A Comparison of Classical Scheduling Approaches in Power-Constrained
Block-Test Scheduling

Valentin Muresan, Xiaojun Wang
Dublin City University, Ireland
muresanv@eeng.dcu.ie

Abstract

Classical scheduling approaches are applied here to
overcome the problem of unequal-length block-test schedul-
ing under power dissipation constraints. List scheduling-
like approaches are proposed first as greedy algorithms
to tackle the fore mentioned problem. Then, distribution-
graph based approaches are described in order to achieve
balanced test concurrency and test power dissipation. An
extended tree growing technique is also used in combina-
tion with these classical approaches in order to improve
the test concurrency having assigned power dissipation lim-
its. A comparison between the results of the test scheduling
experiments highlights the advantages and disadvantages
of applying different classical scheduling algorithms to the
power-constrained test scheduling problem.

1 INTRODUCTION

Power dissipation has become a critical factor in the nor-
mal operation of nowadays’ deep-submicron digital systems
or under testing conditions. VLSI circuits running in test
mode may consume more power than when running in nor-
mal mode. It is reported in [1] that one of the major con-
siderations in test scheduling is the fact that heat dissipated
during test application is typically significantly higher than
the heat dissipated during the circuits’ normal operation
(sometimes 100 - 200% higher). Test scheduling is strongly
related to test concurrency. Test concurrency is a design
property which strongly impacts testability and power dis-
sipation. To satisfy high fault coverage goals with reduced
test application time under certain power dissipation con-
straints, the testing of all components on the system should
be performed in parallel to the greatest extent possible.

Power-constrained test scheduling will soon become a
very important issue for the SOC designs as well. There-
fore, this paper focuses on the high-level power-constrained
block-test scheduling problem which lacks of practical so-
lutions. The test scheduling discipline assumed here is the

Valentina Muresan, Mircea Vlddutiu
Politehnica” University of Timigoara, Roméania

vmuresan@cs.utt.ro

partitioned testing with run to completion defined in [2].
An efficient scheme for overlaying the block-tests, called
extended tree growing technique is employed to model the
fore mentioned problem. Thus, traditional high-level syn-
thesis approaches (e.g. left-edge algorithm, list scheduling
and distribution-graph based scheduling) can be employed
together with this model to search for power-constrained
block-test schedule profiles in a polynomial time. The algo-
rithm fully exploits test parallelism under power dissipation
constraints. This is achieved by overlaying the block-test
intervals of compatible subcircuits to test as many of them
as possible concurrently so that the maximum accumulated
power dissipation does not go over the given limit. A con-
stant additive model is employed for the power dissipation
estimation throughout the algorithms.

2 PREVIOUS WORK

Power dissipation during test was seldom under research
so far and focused at low levels. Approaches like [3, 4, 5]
tackle the power dissipation problem during test applica-
tion at gate-level. [3] improves the low correlation between
consecutive test vectors generated by an ATPG. This low
correlation greatly increases switching activity and thus the
power dissipation. Scan-latch ordering and test-vector or-
dering techniques have been proposed in [4] to minimize
the power dissipation at gate level in scan or combinational
circuits. In [5] the authors present a test vector inhibiting
technique to filter sets of consecutive non-detecting patterns
of a pseudo-random test sequence generated by a LFSR.

Unfortunately, the above approaches are not efficient at
high levels. The BIST scheduling approach given in [1] is
one of the first to take into account the power dissipation
during test scheduling at block level. It performs global
optimization considering also other factors such as block
type, adjacency of blocks (device floor plan), but the latter
are usually unknown at high-level. Moreover, in complex
VLSI circuit designs, the block-test set is huge and ranges
in test lengths. Thus, the work in [1] focused more on the

Paper 33.3 ITC INTERNATIONAL TEST CONFERENCE
882 0-7803-6546-1/00 $10.00 © 2000 IEEE

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



UNDER TEST

BLOCK

UB SUB- SUB-
BLOCK BLOCKy BLOCK,
t t t
3 2 1
1 4 12
P. Py

7 P9

time length power dissipation

RES. SET; RES.SET, RES.SET3 RES.SET4 RES.SET5 RES.SETg RES.SET,; RES.SETyg RES.SETy RES.SETq,

Figure 1. Example of Block Under Test (Sub-Block Hierarchical View)

problem definition than on proposing a polynomial com-
plexity algorithm to solve it. [6] makes for the first time
a thorough analysis of the power-constrained test schedul-
ing (PTS) problem at IC level, but it is only a theoretical
one. That is because it proposes a compatible test clus-
tering technique which is an NP-complete approach. The
compatibility among tests is given here by test resource and
power dissipation conflicts at the same time. Recently, [7]
proposed a greedy algorithm for the PTS problem, but only
for the particular case of core-level test scheduling.

3 PROPOSED APPROACH

The proposed algorithm is an unequal-length block-test
scheduling one because it deals with tests for blocks of
logic, which do not have equal test lengths. It is meant to be
part of a system-level block-test approach to be applied on a
modular view of a test hierarchy. The modular elements of
this hierarchy could be given at any of the high-level syn-
thesis (HLS) domains, between the system and RT levels:
subsystems, backplanes, boards, MCM’s, IC’s (dies), macro
blocks and RTL transfer blocks. The lowest level block the
test hierarchy accepts is the RTL one, but at this level it is
assumed that a test-step level scheduling has already been
taken into consideration and applied. Generally speaking
any block in hierarchy (apart from leaves) has different sub-
blocks as children. Every test block t; is characterized by
a few parameters, which have been previously assigned to
t;, after the test scheduling optimization has been applied
on the test block. These parameters are given in figure 1:
test application time T, power dissipation P;, and test re-
source set RES.SET;. This approach assumes a bottom-up

traversing of the hierarchical test model within a divide et
impera optimization style. Thus, at a certain moment the
sub-blocks of a certain block are considered for optimiza-
tion in order to get an optimal or near optimal sequencing
or overlaying of them complying with the power dissipation
constraints.

