
Cryptographic Pairings: Efficiency
and DLP Security

Naomi Benger

A dissertation submitted to Dublin City University in accordance with the

requirements for the award of Doctor of Philosophy (Ph.D.) in the

Faculty of Computer Applications, School of Computing

Supervisor: Prof. Michael Scott

May 2010

Declaration
I, Naomi Judith Benger, hereby certify that this material, which I now submit for assess-

ment on the programme of study leading to the award of Doctor of Philosophy, is entirely

my own work and has not been taken from the work of others save and to the extent that

such work has been cited and acknowledged within the text of my work.

Signed Student ID: 57112207 May 12th 2010

Contents

Contents 3

Abstract 7

Acknowledgements 8

List of Tables 10

List of Algorithms 11

List of Publications 12

1 Introduction 14

1.1 Cryptology . 14

1.1.1 Symmetric Cryptography . 19

1.1.2 Asymmetric Cryptography . 19

1.1.3 The Discrete Logarithm Problem 20

1.1.4 Pairing-Based Cryptography . 25

1.2 Motivation and Thesis Outline . 28

2 Mathematics and Notation 31

2.1 Fields . 32

2.2 Cyclotomic Polynomials . 35

2.3 Elliptic Curves . 37

3

2.3.1 Supersingular Elliptic Curves . 42

2.3.2 Non-supersingular Elliptic Curves 43

2.3.3 Divisors . 45

2.3.4 Weil Restriction and Abelian Varieties 47

3 Pairings 48

3.0.5 Cryptanalysis . 50

3.1 Computing Pairings . 51

3.1.1 Miller’s Algorithm . 51

3.1.2 Eta Pairing . 53

3.1.3 Ate Pairing . 53

3.2 Pairing-Friendly Elliptic Curves . 56

3.2.1 Parameter Generation of Pairing-Friendly Elliptic Curves 60

I Security 66

4 ECDLP and DLP Relationship in PBC 70

4.1 Determining the Minimal Embedding Field 71

5 Solving the DLP in Finite Fields 78

5.1 Early Attacks . 79

5.2 Index Calculus . 80

5.2.1 Sieving . 81

5.2.2 Linear Algebra . 81

5.2.3 Finding the Individual Logarithm 82

5.2.4 DLP Index Calculus Algorithms 83

5.3 NFS . 84

5.3.1 Relation Conversion . 86

5.3.2 Schirokauer maps . 87

4

5.3.3 Exploiting Automorphisms . 89

5.3.4 Large Prime Variations . 89

5.3.5 The Multiple Polynomial NFS . 90

5.3.6 Computational issues with the NFS 90

6 Solving the ECDLP 93

6.1 Index Calculus for the ECDLP . 93

6.2 Pollard’s Rho Method . 95

6.2.1 Speed-up for curves with non-trivial automorphism group 96

7 Part I Summary and Security Levels of Suggested Curves 98

II Efficient Algorithms 102

8 Representation of Finite Fields in PBC 106

8.1 Extension Fields Represented Using Towers 106

8.2 Existing Ideas for Constructing General Towers 109

8.3 General Tower Construction Method . 111

8.4 Towers in Pairing-Based Cryptography . 114

8.4.1 Tower Construction for PBC . 115

8.4.2 Euler’s Conjectures . 118

8.4.3 Twists and Choosing α . 121

8.5 Curve Construction for BN and KSS k = 18 123

9 Performing the Final Exponentiation 125

9.1 ‘Hard part’ of the Final Exponentiation . 126

10 Cofactor Multiplication to Obtain a Point in G2 134

10.1 A Fast Cofactor Multiplication Algorithm 137

10.2 Application to Ordinary Pairing-Friendly Elliptic Curves 138

5

11 Part II Summary 144

12 Closing Remarks 146

12.1 Summary . 146

12.2 Future Work . 148

A Computing the Security Levels of Suggested Curves 149

B Final Exponentiation 153

C Cofactor Multiplication to obtain a point in G2 158

Bibliography 162

6

Abstract
This thesis studies two important aspects of the use of pairings in cryptography, efficient

algorithms and security.

Pairings are very useful tools in cryptography, originally used for the cryptanalysis of

elliptic curve cryptography, they are now used in key exchange protocols, signature schemes

and Identity-based cryptography.

This thesis comprises of two parts: Security and Efficient Algorithms.

In Part I: Security, the security of pairing-based protocols is considered, with a thorough

examination of the Discrete Logarithm Problem (DLP) as it occurs in PBC. Results on the

relationship between the two instances of the DLP will be presented along with a discussion

about the appropriate selection of parameters to ensure particular security level.

In Part II: Efficient Algorithms, some of the computational issues which arise when us-

ing pairings in cryptography are addressed. Pairings can be computationally expensive, so

the Pairing-Based Cryptography (PBC) research community is constantly striving to find

computational improvements for all aspects of protocols using pairings. The improvements

given in this section contribute towards more efficient methods for the computation of pair-

ings, and increase the efficiency of operations necessary in some pairing-based protocols.

Acknowledgements
The last 3 years have seen many changes for me, both personally and professionally.

Without the friendship and support of many people, writing this thesis would not have been

possible.

Firstly, I would like to thank my supervisor, Mike Scott, for giving me the opportunity

to learn from him. In my time at DCU I have learnt a lot about researching and writing. I

am grateful for his patience as a teacher and infectious enthusiasm. I have enjoyed (nearly)

every minute of being a Ph.D. student.

I am thankful to Rob Granger for his invaluable advice, interesting discussions and

general support and friendship, especially throughout the last leg of my Ph.D. and thesis

writing.

It has been a pleasure working with all the DCU researchers and friends, past and

present, Anna Johnston, Paulo Barreto, Neil Costigan, Hyun Sung Kim, Ezekiel Kachisa,

Chen Yu and Manuel Charlemagne. In particular, the office would not have been as fun

without Luis Julian Dominguez Perez or Denis Butin. Thanks to Luis for the BBQs and

cooking lessons and Denis for the language classes (excuses for tea and cake!) and intense

thesis editing.

I really appreciated the opportunity to work with David Freeman; he taught me a lot

about how to approach some research problems. I also had a lot of support from Fre Ver-

cauteren while developing some ideas and am thankful for his patience and readiness to

help. I am grateful to everyone who has worked with me, overlooked my (sometimes) silly

questions and encouraged my enthusiasm for research.

Being a member of the Claude Shannon Institute has been a very rewarding experi-

ence, I have received a lot of support from everyone, particularly Gary McGuire and Elva

O’Sullivan. I have enjoyed the collaborations, workshops, discussions with many other

members of the Claude Shannon Institute.

The research I have undertaken was supported financially by the Claude Shannon Insti-

tute and the Science Foundation of Ireland, Grant 06/MI/006.

Working at DCU meant I had to move across the world, leaving my family in Australia.

I can’t wait to see them again, particularly my nieces who have grown so much and one I

am still yet to meet! Thanks to my sister for the constant photo updates!

I am also lucky enough to have wonderful friends in Australia who I can always count

on. No matter where we are in the world, we can always rely on each other. It’s been great

having breakfast/dinner parties with them using Skype (my breakfasts with their dinners),

but I can’t wait to sit with them all again and have a BBQ in the back yard, without the

constant fear of rain!

I would like to particularly thank my friend Eric; without his encouragement and com-

petition I would never have pushed myself to come this far. His friendship, support and

humour have helped me to realise my ambition and find a renewed enjoyment of learning

and research.

I have had such a great time in Dublin, thanks to all my new friends here who helped

me to feel at home. All the Ska parties, hidden pubs, secret gigs, Guinness and cliff walks;

I have learnt so much from you all about the world, friendship and myself.

Also thanks to my housemates and ‘semi-housemates’ who have made living in Dublin

fun. Alberto, for driving me to the point of insanity; and Tim, Marie, Gabi, Amira and

Mishan, for keeping me sane.

Most of all, I am thankful to my best friend and husband Phil, who makes all places feel

like home. I am glad he has been with me for every step of this crazy journey!

9

List of Tables

3.1 Suggested Curves for use in PBC . 59

7.1 Security Level of Suggested Curves . 99

8.1 Suggested Towers for Curves with Efficient Arithmetic 115

10

List of Algorithms

1 Miller’s Algorithm . 52

2 Calculate #E(Fpm) . 136

3 Reduction of the cofactor c(x) to base ψ(·) 139

11

Publications
Publications resulting from the research conducted are:

• Constructing Tower Extensions for the implementation of Pairing-Based Cryptogra-

phy, N. Benger and M. Scott, to appear in the proceedings of WAIFI 2010, Lecture

Notes in Computer Science, Springer [13].

In this article a method for the construction of extensions fields for efficient imple-

mentation of Pairing-Based Cryptography is given, presented in §8.

• On the security of pairing-friendly abelian varieties over non-prime fields, N. Benger,

M. Charlemagne and D. Freeman in H. Shachan and B. Waters, editors, Pairing-

Based Cryptography – Pairings 2009, volume 5671 of Lecture Notes in Computer

Science, pages 52–65, 2009 [12].

This paper outlines results on the relationship between the two instances of the Dis-

crete Logarithm Problem as they occur in Pairing-Based Cryptography, discussed in

§4.

• On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves,

M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez and E. J. Kachisa in

H. Shacham and B. Waters, editors, Pairing-Based Cryptography – Pairings 2009,

volume 5671 of Lecture Notes in Computer Science, pages 78–88, 2009 [86].

Faster implementation of the final exponentiation step of the pairing calculation, as

given in §9

• Fast Hashing to G2 on Pairing-Friendly Curves, M. Scott, N. Benger, M. Charle-

magne, L. J. Dominguez Perez and E. J. Kachisa in H. Shacham and B. Waters, edi-

tors, Pairing-Based Cryptography – Pairings 2009, volume 5671 of Lecture Notes in

Computer Science, pages 102-113, 2009 [85].

An improved method for performing the cofactor multiplication necessary in some

Pairing-Based protocols, presented in §10

13

Chapter 1

Introduction

———————————————————————————————————

Begin at the beginning and go on till you come to the end: then stop.

- The King to the White Rabbit, Lewis Carroll’s Alice in Wonderland,

Chapter XII, Alice’s Evidence.

———————————————————————————————————

In this chapter, we introduce the goals and results of the research undertaken. We begin

with a general introduction to cryptology and the important role it plays in today’s society

in Section 1.1. In Section 1.1.2 we present some examples of Public-Key Cryptography

and introduce Pairing-Based Cryptography in Section 1.1.4. In Section 1.2, we present the

motivation behind the work undertaken for the assembly of this thesis and outline the main

results contained herein.

1.1 Cryptology

Cryptology is, in a sense, the study of secrets. More specifically the study of the methods

of hiding and trying to retrieve secrets. The word ‘cryptology’ is derived from the Greek

words κρυπτ óς (kryptós), meaning “hidden” and λóγoς (lógos), meaning “word”.

14

There are two main areas of cryptology; cryptography, from the Greek kryptós and

γράϕω (gráphein) meaning “to write”; and cryptanalysis, from the Greek ‘kryptós’ and

άναλύειν (analýein) meaning “to solve a problem” or “to untie”. As the name suggests,

the aims in cryptography are to write, and devise ways of writing, in such a way as to not

reveal the message to unintended recipients; to study and design cryptosystems. The goal

of cryptanalysis is to extract the message from a cryptographically disguised text, without

using the intended system decryption method.

Cryptography has been used for centuries; Julius Caesar used what is known as a “shift

cipher” to communicate secretly with officials. Since then, there has been much develop-

ment in cryptography. Since the nineteenth century, the use of cryptography has become

more widespread and diverse; arguably spurred by the first and second World Wars, and

the subsequent increasing use of computers and electronic communication and commerce.

What we now refer to as Modern Cryptography is much more elegant than the cryptogra-

phy of Caesar and pre-World War II, which was primarily used for secrecy; it has become a

science incorporating both mathematics and computer science. Modern cryptography uses

organised procedures called protocols consisting of a set of steps, primitives, such as en-

crypt and decrypt used in a secret communication protocol or sign used in a digital signature

protocol.

Some basic principles observed by modern cryptography were given in 1883 by a Dutch

linguist, Auguste Kerckhoffs, with astute foresight [53]:

1. The system must be indecipherable in practice;

2. It must not be required to be secret, and it must be able to fall into the hands of the

enemy without inconvenience. The security of the system should rely on the key, not

on the secrecy of the system;

3. Its key must be communicable and retainable without the help of written notes, and

changeable or modifiable at the will of the correspondents;

4. It must be applicable to telegraphic correspondence;

15

5. It must be portable, and its usage and function must not require the concourse of

several people;

6. It is necessary that the system be easy to use, requiring neither mental strain nor the

knowledge of a long series of rules to observe.

Both cryptography and cryptanalysis are very important aspects of modern cryptology.

This is highlighted by the first principle: a cryptographic protocol must be unbreakable in

practice. Devising a cryptographic protocol is only one side of the process, it can only be

deemed secure if it has withstood and continues to withstand rigorous cryptanalysis.

The constant scrutiny of new and currently used protocols is necessary, in order to be

continually aware of the true level of security offered by a particular protocol and to choose

the protocol set up, system parameters, to give the appropriate level of security required.

This is one of the roles of cryptanalysis: testing the security of new cryptographic protocols

before they are deployed. Any weakness in a protocol discovered by cryptanalysis can be

removed from the system before it is in use so that once the protocol is implemented it is

not as vulnerable to malicious attacks.

Cryptography in some form is constantly being used, often obliviously; for example,

simply paying using a bank card and a PIN number. How simply we all use bank cards

illustrates the observation of Kerckhoffs’ sixth principle; a cryptographic protocol should

be accessible enough for people with little understanding of the underlying principles to

use, and yet also withstand cryptanalysis from specialists with a complete knowledge of all

aspects of the system.

A constant challenge for the cryptographic community is to ensure that both the first and

sixth principles are always observed. This entails being one step ahead of cryptanalysis,

by constructing cryptographic protocols which can withstand attack, whilst keeping the

protocols efficient enough to implement in such a way that they are practical to use. It is

important that a cryptosystem is easy to implement and use; retrieving cryptographically

disguised information should only be a difficult task for an unauthorised reader, that is,

16

someone who does not have the key.

The second and arguably most important of Kerckhoffs’s Principles has come to be

known as Kerckhoffs’s Principle. It states that the security of a cryptosystem should be

dependent only on the security of the key and not on the secrecy of the algorithm. The

importance of this principle is highlighted by Schneier in [83]:

‘If the strength of your new cryptosystem relies on the fact that the attacker does not know

the algorithm’s inner workings, you’re sunk. If you believe that keeping the algorithm’s

inside secret improves the security of your cryptosystem more than letting the academic

community analyze it, you’re wrong. And if you think that someone won’t disassemble

your code and reverse-engineer your algorithm, you’re naive.’

Schneier emphasises that it is only a matter of time until system weaknesses are found,

it is better to have the system thoroughly analysed before the system is in use. Thus, it

should always be assumed that the encryption and decryption primitives being used are

publicly known and that lack of knowledge of the secret key is what keeps the information

being communicated secure from an adversary. It is therefore reasonable to assume that

the following are all public knowledge before communication: the message space,M, of

all possible messages constructed from a given alphabet; the cipher text space, C, of all

possible cipher texts of messages; the key space of all possible keys, K; and the encryption

and decryption primitives, Ek :M→ C and Dk : C →M with respect to some key k ∈ K

such that Dk(Ek(m)) = m for all m ∈M.

Uses of Cryptography

Modern cryptography has an important role in today’s society. Aside from its most obvious

use, secure communication, cryptography has many other roles; keeping medical records

and bank account details not only secret, but also uncorrupted, is essential; signing elec-

tronic documents is becoming more important as we increasingly rely on the Internet as a

channel for communication and business.

17

Information Storage and Integrity:

Storing confidential information, such as medical records and bank transactions. These

records need to be kept not only confidential, but also tamper proof; the manipulation of

such records could have catastrophic effects, for example, the administration of incorrect

medication.

Signing:

Digital signatures are used to sign documents electronically. When using an insecure chan-

nel, a digital signature gives the receiver reasonable grounds to believe that the message

was indeed sent by the claimed author. A digital signature is closely linked to the message.

Authentication:

Communication is presumed to be secure once a cryptosystem and session key have been

agreed upon, as only parties using the valid decryption function are able to recover the

messages. What happens when the person with whom we have set up our system is not

actually who he or she claims to be? Authentication is important to prove one’s identity

before communication begins, so that no impostor can receive confidential information,

simply by impersonating a trusted party.

Non-repudiation of Origin:

Non-repudiation is to ensure that no party can falsely deny having taken part in a com-

munication. This is important for placing orders over the Internet, for example, so that a

customer can not purchase goods without paying, by denying placing an order.

Whatever the use of a particular cryptographic protocol, all protocols take on one of two

forms: Symmetric or Asymmetric.

18

1.1.1 Symmetric Cryptography

Private-Key Cryptography, or Symmetric Cryptography, is so called because the keys used

to encrypt and decrypt a message are either equal or easily derived from one another; the

key used for any secure communication must therefore be kept secret.

This is the oldest type of cryptography with a famous example; the afore mentioned

shift cipher, used by Julius Caesar. Using the shift cipher, the letters of a message were

shifted three places in the alphabet to obtain the cipher text so the encryption key is 3 and

the decryption key is −3. In this small example, it is obvious why it is imperative to keep

the key a secret; anyone who knows the key will be able to decrypt a message, whether they

were intended to read it or not.

Modern symmetric algorithms are very efficient, but not without drawbacks. One prob-

lem is that each pair of parties involved in any communication needs to securely agree on

the secret key before communication or the key must somehow be securely communicated.

Needing to communicate a secret key is not the only issue with symmetrical cryptography.

Key management is also a problem. Each pair of parties wishing to communicate needs a

common key; a group of t parties thus requires t(t − 1)/2 keys. These keys must be kept

secure and regularly changed to avoid potential security breaches. The communication of

new keys again becomes a problem.

1.1.2 Asymmetric Cryptography

The problems of key distribution and storage associated with symmetric cryptography were

the motivation behind the concept of Asymmetric Cryptography, also referred to as Public-

Key Cryptography. The first practical public key protocol was introduced by Whitfield

Diffie and Martin Hellman in 1976 [24] in the form of a key exchange protocol. The focus

of this thesis is an area of asymmetric cryptography. The idea is to use keys kE and kD

such that it is infeasible to calculate the one from the other. This way kE , referred to as the

public key, can be published and anyone wishing to communicate with Alice, for example,

just needs to find Alice’s public key from a list and encrypt the message; only Alice will be

19

able to decrypt the message using her corresponding private key. This concept solves the

problem of securely distributing keys. What’s more, in a network of t people, only t keys

are needed, a huge improvement on the situation using symmetric cryptography.

Asymmetric cryptography uses so called one-way mathematical problems; one-way

problems consist of an operation which is easy to compute, but difficult to invert. Using

one-way problems we are able to find key pairs kE and kD with the desired properties.

One such problem is the Integer Factoring Problem (IFP): given two large primes p and

q, it is easy to multiply them together to find l = pq, but given an integer l, the product of

two large primes, it is a much more difficult task to factor l to recover p and q.

1.1.3 The Discrete Logarithm Problem

Some terms used in this section are described in detail in Chapter 2, for other definitions

the reader is referred to [4, Chap. 2]. The Discrete Logarithm Problem (DLP) is a one-

way problem used in asymmetric cryptography, particularly in the area of cryptography of

interest in this thesis. It is defined in a finite, abelian group (G, ∗) as follows: Let β ∈ G be

in the group generated by α, that is, there exists an x ∈ Z such that

β = α ∗ α ∗ . . . ∗ α︸ ︷︷ ︸
x times

∈ G.

Definition 1.1.1. The DLP in G is: given α and β in G, compute x; we call x the discrete

logarithm of β with respect to α and write Logα(β) = x.

The groups in which solving the DLP is hard give a structure for the basis of many

cryptographic protocols. The DLP currently occurs in two instances in cryptographyl; in

the multiplicative group of a finite field and the group of points on an elliptic curve.

1.1.3.1 Finite Field DLP

The first instance of the DLP used in cryptography is in the multiplicative group of a finite

field.

20

Definition 1.1.2. The Finite Field Discrete Logarithm Problem (DLP) is:

Given elements α, β in the multiplicative group of a finite field, F∗pn , such that β is in the

subgroup of F∗pn generated by α (so G = 〈α〉), find x modulo |G| such that αx = β ∈ F∗pn .

ElGamal Signatures

An example of the DLP being the basis for the security of a cryptographic protocol is the

digital signature scheme suggested in 1985 by ElGamal in [31]. The protocol requires a

collision resistant hash function H , that is, a function which is non-invertible and for which

it is infeasible to find two messages m and m′ such that H(m) = H(m′).

Key Generation

Using a finite field Fp, p prime, Alice selects an element g ∈ Fp and a random number

x ∈ {0, . . . , p − 1} and computes h = gx. Alice’s public key is the set (p, g, h) and she

keeps x secret.

Signing

If Alice wants to sign the message m to send to Bob, she first selects a random integer

k which is non-zero mod p and coprime to p − 1. Alice computes r = gk mod p and

s ≡ (H(m)−xr)k−1 mod (p−1), where x is Alice’s secret key (if s = 0 then recompute

using a new value for k). Alice sends the pair (r, s) as the signature for m. The signature is

unique for each message.

Verification of Signature

When Bob receives the pair (r, s) with 0 < r < p and 0 < s < p− 1, he verifies that it is a

valid signature by checking that gH(m) ≡ hrrs, where h is Alice’s public key.

It is easy to see that sk + xr ≡ H(x) mod (p− 1) and so by the identity (2.1)

21

gH(m) ≡ gxr · gks

≡ (gx)r(gk)s

≡ hr · rs mod p. (1.1)

To generate false signatures, an adversary would either have to find a message m′ such

that H(m′) = H(m) (which we presume is infeasible) or compute Alice’s private key, that

is, solve an instance of the DLP.

The ElGamal signature scheme is not used in this exact form, but the Digital Signa-

ture Algorithm (DSA) proposed in [18] by National Institute of Standards and Technology

(NIST) is a widely used signature algorithm based on the ElGamal signature scheme.

Signing a message does not conceal the content, but using a similar setup we also have

the ElGamal encryption protocol.

ElGamal Encryption

When Bob wants to send a message m to Alice, first m is converted to an element m̄ of Fp,

then Bob chooses a random y ∈ {0, . . . , p − 1} and computes c1 = gy and the shared key

kAB = hy = gxy (h = gx is Alice’s public key). The shared key kAB is also referred to as

the ephemeral key as a new key is calculated each time two parties communicate. Using the

ephemeral key, Bob calculates c2 = m̄ · kAB and sends (c1, c2) to Alice.

Decryption

On receipt of a cipher text pair (c1, c2), Alice computes kAB = gxy = cx1 and m̄ = c2 ·k−1
AB

and then retrieves m from m̄. It is clear that this works as

c2 · k−1
AB = m̄ · hy · (gxy)−1 = m̄ · gxy · g−xy = m̄.

Examining the encryption scheme carefully, we notice that to break the protocol, the

22

adversary must solve a slight variant of the DLP, not strictly the DLP. An adversary can

observe the exchange of h = gx and c1 = gy. To recover the message, the adversary has to

compute the session key kAB = gxy from h and c1; this variant of the DLP is known at the

Diffie-Hellman Problem and was first suggested in [24].

Diffie-Hellman

The Diffie-Hellman Key Exchange was the first practical public key agreement method

suggested [24]. They used a slight variation of the DLP, now known as the Diffie-Hellman

Problem.

Definition 1.1.3. The Finite Field Diffie-Hellman Problem (DHP) is: Given elements g, gx

and gy in a finite field Fq, calculate gxy.

The DHP has been shown to be as hard as the DLP in some cases [22] and as yet no

groups are known in which the DHP can be solved faster than the DLP. Clearly the DHP

can be solved if the DLP can be solved.

The Decisional Diffie-Hellman Problem (DDHP) is also a derivative of the DLP and

can be used as a basis for security in some settings.

Definition 1.1.4 (Decisional Diffie-Hellman Problem). Given elements g, gx, gy and α ,in

a finite field Fq, determine if gxy = α.

Diffie-Hellman Key Exchange Protocol

As above, we use a prime field Fp with generator g. Two parties, Alice and Bob, each select

a random number xA and xB respectively with xA, xB ∈ {0, . . . , q − 1} and compute

hA = gxA and hB = gxB .

Key Generation

Alice and Bob publish hA and hB respectively (they keep xA and xB , respectively, secret).

Alice computes k = hxA
B = gxA·xB and Bob computes k = hxB

A = gxB ·xA = gxA·xB , now

23

Alice and Bob have a common secret key.

1.1.3.2 Elliptic Curve DLP

In 1985, Miller [71] and Koblitz [54] independently noticed that the DLP in the group of

points on an elliptic curve defined over a finite field is also hard to solve – in most cases

harder to solve than in the multiplicative group of a finite field of comparable size.

Definition 1.1.5. The Elliptic Curve Discrete Logarithm Problem (ECDLP) is:

Given points Q and P on an elliptic curve such that Q is in the group of points generated

by P , find the smallest positive integer l such that Q = lP .

Given that the ECDLP is harder than the DLP in the finite field (of equivalent size), there

are implementational advantages in adapting to elliptic curves many of the cryptographic

protocols originally proposed using the multiplicative group of a finite field.

EC Diffie-Hellman

The elliptic curve analogues to the DHP and DDHP in the finite field are as follows:

Definition 1.1.6. The Elliptic Curve Diffie-Hellman Problem (ECDHP) is:

Given the points P , aP and bP on an elliptic curve E, compute abP .

Definition 1.1.7. The Elliptic Curve Decisional Diffie-Hellman Problem (ECDDHP) is:

Given points P , aP , bP and Q on an elliptic curve E, determine if abP = Q.

Although it may seem, at first glance, that these last two problems would be equiva-

lently hard, that is not always the case. There exist groups in which the DHP is considered

computationally infeasible, but the DDHP is easy to solve; these groups are called Gap

groups [16].

It was believed that all elliptic curves achieve superior efficiency for a given level of se-

curity than finite fields (same level of security achievable using smaller system parameters)

until the attacks of [69] and [34, 33] showed that some curves admit a bilinear pairing which

24

maps the ECDLP to a DLP instance in a finite field, which is an extension of the finite field

over which the curve is defined. For curves with computable bilinear pairings, the hardness

of the ECDLP in those cases is therefore only as hard as the DLP instance in that finite field;

if this was “easier” than the ECDLP such curves were considered to be weaker and unsuit-

able for use in cryptography. With careful selection of the system parameters (discussed in

Chapter 7), however, these bilinear pairings can also be used to construct new cryptographic

protocols, even giving solutions to some previously unsolved cryptographic problems. The

area of public-key cryptography which uses these particular curves and bilinear pairings is

known as Pairing-Based Cryptography, which is the focus area of this thesis. The groups

of points on the curves admitting bilinear pairings are Gap groups. This will be illustrated

below.

1.1.4 Pairing-Based Cryptography

As mentioned, bilinear pairings were first introduced to the cryptographic community as a

tool for cryptanalysis. They have since been used in many ‘constructive’ ways; key agree-

ment schemes [49] and short signature schemes [16], for example, have been constructed

using bilinear pairings. The problem of developing an Identity-based encryption scheme

was easily solved using pairings [15]. These developments have spurred the research com-

munity into examining more uses of bilinear pairings in cryptography and the development

of Pairing-Based Cryptography (PBC).

A pairing has two basic properties: it is bilinear and non-degenerate. Non-degeneracy

ensures that we do not have a trivial pairing, always evaluating to 1. We denote by e 〈·, ·〉

a bilinear pairing, taking as arguments two points on an elliptic curve, from groups G1 and

G2 respectively, and returning an element of a subgroup, GT , of a finite field. For points

P, Pi, Q,Qi (i = 1, 2) on an elliptic curve the following properties hold:

e 〈P,Q1 +Q2〉 = e 〈P,Q1〉 e 〈P,Q2〉

e 〈P1 + P2, Q〉 = e 〈P1, Q〉 e 〈P2, Q〉 .

