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Abstract 

A distribution-graph based scheduling algorithm is 
proposed together with an extended tree growing tech- 
nique to deal with the problem of unequal-length block-test 
scheduling under power dissipation constraints. The ex- 
tended tree growing technique is used in combination with 
the classical scheduling approach in order to improve the 
test concurrency having assigned power dissipation limits. 
Its goal is to achieve a balanced test power dissipation by 
employing a least mean square error firnction. The least 
mean square error jimction is a distribution-graph based 
global priority function. Test scheduling examples and ex- 
periments highlight in the end the ejficiency of this approach 
towards a system-level test scheduling algorithm. 

1 INTRODUCTION 

As the VLSI device technologies become mature, and 
larger and denser memory ICs are implemented for high- 
performance digital systems, the power dissipation be- 
comes a critical factor and can no longer be ignored either 
in normal operation of the system or under testing condi- 
tions. Moreover, VLSI circuits running in test mode may 
consume more power than when running in normal mode 
[l]. Thus, the heat dissipated during test application is al- 
ready influencing the test design methodology for practical 
circuits (e.g., MCMs). A solution towards alleviating this 
problem is the test scheduling. Test scheduling is strongly 
related to test concurrency. Test concurrency is a design 
property which strongly impacts testability and power dis- 
sipation. To satisfy high fault coverage goals with reduced 
test application time under certain power dissipation con- 
straints, the testing of all components on the system should 
be performed in parallel to the greatest extent possible. 

This paper focuses on the high-level power-constrained 
block-test scheduling problem which lacks of practical so- 
lutions. An efficient scheme for overlaying the block- 
tests, called extended tree growing technique, is proposed 
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together with a distribution-graph based scheduling algo- 
rithm to search for power-constrained block-test schedul- 
ing profiles in a polynomial time. This approach exploits 
test parallelism under power constraints. This is achieved 
by overlaying the block-test intervals of compatible sub- 
circuits to test as many of them as possible concurrently 
so that the maximum accumulated power dissipation is bal- 
anced and does not go over the given limit.The test schedul- 
ing discipline assumed here is the partitioned testing wirh 
run to completion defined in [2]. A constant additive model 
is employed for power dissipation analysis and estimation 
throughout the algorithm. 

2 PROBLEM FORMULATION 

The components which are required to perform a test are 
known as test resources and they may be shared among the 
blocks under test. Each activity or the ensemble of activities 
requiring a clock period during the test mode and occurring 
in the same clock period, can be considered as a test step. 
A block test is the sequence of test steps that correspond to 
a specific part of hardware (block). The testing of a VLSI 
system can be viewed as the execution of a collection of 
block tests. Depending on the test design methodology se- 
lected, once a resource set is compiled for each block-test 
t,, then it is possible to determine whether they could run 
in parallel without any resource conflict. A pair of tests that 
cannot be run concurrently is said to be incompatible. Each 
application of time compatible tests is called a test session, 
and the time required for a test session is named test length. 

If y ( t l )  is the instantaneous power dissipation during test 
t ,  and p ( t 3 )  is the instantaneous power dissipation during 
test t,, then the power dissipation of a test session consist- 
ing of just these two tests is approximately p ( t z )  + p ( t 3 ) .  
Usually this instantaneous power is constrained to not ex- 
ceed the power dissipation limit, P,,,, if they were meant 
to be executed in the same test session. In order to sim- 
plify the analysis, a constant additive model is employed 
here for power estimation. That is, a constant power dis- 
sipation value P(t,)  is associated with each block test t,. 
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For high-level approaches the power dissipation P( t , )  of 
a test t ,  could be estimated in three ways: average power 
dissipation, maximum power dissipation and, RMS power 
dissipation over all test steps in t ,  . The total power dissipa- 
tion at a certain moment of the test schedule is computed by 
simply summing the power dissipation of the running block 
tests. The power dissipation P ( s 3 )  for a test session sJ can 
be defined as: P ( s I )  = P( t l ) ,  while the power con- 
straint in test scheduling is defined as: P ( s 3 )  < P,,, V j .  