3.1 PROBLEM FORMULATION

If p(t;) is the instantaneous power dissipation during test
t; and p(t;) is the instantaneous power dissipation during
test t;, then the power dissipation of a test session consist-
ing of just these two tests is approximately the sum of the
instantaneous powers of test ¢; and ;. However, in reality
the instantaneous power for each test vector is hard to obtain
since it depends, e.g., in a CMOS circuit on the number of
zero-to-one and one-to-zero transitions, which in turn could
‘be dependent on the order of execution of test vectors. In
order to simplify the analysis, a constant additive model is
employed here for power estimation. A constant power dis-
sipation value P(t;) is associated with each block test ¢;.
For high-level approaches the power dissipation P(t;) of a
test ¢; could be estimated in three ways: average power dis-
sipation over all test steps in t;, maximum power dissipation
(peak power) over all test steps in ¢; and, RMS power dis-
sipation. The total power dissipation at a certain moment
of the test schedule is computed by simply summing the
power dissipation of the concurrently running block tests.
The power dissipation P(s;) for a test session s; can be de-
finedas: P(s;) = 3, ¢,, P(t:), while the power constraint
in test scheduling is usually defined as: P(s;) < Ppag Vj.

Paper 33.3
883

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



3.2 TREE GROWING APPROACH

In complex VLSI circuit designs, the block-test set is
huge and ranges in test lengths, especially at RT level. Thus,
itis possible to schedule some short tests to begin when sub-
circuits with shorter testing time have finished testing, while
other subcircuits with longer testing time have not (if they
are compatible). The tree growing technique given in [8] is
very productive from this point of view. That is because it is
used to exploit the potential of test parallelism by merging
and constructing the concurrent testable sets (CTS). This is
achieved by means of a binary tree structure (not necessar-
ily complete), called compatibility tree, which was based on
the compatibility relations amongst the tests.

Figure 2. Merging Step Example

Nevertheless, a big drawback in [8] is that the compati-
bility tree is a binary one. This limits the number of children
test blocks that could be overlapped to the parent test node
to only two. In reality the number of children test nodes
can be much bigger, as in the example depicted in figure 2.
Therefore an expanded compatibility tree (ECT), given by
means of a generalized tree, is proposed here to overcome
this problem. Figure 3 gives the final test scheduling chart
and its ECT for the test scheduling example given in section
5. The power-test scheduling chart of the test scheduling
chart given in figure 3 is depicted in figure 4(b). Figures 4(a)
and 5(a) depict test scheduling charts for test scheduling
solutions generated by the list scheduling-like approaches
without and with (Pyrax = 12) power constraints. Figure
5(b) gives the power dissipation characteristics of the test
scheduling chart from figure 5(a).

The sequence of nodes contained in the same tree path of
an ECT represents an expansion of the CTS. Given a partial
schedule chart of a CTS, a test ¢ can be merged in this CTS
if and only if there is at least one tree path P in the corre-
sponding compatibility tree of the CTS, such that every test
contained in the nodes of P is compatible to t. The com-
patibility relationship has three components. Firstly, tests
have to be compatible from a conflicting resources point of
view. Secondly, the test length of the nodes in a tree path

Paper 33.3

884

have to be monotonously growing from leaf to root. Thirdly,
the power dissipation accumulated on the above tree path
should be less than or equal to P4z

A merging step example is given in figure 2. The partial
test schedule chart is given at the top, while the partially
grown compatibility tree is given at the bottom. Let us as-
sume that tests 2, t3 and ¢4 are compatible to ¢;, while they
are not compatible to each other. Again let us assume that
T1, Tz, T5 and T} are, respectively, the test lengths of tests
t1, t2, t3 and ¢4, and say T5 + T3 < T7j. Finally, let us
assume that a new test ¢4 has to be scheduled in the partial
test schedule depicted in figure 2(a). As can be seen, there is
a gap GAP; given by the following test length difference:
GAP, = Ty — (T, + T5s). Thus, a merging step can be
achieved, if Ty < G AP, by inserting ¢4 in the partial test
schedule and its associated ECT in figure 2(b).

Normal Node

rge 1 “.\

%&% Rest (H;;I'wd) Gap

Twin Cap

Figure 3. Test Scheduling Chart and Extended
Compatibility Tree Example

The process of constructing CTSs can be implemented
by expanding (growing) the ECT from the roots to their leaf
nodes. The root nodes are considered test sessions, while
the expanded tree paths are considered their test subses-
sions. When a new test has to be merged with the CTS,
the algorithm should avail of all possible paths in the ECT.
In order to keep track of the available tree paths and to avoid
the complexity of the generalized tree travel problem, a list
of potentially expandable tree paths (ETP) is kept. This list
is kept by means of special nodes that are inserted as leaf
nodes within each ETP of ECT. These leaf nodes are called
gaps and are depicted as hatched or shaded nodes in fig-
ures 2 and 3. There are two types of gaps. The first set of
gaps (hatched) are those “rest gaps” left behind each merg-
ing step, as in the case of GAP; and GAP; —t4 in the above
example. They are similar to the incomplete branches of the
binary tree from [8]. The second set of gaps (shaded), are
actually bogus gaps generated as the superposition of the
leaf nodes and their twins as in the equivalence on the right
hand side of figure 3. They are generated in order to keep
track of “non-saturated” tree paths, which are also poten-
tial ETPs. By “non-saturated” tree path is meant any ETP

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



who’s accumulated power dissipation is still under the given
power dissipation limit. The root nodes (test sessions) are
considered by default ”shaded” gaps before any test subsec-
tion is generated below them.

