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Abstract 

Classical scheduling approaches are applied here to 
overcome the problem of unequal-length block-test schedul- 
ing under power dissipation constraints. List scheduling- 
like approaches are proposed j r s t  as greedy algorithms 
to tackle the fore mentioned problem. Then, distribution- 
graph based approaches are described in order to achieve 
balanced test concurrency and test power dissipation. An 
extended tree growing technique is also used in combina- 
tion with these classical approaches in order to improve 
the test concurrency having assignedpower dissipation lim- 
its. A comparison between the results of the test scheduling 
experiments highlights the advantages and disadvantages 
of applying different classical scheduling algorithms to the 
power-constrained test scheduling problem. 

vmuresan@cs.utt.ro 

partitioned testing with run to completion defined in [2]. 
An efficient scheme for overlaying the block-tests, called 
extended tree growing technique is employed to model the 
fore mentioned problem. Thus, traditional high-level syn- 
thesis approaches (e.g. left-edge algorithm, list scheduling 
and distribution-graph based scheduling) can be employed 
together with this model to search for power-constrained 
block-test schedule profiles in a polynomial time. The algo- 
rithm fully exploits test parallelism under power dissipation 
constraints. This is achieved by overlaying the block-test 
intervals of compatible subcircuits to test as many of them 
as possible concurrently so that the maximum accumulated 
power dissipation does not go over the given limit. A con- 
stant additive model is employed for the power dissipation 
estimation throughout the algorithms. 

2 PREVIOUS WORK 
1 INTRODUCTION 

Power dissipation has become a critical factor in the nor- 
mal operation of nowadays’ deep-submicron digital systems 
or under testing conditions. VLSI circuits running in test 
mode may consume more power than when running in nor- 
mal mode. It is reported in [I]  that one of the major con- 
siderations in test scheduling is the fact that heat dissipated 
during test application is typically significantly higher than 
the heat dissipated during the circuits’ normal operation 
(sometimes 100 - 200% higher). Test scheduling is strongly 
related to test concurrency. Test concurrency is a design 
property which strongly impacts testability and power dis- 
sipation. To satisfy high fault coverage goals with reduced 
test application time under certain power dissipation con- 
straints, the testing of all components on the system should 
be performed in parallel to the greatest extent possible. 

Power-constrained test scheduling will soon become a 
very important issue for the SOC designs as well. There- 
fore, this paper focuses on the high-level power-constrained 
block-test scheduling problem which lacks of practical so- 
lutions. The test scheduling discipline assumed here is the 
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Power dissipation during test was seldom under research 
so far and focused at low levels. Approaches like [3, 4,5] 
tackle the power dissipation problem during test applica- 
tion at gate-level. [3] improves the low correlation between 
consecutive test vectors generated by an ATPG. This low 
correlation greatly increases switching activity and thus the 
power dissipation. Scan-latch ordering and test-vector or- 
dering techniques have been proposed in [4] to minimize 
the power dissipation at gate level in scan or combinational 
circuits. In [5] the authors present a test vector inhibiting 
technique to filter sets of consecutive non-detecting patterns 
of a pseudo-random test sequence generated by a LFSR. 

Unfortunately, the above approaches are not efficient at 
high levels. The BIST scheduling approach given in [ 11 is 
one of the first to take into account the power dissipation 
during test scheduling at block level. It performs global 
optimization considering also other factors such as block 
type, adjacency of blocks (device floor plan), but the latter 
are usually unknown at high-level. Moreover, .in complex 
VLSI circuit designs, the block-test set is huge and ranges 
in test lengths. Thus, the work in [ l ]  focused more on the 
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Figure 1. Example of Block Under Test (Sub-Block Hierarchical View) 

problem definition than on proposing a polynomial com- 
plexity algorithm to solve it. [6] makes for the first time 
a thorough analysis of the power-constrained test schedul- 
ing (PTS) problem at IC level, but it is only a theoretical 
one. That is because it proposes a compatible test clus- 
tering technique which is an NP-complete approach. The 
compatibility among tests is given here by test resource and 
power dissipation conflicts at the same time. Recently, [7] 
proposed a greedy algorithm for the PTS problem, but only 
for the particular case of core-level test scheduling. 

