
Distribution-Graph Based Approach and Extended Tree Growing Technique in
Power-Constrained Block-Test Scheduling

Valentin Muregan, Xiaojun Wang
Dublin City University, Ireland

Valentina Muregan, Mircea Vliidufiu
"Politehnica" University of Timigoara, Rominia

muresanv @ eeng .dcu.ie

Abstract

A distribution-graph based scheduling algorithm is
proposed together with an extended tree growing tech-
nique to deal with the problem of unequal-length block-test
scheduling under power dissipation constraints. The ex-
tended tree growing technique is used in combination with
the classical scheduling approach in order to improve the
test concurrency having assigned power dissipation limits.
Its goal is to achieve a balanced test power dissipation by
employing a least mean square error firnction. The least
mean square error jimction is a distribution-graph based
global priority function. Test scheduling examples and ex-
periments highlight in the end the ejficiency of this approach
towards a system-level test scheduling algorithm.

1 INTRODUCTION

As the VLSI device technologies become mature, and
larger and denser memory ICs are implemented for high-
performance digital systems, the power dissipation be-
comes a critical factor and can no longer be ignored either
in normal operation of the system or under testing condi-
tions. Moreover, VLSI circuits running in test mode may
consume more power than when running in normal mode
[l]. Thus, the heat dissipated during test application is al-
ready influencing the test design methodology for practical
circuits (e.g., MCMs). A solution towards alleviating this
problem is the test scheduling. Test scheduling is strongly
related to test concurrency. Test concurrency is a design
property which strongly impacts testability and power dis-
sipation. To satisfy high fault coverage goals with reduced
test application time under certain power dissipation con-
straints, the testing of all components on the system should
be performed in parallel to the greatest extent possible.

This paper focuses on the high-level power-constrained
block-test scheduling problem which lacks of practical so-
lutions. An efficient scheme for overlaying the block-
tests, called extended tree growing technique, is proposed

1081-7735/00 $10.00 0 2000 IEEE
465

vmuresan @cs.utt .ro

together with a distribution-graph based scheduling algo-
rithm to search for power-constrained block-test schedul-
ing profiles in a polynomial time. This approach exploits
test parallelism under power constraints. This is achieved
by overlaying the block-test intervals of compatible sub-
circuits to test as many of them as possible concurrently
so that the maximum accumulated power dissipation is bal-
anced and does not go over the given limit.The test schedul-
ing discipline assumed here is the partitioned testing wirh
run to completion defined in [2]. A constant additive model
is employed for power dissipation analysis and estimation
throughout the algorithm.

2 PROBLEM FORMULATION

The components which are required to perform a test are
known as test resources and they may be shared among the
blocks under test. Each activity or the ensemble of activities
requiring a clock period during the test mode and occurring
in the same clock period, can be considered as a test step.
A block test is the sequence of test steps that correspond to
a specific part of hardware (block). The testing of a VLSI
system can be viewed as the execution of a collection of
block tests. Depending on the test design methodology se-
lected, once a resource set is compiled for each block-test
t,, then it is possible to determine whether they could run
in parallel without any resource conflict. A pair of tests that
cannot be run concurrently is said to be incompatible. Each
application of time compatible tests is called a test session,
and the time required for a test session is named test length.

If y (t l) is the instantaneous power dissipation during test
t , and p (t 3) is the instantaneous power dissipation during
test t,, then the power dissipation of a test session consist-
ing of just these two tests is approximately p (t z) + p (t 3) .
Usually this instantaneous power is constrained to not ex-
ceed the power dissipation limit, P,,,, if they were meant
to be executed in the same test session. In order to sim-
plify the analysis, a constant additive model is employed
here for power estimation. That is, a constant power dis-
sipation value P(t,) is associated with each block test t,.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

For high-level approaches the power dissipation P(t ,) of
a test t , could be estimated in three ways: average power
dissipation, maximum power dissipation and, RMS power
dissipation over all test steps in t , . The total power dissipa-
tion at a certain moment of the test schedule is computed by
simply summing the power dissipation of the running block
tests. The power dissipation P (s 3) for a test session sJ can
be defined as: P (s I) = P(t l) , while the power con-
straint in test scheduling is defined as: P (s 3) < P,,, V j .