4 CLASSICAL HLS APPROACHES

A clear parallel between the HLS scheduling problem
and the power-constrained test scheduling (PTS) problem is
given by the similarities between the c-steps in HLS and
the test (sub)sessions in PTS, between operations (HLS)
and block-tests (PTS), and between hardware resource con-
straints (HLS) and power dissipation constraints (PTS).
Therefore, there is an obvious coincidence between the pro-
cess of assigning operations to c-steps (HLS scheduling)
and the process of assigning block-tests to test (sub)sessions
(PTS). The biggest achievement of the tree growing tech-
nique is that proven efficient HLS algorithms can be easily
applied to the power-constrained test scheduling problem
modeled as an extended tree growing process.

4.1 LIST SCHEDULING APPROACHES

A classical HLS approach such as the left-edge al-
gorithm proposed initially for the HLS register alloca-
tion problem is applied on power-constrained block-test
scheduling in [9]. The approach, consisting of three algo-
rithms, is named power-test scheduling based on left-edge
algorithm (PTS-LEA). The HLS list scheduling algorithm is
employed as a greedy power-test list scheduling algorithm
(PTS-LS) in [10]. Both PTS approaches are list scheduling-
like algorithms, the PTS-LS algorithm resembling a lot the
first algorithm of the PTS-LEA approach.

In the PTS-LS-like approaches a local priority function,
called test mobility T M, is defined for each block-test ¢;
in order to sort initially the block-tests. Based on block-
tests’ parameters, this function has a test length 7; com-
ponent and a power dissipation P; component. Thus, in
PTS-LS-like approaches, the block-tests are sorted in topo-
logical order by using the test length as primary key to or-
der in descending order, and the power dissipation as sec-
ondary key, to order the block-tests having the same test
length in descending order as well. The sorted block-tests
are then iteratively scheduled in a greedy manner into the
available test (sub)sessions (ETP). When the power dissi-
pation is exceeded the block-tests to be currently scheduled
are deferred for the other test (sub)sessions (ETP) left for
further expansion. For space reasons the list scheduling-
like approaches proposed to solve the PTS problem are not
further detailed here. They are fully presented in [9] (PTS-
LEA) and [10] (PTS-LS).

4.2 DISTRIBUTION-BASED APPROACHES

Local priority functions do not render all the time
optimal solutions. Therefore, global priority functions
are preferable. The main difference between the list
scheduling-like approaches and the distribution-based ap-
proaches is the forecasting ability of their priority functions.
A distribution-graph based priority function is employed in
the latter approach to steer the scheduling so that the final
solution is more efficient and has a more balanced power
dissipation distribution.

4.2.1 FORCE-DIRECTED APPROACH

The intent of the HLS-FDS algorithm [11] is to reduce
the number of functional units, registers and buses required,
by balancing the concurrency of the operations assigned
to them, but without lengthening the total execution time.
Concurrency balancing helps to achieve high utilization -
or low idle time - of structural units, which in turn mini-
mizes the number of units required. This idea is borrowed
here to implement a power-constrained test scheduling al-
gorithm. The result is a power-constrained test scheduling
based on FDS (PTS-FDS) approach. The objectives here
are to achieve a test concurrency and power dissipation bal-
ance at the same time with test application time minimiza-
tion, having given power dissipation limits. The set of test
subsessions (ETPs) in the growing tree changes throughout
the algorithm’s execution because they are expanded and
then changed with new test subsessions (hatched and shaded
nodes). Conseq ntly, the set of test subsessions is dynamic
during the PTS-FDS approach, while their equivalent in the
HLS version of FDS, the set of c-steps, is static. This is
the first of the two differences that exist between the FDS
approaches mentioned here.

The PTS-FDS algorithm is iterative, with one block-test
scheduled at each iteration. The selection of the test subses-
sion in which it will be placed is based on achieving in each
test subsession a balanced distribution of power dissipation
and test concurrency. This is achieved using the three step
algorithm summarized below:

Determination of time frames: during the HLS-FDS ap-
proach, the first step consists of determining the time frames
of each operation by evaluating the ASAP (as soon as pos-
sible) and ALAP (as last as possible) schedules. The time
frames are contiguous in HLS-FDS. On the other hand, in
the PTS-FDS approach the time frame of a block-test is the
set of test subsessions (ETPs) where the block-test can be
merged. At a certain moment, the ETPs expandable by a
block-test do not have to be adjacent and, therefore, block-
test’s time frame in PTS-FDS is not or does not have to
be contiguous. This is the second outstanding difference
between the HLS-FDS and PTS-FDS approaches. In HLS-

Paper 33.3
885

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



: MAXIMAL ACCUMULATED POWER DISSIPATION _MPD =21 POWER
21 217" DISSIPATION
207 B‘I’S‘gIEPIXTION 20 i
T MEAN RE
19 AVERAGE ROOT MEAN SQUARE 19 A owia: OO AR A
18} POWER POWER 15 DISSIPATION DISSIPATION
o DISSIPATION DISSIPATION » AVPD =11 RMS = 11.49
ol AVED=11  RMS=1185 o
:: 157 MAXIMAL ACCUMULATED POWER DISSIPATION _MPD = 14
14 .
" 13 3
1 L [+
b k 1
L b . t
P POWER . 2
s I3 DISSIPATION v | 15 POW. R
o b 7)) DISPLRSON v i N DISMPA IO
3 PDD 10 : ; DISPLRSION
! - : { rnp 3
i . | E—
‘“r t l NO POWIR ol H
ai ] i DISSIPATION ' I I NO POWI R
i ! % CONSIRAINT i y DISSIPA TION
Hi v CONSTRAIND
P . . e 1 i g
. A : u o B R . "