3 PROPOSED APPROACH 

The proposed algorithm is an unequal-length block-test 
scheduling one because it deals with tests for blocks of 
logic, which do not have equal test lengths. It is meant to be 
part of a system-level block-test approach to be applied on a 
modular view of a test hierarchy. The modular elements of 
this hierarchy could be given at any of the high-level syn- 
thesis (HLS) domains, between the system and RT levels: 
subsystems, backplanes, boards, MCM’s, IC’s (dies), macro 
blocks and RTL transfer blocks. The lowest level block the 
test hierarchy accepts is the RTL one, but at this level it is 
assumed that a test-step level scheduling has already been 
taken into consideration and applied. Generally speaking 
any block in hierarchy (apart from leaves) has different sub- 
blocks as children. Every test block ti is characterized by 
a few parameters, which have been previously assigned to 
ti, after the test scheduling optimization has been applied 
on the test block. These parameters are given in figure 1: 
test application time Ti, power dissipation Pi. and test re- 
source set RES.SETi. This approach assumes a bottom-up 

traversing of the hierarchical test model within a divide et 
impera optimization style. Thus, at a certain moment the 
sub-blocks of a certain block are considered for optimiza- 
tion in order to get an optimal or near optimal sequencing 
or overlaying of them complying with the power dissipation 
constraints. 

3.1 PROBLEM FORMULATION 

If p ( t i )  is the instantaneous power dissipation during test 
ti and p ( t j )  is the instantaneous power dissipation during 
test t j ,  then the power dissipation of a test session consist- 
ing of just these two tests is approximately the sum of the 
instantaneous powers of test ti and t j .  However, in reality 
the instantaneous power for each test vector is hard to obtain 
since it depends, e.g., in a CMOS circuit on the number of 
zero-to-one and one-to-zero transitions, which in tum could 
be dependent on the order of execution of test vectors. In 
order to simplify the analysis, a constant additive model is 
employed here for power estimation. A constant power dis- 
sipation value P(t i )  is associated with each block test ti. 
For high-level approaches the power dissipation P(t i )  of a 
test ti could be estimated in three ways: average power dis- 
sipation over all test steps in ti, maximum power dissipation 
(peak power) over all test steps in ti and, RMS power dis- 
sipation. The total power dissipation at a certain moment 
of the test schedule is computed by simply summing the 
power dissipation of the concurrently running block tests. 
The power dissipation P ( s j )  for a test session s j  can be de- 
finedas: P ( s j )  = P(t i ) ,  while the power constraint 
in test scheduling is usually defined as: P ( s j )  5 Pmaz ‘dj. 
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3.2 TREE GROWING APPROACH 

In complex VLSI circuit designs, the block-test set is 
huge and ranges in test lengths, especially at RT level. Thus, 
it is possible to schedule some short tests to begin when sub- 
circuits with shorter testing time have finished testing, while 
other subcircuits with longer testing time have not (if they 
are compatible). The tree growing technique given in [SI is 
very productive from this point of view. That is because it is 
used to exploit the potential of test parallelism by merging 
and constructing the concurrent testable sets (CTS). This is 
achieved by means of a binary tree structure (not necessar- 
ily complete), called compatibility tree, which was based on 
the compatibility relations amongst the tests. 

Figure 2. Merging Step Example 

Nevertheless, a big drawback in [SI is that the compati- 
bility tree is a binary one. This limits the number of children 
test blocks that could be overlapped to the parent test node 
to only two. In reality the number of children test nodes 
can be much bigger, as in the example depicted in figure 2. 
Therefore an expanded compatibility tree (ECT), given by 
means of a generalized tree, is proposed here to overcome 
this problem. Figure 3 gives the final test scheduling chart 
and its ECT for the test scheduling example given in section 
5. The power-test scheduling chart of the test scheduling 
chart given in figure 3 is depicted in figure 4(b). Figures 4(a) 
and 5(a) depict test scheduling charts for test scheduling 
solutions generated by the list scheduling-like approaches 
without and with ( P M A X  = 12) power constraints. Figure 
5(b) gives the power dissipation characteristics of the test 
scheduling chart from figure 5(a). 