3 PROPOSED APPROACH

Power dissipation during test was seldom under research
so far. A few approaches tackled the power dissipation
problem during test application at low-level: switching ac-
tivity conscious ATPG, scan latch reordering, test vector
reordering, and test vector inhibiting. Unfortunately, the
above approaches are not efficient at high levels, where the
problem becomes NP-complete for big VLSI devices. The
BIST scheduling approach given in [11 was one of the first
to take into account power dissipation during test schedul-
ing. It performs global optimization considering also other
factors such as block type, adjacency of blocks (device floor
plan). But in complex VLSI circuit designs, the block-test
set is huge (especially at RT level) and ranges in test lengths.
Therefore, this approach focuses only on problem’s defi-
nition and analysis, whereas the proposed approach is not
time efficient for huge block test sets.

[3] carried out for the first time an analysis of this prob-
lem at IC level, but it is only a theoretical one. It is, basi-
cally, a compatible test clustering, where the compatibility
among tests is given by test resource and power dissipa-
tion conflicts at the same time. From an implementation
point of view the identification of all cliques in the graph of
compatible block tests belongs to the class of NP-complete
problems. Instead, a distribution-graph based scheduling al-
gorithm is proposed in this paper together with the extended
tree growing technique to deal with the power-constrained
test scheduling problem. The proposed approach belongs
to the so called unequal-length block-test scheduling class,
because it deals with tests for blocks of logic, which do not
have equal test lengths. It has a polynomial complexity,
which is very important for the efficiency of the system-
level test scheduling. The algorithm is meant to be part of a
system-level block-test approach to be applied on a modu-
lar view of a test hierarchy. The elements of this hierarchy
could be given at any of the high-level synthesis domains,
between the system and RT levels: subsystems, backplanes,
boards, MCM’s, IC’s (dies), macro blocks and RTL transfer
blocks. The lowest level block the test hierarchy accepts is
the RTL one, but at this level it is assumed that a test-step
level scheduling has already been taken into consideration
and applied. Generally speaking any node in the hierarchy

(apart from leaves) has different subnodes as children. Ev-
ery test node t , is characterized by a few parameters. These
parameters are determined after test scheduling optimiza-
tion has been performed on the node. They are given for
every test node t,: test application time T,, power dissipa-
tion Pz, and test resource set RES.SET,. This approach
assumes a bottom-up traversing of the test hierarchy using
a divide et impera optimization style. At a certain moment,
the subnodes of a certain node are considered for optimiza-.
tion in order to get an optimal or near optimal sequencing or
overlaying of them complying with the power constraints.

3.1 TREE GROWING APPROACH

Due to the wide range of test lengths exhibited by the
block-test set applied to a complex VLSI circuit, it is pos-
sible to schedule some short tests to begin when subcircuits
with shorter testing time have finished testing, while other
subcircuits with longer testing time have not (if they are
compatible). The tree growing technique given in [4] is
very productive from this point of view. That is because it it;
used to exploit the potential of test parallelism by merging
and constructing the concurrent testable sets (CTS). This is
achieved by means of a binary tree structure (not necessar-
ily complete), called compatibility tree, which was based on
the compatibility relations amongst the tests.

Figure 1. Merging Step Example

Nevertheless, a big drawback in [4] is that the compati-
bility tree is a binary one. This limits the number of children
test nodes that could be overlapped to the parent test node
to only two. In reality the number of children test nodes
can be much bigger, as in the example depicted in figure 1 .
Therefore an expanded compatibility tree (ECT), given by
means of a generalized tree, is proposed here to overcome
this problem. The sequence of nodes contained in the same
tree path of an ECT represents an expansion of the CTS.
Given a partial scheduling chart of a CTS, a test t can be
merged in this CTS if and only if there is at least one tree
path P in the corresponding compatibility tree of the CTS,
such that every test contained in the nodes of P is compat-
ible to t . The compatibility relationship has three compo-
nents. Firstly, tests have to be compatible from a conflicting
resources point of view. Secondly, the test length of the

466

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

nodes in a tree path have to be monotonously decreasing
from root to leaf. Thirdly, the power dissipation accumu-
lated on the above tree path should be less than or equal to

A merging step example is given in figure 1 . The partial
test schedule chart is given at the top, while the partially
grown compatibility tree is given at the bottom. Let us as-
sume that tests t 2 , t 3 and t4 are compatible to t l , while they
are not compatible to each other. Again let us assume that
T I , Tz , T3 and Td are, respectively, the test lengths of tests
t l , t 2 , t 3 and t 4 , and say T2 + T3 < T I . Finally, let us
assume that a new test t4 has to be scheduled in the partial
test schedule depicted in figure I(a). As can be seen, there is
a gap G.4P1 given by the following test length difference:
G.4P1 = TI - (TJ + T3). Thus, a merging step can be
achieved, if T4 5 GAP,, by inserting t4 in the partial test
schedule and its associated ECT in figure l(b).