25

From the bilinearity property of a pairing, we see that the DDHP is easy in groups G1

when there is a known and computable isomorphism between G1 and G2 (such groups are

therefore Gap groups). Given an instance of the DDHP (P, aP, bP,Q) we simply compute

e 〈aP, bP 〉 and e 〈P,Q〉, then test for equality. The DHP is not straightforward in these

groups. When using a bilinear pairing, the security of a protocol often relies on the hardness

of solving the following hard problem [15, 49]:

Definition 1.1.8. The Bilinear Diffie-Hellman Problem (BDHP) is:

Given a pairing e 〈·, ·〉 and the points P , a point of order r, P1 = aP , P2 = bP , P3 = cP ,

where a, b, c ∈ {0, . . . , r − 1}, compute e 〈P, P 〉abc.

The Decisional Bilinear Diffie-Hellman Problem (DBDHP) is easily deduced from the

Bilinear Diffie-Hellman Problem.

Definition 1.1.9. The DBDHP is:

Given a pairing e 〈·, ·〉 and the points P , P1 = aP , P2 = bP , P3 = cP and Q, where a, b

and c are random integers modulo a large prime r, determine if Q = abcP .

1.1.4.1 Identity-based Cryptography

A novel way to manage the infrastructure of asymmetric cryptographic protocols is offered

by Identity-based (ID-based) Cryptography. ID-based cryptography is especially useful in

situations where there are many users and hence a need for many public keys. The public

key of a user is generated using some specific information, unique to the user’s identity,

which is freely available to other users. This could be an email or IP address, or even a

telephone number. In systems with many users, this has the advantage that public keys

need not be stored in a directory; users can determine the necessary public key using the

identity of the party with whom they wish to communicate. Another advantage of ID-based

cryptography is that a message can be sent to a party who has not yet registered or whose

key information is not online. Using their identity information, they obtain their private key

and can then decrypt the message after receiving it. The private keys corresponding to the

26

public keys are generated by a trusted authority, a Private Key Generator (PKG).

In 1984, Shamir first proposed the concept of an ID-based protocol [87] which can be

used to sign (IBS) and encrypt (IBE), giving also an IBS protocol. There have been pro-

posals for IBE schemes since then; Cock’s ID-based encryption scheme, for example, relies

on the hardness of distinguishing quadratic residues from quadratic non-residues modulo

a product of two large primes for security [19]. This scheme has the drawback that it re-

quires large bandwidth, which results in the scheme being impractical for general use. The

most efficient ID-based encryption schemes, proposed to date, are those which use bilinear

pairings. The first such ID-based encryption scheme was proposed in 2001 by Boneh and

Franklin [15] and uses the Weil pairing.

Boneh and Franklin ID-based Encryption

This ID-based encryption scheme is described in [15].

Setup

Choose the system parameters according to the desired security level: E, a pairing-friendly

elliptic curve over Fq with a large subgroup of r points and the pairing ê. The group G1

(= G2) is the group of points of order r over Fq and GT ⊂ Fqk . Select a generator P of G1

and a random number s ∈ Z∗r , and let Ppub = sP . Choose 4 hash functions:

H1 : {0, 1}∗ → G∗1

H2 : G2 → {0, 1}n

H3 : {0, 1}n × {0, 1}n → Z∗r

H4 : {0, 1}n → {0, 1}n.

The system parameters are:

〈r,G1,G2, ê, n, P, Ppub, H1, H2, H3, H4〉

27

The master key, s, is kept secret by the PKG.

Extraction of a Private Key

To obtain her private key, Alice sends her required information IDA to the PKG who returns

dA = sQA to Alice via a secure channel, where QA = H1(IDA).

Encryption

If Bob wants to send a message m of length n to Alice he first computes QA = H1(IDA),

selects σ, a random binary string of length n and computes h = H3(σ,m). The cipher text

is given by

c =
〈
hP, σ ⊕H2(ghA),m⊕H4(σ)

〉
where gA = ê 〈QA, Ppub〉.

Decryption

When Alice receives the triple c = 〈u, v, w〉, she first checks that u is a valid element of G1

and rejects the message if it is not. If the cipher text passes the first test, Alice computes

σ = v ⊕H2(ê 〈dA, u〉),

then

m = w ⊕H4(σ).

Finally, Alice accepts the message m as being a valid message if u = H3(σ,m) · P .

1.2 Motivation and Thesis Outline

As we have briefly seen, there are many benefits of using pairings in cryptographic proto-

cols, in particular for the implementation of ID-based cryptography. The continued interest

in, and potential implementation of PBC depend on both the security levels achievable by

28

protocols using pairings and the efficient implementation of pairings. The intention in this

thesis is twofold: to investigate the security offered by pairing-based protocols and to give

some improvements for the implementation of pairing-based protocols.

When considering the security of a cryptographic protocol, there are two approaches

to be aware of: a cryptographic protocol can be broken if the protocol (or implementation

thereof) itself is flawed or if the instances of the hard problem on which the security is based

are deemed easy; the second is the focus of this thesis.

The algorithms for solving the ECDLP and DLP as they occur in PBC will be analysed

in order to give more precise estimates for the sizes of the system parameters needed for a

particular security level to ensure that implementations are as efficient as possible.

The implementation of PBC is not as straightforward as other public-key protocols;

there are numerous obstacles to overcome, some of which will be highlighted and ad-

dressed.

This thesis is organised as follows: First, the necessary mathematical background will

be introduced in Chapter 2. In Chapter 3, the use of pairings in cryptography will be further

explored with a more detailed look at the actual pairing functions and how they are com-

puted. In Section 3.2, we present some families of pairing-friendly elliptic curves for use in

PBC. The remainder of the thesis is organised into two parts: Security and Algorithms.

In Part I, the security of PBC will be examined by firstly establishing the exact rela-

tionship between the two DLP instances occurring in PBC, in Chapter 4. These results then

enable us to explore the existing algorithms to solve the DLP in the multiplicative group of

the finite field, Chapter 5, and in the group of points on an elliptic curve, Chapter 6. The

computational complexity of these Algorithms will be examined in Chapter 7 in order to

give detailed security levels achievable by the curves described in Section 3.2.

In Part II, some useful algorithms for the implementation of PBC will be presented;

the efficient representation of the finite fields used in PBC, presented in Chapter 8; a faster

method for performing the final exponentiation, outlined in 9; and an improved method for

performing an expensive cofactor multiplication, given in Chapter 10. The contributions of

29

this part are summarised in Chapter 11.

Chapter 12 will summarise the contributions of this thesis to PBC and highlight possible

areas for further development.

30

Chapter 2

Mathematics and Notation

———————————————————————————————————

‘Let me see: four times five is twelve, and four times six is thirteen, and four times seven is

–oh dear! I shall never get to twenty at that rate!’

- Alice, Lewis Carroll’s Alice in Wonderland,

Chapter II, The Pool of Tears.

———————————————————————————————————

For the ideas presented in the subsequent sections to be clear, it is necessary to recall

some mathematical concepts and set the notation to be used throughout. In this chapter,

we present the fundamental areas of mathematics necessary to understand the details of

the work presented in this thesis. References used in the compilation of this chapter are

[74, 93, 90, 4, 100, 20]; a new property of cyclotomic polynomials is proved, a result of

collaboration with Manuel Charlemagne and David Freeman, included in Section 2.2. This

property is used in the publication [12], the results of which are detailed in Chapter 4.

31

2.1 Fields

The theory in the following chapters requires both finite and infinite fields. Let F be a field

and α an element of F . The characteristic of F is the smallest, positive integer n such that

for all α ∈ F ,

n · α = α+ α+ . . .+ α︸ ︷︷ ︸
n times

= 0,

we write charF = n. It is true that n is equal to either a prime (in which case F is a finite

field) or 0.

A polynomial is said to be defined over a field F if all its coefficients are contained in

F . The polynomial ring of F , denoted F [x], is the collection of all polynomials defined

over F .

A field F ′ is an extension field of F if it contains F as a subfield; we write F ′/F .

An element δ of any extension field F ′/F is called algebraic over F if it is a zero of a

polynomial in F [x]. An algebraic extension of F is the field given by adjoining δ to F ,

denoted F(δ), and the algebraic closure of F , F , is the extension of F containing all

elements algebraic over F . The extension degree of F(δ)/F is the degree of the minimal

polynomial of δ, f(x) ∈ F [x] such that f is a monic irreducible polynomial over F with

minimal degree and f(δ) = 0, denoted [F(δ) : F] = deg(f). The other deg(f) − 1 zeros

of f(x) are called the conjugates of δ.

It is true that an extension has finite extension degree if and only if it is an algebraic

extension.

The multiplicative group of a field F , consisting only of the invertible elements, the

units, will be denoted F∗.

Finite Fields

A finite field contains pn elements for some prime p and positive integer n; it is denoted

Fpn . Any finite field with pn elements has a subfield of p elements isomorphic to Fp, often

referred to as the prime subfield.

32

For all divisors d of n, Fpn has a subfield isomorphic to Fpd and [Fpn : Fpd] = n/d; all

subfields of Fpn are of this form.

Definition 2.1.1. The Frobenius automorphism of the field Fpn is the map:

πp : Fpn → Fpn

α 7→ αp.

The Frobenius automorphism fixes the prime subfield Fp and generates the Galois group

of Fpn/Fp, denoted GFpn/Fp
, the group of all automorphisms of Fpn fixing Fp. The Galois

group is cyclic and of order n.

Using the Frobenius automorphism we construct two other maps, the Trace and Norm

maps.

Definition 2.1.2. The Trace map for an element α ∈ Fpn is defined as:

TrFpn (α) =
n−1∑
i=1

πip(α).

The Trace of α, TrFpn/Fp
(α), is the sum of all its conjugates.

Definition 2.1.3. The Norm map for an element α ∈ Fpn over Fp is defined as:

NFpn/Fp
(α) =

n−1∏
i=0

πip(α).

The Norm of α, NFpn/Fp
(α), is the product of all its conjugates. The norm is multi-

plicative, that is, for α1, α2 ∈ Fpn ,

NFpn/Fp
(α1 · α2) = NFpn/Fp

(α1) ·NFpn/Fp
(α2)

and so for any ` ∈ Z+ we have NFpn/Fp
(α`) = NFpn/Fp

(α)`.

33

Number Fields

A Number field is an algebraic extension of the rational numbers Q. SupposeK is a number

field of the form Q(θ) where θ is a zero in C of the irreducible polynomial f(x) ∈ Q[x] of

degree d. All number fields are subfields of C. Labeling the conjugates, θ = θ1, . . . , θd ∈

C, the mappings ϕj for j ∈ [0, . . . , d − 1] which permute the roots of f(x) (ϕj(θi) =

θi+j mod d) give us d embeddings of K in C. The number of embeddings of K which

are contained in R is denoted r1 and the number of unique embeddings of K which are

contained in C\R is denoted r2 so d = r1 + 2r2. We call the pair (r1, r2) the signature of

K.

We can write the elements of K = Q(θ) as degree d − 1 expressions in θ and for an

element a ∈ K, a = a0+a1θ+. . .+ad−1θ
d−1 the Norm of a is given by the resultant of the

polynomials a(x) =
∑d−1

j=0 ajx
j and f(x); that is, NK/Q(

∑d−1
j=0 ajθ

j) = Res(a(x), f(x)).

The resultant is computed by finding the determinant of the Sylvester matrix, a (d + `)

square matrix, where ` is the largest positive integer ` ≤ d such that a` 6= 0.

An algebraic integer of K is an element of K which is algebraic over Q and whose

minimal polynomial is monic with integer coefficients. The set of all algebraic integers ofK

forms a ring, called the Ring of integers, denoted OK. It is true that NK(α) is an integer for

any α ∈ OK (this is easily shown by considering the coefficients of the minimal polynomial

of α). The ring of integers is not necessarily a unique factorisation domain, which can lead

to problems in the algorithms presented in later sections of this thesis. There is a way of

“measuring” how close the ring of integers is to being a unique factorisation domain, called

the class number of K.

Definition 2.1.4. Let K be a number field with ring of integers OK. An ideal I of K is a

fractional ideal of OK if αI is an ideal of OK for some α ∈ OK.

Definition 2.1.5. A fractional ideal I of OK belongs to the equivalence class [J] if αI = J

for some α ∈ OK. The number of equivalence classes is finite and is called the class number

of K, often denoted by h. Defining multiplication of fractional ideals to be [I][J] = [IJ],

34

the set of equivalence classes forms an abelian group under multiplication called the class

group of K.

A ring of integers with class number h = 1 has unique factorisation.

2.2 Cyclotomic Polynomials

Euler’s phi function, φ(n), which denotes the number of integers≤ n which are coprime to

n, has the following properties:

φ(mn) = φ(m)φ(n) for m,n coprime integers.

φ(pn) = (p− 1)pn−1 for p prime, n a positive integer..

Anothr usefull property is given by the following theorem:

Theorem 2.2.1 (Euler-Fermat Theorem). For positive, coprime integers x and m,

xφ(m) ≡ 1 mod m. (2.1)

Definition 2.2.2. A zero of the polynomial xn − 1 is called an nth root of unity.

From the above definition, it is easy to deduce that for any divisor d of n, a dth root of

unity will also be an nth root of unity. An nth root of unity ζ is called a primitive nth root

of unity if ζn − 1 = 0, but ζd − 1 6= 0 for any divisor d of n. The number of primitive nth

roots of unity is φ(n). We denote by µn the group of nth roots of unity and by µ̂n the set

of primitive nth roots of unity. It is the primitive roots of unity which define the cyclotomic

polynomials.

Definition 2.2.3. The nth cyclotomic polynomial is given by:

Φn(x) =
∏
ζ∈µ̂n

(x− ζ).

35

Cyclotomic polynomials have many uses in algebra and some well known properties.

Fact 2.2.4. [60, §VI.3]

1. xk − 1 =
∏
d|k Φd(x).

2. From the definition, we see that deg(Φn(x)) = φ(n).

3. If ` is a prime not dividing k, then Φk(x`) = Φk`(x)Φk(x).

4. If ` is a prime dividing k, then Φk(x`) = Φk`(x).

The following property has recently been proved by Benger et al. in [12, Lemma 2.8],

an alternative proof for a similar property can be found in [80, Lemma 5.2].

Lemma 2.2.5. If k and m are coprime, then

Φk(xm) =
∏
d|m

Φkd(x). (2.2)

Proof. Since the polynomials on both sides of the equation are monic, to show the poly-

nomials are equal, it suffices to show that they are of the same degree and have the same

roots.

• Degrees of the polynomials:

Clearly, the left hand side of (2.2) has degree mφ(k). For any coprime numbers x

and y it is true that φ(xy) = φ(x)φ(y). Since (k,m) = 1 by assumption, it is also

true that (k, d) = 1 for all d | m. It follows that the degree of the right hand side of

(2.2) is φ(k)
∑

d|m φ(d), which by Fact 2.2.4 (1) and (2) is equal to mφ(k).

• Roots of the polynomials:

Suppose ζ is a root of Φkd(x) for some d | m. Since ζ is a primitive kdth root of

unity, ζd is a primitive kth root of unity. Write m = de. Since gcd(k, e) = 1, it

follows that (ζd)e = ζm is also a primitive kth root of unity, so ζ is also a root of

Φk(xm).

36

Since the two monic polynomials in (2.2) have the same degree, and all roots of the

right hand side are also roots of the left hand side, we conclude that the two polynomials

are equal.

2.3 Elliptic Curves

Elliptic curves have been of interest for hundreds of years and are used as very efficient

structures upon which to base cryptographic protocols. In the foreword of [59], Lang writes

that “It is possible to write endlessly on Elliptic Curves. (This is not a threat.)” In this sec-

tion we present only the definitions, properties and results relevant to this thesis, compiled

from numerous sources [74, 93, 90, 4].

We retain the finite field notation from above.

Definition 2.3.1. An Elliptic Curve over a finite field Fq, q = pn for some prime p, is the

set of all solutions over Fq (called points) [x : y : z] in P2(Fq) satisfying the (Weierstraß)

equation

E : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, ai ∈ Fq.

The set of all solutions, denoted E(Fq), with elliptic curve addition (to be explained

momentarily) forms a group with identity element [0 : 1 : 0], denotedO, called the point at

infinity.

Often, for clarity, we use the affine version of the curve:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ Fq.

For any field F , Fq ⊆ F ⊆ Fq a solution (x, y) is defined over F if x, y ∈ F . The set of

points defined over F with O, denoted E(F),

E(F) = {(x, y) ∈ A2(F) | (x, y) satisfies the equation} ∪ O,

37

forms a group under the elliptic curve addition operation, called the F -rational points.

We consider O to be the point of infinity of the pencil of projective lines associated (by

homogenisation with respect to Z) with the lines in A2(Fq) parallel to the y-axis.

Without loss of generality we will use the affine Weierstraß equation throughout this

thesis. (It is easy to map between the two representations using (de)homogenisation with

respect to Z.)

If the elliptic curve is defined over a field with characteristic p 6= 2, 3 then by finding the

correct isomorphism over Fq we are able to write the elliptic curve in the short Weierstraß

form

E : y2 = x3 + ax+ b.

We use the notation Ea,b for this curve. The curves we will be examining in more detail in

this thesis will all be of this form.

Two invariants used to classify elliptic curves are the discriminant,

∆ = −16(a3 + 27b2),

and the j-invariant,

j = 1728a3/4∆.

The group operation elliptic curve addition (henceforth referred to simply as addition)

is performed as follows:

Let P = (xP , yP) and Q = (xQ, yQ) be two points in E(Fq) (not O, P 6= −Q); let `

denote the straight line passing through P and Q and let S be the third point of intersection

of ` with E (this exists as the defining equation of E has a cubic monomial). Let ν be the

vertical line through S (the line connecting S and O), then the point P + Q is given by

the second point of intersection of ν with E (which is equivalent to −S). This is illustrated

more clearly in Figure 2.1. To complete the addition law, we also set

P +O = P,

38

for any point P ∈ E(Fq) and

P +−P = O.

The inverse of a point P = (xP , yP) is given by −P = (xP ,−yP − a1xP − a3) or simply

−P = (xP ,−yP) when the curve is in short Weierstraß form.

We have concrete formulæ for point addition: For two points P , Q on E we define

S = P +Q where

xS = λ2 + a1λ− a2 − xP − xQ,

and

yS = λ(xP − xS)− yP − a1xS − a3,

and λ is the slope of the line through P and Q, which is

yP − yQ
xP − xQ

if P 6= ±Q,

and
3x2

P + 2a2xP + a4 − a1yP
2yP + a1xP + a3

if P = Q.

From Figure 2.1 it is clear that the group of points on an elliptic curve is abelian; it is

also cyclic, or isomorphic to a product two of cyclic groups. We write the number of points,

#E(Fq), as a product c · r, c ≥ 1, and for cryptographic purposes we like to choose curves

with a large, prime r and small c (called the cofactor).

Definition 2.3.2. The group of points with order dividing r is called the r-torsion group of

E(Fq), denoted E[r].

The r-torsion group is the kernel of the map P 7→ rP (where iP for some i ∈ Z denotes

P + P + · · ·+ P︸ ︷︷ ︸
i times

), that is, E[r] is the group of points such that rP = O.

39

Figure 2.1: Adding two points on an elliptic curve

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

6

-

P s

Qs
Ss

P+Q s

x

yν

`

Definition 2.3.3. Let E be an elliptic curve defined over Fq, q = pn. Let r 6= p be a prime

dividing #E(Fq). The embedding degree of E with respect to r is the smallest integer k

such that r divides qk − 1 and r does not divide qi − 1 for all 1 ≤ i < k.

With r and k defined as above, if k > 1 then all of the r-torsion points of E will be

defined over Fqk .

Definition 2.3.4. Let E, q, and r be as above. The minimal embedding field of E with

respect to r, denoted F , is the smallest extension of Fp containing the rth roots of unity

µr ⊂ Fq.

Clearly the minimal embedding field is a subfield of Fqk ; if n = 1, then the minimal

embedding field is Fqk . We will see, however, that this is not always the case (Chapter 4)

40

Figure 2.2: Doubling a point on an elliptic curve

(((
((((

(((
((((

(((
((((

(((
((((

(((
((

6

-

P s S

s

[2]P
s

x

y ν

`

when n > 1. Knowing the minimal embedding field is important for selecting parameters

for elliptic curve cryptographic protocols correctly.

As for finite fields, we are able to define the Frobenius endomorphism on the group of

points on an elliptic curve:

πq : E → E

πq((x, y)) = (xq, yq).

The trace of the Frobenius endomorphism is denoted by t.

There are two types of elliptic curves which will be mentioned throughout this thesis,

supersingular and ordinary elliptic curves.

41

2.3.1 Supersingular Elliptic Curves

Supersingular elliptic curves have many equivalent defining properties:

An elliptic curve E defined over Fq, where q = pn is a supersingular elliptic curve if

and only if:

• the greatest common divisor of q and t (trace of the Frobenius map), (q, t), is > 1;

• E has no pi-torsion points for some i ∈ Z+;

One other useful property of supersingular elliptic curves is that their endomorphism

ring is non-commutative and so there exist endomorphisms which map a point to a different,

disjoint group of points (of the same order). These maps have been termed distortion maps

[99]; their use in pairing-based cryptography will become apparent in Section 3.1. The

details of these maps are not necessary to understand their use.

Menezes, Okamoto and Vanstone [69] gave a complete classification of supersingular

elliptic curves over finite fields Fq, with q = pn. They showed that five possible embedding

degrees k can occur, k ∈ {1, 2, 3, 4, 6}, corresponding to five possible absolute values of

the trace of Frobenius t:

k t #E(Fq) p, n

1 ±2
√
q q ∓ 2

√
q + 1 any p, n even

2 0 q + 1 any p, any n

3 ±√q q ∓√q + 1 p ≡ 2 mod 3, n even

4 ±
√

2q q ∓
√

2q + 1 p = 2, n odd

6 ±
√

3q q ∓
√

3q + 1 p = 3, n odd

The supersingular elliptic curves defined over binary and ternary fields have a slightly

different short Weierstraß form from the one given above but this will not be used in this

thesis.

42

2.3.2 Non-supersingular Elliptic Curves

An elliptic curve which is not supersingular is called non-supersingular or ordinary. In

this thesis we shall adopt the following convention: ordinary elliptic curves will simply be

referred to as ‘elliptic curves’ and if a discussion refers to supersingular elliptic curves this

will be stated explicitly. Let E(Fp) (p a prime) be an elliptic curve. As for supersingular

elliptic curves, we know how many points will be in the group E(Fp) :

Theorem 2.3.5. (Hasse, Weil) An elliptic curve over a prime field Fp has p + 1 − t points

where |t| ≤ 2
√
p.

More details about properties of certain elliptic curves will be given in Chapter 3, when

the particular curves of interest to this work will be presented.

The set of isomorphisms of an elliptic curve E to itself preserving the point at infinity

forms a group, called the Automorphism group ofE, denoted Aut(E). The order of Aut(E)

is given by [90, Theorem III.10.1]:

j 6= 0, 1728 : Aut(E) has order 2;

j = 0 : Aut(E) has order 6;

j = 1728 : Aut(E) has order 4.

We also know that if m is the order of Aut(E), then by [90, Corollary III.10.2]

Aut(E) ∼= µm,

so we are able to fully determine the Automorphisms of E; we identify Aut(E) with µm

by the following map: if ζ is a primitive mth root of unity

[·] : µm 7→ Aut(E)

[ζ](x, y) = (ζ2x, ζ3y).

43

If E has a non-trivial automorphism group, these can be used to the advantage of the im-

plementer (Chapter 3) and the cryptanalyst (Section 6.2.1).

The elliptic curves over Fq with j-invariant 0 or 1728 are of the forms

Eb : y2 = x3 + b,

and

Ea : y2 = x3 + ax,

respectively. When p ≡ 1 mod 4 and p ≡ 1 mod 3 respectively, then the curves Eb and

Ea are non-supersingular. These curves both have non-trivial automorphism groups and

also higher degree twists.

2.3.2.1 Twists

An elliptic curve E′ over Fq is said to be a twist of E of degree d, where E is an elliptic

curve also defined over Fq, if there exists an isomorphism defined over Fqd

φd : E′ 7→ E,

where d is minimal. The curves we are interested in for PBC are those with higher order

twists because such curves will be used to speed up the calculations of pairings as will be

described in Section 3.1. The highest degree twist possible for a curve can be categorised

by the j-invariant of the curve [46]:

j 6= 0, 1728 : d = 2;

j = 0 : d = 6;

j = 1728 : d = 4.

For each elliptic curve E with twists of degree d, there are φ(d) unique twists, that is 2

44

possible twists of each of Eb and Ea. Suppose now that d = gcd(d, k) and let e = k/d.

Both the twists and the isomorphisms from the twists to the curve E can be defined

using an element i ∈ Fqe , which is not a power of any prime dividing e.

For Ea : y2 = x3 + ax, the quartic twists are given by E′1 : y2 = x3 + ax/i and

E′2 : y2 = x3 + ax/i3. The respective isomorphisms are given as [4]:

E′1 → E : (x, y)→ (i1/2x, i3/4y),

and

E′2 → E : (x, y)→ (i3/2x, i5/4y).

Similarly, for Eb : y2 = x3 + b, the sextic twists are given by E′1 : y2 = x3 + b/i and

E′2 : y2 = x3 + b/i5; the respective isomorphisms are given as:

E′1 → E : (x, y)→ (i1/3x, i1/2y),

and

E′2 → E : (x, y)→ (i5/3x, i5/2y).

For both cases, we see that the twist equations are defined over Fqe though the isomor-

phisms are defined over Fqk .

2.3.3 Divisors

Divisors are used in the calculation of pairings. They form a new group structure, con-

structed from the points of an elliptic curve, the divisor group, denoted Div(E).

Definition 2.3.6. A Divisor D ∈ Div(E) is a formal sum

D =
∑
P∈E

nP (P),

where nP ∈ Z and only finitely many nP are non zero. The degree of a divisorD is defined

45

to be
∑

P∈E nP .

From the definition it is obvious that the set of divisors forms a group under addition

and that the set of degree 0 divisors forms a subgroup, denoted Div0(E).

Definition 2.3.7. For a divisor D =
∑

P∈A nP (P), the set of points P for which nP 6= 0

is called the support of D.

Another subgroup of Div(E) is the group of principal divisors, defined using functions

on the points of E.

Definition 2.3.8. For a given function f , the order of f at a point P , denoted ordP (f), is

given by

ordP (f) =


n > 0 if P is a zero of f of order n

n < 0 if P is a pole of f of order − n

0 if P is neither a pole nor a zero of f

As functions have a finite number of zeros and poles, it follows that we can define

divisors of functions using the order function:

Definition 2.3.9. The divisor of a function f is given as (f) =
∑

P ordP (f)[P]. Divisors

which are divisors of a function are called principal divisors. The principal divisors form a

group under addition (as detailed below) denoted Divq(A).

From the definition of a divisor of a function, we can easily deduce the following prop-

erties: for two functions f and g, g 6= 0,

(fg) = (f) + (g);

(f/g) = (f)− (g).

Using the divisors of functions we are able to define equivalence classes in Div(E):

Definition 2.3.10. Two divisors D1 and D2 are said to be linearly equivalent, denoted

D1 ∼ D2 if there exists a function f such that D1 = D2 − (f).

46

Given any degree 0 divisor D =
∑

P∈A nP (P), it is simple to check whether D is a

principal divisor. The sum
∑

P∈A nPP evaluates to the point of infinity if and only if D is

a principal divisor.

Definition 2.3.11. The divisor class group, often referred to as the Picard group, is the

group of equivalence classes of degree 0 divisors under linear equivalence, that is, Div(A)0/Divq(A),

denoted Pic0(A).