The sequence of nodes contained in the same tree path of 
an ECT represents an expansion of the CTS. Given a partial 
schedule chart of a CTS, a test t can be merged in this CTS 
if and only if there is at least one tree path P in the corre- 
sponding compatibility tree of the CTS, such that every test 
contained in the nodes of P is compatible to t .  The com- 
patibility relationship has three components. Firstly, tests 
have to be compatible from a conflicting resources point of 
view. Secondly, the test length of the nodes in a tree path 

have to be monotonously growing from leaf to root. Thirdly, 
the power dissipation accumulated on the above tree path 
should be less than or equal to P,,, . 

A merging step example is given in figure 2. The partial 
test schedule chart is given at the top, while the partially 
grown compatibility tree is given at the bottom. Let us as- 
sume that tests t 2 ,  t 3  and t 4  are compatible to t l ,  while they 
are not compatible to each other. Again let us assume that 
7'1, T2,T3 and T4 are, respectively, the test lengths of tests 
t l ,  t z ,  t 3  and t 4 ,  and say T2 + T3 < TI.  Finally, let us 
assume that a new test t 4  has to be scheduled in the partial 
test schedule depicted in figure 2(a). As can be seen, there is 
a gap GAP,  given by the following test length difference: 
GAP1 = TI - (T2 + T3). Thus, a merging step can be 
achieved, if T4 5 GAP1, by inserting t 4  in the partial test 
schedule and its associated ECT in figure 2(b). 

Rest (Hatched) Gap 

Figure 3. Test Scheduling Chart and Extended 
Compatibility Tree Example 

The process of constructing CTSs can be implemented 
by expanding (growing) the ECT from the roots to their leaf 
nodes. The root nodes are considered test sessions, while 
the expanded tree paths are considered their test subses- 
sions. When a new test has to be merged with the CTS, 
the algorithm should avail of all possible paths in the ECT. 
In order to keep track of the available tree paths and to avoid 
the complexity of the generalized tree travel problem, a list 
of potentially expandable tree paths (ETP) is kept. This list 
is kept by means of special nodes that are inserted as leaf 
nodes within each ETP of ECT. These leaf nodes are called 
gaps and are depicted as hatched or shaded nodes in fig- 
ures 2 and 3. There are two types of gaps. The first set of 
gaps (hatched) are those "rest gaps" left behind each merg- 
ing step, as in the case of GAP1 and GAP1 - t 4  in the above 
example. They are similar to the incomplete branches of the 
binary tree from [SI. The second set of gaps (shaded), are 
actually bogus gaps generated as the superposition of the 
leaf nodes and their twins as in the equivalence on the right 
hand side of figure 3. They are generated in order to keep 
track of "non-saturated" tree paths, which are also poten- 
tial ETPs. By "non-saturated" tree path is meant any ETF' 
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who's accumulatedpower dissipation is still under the given 
power dissipation limit. The root nodes (test sessions) are 
considered by default "shaded" gaps before any test subsec- 
tion is generated below them. 

4 CLASSICAL HLS APPROACHES 

A clear parallel between the HLS scheduling problem 
and the power-constrained test scheduling (PTS) problem is 
given by the similarities between the c-steps in HLS and 
the test (sub)sessions in PTS, between operations (HLS) 
and block-tests (PTS), and between hardware resource con- 
straints (HLS) and power dissipation constraints (PTS). 
Therefore, there is an obvious coincidence between the pro- 
cess of assigning operations to c-steps (HLS scheduling) 
and the process of assigning block-tests to test (sub)sessions 
(PTS). The biggest achievement of the tree growing tech- 
nique is that proven efficient HLS algorithms can be easily 
applied to the power-constrained test scheduling problem 
modeled as an extended tree growing process. 

4.1 LIST SCHEDULING APPROACHES 

A classical HLS approach such as the left-edge al- 
gorithm proposed initially for the HLS register alloca- 
tion problem is applied on power-constrained block-test 
scheduling in [9]. The approach, consisting of three algo- 
rithms, is named power-test scheduling based on left-edge 
algorithm (PTS-LEA). The HLS list scheduling algorithm is 
employed as a greedy power-test list scheduling algorithm 
(PTS-LS) in [lo]. Both PTS approaches are list scheduling- 
like algorithms, the PTS-LS algorithm resembling a lot the 
first algorithm of the PTS-LEA approach. 