3 PROPOSED APPROACH 

Power dissipation during test was seldom under research 
so far. A few approaches tackled the power dissipation 
problem during test application at low-level: switching ac- 
tivity conscious ATPG, scan latch reordering, test vector 
reordering, and test vector inhibiting. Unfortunately, the 
above approaches are not efficient at high levels, where the 
problem becomes NP-complete for big VLSI devices. The 
BIST scheduling approach given in [ 11 was one of the first 
to take into account power dissipation during test schedul- 
ing. It performs global optimization considering also other 
factors such as block type, adjacency of blocks (device floor 
plan). But in complex VLSI circuit designs, the block-test 
set is huge (especially at RT level) and ranges in test lengths. 
Therefore, this approach focuses only on problem’s defi- 
nition and analysis, whereas the proposed approach is not 
time efficient for huge block test sets. 

[3] carried out for the first time an analysis of this prob- 
lem at IC level, but it is only a theoretical one. It is, basi- 
cally, a compatible test clustering, where the compatibility 
among tests is given by test resource and power dissipa- 
tion conflicts at the same time. From an implementation 
point of view the identification of all cliques in the graph of 
compatible block tests belongs to the class of NP-complete 
problems. Instead, a distribution-graph based scheduling al- 
gorithm is proposed in this paper together with the extended 
tree growing technique to deal with the power-constrained 
test scheduling problem. The proposed approach belongs 
to the so called unequal-length block-test scheduling class, 
because it deals with tests for blocks of logic, which do not 
have equal test lengths. It has a polynomial complexity, 
which is very important for the efficiency of the system- 
level test scheduling. The algorithm is meant to be part of a 
system-level block-test approach to be applied on a modu- 
lar view of a test hierarchy. The elements of this hierarchy 
could be given at any of the high-level synthesis domains, 
between the system and RT levels: subsystems, backplanes, 
boards, MCM’s, IC’s (dies), macro blocks and RTL transfer 
blocks. The lowest level block the test hierarchy accepts is 
the RTL one, but at this level it is assumed that a test-step 
level scheduling has already been taken into consideration 
and applied. Generally speaking any node in the hierarchy 

(apart from leaves) has different subnodes as children. Ev- 
ery test node t ,  is characterized by a few parameters. These 
parameters are determined after test scheduling optimiza- 
tion has been performed on the node. They are given for 
every test node t,: test application time T,, power dissipa- 
tion Pz, and test resource set RES.SET,. This approach 
assumes a bottom-up traversing of the test hierarchy using 
a divide et impera optimization style. At a certain moment, 
the subnodes of a certain node are considered for optimiza-. 
tion in order to get an optimal or near optimal sequencing or 
overlaying of them complying with the power constraints. 

3.1 TREE GROWING APPROACH 

Due to the wide range of test lengths exhibited by the 
block-test set applied to a complex VLSI circuit, it is pos- 
sible to schedule some short tests to begin when subcircuits 
with shorter testing time have finished testing, while other 
subcircuits with longer testing time have not (if they are 
compatible). The tree growing technique given in [4] is 
very productive from this point of view. That is because it it; 
used to exploit the potential of test parallelism by merging 
and constructing the concurrent testable sets (CTS). This is 
achieved by means of a binary tree structure (not necessar- 
ily complete), called compatibility tree, which was based on 
the compatibility relations amongst the tests. 

Figure 1. Merging Step Example 

Nevertheless, a big drawback in [4] is that the compati- 
bility tree is a binary one. This limits the number of children 
test nodes that could be overlapped to the parent test node 
to only two. In reality the number of children test nodes 
can be much bigger, as in the example depicted in figure 1 .  
Therefore an expanded compatibility tree (ECT), given by 
means of a generalized tree, is proposed here to overcome 
this problem. The sequence of nodes contained in the same 
tree path of an ECT represents an expansion of the CTS. 
Given a partial scheduling chart of a CTS, a test t can be 
merged in this CTS if and only if there is at least one tree 
path P in the corresponding compatibility tree of the CTS, 
such that every test contained in the nodes of P is compat- 
ible to t .  The compatibility relationship has three compo- 
nents. Firstly, tests have to be compatible from a conflicting 
resources point of view. Secondly, the test length of the 
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nodes in a tree path have to be monotonously decreasing 
from root to leaf. Thirdly, the power dissipation accumu- 
lated on the above tree path should be less than or equal to 

