
2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates

POWER ANALYSIS OF PACKET CLASSIFICATION ON
PROGRAMMABLE NETWORK PROCESSORS

Alan Kennedy, David Bermingham, Xiaojun Wang Bin Liu

HDL Lab, School of Electronic Engineering,
Dublin City University, Dublin 9, Ireland

alan.kennedy@ eeng.dcu.ie

ABSTRACT

Packet classification algorithms are increasingly being
used to provide security and Quality of Service
guarantees. These algorithms are usually implemented on
power hungry programmable network processors, which
are used in devices such as core routers and firewalls.
This paper compares the energy used by five best-known
algorithms Recursive Flow Classification, HiCuts,
HyperCuts, Extended Grid-of-Tries with Path
Compression and Tuple Space Search with Pruning. It
does this by measuring the energy used to build the search
structure during preprocessing for each of the five
algorithms and the average energy taken to classify a
packet. To do this we implemented all five algorithms in
C code and used a microarchitectural power simulation
tool called Sim-Panalyzer to estimate the power
dissipated by the five algorithms while running on a
SA 100 StrongARM RISC processor similar to the type
found on many of today's programmable network
processors.

Index Terms- Packet Classification, Power Analysis

1. INTRODUCTION

Multidimensional packet classification is increasingly
being used by Internet Routers to implement QoS Policies
such as guaranteeing minimum bandwidth. It is also used
for services such as giving priority to Voice over IP and
IP-TV packets, traffic billing based on network usage and
the blocking of unwanted Internet traffic. Fast packet
classification is essential due to the fact that Internet
usage is doubling every six months and backbone link
speeds have increased to OC-192 (10 Gb/s) [1].

One of the most popular ways to implement fast
packet classification is through the use of hardware such
as Ternary CAMs. Due to their parallel comparison
TCAMs can use up larger amounts of power than good
algorithmic approaches during packet classification.
TCAMS also use up large amounts of board area due to
poor density of storage cells compared with SRAM or
DRAM. This means algorithmic approaches are still a
good alternative for packet classification.

Department of Computer Science and Technology,
Tsinghua University, Beijing P.R.China

liub @tsinghua.edu.cn

Increasing Internet traffic also means that the amount
energy being used by networking devices such as network
processors is growing rapidly. Greening of the Internet by
Gupti and Singh [2] shows that in 2000 the amount of
energy used by various networking devices in the U.S
accumulated to 6.05 Tera-Watt hours, which is nearly the
yearly output of an average nuclear reactor unit.

Gupta and Mckeown carried out an extensive study of
classifiers [3] and found only 0.7% of the classifiers they
examined contained over 1000 rules and none contained
more than 2000 rules. With these points in mind we
closely examined many packet classification algorithms
[1, 3-10] and implemented the five mentioned to discover
which algorithms offer the best combination of high speed
classification, low memory usage, scalability to large
rulesets and low power consumption for five field
rulesets. To do this we tested the algorithms with rulesets
containing between 60 and 2193 rules. Some of the
algorithms tested allow incremental updates to the
rulesets. This means rules can be deleted or added to the
rulelist without the need to rebuild the search structure.

The layout of the rest of this paper is as follows.
Section two will give a brief explanation of the five
algorithms being tested. Section 3 gives an explanation of
the microarchitectural power simulation tool Sim-
Panalyzer used to estimate the power consumption of the
algorithms. Section 4 presents the results and section 5
gives a summary of the results and states any conclusions.

2. PACKET CLASSIFICATION ALGORITHMS

2.1 Recursive Flow Classification (RFC)

RFC by Gupta and McKeon [3] is a decomposition-based
algorithm, which classifies packets at high lookup speeds,
at the cost of long preprocessing time, high memory
consumption and the inability to allow incremental ruleset
updates. The RFC algorithm works by first breaking the F
fields of the packet header into multiple chunks. This
usually means breaking the source IP and destination IP
addresses into 16-bit chunks.

In the first of P phases each of the header chunks are
used as an index to access a direct lookup memory
location containing a preprocessed eqID, which will
represent and be smaller than the index used to access the
memory location. The index for performing a direct

1-4244-1236-6/07/$25.00 © 2007 IEEE 1231
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:40:30 UTC from IEEE Xplore. Restrictions apply.

lookup on preprocessed tables for the next phase is
formed from the eqIDs from the previous phases. There
will be one lookup in the final phase, with the result
corresponding to the matching rule. This is possible
because of the way the lookup tables are constructed.