TOTAL TEST APPLICATIONTIME TL = 20

(a) List Scheduling Solution

TOTAL TEST APPLICATION TIME TL = 20

(b) Force-Directed Scheduling Solution

Figure 4. Power-Test Scheduling Charts (No Power Limit) |

FDS the uniform probability of an operation to be assigned
to a c-step is taken into consideration in order to achieve
a balanced operation concurrency. The goal of PTS-FDS
is to balance mainly the power dissipation and, indirectly,
the test concurrency, while keeping tight the test applica-
tion time as much as possible. Therefore, a power dissi-
pation probability is to be used here instead. The power
dissipation probability of a block-test ¢; to be assigned to a
test subsession ¢s; is defined as the product of three com-
ponents:

o the power dissipation P; of the block-test ¢;;

e the compatibility probability between the current
block-test ¢; and the rest of the block-tests assignable
to the same test subsession ¢s;. Its formula is:

of the partial test schedule and add them on top of the power
dissipation accumulated already in the partial power-test
chart. The resulting power-concurrency distribution graph
(PCDG’s) indicates the power dissipation expectations and,
indirectly, the possible test concurrency distribution of the
future test scheduling solution. The PCDG’s formula is:

PCDG(ts;) = Pis; + 9 Pi x Comppyop(tis ts;) * Prob(ti,ts;)-
¢

)

Calculation of Self Forces: the final step is to calcu-
late the force associated with every feasible test subsession
(gap) assignment of the block-tests to be scheduled. For
a given block-test ¢; the assignment force to test subses-
sion ts; is given by Force(j) = PCDG; * (i), where
PCDG; is the current power-test distribution value in ¢s
and z(7) is the change in the block-test’s probability after

CK*l . Th . . il d
Com (tirts;) =1— Nincomp ) assignment. The assignment is done by temporarily reduc-
PProb\bi 15 C’ﬁ —11 ’ ing the block-test’s time frame to the selected test subses-

where Nipcomp is the number of block-tests in ;s in-
compatibility list, IV is the total number of block-tests
and K is the number of block-tests compatible with
test subsession ¢s;. This probability is a measure of
the chance to schedule block-test ¢; in test subsession
ts; in parallel with the other K block-tests;

o the uniform probability Prob(¢;, ts;) of assigning the
current block-test ¢; to one of its time frame’s test sub-
sessions £s; to which it could be assigned. This proba-
bility is the same with the one employed in HLS-FDS.

Creation of distribution graphs: the next step is to take
the sum of the block-tests’ probabilities for each ETP (gap)

sion. In PTS-FDS, the Self Force of a block-test is a quan-
tity which reflects the effect of an attempted test subsession
assignment on the overall power dissipation balance and,
indirectly, on the test concurrency balance. This function is
positive if the assignment causes an increase of power-test
concurrency (power unbalance), and is negative for a de-
crease. The total Self Force associated with the assignment
of a block-test ¢; to one of the test subsessions ts;, where
j € SETS (Set Of Expandable Test Subsessions), is:

Z Force(F).

j € SETS

Self Force(i) = ©)]

Paper 33.3
886

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



10| B o 19| DRMPATION POWER DISSIPATION CONSTRAINT = 12

16 =
AVERAGE

15 POWER = 7.59

1" DISSIPATION

POWER RMS
DISSIPATION = 4,41 POWER =827
DISPERSION DISSIPATION

(a) List Scheduling Solution

TOTAL TEST APPLICATION TIME = 29

(b) Power-Test Characteristics of the Solution

Figure 5. Power-Test Scheduling Charts’ Characteristics (Prq. = 12)

INCOMPATIBILITY FORCES

In order to optimize the power dissipation (test con-
currency) throughout the test application, it is necessary
to assign block-tests to test subsessions such that the
power-dissipation/test-concurrency distribution values de-
crease and the overall PCDG is more balanced. Though,
assigning a block-test to a specific gap (expandable test sub-
session) often affects the time frames of the rest of initially
“ready” block-tests, which become incompatible to the test
subsessions newly generated after assignment. This hap-
pens because scheduling a block-test is equivalent to reduc-
ing its time frame to one test subsession. This modification
would propagate to the time frames of the other block-tests
(initially assignable to the same test subsession) which are
not assignable anymore to the just expanded test subsession.

Thus, any block-test assignment usually creates addi-
tional forces that can reduce or even counter the originally
intended improvement, so it is imperative that they be ac-
counted for. Therefore, the force calculation must also be
performed for all block-tests which became incompatible,
but only when their time frame is affected. These forces
are named in this approach incompatibility forces and they
are calculated like the normal forces and added to the over-
all Self Force. After the calculation of the forces of all
block-tests has been performed, the block-test with the low-
est force or the best concurrency balancing is selected for
test subsession assignment.

PSEUDOCODE

The pseudocode of this approach is given in appendix
A. The data structures used in it are: the Growing Tree
(GT) to model the ECT, GapsList (GL) to model the list
of potentially expandable gaps (shaded and hatched gaps),
BlockTestList (BTL) to keep the ordered but not yet
merged block-tests. CurTest is the block-test to be merged

at a certain iteration. CurGap is the gap under focus at a
certain iteration to see whether it is expandable (compati-
ble) with the CurTest. In the pseudocode “used” means
that the block-test has already been merged in the ECT.
TwinGap is the newly generated shaded gap at every it-
eration and it will not be inserted in the GapsList anymore
after its generation, if its resulting compatibility list is null,
i.e. it will not be an ETP. RestGap is meant to keep the
hatched gap generated at every iteration if it is not null, i.e.
CurTest covers completely CurGap. The SCHEDULE
procedure in the pseudocode is similar to those employed
in the other tree growing based approaches [9, 10].