In the PTS-LS-like approaches a local priority function, 
called test mobility T M i ,  is defined for each block-test ti 
in order to sort initially the block-tests. Based on block- 
tests' parameters, this function has a test length Ti com- 
ponent and a power dissipation Pi component. Thus, in 
PTS-LS-like approaches, the block-tests are sorted in topo- 
logical order by using the test length as primary key to or- 
der in descending order, and the power dissipation as sec- 
ondary key, to order the block-tests having the same test 
length in descending order as well. The sorted block-tests 
are then iteratively scheduled in a greedy manner into the 
available test (sub)sessions (ETP). When the power dissi- 
pation is exceeded the block-tests to be currently scheduled 
are deferred for the other test (sub)sessions (ETP) left for 
further expansion. For space reasons the list scheduling- 
like approaches proposed to solve the PTS problem are not 
further detailed here. They are fully presented in [9] (PTS- 
LEA) and [lo] (PTS-LS). 

4.2 DISTRIBUTION-BASED APPROACHES 

Local priority functions do not render all the time 
optimal solutions. Therefore, global priority functions 
are preferable. The main difference between the list 
scheduling-like approaches and the distribution-based ap- 
proaches is the forecasting ability of their priority functions. 
A distribution-graph based priority function is employed in 
the latter approach to steer the scheduling so that the final 
solution is more efficient and has a more balanced power 
dissipation distribution. 

4.2.1 FORCE-DIRECTED APPROACH 

The intent of the HLS-FDS algorithm [l 11 is to reduce 
the number of functional units, registers and buses required, 
by balancing the concurrency of the operations assigned 
to them, but without lengthening the total execution time. 
Concurrency balancing helps to achieve high utilization - 
or low idle time - of structural units, which in turn mini- 
mizes the number of units required. This idea is borrowed 
here to implement a power-constrained test scheduling al- 
gorithm. The result is a power-constrained test scheduling 
based on FDS (PTS-FDS) approach. The objectives here 
are to achieve a test concurrency and power dissipation bal- 
ance at the same time with test application time minimiza- 
tion, having given power dissipation limits. The set of test 
subsessions (ETPs) in the growing tree changes throughout 
the algorithm's execution because they are expanded and 
then changed with new test subsessions (hatched and shaded 
nodes). Conseqi xtly, the set of test subsessions is dynamic 
during the PTS-FDS approach, while their equivalent in the 
HLS version of FDS, the set of c-steps, is static. This is 
the first of the two differences that exist between the FDS 
approaches mentioned here. 

The PTS-FDS algorithm is iterative, with one block-test 
scheduled at each iteration. The selection of the test subses- 
sion in which it will be placed is based on achieving in each 
test subsession a balanced distribution of power dissipation 
and test concurrency. This is achieved using the three step 
algorithm summarized below: 

Determination of time frames: during the HLS-FDS ap- 
proach, the first step consists of determining the time frames 
of each operation by evaluating the ASAP (as soon as pos- 
sible) and ALAP (as last as possible) schedules. The time 
frames are contiguous in HLS-FDS. On the other hand, in 
the PTS-FDS approach the time frame of a block-test is the 
set of test subsessions (ETPs) where the block-test can be 
merged. At a certain moment, the ETPs expandable by a 
block-test do not have to be adjacent and, therefore, block- 
test's time frame in PTS-FDS is not or does not have to 
be contiguous. This is the second outstanding difference 
between the HLS-FDS and PTS-FDS approaches. In HLS- 
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Figure 4. Power-Test Scheduling Charts (No Power Limit) 

FDS the uniform probability of an operation to be assigned 
to a c-step is taken into consideration in order to achieve 
a balanced operation concurrency. The goal of PTS-FDS 
is to balance mainly the power dissipation and, indirectly, 
the test concurrency, while keeping tight the test applica- 
tion time as much as possible. Therefore, a power dissi- 
pation probability is to be used here instead. The power 
dissipation probability of a block-test ti  to be assigned to a 
test subsession tsj is defined as the product of three com- 
ponents: 

0 the power dissipation Pi of the block-test ti; 

0 the compatibility probability between the current 
block-test ti and the rest of the block-tests assignable 
to the same test subsession tsj.  Its formula is: 

bN-l 

where Nincomp is the number of block-tests in ti's in- 
compatibility list, N is the total number of block-tests 
and K is the number of block-tests compatible with 
test subsession tsj.  This probability is a measure of 
the chance to schedule block-test ti in test subsession 
tsj in parallel with the other K block-tests; 

0 the uniform probability Prob(ti, t s j )  of assigning the 
current block-test ti to one of its time frame's test sub- 
sessions tsj to which it could be assigned. This proba- 
bility is the same with the one employed in HLS-FDS. 