2.3.4 Weil Restriction and Abelian Varieties

Suppose E is an ordinary or supersingular elliptic curve over the extension field Fpn . We

can choose an explicit polynomial representation of Fpn by taking a monic, irreducible,

degree n polynomial f ∈ Fp[t], then Fpn ≡ Fp[t]/f(t). The Weil restriction A of E is

given by the set of 2m-tuples (x0, . . . , xm−1, y0, . . . , ym−1) where (x, y) ∈ E(Fpn) for

x = x0 + x1t + . . . + xm−1t
m−1 and y = y0 + y1t + . . . + ym−1t

m−1. The group law

on A is derived directly from the group law on E and as such, A is an abelian variety of

dimension n over Fp. An abelian variety can be considered as a generalisation of an elliptic

curve (an elliptic curve is an abelian variety of dimension 1); this idea is sufficient for this

thesis. Abelian varieties will be mentioned in a general sense but no details or specific

properties will be used, excepting those pertaining also to elliptic curves and mentioned in

this section. The genus of a curve, denoted by g, is an invariant which describes the surface

and is equal to the degree of the associated abelian variety. This will be referred to in the

following sections but no particular details are used, nor are they necessary to understand

the results.

47

Chapter 3

Pairings

———————————————————————————————————

- Tweedledee and Tweedledum, Lewis Carroll’s Through the Looking-Glass and What

Alice Found There,

Chapter IV, Tweedledee and Tweedledum, illustration by Sir John Tenniel.

———————————————————————————————————

In this chapter pairings, as used in Pairing-Based Cryptography (PBC), will be exam-

ined in more detail. After a basic introduction to pairings, we consider their first use in

cryptology, for cryptanalysis. We introduce the algorithm for computing pairings for PBC

in §3.1, with some optimisations and modifications giving the pairings currently used in

cryptography.

Definition 3.0.12. A pairing is a map, e, from additive groups G1 and G2 into a multi-

plicative group GT , e : G1 × G2 → GT . For a given P1, P2 and P ∈ G1 and Q1, Q2 and

48

Q ∈ G2 a pairing has the following properties:

• Bilinearity:

e(P,Q1 +Q2) = e(P,Q1)e(P,Q2),

e(P1 + P2, Q) = e(P1, Q)e(P2, Q);

• Non-degeneracy:

∀P ∈ G1, P 6= O ∃Q ∈ G2 such that e(P,Q) 6= 1,

∀Q ∈ G2, Q 6= O ∃P ∈ G1 such that e(P,Q) 6= 1;

• Computability: e is efficiently computable.

We introduce here some notation for this section. A Miller function, denoted fs,P ,

for a point P on an elliptic curve E and some integer s, is a function with divisor of the

form (fs,P) = s(P) − ([s]P) − (s − 1)(O); if P has order dividing s, this becomes

(fs,P) = s(P)− s(O). For any point P , we denote by DP any divisor ∼ (P)− (O).

Weil Pairing

Let E be an elliptic curve defined over over a finite field Fq. The Weil pairing ([90, §III.8]

and [74, §16]) maps from groups of r-torsion points ofE to a subgroup of the multiplicative

group of Fqk , where k is the embedding degree of E with respect to r. The Weil pairing is

defined as:

ωr : E[r]× E[r] → µr ∈ Fqk

ωr(P,Q) = fr,P (DQ)/fr,Q(DP).

If P and Q are linearly independent and the divisors DP and DQ have supports disjoint

from those of fr,Q and fr,P respectively, then this pairing is non-degenerate.

49

Tate Pairing

The Tate pairing [28] is defined as the map:

tr : E[r](Fp)× E(Fpk)/rE(Fpk) → F∗pk/(F∗pk)r

tr 〈P,Q〉 = fr,P (Q).

This will be degenerate if Q is disjoint from the support of fr,P .

As the second argument, Q, is chosen as a representative of an equivalence class of

E(Fpk)/rE(Fpk) it follows that the result of the pairing will also be a representative of an

equivalence class of F∗
pk/(F∗pk)r, which is only unique up to a multiple of a power of r. As a

unique value is required for cryptographic applications, after computing fP (DQ) the value

is raised to the power (pk − 1)/r. The pairing tr 〈P,Q〉(p
k−1)/r, often called the reduced

Tate pairing, will be the pairing refered to throughout the rest of this thesis.

3.0.5 Cryptanalysis

The first application of pairing maps to cryptography was to attack cryptosystems whose

security is based on the hardness of solving the ECDLP on particular types of curves. From

the bilinearity property of a pairing, we can deduce that e([a]P,Q) = e(P,Q)a and so

solving the DLP in the group group G1 (similarly, G2) is at most as hard as solving the

DLP in GT , whenever such a pairing is computable. This was noticed by the authors of [69]

and [34, 33], who used the Weil and Tate pairings respectively to map the DLP in groups

of points on supersingular elliptic curves, G1 and G2, to a subgroup of the multiplicative

group of a relatively small field, GT . The most efficient algorithms for solving the ECDLP

and DLP in the finite field differ substantially (as will be explained in detail in Chapters 5

and 6). For most supersingular elliptic curves the ECDLP is more efficiently solved in GT

than in G1, thus the attacks in [69, 34, 33] were successful.

50

3.1 Computing Pairings

The pairings above are only useful for cryptography if we have some way of evaluating

them efficiently.

The Weil pairing can be considered as a ratio of two instances of the Tate pairing without

the requirement for the final exponentiation, thus we continue this section with discussions

for evaluating the Tate pairing; the reader may assume that the same methods apply for

computing the Weil pairing.

This evaluation requires a function fr,P , for a point P of order r, with a given divisor

(fr,P) = r(P)− r(O) to be evaluated at a divisor DQ ∼ (Q)− (O) with support disjoint

from that of (fr,P).

The divisor can be easily constructed by taking a random point S 6∈ {P,O} and defining

DQ = (Q+ S)− (S), checking that the support is disjoint from sup(fr,P).

Miller’s algorithm is a polynomial time algorithm for evaluating the Weil [73] and Tate

pairings.

3.1.1 Miller’s Algorithm

Instead of first trying to find the function fr,P and then evaluating it at DQ, the ingenious

idea behind Miller’s algorithm [72] is to use the linear functions used in the geometric

representation of the addition operation to iteratively construct fr,P (DQ), evaluating at

each step. We therefore require that the divisor DQ satisfies the slightly stricter condition

that it is disjoint from the support of the divisors of all intermediate functions. This idea

relies on the important observation [72] that

fi+j,P = fi,P · fj,P ·
`[i]P,[j]P

ν[i+j]P
,

where `[i]P,[j]P is the line connecting [i]P and [j]P and ν[i+j]P is the vertical line through

[i+ j]P (as used for the point addition computation outlined in Chapter 2).

For Miller’s algorithm we first write r in binary form, r =
∑
bi2i, bi ∈ {0, 1} then we

51

calculate f2i,P for all bi 6= 0 and use Miller’s observation to put them together to obtain

fr,P .

Algorithm 1 Miller’s Algorithm
[72]
INPUT: P and Q, points on an elliptic curve E, P a point of order r.
OUTPUT: 〈P,Q〉r.

1: Chose a suitable point S on E
2: Q′ ← Q+ S
3: T ← P
4: m← blog2(r)c − 1, f ← 1
5: while m ≥ 0 do
6: Calculate l and ν for doubling T
7: T ← 2T
8: f ← f2 l(Q

′)ν(S)
ν(Q′)l(S)

9: if mth bit if r is 1 then
10: calculate l and ν for addition of T and P
11: T ← T + P
12: f ← f l(Q

′)ν(S)
ν(Q′)l(S)

13: end if
14: m← m− 1
15: end while
16: return f

To compute a pairing, the algorithm must evaluate the Miller loop (lines 5 to 15 in

Algorithm 1) log(r) times. This is relatively expensive as it requires a lot of extension field

arithmetic and r is a large prime (the size of r will be discussed in Section 7).

If there exists a line defined over Fqk , denoted uO, which passes through O and is not

tangent to E such that uOrfr,P (O) = 1 then we say that fr,P is normalised (uO is called

a rational uniformiser at O). In this case we can work with Q instead of DQ. This is not

restrictive so all further pairings will use fr,P (Q) instead of fr,P (DQ).

In an effort to speed up the computation of the pairing, new pairings have been devel-

oped. These pairings have been made more efficient by incorporating observations about

the structure of particular types of curves which can lead to shorter Miller loops. The idea

of shortening the loop originally came from Duursma and Lee [30] and has been adapted to

yield the following pairings:

52

3.1.2 Eta Pairing

In [8], a generalisation of the work done in [30] resulted in the eta pairing on points of

supersingular curves. The eta pairing of points P and Q (Q ∈ 〈P 〉, P of order r) is given

by

eT (P,Q) = fT,P (ψ(Q)),

where T = t− 1 and ψ is a distortion map (as mentioned in §2.3.1).

3.1.3 Ate Pairing

To generalise the Eta pairing to a pairing defined over non-supersingular elliptic curves, the

Ate pairing was developed by Hess, Smart and Vercauteren [46].

All versions of the Ate pairing can be considered as optimised versions of the Tate

pairing taking as arguments points from the groups of points formed by the eigenspaces of

the Frobenius endomorphism. As explained in §2, all points of order r are defined over

Fqk . If r is a prime divisor of #E(Fq), then there is a group of points of order r defined

over Fq. The groups formed by the eigenspaces of the Frobenius endomorphism are: G1 =

E[r] ∩ Ker(πq − [1]) = E(Fq)[r], and G2 = E[r] ∩ Ker(πq − [q]), the q-eigenspace of the

Frobenius endomorphism on E[r].

The Ate pairing is given by:

eT (Q,P) = fT,Q(P)c(q
k−1)/N

where T = t−1 (as for the Eta pairing), N = gcd(T k−1, qk−1) and c ≡ kqk−1 mod r.

This gives a non-degenerate, bilinear pairing whenever r - c as it is clear that the Ate pairing

evaluates to be a power (by c) of the Tate pairing.

Notice the reversal of parameters (in the Tate pairing the point from G2 is the second

argument, in the Ate pairing is is the first). This makes the Miller loop more computation-

ally complex as Q is defined over an extension field, but the shortening of the loop means

the resulting pairing might be computed faster than the Tate pairing.

53

3.1.3.1 Twisted Ate pairing

Suppose the elliptic curve E admits a twist of order d, where d | k. From the discussion

of [46], there is a unique twist E′ of E or order d defined over Fqe (e = k/d) with a group

of points of order r. From [46, §IV], there exists a primitive dth root of unity ζd such that

Ker([ζ]πeq − 1) is isomorphic to E′(Fqe). We know that E′(Fqe) is stable under πq (as

is G2 = E[r] ∩ Ker(πq − [q])) so we may associate G2, a group defined over Fqk , with

E[r] ∩ Ker([ζ]πeq − [1]) ∼= E′[r] = G′2, a group defined over Fqe .

The (reduced) twisted Ate pairing of P ∈ G1 and Q ∈ G′2 is given by:

er(P,Q) = fT e,P (ϕd(Q))(q
k−1)/r,

where ϕd is the monomorphism ϕd : E′(Fqe) → E(Fqk). This shortens the Miller loop

when |T e| < r, resulting in another speedup.

For the supersingular case, taking P,Q ∈ G1 and using the distortion map ψ : G1 →

G2 recovers the Eta pairing.

The Ate pairing can achieve a Miller loop length as short as log(T) ∼ log(r1/φ(k)),

a huge improvement over the original Tate pairing. Results of [67] showed that the Ate

pairing is always at least twice as fast as the Tate pairing (in the optimal setting).

3.1.3.2 R-ate pairing

Generalising further, the R-ate pairing [61] uses ratios (hence the name) of pairings to

achieve shorter Miller loops for even more sets of curves and is currently the most efficient

pairing. For D1 and D2 divisors of E, over Fq with large prime order r, r | #E(Fq) and

A, B, a, b ∈ Z with A = aB + b, the R-ate pairing is given as:

RA,B(D2, D1) = fa,BD2(D1) · fb,D2(D1) ·GaBD2,bD2(D1),

where GiD,jD is a function with divisor (GiD,jD) = iD + jD − (iD + jD) (for some

divisor D).

54

For the R-ate pairing to be non-degenerate and bilinear, the pair (A,B) must be selected

carefully. Let Ti denote qi mod r, the pairs (A,B) which may render the R-ate pairing

non-degenerate and bilinear, as given in [61], are:

A = qi and B = r,

A = q and B = T1, (where T1 < q)

A = Ti and B = Tj ,

A = r and B = Tj .

3.1.3.3 Optimal Pairings

The Ate and R-ate pairings reduce the length of the Miller loop of the pairing computation,

for some families of curves, to log(r1/φ(k)) from the length log(r) necessary to compute

the Tate pairing by computing what is essentially a power of the Tate pairing. In [98],

Vercauteren conjectures that log(r1/φ(k)) is actually a lower bound for the number of Miller

operations required to compute a pairing on an elliptic curve with no efficiently computable

endomorphisms (apart from the Frobenius endomorphism).

The main idea used by the Ate and R-ate pairings to reduce the length of the Miller loop

is to write a multiple of r, c ·r, to the base πiq, where πiq (i = 0, . . . , k−1) are the Frobenius

endomorphisms. The Ate pairing then computes the cth power of the Tate pairing. Pre-

suming that no other efficiently computable endomorphisms exist for a curve, Vercauteren

showed that computation of the Miller loop will require at least (1 − ε) log(r1/φ(k)) itera-

tions.

Definition 3.1.1. (Optimal Pairing) A bilinear, non-degenerate pairing over a finite field

Fqk , e : G1×G2 → GT for the groups G1,G2 andGT as above, is called an optimal pairing

if it can be computed in log(r1/φ(k) + ε(k)) basic Miller operations (where ε(k) ≤ log(k)).

In [98], a method for deriving an optimal pairing for most families of elliptic curves is

given.

55

3.2 Pairing-Friendly Elliptic Curves

We cannot use just any elliptic curves for the implementation of pairing-based protocols.

We need elliptic curves with a subgroup of points of prime order r and embedding degree

k with respect to r such that r is ‘large enough’ for the ECDLP to be hard and k is ‘small

enough’ for the pairing to be computable and at the same time, large enough so that the

DLP in Fqk is hard (as discussed in Chapter 4).

For r to be ‘large enough’, we need to examine the most efficient algorithm to date for

solving the ECDLP; this will be done in Chapter 6.

A ‘small enough’ k is the defining property of a pairing-friendly elliptic curve as given

in [32]:

Definition 3.2.1. An elliptic curve E defined over Fq is said to be pairing-friendly, if there

exists a large prime r ≥ q1/2, such that r|#E(Fq), and the embedding degree k of E is less

than log2(r)/8.

The bound log2(r)/8 imposed on k is to ensure that the pairing is computable.

In [7], Balasubramanian and Koblitz investigate the probability that the methods, de-

scribed in Section 3.0.5, for reducing the ECDLP to the DLP in a finite field are feasible for

a random elliptic curve with a large prime-order group of points. They showed that the at-

tacks are successful when k < log p2, and that this inequality is satisfied with a probability

less than log p9+ε/p. We see now that such curves are quite specialised and rare, and though

they were originally known as ‘weak’ curves, to be avoided for implementation, these are

exactly the curves we need to implement PBC.

For PBC to be viable, we need to find rare, pairing-friendly elliptic curves E/Fq for

which the DLP in the group of points of order r on E is as hard as the DLP in the minimal

embedding field (a subfield of Fqk). Obviously, given the results of Balasubramanian and

Koblitz [7], simply selecting random curves and testing for these properties is not likely

to be a successful method for finding a suitable curve. Finding constructions of pairing-

friendly elliptic curves (and in general, pairing-friendly abelian varieties) is an active area

56

of research, with many constructions already available for the implementation of PBC.

To construct pairing-friendly elliptic curves we choose the suitable parameters, p, r, k

and t, (satisfying the restraints as above) then obtain the curve E : y2 = x3 + ax+ b using

the Complex Multiplication (CM) method [3]. For this construction to be computationally

feasible, the parameters must satisfy the CM equation, Dv2 = 4p − t2, for some small

(. 1016 [96]) square-free integer D and some integer v. The integer D is known as the CM

discriminant (or just discriminant) of the endomorphism ring of E.

Supersingular Elliptic Curves

Supersingular curves were the first curves to be recognised as pairing-friendly by Menezes,

Okamoto and Vanstone in [69].

Supersingular curves can have embedding degrees k ∈ {1, 2, 3, 4, 6} [69], obtaining

maximum embedding degrees of k = 4 over F2n , k = 6 over F3n and k = 2 over prime

fields Fp for p ≥ 5. This is very restrictive, and does not allow us to implement higher

levels of security efficiently; so, we will focus on non-supersingular (ordinary) pairing-

friendly elliptic curves defined over prime fields (n = 1), as they are more flexible for

implementation.

Ordinary Pairing-Friendly Elliptic Curves

There are two types of ordinary pairing-friendly elliptic curves, those in families and those

not. For curves not in families, the parameters p, r, k and t are calculated separately each

time. The pairing-friendly elliptic curves in families have p, r and t parametrised by uni-

variate polynomials p(x), r(x) and t(x) for a fixed value of k. The polynomials satisfy

Dv(x)2 = 4p(x) − t(x)2, for some fixed D and v(x), and r(x) | (p(x) − t(x) + 1). A

value x0 is sought, such that p(x0) and r(x0) are primes of the correct size to give the de-

sired security level. By construction, the values p(x0), r(x0) and t(x0) will satisfy the CM

equation and the resulting elliptic curve will have CM discriminant D. Of course, for such

an x0 to be found easily enough, we place the restraint on p(x) and r(x) that they should

57

be polynomials that represent primes. A function f(x) is said to represent primes if:

• it is non-constant and irreducible;

• the leading coefficient is positive;

• for some x1, x2 ∈ Z, gcd(f(x1), f(x2)) = 1 and

• for some x′ ∈ Z, f(x′) ∈ Z.

When considering which curves we would like to use in practice, we take into account

the ρ-value, given by log(p)
log(r) , which is a measure of the efficiency of the curve. The aim is

to have a maximal r for a minimal p, as the complexity of the arithmetic is determined by

log(p) and we would like this to be balanced with the security given, measured by log(r);

so for elliptic curves we would like 1 ≤ ρ ≤ 2, with ρ closer to 1 at lower levels of security.

For families of pairing-friendly curves, the ρ-value is taken to be lim
x→∞

p(x)
r(x)

=
deg(p)
deg(r)

.

Using families of pairing-friendly elliptic curves has some advantages; most notably, the

families often have a smaller ρ-value than the generic curve parameter generation methods.

There are a variety of curves available for implementation, each having different advan-

tages. Here we will consider the families of pairing-friendly elliptic curves satisfying the

following criteria: We prefer to use curves with large degree twists, as these curves have a

small discriminant and are therefore easy to construct and also give significant speed-up us-

ing the twisted Ate pairing [46] (as described in Section 3.1). We restrict our attention to the

case of even embedding degrees, which are more useful and practical, as they support the

important denominator elimination optimization [9], which eliminates inversions generally

required to evaluate a pairing. We also follow the recommendations of Koblitz and Menezes

[57, §8.3] to use curves for which the embedding degree k is of the form k = 2i · 3j , for in-

tegers i and j with i, j > 0. Taking all these constraints into consideration and also notes in

[32] on efficiency and security, Table 3.1 summarises the curves recommended for efficient

implementations of pairing based protocols. These criteria are concerned with efficiency

alone. There are some who believe that curves with too many fixed, specific parameters

58

Table 3.1: Suggested Curves for use in PBC

k ρ D Twist d Construction
4 2 1 4 FST [32]
6 2 3 6 FST/BLS [32, 10]
8 1.5 1 4 KSS [52]

12 1 3 6 BN [11]
16 1.25 1 4 KSS [52]
18 1.333 3 6 KSS [52]
24 1.25 3 6 BLS [10]
32 1.125 1 4 KSS [52]
36 1.167 3 6 KSS [52]
48 1.125 3 6 BLS [10]

also have vulnerabilities, if for no other reason than the fixed parameters giving a more

defined target for a cryptanalyst to attack. Ideally, all system parameters should be chosen

with the “maximal possible degree of randomness” (the “Hardline position” [55]). This is,

indeed, a justified prejudice, as [29] illustrates a slightly improved Pollard’s Rho algorithm

for computing discrete logarithms in the groups of points on an elliptic curve with CM dis-

criminant D = 1 or 3 (this is discussed in Chapter 6). This attack, however, only gives

a slight advantage and though it should be taken into account, it currently does not pose a

significant threat. When efficiency is a priority, we may prefer to be more lenient in our idea

of which parameters should be used; taking specific parameters for which there is currently

no known feasible attack but which allow more efficient implementations than truly random

parameters (the “Kinder, gentler viewpoint” [55]). In practice, one may wish to take more

than the speed of the calculations into account. For example, one may prefer to minimise

the bandwidth requirements of a curve used in a protocol for which much interaction is nec-

essary; in some situations, minimising the storage space or complexity of the elliptic curve

arithmetic may be a priority. It is not the goal of this section to be a comprehensive guide to

implementers, but to present some ideas for speeding up implementations, illustrated using

the chosen curve families as examples.

59

3.2.1 Parameter Generation of Pairing-Friendly Elliptic Curves

First we present here a general construction method for a pairing-friendly elliptic curve of

any desired embedding degree k, then we present the families of pairing-friendly elliptic

curves which can be used for more efficient implementations, introduced in Table 3.1.

3.2.1.1 Cocks-Pinch curves

The Cocks-Pinch curves are described in detail in [32] and [14, Chapter IX]. Suppose the

group in which the discrete exponentiation is being performed is of prime size r, then

p+ 1− t = αr for some α ∈ Z.

Set the desired embedding degree k and then choose r, such that k|r − 1 and using a

random ω ∈ Z, set t = ω
r−1

k mod r. Then from [9] we have the following:

(t− 1)k ≡ 1 mod r ⇒ r|(t− 1)k − 1⇒ r|Φk(t− 1).

Let v = (t − 2)/
√
−D mod r for some small fixed D. (This arises from solving the

CM equation 4p−t2 = Dv2.) As t, v andD are known, the appropriate prime can be found

by testing numbers of the form p = (t2d(mr + v)2)/4 for primality; incrementing m until

a suitable prime is found.

Cocks-Pinch curves usually have a ρ-value of 2 which is by no means optimal, but they

give a kind of ‘safety net’ to PBC. A ρ-value of 1 is achieved by some families of pairing-

friendly curves, which will be presented shortly, and so a much more efficient implemen-

tation is possible. Families of pairing-friendly curves could have a potential disadvantage,

should a more efficient algorithm to solve the ECDLP on a particular family of curves be

developed, then the security of the entire family of curves would suffer. Cocks-Pinch curves

do not seem to belong to a family of curves and so a more general technique is required to

attack the DLP on each curve individually. It is an open problem to show whether or not a

particular Cocks-Pinch curves belong to a family of curves or not.

60

3.2.1.2 Families of Pairing-Friendly Elliptic Curves

All non-supersingular pairing-friendly elliptic curves are CM curves; that is, the curves are

constructed using the CM method from the chosen parameters. The Taxonomy of Pairing-

Friendly Elliptic Curves [32] presents all currently known methods for selecting the param-

eters for the construction of pairing-friendly elliptic curves using the CM method. Some

new families of constructions are also given, these are known as FST curves.

FST k = 4

p(x) =
1
4

(x4 − 2x3 + 2x2 + 2x+ 1);

r(x) = Φ4(x);

t(x) = x+ 1.

This family of curves has a ρ-value of 2 and a discriminant D = 1 which means that this

curve had a quartic twist defined over Fp.

FST k = 6

p(x) =
1
3

(x− 1)2(x2 − x+ 1) + x;

r(x) = Φ6(x);

t(x) = x+ 1.

The FST construction given for curves with embedding degree k ≡ 0 mod 6 is actually

the same as the BLS construction for all k of the form k = 2i3j when i, j > 0. This family

has a ρ-value of 2 and discriminant D = 3, which means that the curve constructed using

these parameters has a sextic twist, also defined over Fp, which can be used to implement

the Ate pairing efficiently.

61

BN Curves

The construction of BN pairing-friendly elliptic curves is given by Barreto and Naehrig in

[11]. BN curves are a family of curves with embedding degree k = 12 and D = 3, with the

parameters p, r and t given by

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1;

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1;

t(x) = 6x2 + 1.

The Elliptic curve resulting from such parameters will take the form E : y2 = x3 + b, for

some non-zero b and, since D = 3 and 6 divides 12, we know that it has a sextic twist,

defined over Fp2 . BN curves are plentiful and easy to find.

KSS Curves

The construction of KSS curves, as described in [52], finds pairing friendly elliptic curves

with embedding degrees k = 8, 16, 18, 32, 36 and 40 with better ρ-value than has previously

been achieved for these embedding degrees. The most noted, however, is the construction

of the family of curves with embedding degree k = 18 with ρ-value, 4/3. Although this

ρ-value does not seem to be sufficiently low, the fact that these curves have sextic twists

defined over Fp3 makes the implementation of the KSS curves with embedding degree 18

very efficient. We present here the KSS families of focus, those with embedding degrees

k = 8, 16, 18, 32 and 36. All KSS curves with embedding degree divisible by 6 have a CM

discriminant D = 3, and so have sextic twists. KSS curves with embedding degree a power

of 2 have CM discriminant D = 1, and therefore have quartic twists.

62

KSS k = 8

For embedding degree k = 8, the system parameters are given by the following polynomi-

als:

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)/180;

r(x) = (x4 − 8x2 + 25)/450;

t(x) = (2x3 − 11x+ 15)/15.

For these curves ρ = 3/2. In this case, if we take x ≡ ±5 mod 30 then t(x) has integer

values and r(x) and p(x) represent primes.

KSS k = 16

The family of KSS curves with embedding degree k = 16 is parameterised by the following

polynomials:

p(x) = (x10 + 2x9 + 5x8 + 48x6 + 152x5 + 240x4 + 625x2 + 2398x+ 3125)/980;

r(x) = (x8 + 48x4 + 625)/61250;

t(x) = (2x5 + 41x+ 35)/35.

This family of curves has ρ-value 5/4. For values of x satisfying x ≡ ±25 mod 70, t(x)

has integer values and r(x) and p(x) represent primes.

KSS k = 18

For embedding degree k = 18, we use the following parameterisation:

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21,

r(x) = (x6 + 37x3 + 343)/343,

t(x) = (x4 + 16x+ 7)/7.

63

These curves have ρ = 4/3. We need to find a value for x which is 14 mod 42 to find

appropriate values for p, r and t.

KSS k = 32

The family of KSS curves with embedding degree k = 32 has parameters given by:

p(x) = (x18 − 6x17 + 57120x10 − 344632x9 + 742560x8 + 815730721x2

−4948305594x+ 10604499373)/2970292;

r(x) = (x16 + 57120x8 + 815730721)/93190709028482;

t(x) = (−2x9 − 56403x+ 3107)/3107.

These curves have a ρ-value of 9/8. Taking x ≡ ±325 mod 6214, we find that t(x) has

integer solutions, and r(x) and p(x) represent primes.

KSS k = 36

The KSS k = 36 curves have a ρ-value 7/6 and the system parameters are given by:

p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2 − 386569x

+823543)/28749;

r(x) = (x12 + 683x6 + 117649)/161061481;

t(x) = (2x7 + 757x+ 259)/259.

If we take x ≡ 287 mod 777, then t(x) has integer solutions, and r(x) and p(x) represent

primes.

BLS Curves

In [10] Barreto, Lynn and Scott give a method for constructing pairing-friendly elliptic

curves with embedding degree k = 2i3jqs, known as the BLS curves. These curves are

64

favourable for implementation for the values k = 24 and k = 48.

BLS k = 24

For the case k = 24 the parameters are given by:

r(x) = Φ24(x);

p(x) =
1
3

(x− 1)2r(x) + x;

t(x) = x+ 1.

BLS k = 48

The parameters for k = 48 are given by:

r(x) = Φ48(x);

p(x) =
1
3

(x− 1)2r(x) + x;

t(x) = x+ 1;

for both the k = 24 and the k = 48 cases, the chosen value of x needs to satisfy x ≡ 1

mod 3 for r(x) and p(x) to be integers (and potentially primes).

In the following sections r(x), p(x) and t(x) denote the parameterisation of the primes

and the trace of the Frobenius of families of pairing friendly-elliptic curves. The particular

value of x chosen to generate the appropriate parameters will be denoted x0, and the values

given by r(x0), p(x0) and t(x0) will be denoted simply as r, p and t respectively.