4.2.2 MEAN-SQUARE-ERROR BASED APPROACH

The mean-square-error based scheduling (PTS-MSE)
algorithm [12] aims to achieve a balanced outcome merely
by assessing the power-concurrency distribution graph
(PCDG’s) and the effect of block-test/test-subsession as-
signments by using a least mean square error (MSE) func-
tion. Unlike the PTS-FDS approach, the time consuming
stage of Self Forces calculations are avoided here by using
the MSE function, resulting in a computationally efficient
solution. This is achieved executing only the first two steps
of the PTS-FDS in order to update the DGs. At each iter-
ation, all the unscheduled block-tests are ordered by their
test mobility and the block-test ¢; with the highest mobility
is scheduled. The effect on the PCDG given by the assign-
ment of ¢; to different test subsession ¢; is assessed knowing
that a good scheduling solution has a balanced PCDG. The
difference between the PCDG values and PCDG’s average
value (AVG) provides an indication of the graph balance.
The average value is obtained using the following solution:

Paper 33.3
887

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



N
(4,1
o
.
A
e

200 4

160 4

o
o
L

(5.
(=1
L

characteristics of the case exampla

0 “trwnrm
SELPOLLELHFSRE DD
powaer dissipation constraints

& 250 - J
Y TL /
] /
§ 200 { mPD f
I e /
s TP JE e
S 150 e i ’_,:Hr
& PDD P el
2 100 et A i
§ e
§ s0] APD G W
§ T “:*a\k
5 0 W o & M| LS
SELPITIPPLFIEES D P
power dissipation constraints

(a) Characteristics of the PTS-LS Results

(b) Characteristics of the PTS-FDS Results

Figure 6. Power-Test Characteristics over the Range of Power Dissipation Constraints

Nrs—1
AVG = Y~ PCDG(), “)
i=0
where Nrg is the number of test subsessions in the
schedule. The differences in the PC DG are used to ob-
tain a numerical value for the schedule quality using a mean
square error (MSE) function:

Nrg—1

L |'S" (PCDGY (i) - AVG)2, (5)

MSE(j) =

where PCDG/(4) is the modified power-concurrency
distribution graph for a ¢; — ts; assignment. Having de-
termined the M S E values for all valid test subsessions, the
block-test ¢; is finally scheduled into the test subsession
which results in the lowest M SE value. This is followed
by adjusting the time frames of incompatible block-tests and
updating the PC DG values. This procedure is repeated un-
til all block-tests are scheduled.

The complexity of the PTS algorithms mentioned in this
paper ranges from O(n?) for the list scheduling-like ap-
proaches to O(n?) for the distribution-based approaches.
The PTS-MSE algorithm is computationally more efficient
than the PTS-FDS algorithm because it eliminates the time
consuming stage of computing the Self Forces.

5 EXPERIMENTAL RESULTS

In this section three test scheduling examples are pre-
sented. The first one is a small example meant to give an
idea about the type of results generated by PTS algorithms.
Then a second example is discussed in order to provide a

Paper 33.3
888

deeper insight into the results of PTS algorithms. Thus, a
comparison of the power-test characteristics exhibited by
their power-test scheduling solutions is discussed for a big-
ger block-test set example chosen randomly. In the end the
PTS algorithms are compared in terms of “complexity vs
results” for a block-test set example taken from [7]. This
example is developed on the ASIC Z design discussed ear-
lier on in [1] and [6]. Because idle blocks contribute very
little to the total power dissipation, they are also excluded
in this paper in order to simplify the calculations.

Suppose for the first example the following block-test set
taken from figure 1. Their parameters are specified in the
order: power consumption, test length and their compatibil-
ity list. For simplicity reasons, the block-tests are already
ordered by test length and power consumption keys.

, {t2,t3, ts, e, ts, 2o })

y {t1,t3,t7,18})
{t1,t2, 84, 17,89, t10})
y{ts, ts, t7,ts})

{1, 84, %9, t10})

{1, tr,t8,t9})

y {t2;t37t47t6at8a t9})
{tly ta,t4, tﬁ»t71 t9a tlo})
y{t1,t3,ts5,t6, 17, 8, t10})
{t37 t57 t87 tQ})

AN UTO A ©
HENWA GO0 ®©

The power-test scheduling chart solutions of the PTS-
LS (PTS-LEA) and PTS-FDS (PTS-MSE) algorithms ap-
plied on this example without power constraints are de-
picted in figure 4. It can be seen in figure 4(b) that the
PTS-FDS (PTS-MSE) approaches give a power-test chart
solution exhibiting a more balanced power dissipation dis-
tribution than the PTS-LS (PTS-LEA) solution given in fig-
ure 4(a). Figure 5(a) depicts the power-test scheduling chart