Creation of distribution graphs: the next step is to take 
the sum of the block-tests' probabilities for each E"€' (gap) 

of the partial test schedule and add them on top of the power 
dissipation accumulated already in the partial power-test 
chart. The resulting power-concurrency distribution graph 
(PCDG's) indicates the power dissipation expectations and, 
indirectly, the possible test concurrency distribution of the 
future test scheduling solution. The PCDG's formula is: 

PCDG(ts , )  = Pts, + Pz * Compp,,b(tt, t s , )  * Prob(tt,  t s , ) .  

(2) 
Calculation of Self Forces: the final step is to calcu- 

late the force associated with every feasible test subsession 
(gap) assignment of the block-tests to be scheduled. For 
a given block-test t ,  the assignment force to test subses- 
sion ts, is given by Force(j)  = PCDG, * ~ ( i ) ,  where 
PCDG, is the current power-test distribution value in t s ,  
and ~ ( i )  is the change in the block-test's probability after 
assignment. The assignment is done by temporarily reduc- 
ing the block-test's time frame to the selected test subses- 
sion. In PTS-FDS, the SelfForce of a block-test is a quan- 
tity which reflects the effect of an attempted test subsession 
assignment on the overall power dissipation balance and, 
indirectly, on the test concurrency balance. This function is 
positive if the assignment causes an increase of power-test 
concurrency (power unbalance), and is negative for a de- 
crease. The total SelfForce associated with the assignment 
of a block-test t ,  to one of the test subsessions ts,, where 
j E SETS (Set Of Expandable Test Subsessions), is: 

t ,  

Self Force(i)  = Force( j ) .  (3) 
3 E SETS 
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Figure 5. Power-Test Scheduling 

INCOMPATIBILITY FORCES 
In order to optimize the power dissipation (test con- 

currency) throughout the test application, it is necessary 
to assign block-tests to test subsessions such that the 
power-dissipationltest-concurrency distribution values de- 
crease and the overall PCDG is more balanced. Though, 
assigning a block-test to a specific gap (expandable test sub- 
session) often affects the time frames of the rest of initially 
"ready" block-tests, which become incompatible to the test 
subsessions newly generated after assignment. This hap- 
pens because scheduling a block-test is equivalent to reduc- 
ing its time frame to one test subsession. This modification 
would propagate to the time frames of the other block-tests 
(initially assignable to the same test subsession) which are 
not assignable anymore to the just expanded test subsession. 

Thus, any block-test assignment usually creates addi- 
tional forces that can reduce or even counter the originally 
intended improvement, so it is imperative that they be ac- 
counted for. Therefore, the force calculation must also be 
performed for all block-tests which became incompatible, 
but only when their time frame is affected. These forces 
are named in this approach incompatibility forces and they 
are calculated like the normal forces and added to the over- 
all Self Force. After the calculation of the forces of all 
block-tests has been performed, the block-test with the low- 
est force or the best concurrency balancing is selected for 
test subsession assignment. 

PSEUDOCODE 
The pseudocode of this approach is given in appendix 

A. The data structures used in it are: the Growing Tree 
(GT) to model the ECT, GapsList (GL) to model the list 
of potentially expandable gaps (shaded and hatched gaps), 
BlockTestList (BTL) to keep the ordered but not yet 
merged block-tests. CurTest is the block-test to be merged 

DISSIPATION CONSTRAINT = 12 

HMS 

DISSIPSI'ION 
POWEH =8.11 

POWEH 

UlSPEHSlON 
UISSIPSl'lOh = 4.41 

AVERACE 
p o w m  =7.59 

5 IO IS I S  10 10 

TOTAL TEST APPLICATION TIME = 29 

(b) Power-Test Characteristics of the Solution 

Charts' Characteristics (PmaZ = 12) 

at a certain iteration. CurGap is the gap under focus at a 
certain iteration to see whether it is expandable (compati- 
ble) with the CurTest. In the pseudocode "used" means 
that the block-test has already been merged in the ECT. 
TwinGap is the newly generated shaded gap at every it- 
eration and it will not be inserted in the GapsList anymore 
after its generation, if its resulting compatibility list is null, 
i.e. it will not be an ETP. RestGap is meant to keep the 
hatched gap generated at every iteration if it is not null, i.e. 
CurTest covers completely CurGap. The SCHEDULE 
procedure in the pseudocode is similar to those employed 
in the other tree growing based approaches [9, IO]. 