From the discussion in [65] we see that in the near future, a security level of 128-bits

is expected to become the standard minimum. We shall use the BN curves and the KSS

k = 18 curves as the main example families throughout this thesis, to illustrate the methods

given; these curve families are appropriate for use at ∼ 128 and ∼ 192-bit security levels

respectively, as will be made clear in Chapter 7. The methods are applied to other selected

families in the appendix.

65

Part I

Security

66

Security

———————————————————————————————————

- Fighting Red and White Knights, Lewis Carroll’s Through the Looking-Glass and What

Alice Found There,

Chapter VIII, It’s my own Invention, illustration by Sir John Tenniel.

———————————————————————————————————

All public-key cryptosystems are breakable in theory, using brute force (or blind luck);

given the public key, one could try every possible private key and eventually find the cor-

rect one. Simply because an attack exists does not mean a cryptosystem is insecure. The

attack may not be practical; if one chooses the system parameters correctly, the attacks are

rendered computationally infeasible. For example, if the only known attack on a particular

protocol is an exhaustive private-key search, we can choose the system parameters such that

there is a very low probability that an adversary will find the correct key by simply ‘testing’

until his computational resources are exhausted. Of course testing all keys, an adversary

will eventually find the correct key but this could take far too long, possibly longer than the

67

lifetime of the attacker. The attacker may also be lucky and guess the correct key the first

try, but the probability of this happening is very small. When assessing the level of security

a protocol offers, one needs to consider all possible attacks which can be used and what

kind of adversary one could be up against. One needs to take into account the following:

the knowledge and capabilities of an adversary and the resources they have available; to

what extent we consider an attack successful (when the private key is obtained or just a few

bits of a single message); the computational complexity of the attacks and how long the

computation will take given the adversary’s available resources; and, if a weakened version

of the protocol is broken or its most general setting.

We see, therefore, that it would be impossible to give the exact security of all pairing-

based protocols in one thesis; there are too many variables to take into account and a contin-

ually growing number of protocols. We must content ourselves with an examination of one

aspect of the security. Here we choose to focus on the hardness of the problem underlying

the security of most pairing-based protocols.

One of the concerns about the security of pairing-based protocols is that it relies on the

hardness of solving the BDHP, which is not a well understood problem. It is easily seen that

if we can solve the ECDLP or the DLP in a finite field, then we are able to solve the BDHP.

What is not known is if the BDHP is as hard as these two problems or if it is solvable using

other methods. In [56] Koblitz and Menezes discuss results of [99], which show that we

are only able to prove that the ECDHP on a pairing-friendly elliptic curve is as hard as the

DHP in a finite field if both problems are easy. Koblitz and Menezes speculate that, in a

similar fashion, the BDHP is not likely to be shown equivalent to any ‘standard’ problem

which is considered hard, unless both problems are easy. They argue that this need not

be an issue. Currently, the best method for solving the BDHP is by solving the ECDHP

or the DHP, which is solved by solving one of the DLP instances (as summarised in [56],

there is significant evidence that (EC)DLP and (EC)DHP are equivalent). To give minimal

requirements for system parameters, we examine the most efficient algorithms, to date, to

solve the ECDLP and DLP. This approach does simplify the setting significantly and is

68

by no means exhaustive, but can be considered to give minimal requirements; a pairing-

based protocol will not achieve high levels of security unless the DLP and ECDLP are hard.

Choosing the parameters to ensure this does not necessarily imply that a protocol is secure,

but is a necessary first step. The same approach is taken in [63].

We continue with the following notation: E is a pairing-friendly elliptic curve defined

over a finite field Fq with a group of points of large, prime order r and embedding degree k

with respect to r.

We begin in Chapter 4 by looking at the relationship between the ECDLP and the DLP

instances occurring in PBC. We know that the DLP instance arises in a subgroup of a

finite field contained in Fqk , but in order to give accurate parameter size recommendations

for implementations we need to establish exactly the size of the minimal embedding field.

The work of this section resulted in the publication [12] and is joint work with Manuel

Charlemagne and David Freeman.

In Chapters 5 and 6 the algorithms used to solve the DLP in the finite field and the

ECDLP, respectively, will be presented.

In Chapter 7 we use the details of these algorithms to give some approximations for the

sizes of the parameters necessary to achieve certain security levels.

69

Chapter 4

ECDLP and DLP Relationship in

PBC

———————————————————————————————————

‘Sometimes I’ve believed as many as six impossible things before breakfast.’

- The Queen, Lewis Carroll’s Through the Looking-Glass and What Alice Found There,

Chapter, Wool and Water.

———————————————————————————————————

From Chapter 3 we have seen that an instance of the ECDLP maps to an instance of

the DLP in a finite field. To be able to set up an efficient pairing-based protocol, we need

to choose the system parameters such that the two instances of the DLP are equally hard;

in order to do this, we need to know into which finite field the DLP maps. In this section

the relationship between the instances of the DLP occurring in PBC will be presented. The

results of this section do not take into account any specific properties of elliptic curves and

will therefore be presented in their most general sense, for abelian varieties. The definitions

of embedding degree and minimal embedding field of an elliptic curve given in Chapter 2

can be generalised to definitions for abelian varieties. First we set some notation for this

section: Let A be an abelian variety of genus g defined over Fq, q = pm for some prime p

70

and integer m, and denote by r, r 6= p, a large prime dividing #A(Fq).

Embedding Degree: The embedding degree of A with respect to r is the smallest inte-

ger k such that r divides qk − 1 and r does not divide qi − 1 for all 1 ≤ i < k.

Minimal Embedding Field: The minimal embedding field of A with respect to r, denoted

F , is the smallest extension of Fp containing the rth roots of unity µr ⊂ F̄p.

From the definitions it is clear that the minimal embedding field of A with respect to r

will be contained in the field Fqk . When m = 1 the abelian variety is defined over a prime

field and it follows that the minimal embedding field of A with respect to r is exactly Fqk .

The situation becomes more complex when m > 1; the minimal embedding field can

be a subfield of Fqk , much smaller than Fqk itself.

4.1 Determining the Minimal Embedding Field

If an abelian varietyA/Fq has embedding degree k with respect to r, then Fqk is the smallest

extension of Fq containing the rth roots of unity. The essential point to note is that the

minimal embedding field is defined as an extension of the base field Fp and not of Fq.

It was observed by Rubin and Silverberg [79] and Hitt [47] that bilinear pairings return

values in the minimal embedding field, not necessarily Fqk as was previously believed. In

particular, the Weil pairing and the Tate pairing (and variations thereof) take values in a

subgroup and a quotient group of F∗
qk , respectively. In both papers it was shown that it is

likely that the minimal embedding field is a proper subfield of Fqk .

This observation, found in different forms in each paper, is expressed by Hitt as follows:

Lemma 4.1.1. [47] Let q = pm, for p a prime and m a positive integer. For some prime

71

r 6= p and k the smallest positive integer such that qk ≡ 1 mod r, k is given by:

k =
ordr p

gcd(ordr p,m)
,

where ordr p = x > 0 ∈ Z such that px ≡ 1 mod r and x minimal. It suffices to have

k′ ∈ Q, that is, have k′ such that r|qk′ − 1 and k′ = ordr p
m . The minimal embedding field is

given by Fqk′ .

The result of this lemma is that the minimal embedding field of an abelian varietyA/Fq

is Fqk′ , where k′ = ordr(p)/m ∈ Q, which is not necessarily the same as Fqk . In both

papers [79] and [47], Rubin and Silverberg and Hitt pointed out this implies that previous

assumptions of the security of pairing-based protocols being based on the hardness of the

DLP in the group of points of size r on A and in the finite field Fqk give a misleading

overestimation of the security of the protocol on the finite field side.

It is important to note that when the abelian variety is defined over a prime field (that is,

when m = 1) these observations have no effect as the minimal embedding field is always

Fpk .

Hitt gives examples of abelian varieties where k/k′ = m, which is the largest possible

ratio for these parameters [47, §4]. In this case, the DLP occurs in Fqk , not Fqmk which

would have been used for the security estimate. This is clearly a problem for implementers

of PBC. In order to give a realistic estimate of the hardness of the DLP instance which

occurs in the protocol, it is imperative that one knows the finite field the pairing maps to.

For supersingular abelian varieties, which are currently the only known constructable

pairing-friendly abelian varieties over extension fields, Rubin and Silverberg propose a so-

lution. In [79] they give a theorem which distinguishes the minimal embedding field of a

supersingular abelian variety.

Theorem 4.1.2 ([79, Theorem 7]). Suppose A is an elementary supersingular abelian va-

riety of dimension g over Fq, q = pm, r 6= p is a prime divisor of #A(Fq), and s is the

multiplicative order of p mod r. Let FA(x) ∈ Z[x] be the characteristic polynomial of

72

Frobenius for A, and let f be the unique integer such that FA(x)1/f is irreducible in Z[x].

If q is a square, assume r > (1 +p)mg/2f . If q is not a square, assume r > (1 +
√
p)2mg/3f

and r > 7. Then ps = qcA,q , so FqcA,q is the smallest extension of Fp whose multiplicative

group has a subgroup of order r.

In other words, if A/Fq is an elementary supersingular abelian variety, where q = pm,

with embedding degree k with respect to r then we can expect the minimal embedding field

to take on one of two forms:

• If m is odd and r > (1 +
√
p)2mg/3, then the minimal embedding field of A with

respect to r is Fqk .

• Ifm is even and r > (1+p)mg/2 then the minimal embedding field ofA with respect

to r is either Fqk or Fqk/2 .

In the case of supersingular curves, the minimal embedding field is therefore either Fqk

or Fqk/2 . The actual field is determined using the cryptographic exponent, the cA,q defined

as in Theorem (4.1.2). This theorem is slightly cumbersome and has two disadvantages:

• The genus g of the abelian variety affects the lower bound on r. This can become

quite restrictive.

• It is only defined for supersingular abelian varieties.

Only supersingular abelian varieties are considered in [79], with the restult that the

minimal embedding field is either Fqk or Fqk/2 . As illustrated by the examples given by

Hitt [47], however, the minimal embedding field of ordinary abelian varieties could be up

to m times smaller than Fqk . It was clear that there was room for more investigation into

the sizes of the minimal embedding fields of ordinary abelian varieties.

In [12] we give a new theorem:

Theorem 4.1.3. Let k be a positive integer, pm a prime power, and r a prime. Write m =

αβ, where every prime dividing α also divides k and gcd(k, β) = 1. (This factorization is

73

unique.) Denote by e the smallest prime factor of β. Suppose r | Φk(pm) and that one of

the following holds:

1. m = α (and β = 1);

2. β is prime and r > Φkα(p);

3. r > pkm/e; or

4. 4 | m; or 2 | k and r > pkm/2e + 1.

Then r | Φkm(p).

Proof. The proof uses results and properties presented in Section 2.2. We first note that

Fact 2.2.4 (4) implies

Φk(pm) = Φkα(pβ). (4.1)

Since kα and β are coprime, Lemma 2.2.5 implies that Φk(pm) has Φkm(p) as a factor. Our

strategy in each case is to show that the remaining factors of Φk(pm) are all smaller than r.

Since r is prime, it then follows that if r divides Φk(pm) then r divides Φkm(p).

We now consider each case separately:

1. Since m = α it follows immediately that Φk(pm) = Φkm(p).

2. Since β is a prime not dividing kα, equation (4.1) and Fact 2.2.4 (3) imply that

Φk(pm) = Φkαβ(p)Φkα(p) = Φkm(p)Φkα(p).

Since r > Φkα(p), it follows that r | Φkm(p).

3. By equation (4.1) and Lemma 2.2.5 we have

Φk(pm) =
∏
d|β

Φkdα(p) =
∏
d|β

Φkm/d(p). (4.2)

By assumption we have r > pkm/d for all d | β except for d = 1, and by Fact 2.2.4

(1) we have pkm/d > Φkm/d(p) for all such d. It follows that r | Φkm(p).

74

4. Given the factorization of Φk(pm) as in (4.2), the same analysis as in Case 3 shows

that r > Φkm/d(p) for all d | β with d ≥ 2e. Since e is the smallest prime dividing β,

if d | β and 1 < d < 2e then d is prime, so it suffices to show that r > Φkm/d(p) for

all primes d dividing β. Let d be such a prime. The assumption 4 | m or 2 | k then

implies that km/d is even. In this case we have xkm/d−1 = (xkm/2d+1)(xkm/2d−

1), and Φkm/d(x) must divide the first factor by Fact 2.2.4 (1). Since d ≥ e, if

r > pkm/2e + 1 then r > Φkm/d(p).

The theorem is stated in terms of cyclotomic polynomials, with no reference to abelian

varieties, particularly no reference to properties of specific types of abelian varieties. We

need another Lemma to clearly show how this theorem determines the minimal embedding

field of an abelian variety.

Lemma 4.1.4. Let q = pm be a prime power, and A/Fq be an abelian variety. Let r 6= p

be a prime dividing #A(Fq), and let k, s be integers not divisible by r. Then

1. A has embedding degree k with respect to r if and only if r | Φk(q).

2. The minimal embedding field of A with respect to r is Fps if and only if r | Φs(p).

Proof. The first statement appears e.g. as [32, Proposition 2.4]; we observe that the same

proof applies to the second statement.

Using Lemma 4.1.4 to interpret Theorem 4.1.3 in the context of abelian varieties, we

obtain the following corollary:

Corollary 4.1.5. Let A, q = pm, r and k be as above. Assume that r - km. If q, k, and r

satisfy any of the conditions (1)–(4) of Theorem 4.1.3, then the minimal embedding field of

A with respect to r is Fpkm .

We note that in the case where m is prime, which is usually recommended for crypto-

graphic applications in order to prevent Weil descent attacks (e.g., [37, 38]) we usually have

75

r ≈ pmg (where g = dimA) and m � k, so we are in case (2) of Theorem 4.1.3. If p is

small (p = 2 and p = 3 are common choices) then in this situation the bound on r given by

the theorem is very weak; that is, A will have minimal embedding field Fpkm with respect

to any r of cryptographic size.

Ideally we would also like to apply Theorem 4.1.3 to abelian varieties over finite fields

that are not pairing-friendly. Specifically, if A/Fq is an abelian variety chosen for a non-

pairing-based cryptographic protocol, one wants to make sure that the discrete logarithm

problem in A(Fq)[r] cannot be reduced to a more tractable discrete logarithm problem in

a finite field. Thus one must ensure not only that the embedding degree k is sufficiently

large, but also that the minimal embedding field is sufficiently large. However, if k � m

and the genus g is small then none of the conditions of Theorem 4.1.3 can be expected to

hold: Condition (1) is very unlikely and conditions (2)–(4) would require r � qg, which is

impossible (as the number of points is ≈ qg and r is a divisor of the number of points).

Remark 4.1.6. If k is odd and m is even then Φk(xm) = Φk(xm/2)Φ2k(xm/2). Since

ϕ(k) = ϕ(2k) for odd k, these two factors have the same degree and we cannot use the

above techniques to show that r divides Φkm(p) and does not divide Φkm/2(p). Applying

Theorem 4.1.3 recursively to each factor allows us to determine conditions on q, k, and r

guaranteeing that r divides one of the two expressions Φkm(p) and Φkm/2(p), but additional

information is needed to determine which one. In the context of pairing-friendly curves, this

situation rarely occurs as even embedding degrees are preferred, as are prime values for m.

To summarise the contribution of Theorem 4.1.3, we now have conditions on the pa-

rameters p, k, m, and r for use in PBC which, when satisfied, ensure that the minimal

embedding field of an abelian variety A over Fpm with group of points of size r has min-

imal embedding field Fpkm with respect to r. These parameters already satisfy some basic

conditions simply because of the role they have in cryptography and for implementation’s

sake: the ECDLP must be computationally infeasible in the group of size r and m is prime

or near prime. These conditions are almost enough to ensure that the minimal embedding

field is Fpkm . Two advantages of Theorem 4.1.3 over Theorem 4.1.2 are:

76

• The bound on r given in Theorem 4.1.3 is not augmented by the genus, this means

that the conditions do not become more restrictive for higher genus abelian varieties.

• Theorem 4.1.3 is applicable to all abelian varieties, not just supersingular ones. Cur-

rently, the only constructable abelian varieties over non prime fields are the super-

singular varieties over fields of characteristic 2 and 3. Future discoveries of pairing-

friendly abelian varieties over non prime fields will be immediately assessable using

Theorem 4.1.3.

We are now easily able to verify whether the minimal embedding field is Fpkm = Fqk

using Theorem 4.1.3, so without loss of generality we may now safely presume that the

finite field DLP instance occurring in PBC is in Fqk .

77

Chapter 5

Solving the DLP in Finite Fields

———————————————————————————————————

‘You may call it ‘nonsense’ if you like ... but I’ve heard nonsense, compared with which

that would be as sensible as a dictionary!’

- The Queen, Lewis Carroll’s Through the Looking-Glass and What Alice Found There,

Chapter II, The Garden of Live Flowers.

———————————————————————————————————

From the results presented in Chapter 4 we may presume that the finite field DLP in-

stance occurring in PBC is in a field of the form Fqk , where k is the embedding degree

of the elliptic curve with respect to the group size. The methods for solving the DLP in

prime, binary and ternary fields are well understood and a lot of interest has been focused

on these cases. Until now, the DLP in medium prime extension fields has received relatively

little attention. Many of the limitations on the ‘exploration’ of the use of the method for

these cases are computational restrictions; the asymptotic complexity can not be thoroughly

tested in practice as this is computationally infeasible.

Before presenting the algorithms of this and the subsequent chapter we need to intro-

duce some notation. To describe the performance of an algorithm we use the following

notation:

78

Definition 5.0.7. Big O notation is used to describe an algorithm’s behaviour as input

parameters of the algorithm tend to a specific value (such as infinity). It gives an estimate

for the necessary resources to run a particular algorithm, for example computing power or

storage space.

In the context here, the bigO notation will be used to describe the growth rate of running

time and storage requirements as the size of the the finite field in which the DLP instance

occurs tends towards infinity.

Sub-exponential complexity is expressed using L-notation, which is slightly more con-

cise than the bigO notation; it is used to describe the behaviour of algorithms with run time

which is between polynomial and exponential.

Definition 5.0.8. The L-notation is given by

Ln(α, c) = O(exp{(c+ o(1)) ln(n)α ln(ln(n))1−α})

where c is a positive constant and 0 < α < 1.

When α = 0 we see that the run time of the algorithm is polynomial in log(n), and

when α = 1 the algorithm is fully exponential in n.

5.1 Early Attacks

There are a few obvious ways to solve the DLP in Fq. A brute force attack computes all

ax for all x ∈ 1, . . . , φ(q). This method needs only O(1) memory, but takes O(q) time.

This attack does not use available computing resources to their full potential. Similarly,

precomputing all possible values and storing the pairs (ax ∈ Fq, x) takes O(q) memory,

O(q) precomputation time and constant time to solve the discrete logarithm. To have an

effective algorithm, there should be a balance between memory used and run time.

79

BSGS

The ‘Baby-Step-Giant-Step’ algorithm (developed by Shanks) [20] is also often referred to

as Shanks’ Algorithm. It has running timeO(
√
q), where q is the size of the field. The basic

idea used in this algorithm is to write x = Loga(b) as x = mj+i for integersm =
√
p− 1,

j and i, so as to find x. The algorithm generates lists ordered with respect to the second

coordinate L1 = (j, amj mod p) and L2 = (i, ba−i mod p) by systematically ‘stepping’

through the positive integers i and j (L1 is the giant step list, stepping m at a time, L2 is

the baby step list). If there are elements (j, y) ∈ L1 and (i, y) ∈ L2 then amj = y = ba−i,

which gives amj+i = b = ax. Thus x = Loga(b) has been found.

Pollard’s Rho Method

This algorithm, based on the birthday paradox, can be used to solve the DLP in any group

in run timeO(
√
q), where q is the size of the group. It is the most efficient known algorithm

for solving the DLP in a generic group and will be presented in detail in Section 6.2.

Pohlig-Hellman

Suppose n =
∏r
i=1 p

ei
i is the prime factorisation of n = φ(q). Since Logb(a) = x is unique

modulo n, the idea is to find a system of equations xi ≡ x mod pei
i for 1 ≤ i ≤ r, and then

find x mod n using the Chinese remainder theorem. The xi are computed by computing

the coefficients of the xi in the pi-ary representation: xi = li,0 + li,1pi + . . .+ li,ei−1p
ei−1
i .

For the computation of each xi, it is necessary to solve the DLP in a group of size pi.

5.2 Index Calculus

The methods mentioned above are known as generic algorithms, the run time (and, in some

cases, memory required) for the algorithm isO(
√
q), where q is the cardinality of the group

in which the DLP is to be solved.

Currently, the most efficient algorithms for solving the DLP in finite fields are index

80

calculus methods which have run time and memory requirements both Lq(1/3, c), where q

is the cardinality of the field. These particular index calculus methods were developed to

factor large numbers, but have been modified to computing discrete logarithms with similar

success.

To find the discrete logarithm x of b ∈ Fpk with respect to a (b ∈ 〈a〉), the index

calculus method has 2 preliminary stages, a sieving stage and a linear algebra stage.

5.2.1 Sieving

The goal of the sieving stage is to find a series of linear relations in the logarithms of a fixed

set of elements. This is done by selecting two isomorphic representations of Fpk , say K1

and K2, and fixing a subset of elements in each of the representations, called the Factor

Base, denoted by F1 and F2. The Factor Bases usually contain the elements of small norm

or degree (bounded by a smoothness bound Bi, i = [1, 2]), depending on the particular

representations of the field.

The elements of Fpk are then ‘sieved’ to find pairs (α, β), α ∈ K1 and β ∈ K2, with

α ∼= β, and α and β smooth over their respective factor bases; that is, α and β can be

written as a product of elements of their respective factor bases. Such pairs are called doubly

smooth. The sieving continues until enough relations α =
∏
γi∈F1

γai
i
∼=
∏
γj∈F2

γ
bj
j = β

are found (more than the number of elements in the factor base).

These relations are converted to linear equations in the logarithms of the factor base

elements by taking the discrete logarithms of each side with respect to fixed (isomorphic)

elements in each representation.

5.2.2 Linear Algebra

The equations obtained in the sieving stage are solved using linear algebra modulo the group

order to find the logarithms of the elements in the factor bases.

Solving the linear equations is no trivial task. Though the matrix of equations is origi-

nally sparse, after only a few operations it becomes dense. There are a few popular meth-

81

ods for reducing this matrix and solving for the unknown logarithms: Lanczos’s algorithm,

Wiederman’s algorithm and structured Gaussian elimination. Some algorithms use a com-

bination of these methods [58].

5.2.3 Finding the Individual Logarithm

Once the preliminary stages have been completed and the logarithms of the factor base

elements have been found, the next step is to calculate the discrete logarithms of individual

elements, not included in the factor base. The methods used vary between algorithms,

usually using a variation of the special-q descent.

Suppose we wish to calculate the discrete logarithm of b with respect to a. If b is in the

factor base (or a = b), the discrete logarithm has already been found. For some element

b not in the factor base, denote the ideal generated by b by q = (b). To find the discrete

logarithm of b: search for an element δ such that q divides ∆ = (δ) and the norm of ∆

factors into primes smaller than some value D. Factor ∆ into a product of ideals and repeat

this process on the factors, continually lowering the bound D, until D < B and all factors

are in the factor base.

Replace the large factors in the previous step with the smooth elements found until q is

written as a product of factor base elements and the logarithm of b is easily determined.

Currently, the most efficient index calculus methods have complexity Lq(1/3, c), where

(32/9)1/3 ≤ c ≤ (64/9)1/3 using the Function Field Sieve [50] and the Number Field Sieve

[51]. The best sieve to use for a particular instance of the DLP depends on the size of the

field Fpk and also on the relative sizes of p and k (as specified in [50] and [51]). The optimal

run time will not always be achievable for all combinations of p and k.

Implementation

In some cases, using a combination of an index calculus method and a square root method

can be more efficient. For example, since logb(a) = x is calculated in a group of size pk−1,

if pk−1 factorises into a product of relatively small primes, the problem of finding discrete

82

logarithms can be reduced.

• For each small prime (power) factor m of pk − 1, the discrete logarithm modulo m

can be computed using Pollard’s Rho method.

• For the larger prime factors l of pk − 1, the index calculus method can be used to

compute the discrete logarithm modulo l.

These results can then be combined using the Chinese Remainder Theorem [20] to

compute the logarithm modulo pk − 1.

The factorisation of pk − 1 can be found efficiently by considering the factorisation of

xk − 1 =
∏
l|k Φl(x), where Φl(x) is the lth cyclotomic polynomial, and substituting p

for x, then factorising the smaller factors further using, if necessary, a powerful factoring

algorithm. Factoring algorithms using the number field sieve have complexity Lq(1/3). As

mentioned, the algorithms for finding discrete logarithms in this case also have complexity

Lq(1/3), and so the factoring of pk − 1 adds nothing to the overall complexity of the

algorithm and in all practical settings pk − 1 contains a large prime factor.

In the PBC setting we already know a large prime factor of Φk(p), r, the divisor of

#E(Fpk); in fact, we only need to compute the discrete logarithm modulo r in this case.

5.2.4 DLP Index Calculus Algorithms

There are two main index calculus methods for solving the DLP, the Function Field Sieve

(FFS) and the Number Field Sieve (NFS). The most obvious difference between these two

methods is the choice of representations used for Fpk : the FFS uses Fpk
∼= Fp[x]/f(x)Fp[x]

where f(x) is an irreducible polynomial of degree k; the NFS uses Fpk
∼= OK/(p) where

K = Q(θ), (p) is the ideal generated by p and the minimal polynomial of θ is of degree k

and is irreducible over Fp. The factor bases in the FFS consist of ideals of Fp[x]/f(x)Fp[x]

with norm a small degree polynomial, and the factor bases of the NFS are the ideals of OK

with norms less than a given bound.

83

The FFS and the NFS have similar complexities so we need to examine the details of

the asymptotic analysis to decide which of the two is the most appropriate for use in the

context of PBC. Once we know which algorithm to use we will be able to make more

accurate estimates of the sizes of the fields needed to balance the hardness of the ECDLP

with the DLP.

The most efficient version of the FFS is given in [50]. The complexity achieved is

Lpm(1/3) when log(p) <
√
m log(m), making it the most appropriate for binary and

ternary fields (which arise when supersingular elliptic curves are used).

To complement the curves suggested in Table 3.1 in Section 3.2, we focus on the finite

fields of the form Fpk where p is a medium prime. For such cases we know that k will be in

the range [4 . . . 48] implying that log(p) < 26 (if k = 48) if the FFS is to perform optimally;

clearly this is too small, using a brute force attack one could solve the ECDLP quickly. The

NFS in the medium prime case is the appropriate algorithm to use when p ≥ Lpk(1/3),

which is exactly the setting in PBC using the curves of Table 3.1.

5.3 NFS

The NFS algorithm developed by Joux et al. in [51] is an improvement of the originally

proposed algorithm by Schirokauer [81].

Examining the parameters of the curves given in Chapter 3 it is easily verified that the

NFS is indeed the most appropriate algorithm to use to solve the DLP in the context of

PBC.

The NFS follows the basic index calculus algorithm as outlined above. The isomorphic

representations of Fpk used are given by the quotient by (p) of the rings of integers of two

number fields. The number fields are constructed using two monic polynomials f1(x) and

f2(x) with a common root in Fpk . In the context of PBC, this is done by taking f1(x) to

be of degree k and irreducible modulo p with small coefficients and then taking f2(x) =

f1(x) + p. The number fields are K1
∼= Q[θ1] and K2

∼= Q[θ2] where θ1 and θ2 zeros

84

of f1(x) and f2(x) respectively in C. If we denote the ring of integers of Ki by Oi then

Oi/(p) ∼= Fpk .

The following lemma from [51] (a generalisation of [20, Lemma 10.5.1]) establishes

the construction for the factor bases.

Lemma 5.3.1. LetK = Q[θ] and (a0, . . . , al) be an (l+1)-tuple, ai ∈ Q for i ∈ [0, . . . , l],

with gcd(a0, . . . , al) = 1, then a prime ideal p dividing the principal ideal generated by∑l
i=0 aiθ

i either divides fθ = [OK : Z[θ]], or has degree ≤ l.