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



power PTS-LS scheduling PTS-MSE scheduling PTS-FDS scheduling
constraints TL | MPD | AVPD PDD RMS TL PD [ AVPD | PDD | RMS TL | MPD [ AVPD | PDD [ RMS
200 103 197 62.26 | 13474 | 88.86 95 121 6751 | 53.49 | 7846.|] 95 116 67.51 | 4849 | 7457
190 103 189 62.26 126.74 | 87.47 95 121 67.51 53.49 | 78.46 95 116 67.51 48.49 | 74.57
180 99 180 6478 | 11522 | 875 95 121 67.51 | 53.49 | 78.46 95 116 67.51 | 48.49 | 7457
170 99 169 64.78 104.22 85 95 121 67.51 53.49 [ 78.46 95 116 67.51 48.49 | 74.57
160 99 160 64.78 95.22 83.39 95 121 67.51 53.49 | 78.46 95 116 67.51 48.49 | 74.57
150 99 150 64.78 85.22 81.91 95 121 67.51 53.49 | 78.46 95 116 67.51 48.49 | 7457
140 103 139 62.26 76.74 78.72 95 121 67.51 53.49 | 78.46 95 116 67.51 48.49 | 7457
130 99 130 64.78 6522 | 77.89 88 130 72.88 | 57.13 | 83.93 95 116 67.51 | 4849 | 7457
120 100 120 64.13 55.87 76.58 94 118 68.22 49.78 | 78.75 95 118 67.51 50.49 | 75.48
110 107 110 59.93 50.07 | 72.18 103 110 6226 | 41.74 | 127 94 110 68.22 | 41.78 | 76.78 ||
100 108 100 59.38 40.62 | 69.15 103 99 62.26 | 36.74 | 70.06 100 100 64.13 | 3587 | 7125
90 107 90 59.93 30.07 67.67 113 90 56.75 33.25 | 63.74 107 90 59.93 30.07 [ 66.01
80 109 80 58.83 21.17 | 64.33 110 79 583 20.7 | 63.21 109 80 58.83 | 21.17 | 63.55
70 125 70 513 18.7 56.36 123 70 52.14 17.86 | 56.42 117 70 54.81 15.19 58.22
60 139 60 46.14 13.86 | 49.66 || 135 60 415 12.5 [ 50.76 128 60 50.1 9.9 51.79
50 151 50 42.47 7.53 44.42 155 50 41.37 8.63 43.78 156 50 41.11 8.89 43.29
40 183 40 35.04 4.96 36.4 181 40 35.43 4.57 36.47 182 40 35.24 4.76 36.18
30 234 30 27.41 2.59 27.81 235 30 2729 2.71 2171 235 30 2129 2.71 27.75
20 345 20 18.59 1.41 18.83 340 20 18.86 1.14 19.05 340 20 18.86 1.14 18.83

Table 1. Comparison of Power-Test Characteristics for the PTS Approaches (Second Example)

power PTS-LEA1(MRU) scheduling 1 PTS-LEA2(LRU) scheduling ] PTS-LEA3(RAND) scheduling
constraints TL MPD AVPD | PDD l RMS LTL LMPD AVPD PDD I RMS “ TL MPD I AVPD PDD RMS
200 99 197 64.78 13222 | 90.88 84 172 76.35 95.65 93.31 103 197 62.26 13474 88.86
190 99 189 64.78 124.22 | 89.66 84 172 76.35 95.65 | 93.31 99 189 64.78 12422 | 89.49
180 99 180 64.78 115.22 87.77 84 172 76.35 95.65 93.31 99 180 64.78 115.22 87.77
170 99 170 64.78 105.22 85.51 86 170 74.57 95.43 92.01 99 169 64.78 104.22 85.18
160 99 160 64.78 95.22 84.12 93 158 68.96 89.04 | 85.09 99 160 64.78 95.22 83.99
150 99 150 64.78 85.22 82.29 89 148 72.06 75.94 85.44 99 150 64.78 85.22 82.11
140 99 139 64.78 74.22 80.74 89 140 72.06 67.94 | 83.79 99 139 64.78 74,22 80.43
130 99 130 64.78 65.22 783 97 130 66.11 63.89 | 79.56 99 130 64.78 65.22 78.3
120 100 120 64.13 55.87 76.87 97 119 66.11 52.89 78.92 100 120 64.13 55.87 76.64
110 107 110 59.93 50.07 72.62 106 110 60.5 49.5 7.2 107 110 59.93 50.07 72.6
100 108 100 59.38 40.62 69.59 112 100 57.26 42.74 | 68.06 108 100 69.38 40.62 69.19
90 107 90 59.93 30.07 67.75 120 89 53.44 35.56 | 62.14 107 89 59.93 30.07 67.75
80 109 80 58.83 21.17 64.56 129 80 49.71 30.29 5726 109 80 58.83 21.17 64.56
70 125 70 513 18.7 56.36 123 70 52.14 17.86 | 56.66 125 70 51.3 18.7 56.36
60 139 60 46.14 13.86 49.66 139 60 46.14 13.86 59.66 139 60 46.14 13.86 49.66
50 151 50 42.47 7.53 44.42 152 50 42.19 7.81 44.19 151 50 4247 7.53 44.42
40 183 40 35.04 4.96 36.4 184 40 34.85 5.15 36 183 40 35.04 4.96 36.4
30 234 30 27.41 2.59 27.81 234 30 27.41 2.59 27.81 234 30 27.41 2.59 27.81
20 345 20 18.59 1.41 18.83 345 20 18.59 1.41 18.83 345 20 18.59 1.41 18.83

Table 2. Comparison of Power-Test Characteristics for the PTS Approaches (Second Example)

solution generated by the PTS-LS algorithm for a power
dissipation constraint Py 4x = 12. Figure 5(b) gives the
power-test characteristics for the same power-test schedul-
ing chart. The following abbreviations have been used:
test length (TL), maximum power dissipation (MPD), av-
erage power dissipation (AVPD), total power dissipation
dispersion (PDD), and root mean square power dissipation
(RMS). TL represents the total test application time of the
test scheduling solution. MPD is the maximum power dissi-
pation over the final power-test scheduling solution. AVPD
is considered the ideal MPD when all the ETPs would ex-
hibit the same accumulated power dissipation, that is, the
power dissipation would be fully balanced over the power-
test scheduling chart. It is calculated as the ratio between
the power-test area, taken up by the chart (see figure 5(b)),
and TL. The rectangle given by AVPD and TL would be the
ideal power-test scheduling chart and, therefore, the ideal

test schedule profile. PDD is directly proportional to the
accumulated power dissipation dispersion over the power-
test scheduling chart, which is considered to be given by
the power-test area left unused inside the power-test rectan-
gle having MPD and TL as sides. PDD is calculated as the
difference between MPD and AVPD. RMS gives the root
mean square value for the power dissipation distribution of
a pover-test scheduling chart.