A merging step example is given in figure 1 .  The partial 
test schedule chart is given at the top, while the partially 
grown compatibility tree is given at the bottom. Let us as- 
sume that tests t 2 ,  t 3  and t4 are compatible to t l ,  while they 
are not compatible to each other. Again let us assume that 
T I ,  Tz ,  T3 and Td are, respectively, the test lengths of tests 
t l ,  t 2 ,  t 3  and t 4 ,  and say T2 + T3 < T I .  Finally, let us 
assume that a new test t4 has to be scheduled in the partial 
test schedule depicted in figure I(a). As can be seen, there is 
a gap G.4P1 given by the following test length difference: 
G.4P1 = TI - (TJ + T3).  Thus, a merging step can be 
achieved, if T4 5 GAP,,  by inserting t4 in the partial test 
schedule and its associated ECT in figure l(b). 

The process of constructing CTS’s can be implemented 
by growing the ECT from the roots to their leaf nodes. The 
root nodes are considered test sessions, while the expanded 
tree paths are considered their test subsessions. When a new 
test has to be merged with the CTS, the algorithm should 
avail of all possible paths in the ECT. In order to keep track 
of the available tree paths and to avoid the complexity of the 
generalized tree travel problem, a list of potentially expand- 
able tree paths (ETP) is kept. This list is kept by means 
of special nodes that are inserted as leaf nodes in each ETP 
of the expanded compatibility tree. These leaf nodes are 
called gaps and are depicted as hatched or shaded nodes 
in figure 1. There are two types of gaps. The first set of 
gaps (hatched) are those ”rest gaps” left behind each merg- 
ing step, as in the case of G.4P1 and G.4P1 - t 4  in the above 
example. They are similar to the incomplete branches of the 
binary tree from [4]. The second set of gaps (shaded), are 
actually bogus gaps generated as the superposition of the 
leaf nodes and their twins as in the right equivalence given 
in figure 1.  They are generated in order to keep track of 
”non-saturated” tree paths, which are also potential ETPs. 
By ”non-saturated’ tree path is meant any ETP with accu- 
mulated power dissipation still under the given power dissi- 
pation limit. 

prl,,, . 

3.2 DISTRIBUTION-GRAPH-BASED 
SCHEDULING APPROACH 

A clear parallel between the HLS scheduling problem 
and the power-constrained test scheduling (PTS) problem 
is given by the similarities between the c-steps in HLS 
and the test sessions (subsessions) in PTS, between op- 
erations (HLS) and block-tests (PTS), and between hard- 
ware resource constraints (HLS) and power dissipation con- 
straints (PTS). Therefore, there is an obvious coincidence 
between the process of assigning operations to c-steps (HLS 

scheduling) and the process of assigning block-tests to 
test (sub)sessions (PTS). With the tree growing technique, 
proven efficient HLS algorithms can be easily adapted to the 
PTS problem modeled as an extended tree growing process. 
A comparison of the PTS approaches is given in [ 5 ] .  The 
HLS list scheduling algorithm (HLS-LS) was employed as 
a greedy power-test list scheduling algorithm (PTS-LS). In 
the PTS-LS algorithm the block-tests are initially ordered 
by their test mobility before being scheduled. The test 
mobility TAU2 of a block-test ti is inversely proportional 
to the product of its test length Ti and its power dissipa- 
tion P,:  TMi = &. The sorted block-tests are then 
iteratively scheduled into the available test (sub)sessions 
(ETPs). When the power dissipation is exceeded the block- 
tests to be currently scheduled are deferred to the other test 
(sub)sessions (ETP) left for further expansion. In PTS-LS, 
the next test (sub)session expansion was carried out using a 
local prioriQfinction. Local priority functions do not ren- 
der all the time optimal solutions. Therefore, global prior- 
ity functions are preferable. The main difference between 
the list scheduling (LS) approach and the force-directed 
scheduling (FDS) approach is the forecasting ability of their 
priority functions. The FDS approach uses a global pri- 
ority function called Self Force. The Self Force function 
is employed to steer the block-tests’ assignments to test 
(sub)sessions. The selection of the test subsession in which 
the selected block-test will be placed is based on achiev- 
ing in each test subsession a balanced distribution of block- 
tests’ parameters, i.e. power dissipation and test concur- 
rency. This is achieved using three steps: determination of 
block-tests’ time frames, creation of power-test distribution 
graphs and, calculation of SelfForces. 