4.2.2 MEAN-SQUARE-ERROR BASED APPROACH 

The mean-square-error based scheduling (ITS-MSE) 
algorithm [ 121 aims to achieve a balanced outcome merely 
by assessing the power-concurrency distribution graph 
(PCDG's) and the effect of block-testhest-subsession as- 
signments by using a least mean square error (MSE) func- 
tion. Unlike the PTS-FDS approach, the time consuming 
stage of SelfForces calculations are avoided here by using 
the MSE function, resulting in a computationally efficient 
solution. This is achieved executing only the first two steps 
of the PTS-FDS in order to update the DGs. At each iter- 
ation, all the unscheduled block-tests are ordered by their 
tesr mobility and the block-test t j  with the highest mobility 
is scheduled. The effect on the PCDG given by the assign- 
ment of tj  to different test subsession ti is assessed knowing 
that a good scheduling solution has a balanced PCDG. The 
difference between the PCDG values and PCDG's average 
value (AVG) provides an indication of the graph balance. 
The average value is obtained using the following solution: 
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Figure 6. Power-Test Characteristics over the Range of Power Dissipation Constraints 

NTS -1 

A V G =  PCDG(i), (4) 
i=O 

where NTS is the number of test subsessions in the 
schedule. The differences in the PCDG are used to ob- 
tain a numerical value for the schedule quality using a mean 
square error (MSE) function: 

M S E ( j )  = - (PCDGI(i)  - AVG)27 ( 5 )  

where PCDG; (i) is the modified power-concurrency 
distribution graph for a t j  -+ tsi assignment. Having de- 
termined the MSE values for all valid test subsessions, the 
block-test t j  is finally scheduled into the test subsession 
which results in the lowest MSE value. This is followed 
by adjusting the time frames of incompatible block-tests and 
updating the PCDG values. This procedure is repeated un- 
til all block-tests are scheduled. 

The complexity of the PTS algorithms mentioned in this 
paper ranges from O ( n 2 )  for the list scheduling-like ap- 
proaches to O(n3)  for the distribution-based approaches. 
The PTS-MSE algorithm is computationally more efficient 
than the PTS-FDS algorithm because it eliminates the time 
consuming stage of computing the SelfForces. 

5 EXPERIMENTAL RESULTS 

In this section three test scheduling examples are pre- 
sented. The first one is a small example meant to give an 
idea about the type of results generated by PTS algorithms. 
Then a second example is discussed in order to provide a 

deeper insight into the results of PTS algorithms. Thus, a 
comparison of the power-test characteristics exhibited by 
their power-test scheduling solutions is discussed for a big- 
ger block-test set example chosen randomly. In the end the 
PTS algorithms are compared in terms of ”complexity vs 
results” for a block-test set example taken from [7]. This 
example is developed on the ASIC Z design discussed ear- 
lier on in [l]  and [6]. Because idle blocks contribute very 
little to the total power dissipation, they are also excluded 
in this paper in order to simplify the calculations. 

Suppose for the first example the following block-test set 
taken from figure 1. Their parameters are specified in the 
order: power consumption, test length and their compatibil- 
ity list. For simplicity reasons, the block-tests are already 
ordered by test length and power consumption keys. 