The process of constructing CTS’s can be implemented
by growing the ECT from the roots to their leaf nodes. The
root nodes are considered test sessions, while the expanded
tree paths are considered their test subsessions. When a new
test has to be merged with the CTS, the algorithm should
avail of all possible paths in the ECT. In order to keep track
of the available tree paths and to avoid the complexity of the
generalized tree travel problem, a list of potentially expand-
able tree paths (ETP) is kept. This list is kept by means
of special nodes that are inserted as leaf nodes in each ETP
of the expanded compatibility tree. These leaf nodes are
called gaps and are depicted as hatched or shaded nodes
in figure 1. There are two types of gaps. The first set of
gaps (hatched) are those ”rest gaps” left behind each merg-
ing step, as in the case of G.4P1 and G.4P1 - t 4 in the above
example. They are similar to the incomplete branches of the
binary tree from [4]. The second set of gaps (shaded), are
actually bogus gaps generated as the superposition of the
leaf nodes and their twins as in the right equivalence given
in figure 1. They are generated in order to keep track of
”non-saturated” tree paths, which are also potential ETPs.
By ”non-saturated’ tree path is meant any ETP with accu-
mulated power dissipation still under the given power dissi-
pation limit.

prl,,, .

3.2 DISTRIBUTION-GRAPH-BASED
SCHEDULING APPROACH

A clear parallel between the HLS scheduling problem
and the power-constrained test scheduling (PTS) problem
is given by the similarities between the c-steps in HLS
and the test sessions (subsessions) in PTS, between op-
erations (HLS) and block-tests (PTS), and between hard-
ware resource constraints (HLS) and power dissipation con-
straints (PTS). Therefore, there is an obvious coincidence
between the process of assigning operations to c-steps (HLS

scheduling) and the process of assigning block-tests to
test (sub)sessions (PTS). With the tree growing technique,
proven efficient HLS algorithms can be easily adapted to the
PTS problem modeled as an extended tree growing process.
A comparison of the PTS approaches is given in [5] . The
HLS list scheduling algorithm (HLS-LS) was employed as
a greedy power-test list scheduling algorithm (PTS-LS). In
the PTS-LS algorithm the block-tests are initially ordered
by their test mobility before being scheduled. The test
mobility TAU2 of a block-test ti is inversely proportional
to the product of its test length Ti and its power dissipa-
tion P,: TMi = &. The sorted block-tests are then
iteratively scheduled into the available test (sub)sessions
(ETPs). When the power dissipation is exceeded the block-
tests to be currently scheduled are deferred to the other test
(sub)sessions (ETP) left for further expansion. In PTS-LS,
the next test (sub)session expansion was carried out using a
local prioriQfinction. Local priority functions do not ren-
der all the time optimal solutions. Therefore, global prior-
ity functions are preferable. The main difference between
the list scheduling (LS) approach and the force-directed
scheduling (FDS) approach is the forecasting ability of their
priority functions. The FDS approach uses a global pri-
ority function called Self Force. The Self Force function
is employed to steer the block-tests’ assignments to test
(sub)sessions. The selection of the test subsession in which
the selected block-test will be placed is based on achiev-
ing in each test subsession a balanced distribution of block-
tests’ parameters, i.e. power dissipation and test concur-
rency. This is achieved using three steps: determination of
block-tests’ time frames, creation of power-test distribution
graphs and, calculation of SelfForces.