The factor bases are therefore:

Fi = {degree ≤ l ideals of Oi with norm ≤ Bi, prime ideals with norms n|fθi
},

for l ∈ Z+ determined by the relative sizes of p and k, and fθi
= [OKi : Z[θi]], i = 1, 2.

The smoothness and sieving bounds B1, B2 and S are set, depending on p, k and l.

We sieve through the l + 1-tuples, (a0, . . . , al) where aj are integers, |aj | ≤ S , with

gcd(a0, . . . , al) = 1. We want to collect pairs
∑l

j=0 ajθ
j
i for i = 1, 2 which have Bi-

smooth norms in Ki. Once a sufficient number of smooth elements have been found, the

ideal generated by
∑l

j=0 ajθ
j
i is to be factored into a product of ideals from the respective

factor bases Fi. The factorisation of the ideal
∑l

j=0 ajθ
j
i consists of principal ideals over

the primes in the factorisation of the norm. These ideals are in the factor bases by Lemma

5.3.1.

Let NKi/Q(
∑l

j=0 ajθ
j
i) =

∏
v p

ev
v for pv primes, pv ≤ Bi, be the factorisation of

the norm. For all primes pv in the factorisation of the norm which do not divide fθi
, the

irreducible factors of gcd(A(x), fi(x)) over Fpv correspond to ideals pvs lying above pv

which occur in the decomposition of the ideal. If gcd(A(x), fi(x)) is irreducible then pv

is the only prime ideal lying above pv and the pv-adic valuation of (
∑l

j=0 ajθ
j
i) is given

by m/deg pv; otherwise, the valuation of the ideal corresponding to each irreducible factor

of gcd(A(x), fi(x)) is calculated using [20, Algorithm 4.8.17], as for the primes pv which

divide fθi
.

The relations of products of powers of factor base elements are converted to linear

equations of logarithms of factor base elements by taking the logarithms with respect to a

85

fixed (isomorphic) element on both sides. Once this conversion has been performed, the

system of resulting linear equations is solved for the logarithms of the ideals in the factor

bases in the linear algebra step. The conversion is by no means trivial.

5.3.1 Relation Conversion

For clarity and ease of notation we now drop the index i, referring to the number fields as

K and sieve elements as
∑l

j=0 ajθ
j , keeping in mind that the process is performed in both

K1 and K2 simultaneously. Similarly, we take O to be the ring of integers of K, f(x) to be

the polynomial defining K and B the smoothness bound in K. Let (s1, s2) be the signature

of K and define s = s1 + s2 − 1, then the unit group of K, is U ∼= µ(K) × Zs, where

µ(K) = 〈u0〉 is a finite cyclic group of order. We denote by h the class number of K.

As explained in Section 5.2, we use the NFS to compute discrete logarithms modulo

a large prime factor r of pk − 1. We assume that r does not divide h and that r does not

ramify in K; this is only a minor restriction [51]. Once the ideal decomposition of the

smooth elements has been obtained:

(
l∑

j=0

ajθ
j) =

∏
v

pev
v ,

each equation is raised to the power h to obtain

(
l∑

j=0

ajθ
j)h = u

∏
v

δev
v , (5.1)

for elements δev
v ∈ O such that (δv) = phv and for some u ∈ U (note that the left hand side

is the hth power of the element
∑l

j=0 ajθ
j and not the ideal).

Each equation is likely to have a different u so taking the logarithms at this stage would

introduce too many new unknowns and thus drastically increase the number of equations

needed and the run time of the linear algebra. This is not an issue whenK has a computable

unit group. Instead of logarithms, Joux et al. used Schirokauer maps as in [81].

86

5.3.2 Schirokauer maps

We highlight again that the logarithms are being computed modulo r, so instead of working

with the entire unit group of K, denoted U , it is sufficient to work with the unit group

modulo the rth powers of units since if u ∈ (U)r then Logα(u) ≡ 0 mod r; that is, we

work with U/(U)r instead of U .

Denote by Γ1 the multiplicative set
{
γ ∈ U : r - NK/Q(γ)

}
. For each prime ideal pi

lying over r in O if we take εpi to be |O/pi|∗ then the lowest common multiple of the εpi ,

denoted ε, will give:

∀γ ∈ Γ1, γε ≡ 1 mod r.

It is easy to compute ε as each prime ideal, pi, lying over r in O corresponds to an irre-

ducible factor fi(x) of f(x) mod r. Then, |O/pi| is given by rdeg(fi(x)) and ε = rD − 1,

where D is the lowest common multiple of the degrees of the irreducible factors of f(x)

mod r.

Using the relation γε ≡ 1 mod r, Schirokauer defines the map λ1:

λ1 : Γ1 → rO/r2O,

γ → (γε − 1) + r2O.

Given that rO/r2O is a Z/r2Z-module of rank k [81], there exists a basis for rO/r2O

given by {rb` + r2O : ` = 1, . . . , k} such that {rb` + r2O : ` = 1, . . . , s} is a basis for

λ1(U).

In a similar way, let Γi denote the set {γ ∈ Γi−1 : λi−1(γ) = 0} where the maps λi are

given by:

λi : Γi → r2
i−1O/r2iO,

γ → (γε − 1) + r2
iO.

As above, r2
i−1O/r2iO is a Z/r2Z-module of rank k so there is also a basis {r2i−1

b` +

87

r2
iO : ` = 1, . . . , k}, then the maps λi can be given by the maps λi,w such that the

following congruence is satisfied:

(γε − 1) ≡ r2i−1
k∑

w=1

λi,w(γ)bw mod r2
i
.

The maps λi and λi,w are homomorphisms on U satisfying λi(γ1γ2) = λi(γ1) +λi(γ2)

and λi,w(γ1γ2) = λi,w(γ1) + λi,w(γ2) for i = 1, . . . , k and are therefore logarithmic maps

on Γi.

From the definition of the group Γ1 and the fact that units have norm 1 and the norms of

the elements
∑l

j=0 ajθ
j are smooth, we know that all units and elements

∑l
j=0 ajθ

j will

be in Γ1 (as r is a large prime – larger than the smoothness bound). Joux et al. used λ1 in

their algorithm, constructing the homomorphism

λ̄ : U/(U)r → (Z/rZ)s

u 7→ (λ1,1(u), . . . , λ1,s(u)),

for the λ1,w and {rbw + r2O : w = 1, . . . , s} is a basis for λ(U) as defined above.

Assuming that λ̄ is injective (λ̄(a) = λ̄(b) ⇒ a = b) and following the results of

Schirokauer [81], an element in U will be an rth power if and only if λ(u) is the zero vector

[51]. It is reasonable to assume that U does not contain a primitive rth root of unity so

it can be concluded that U/(U)r has rs elements and therefore λ̄ is an isomorphism. It is

therefore possible to find a (non-unique) set of units u1, . . . , us such that λ1,w(uw) = 1 and

λ1,w(uz) = 0 for z 6= w and write all units in the form

u = ūr
s∏
i=1

u
λi(u)
i , (5.2)

for some unit ū.

88

Returning now to the expression (5.1), multiplying each δv by the unit

uδv =
s∏
i=1

u
−λi(δv)
i ,

we obtain elements δ
′
v such that λi(δ

′
v) = 0 for i ∈ [1 . . . s] such that δ

′
v is a generator for

phv . Rewriting equation (5.1), denote A =
∑l

j=0 ajθ
j , using the form given in equation

(5.2) we have:

(A)h = ūrA

s∏
i=1

u
hλi(A)
i

∏
v

δev
v , (5.3)

for some unit ūa,b. Taking logarithms modulo r of both sides and dividing by h, we obtain

Logα(A) ≡
s∑
i=0

λi(A) Logα(ui) +
∑
v

evh
−1 Logα(δ

′
v) mod r.

The unknowns, the logarithms modulo r, can be solved for, using linear algebra.

5.3.3 Exploiting Automorphisms

In [51, Section 4.3] Joux et al. discuss an improvement to the algorithm as described above.

They propose using automorphisms to reduce the size of the factor bases in order to shorten

the linear algebra stage – the bottle-neck of the algorithm. They show that if the automor-

phism group of a number field K, Aut(K), is non-trivial, then the size of the factor base

can be reduced by a factor of # Aut(K), which is a divisor of k.

5.3.4 Large Prime Variations

One method to find more smooth relations is to allow relations with a limited number of

primes larger than the smoothness bound B but lower than a secondary bound B′. We call

such relations partial and this improvement is based on the birthday paradox (explained

in Section 6.2). If the number of primes between B and B′ is approximately v and we

allow norm factorisations with one large prime, then after collecting around
√
πB′/2 such

equations we expect to find partial relations with a common large prime. This large prime

89

is then removed from one relation using the other, giving us a new smooth relation from

two relations which would otherwise have been discarded. In [101] and [97] this method

is tested with positive results. The double large prime variation (allowing up to two large

primes) is used in [97]. Using more than two large primes has been successful when using

the NFS for factorisation. For example, in [25], a variation of the NFS for factoring using

four large primes was successful; but it is still unknown if it would be useful to adapt this

to the discrete logarithm NFS algorithm setting as it is slightly more complicated and may

introduce unnecessary computational complexity [97]. In [101] the experimental results

support the suggestion of [64] that B1.2 < B′ < B1.4 using the single prime variant (the

‘unsmooth’ part bounded by B′2 when using the double prime variant).

5.3.5 The Multiple Polynomial NFS

We see that the polynomial selection has a significant effect so it may be beneficial to use

multiple number fields instead of just two. This approach is called the Multiple Polynomial

NFS. It is easy to generalise the NFS above to a multiple polynomial number field sieve

with n polynomials. As above, we select a degree k, irreducible polynomial f0(x) in Fp[x].

Let α be a root of f0(x) in C and K0 = Q(α). For the other number fields, we let gi(x) =

f0(x)+p·hi(x), for i ∈ [1 . . . n], where hi(x) has degree less than k and gi(x) is irreducible

in Fp[x]. We denote by βi a zero of gi(x) in C and Ki = Q(βi).

The sieving is performed as above, only now we collect elements in the sieving region

which are smooth in K0 and (at least) one of the Ki. After sieving, for all i such that the

number of smooth points of Ki is less than Bi we discard Ki and the set of relations. We

then set up a system of equations from K0 and a remaining Ki and solve for the discrete

logarithms of the factor bases as usual.

5.3.6 Computational issues with the NFS

For each step of the NFS there are parameter choices to be made and implementation op-

tions which affect the performance; the best parameter selection for one step of the NFS

90

can result in the suboptimal performance of another step and in turn of the NFS as a whole

procedure. The most straightforward example of this is the choice of the smoothness bound

B; taking a higher bound decreases the sieving time, as it is easier to find smooth values,

but increases the time and space required in the linear algebra stage. The straightforward

approach for an implementation would be to simply choose B so that the running time and

space requirement of each step is equal; this, however is not as straightforward as it seems:

the sieving step is parallelisable, whereas the linear algebra stage is not as flexible [39]. The

optimal choice for B not only depends on the particular field Fpk and the relative sizes of p

and k but also on the particular implementation and the platform on which it is being run.

The choice of f1(x) also has an unpredictable effect on the runtime of the NFS. The

choice of f1(x) not only determines K1, but also K2. It therefore makes sense to not only

assess the structure ofK1, but also to assess the structure ofK2, when making this choice. In

[51] it is suggested that f1(x) should be chosen so that K1 has a large cyclic automorphism

group (with order k), thus decreasing the number of relations required by a factor of k

(and decreasing the size of the matrix accordingly). In [101] the author investigates the

probability of finding relations (doubly smooth elements) for different choices of f1(x). It

was shown that different choices of polynomial have a significant effect on the runtime of

the sieving stage: changing the polynomial which defines the number fields can increase the

probability of finding relations at a rate comparable with a four-fold increase in the size of

the factor base [101]. As the degree of elements sieved increases, finding enough relations

becomes a computational issue with the NFS so the selection of f1(x) is clearly important,

but the best choice for f1(x) can only be made on a case by case basis.

The smoothness bounds and polynomial selections are not the full extent of the vari-

ability of the NFS. Other choices affecting the runtime of the NFS include the choice of

the sieving region, the dimensions of the sieving space and whether to use large primes

and partially smooth relations, or not. Though the NFS has an asymptotic complexity of

Lpk(1/3, (64/9)1/3 +o(1)) as p and k both tend to infinity, given the many implementation

variables it is clear that we are not able to say much about the expected run time of the NFS

91

in practice, particularly for a fixed k.

In the PBC setting, as outlined in Chapter 3, the fixed extension degrees of the finite

fields and the relative sizes of the prime fields used for the particular embedding degrees

mean that the NFS is the most appropriate algorithm to use for solving the finite field DLP

instance. Given the approximate field size, we are still not able to run experiments to test

the runtime of the NFS as the parameters in such a simulation would be much too large; it is

currently computationally infeasible. Taking a smaller instance of the prime for a particular

embedding degree would not give us a realistic estimate of the runtime, as the relative sizes

of k and p have a significant effect on the runtime. In fact, it is possible that for such an

example the FFS would be the most appropriate algorithm to use, not the NFS. This leaves

us with the problem of not being able to thoroughly test the NFS in the context of PBC and

thus we are unable to give a concrete estimate of the hardness of the DLP in the context

of PBC; we will have to rely on the heuristic analysis of [51]. In fact, this can be said for

the use of the NFS in general: the NFS would obtain optimal performance (asymptotically)

only for fields for which it is currently computationally infeasible to compute examples;

this means that for all example cases, the parameters will have to be chosen such that the

NFS can not possibly achieve the optimal runtime; this is an advantage for PBC.

Complexity of the NFS in the context of PBC

There are three cases for the complexity of the NFS in the medium prime case. In the case

relevant to PBC, the complexity of the NFS depends on the relative sizes of p and k, this

will determine the degree of elements sieved. The parameters are such that p can be written

as p = Lpk(2/3, c) for some constant c. The complexity of the NFS is given by

Lpk(1/3, c′)

where c′ = 8
3

(
3l

4(l+1)

)1/3
and l is the degree of the elements sieved, given by the closest

integer solution to the real solution of 3tl3(l + 1)2 − 32 = 0 [51].

92

Chapter 6

Solving the ECDLP

———————————————————————————————————

‘Sentence first – verdict afterwards.’

- The Queen, Lewis Carroll’s Alice in Wonderland,

Chapter XII, Alices Evidence.

———————————————————————————————————

In this chapter, the hardness of solving the DLP in the groups of points on elliptic curves

will be examined. In contrast to the finite field case, the methods for solving the ECDLP

are well understood and have been rigorously tested.

6.1 Index Calculus for the ECDLP

One of the main arguments made by Miller [71] for the use of the group of points on an

elliptic curve in cryptography as an alternative to the multiplicative group of a finite field

is the improbability of the existence of a computationally feasible index calculus method

for solving the ECDLP. The analogue of the index calculus methods to solve the DLP in

a group of points on E(Fp), G = 〈P 〉, is to lift E to a curve defined over Q, E , and then

lift the points in G to points on E(Q). Once this has been done, the DLP can be solved

93

efficiently [71]. There are a couple of issues with this method, outlined in [71]. The first

being that E(Fp) needs to be lifted to a curve E(Q) with large rank and points with a

“small” enough representation (bounded by a value polynomial in log(p)), which is not

achievable in practice [71, 92]. In the lucky case that an appropriate E(Q) is found another

problem arises: there are many ways to lift points to E(Q), finding the correct points for the

index calculus algorithm to work is arguably a more complicated problem than the original

ECDLP.

These issues are investigated in depth in [92] with the authors giving more evidence to

support the claim of Miller in [71] that “... it is extremely unlikely that an ‘index calculus’

type attack on the elliptic curve method will ever be able to work.”

In [92] the authors show that computing a factor base for an index calculus method for

the ECDLP is exponentially more difficult than for the finite field case. The main explana-

tion given by the authors in [71, 92] that the index calculus method is not a practical method

in G, despite the success in the finite field, is the ‘size’ of the elements of the factor base.

Using a finite field index calculus method, the elements of a factor base with v elements

can be represented using≤ log(v) bits, whereas in the groupG the factor base elements are

significantly ‘larger’, around v log(v) bits in size [92].

In an effort to get around these problems, Silverman developed the Xedni calculus

method [91]. The Xedni calculus method begins by lifting v points P1, . . . , Pv from E(Fp)

to points Q1, . . . , Qv with integer coefficients. Next an elliptic curve E/Q which passes

through all v points must be found such that E has minimal rank. The Xedni calculus

method is thus the reverse process of the index calculus method, hence the name. If the

points Qi happen to be dependent in the group E(Q) then the relationships between the

points can be used to solve the ECDLP. The problem of finding points of small height in the

index calculus method has been replaced by the very low probability of the points Qi being

dependent and the experimental results [91] show that the Xedni calculus is also impractical

and the analysis of [48] shows that the algorithm will most certainly fail.

As there is currently no algorithm which can take into account the structure of the

94

group G, the best known algorithms for computing discrete logarithms in groups of points

on an elliptic curve are the generic methods, algorithms for computing discrete logarithms

in any general group. Such algorithms have expected run time O(
√
|G|). There are a few

well known square root methods: Baby-step Giant-step (also known as Shank’s method),

Pollard’s Kangaroo method (or Pollard’s Lambda method) and Pollard’s Rho method [4,

95].

6.2 Pollard’s Rho Method

We present here Pollard’s Rho method as it requires less storage space than other algorithms

and also has a speed-up, relevant in the security discussion of the subsequent chapter.

Pollard’s Rho method is based on a random walk crossing its own path; finding a ‘colli-

sion’ at different stages in the walk results in the discrete logarithm being determined very

easily. This idea is based on the Birthday Paradox: if we select v random values (with repe-

tition) from a set of r elements we expect to have two values the same if v is around
√
πr/2.

The effectiveness of this method relies on us wanting to find a match for any element; not

on us wanting to find a match to one particular element.

Let G be a group of points of order r on an elliptic curve, and suppose we wish to

compute a such that [a]P = Q for two points P,Q ∈ G. In practice we do not use a truly

random walk; to make use of a collision in the path we need to retain information about

each step. The best way to do this is to step through the path in a deterministic manner,

which resembles a random path in G. We use a random mapping f : G→ G and define the

random walk to be {si}∞i=0 where si+1 = f(si).

The name, Pollard’s Rho method, reflects the shape of the path resulting from this

random walk. The walk begins in the ‘tail’ and, by the birthday paradox, will meet itself at

some point leaving a path which resembles the Greek letter rho: ρ.

An example of such a random mapping f is given by the following [78, 4]: The group

G is randomly partitioned into 3 groups of approximately the same size: G0, G1 and G2.

95

We then define a random walk {Pi = [ai]P + [bi]Q}∞i=0 by:

Pi+1 =


Pi + P, Pi ∈ G0,

[2]Pi, Pi ∈ G1,

Pi +Q, Pi ∈ G2,

(ai, bi) =


(ai + 1, bi) ωi ∈ G0,

(2ai, 2bi) ωi ∈ G1,

(ai, bi + 1) ωi ∈ G2,

starting with a0 = 1 and b0 = 0. When a collision occurs we have [ai]P + [bi]Q =

[aj]P + [bj]Q for some i and j so if bj − bi 6= 0 we are able to recover LogP (Q) = ai−aj

bj−bi .

This example is a mixed additive and multiplicative random walk (it has two additive

steps and a multiplicative step) usually taken to be the most efficient type of random walk

[29]. Pollard’s Rho method is flexible; it can be parallelised [4, 29], the random walks

can use more than 3 partitions [4], and different methods of determining a collision are

available, cycle finding algorithms [4], which trade off space requirements against running

time. One particular optimisation of Pollard’s Rho method is given below for curves Ea :

y2 = x3 + ax and Eb : y2 = x3 + b defined over Fp and p ≡ 1 mod 4 or p ≡ 1 mod 3

respectively [29].

6.2.1 Speed-up for curves with non-trivial automorphism group

If an elliptic curve E/Fp has a point of order r, a large prime, then we know that r2 -

#E(Fp) so every point in G = E(Fp) or order r must be in 〈P 〉, the group generated by

P . For any automorphism σ ∈ Aut(E) the point σ(P) also has order r and so must be

contained in 〈P 〉. We say that 〈P 〉 is stable under Aut(E) and consider the automorphisms

σ as a restriction of σ to 〈P 〉. If σ is a non-trivial automorphism, then using Pollard’s

Rho method and an additive walk we are able to reduce the expected running time of the

algorithm by a factor of
√

ord(σ), where ord(σ) is the smallest, positive integer i such that

σi is the identity map [29].

The elliptic curves of the particular form given above have non-trivial automorphisms

of order 4 and 6 respectively, so using an additive walk the expected run time of Pollard’s

96

Rho method is
√
π|G|/8 and

√
π|G|/12 respectively [29]. Elliptic curves defined over

Fp and considered over fields of the form Fpn for n > 1 have a non-trivial Frobenius

endomorphism in which case a speed-up of
√
n can be achieved.

———————————————————————————————————

97

Chapter 7

Part I Summary and Security Levels

of Suggested Curves

———————————————————————————————————

She generally gave herself very good advice, (though she very seldom followed it).

- Lewis Carroll’s Alice in Wonderland,

Chapter I, Down the Rabbit-Hole.

———————————————————————————————————

A chain is only as strong as its weakest link. In the same way, a cryptographic protocol

is only as secure as its most vulnerable point. Choosing the parameters correctly is no

guarantee that a particular implementation of a protocol is secure, but it is the starting point.

When assessing the security offered by a particular set of system parameters, we need to

first be clear on what we consider a ‘break’ of the system; here we take it to be a solution

to the ECDLP or DLP being computed. Following still the reasoning of [63], we consider

the computational equivalence of solving the ECDLP and DLP instances to give us the

estimated security level for particular embedding degrees and families of curves. We say

a pairing-based protocol is efficient if both the ECDLP and DLP require an approximately

equal amount of computational power. We do not take into account the cost of the resources

98

Table 7.1: Security Level of Suggested Curves

Security Level (in bits) k ρ D Twist d Construction
∼ 107− 112 4 2 1 4 FST [32]
∼ 145− 150 6 2 3 6 FST/BLS [32, 10]
∼ 144− 149 8 1.5 1 4 KSS [52]
∼ 145− 150 12 1 3 6 BN [11]
∼ 208− 214 16 1.25 1 4 KSS [52]
∼ 237− 242 18 1.333 3 6 KSS [52]
∼ 277− 281 24 1.25 3 6 BLS [10]
∼ 313− 318 32 1.125 1 4 KSS [52]
∼ 347− 353 36 1.167 3 6 KSS [52]
∼ 411− 416 48 1.125 3 6 BLS [10]

necessary, or the cost associated with the running of the algorithms in the assessment of the

security.

We focus now on the families of curves suggested in Table 3.1. All of these curves are

vulnerable to the speed-up to the ECDLP algorithm as described in Section 6.2.1 as they

all have CM discriminant D = 1 or 3. We take into account the ρ-value of each curve

and the degree of the sieving elements for the NFS algorithm; this is where our method

varies slightly from the method in [63]. As the analysis of [63] precedes the algorithm of

[51] it is appropriate that the security levels be reassessed, taking the NFS into account.

The goal of [63] was to generate guidelines for public-key sizes used in different types of

public-key protocols. By focusing specifically on the PBC setting, we are able to take more

variables into account, such as the degree of elements sieved and the relative sizes of p and

k, which have a significant effect on the heuristic complexity of the algorithm, as described

in Section 5.3 (and an even stronger effect on the actual run-time, predicted by [101]).

We use the convention that a cryptographic protocol offers the security level s if the

complexity of solving the underlying hard problem using the best known algorithm is equal

to s. For an efficient implementation of a pairing-based protocol, we aim to have sEC ≈ sF ,

where 2sEC is the complexity of solving the ECDLP and 2sF the complexity of solving the

DLP.

99

The sizes of the parameters needed for a particular security level are given easily by

log(r) = 2 · (security level) and log(p) = 2ρ · (security level). These values correspond

with the families of pairing-friendly elliptic curves in column 6, with embedding degree

k with respect to a group of points of size r as computed above, the ρ-value and the CM

discriminant of the curve, D, in columns 2, 3 and 4 respectively.

Interpreting Table 7.1

The values in column 1 of Table 7.1 are the approximate intervals for which the complexity

of Pollard’s Rho algorithm is within a small constant factor of the complexity of the NFS

(factor between 1 and 3). We emphasize again that Pollard’s Rho algorithm has been tested

in numerous situations and the run-time in practice is very well understood. There have

been no algorithms developed to solve the ECDLP which exploit the group structure of the

points on an elliptic curve, and for many reasons, outlined in Chapter 6 given in [71, 92], it

is not likely that such an algorithm will be developed.

The actual run-time of the NFS, on the other hand, can not be so rigorously tested in

practice. There have also been suggestions that the DLP in the context of PBC is actually

more vulnerable than the general DLP in extension fields with medium prime characteristic.

In [82], Schirokauer discusses potential improvements to the NFS which exploit the low

hamming weight of the primes and the special form of primes used in PBC (the analogue

of the special number field sieve (SNFS) for factoring integers of a special form). There are

also other properties which are not yet exploited by the NFS which could lead to run-time

improvements. The composite extension degree (k), for example, gives the finite field a

much richer structure which could be used by the algorithm. The extension degree is fixed

for a particular family of pairing-friendly elliptic curves, this family could be vulnerable to

a specific variation of the NFS, adapted to the particular k (the complexity of the general

algorithm assumes that k is tending towards infinity). Another point to take into account is

that we can not use the L-notation as an exact count of computational steps, especially as

this is the limiting complexity as p and k tend to infinity, but we can use this complexity

100

to give us a range of security levels [65]. Taking the above into account, the security levels

given in column 1 are slightly overestimated and there is some flexibility. Also, the general

convention in cryptography is to err on the side of caution. To illustrate, it appears that

from column 1 of Table 7.1 that there is no appropriate curve admitting a higher order twist

for the implementation of a pairing-based protocol with a 128-bit level of security. We

emphasize that these values should be interpreted more as an upper bound for efficiency,

rather than a lower bound. It is generally accepted that the BN curves would be appropriate

to use for the 128-bit level of security, and we support this assumption. We also support the

opinion that the KSS k = 18 curves are appropriate for the 192-bit security level. From the

analysis of [65], the 128-bit and 192-bit security levels will become increasingly important,

so to illustrate the algorithms presented in the subsequent chapters, the BN and KSS k = 18

curves will be used as the primary examples.

101

Part II

Efficient Algorithms

102

Efficient Algorithms

———————————————————————————————————

‘Now, here, you see, it takes all the running you can do, to keep in the same place. If you

want to get somewhere else, you must run at least twice as fast as that!’

- The Queen, Lewis Carroll’s Through the Looking Glass and What Alice Found There,

Chapter II, The Garden of live Flowers.

———————————————————————————————————

In this section, some aspects of the implementation of pairings for cryptography will be

discussed. There is an important issue facing implementers of PBC, which does not have to

be considered for other public-key cryptographic schemes, such as RSA, or other schemes

based on the DLP. The issue is as follows: It is possible to write an implementation of RSA

or a discrete logarithm based protocol, which performs reasonably efficiently for any level

of security. For example, an RSA implementation with a 1024-bit modulus can easily be

modified to use a 4096-bit modulus, maybe by just changing a single parameter within the

program. The same applies to elliptic curve cryptography, where a generic implementation

will perform reasonably well for a curve with a subgroup of points of size 160-bits, 192-

bits or 256-bits. Of course, an implementation specially tailored for, and hard-wired to, a

particular level of security will perform somewhat better, but not spectacularly so.

The situation for PBC is fundamentally different. An efficient implementation at the

80-bit level of security, using the Tate pairing on a Cocks-Pinch pairing-friendly curve, will

103

be completely different from an implementation at the 128-bit level, using the R-ate pairing

on a BN curve, and very little code will be reusable between the two implementations.

In this situation the development and maintenance of good quality pairing code becomes

difficult and there is a compelling case for the development of some kind of automatic tool –

a cryptographic compiler – which can generate good quality code for each case [26]. Much

of the work presented in this part was motivated by the intention to contribute to such a

compiler.