2.2 Hierarchical Intelligent Cuttings (HiCuts)

HiCuts by Gupta and McKeown [4] is a decision based
tree algorithm, which allows incremental updates to a
ruleset. It takes a geometric view of packet classification
by considering each rule in a ruleset as a hypercube in
hyperspace defined by the F fields of a packets header.
The algorithm constructs the decision tree by recursively
cutting the hyperspace one dimension at a time into sub
regions guided by heuristics that exploit the structure of
the classifier. These sub regions will contain the rules
whose hypercube overlap. Each cut along a dimension
will increase the number of sub regions with each sub
region containing fewer rules.

A predetermined space measure function (spmf)
limits the amount of cuts allowed to a dimension at each
step. Cutting is finished when all sub regions (leaf nodes)
contain fewer rules than a pre determined value called
binth. The lookup algorithm traverses the decision tree
based on the values of a packet's header by copying the
cutting sequence until it finds a leaf node. It then
performs a linear search of the rules contained inside this
leaf node.

2.3 HyperCuts

HyperCuts by Singh et al [5] is similar to HiCuts in that it
is a decision tree based algorithm, which takes a
geometric view of packet classification and allows
incremental updates. The main differences from HiCuts
are that HyperCuts recursively cuts the hyperspace into
sub regions by performing cuts on multiple dimensions at
a time. HyperCuts also takes advantage of extra
heuristics, which exploit the structure of the classifier
such as region compaction and pushing common rule
subsets upwards.

Region compaction allows for more efficient cutting
of a dimension as it only cuts the region covered by the
rules rather than the full region. Pushing common rule
subsets upwards will reduce the replicated storage of
rules. The lookup algorithm is similar to that of HiCuts.
It traverses the decision tree based on values of a packet's
header by copying the cutting sequence until it finds a leaf
node followed by a small linear search of its rules.

2.4 Extended Grid-of-Tries with Path Compression
(EGT-PC)

EGT-PC by Baboescu et al [6] is a decision tree based
algorithm, which allows incremental updates. In EGT-PC
a path compressed trie is first created from the prefixes in
the ruleset's first dimension. Each node in this trie, which
represents a valid prefix P in the first dimension, will
contain a pointer to another path compressed trie made up

of all the prefixes from the second dimension whose first
dimension prefixes are equal to P. Each node in the
second dimension trie corresponding to a valid prefix in
this dimension will contain a list of all the rules, which
match the prefixes of the first and second dimension
nodes. This means a rule can only occur in one position.
In order to avoid back tracking all failure points in the
second dimension tries contain a jump pointer, which
points to the next, possible second dimension trie, which
could contain a matching rule.

The search algorithm works by first performing a
longest prefix match (LPM) on the first dimension trie.
The resulting pointer is then followed to a second
dimension trie. A LPM is then carried out on this trie to
find nodes containing matching rules. Each time there is a
failure or the end of a second dimension trie is reached a
jump pointer is followed. This is continued until a node is
reached which contains no jump pointer. All matching
rules along the way are recorded and a small linear search
of these rules is carried out at the end.

2.5 Tuple Space Search with Tuple Pruning (TSS)

TSS by Srinivasan et al [7] is a hash-based algorithm,
which supports incremental updates. All filters are
divided into groups called tuples. All rules that map to a
particular tuple have the same prefix length for the source
and destination IP addresses. The port number fields will
either be a wildcard or the same nesting level inside the
port range. Protocol values will either be wildcard or a
specific value. Each port address inside a tuple will have
a RangeId depending on its position inside its nesting
level. A packet's port number is usually converted to its
RangeId using a 65KB direct lookup table.

The required number of bits from a filters tuple
specification e.g. (24, 24, 0, 0, 8) is used to form a hash
key for that filter. All filters belonging to tuple T are
stored in Hashtable(T). A probe of a tuple T involves
using the required bits from the tuple specification to
construct a hash key from a packets header. This means
only one memory access is needed for each tuple to
determine if it contains a matched filter. The algorithm is
motivated by the fact that a linear search through all
tuples will be smaller than a search through all rules.

The number of tuples, which need to be searched, is
further reduced through tuple pruning, which involves
performing a LPM usually on the source and destination
IP addresses. The LPM finds the lengths of the matched
source and destination IP address prefixes so only a
subset of tuple groups need to be searched.