The distribution graph concept based scheduling (PTS-
MSE) algorithm given here is a parallel to the HLS schedul-
ing algorithm given in [6]. It aims at achieving a balanced
outcome merely by assessing the power-concurrency dis-
tribution graph (PCDG’s) and the effect of block-testhest-
subsession assignments by using a least mean square error
(MSE) function. Unlike the PTS-FDS approach given in
[5] , the time consuming Self Force stage calculations are
avoided here by using the MSE function approach, result-
ing in a computationally more efficient solution. This is
achieved using the only two steps summarized below:

Determination of time frames: the first step consists of
determining the time frames of each block-test by evaluat-
ing the set of test subsessions (ETPs) where the block-test
can be merged. The ETPs expandable at a certain moment
with a block-test do not have to be adjacent and, therefore,
a block-test’s time frame in PTS-MSE, and also in PTS-
FDS, is not or does not have to be contiguous. This is the
outstanding difference between the HLS-FDS approach and
PTS-MSE (PTS-FDS) approaches. In HLS-FDS the uni-
form probability of an operation to be assigned to a c-step

467

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

is taken into consideration in order to achieve a balanced
operation concurrency. On the other hand, the goal of PTS-
MSE is to balance mainly the power dissipation and, in-
directly, the test concurrency, while keeping tight the test
application time as much as possible. Therefore, a power
dissipation probability is to be used here instead and was
defined for the first time in [5] for the PTS-FDS approach.

Creation of distribution graphs: the next step is to take
the sum of the block-tests’ probabilities for each ETP (gap)
of the partial test schedule and add them on top of the
power dissipation accumulated so far in the partial power-
test chart. The resulting power-concurrency distribution
graph (PCDG) indicates the power dissipation expectations
and indirectly the possible test concurrency distribution of
the future test schedule. The PCDG’s formula is given in

Since the order of block-test assignment affects the
scheduling process, the following approach is adapted to
obtain optimum results. First, all block-tests are ordered by
their mobility. High mobility block-tests have little effect on
the overall block-test’s power and concurrency distribution
because of their long time frames which result in low prob-
ability values. This means that it is unnecessary to schedule
high mobility block-tests early. This list is used to schedule
all block-tests one by one without the need to reorder the
list, thus preserving the algorithm’s low complexity.

PI.

The PSEUDOCODE of the PTS-MSE Algorithm:
-initialize the GrowingTree, the BlockTestList and the GupsList;
-initialize and sort all block-tests according to block-test mobility, test
length and power consumption;
-while there are unscheduled block-tests do
/*BlockTestLast is not empty*/ {

0 take the next block-test out from the sorted list;

0 for each test subsession into which the block-test could he sched-
uled do {

- assign the block-test tentatively to the test subsession;

- update time frames of incompatible block-tests;

- calculate distribution graph for the modified growing

- evaluate the mean square error (MSE) function;

tree;

0 end for;}

0 schedule block-test into the test subsession for which the lowest
MSE value was found;

update time frames of incompatible block-tests;

0 update distribution graph;

-end while;}

In order to optimize the power-dissipation (test-
concurrency) throughout the test application, it is necessary
to balance the overall PCDG. Though, assigning a block-
test to a specific gap (expandable test subsession) often af-
fects the time frames of the other ”ready” block-tests, which
may become incompatible to the test (sub)sessions newly

generated after a block-test is scheduled in the current test
(sub)session. Thus, scheduling a particular block-test t ,
into a certain test subsession t s , affects time frames of other
block-tests. As a result, probability values of these block-
tests vary and modified distribution graphs PCDG(, should
be determined for each t , --t ts , assignment. To investi-
gate the effect of different test subsession assignments on
the block-tests’ distribution, the balance of the temporary
PCDGI, is assessed knowing that a good schedule has a
balanced PCDG. The difference between the PCDG val-
ues and an average value (-4b’G) provides an indication of
the graph balance. The average value is obtained from the
original PCDG using:

1 lVTS-1

ilVG = - PCDG(i); (1)
-wTS

where NTS is the number of test subsessions in the
schedule. The differences in the PCDG are used to ob-
tain a numerical value for the schedule quality using a mean
square error (MSE) function:

where PCDGI, (2) is the modified power-concurrency
distribution graph for a t , -+ t s , assignment. Having de-
termined the M S E values for all valid test subsessions t s , ,
the block-test t , is finally scheduled into the test subsession
which results in the lowest M S E value. This is followed by
adjusting the time frames of iricompatible block-tests and
updating the PCDG values. This procedure is repeated un-
til all block-tests are scheduled. The pseudocode is given
above. The complexity of the PTS-MSE algorithm can be
derived in the following way. Firstly, each iteration of the
algorithm schedules one block-test. This implies there are n
iterations (T A is the number of block-tests). Secondly, within
each iteration, for a block-test to be scheduled there are at
most n test subsession (gaps) for which PCDG must be
calculated. Finally, for each tentative block-test to test sub-
session assignment, there may be at most n-1 block-tests
incompatible to the current one to be affected, and their in-
compatibility force must also be calculated. This assump-
tion is a very conservative upper bound. The combined ef-
fect of the above three considerations yields the combined
O(n3) complexity.