The distribution graph concept based scheduling (PTS- 
MSE) algorithm given here is a parallel to the HLS schedul- 
ing algorithm given in [6]. It aims at achieving a balanced 
outcome merely by assessing the power-concurrency dis- 
tribution graph (PCDG’s) and the effect of block-testhest- 
subsession assignments by using a least mean square error 
(MSE) function. Unlike the PTS-FDS approach given in 
[ 5 ] ,  the time consuming Self Force stage calculations are 
avoided here by using the MSE function approach, result- 
ing in a computationally more efficient solution. This is 
achieved using the only two steps summarized below: 

Determination of time frames: the first step consists of 
determining the time frames of each block-test by evaluat- 
ing the set of test subsessions (ETPs) where the block-test 
can be merged. The ETPs expandable at a certain moment 
with a block-test do not have to be adjacent and, therefore, 
a block-test’s time frame in PTS-MSE, and also in PTS- 
FDS, is not or does not have to be contiguous. This is the 
outstanding difference between the HLS-FDS approach and 
PTS-MSE (PTS-FDS) approaches. In HLS-FDS the uni- 
form probability of an operation to be assigned to a c-step 
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is taken into consideration in order to achieve a balanced 
operation concurrency. On the other hand, the goal of PTS- 
MSE is to balance mainly the power dissipation and, in- 
directly, the test concurrency, while keeping tight the test 
application time as much as possible. Therefore, a power 
dissipation probability is to be used here instead and was 
defined for the first time in [5]  for the PTS-FDS approach. 

Creation of distribution graphs: the next step is to take 
the sum of the block-tests’ probabilities for each ETP (gap) 
of the partial test schedule and add them on top of the 
power dissipation accumulated so far in the partial power- 
test chart. The resulting power-concurrency distribution 
graph (PCDG) indicates the power dissipation expectations 
and indirectly the possible test concurrency distribution of 
the future test schedule. The PCDG’s formula is given in 

Since the order of block-test assignment affects the 
scheduling process, the following approach is adapted to 
obtain optimum results. First, all block-tests are ordered by 
their mobility. High mobility block-tests have little effect on 
the overall block-test’s power and concurrency distribution 
because of their long time frames which result in low prob- 
ability values. This means that it is unnecessary to schedule 
high mobility block-tests early. This list is used to schedule 
all block-tests one by one without the need to reorder the 
list, thus preserving the algorithm’s low complexity. 

PI. 

The PSEUDOCODE of the PTS-MSE Algorithm: 
-initialize the GrowingTree, the BlockTestList and the GupsList; 
-initialize and sort all block-tests according to block-test mobility, test 
length and power consumption; 
-while there are unscheduled block-tests do 
/*BlockTestLast is not empty*/ { 

0 take the next block-test out from the sorted list; 

0 for each test subsession into which the block-test could he sched- 
uled do { 

- assign the block-test tentatively to the test subsession; 

- update time frames of incompatible block-tests; 

- calculate distribution graph for the modified growing 

- evaluate the mean square error (MSE) function; 

tree; 

0 end for;} 

0 schedule block-test into the test subsession for which the lowest 
MSE value was found; 

update time frames of incompatible block-tests; 

0 update distribution graph; 