For efficient implementations we see that using an optimal pairing and a curve admitting

a high degree twist is favourable. We have placed some restrictions on the embedding

degrees used, for practical reasons, and seen that choosing a security level restricts the

choice of embedding degree. One implementation issue remaining is how to represent

the finite field Fpk given a particular set of parameters; this choice is important as it will

affect the general efficiency of the protocol and also the ability to use several computational

improvements available for computing pairings and for use in pairing-based protocols. In

Chapter 8 we present results of work undertaken with Michael Scott, published in [13],

addressing the issue of how to best implement these fields for use in PBC.

In Chapter 8.5, work of Shirase [89] which determines the equation of some BN curves

is extended to KSS k = 18 curves. For some KSS k = 18 curves the elliptic curve equation

is given if x0 satisfies an easily checked equivalence relation. In these cases the necessity

of performing the point scalar multiplication test is removed.

The ‘final exponentiation’ step of the Tate pairing, and variations thereof, including

optimal pairings, is expensive but necessary. In Chapter 9 we present a fast algorithm for

performing the final exponentiation. This method comes from a collaboration with Michael

Scott, Manuel Charlemagne, Luis Dominguez Perez and Ezekiel Kachisa and resulted in the

publication [86]. It uses the polynomial description of the system parameters and addition

chains to reduce the cost of performing the final exponentiation.

This part concludes with a faster algorithm to perform an expensive cofactor multipli-

cation of a point on a twisted curve in Chapter 10. This algorithm extends ideas of [36] and

104

also exploits the polynomial parameterisation of the primes p and r, and the trace t, and uses

some curve automorphisms to reduce the cost of the cofactor multiplication. The develop-

ment of this algorithm is a result of collaboration with Michael Scott, Manuel Charlemagne,

Luis Dominguez Perez and Ezekiel Kachisa, published in [85].

Notation

Following on from Chapter 3, some notation will be constant throughout this section is: We

take E to be an elliptic curve defined over a finite field Fq, where q = pn for p a prime

and n ∈ Z+. The number of points on E(Fq) is divisible by a large prime number r and

the embedding degree k of E with respect to r, is the smallest positive integer such that

r | (qk − 1). The number of points E(Fq) is q + 1 − t, where t denotes the trace of the

Frobenius endomorphism and t satisfies | t |≤ 2
√
q.

105

Chapter 8

Representation of Finite Fields in

PBC

———————————————————————————————————

‘Curtsey while you’re thinking what to say, it saves time.’

- The Queen, Lewis Carroll’s Through the Looking Glass and What Alice Found There,

Chapter II, The Garden of live Flowers.

———————————————————————————————————

Let us assume now that we have selected a pairing-friendly elliptic curve for our imple-

mentation. We now have to implement, as efficiently as possible, all structures associated

with the particular curve. Not only the finite field Fp is used, but it will also be necessary to

perform arithmetic in Fpk and some intermediate fields Fp ⊂ Fpe ⊂ Fpk .

8.1 Extension Fields Represented Using Towers

First consider the implementation of a general extension field Fpk . The natural represen-

tation of elements of this field is as polynomials of degree k − 1, Fpk
∼= Fp[x]/f(x)Fp[x]

106

where f(x) is an irreducible polynomial in Fp[x] of degree k. For efficiency reasons some

effort might be made to choose f(x) to have a minimal number of terms and small coeffi-

cients. For example, for the field Fp2 , where p is a prime and p ≡ 3 mod 4, a good choice

for f(x) would be x2 + 1, and elements can be represented as ax+ b, with a, b ∈ Fp. For

the case p ≡ 5 mod 8, a good choice for f(x) would be x2 − 2. For the final case p ≡ 1

mod 8 there is no immediately obvious way to choose a suitable irreducible binomial, but

for some small value i which is a quadratic non-residue in Fp, x2− i would be appropriate.

In some settings, the value of the extension degree k can be much greater than 2, as

in PBC, in which case the direct polynomial representation becomes more arithmetically

complex. For elliptic curve cryptography implemented over “Optimal Extension Fields”

(OEFs), as suggested by Bailey and Paar [5], extensions as high as Fp30 are considered; in

pairing-based cryptosystems, an extension degree of up to 50 is reasonable, as discussed in

the previous section. OEFs are usually defined as extensions with respect to a small single-

word pseudo-Mersenne prime. The extension fields that arise in the context of efficient

implementations of PBC, however, are rather different.

If the extension degree is a parameter of the implementation, then the potentially un-

comfortable situation arises where, if the extension degree changes, an optimal imple-

mentation must be re-written, largely “from scratch”. The alternative seems to be to use

generic polynomial code to construct the extension field, making the implementation slow

and bulky. A nice compromise that applies when the extension k is smooth (that is, has

only small factors) is to use a “tower” of extensions, where one layer builds on top of the

last, and ideally where each sub-extension is quite small. For example, Fp12 could be im-

plemented as a quadratic extension, of a cubic extension, of a very efficiently implemented

(and reusable) quadratic extension field Fp2 , as implemented by Devegili et al. [23].

This idea of using a tower of extensions was suggested by Baktir and Sunar [6] as a

better way of implementing OEFs, and in the process of doing this they discovered that

the resulting simpler implementation resulted in an asymptotically improved method for

performing field inversion. It is relatively easy to implement quadratic and cubic extensions

107

efficiently, whereas the complexity of implementing generic methods over large extensions

might result in the inadvertent use of sub-optimal methods.

It is also proposed in the IEEE draft standard “P1363.3: Standard for Identity-Based

Cryptographic Techniques using Pairings” that extensions of odd primes are constructed

using a tower of extensions created using irreducible binomials at each stage [1], adjoining

roots of elements to give the extension.

There are other supporting factors for the use of tower extensions in PBC. Many of

the operations necessary in PBC can be computationally expensive so it is important that

every possible optimisation is exploited. Optimisations can be made by speeding up and

shortening the Miller loop (as described in Section 3.1.1) by carefully selecting curves and

twists of curves used in the pairing, or by speeding up operations required in pairing-based

protocols. Many of these optimisations have one detail in common: they assume that the

finite fields used in PBC can be (and are) represented in the most efficient way. That is, it

is presumed that Fpk can be given as a sequence of tower extensions of Fp, using only one

element of Fp to automatically construct the towers.

For example, in [42], a method for speeding up squaring of elements in the cyclotomic

subgroup of fields of the form Fpk where k is divisible by 6 is presented. This results in

faster manipulation of elements used in pairing-based protocols. The results of [42] rely on

a tower representation of the extension field in order to ‘unravel’ operations in the extension

field down to a subfield, using also the Frobenius automorphism, to compute operations in

a subfield, instead of in the full extension field Fpk .

In [21], a method for speeding up the computation of the Miller loop in the pairing

computation is given. This is achieved by replacing the double-and-add method by an 2n-

tuple-and-add. The speed-up is a result of a reduction of the number of operations in the full

extension field replaced by an increase in the number of operations in a subfield. This relies

on both the extension field Fpk and the subextension fields, Fpe ⊂ Fpk over Fp (for e | k)

having an efficient representation, that is, it requires the extension field to be implemented

as a tower of extensions. In [75] a method to speed up the computation of the Tate pairing

108

is given, which relies on a tower extension ending with a cubic extension.

Clearly it is advantageous to use this towering method when implementing a pairing-

based protocol. One issue remains: finding the best tower for a particular value of k. Ob-

viously, for different values of k, we will need to use different towers. A very reasonable

approach in the context of PBC would be to fix the tower for a particular k.

The construction does not only depend on k however, but also on p, the characteristic

of the base field. There is an existing method for constructing such towers given by Koblitz

and Menezes in [57], which can only be used for some p with specific properties, so relying

on this method alone places unnecessary restrictions on the parameters of a pairing-friendly

curve. Given the relative rarity of pairing-friendly elliptic curves it is clear that we should

aim to reduce the number of constraints on the parameters that may compromise the effi-

ciency of the implementation.

8.2 Existing Ideas for Constructing General Towers

Let p be an odd prime, and let n,m > 0 be integers. The most obvious way to construct

the tower of sub-extensions of the field Fpnm over Fpn would be to use a binomial xm − α

which is irreducible over Fpn and successively adjoin roots of the previously adjoined root

until the tower has been constructed (we refer to this as the ‘general method’). We are able

to test xm − α for irreducibility using the following theorem:

Theorem 8.2.1. [66, Theorem 3.75] Let m ≥ 2 be an integer and α ∈ F∗pn . Then the

binomial xm − α is irreducible in Fpn [x] if and only if the following two conditions are

satisfied:

1. Each prime factor of m divides the order, e, of α ∈ F∗pn , but not (pn − 1)/e;

2. If m ≡ 0 mod 4 then pn ≡ 1 mod 4.

The order of γ is the smallest positive integer e such that γe = 1 in Fpn and the order

is a divisor of pn − 1.

109

By Theorem 8.2.1 we see that we can use the the general method to construct towers

when m 6≡ 0 mod 4 or if pn ≡ 1 mod 4 when m ≡ 0 mod 4.

Given the constraints outlined in Section 3.2, withm = 2i3j , it is clear that the tower of

extensions used in PBC can be built using a sequence of cubic and quadratic sub-extensions.

This was recognised by Koblitz and Menezes in [57]. They called a field Fpk pairing-

friendly (not to be confused with a pairing-friendly elliptic curve) if p ≡ 1 mod 12 and k

is of the form k = 2i3j , in which case by [57, Theorem 2] (which is derived from Theorem

8.2.1 above), the polynomial xk − α is irreducible if α is neither a square nor a cube in Fp.

The extension can be constructed using the general method by simply adjoining a cube or

square root of some small α and then successively adjoining a cube or square root of the

previously adjoined root until the tower has been constructed. If j = 0 then it is sufficient

that p ≡ 1 mod 4 and that α be a quadratic non-residue in Fp. This result gives us an easy

method for building towers over pairing-friendly fields; simply find an element α ∈ Fp

which is a quadratic (and, when necessary, a cubic) non-residue and adjoin successive cube

and square roots of α to Fp.

There is one major issue remaining, the strict condition that p ≡ 1 mod 12 to give a

pairing-friendly field. When searching for pairing-friendly curves of a suitable size, there

are typically other criteria that we wish to meet (for example, it is preferred that the Ham-

ming weight of the variable that controls the Miller loop in the pairing calculation should

be as small as possible [23]). Having to skip a nice set of parameters because p doesn’t

satisfy this equivalence seems unnecessarily restrictive. Since the publication of [57], new

families of pairing-friendly elliptic curves have been discovered, which the results of [57]

could not have taken into account. In particular, the KSS k = 18 curves are good for im-

plementation given the many optimisations possible using these curves. The condition that

p ≡ 1 mod 12 here is completely unnecessary as this restriction arises from condition 2

of Theorem 8.2.1, which is not applicable when k = 18.

Given that the parameters of a pairing-based protocol are already subject to quite strict

constraints, it is clear that there is a necessity for a method to construct towers for fields,

110

which would not be considered pairing-friendly (in the sense of Koblitz and Menezes),

but would otherwise be favourable for implementation of a pairing-based protocol. The

term ‘pairing-friendly field’ is slightly misleading, as there are families of pairing-friendly

elliptic curves attractive for implementation, which are defined over fields which do not

necessarily satisfy p ≡ 1 mod 12. In a sense, the pairing-friendly fields of [57] are the

fields, in the context of pairings, over which it is easy to build the towers. We instead

refer to these fields as towering-friendly as this gives a more accurate description of these

fields – the towers over such fields are easily constructed. This definition is not specific

to pairings, but in this setting we would like to use towering-friendly fields for the most

efficient implementation possible.

Definition 8.2.2. A towering-friendly field is a field of the form Fqm , where q is a prime

power, for which all prime divisors of m also divide q − 1.

In essence, towering-friendly fields are fields for which the tower of sub-extensions

can be easily (and most efficiently) constructed; that is, using binomials. The OEFs of

Bailey and Paar [5] are, by definition, towering-friendly fields with characteristic a prime

of a special form. The fields said to be pairing-friendly by Koblitz and Menezes are indeed

towering-friendly fields, but these are not the only ones which occur in the context of PBC.

8.3 General Tower Construction Method

Consider first the general case where q = pn is an odd prime power, m > 1 is an integer

and we want to construct the tower of sub-extensions of the towering-friendly finite field

Fqm over Fq. The most obvious method (which we shall refer to as the general method)

would be to use a binomial xm − α which is irreducible in Fq[x] and successively adjoin

roots of the previously adjoined root until the tower has been constructed. This way the

only restriction on α would be that α should not be a sth power in Fq for any prime divisor

s of m. This method works for all m, m 6≡ 0 mod 4. When m ≡ 0 mod 4, this method

will work if q ≡ 1 mod 4 (which is always true for even n).

111

The two issues to address now are:

• finding a method to build a tower when m ≡ 0 mod 4 and q ≡ 3 mod 4;

• finding a suitable irreducible binomial xm − α ∈ Fq[x] to construct the tower.

The first problem has a relatively simple solution. We first construct a quadratic exten-

sion of Fq2 , which we will refer to as a base tower, using a binomial. We now have q2 ≡ 1

mod 4, so we can use the general method to build the rest of the tower above Fq2 , using a

binomial xm/2 − α, where α ∈ Fq2/Fq. In the particular case of n = 1 this can be done by

simply adjoining a square root of −1. This idea is a generalisation of the approach taken

by Barreto and Naehrig in [11] to construct the field Fp12 over Fp. They first implement an

efficient quadratic extension over the base field, and then look for irreducible polynomials

of the form x6 − α, where α ∈ Fp2/Fp is neither a square nor a cube.

Remark 8.3.1. The idea of a base tower can be generalised: Suppose Fqm over Fq is not a

towering-friendly field. Write m = m1m2 such that gcd(q− 1,m2) = 1 and all the primes

dividing m1 divide q − 1. If all the primes dividing m2 divide qm1 − 1 then the tower of

Fqm over Fq can be constructed in two parts using the general method. First Fqm1 over Fq

is constructed using a binomial, this is the base-tower. Then Fqm = Fqm1m2 over Fqm1

is constructed using a binomial defined over Fqm1 (not over any subfield of Fqm1). This

method can be implemented recursively to achieve an efficient tower for a non-towering-

friendly extension.

As to the problem of finding a suitable α for constructing the tower (and also the base

tower when necessary), Theorem 8.2.1 provides a means for determining whether a given

binomial is irreducible, but it does not give an efficient method for constructing the towers;

taking random small elements, then computing their order in the extension field and veri-

fying that the conditions hold is quite cumbersome, the order could be large and this could

require a lot of extension field computation for a single element. Using Theorem 8.2.1,

however, we are able to prove a theorem which results in a simpler method for checking the

irreducibility of a polynomial xm − α in certain cases and hence a more practical method

112

for finding irreducible polynomials to construct the towering-friendly field extensions, par-

ticularly in the context of PBC.

Recall the definition and properties of the Norm of Fq over Fp from Chapter 2.

Theorem 8.3.2. Let m > 1, n1n2 = n > 0 be integers, p an odd prime, q = pn and

α ∈ F∗q . The binomial xm − α is irreducible in Fq[x] if the following two conditions are

satisfied:

1. Each prime factor s ofm divides pn1−1 andNFq/Fpn1
(α) ∈ Fpn1 is not a sth residue

in Fpn1 ;

2. If m ≡ 0 mod 4 then q ≡ 1 mod 4.

Proof. To prove this theorem, we show that condition 1 of Theorem 8.3.2 implies condition

1 of Theorem 8.2.1. We assume that condition 1 of Theorem 8.3.2 is true. Let e denote the

order of α in Fq and s denote a prime divisor of m.

Suppose that s | (q − 1)/e. This implies that e | (q − 1)/s and so α is a sth power

in Fq. Let δ ∈ Fq be such that δs = α. Taking the norm of α we see that NFq/Fp
(α) =

NFq/Fpn1
(δs) = NFq/Fpn1

(δ)s where NFq/Fpn1
(δ) ∈ Fpn1 and thus NFq/Fpn1

(α) is a sth

residue in Fpn1 , a contradiction, so s - (q − 1)/e.

We have also assumed that s | (q − 1) and since s - (q − 1)/e it is clear that s | e and

so condition 1 of Theorem 8.3.2 is satisfied.

Using Theorem 8.3.2 we are able to verify the irreducibility of a binomial xm − α

over an extension field Fq, where α is an element of Fq, by checking the properties of a

single element of the base field, namely the norm of Fq over Fpn1 of α – a simpler task

than computing the order of an element in Fq. Theorem 8.3.2 can be used in all cases

for which the prime divisors of m also divide pn1 − 1 to automatically generate towers

of extensions over all towering-friendly fields and to build an efficient tower of extensions

for the extension field Fqm . As already mentioned, if condition 2 of Theorem 8.2.1 is not

satisfied, the towers can still be easily constructed by first constructing a base tower, a

quadratic extension, then using the theorem to construct the tower over the base tower.

113

We now illustrate the usefulness of Theorem 8.3.2 in the context of PBC.

8.4 Towers in Pairing-Based Cryptography

Given the constraints outlined in Section 3.2, it is clear that the tower of extensions for

the recommended curves can be built as a sequence of quadratic and cubic sub-extensions.

There is some freedom as to the best way to order the extensions. The choice here may be

influenced by whether or not it is intended to compress the value of the pairing [84, 41].

This compressed value can then be further efficiently exponentiated in its compressed form,

by using Lucas or XTR based methods for a compression factor of 2 or 3 respectively. This

is facilitated by terminating with a quadratic or a cubic extension respectively.

Consider for example the BN curves which have embedding degree k = 12 and which

support the sextic twist d = 6. In this case E(Fp2) arithmetic must be supported, and so it

makes sense that the tower should start with a quadratic extension over the base field. This

can be followed by a cubic extension and then a quadratic, or indeed the other way around.

Assuming that the highest possible compression should be supported, the tower of choice

in this case is 1− 2− 4− 12. This particular tower construction is given as an example by

the IEEE draft standard [1, §5.3.2]. To utilise a base tower when necessary, starting with a

quadratic extension where possible is preferred. Taking all these constraints into account,

we extend Table 3.1 in Section 3.2 to include the recommended tower progressions given

in Table 8.1.

The recommended towers given in column 6 of Table 8.1 should be interpreted as il-

lustrated here for BN curves: we construct Fp12 starting with a quadratic extension, given

by adjoining a square root of some non-square in Fp to Fp, we then construct a quadratic

extension of Fp2 to get Fp4 then with a cubic extension of Fp4 we have Fp12 .

Fp → Fp2 → Fp4 → Fp12

114

Table 8.1: Suggested Towers for Curves with Efficient Arithmetic

k ρ D Twist d Construction Recommended Tower
4 2 1 4 FST [32] 1-2-4
6 2 3 6 FST/BLS [10, 32] 1-2-6
8 1.5 1 4 KSS [52] 1-2-4-8
12 1 3 6 BN [11] 1-2-4-12
16 1.25 1 4 KSS [52] 1-2-4-8-16
18 1.333 3 6 KSS [52] 1-3-6-18
24 1.25 3 6 BLS [10] 1-2-4-8-24
32 1.125 1 4 KSS [52] 1-2-4-8-16-32
36 1.167 3 6 KSS [52] 1-2-6-12-36
48 1.125 3 6 BLS [10] 1-2-4-8-16-48

8.4.1 Tower Construction for PBC

From the definition of towering-friendly fields we are only able to distinguish on a specific

case-to-case basis if a general extension field is a towering-friendly field.

In the PBC setting we have a little more information. We are able to determine in-

formation about some of the parameters for particular curves in advance by making some

observations. We see from the following discussion that all the fields Fpk arising when

using the families of pairing-friendly curves in Table 3.1 are towering-friendly.

Elliptic Curves with CM discriminant D = 1

Elliptic curves from Table 3.1 with CM discriminant D = 1 have equations of the form

E : y2 = x3 + Ax. We know that these curves are not supersingular (which is the case

for curves with such equations defined over a prime field with characteristic p ≡ 3 mod 4

[90]), and so p ≡ 1 mod 4. This means that the field is towering-friendly (also pairing-

friendly), as all D = 1 cases in Table 3.1 have k = 2n, so the Koblitz-Menezes strategy

appears to be optimal. Indeed, in the case of p = 5 mod 8, we can always choose α = 2,

which leads to fast reduction. An implementation can simply tower up quadratically, by

adjoining the square root of the last adjoined element to build the next extension at each

step.

115

Elliptic Curves with CM discriminant D = 3

For elliptic curves with CM discriminant D = 3, p will not always be a pairing-friendly

prime in the sense of the Koblitz and Menezes definition, but we do have some information

which will aid us in the construction of the towers over Fp. Given that the CM discriminant

is D = 3, we know that the elliptic curve must have an equation of the form E : y2 =

x3 + B. If p ≡ 2 mod 3, then such a curve would be supersingular [90] and so p ≡ 1

mod 3. We see then that all the fields resulting from this construction are towering-friendly.

For the KSS k = 18 and FST k = 6 curves, we are able to use the general method in

every case, without a base tower (as k 6≡ 0 mod 4 and both 2 and 3 divide p − 1). We

simply adjoin successive cubic and quadratic roots of some cubic and quadratic non-residue

α ∈ Fp, in the recommended order.

For all other families of curves, if the prime p 6≡ 1 mod 4 then we need to use a base

tower to construct the tower. One advantage in this case is that we know p ≡ 3 mod 4,

and so the base tower Fp2 over Fp can be efficiently constructed by adjoining a square root

of −1. This may actually be more efficient than an implementation using a pairing-friendly

field, as the arithmetic in Fp(
√
−1) can be performed faster than in Fp(

√
τ), for some

other quadratic non-residue τ ∈ Fp [35]. The following Corollary (drawing on ideas from

Barreto and Naehrig in [11]) gives a method for finding an appropriate value α, such that

the polynomial xm − α is irreducible over a finite field of the form Fp2 = Fp(
√
−1).

Corollary 8.4.1. The polynomial xm− (a± b
√
−1) is irreducible over Fp2 , for m = 2i3j ,

i, j > 0, if a2 + b2 is neither a square nor a cube in Fp.

Proof. For any element a ± b
√
−1, NFp2/Fp

(a ± b
√
−1) = (a + b

√
−1)(a − b

√
−1) =

a2 + b2. The integer m is of the form 2i3j and so, by Theorem 8.3.2, if a2 + b2 is neither a

quadratic nor a cubic residue modulo p, then xm− (a± b
√
−1) is irreducible over Fp2 .

This Corollary is basically Theorem 8.3.2 in the case p ≡ 3 mod 4, n = 2 and m =

k/2; this is the case of most concern in PBC. Using this corollary, in order to construct the

tower, small values of a and b can be tested, until a combination is found such that a2 + b2

116

is neither a square nor a cube in Fp. This process only requires a few cubic and quadratic

non-residue tests to be performed on elements of the base field. Small values for a and b

can be found to help improve efficiency.

As 1
2 of the non-zero elements of Fp are non-squares and 2

3 of the non-zero elements are

non-cubes, such an element must exist; in fact, on heuristic grounds, it is expected that 1
3 of

the elements will be neither squares nor cubes, which the experimental evidence supports

[11].

Given a little more information about p, which is easily found, we are able to give some

more specific constructions.

Construction 8.4.2. For approximately 2/3 of the primes p ≡ 3 modulo 8 the polynomial

xm − (1 +
√
−1) is irreducible in Fp2 [x] for m = 2i3j , i, j > 0.

Proof. In this case a2 + b2 = 2. The polynomial will be irreducible if 2 is neither a square

nor a cube modulo p. We know that 2 is a quadratic non-residue modulo p when p ≡ 3

mod 8. The only remaining condition is that 2 is not a cube modulo p.

All primes p ≡ 1 mod 3 can be written in the form p = 3u2+v2.As Euler conjectured

(proved by Gauss, proof given in [62]), 2 is a cubic residue modulo p if, and only if, 3 | u.

Instinctively we would presume that this occurs 1/3 of the time. There is currently no

proof concerning the number of primes in a quadratic sequence, but this is supported by

experimental results. So 2 is a cubic non-residue modulo for approximately 2/3 of the

values of p.

When p ≡ 7 mod 8 the following corollary may be useful:

Construction 8.4.3. For approximately 2/3 of the primes p ≡ 2 or 3 modulo 5 the polyno-

mial xm − (2 +
√
−1) is irreducible in Fp2 [x] for m = 2i3j , i, j > 0.1

Proof. The values of a and b in Corollary 8.4.1 in this case are 2 and 1 respectively, so

a2 + b2 = 5. The polynomial will be irreducible if 5 is neither a square nor a cube modulo
1In this case, the polynomial xm − (1 + 2

√
−1) is also irreducible.

117

p. When p ≡ 2 or 3 modulo 5 we know that 5 is a quadratic non-residue modulo p, and

so the only condition left is that 5 should not be a cube in Fp. With p written in the form

p = 3u2 + v2, we know that 5 is a cube if 15 | a, or 3 | a and 5 | b, or 15 | (a ± b), or

15 | (a ± 2b) [62]. Again, there is currently no proof concerning the number of primes in

a quadratic sequence, but, as supported by experimental results, we expect that this occurs

1/3 of the time. So 5 is a cubic non-residue modulo for approximately 2/3 of the values of

p.

The result of Constructions 8.4.2 and 8.4.3 is that for around 2/3 of the fields not con-

sidered pairing-friendly we have a more automatic and often more efficient implementation

than is possible for pairing-friendly fields.

8.4.2 Euler’s Conjectures

Primes p for which p ≡ 2 mod 3, it is easily shown that every element is a cubic residue

modulo p. For primes which are 1 mod 3, Fermat showed that p can be written as the sum

p = a2 + 3b2 for some integers a and b. Euler conjectured (and Gauss proved) that using

this form we can easily determine if some small elements are cubic residues:

1. 2 is a cubic residue⇔ 3 | b.

2. 3 is a cubic residue⇔ 9 | b; or 9 | (a± b).

3. 5 is a cubic residue⇔ 15 | b; or 3 | b and 5 | a; or 15 | (a± b); or 3 | (2a± b).

4. 6 is a cubic residue⇔ 9 | b; or 9 | (a± 2b).

5. 7 is a cubic residue⇔ 21 | b; or 3 | b and 7 | a; or 21 | (a ± b); or 7 | (a ± 4b); or

7 | (2a± b).

These conjectures can be used once p has been constructed to decide if constructions

8.4.2 or 8.4.3 can be used. For some cases we have this information already.

118

BN Towers

Is was noticed by Shirase [88], that the polynomial parameterising the BN primes, p(x) =

36x4 + 36x3 + 24x2 + 6x + 1, can be written in the form p(x) = a(x)2 + 3b(x)2, thus

giving us more information about the towers we can construct for certain values of x0,

without having to perform the quadratic and cubic residue tests modulo p. We have a(x) =

6x2+3x+1 and b(x) = x. We let x0 denote the x value chosen to construct the parameters.

With the additional information about the structure of p(x) we are able to use Theorem 8.3.2

to put conditions on the values of x0, which, when satisfied, give an immediate construction

for the tower of fields of degree 12 over BN primes.

Considering first BN primes p ≡ 3 mod 4 we know that x0 ≡ ±1 mod 4 and that we

have a towering-friendly field, which requires a base tower Fp2 , which can be constructed

by adjoining
√
−1 to Fp. We now need to find an element a + b

√
−1 ∈ Fp2 , such that

x6 − (a + b
√
−1) is irreducible, to construct the remaining extensions. From Corollary

8.4.1 we know that x6− (a+ b
√
−1) is irreducible if a2 + b2 is neither a square nor a cube

in Fp. We know from Conjecture 1 that if x0 ≡ ±1 mod 3 then 2 is a cubic non-residue

modulo p. For 2 to be a non-quadratic residue also we need p ≡ 3 mod 8; this implies

that x0 ≡ 3 mod 4. Together, these two constraints imply:

• If x0 ≡ 7 or 11 mod 12 then x6 − (1 +
√
−1) is irreducible over Fp2 = Fp(

√
−1).

In [88] the same conclusion is drawn, but using a much more elaborate method. We see that

this result supports Construction 8.4.2 as 2/3 of the possible values of x0 give a p for which

2 is a quadratic non-residue.