4 EXPERIMENTAL RESULTS

In this section three test scheduling examples are pre-
sented. The first one is a small example meant to give an

468

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

ROOT MEAN SQUARE
POWER

DISSIPATION
RMS= 11.49

\

AVERAGE
POWER

DISSIPATION

H\lS - 11.85
I - ,

I5
14

I3

I?.

\ I ' . - .
, I

5 -

, ..<.
I1 " L)ISSII'.\ 1'105

< I
4 '
U . ,

c'()\Sl'lt:\I\'l' . _ I .

. -
I . _-

5 10 I5 10 15

TOTALTEST APPLICATlONTME TL = 20

.
I . . ! j

* I ." I"

. :U
TOrALTESTAPPLlCATlONTIME TL = 20

i 10 I5 10 25

(a) List Scheduling Solution (b) Distribution Graph Based Scheduling Solution

Figure 2. Power-Test Scheduling Charts (No Power Limit)

idea about the type of results generated by the PTS-MSE al-
gorithm. Then a bigger second example, chosen randomly,
is discussed in order to provide a deeper insight into the re-
sults of the PTS-MSE algorithm. In the end the PTS-MSE
algorithm is compared in terms of "complexity vs results"
for a block-test set example taken from [5] . This example is
developed on the ASIC Z design proposed earlier on in [I] .

Suppose for the first example the following block-test
set example. Their parameters are specified in the order:
power consumption, test length and their compatibility list.
For simplicity reasons, the block-tests are already ordered
by test length and power consumption keys. The power-
test scheduling charts given by the PTS-LS and PTS-MSE
algorithms for this block-test set are depicted in figure 2.
It can be seen in figure 2(b), that the PTS-MSE approach
gives a power-test chart solution exhibiting a more balanced
power dissipation than the PTS-LS solution given in figure
2(4 .

tion (AVPD), power dissipation dispersion (PDD), and root-
mean-square power dissipation (RMS). TL represents the
total test application time of the test scheduling solution.
MPD is the maximum power dissipation over the final
power-test scheduling solution. AVPD is considered the
ideal MPD when all the ETPs would exhibit the same ac-
cumulated power dissipation, that is, the power dissipa-
tion would be fully balanced over the power-test scheduling
chart. AVPD is calculated as the power-test area, taken up
by the chart, divided by TL. The rectangle given by AVPD
and TL would be the ideal power-test scheduling chart and,
therefore, the ideal test scheduling profile. PDD is directly
proportional to the accumulated power dissipation disper-
sion over the power-test scheduling chart, which is consid-
ered to be given by the power-test area left unused inside the
power-test rectangle having MPD and TL as sides. PDD is
calculated as the difference between MPD and AVPD. Rh4S
gives the root mean square value for the power dissipation
distribution of a scheduling chart.

Secondly, the PTS-MSE algorithm is experimented for
a 50 block-tests set chosen randomly, where the degree
of resource compatibility between the block-tests is high
(around 90%). The degree of resource compatibility be-
tween the block tests gives the dimension of the solution
space. The higher the resource compatibility degree, the
larger the solution space. This test scheduling example is
run in order to draw the characteristics of the solutions se-
lected by the PTS-MSE approach from a bigger solution
space. In figure 3 these characteristics are generated for a
range of power dissipation constraints from totally relaxed
to fully tight. It can be seen there that TL grows almost
linearly with the power constraint increase, whereas MPD
and PDD exhibit a linear decrease. In [5] comparing the

The power-test characteristics of the power-test schedul-
ing charts are given in figure 2: test length (TL), max-
imum power dissipation (MPD), average power dissipa-