Further on, the PTS algorithms have been experimented
for a 50 block-tests set chosen randomly, where the degree
of resource compatibility between the block-tests is high
(around 90%). The degree of resource compatibility be-
tween the block tests gives the dimension of the solution
space. The higher the resource compatibility degree, the
larger the solution space. This test scheduling example is
run in order to draw the characteristics of the solutions se-
lected by the PTS approaches from a bigger solution space.

Paper 33.3
889

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



Pap
890

power PTS-LS scheduling PTS-MSE scheduling Il PTS-FDS scheduling 1
l constraints I TL MPD | AVPD PDD RMS TL MPD | AVPD PDD RMS [ TL [ MPD [ AVPD | PDD [ RMS ||
900 300 605 335.42 | 269.58 386.2 320 465 314.46 | 150.54 | 348.8I 300 464 335.42 128.58 | 366.21
800 300 605 335.42 | 269.58 386.2 320 465 314.46 150.54 | 348.81 300 464 335.42 128.58 | 366.21
700 300 605 335.42 | 269.58 386.2 320 465 314.46 150.54 | 348.81 300 464 335.42 128.58 366.21
600 300 584 335.42 | 248.58 | 372.15 320 464 314.16 | 149.54 | 352.19 300 464 335.42 128.58 | 366.21
500 300 464 335.42 128.58 366.2 320 464 314.46 149.54 | 352.19 300 464 335.42 128.58 | 366.21
400 360 400 279.52 | 120.48 | 295.17 360 387 279.52 | 107.48 | 286.53 360 387 279.52 [ 107.48 [ 289.33
300 400 296 251.57 44.44 257.89 400 296 251.57 44.44 256.76 400 296 251.57 44.44 258.13
200 670 196 150.19 45.81 152.12 670 176 150.19 25.81 151.04 670 176 150.19 25.81 151.04
Table 3. Comparison of Power-Test Scheduling Characteristics (Third Example)
power PTS-LEA1(MRU) scheduling PTS-LEA2(LRU) scheduling PTS-LEA3(RAND) scheduling
constraints ] TL I MPD AVPD [ PDD RMS TL MPD AVPD PDD l RMS TL MPD AVPD PDD RMS
900 300 652 335.42 316.58 388.63 300 605 335.42 269.58 386.87 300 605 335.42 269.58 387.62
800 300 652 335.42 | 316.58 | 388.63 300 605 335.42 | 269.58 | 386.87 300 605 33542 [ 269.58 [ 387.27
700 300 652 335.42 316.58 388.63 300 605 335.42 269.58 386.87 300 605 335.42 269.58 387.29
600 300 594 335.42 | 25858 | 374.49 300 584 335.42 | 24858 | 372.51 300 584 335.42 | 248.58 372.56
500 300 494 33542 | 158.58 | 367.35 300 474 335.42 | 138.58 [ 366.55 300 464 335.42 | 12858 | 366.99
400 360 400 279.52 120.48 296.13 360 400 279.52 120.48 294.22 360 400 279.52 120.48 295.66
300 400 296 251.57 44.44 257.89 400 298 251.57 46.44 257.1 400 296 251.57 44.44 25175
200 670 196 150.19 45.81 152.12 670 196 150.19 45.81 151.79 670 196 150.19 45.81 152.11

Table 4. Comparison of Power-Test Scheduling Characteristics (Third Example)

In figure 6 these characteristics are generated for a range of
power dissipation constraints from totally relaxed to fully
tight. In table 1 the same characteristics are given for PTS-
LS, PTS-MSE and PTS-FDS. In table 2 are listed the char-
acteristics of the first, second and third algorithms of the
PTS-LEA approach using, respectively, most recently used
(MRU), least recently used (LRU), and random (RAND)
insertion approaches [9]. Comparing the PTS-LS (PTS-
LEA) scheduling solutions on the one hand with the PTS-
FDS (PTS-MSE) results on the other hand, one can see
that the former gives "noisier” solutions for relaxed con-
straints. That is, the PTS-LS characteristics (TL, MPD,
AVPD, PDD, RMS) in figure 6(a) do not have a smooth
trend while the power constraints are ranged from relaxed
to tight. Intuitively, this “noise” is due to the lack of a global
optimization function of PTS-LS-like approaches. On the
other hand, the global priority function helps the PTS-FDS
(PTS-MSE) approaches to have a global view over the so-
lution space and to pick up most of the times better solu-
tions. Therefore, the characteristics of the solutions given
in figure 6(b) for the PTS-FDS (PTS-MSE) approaches are
smoother. Overall, the PTS-FDS (PTS-MSE) approaches
give out power-test scheduling profiles which exhibit more
balanced power dissipation distributions as was the case in
the example from figure 4. That is, the solutions given by
PTS-FDS (PTS-MSE) algorithms have smaller PDD and
MPD characteristics, but they are computationally more ex-
pensive than the PTS-LS approach. Moreover, if the PTS-
FDS approach is computationally slightly more expensive
than the PTS-MSE approach, the solutions given by the for- -
mer are slightly more balanced. At the same time, all PTS
approaches exhibit almost the same scheduling solutions
for tight power dissipation limits when the solution space

er 33.3

is actually narrowed. It can also be seen in figure 6 that
the power-constrained test schedules have globally the same
trends in both approaches, when ranging the power dissipa-
tion constraint. TL grows almost linearly with the power
dissipation constraint increase, whereas MPD and PDD ex-
hibit a linear decrease. .