Using Theorem 8.3.2 we are also able to classify more constructions than given in [88].

Using a similar method as above:

• If x0 is odd and x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15 then x6 − (1 + 2
√
−1) is irre-

ducible over Fp2 = Fp(
√
−1).

Using Euler’s conjectures it is also straight forward to set constructions for BN primes

p ≡ 1 mod 4, not needing a base tower.

119

• If x0 6≡ 0 mod 3 and x0 ≡ 2, 6 mod 8, then x12 − 2 is irreducible;

• If x0 ≡ 1, 3, 7, 11, 12 or 13 mod 15, then x12 − 5 is irreducible;

• If x0 6≡ 0, 2 or 4 mod 9 and x0/2 is odd, then x12 − 6 is irreducible.

BN curves are quite plentiful and easy to find. Using BN curves in pairing-based protocols

requires an efficient implementation of Fp12 and also of Fp2 , as we would use a degree

6 twist. It may be favourable to choose x0 ≡ 1 mod 2 and x0 satisfying one of the

equivalences above, so that Fp2 can be constructed as Fp(
√
−1) and the tower for Fp12 can

be constructed, using one of Constructions 8.4.2 or 8.4.3, though these fields would not

have originally been considered towering-friendly. Given that BN curves are so plentiful,

this restriction would not impede finding curves appropriate for use.

KSS k = 18 Towers

When k = 18 the parameterisation of p(x) can also be written in the form a(x)2+3b(x)2 =

p(x) where a(x) and b(x) have integer coefficients. In these cases we are also able to give

the tower construction if the value x0 satisfies some easily checked conditions.

The polynomial parameterisation of p for a KSS k = 18 curve is given by

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21.

We also know that x ≡ 14 mod 42, so substituting x = 42x′ + 14 we obtain the equation

p(x′) =

461078666496x′8 + 1284433428096x′7 + 1564374047040x′6 + 1088278335648x′5 +

473078255328x′4 + 131624074008x′3 + 22896702948x′2 + 2277529014x′ + 99213811.

Using four values x′0 for x′ giving different primes, we are able to use Euclid’s algorithm

to find a and b such that p = a2 + 3b2. With these a, b values we then proceeded with

120

polynomial interpolation to find

a(x′) = 444528x′4 + 629748x′3 + 333396x′2 + 78321x′ + 6908,

and

b(x′) = 296352x′4 + 407484x′3 + 209916x′2 + 48091x′ + 4143,

such that a(x′)2 + 3b(x′)2 = p(x′). (We needed four x′ values as it is clear that a(x′) and

b(x′) would be at most degree 4 polynomials.) Using Euler’s Conjectures we see that:

• If x′0 ≡ 1, 4, 5, 8 mod 12 then x18 − 2 is irreducible over Fp;

• If x′0 6≡ 2, 3, 4 mod 9 then x18 − 3 is irreducible over Fp;

• If x′0 ≡ 7, 9, 12, 14 mod 15 then x18 − 5 is irreducible over Fp;

• If x′0 ≡ a mod 42 then x18 − 6 is irreducible over Fp,

where a = {2, 3, 4, 9, 10, 11, 12, 13, 18, 20, 21, 22, 27, 28, 30, 31, 35, 36, 37, 38,

38, 40, 44, 45, 46, 48, 49, 53, 54, 55, 56, 57, 58, 62, 63, 64, 65, 66};

• If x′0 ≡ 2 mod 7 then x18 − 7 is irreducible over Fp.

The many possible constructions listed here mean that a tower can often be automatically

constructed for an implementation using KSS k = 18 curves without further testing neces-

sary.

8.4.3 Twists and Choosing α

When choosing a particular value of α to construct the tower, we may find that there are

numerous potential values we could use. This is illustrated in the following example.

Example 1

The value x0 = 400880400000000916 generates suitable parameters for a BN curve. Using

this x0 we see that p ≡ 3 mod 4 and we first need a base tower Fp2 = Fp(
√
−1), before

121

we use the general construction method. We see also that x0 ≡ 3 mod 15 and so as, shown

in Section 8.4.2, we know immediately that 5 is a cubic and quadratic non-residue in Fp,

and so x6 − (1 + 2
√
−1) is irreducible over Fp2 = Fp(

√
−1). Using the same reasoning,

however, we also know that x6− (2 + 1
√
−1), x6− (2− 1

√
−1), x6− (−2− 1

√
−1) and

x6− (−2 + 1
√
−1) are all irreducible over Fp2 = Fp(

√
−1). Using this particular value of

x0, we also see that a2 + b2 is neither a square nor a cube for the (unordered and unsigned)

pairs (a, b) = (1, 3), (1, 5), (2, 3), as well as for (1, 2). This example raises an important

question:

How do we decide which value will be the best for implementation?

A simple analysis indicates that the optimal choice is the one which minimises ω(a)+ω(b),

where ω(n) is the number of additions required to perform a multiplication by n. There is

another important point to take into account when choosing α and that is the construction

of the twists of the elliptic curve used when computing the pairing.

In Section 3.1, we mentioned how twists are used to improve the efficiency of the pair-

ing computation. To construct a twist of degree d and the isomorphism from the twist to the

curve, we need an element from Fpk/d , which is a sth non-residue for all divisors s of k/d.

We see now that Theorem 8.3.2 also gives us this element. In fact, it would make sense

to use the same element to define the twist and to construct the tower. We will have to be

slightly more careful, however, in our selection of the element α.

From Section 2.3.2.1, we see that there are two possible twists. The element i we

choose to define our mappings to the twist with the correct number of points should be

of the simplest form for the isomorphism to be as inexpensive as possible. If we select

i = α(1/e), where e = k/d, then the isomorphism is basically a free computation. If the

curve defined choosing i = α(1/e) does not give the correct number of points, then we must

take i = α(3/e), if E′ is a quartic twist, or i = α(5/e), if E′ is a sextic twist. In these cases

the isomorphism will be slightly more expensive. This is also discussed in [46].

To summarise, when selecting the element α to define the tower, both ω(α) and the

structure of the twist should be taken into account.

122

8.5 Curve Construction for BN and KSS k = 18

As mentioned above, once the system parameters have been selected, the curve itself is

constructed using the CM method. This is a non-trivial process and it seems unnecessary

whenD = 3. The curveEb : y2 = x3−b is usually constructed by chosing b at random and

performing a trial scalar multiplication of a point on the curve, to check it has the correct

order. In practice we find many of the same curves recurring for particular families (as first

noted in [23]), and in these cases the trial scalar multiplication also becomes unnecessary.

For example, for the BN curves 1/6 choices for b will give an elliptic curve with the correct

number of points [11].

Recent work by Shirase [89] has shown that even the scalar multiplication step can be

omitted as some BN curves will always have the correct number of points when the x0 value

defining the parameters satisfies some easily verified equivalences. Shirase used:

Theorem 8.5.1 (Gauss). Let Np be the number of solutions to the equation

x3 + y3 = z3

over Fp. When p ≡ 1 mod 3 there exists integers A and B such that

4p = A2 + 27B2.

Fixing the sign of A so that A ≡ 1 mod 3 we have that Np = p+ 1 +A.

This is a shortened version of a Theorem in [93, Chapter IV, §2]. It is known that the

solutions to C : x3 + y3 = 1 over Q correspond with Q-rational points on the elliptic curve

E : y2 = x3 − 432 and it has been shown that this also holds for C and E defined over Fp

when p ≡ 1 mod 3.

The results of [89] are:

• if x0 ≡ 2, 5 mod 12 then E : y2 = x3 − 2 is a BN curve,

123

• if x0 ≡ 2, 11 mod 12 then E : y2 = x3 + 2 is a BN curve.

KSS k = 18 curves also have the form E : y2 = x3 + b. Using similar methods, we

have been able to show some results for KSS k = 18 curves. Specifically, if x′0 ≡ 1 mod 3

we can always take b = 16 and also:

• if x′0 ≡ 7, 10 mod 12 then E : y2 = x3 + 2 is an appropriate curve,

• if x′0 ≡ 7 mod 12 then E : y2 = x3 − 2 is an appropriate curve.

For KSS k = 18 curves with defining parameter x′0 satisfying one of the above equiv-

alences, we no longer need to use trial scalar multiplication to obtain the curve, it is given

immediately.

124

Chapter 9

Performing the Final Exponentiation

———————————————————————————————————

- White Rabbit checking watch, Lewis Carroll’s Alice in Wonderland, Chapter I, Down the

Rabbit-Hole, illustration by Sir John Tenniel.

———————————————————————————————————

As mentioned in Chapter 3, the Tate pairing and all variations thereof actually evalu-

ate as representatives of a cosets in F∗
pk/(F∗pk)k. This representative is not unique and is

affected by the choice of divisor DQ ∼ (Q) − (O) used in the evaluation of er(P,Q)r =

fr,P (D). In order to obtain a unique element, we raise the output of the Miller loop to the

125

power (pk − 1)/r; this “kills off” any factors of order dividing (pk − 1)/r, and results in a

unique rth root of unity.

From Section 3.2.1.2, we notice that the final exponentiation is defined by the fixed sys-

tem parameters and is constant for every pairing computation, so methods of exponentiation

optimised for fixed exponents are applicable here.

Firstly, the final exponent can be broken down into three components. We have chosen

the embedding degree k so that it is even, so let u = k/2. Then

(pk − 1)/r = (pu − 1) · [(pu + 1)/Φk(p)] · [Φk(p)/r].

The first two parts of the exponentiation are “easy” since raising to the power of p is

an almost free application of the Frobenius operator, as p is the field characteristic. The

first part of the exponentiation is not only cheap (although it does require an extension

field division) but also simplifies the rest of the final exponentiation. After raising to the

power of (pu − 1), the field element becomes “unitary” [84], that is, an element α with

normNF
pk/Fpu (α) = 1. This has important implications, as squaring of unitary elements is

significantly cheaper than squaring of non-unitary elements, and any future inversions can

be implemented by simple conjugation [94, 84, 43, 75].

9.1 ‘Hard part’ of the Final Exponentiation

We now consider the “hard part” of the final exponentiation, raising to the power of Φk(p)/r.

The usual approach is to express this exponent in base p, as λn−1 · pn−1 + ...+ λ1 · p+ λ0,

where n = φ(k), and φ(·) is the Euler Totient function. Let m be the value given by result

of Miller’s algorithm, raised to the power (pu−1) · [(pu+ 1)/Φk(p)]. To complete the final

exponentiation, we need to calculate

mλn−1·pn−1 · · ·mλ1·p ·mλ0 ,

126

which is the same as

(mpn−1
)λn−1 · · · (mp)λ1 ·mλ0 .

The mpi
can be calculated using the Frobenius, and the hard part of the final exponen-

tiation can be calculated using a fast multi-exponentiation algorithm [45, 40, 70].

These methods, however, do not exploit the polynomial description of p and r. It is

our intention to do so, and hence obtain a faster hard-part of the final exponentiation. Each

curve family is different in detail, so we will proceed on a case-by-case basis.

The BN curves

For the BN family of pairing-friendly curves, the hard part of the final exponentiation is

computing m to the power of (p4− p2 + 1)/r. After substituting the polynomials p(x) and

r(x), this can be expressed in base p(x) as:

λ3.p(x)3 + λ2.p(x)2 + λ1.p(x) + λ0,

where

λ3(x) = 1;

λ2(x) = 6x2 + 1;

λ1(x) = −36x3 − 18x2 − 12x+ 1;

λ0(x) = −36x3 − 30x2 − 18x− 2.

Now we take a new approach. BN curves are plentiful, and choosing x0 to have a

low Hamming weight reduces the number of additions in the Miller loop, resulting in a

faster pairing computation; this will have benefits in the final exponentiation evaluation

also. Nogami et al. [76] have suggested the nice value x0 = −408000000000000116 for

a curve appropriate for the 128-bit level of security. We compute mx0 , mx2
0 = (mx0)x0

127

and mx3
0 = (mx2

0)x0 . These are simple exponentiations, and the low Hamming weight

of x0 ensures that each requires a minimum number of multiplications when using a sim-

ple square-and-multiply algorithm. We next calculate mp, mp2 , mp3 , (mx0)p, (mx0
2
)p,

(mx0
3
)p and (mx0

2
)p

2
using the Frobenius. Now group the elements of the exponentiation

together, and the expression becomes:

[mp·mp2 ·mp3
]·[1/m]2·[(mx0

2
)p2

]6·[(mx0)p]12·[mx0/((mx0
2
)p)]18·[1/mx0

2
]30·[mx0

3 ·(mx0
3
)p]36.

The individual components between the square brackets are then calculated with just 4

multiplications (recalling that division costs the same as a multiplication, as inversion is

just a conjugation), and we end up with a calculation of the form:

y0 · y1
2 · y2

6 · y3
12 · y4

18 · y5
30 · y6

36.

Note that the exponents here are simply the coefficients that arise in the λi equations above.

Now, how do we evaluate this expression most efficiently?

There is a well known algorithm to evaluate expressions of this form, which minimizes

the number of required multiplications. Examples are given in [77] and also [4, Section

9.2]. The starting point is to find an addition sequence: an addition chain, which includes

within it the elements of the set of integers which occur as exponents. In this case it is not

hard to see that an optimal addition sequence (the shortest sequence containing all values)

is given by:

{1, 2, 3, 6, 12, 18, 30, 36}.

Note that 3 is the only member of this sequence which is not a member of the set of expo-

nents. This is certainly serendipitous, as it means less work to do the evaluation. Observe

here that an addition-subtraction chain is also a possibility (as divisions are as cheap as mul-

128

tiplications as a consequence of the unitary property); but in this case it gives no advantage

over the above addition chain. Application of the Olivos algorithm results in the following

vectorial addition chain:

(1 0 0 0 0 0 0)

(0 1 0 0 0 0 0)

(0 0 1 0 0 0 0)

(0 0 0 1 0 0 0)

(0 0 0 0 1 0 0)

(0 0 0 0 0 1 0)

(0 0 0 0 0 0 1)

(2 0 0 0 0 0 0)

(2 0 1 0 0 0 0)

(2 1 1 0 0 0 0)

(0 1 0 1 0 0 0)

(2 2 1 1 0 0 0)

(2 1 1 0 1 0 0)

(4 4 2 2 0 0 0)

(6 5 3 2 1 0 0)

(12 10 6 4 2 0 0)

(12 10 6 4 2 1 0)

(12 10 6 4 2 0 1)

(24 20 12 8 4 2 0)

(36 30 18 12 6 2 1)

which in turn allows us to evaluate the expression as follows, using just two temporary

variables:

129

T0 ← (y6)2

T0 ← T0 · y4

T0 ← T0 · y5

T1 ← y3 · y5

T1 ← T1 · T0

T0 ← T0 · y2

T1 ← (T1)2

T1 ← T1 · T0

T1 ← (T1)2

T0 ← T1 · y1

T1 ← T1 · y0

T0 ← (T0)2

T0 ← T0 · T1

The final result is in T0. This part of the calculation requires only 9 multiplications

and 4 squarings. We find this approach to the hard part of the final exponentiation for the

BN curves to be about 4% faster than the rather ad hoc method proposed by Devegili et al.

[23] (7156 modular multiplications/squarings over Fp, compared to 7426 for the choice of

x0 suggested above). Moreover, our more general method is applicable to all families of

pairing-friendly curves.

KSS Curves k = 18

The KSS k = 18 curves introduce another aspect of this method: removing denominators

from the coefficients of the base p(x) representation, which occur in some families.

130

The base p(x) representation of Φk(p(x))/r(x) is given by:

λ0(x) = (−3x7 − 15x6 − 21x5 − 62x4 − 319x3 − 434x2 + 3)/3;

λ1(x) = (14x6 + 70x5 + 98x4 + 273x3 + 1407x2 + 1911x)/3;

λ2(x) = (−49x5 − 245x4 − 343x3 − 931x2 − 4802x− 6517)/3;

λ3(x) = (−5x7 − 25x6 − 35x5 − 87x4 − 450x3 − 609x2 + 54)/3;

λ4(x) = (7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x)/3;

λ5(x) = (49x2 + 245x+ 343)/3.

A minor difficulty arises due to the common denominator of 3 which occurs here. We

suggest a simple solution: evaluate instead the cube of the pairing. We use the fact that for

any ` ∈ Z such that gcd(`, r) = 1, computing m`(pk−1)/r will give us an element of order

r and thus will retain the desired properties of the pairing. When r is of cryptographic size,

3 is co-prime to r, so we can simply ignore the denominator. The denominator in this case

is not unusual – it appears in the base p(x) representation of Φk(p(x))/r(x) for the other

KSS curves, FST curves and BLS curves mentioned in Table 3.1. We therefore use:

λ0(x) = −3x7 − 15x6 − 21x5 − 62x4 − 319x3 − 434x2 + 3;

λ1(x) = 14x6 + 70x5 + 98x4 + 273x3 + 1407x2 + 1911x;

λ2(x) = −49x5 − 245x4 − 343x3 − 931x2 − 4802x− 6517;

λ3(x) = −5x7 − 25x6 − 35x5 − 87x4 − 450x3 − 609x2 + 54;

λ4(x) = 7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x;

λ5(x) = 49x2 + 245x+ 343.

The coefficients again “nearly” form a natural addition chain. Our best attempt to find

an addition sequence containing all of the exponents in the above is:

131

{1,2,3,4,5,7,8,14,15,16,21,25,28,35,42,49,54,62,70,87,98,112,147,245,273,294,

319,343,392,434,450,581,609,784,931,1162,1407,1862,1911,3724,4655,4802,6517}.

The underlined numbers are the ones added in order to complete the sequence.

Proceeding as in the BN case, we find that the vectorial chain derived from this addition

sequence requires just 56 multiplications and 14 squarings to complete the calculation of the

hard part of the final exponentiation. We did eventually find (by partial computer search) an

addition sequence one element shorter than the above, but it required 61 multiplications and

only 7 squarings. We prefer to use the solution above as the computations are performed in

an extension field, which is also a squaring-friendly field as defined in [42], and squarings

are notably cheaper than multiplications.

Final Exponentiation: Discussion

Here we make a few general observations. First, it seems that the proposed method results

in surprisingly compact addition sequences. We note also that the coefficients in the λi(x)

tend to be “smooth” numbers, having only relatively small factors. More evidence for both

of these claims is given by the λi(x) computations in the Appendix. This may facilitate the

construction of addition sequences. Other intriguing patterns emerge – observe for example

that, for the KSS k = 18 curves, the three most significant coefficients of the λi(x) are all

in the same ratio 1 : 5 : 7. Coefficients also appear to follow the same kind of distribution

as numbers in a typical addition chain.

We have also used the proposed method for other families of pairing-friendly curves,

and have observed that, for example, for the FST and BLS curves, the resulting addition

sequence is often as easy as:

{1, 2, 3}.

Since squarings are significantly faster than multiplications (as our computations are

over extension fields) it may, as we have seen, be sometimes preferable to select a slightly

longer addition sequence which trades additions for doublings. Addition-subtraction se-

132

quences may also be an attractive alternative in other cases.

Finding the shortest addition sequence is an NP-complete problem [27]. The values

we obtained in each set, however, are relatively small, and so the sets themselves already

contained some addition ‘subchains;’ it was not too difficult to generate, either with a com-

puter or manually, addition sequences containing the specific entries, with length close to

the lower bound given for the length of addition chains [17]. Should a particular curve

result in larger or more numerous coefficients to be constructed into a sequence, Bos and

Coster suggest an algorithm for that scenario in [17].

133

Chapter 10

Cofactor Multiplication to Obtain a

Point in G2

———————————————————————————————————

‘Curiouser and curiouser!’

- Alice, Lewis Carroll’s Alice in Wonderland, Chapter II, The Pool of Tears.

———————————————————————————————————

When using ordinary elliptic curves to implement identity-based protocols, there is of-

ten a need to hash identities to points on one or both of the two elliptic curve groups involved

in the pairing. The first group, denoted G1, consists of points on a pairing-friendly elliptic

curve E of prime order r that are defined over the base field Fp. The second group, denoted

G′2, is instantiated as a group of points on a twisted curve E′, which have coordinates in

some extension field Fpe , where e divides the embedding degree k, which is isomorphic to

a group G2 of order r in E(Fpk) (as detailed in Chapter 3).

The Tate pairing and its variants only require one of the input points to be of prime

order, as it is sufficient for the other argument to be a coset representative. For the Weil

pairing, both input points must have prime order. The most efficient pairings, to date, are

134

the Ate and R-ate pairings as described in Section 3.1 and both specifically require G2 to

have prime order. Whereas hashing to a point in G1 is relatively easy, hashing to a point in

E(Fpe) of specific order requires a multiplication by a large cofactor of a point in E(Fqe).

In this section we consider the problem of reducing the cost of hashing to a point in G′2, by

reducing the cost of performing the multiplication by the large cofactor. This step may be

necessary to ensure efficient implementations of protocols using Weil, ate or R-ate pairings.

Some reluctance to use PBC stems from the necessary implementation of extension

field arithmetic and handling of points in the, potentially cumbersome, group G2, defined

over an extension field. In [36], however, Galbraith and Scott observe that arithmetic in G2

is not as difficult as might be thought, as an efficient homomorphism can be exploited. In

this section we extend the ideas of [36] to the related problem of cofactor multiplication in

E′(Fpe), which is required to hash an identity to a point of prime order in G2.

Let E be an elliptic curve defined over Fp with a large prime order subgroup of order r

and embedding degree k with respect to r. Let E′ be a twist of degree d | k of E, with a

group of points of order r defined over Fpe , where e = k/d (Section 2.3.2.1).

If d = k (in which case E ∼= E′), we define G2 to be the cyclic subgroup of E[r], on

which the p-power Frobenius of E acts as multiplication by p.

From Chapter 2 we know that #E(Fp) = p+1−t, where t is the trace of the Frobenius,

which obeys the Hasse bound |t| ≤ 2
√
p. Consider now points whose coordinates are

defined over an extension field Fpm , and the number of such points on the same elliptic

curve [68]. It is well known for example, that

#E(Fp2) = p2 + 1− (t2 − 2p),

#E(Fp3) = p3 + 1− (t3 − 3tp).

In the general case the number of points can be calculated by the following Algorithm 2

[68].

135

Algorithm 2 Calculate #E(Fpm)
INPUT: m, p, t: m a positive integer, p a prime, t the trace of Frobenius of an elliptic curve
E defined over Fp.

OUTPUT: #E(Fpm).
τ0 ← 2
τ1 ← t
for i← 1 to m− 1 do
τi+1 ← t · τi − p · τi−1

end for
q ← pm

τ ← τm
Return q + 1− τ

To represent the group G2, we like to use an isomorphic group on a twisted curve, over

the smallest possible extension field. The number of points on the twisted curve can also

easily be determined from the output of Algorithm 2.

The following formulæ are for quadratic, quartic and sextic twists, as given in [46]:

quadratic: #E′(Fq) = q + 1 + τ ;

quartic: #E′(Fq) = q + 1± f1 where f1 =
√

4q − τ2;

sextic: #E′(Fq) = q + 1± (3f2 + τ)/2 where f2 =
√

(4q − τ2)/3,

where q = pm and τ is the trace of the q-power Frobenius on E, as calculated in Algorithm

2.

To hash to a point in G2, the standard approach would be to first hash to a general

point on E′(Fpe) and then multiply by the cofactor c = #E′(Fpe)/r. Consider now a

pairing-friendly curve with k = 10, e = 5 and r ≈ p. In this case, using the quadratic

twist, this cofactor c would be of a size, in bits, approximately the same as p4. This would

be prohibitively slow. Here we will show that the same outcome can be achieved in all

cases with the equivalent work of a multiplication by a value less than p, and in some cases

much less than p. Clearly, this is a very expensive operation, supporting the decision to use

ordinary pairing-friendly elliptic curves, which support the highest possible twist, such as

those presented in Section 3.2.

136

10.1 A Fast Cofactor Multiplication Algorithm

The issue of fast cofactor multiplication of points in E′(Fpe) was briefly considered for the

BN curves [11] by Galbraith and Scott [36, Section 8]. We have generalised and extended

their idea. In that paper the authors introduce the homomorphism ψ = ϕ−1πpϕ, where

ϕ : E′ → E is the isomorphism which maps points from the twisted curve E′(Fpe) to the

isomorphic group in E(Fpk), as actually required by the pairing algorithm, and πp is the

p-power Frobenius map on E. Note that ψ(P) can be calculated very quickly.

General points on E′(Fpe) obey the identity [35, Theorem 1]:

ψ2(P)− [t]ψ(P) + [p]P = 0.

Our main idea is to first express the cofactor c to the base p:

c = c0 + c1 · p+ c2 · p2...

and then use the identity

[p]P = [t]ψ(P)− ψ2(P) (10.1)

repeatedly, if necessary, to reduce the cofactor multiplication to a form

[c0 + p(c1 + p(c2 + ...))]P = [g0]P + [g1]ψ(P) + [g2]ψ2(P) +, (10.2)

where all of the gi are less than p. Observe that [c1 · p]P = [c1 · t]ψ(P) − [c1]ψ2(P), and

that c1 · t may be of a size in bits 50% larger than p (recall that t can be up to half the size

of p as a consequence of the Hasse condition). Further applications of the homomorphism

may therefore be necessary to effect a complete reduction. The end result is a recoding of

c from a base p representation to a base ψ(·) representation, with all coefficients less than

p. The number of terms in the representation increases with each application of the identity

137

(10.1), so in some circumstances, we will also find the following identity to be useful:

Φk(ψ(P)) = 0, (10.3)

where Φk is the kth cyclotomic polynomial. This identity allows terms of degree greater

than or equal to φ(k) (the Euler totient function) to be replaced with terms of lower degree.

In the case that k = de and (d, e) = 1, we observe that the twisting isomorphism ϕ

defining a twist of degree d can be chosen, so that the twisted curve E′ is actually defined

over Fp (in which case ϕ is defined over Fpd). In this case, the cofactor c can be factored

into h · c1, where c1 = #E′(Fp). The endomorphism π′p − 1 (where π′p is the p-power

Frobenius map on E′) projects into the subgroup of #E′(Fpe) of order h · r, thus we only

need to perform a multiplication by h to obtain a point of order r. In this case, our algorithm

only needs to be applied to the smaller factor h.

10.2 Application to Ordinary Pairing-Friendly Elliptic Curves

It is our aim to exploit the polynomial parameterisation of the prime modulus p, the group r

and the trace t in a systematic way, to further speed up the cofactor multiplication required

for hashing to G2.

First, we formally describe the method of the previous section: an algorithm for reduc-

ing the cofactor multiplication to the evaluation of a polynomial of the powers ψi(P), with

coefficients less than p. When p is itself expressed as a polynomial p(x), these coefficients

can, in turn, be calculated as polynomials in x, and this we choose to do, as it leads to fur-

ther optimizations. In these cases the cofactor c itself can also be calculated and presented

as a polynomial in x. We emphasise, however, that the basic idea (with minor modifica-

tions) applies equally to non-parameterised Cocks-Pinch curves. See Algorithm 3. For a

step-by-step walk-through of the algorithm, see the section on BN curves below.

138

Algorithm 3 Reduction of the cofactor c(x) to base ψ(·)
INPUT: k, p(x), t(x), and c(x) : embedding degree k and polynomials p(x), t(x), c(x)

parametrising the field size, trace, and G2 cofactor of a pairing-friendly elliptic curve,
respectively.