469

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

PTS-LS (PTS-LEA) scheduling solutions on the one hand
with the PTS-MSE (PTS-FDS) results on the other hand,
i t has been noticed that the former gave "noisier" solutions
for relaxed constraints. That is, the PTS-LS characteris-
tics (TL, MPD, AVPD, PDD, RMS) do not have a smooth
trend while the power constraints are ranged from relaxed to
tight. Intuitively, the global priority function helps the PTS-
MSE (PTS-FDS) approaches to have a global view over
the solution space and to pick up most of the times better
solutions. Overall, the PTS-MSE (PTS-FDS) approaches
give power-test scheduling profiles which exhibit a more
balanced power distribution as was the case in the exam-
ple from figure 2 . That is, the solutions given by PTS-
MSE (PTS-FDS) algorithms have smoother TL and AVPD
characteristics, and smaller PDD and MPD characteristics.
Though, PTS-MSE (PTS-FDS) algorithms are computa-
tionally more expensive than the PTS-LS (PTS-LEA) ap-
proaches. Moreover, while the PTS-FDS approach is com-
putationally slightly more expensive than the PTS-MSE ap-
proach, the solutions given by the former are slightly more
balanced.

/

1L. j
/

Figure 3. PTS-MSE Solution Characteristics I

For the third example a practical testbench is considered.
An extended case [5] of the ASIC Z design given in [11 is
experimented with the PTS-MSE approach. The testbench
has 27 tests spread over 9 cores. The results are given in
table 1 over a range of the power constraint. They exhibit
the same features as the results of the second example. Un-
fortunately, the results of the experiments run here cannot
be compared to the ones given for the ASIC Z case in [1,3].
That is due to the fact that the test scheduling discipline as-
sumed in [1, 31 is the nonpartitioned testing defined in [2],
whereas the one assumed in this paper is the partitioned
testing with run to completion. The nonpartitioned testing
assumes that no tests can be started until all tests in the pre-
vious session is completed, which is opposite the case of
this paper.

power PTS-MSE scheduling solutions for the ASIC Z example
constraints TL I MPD I AVPD 1 PDD I

Table 1. PTS-MSE Solution Characteristics II

5 CONCLUSIONS

The work proposed in this paper has been carried out
based on the ascertained fact that not a lot approaches to
tackle the power-constrained test scheduling problem have
been identified so far. A classical distribution graph based
scheduling algorithm is proposed for the power-constrained
test scheduling problem, which is modeled as a growing
tree. Thus, by means of the tree growing approach, clas-
sical algorithms are re-used to provide fast results. Its
polynomial complexity is beneficial to the system-level test
scheduling problem. Even though it does not guarantee
optimal block-test scheduling solutions, its fast final re-
sults can be used as starting points by near-optimal block.-
test scheduling approaches (e.g. simulated annealing, tabu
search) to get an improved solution.

References

[l] Y. ZORIAN: A Distributed BIST Control Scheme for
Complex VLSI Devices - Proceedings of The 11th IEE'E
VLSI Test Symposium, pp. 4-9, Apr. 1993.

[2] G.L. CRAIG, C.R. KIME, K.K. SALUJA: Test Scheduling
and Control for VLSI Built-In Self-Test - IEEE Trans-
actions on Computer, Vol. 37, No. 9, pp. 1099-1 109, Sep,
1988.

[3] R.M. CHOU, K.K. SALUJA, V.D. AGRAWAL: Scheduling
Tests for VLSI Systems Under Power Constraints - IEEE
Transactions on Very Large Scale Integration (VLSI) Sys-
tems, Vol. 5, No. 2, pp. 175-185, Jun, 1997.

[4] W.B. JONE, C. PAPACHRISTOU, M. PEREIRA: A Scheme
for Overlaying Concurrent Testing of VLSI Circuits -
Proceedings of the 26th Desing Automation Conference, pp.
531-536, 1989.
V. MURESAN, X. WANG, V. MURESAN, M. VLADU- [5]
TIU: A Comparison of Classical Scheduling Approaches
in Power-Constrained Block-Test Scheduling - IEEE Test
Conference (ITC) 2000, accepted paper.

cient Scheduling of Behavioral Descriptions in High-
Level Synthesis - IEE Proceedings-Computers And Digital
Techniques, Vol. 144, No. 2, pp. 75-82, Mar, 1997.

[6] P. KOLLIG, B.M. AL-HASHIMI, K.M. ABBOTT: Efli-

470

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 20,2010 at 12:46:11 UTC from IEEE Xplore. Restrictions apply.