-end while;} 

In order to optimize the power-dissipation (test- 
concurrency) throughout the test application, it is necessary 
to balance the overall PCDG. Though, assigning a block- 
test to a specific gap (expandable test subsession) often af- 
fects the time frames of the other ”ready” block-tests, which 
may become incompatible to the test (sub)sessions newly 

generated after a block-test is scheduled in the current test 
(sub)session. Thus, scheduling a particular block-test t ,  
into a certain test subsession t s ,  affects time frames of other 
block-tests. As a result, probability values of these block- 
tests vary and modified distribution graphs PCDG(, should 
be determined for each t ,  --t ts ,  assignment. To investi- 
gate the effect of different test subsession assignments on 
the block-tests’ distribution, the balance of the temporary 
PCDGI, is assessed knowing that a good schedule has a 
balanced PCDG. The difference between the PCDG val- 
ues and an average value (-4b’G) provides an indication of 
the graph balance. The average value is obtained from the 
original PCDG using: 

1 lVTS-1 

ilVG = - PCDG(i); (1 )  
-wTS 

where NTS is the number of test subsessions in the 
schedule. The differences in the PCDG are used to ob- 
tain a numerical value for the schedule quality using a mean 
square error (MSE)  function: 

where PCDGI, (2)  is the modified power-concurrency 
distribution graph for a t ,  -+ t s ,  assignment. Having de- 
termined the M S E  values for all valid test subsessions t s , ,  
the block-test t ,  is finally scheduled into the test subsession 
which results in the lowest M S E  value. This is followed by 
adjusting the time frames of iricompatible block-tests and 
updating the PCDG values. This procedure is repeated un- 
til all block-tests are scheduled. The pseudocode is given 
above. The complexity of the PTS-MSE algorithm can be 
derived in the following way. Firstly, each iteration of the 
algorithm schedules one block-test. This implies there are n 
iterations ( T A  is the number of block-tests). Secondly, within 
each iteration, for a block-test to be scheduled there are at 
most n test subsession (gaps) for which PCDG must be 
calculated. Finally, for each tentative block-test to test sub- 
session assignment, there may be at most n-1 block-tests 
incompatible to the current one to be affected, and their in- 
compatibility force must also be calculated. This assump- 
tion is a very conservative upper bound. The combined ef- 
fect of the above three considerations yields the combined 
O(n3)  complexity. 

4 EXPERIMENTAL RESULTS 

In this section three test scheduling examples are pre- 
sented. The first one is a small example meant to give an 
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Figure 2. Power-Test Scheduling Charts (No Power Limit) 

idea about the type of results generated by the PTS-MSE al- 
gorithm. Then a bigger second example, chosen randomly, 
is discussed in order to provide a deeper insight into the re- 
sults of the PTS-MSE algorithm. In the end the PTS-MSE 
algorithm is compared in terms of "complexity vs results" 
for a block-test set example taken from [5] .  This example is 
developed on the ASIC Z design proposed earlier on in [ I ] .  

Suppose for the first example the following block-test 
set example. Their parameters are specified in the order: 
power consumption, test length and their compatibility list. 
For simplicity reasons, the block-tests are already ordered 
by test length and power consumption keys. The power- 
test scheduling charts given by the PTS-LS and PTS-MSE 
algorithms for this block-test set are depicted in figure 2. 
It can be seen in figure 2(b), that the PTS-MSE approach 
gives a power-test chart solution exhibiting a more balanced 
power dissipation than the PTS-LS solution given in figure 
2(4 .  

tion (AVPD), power dissipation dispersion (PDD), and root- 
mean-square power dissipation (RMS). TL represents the 
total test application time of the test scheduling solution. 
MPD is the maximum power dissipation over the final 
power-test scheduling solution. AVPD is considered the 
ideal MPD when all the ETPs would exhibit the same ac- 
cumulated power dissipation, that is, the power dissipa- 
tion would be fully balanced over the power-test scheduling 
chart. AVPD is calculated as the power-test area, taken up 
by the chart, divided by TL. The rectangle given by AVPD 
and TL would be the ideal power-test scheduling chart and, 
therefore, the ideal test scheduling profile. PDD is directly 
proportional to the accumulated power dissipation disper- 
sion over the power-test scheduling chart, which is consid- 
ered to be given by the power-test area left unused inside the 
power-test rectangle having MPD and TL as sides. PDD is 
calculated as the difference between MPD and AVPD. Rh4S 
gives the root mean square value for the power dissipation 
distribution of a scheduling chart. 

