 128
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

0 4 8 16 32 64 128
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Pa
ck

et
 T

hr
ou

gh
pu

t (
G

bp
s)

Pa
ck

et
 T

hr
ou

gh
pu

t (
G

bp
s)

Cache Size (KB)
Cache Size (KB)

 (c) md4 (d) url

Figure 8. Packet throughput with different number of threads and MEs for Abilene-I.

323

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

multithread decreases quickly as more threads are
added. In some cases, using a big cache is equivalent to
using more threads or MEs. For instance, a ME with a
single thread and a 16 KB cache has a comparable
packet throughput with a ME with two threads and an
8 KB cache (about 2 Mpps).

Since the cache hit rate is hard to improve for md4
and url, adding more threads is much more effective
for reducing the idle state percentage of MEs. In md4,
adding more threads doubles the packet throughput
easily. In url, the equivalent configurations can also be
found and when the cache size is smaller than 32 KB,
one 4-thread ME yields more packet throughput than
two 2-thread MEs.

5. Conclusions

In this work, we systematically studied the
effectiveness of caching mechanism in a multicore and
multithreaded NP. We find that caches can release the
pressure on shared memory buses and increase the PE
utilization rates. But inappropriate cache organization
can worsen the performance of NP due to high miss rate
or large bus bandwidth consumption. Several
hardware/software improvements to current NP design
can help achieving higher performance.

• The data structure design should take the cache
organization into consideration to fully utilize its
characteristics such as the block size.

• The thread allocation policy should be designed to
reduce the duplication among private caches if
more than one PE is supported.

• PEs can be organized in small clusters and share
the same local cache in their clusters to enhance the
efficiency of caches.

Future research in this direction will take the cost of
cache into consideration, including chip area and
power consumption. Code optimization for data/thread
allocation will also be made in order to improve cache
performance.

6. Acknowledgement

This work is supported by Irish Research Council
for Science, Engineering and Technology (IRCSET)
Embark Initiative postdoctoral research funding for
2007~2009, and Science Foundation Ireland (SFI)
China-Ireland Science and Technology Collaboration
Research Fund. This work is also partly supported by
National Natural Science Foundation of China
(60573121, 60625201), Cultivation Fund of the Key
Scientific and Technical Innovation Project, Ministry
of Education, China (705003), Specialized Research
Fund for the Doctoral Program of Higher Education of
China (20060003058), 863 Hi-tech Research and
Development Program of China (2007AA01Z216).

7. References

[1] Intel IXP2800 Network Processor Hardware Reference
Manual, Intel Inc., May 2003.
[2] M. Venkatachalam, P. Chandra, and R. Yavatkar, “A
highly flexible, distributed multiprocessor architecture for
network processing”, Computer Networks, 41(5), 2003, pp.
563-586.
[3] P. Crowly, M.A. Franklin, H.Hadimioglu, and P.Z.
Onufryk (Ed.), Network Processor Design: Issues and
Practices, volume 1, Morgan Kaufmann, 2003.
[4] T. Chiueh, and P. Pradhan, “Cache Memory Design
for Internet Processors”, IEEE Micro, 20(1), 2000, pp.
28-33.
[5] K. Rajan, and R. Govindarajan, “A Heterogeneously
Segmented Cache Architecture for a Packet Forwarding
Engine”, Proceedings of ICS’05, 2005, pp. 71-80.
[6] J. Xu, M. Singhal and J. Degroat, “A Novel Cache
Architecture to Support Layer-Four Packet Classification at
Memory Access Speeds”, Proceedings of IEEE
INFOCOM’00, vol. 3, 2000, pp. 1445-1454.
[7] J. Mudigonda, H.M. Vin, and R. Yavatkar, “Managing
Memory Access Latency in Packet Processing”, Proceedings
of SIGMETRICS 2005, 2005, pp. 396-397.
[8] http://www.simplescalar.com/.
[9] Y. Luo, J. Yang, L.N. Bhuyan, and L. Zhao, “NePSim: A
Network Processor Simulator with a Power Evaluation
Framework”, IEEE Micro, 24(5), 2004, pp. 34-44.
[10] Passive Measurement and Analysis Project, National
Laboratory for Applied Network Research.
http://moat.nlanr.net/pma.

0

20

40

60

80

100
Cache Size: KB

urlmd4natipfwdrurlmd4natipfwdr

6432168

12
84

2 THs Active Stalled Idle

0

M

E
U

til
iz

at
io

n
(%

)
1 TH Active Stalled Idle

6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840 6432168

12
840

Figure 9. Internal statistics of single ME with one and two threads for Abilene-I.

324

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:39:22 UTC from IEEE Xplore. Restrictions apply.