The power-test scheduling chart solutions of the PTS- 
LS (PTS-LEA) and PTS-FDS (PTS-MSE) algorithms ap- 
plied on this example without power constraints are de- 
picted in figure 4. It can be seen in figure 4(b) that the 
PTS-FDS (PTS-MSE) approaches give a power-test chart 
solution exhibiting a more balanced power dissipation dis- 
tribution than the PTS-LS (PTS-LEA) solution given in fig- 
ure 4(a). Figure 5(a) depicts the power-test scheduling chart 
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345 I 20 I 18.59 1 1.41 I 18.83 1) 340 [ 20 I 18.86 1 1.14 I 19.05 11 340 I 20 I 18.86 I 1.14 I 18.83 

4 0 1  183 40 35.04 4.96 36.4 I 
30 I 234 30 27.41 2.59 27.81 I 
20 I 345 20 18.59 1.41 18.83 1 

Table 1. Comparison of Power-Test Characteristics for the PTS Approaches (Second Example) 

184 40 34.85 5.15 36 183 40 35.04 4.96 36.4 
234 30 27.41 2.59 27.81 234 30 27.41 2.59 27.81 
345 20 18.59 1.41 18.83 345 20 18.59 1.41 18.83 

Table 2. Comparison of Power-Test Characteristics for the PTS Approaches (Second Example) 

solution generated by the PTS-LS algoripm for a power 
dissipation constraint PMAX = 12. Figure 5(b) gives the 
power-test characteristics for the same power-test schedul- 
ing chart. The following abbreviations have been used 
test length (TL), maximum power dissipation (MPD), av- 
erage power dissipation (AVPD), total power dissipation 
dispersion (PDD), and root mean square power dissipation 
(RMS). TL represents the total test application time of the 
test scheduling solution. MPD is the maximum power dissi- 
pation over the final power-test scheduling solution. AVPD 
is considered the ideal MPD when all the ETPs would ex- 
hibit the same accumulated power dissipation, that is, the 
power dissipation would be fully balanced over the power- 
test scheduling chart. It is calculated as the ratio between 
the power-test area, taken up by the chart (see figure 5(b)), 
and TL. The rectangle given by AVPD and TL would be the 
ideal power-test scheduling chart and, therefore, the ideal 

test schedule profile. PDD is directly proportional to the 
accumulated power dissipation dispersion over the power- 
test scheduling chart, which is considered to be given by 
the power-test area left unused inside the power-test rectan- 
gle having MPD and TL as sides. PDD is calculated as the 
difference between MPD and AVPD. RMS gives the root 
mean square value for the power dissipation distribution of 
a pover-test scheduling chart. 

Further on, the PTS algorithms have been experimented 
for a 50 block-tests set chosen randomly, where the degree 
of resource compatibility between the block-tests is high 
(around 90%). The degree of resource compatibility be- 
tween the block tests gives the dimension of the solution 
space. The higher the resource compatibility degree, the 
larger the solution space. This test scheduling example is 
run in order to draw the characteristics of the solutions se- 
lected by the PTS approaches from a bigger solution space. 
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Table 3. Comparison of Power-Test Scheduling Characteristics (Third Example) 

PTS-LEAI(MRU) scheduling FTS-LEAZ(LRU) scheduling PTS-LEA3(RAND) scheduling 
constraints TL I MPD I AVPD I PDD I RMS 11 TL I MPD I AVPD 1 PDD 1 RMS 11 TL 1 MPD I AVPD I PDD I RMS 

300 I( 400 I 296 I 251.57 1 44.44 I 257.89 11 400 I 298 I 251.57 I 46.44 I 257.1 )I 400 1 296 I 251.57 I 44.44 I 257.75 
200 11 670 I 196 I 150.19 I 45.81 I 152.12 )I 670 I 196 I 150.19 I 45.81 I 151.79 I( 670 I 196 I 150.19 I 45.81 1 152.11 

Table 4. Comparison of Power-Test Scheduling Characteristics (Third Example) 