3. POWER ESTIMATION

To estimate the energy used during the building of the
search structures and packet classification for the
algorithms running on a SAI 100 StrongARM, we used
Sim-Panalyzer [11]. Sim-Panalyzer is an infrastructure for
microarchitectural power simulation implemented on top
of "sim-outorder" a component within the SimpleScalar
simulator. It simulates the execution at the level of

1232
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:40:30 UTC from IEEE Xplore. Restrictions apply.

individual cycles keeping track of power changes across
cycles. It consists of several distinct components: cache
power models; datapath and execution unit power models;
clock tree power models; and I/O power models. The
processor was configured to run at 200 Mhz at 1.8 V
using 0.18,um technology. ARM binaries were produced
using an ARM-Linux cross compiler with optimisation
level set at -02.

4. EXPERIMENTAL RESULTS

4.1 Rulesets

The code we wrote for all five algorithms was tested
extensively using the ACLI, FW1 and IPC1 rulesets
obtained from [12]. They are a mixture of both real filter
sets and synthetic filter sets generated using ClassBench.
The results presented were generated using the ACLI
rulesets with similar results obtained using FW1 and
IPC 1.

4.2 Results

The first results presented are the widely analyzed fields
of memory consumption and worst-case lookups (WCLU)
[5, 6, 12]. Our memory consumption results match these
closely and our WCLU results for HiCuts and HyperCuts
are slightly higher. This could be due to the fact we
included all memory lookups needed to traverse the
decision tree and a memory lookup for each rule in the
linear search. We then present our new research, which
shows the energy used by the algorithms during the
building of the search structure and classification of the
packets along with the throughput. All of which measured
while running on a SAI 100 StrongARM processor similar
to the type found on programmable network processors.

It can be seen from looking at figure 1 that RFC is
the worst performer in terms of memory consumption
needing over 3MB of memory for 2191 rules. HyperCuts
performed best over the full range of rules needing only
56 KB of memory for 2191 rules and 1.7 KB for 60 rules.
EGT-PC and HiCuts also performed well matching
HyperCuts closely. The memory consumption was high
for TSS due to the 65 KB direct lookup and hash tables.

R~FC'
rz HICI(p4t

10

} Go 1 0 wS 1000 1600 2191
No. of Rules

Figure 1. Memory needed for the search structure and Ruleset.

No. of Rules
Figure 3. Energy used building the search structure.

Figure 2 shows that for the WCLU metric RFC is by
far the best performer needing only 12 memory lookups
for all rulesets. The algorithm with the largest WCLU
figure for rulesets with more than 1000 rules was
HyperCuts. It was outperformed by HiCuts due to the fact
it needed to access extra information when traversing the
decision tree. This information includes multiple
dimensions, which may need to be cut, and minimum and
maximum range values for these dimensions when using
the Region Compaction heuristic. The TSS levelled out at
a WCLU of 52 after 500 rules due to the fact the number
of tuples never increased and the LPM trees never got
deeper. The chances of hash collisions and a packet being
misclassified increased significantly as the ruleset got
larger than 2191 rules.

Figure 3 shows the energy used when building the
search structure. For algorithms allowing incremental
updates this will not be a significant percentage of the
energy used during packet classification. It will however
be a significant part of the energy used for algorithms
such as RFC, which don't allow incremental updates, if
the ruleset is updated regularly. The energy used building
the search structure is proportional to the memory
consumption for these algorithms. This indicates an
algorithm with low memory consumption will use low
amounts of energy building the search structure.

The RFC algorithm performs very poorly when
compared to the other algorithms. When the ruleset
contains 2191 rules the RFC algorithm needs 1512 Joules
of energy to build the search structure compared with

1233
Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:40:30 UTC from IEEE Xplore. Restrictions apply.

HyperCuts needing only 2.7 Joules. Along with
HyperCuts the EGT-PC and TSS algorithms also scale
well when it comes to building the search structure.
HiCuts performs slightly poorer using 37.9 Joules of
energy to build the search structure for 2191 rules. This
should not be a problem however as HiCuts supports fast
incremental updates to the ruleset meaning the search
structure will not have to be rebuilt regularly.

The important metric of the average energy used to
classify a packet can be seen in figure 4. For the
algorithms that support incremental updates this graph
will represent the majority of the energy used during
packet classification. From the graph it is clear to see that
RFC performs best in this category needing on average
only 1.46 ,uJ to classify a packet due to the simplicity of
its lookup algorithm. The worst performing algorithm is
EGT-PC needing on average 76.57 ,uJ followed by TSS
53.25 ,tJ, HyperCuts 19.2 ,tJ and Hicuts 10.89 ,uJ. All five
algorithms scale well across the full range of rules.