Secondly, the PTS-MSE algorithm is experimented for 
a 50 block-tests set chosen randomly, where the degree 
of resource compatibility between the block-tests is high 
(around 90%). The degree of resource compatibility be- 
tween the block tests gives the dimension of the solution 
space. The higher the resource compatibility degree, the 
larger the solution space. This test scheduling example is 
run in order to draw the characteristics of the solutions se- 
lected by the PTS-MSE approach from a bigger solution 
space. In figure 3 these characteristics are generated for a 
range of power dissipation constraints from totally relaxed 
to fully tight. It can be seen there that TL grows almost 
linearly with the power constraint increase, whereas MPD 
and PDD exhibit a linear decrease. In [5 ]  comparing the 

The power-test characteristics of the power-test schedul- 
ing charts are given in figure 2: test length (TL), max- 
imum power dissipation (MPD), average power dissipa- 
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PTS-LS (PTS-LEA) scheduling solutions on the one hand 
with the PTS-MSE (PTS-FDS) results on the other hand, 
i t  has been noticed that the former gave "noisier" solutions 
for relaxed constraints. That is, the PTS-LS characteris- 
tics (TL, MPD, AVPD, PDD, RMS) do not have a smooth 
trend while the power constraints are ranged from relaxed to 
tight. Intuitively, the global priority function helps the PTS- 
MSE (PTS-FDS) approaches to have a global view over 
the solution space and to pick up most of the times better 
solutions. Overall, the PTS-MSE (PTS-FDS) approaches 
give power-test scheduling profiles which exhibit a more 
balanced power distribution as was the case in the exam- 
ple from figure 2 .  That is, the solutions given by PTS- 
MSE (PTS-FDS) algorithms have smoother TL and AVPD 
characteristics, and smaller PDD and MPD characteristics. 
Though, PTS-MSE (PTS-FDS) algorithms are computa- 
tionally more expensive than the PTS-LS (PTS-LEA) ap- 
proaches. Moreover, while the PTS-FDS approach is com- 
putationally slightly more expensive than the PTS-MSE ap- 
proach, the solutions given by the former are slightly more 
balanced. 

/ 

1L. j  
/ 

Figure 3. PTS-MSE Solution Characteristics I 

For the third example a practical testbench is considered. 
An extended case [5] of the ASIC Z design given in [ 11 is 
experimented with the PTS-MSE approach. The testbench 
has 27 tests spread over 9 cores. The results are given in 
table 1 over a range of the power constraint. They exhibit 
the same features as the results of the second example. Un- 
fortunately, the results of the experiments run here cannot 
be compared to the ones given for the ASIC Z case in [ 1,3]. 
That is due to the fact that the test scheduling discipline as- 
sumed in [ 1, 31 is the nonpartitioned testing defined in [2], 
whereas the one assumed in this paper is the partitioned 
testing with run to completion. The nonpartitioned testing 
assumes that no tests can be started until all tests in the pre- 
vious session is completed, which is opposite the case of 
this paper. 

power PTS-MSE scheduling solutions for the ASIC Z example 
constraints TL I MPD I AVPD 1 PDD I 

Table 1. PTS-MSE Solution Characteristics II 

5 CONCLUSIONS 

The work proposed in this paper has been carried out 
based on the ascertained fact that not a lot approaches to 
tackle the power-constrained test scheduling problem have 
been identified so far. A classical distribution graph based 
scheduling algorithm is proposed for the power-constrained 
test scheduling problem, which is modeled as a growing 
tree. Thus, by means of the tree growing approach, clas- 
sical algorithms are re-used to provide fast results. Its 
polynomial complexity is beneficial to the system-level test 
scheduling problem. Even though it does not guarantee 
optimal block-test scheduling solutions, its fast final re- 
sults can be used as starting points by near-optimal block.- 
test scheduling approaches (e.g. simulated annealing, tabu 
search) to get an improved solution. 
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