In figure 6 these characteristics are generated for a range of 
power dissipation constraints from totally relaxed to fully 
tight. In table 1 the same characteristics are given for PTS- 
LS, PTS-MSE and PTS-FDS. In table 2 are listed the char- 
acteristics of the first, second and third algorithms of the 
PTS-LEA approach using, respectively, most recently used 
(MRU), least recently used (LRU), and random (RAND) 
insertion approaches [9]. Comparing the PTS-LS (PTS- 
LEA) scheduling solutions on the one hand with the PTS- 
FDS (PTS-MSE) results on the other hand, one can see 
that the former gives "noisier" solutions for relaxed con- 
straints. That is, the PTS-LS characteristics (TL, MPD, 
AVPD, PDD, RMS) in figure 6(a) do not have a smooth 
trend while the power constraints are ranged from relaxed 
to tight. Intuitively, this "noise" is due to the lack of a global 
optimization function of PTS-LS-like approaches. On the 
other hand, the global priority function helps the PTS-FDS 
(PTS-MSE) approaches to have a global view over the so- 
lution space and to pick up most of the times better solu- 
tions. Therefore, the characteristics of the solutions given 
in figure 6(b) for the PTS-FDS (PTS-MSE) approaches are 
smoother. Overall, the PTS-FDS (PTS-MSE) approaches 
give out power-test scheduling profiles which exhibit more 
balanced power dissipation distributions as was the case in 
the example from figure 4. That is, the solutions given by 
PTS-FDS (PTS-MSE) algorithms have smaller PDD and 
MPD characteristics, but they are computationally more ex- 
pensive than the PTS-LS approach. Moreover, if the PTS- 
FDS approach is computationally slightly more expensive 
than the PTS-MSE approach, the solutions given by the for- 
mer are slightly more balanced. At the same time, all PTS 
approaches exhibit almost the same scheduling solutions 
for tight power dissipation limits when the solution space 

is actually narrowed. It can also be seen in figure 6 that 
the power-constrained test schedules have globally the same 
trends in both approaches, when ranging the power dissipa- 
tion constraint. TL grows almost linearly with the power 
dissipation constraint increase, whereas MPD and PDD ex- 
hibit a linear decrease. 

For the third example a practical testbench is taken into 
consideration. An extended case [7] of the ASIC Z design 
given in [ 13 is experimented with the PTS approaches. The 
testbench has 27 tests spread over 9 cores. The results are 
given in tables 3 and 4 over a range of the power dissipa- 
tion constraint. The same conclusions can be drawn as for 
the second example. Unfortunately, the results of the ex- 
periments run here cannot be compared to the ones given 
for the ASIC Z case in [1, 61. That is due to the fact that 
the test scheduling discipline assumed in [1, 61 is the non- 
partitioned testing defined in [2], whereas the one assumed 
in this paper is the partitioned testing with run to comple- 
tion. The nonpartitioned testing assumes that no tests can 
be started until all tests in the previous session is completed, 
which is opposite the case of this paper. 

6 CONCLUSIONS 

The work proposed in this paper has been carried out 
based on the ascertained fact that not a lot approaches 
to tackle the power-constrained test scheduling problem 
have been identified so far. The power-constrained test 
scheduling problem considered here is modeled, by means 
of the tree growing technique, equivalent to the classical 
job scheduling problem under the constraint that some jobs 
must be executed exclusively (incompatible). Thus, the tree 
growing approach re-uses classical algorithms and provides 
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fast results. Classical HLS scheduling approaches (e.g, left- 
edge algorithm, list scheduling and force-directed schedul- 
ing) are proposed in this paper to the power-constrained test 
scheduling problem. Their polynomial complexity is ben- 
eficial to the system-level test scheduling problem. Even 
though they do not guarantee optimal block-test schedul- 
ing solutions, their fast final results can be used as starting 
points by near-optimal block-test scheduling approaches 
(e.g. simulated annealing, tabu search) to get an improved 
solution. 
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A The PSEUDOCODE of the PTS-FDS ALGORITHM 

-sort all the block-tests by their mobility in two steps (test length, 
power consumption); 
-initialize the GrowingTree, the BlockTestList and the GapsList; 
-while (there are unscheduled block-tests) do: 
PBlockTestList is not empty*/ { 

evaluate time frames for all block-tests; 
while (there are block-tests having null time frames){ 

- CurTest = head of BlockTestList; 

- insert CurTest as the tail of GrowingTree roots (new 

- make CurTest ”used”; 
- remove &?-Test from BlockTestList; 

- generate a TwinGap gap as the twin of CurTest; 
- insert TwinGap into GapsList; 

- evaluate time frames for all block-tests;}/*while*/ 

test section); 

CurTest = the head of BlockTestLzst; 
0 evaluate time frames for all block-tests; 

update power/concurrency distribution graphs; 
calculate CurTest’s Self Forces for every feasible test subses- 
sion assignment; 
add incompatibility forces to Self Forces; 

0 SCHEDULE CurTest to the test subsession exhibiting the low- 
est Self Force at assignment; 

-}/*while*/ 
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