Figure 5 shows that the throughput for all five
algorithms is directly proportional to the average energy
needed to classify a packet. This is good news as it means
algorithms with faster classification rates operating on
RISC type processors will have low power consumption.
The highest average number of packets classified per
second across all rulesets was 400937 for RFC followed
by HiCuts 57042, HyperCuts 32242, TSS 10700 and
EGT-PC with 7491. EGT-PC performed poorly due to the
fact the average amount of memory lookups for each
packet was close to its worst case. TSS performed poorly
as it had to create a hash key for each hash table lookup.

Nou of Rules
Figure 4. Average energy needed to classify a packet.

0 10 1> S0 100 160
No. of Rules

Figure 5. Total number of packets classified in 1 second.

5. CONCLUSIONS

With the results presented we have given as fair a
comparison as possible of the five algorithms. Our results
show that the best performing algorithm for small rulesets
that remain the same for more than several minutes a time
is RFC due to its low power consumption when
classifying packets and large throughput.

The best performing algorithm for rulesets we
examined up to 2191 rules in terms of both energy
efficiency and throughput is HiCuts. It out-performs RFC
due to the fact it supports incremental updates while RFC
needs to spend large amounts of time and energy
rebuilding a search structure every time a rule is added or
deleted from the ruleset. HiCuts also scales better in terms
of memory with its search structure consuming 111 KB
for 2191 rules, which could easily fit on the onboard
cache of today's processors. RFC on the other hand needs
3.2 MB of memory for the same amount of rules.

HyperCuts is a strong contender for rulesets greater
than 2191 rules as it is the algorithm which scaled best in
terms of memory consumption needing only 56 KB of
memory for 2191 rules. Its throughput and average energy
needed to classify a rule also matched HiCuts closely.

6. AKNOWLEDGMENTS

This work was funded by the Irish Research Council for
Science, Engineering and Technology: funded by the
National Development Plan.

7. REFERENCES

[1] F. Baboescu and G. Varghese, "Scalable packet
classification," IEEE/ACM Trans. Netw., vol. 13, no. 1 pp. 2-14,
2005.
[2] M. Gupta and S. Singh, "Greening of the Internet" in ACM
SIGCOM 2003, pp. 19-26.
[3] P. Gupta and N. McKeown, "Packet classification on multiple
fields," in ACM SIGCOMM 1999, pp. 147-160
[4] P. Gupta and N. McKeown, "Packet classification using
hierarchical intelligent cuttings," IEEE Micro, vol.20, no. 1, pp. 34-
41, 2000.
[5] S. Singh, F. Baboescu, G. Varghese and J. Wang, "Packet
Classification Using Multidimensional Cutting" in ACM
SIGCOMM, 2003, pp.213-214
[6] F. Baboescu, S. Singh, and G. Varghese, "Packet
classification for core routers: Is there an alternative to CAMs?" in
IEEE INFOCOM, 2003, pp. 53-63.
[7] V. Srinivasan, S. Suri, and G. Varghese, "Packet
Classification using Tuple Space Search" in ACM SIGCOMM
1999, pp. 135-146.
[8] P. Gupta and N. McKeown, "Algorithms for packet
classification," IEEE Network Mag., vol. 15, no. 2, pp.24-32, 2001
[9] T. Woo, "A modular approach to packet classification:
algorithms and results," in IEEE INFOCOM, Mar. 2000, pp. 1213-
1222.
[10] P. C. Wang, C. T. Chan, C. L. Lee and H. Y. Chang "Scalable
Packet Classification for Enabling Internet Differentiated Services"
IEEE Trans. on Multimedia, vol. 8, no. 6, pp. 1239-1249, 2006.
[11] Sim-Panalyzer, The SimpleScalar-ARM Power Modeling
Project. [Online]. Available: www.eecs.umich.edu/-panalyzer/
[12] ACLI RuleSets and Packet traces [Online]. Available:
www.arl.wustl.edu/-hsl/PClassEval.html

1234

~~~~~A _A{ ~t t e

1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . R

a,MA

......... ... ...

.~~~~~~~~~~~~~~~~~~~~~~~~~~- -- -4

R*FC

il- dTl:d-;pC.a=3TOOyetiwa<4

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:40:30 UTC from IEEE Xplore.  Restrictions apply. 