For the third example a practical testbench is taken into
consideration. An extended case [7] of the ASIC Z design
given in [1] is experimented with the PTS approaches. The
testbench has 27 tests spread over 9 cores. The results are
given in tables 3 and 4 over a range of the power dissipa-
tion constraint. The same conclusions can be drawn as for
the second example. Unfortunately, the results of the ex-
periments run here cannot be compared to the ones given-
for the ASIC Z case in [1, 6]. That is due to the fact that
the test scheduling discipline assumed in [1, 6] is the non-
partitioned testing defined in [2], whereas the one assumed
in this paper is the partitioned testing with run to comple-
tion. The nonpartitioned testing assumes that no tests can
be started until all tests in the previous session is completed,
which is opposite the case of this paper.

6 CONCLUSIONS

The work proposed in this paper has been carried out
based on the ascertained fact that not a lot approaches
to tackle the power-constrained test scheduling problem
have been identified so far. The power-constrained test
scheduling problem considered here is modeled, by means
of the tree growing technique, equivalent to the classical
job scheduling problem under the constraint that some jobs
must be executed exclusively (incompatible). Thus, the tree
growing approach re-uses classical algorithms and provides

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



fast results. Classical HLS scheduling approaches (e.g, left-
edge algorithm, list scheduling and force-directed schedul-
ing) are proposed in this paper to the power-constrained test
scheduling problem. Their polynomial complexity is ben-
eficial to the system-level test scheduling problem. Even
though they do not guarantee optimal block-test schedul-
ing solutions, their fast final results can be used as starting
points by near-optimal block-test scheduling approaches
(e.g. simulated annealing, tabu search) to get an improved
solution.

ACKNOWLEDGEMENTS

The authors would like to thank Ionel Todincd, Jeannette
Janssen, and Reem Yassawi for their support with the math-
ematical aspects of this approach.

References

[1] Y. ZORIAN: A Distributed BIST Control Scheme for
Complex VLSI Devices - Proceedings of The 11th IEEE
VLSI Test Symposium, pp. 4-9, Apr, 1993.

[2] G.L.CRAIG, C.R. KIME, K.K. SALUJA: Test Scheduling
and Control for VLSI Built-In Self-Test - /EEE Trans-
actions on Computer, Vol. 37, No. 9, pp. 1099-1109, Sep,
1988.

[3]1 S. WANG AND S.K. GUPTA: ATPG for Heat Dissipation
Minimization During Test Application - /EEE Transac-
tions on Computers, Vol. 47, No. 2, pp. 256-262, Feb, 1998.

[4] V.DABHOLKAR, S. CHAKRAVARTY, I. POMERANZ, S.
REDDY: Techniques for Minimizing Power Dissipation in
Scan and Combinational Circuits During Test Applica-
tion - IEEE Transactions on Computers, Vol. 17, No. 12, pp.
1325-1333, Dec, 1998.

[51 P. GIRARD, L. GUILLER, C. LANDRAULT, S. PRAVOS-
SOUDOVITCH: A Test Vector Inhibiting Technique for
Low Energy BIST Design - Proceedings of The VLSI Test
Symposium, pp. 407-412, 1999.

[6] R.M.CHOU, K.K. SALUJA, V.D. AGRAWAL.: Scheduling
Tests for VLSI Systems Under Power Constraints - [EEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, Vol. 5, No. 2, pp. 175-185, Jun, 1997.

[7] E. LARSSON, Z. PENG: Test Infrastructure Design and
Test Scheduling Optimization - Proceedings of The IEEE
European Test Conference, 2000.

[8] W.B.JONE, C.PAPACHRISTOU, M. PEREIRA: A Scheme
for Overlaying Concurrent Testing of VLSI Circuits -
Proceedings of the 26th Desing Automation Conference, pp.
531-536, 1989.

[9] V. MURESAN, X. WANG, V. MURESAN, M. VLADU-
TIU: The Left Edge Algorithm and the Tree Growing
Technique in Power-Constrainted Block-Test Scheduling

- Proceedings of the 18th IEEE VLSI TEST SYMPOSIUM
(VTS) 2000, Montreal, Canada, May, 2000.

[10] V.MURESAN, X. WANG, V. MURESAN, M. VLADUTIU:
List Scheduling and Tree Growing Technique in Power-
Constrained Block-Test Scheduling - Proceedings of the
IEEE European Test Workshop (ETW ) 2000, Cascais, Portu-
gal, May, 2000.

[11] P.G. PAULIN, J.P. KNIGHT : Force-Directed Scheduling
for the Behavioral Synthesis of ASICs - IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, Vol. 8, No. 6, pp. 661-679, Jun, 1989.

[12] V.MURESAN, X. WANG, V. MURESAN, M. VLADUTIU:
Distribution-Graph Based Approach and Tree Growing
Technique in Power-Constrained Block-Test Scheduling
- submitted to the IEEE Asian Test Symposium (ATS) 2000,
Taipei, Taiwan, Dec, 2000.

A The PSEUDOCODE of the PTS-FDS ALGORITHM

-sort all the block-tests by their mobility in two steps (test length,
power consumption);

-initialize the GrowingTree, the BlockTestList and the GapsList;
-while (there are unscheduled block-tests) do:

I*BlockTestList is not empty*/ {

o evaluate time frames for all block-tests;

o while (there are block-tests having null time frames){

—~ CurTest = head of BlockTestList;

— insert CurTest as the tail of GrowingTree roots (new
test section);

- make CurTest ”used”;

-~ remove CurTest from BlockTestList;

- generate a TwinGap gap as the twin of CurTest;
- insert TwinGap into GapsList;

— evaluate time frames for all block-tests; }/*while*/

o CurTest = the head of BlockTestList;
o evaluate time frames for all block-tests;
o update power/concurrency distribution graphs;

e calculate CurTest’s Self Forces for every feasible test subses-
sion assignment;

o add incompatibility forces to Self Forces;

o SCHEDULE CurT'est to the test subsession exhibiting the low-
est Self Force at assignment;

-}=while#/

Paper 33.3
891

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:45:09 UTC from IEEE Xplore. Restrictions apply.