OUTPUT: g0(x), g1(x), . . . , gϕ(k)−1(x), deg gi(x) < deg p(x), gi(x) are the coefficients
of a base ψ(·) representation of the cofactor c(x).
f ← bdeg(c(x))/ deg(p(x))c
♦ First express c(x) to the base p
for i← 0 to f do
ci(x)← c(x) mod p(x)
c(x)← c(x) div p(x)

end for
♦ Make a first pass to determine the coefficients gi of c(x) in base ψ(·), using equa-
tion (10.1).
for j ← 0 to 2f − 1 do
gj ← 0
for i← 0 to bj/2c do
gj ← gj +

(
j−i
i

)
t(x)j−2i(−1)icj−i(x)

end for
end for
♦Make a second pass to finally force all coefficients to have degree < deg p
g2f+1 ← 0, g2f+2 ← 0
for j ← 1 to 2f do
w(x)← gj(x) div p(x)
gj(x)← gj(x) mod p(x)
gj+1(x)← gj+1(x) + t(x)w(x)
gj+2(x)← gj+2(x)− w(x)

end for
♦ Finally exploit equation (10.3); ai is the coefficient of xi in Φk(x)
for j ← 2f + 2 downto φ(k) do

for i← 1 to φ(k) do
gj−i(x)← gj−i(x)− aφ(k)−i · gj(x)

end for
gj(x)← 0

end for

139

Algorithm 3 Summary

Algorithm 3 takes as input the embedding degree k, and the polynomials p(x), t(x) and

c(x), where the polynomial c(x) parametrises the hard part of the multiplication to be per-

formed to obtain a point of order r on the twist of the elliptic curve. (The polynomials p(x)

and t(x) are the parametrisations of p and t as given for a particular family with embedding

degree k.) The first step is to recode c(x) to the base p(x) (lines 3–6), then, using this rep-

resentation of c(x), recode c(x) to the base ψ(·) (lines 8–13). The coefficients of the base

ψ(·) representation are computed using the coefficients of the base p(x) representation and

the appropriate coefficients of the equation,

[pl]P =
l∑

i=0

(
l
i

)
t(x)l−i(−1)iψl+i(P),

obtained by applying induction on equation (10.1). Once c(x) has been written to base

ψ(·), the coefficients gi(x) are checked. If deg gi(x) ≥ deg p(x) then the identity [p]P =

[t]ψ(P)−ψ2(P) is reapplied (lines 15–21). Finally the relation (10.3) is exploited to obtain

a base ψ(·) representation of c(x) of degree < φ(k) (lines 23–28).

We now proceed to use this algorithm to find a faster way to perform the cofactor

multiplication required to hash to a point of order r in G2. We proceed on a case-by-case

basis for certain selected popular families of pairing-friendly elliptic curves.

BN curves

We now step through Algorithm 3, using the BN family of curves to illustrate each step. The

BN curves have embedding degree 12 and CM discriminant 3, so they have sextic twists

defined over Fp2 . As stated in [11], the twist with the correct number of points has

N = p2(x) + t2(x)− 1,

140

which we rearrange to obtain

(p(x) + 1− t(x))(p(x)− 1 + t(x)) = r(x)(p(x)− 1 + t(x))

so the cofactor in this case is

c(x) = p(x)− 1 + t(x).

Writing c(x) to the base p(x) (lines 3–6) is straightforward in this case with coefficient

polynomials

g0 = t(x)− 1,

g1 = 1.

Now apply equation (10.1) to each term involving a power of p(x), and use it to express

[c(x)]P in base ψ(·) form (lines 8–13 of the algorithm). We find that, taking into account

the parameterisation of t,

[c(x)]P = ψ(6x2P) + 6x2P + ψ(P)− ψ2(P).

This supports the results of [36, section 8] where the cofactor multiplication for BN curves

was examined.

The major work remaining here is the point multiplication by 6x2. Since BN curves

are plentiful, it is not hard to find a value of x with a very low Hamming weight (as is

already commonly done to optimize the main Miller loop of the pairing algorithm), and

this will further speed up the calculation, as the point multiplication will consist largely of

point doublings, which are significantly faster than point additions in most curve and point

representations.

141

KSS k = 18

We now apply Algorithm 3 to the KSS k = 18 family of pairing-friendly elliptic curves.

We start by computing c(x) = #E′(Fp3)/r(x) which is:

1/27x18 + 5/9x17 + 32/9x16 + 409/27x15 + 199/3x14 + 881/3x13 + 27539/27x12 +

27220/9x11 + 85636/9x10 + 757927/27x9 + 601228/9x8 + 1351828/9x7 +

9658007/27x6 + 2162818/3x5 + 1142985x4 + 85636/9x10 + 757927/27x9 +

601228/9x8 + 1351828/9x7 + 9658007/27x6 + 2162818/3x5 + 1142985x4 +

50075833/27x3 + 27518078/9x2 + 29615306/9x+ 40301641/27.

After applying Algorithm 3 to write c(x) in base ψ(·) we obtain:

g0(x) = (−5x7 − 26x6 − 98x5 − 381x4 − 867x3 − 1911x2 − 5145x− 5774)/3;

g1(x) = (−5x7 − 18x6 − 38x4 − 323x3 − 28x2 + 784x)/3;

g2(x) = (−5x7 − 18x6 − 38x4 − 323x3 + 1029x+ 343)/3;

g3(x) = (−11x6 − 70x5 − 98x4 − 176x3 − 1218x2 − 2058x− 686)/3;

g4(x) = (28x2 + 245x+ 343)/3;

A minor difficulty arises due to the common denominator of 3 which occurs here. As in

Chapter 9, the solution is quite simple – for any ` ∈ Z coprime to r, the point [` · c(x0)]P

will also be a point of order r. We can take [` · c(x0)]P , instead of [c(x0)]P , to be our point

of order r, simplifying the calculations. We use the gi with the denominator removed to

evaluate [3 · c(x)]P .

In this case, the best addition sequence we could find that includes all of the coefficients

was:

{1, 2, 3, 5, 7, 8, 11, 18, 26, 28, 31, 38, 45, 69, 70, 78, 98, 176, 245, 253, 323, 343, 381,

389, 686, 784, 829, 867, 1029, 1218, 1658, 1911, 2058, 4116, 5145, 5774},

where the underlined numbers are the extra numbers included to complete the sequence.

This sequence can be used to complete the calculation in 51 point additions and 5 point

142

doublings.

Cofactor Multiplication: Discussion

For similar reasons as in the previous chapter, it may sometimes be preferable to select

a slightly longer addition sequence which trades additions for doublings: in most cases

(dependent on the curve representation and the projective coordinate method used) point

doublings are significantly faster than point additions. The situation is complex, however,

and requires further study. For example, if doubling or adding a point on E′(Fp5) it is

likely that affine coordinates will in fact be faster than any kind of projective coordinates,

in which case, using the standard short Weierstraß representation, additions may actually

be faster than doublings [44]. Addition-subtraction sequences may also be an attractive

alternative in other cases.

143

Chapter 11

Part II Summary

———————————————————————————————————

‘It’s a poor sort of memory that only works backwards.’

- The Queen, Lewis Carroll’s Through the Looking Glass and What Alice Found There,

Chapter V, Wool and Water.

———————————————————————————————————

Through the work done in this section, the contributions to PBC are:

• A method for constructing tower extensions for the fields used in PBC. These tower

extensions are necessary, as it is well recognised that the implementation of finite

extension fields as a sequence of Kummer extensions (when possible) is the most

efficient. Tower extensions are assumed in many of the improvements, such as those

suggested in [42, 21, 2]. The results of this section show that this tower construction

is available for more fields occurring in the context of PBC than were previously

considered for use and gives explicit constructions for some fields accompanying BN

curves and KSS k = 18 curves.

• A fixed elliptic curve equation for some KSS k = 18 curves when x0, the parameter

defining the system parameters, satisfies some easily checked equivalence relations.

144

• A general method for the implementation of the hard part of the final exponentia-

tion in the calculation of the Tate pairing and its variants, which is faster, generally

applicable, and requires less memory than previously described methods.

• A method for deriving a point on E′(Fpe) of order r given an initial hashing to a

general point on E′(Fpe), the degree d twist of an ordinary pairing-friendly elliptic

curve with embedding degree k. The proposed method is significantly faster than the

naive approach, which would require multiplication by a very large cofactor.

These methods can contribute to a cryptographic compiler, specialised for pairing-based

cryptography, as described in [26]. Given only the polynomial equations defining a pairing-

friendly family of elliptic curves, it should now be possible, and indeed appropriate, to

write a computer program which would automatically generate very efficient R-ate pairing

code (for the curves discussed in this section), using the efficient representation of the finite

extension field, a faster cofactor multiplication formula and a final exponentiation method.

145

Chapter 12

Closing Remarks

———————————————————————————————————

‘Everything has got a moral if you can only find it.’

- The Duchess, Lewis Carroll’s Alice in Wonderland,

Chapter IX, The Mock Turtle’s Story.

———————————————————————————————————

In this chapter, we summarise the contributions of this thesis and introduce some points

worthy of continued research.

12.1 Summary

PBC is by nature fundamentally different from other areas of cryptography. There are im-

plementation issues which do not have to be considered for other public-key cryptographic

schemes such as RSA, or other schemes based on the DLP: It is not possible to write a

general implementation of a pairing-based protocol which performs reasonably efficiently

for any level of security. Different security levels require different pairing-friendly elliptic

curves and different pairing variations (specifically an Ate pairing variation). The develop-

ment and maintenance of good quality pairing code is therefore difficult. Much of the work

146

presented in this thesis was motivated by the intention to contribute to a cryptographic com-

piler: a tool for automatically generating good quality code for PBC at all security levels,

as first introduced by Dominguez and Scott [26].

In Chapter 8, a method for constructing the extension fields used in PBC is given. The

optimal tower extensions can be automatically generated using the results of Chapter 8 and

allow various optimisations to also be incorporated into a cryptographic compiler such as

those presented in [42, 21, 2]. Such constructions are proposed in the IEEE draft standard

[1].

In Section 8.5, we have built on work by Shirase [89], which automatically gives BN

curve equations. We have given elliptic curve equations for KSS k = 18 curves for which

the defining parameter x′0 satisfies some easily verified equivalence equations. This result

removes the necessity of performing expensive trial point scalar multiplications to find the

curve equation.

The final exponentiation step of the pairing computation is expensive, but necessary;

in Chapter 9 we present a faster method of performing the final exponentiation using the

Frobenius automorphism and addition chains.

For many protocols it is necessary to hash an identity to a random point on an elliptic

curve, then perform a scalar multiplication by a large cofactor to obtain a point of a particu-

lar order. This cofactor is quite large and so the scalar multiplication is quite expensive. In

Chapter 10, drawing on ideas of [36], we used a group automorphism and addition chains

to speed up the cofactor multiplication process.

After a detailed examination of the algorithms used to solve the DLP and ECDLP as

they occur in PBC (Chapters 5 and 6 respectively), we were able to compile Table 7.1 to

give a more precise approximation of the levels of security achievable for efficient imple-

mentations using the curves recommended in Table 3.1. From Table 7.1 we are easily able

to deduce the size of the parameters necessary to obtain these security levels; this can be

used as a guideline for implementers of pairing-based protocols.

147

12.2 Future Work

PBC is a relatively new area of research; there are many aspects which can be developed.

It is an open problem to construct non-supersingular abelian varieties — including el-

liptic curves — over non-prime fields with small embedding degree and ρ < 16. Such

a construction would not only expand our library of pairing-friendly abelian varieties but

could potentially lead to improvements in the performance of pairing-based protocols, in

the same way that elliptic curves over non-prime fields can lead to performance improve-

ments for standard elliptic curve cryptography [35]. In [80] Rubin and Silverberg show that

using supersingular abelian varieties (with genus 2 ≤ g ≤ 4) can lead to more efficient

implementations than those using supersingular elliptic curves.

A pattern of constant coefficients of pairing-friendly elliptic curves has emerged, first

noticed by Devegili et al. in [23]. Some of these patterns have been explained in [89] and

Part II, but there are many curves for which this is yet to be explained. The observation in

[23] that when p satisfies p ≡ 7 mod 8, p ≡ 4 mod 9 and p ≡ 1 mod 6 then we can

take E : y2 = x3 + 3, is an interesting case worth further exploration.

The NFS could be adapted to the context of PBC. As described in [51], the NFS pre-

sumes general parameters. In PBC the parameters are quite specific, in particular, the ex-

tension degree k which is a product of powers of 2 and 3. Such extension fields have a

rich structure, which could still be exploited by the attacker to reduce the hardness of the

DLP instance occurring in pairing-based protocols. The extension degrees are also fixed

(not tending to infinity) and the prime characteristics are of a particular form. These could

potentially introduce vulnerabilities to the systems (as also hinted by Schirokauer [82], as

the system parameters are often chosen to have low weight). This is yet to be thoroughly

investigated.

148

Appendix A

Computing the Security Levels of

Suggested Curves

We describe here in more detail the method used to obtain the security levels given in Table

7.1. There is little known about the actual runtime of the NFS as it is still computation-

ally infeasible test the NFS, even when the parameters are selected to be ‘optimal’ for the

run-time (selecting the p and k such that degree of the elements sieved gives the lowest

possible heuristic run-time). Even the worked example in [51] does not have ‘optimal’

parameters (from the perspective of the NFS). This is to the advantage of PBC, the imple-

mentational issues associated with using the NFS mean that the complexity analysis slightly

over-estimates the capabilities of the NFS in practice and therefore underestimates the level

of security offered; in cryptography it is usual to be conservative when estimating security

levels.

The analysis method used to compile the table in Chapter 7 takes the specific properties

of the curves used throughout this thesis, but could easily be adapted to all pairing friendly

elliptic curves. The analysis takes into account the following:

1. The size of the autmorphism group of the curve;

2. the ρ-value of each curve;

149

3. the degree of elements sieved in the sieving stage;

4. the relative sizes of p and k.

In Chapter 6 we saw that elliptic curves with non-trivial automorphism group allow

modifications to Pollard’s Rho method which give a speed up of a factor of
√
|Aut(E)|,

this is the case for all curves in Table 3.1 an is therefore taken into account in the analysis.

The ρ-value of each curve determines the size relationship between the group of points

on the elliptic curve and the field over which it is defined, this will in turn affect the relative

sizes of p and k, for fixed k and group size r.

Both points 3 and 4 have an effect on the heuristic run-time of the NFS and, as illustrated

by [101], an even stronger effect on the actual run-time. The choice of the polynomials used

in the NFS to construct the number fields also has a significant effect on the run-time of the

NFS; this can only be determined on a case by case basis and so could not be taken into

account for this analysis.

The basic idea is, for a fixed embedding degree k and corresponding ρ-value, find the

security interval for which the complexity of the NFS is approximately equal to the com-

plexity of Pollard’s Rho method. This was done using a small Magma program. We step

through an example here to illustrate.

KSS k = 18 curves

Listing A.1: Code in Magma for a Generic Assignment

// Input <- LH, RH, notation, operator(s), library definitions
// Output -> Corresponding output code to assign Left <- Right
// Example Input: GenericAssign("fm1","c",lang[tgtRATE]["powerPOS"],"

powerMAP","powerMAP2","RATEmiracl",lang)
// Example Output: pow(fm1,c)
GenericAssign:=function(Left,Right,operatorPOS,operator1,operator2,

target,language)
Code:="";
case operatorPOS:
when 0:

function L(q,a,c)

150

l := Exp(c*(Log(q)ˆ(a))*(Log(Log(q))ˆ(1-a)));

return l;

end function;

curves[4] := "BN";
complexity_multiple[4] := Sqrt(Pi(RealField())/12);
k[4] := 12;
rho[4] := 1/1;
m[4] := 250; //expected value, used as starting point for testing

bound := 3;
PrintFile("Pollard_NFS_complexity.txt",Sprintf("bound: %o\n\n", bound

));

for j in [4 .. 4] do

PrintFile("NFS_complexity_trials_method_2.txt",Sprintf("Family: %o\
n\n", curves[j]));

p := NextPrime(2ˆm[j]);

count := m[j]+1000;

repeat
q := pˆk[j];
c := (Log(p)/(k[j]ˆ(1/2)*(Log(Log(q)))))ˆ(2/3); //find the c
value such that p = L(q,a,c)

C<x> := PolynomialRing(RealField());
t_val := Roots(3*c*x*(x+1)ˆ2-32);

t1 := Floor(t_val[1][1]);
t2 := Ceiling(t_val[1][1]); //the value of t used in the paper is
sometimes rounded down or up, and may vary, this takes both
variations into account
c_dash1 := (8/3)*(3*t1/(4*(t1+1)))ˆ(1/3);
c_dash2 := (8/3)*(3*t2/(4*(t2+1)))ˆ(1/3);

NFS_complexity1 := L(q,1/3,c_dash1);
NFS_complexity2 := L(q,1/3,c_dash2); //the NFS complexities for
the two possible values of t

r := pˆ(1/rho[j]);
Pollard_complexity := complexity_multiple[j]*rˆ(1/(2)); //the
complexity of Pollard’s rho method.

ratio := [];

151

ratio[1] := Pollard_complexity/NFS_complexity1;
ratio[2] := Pollard_complexity/NFS_complexity2;
ratio[3] := NFS_complexity1/Pollard_complexity;
ratio[4] := NFS_complexity2/Pollard_complexity;

for i in [1 .. 4] do //check if the ratio of the complexities is
small enough (here we set the ratio to be between 1 and 3)
if Abs(ratio[i]) ge 1 then
if Abs(ratio[i]) le bound then
PrintFile("Pollard_NFS_complexity.txt",Sprintf("Log_2 p :=

%o\nSecurity Level := %o\n\n", Log(p)/Log(2), Log(
Pollard_complexity)/Log(2))); \\record the size of p in bits and
the complexity in a file

break;
end if;

end if;
end for;

m[j] := m[j] + 1;
p := NextPrime(2ˆm[j]);

until m[j] eq count;

end for;

152

Appendix B

Final Exponentiation

We apply the method presented in Chapter 9 to some other selected families of pairing-

friendly elliptic curves. In the following examples ` denotes the smallest common mul-

tiple of the denominators of the coefficients of the λi in the base p(x) representation of

Φk(p(x))/r(x). Some addition chains and polynomial parametrisations of `Φk(p)/r are

not included for space and time reasons.

The k = 8 family of curves

We take ` = 6 in this case and find the parameterisation of `Φ8(p)/r = (p4 + 1)/r to be:

λ3(x) = 15x2 + 30x+ 75;

λ2(x) = 2x5 + 4x4 − x3 + 26x2 − 55x− 144;

λ1(x) = −5x4 − 10x3 − 5x2 − 80x+ 100;

λ0(x) = x5 + 2x4 + 7x3 + 28x2 + 10x+ 108.

We find by brute-force computer search that we can construct the following optimal addition

sequence which contains all the exponents in the above equations:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}.

153

As in Chapter 9, the underlined numbers are the extra numbers added in order to complete

the sequence. We find that the vectorial addition chain derived from this addition sequence

requires just 27 multiplications and 6 squarings to complete the calculation of the hard part

of the final exponentiation.

The k = 16 family of curves

Taking ` = 14 we find the parameterisation of `Φ8(p)/r = (p4 + 1)/r to be:

λ0(x) = −11x9 − 22x8 − 55x7 − 278x5 − 1172x4 − 1390x3 + 1372;

λ1(x) = 15x8 + 30x7 + 75x6 + 220x4 + 1280x3 + 1100x2;

λ2(x) = 25x7 + 50x6 + 125x5 + 950x3 + 3300x2 + 4750x;

λ3(x) = −125x6 − 250x5 − 625x4 − 3000x2 − 13000x− 15000;

λ4(x) = −2x9 − 4x8 − 10x7 + 29x5 − 54x4 + 145x3 + 4704;

λ5(x) = −20x8 − 40x7 − 100x6 − 585x4 − 2290x3 − 2925x2;

λ6(x) = 50x7 + 100x6 + 250x5 + 1025x3 + 4850x2 + 5125x;

λ7(x) = 875x2 + 1750x+ 4375.

FST k = 4

For this family of curves, ` = 4 and the base p(x) representation of `Φk(p(x))/r(x) is

given by:

λ0(x) = x3 − 2x2 + x+ 4;

λ1(x) = x2 − 2x+ 1. (B.1)

Clearly, the coefficients already form a complete addition chain

{1, 2, 4}.

154

BLS k = 6 / FST k = 6

Taking ` = 3, the base p(x) representation of `Φk(p(x))/r(x) is given by:

λ0(x) = x+ 2;

λ1(x) = 1. (B.2)

Again, we immediately have a complete addition chain

{1, 2}.

KSS k = 36

For this family, the hard part of the final exponentiation is 111(pk− 1)/r (that is, ` = 111).

We obtain:

λ0(x) = −87x13 + 348x12 − 609x11 − 25807x7 + 83914x6 − 180649x5 + 151959;

λ1(x) = −385x12 + 1540x11 − 2695x10 − 128499x6 + 428526x5 − 899493x4;

λ2(x) = −931x11 + 3724x10 − 6517x9 − 333347x5 + 1126706x4 − 2333429x3;

λ3(x) = −1029x10 + 4116x9 − 7203x8 − 433895x4 + 1507142x3 − 3037265x2;

λ4(x) = 2401x9 − 9604x8 + 16807x7 + 597849x3 − 1858374x2 + 4184943x;

λ5(x) = 16807x8 − 67228x7 + 117649x6 + 5428661x2 − 17983490x+ 38000627;

λ6(x) = −62x13 + 248x12 − 434x11 − 25539x7 + 88392x6 − 178773x5 − 1478520;

λ7(x) = 112x12 − 448x11 + 784x10 + 26075x6 − 79436x5 + 182525x4;

λ8(x) = 882x11 − 3528x10 + 6174x9 + 283073x5 − 936488x4 + 1981511x3;

λ9(x) = 2744x10 − 10976x9 + 19208x8 + 949767x4 − 3189900x3 + 6648369x2;

λ10(x) = 4802x9 − 19208x8 + 33614x7 + 1817557x3 − 6204184x2 + 12722899x;

λ11(x) = 621859x2 − 2487436x+ 4353013. (B.3)

155

BLS k = 24 & BLS k = 48

For both the BLS k = 24 and the BLS k = 48 cases we have ` = 3 and complete addition

chains in the coefficients

{1, 2, 3}.

The base p(x) representation of `Φk(p(x))/r(x) is given by:

BLS k = 24

λ0(x) = x9 − 2x8 + x7 − x5 + 2x4 − x3 + 3;

λ1(x) = x8 − 2x7 + x6 − x4 + 2x3 − x2;

λ2(x) = x7 − 2x6 + x5 − x3 + 2x2 − x;

λ3(x) = x6 − 2x5 + x4 − x2 + 2x− 1;

λ4(x) = x5 − 2x4 + x3;

λ5(x) = x4 − 2x3 + x2;

λ6(x) = x3 − 2x2 + x;

λ7(x) = x2 − 2x+ 1. (B.4)

BLS k = 48

λ0(x) = x17 − 2x16 + x15 − x9 + 2x8 − x7 + 3;

λ1(x) = x16 − 2x15 + x14 − x8 + 2x7 − x6;

λ2(x) = x15 − 2x14 + x13 − x7 + 2x6 − x5;

λ3(x) = x14 − 2x13 + x12 − x6 + 2x5 − x4;

λ4(x) = x13 − 2x12 + x11 − x5 + 2x4 − x3;

λ5(x) = x12 − 2x11 + x10 − x4 + 2x3 − x2;

λ6(x) = x11 − 2x10 + x9 − x3 + 2x2 − x;

λ7(x) = x10 − 2x9 + x8 − x2 + 2x− 1;

156

λ8(x) = x9 − 2x8 + x7;

λ9(x) = x8 − 2x7 + x6;

λ10(x) = x7 − 2x6 + x5;

λ11(x) = x6 − 2x5 + x4;

λ12(x) = x5 − 2x4 + x3;

λ13(x) = x4 − 2x3 + x2;

λ14(x) = x3 − 2x2 + x;

λ15(x) = x2 − 2x+ 1. (B.5)

157

Appendix C

Cofactor Multiplication to obtain a

point in G2

We apply the algorithm given in Chapter 10 to more families of pairing-friendly elliptic

curves. Adapting the notation from above, ` denotes the smallest common multiple of the

denominators of the coefficients of the gi. We calculate [` · c(x)]P instead of [c(x)]P , for

some (` is coprime to r). Some addition chains are not included for space and time reasons.

KSS k = 8

Proceeding as above we obtain:

g0(x) = 2x5 + 4x4 − x3 + 50x2 + 65x− 36;

g1(x) = 2x5 + 4x4 − x3 − 7x2 − 25x+ 75;

g2(x) = −15x2 − 30x− 75.

We take ` = 6 and compute [6 · c(x)]P . To complete the calculation we need an

158

addition sequence which includes all of the integer coefficients that arise here:

{1, 2, 4, 5, 6, 7, 10, 15, 25, 30, 36, 50, 65, 75},

where the underlined numbers are the extra numbers included to complete the sequence.

The computation using this addition sequence can be completed with 18 point additions

and 5 point doublings.

KSS k = 16

We compute [98 · c(x0)]P using:

g0 = 210x9 + 1634x8 − 2282x7 + 224x6 + 27167x5 + 68296x4 − 51681x3 + 4592x2

+509096x+ 932532;

g1 = −14x9 − 168x8 + 322x7 − 924x6 − 19509x5 − 3689x4 − 1239x3 − 13307x2

−408016x− 344960;

g2 = −14x9 − 168x8 + 1953x5 − 3689x4 + 1715x2 + 39795x+ 344960;

g3 = −14x9 − 168x8 + 1953x5 − 3689x4 + 48125x+ 30625;

g4 = 768x9 − 156x8 − 14x7 + 5768x6 + 31698x5 + 5357x4 + 7063x3 + 118244x2

+337347x+ 108125;

g5 = 154x7 − 5068x6 + 1666x5 + 10997x3 − 101199x2 − 54537x+ 29155;

g6 = −10045x2 + 113190x+ 32095.

BLS curves

In both BLS k = 24 and BLS k = 48 cases, we have ` = 3 and so compute [3 · c(x)]P

instead of [c(x)]P to remove the inconvenient denominator. We use the following polyno-

mials:

159

BLS k = 24

g0 = −2x8 + 4x7 − 3x5 + 3x4 − 2x3 − 2x2 + x+ 4;

g1 = x5 − x4 − 2x3 + 2x2 + x− 1;

g2 = x5 − x4 − x+ 1;

g3 = x5 − x4 − x+ 1;

g4 = −3x4 + x3 + 4x2 + x− 3;

g5 = 3x3 − 3x2 − 3x+ 3;

g6 = −x2 + 2x− 1. (C.1)

We use the complete addition chain:

{1, 2, 3, 4}.

BLS k = 48

g0 = −6x16 − 2x15 + 8x14 + 14x13 − 14x11 − 8x10 + 3x9 + 11x8 + 8x7

−14x5 − 14x4 + 8x2 + 5x+ 4;

g1 = 10x15 + 6x14 − 26x13 − 22x12 + 22x11 + 26x10 − 5x9 − 11x8 − 16x7

−24x6 + 10x5 + 46x4 + 24x3 − 16x2 − 19x− 5;

g2 = −14x14 + 4x13 + 34x12 − 34x10 − 3x9 + 13x8 + 24x6 + 26x5 − 34x4

−56x3 + 29x+ 11;

g3 = 8x13 − 8x12 − 16x11 + 16x10 + 9x9 − 9x8 − 22x5 − 10x4 + 40x3

+24x2 − 19x− 13;

g4 = −4x12 + 8x11 − 7x9 + 3x8 + 12x4 − 4x3 − 20x2 + 3x+ 9;

g5 = x9 − x8 − 4x3 + 4x2 + 3x− 3;

g6 = x9 − x8 − x+ 1;

g7 = x9 − x8 − x+ 1;

160

g8 = −7x8 − 13x7 − 8x6 + 14x5 + 28x4 + 14x3 − 8x2 − 13x− 7;

g9 = 21x7 + 43x6 + 6x5 − 70x4 − 70x3 + 6x2 + 43x+ 21;

g10 = −35x6 − 55x5 + 34x4 + 112x3 + 34x2 − 55x− 35;

g11 = 35x5 + 29x4 − 64x3 − 64x2 + 29x+ 35;

g12 = −21x4 + x3 + 40x2 + x− 21;

g13 = 7x3 − 7x2 − 7x+ 7;

g14 = −x2 + 2x− 1.

We construct the following addition chain from the coefficients of the gi:

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 19, 20, 21, 22, 24, 26, 28, 29, 34, 35, 40,

43, 46, 55, 56, 64, 70, 112}.

Remarkably, the coefficients form a complete addition chain already.

161

Bibliography

[1] IEEE P1363.3: Standard for identity-based cryptographic techniques using pairings.

Draft 3:Section 5.3.2. http://grouper.ieee.org/groups/1363/IBC/

index.html.

[2] C. Arène, T. Lange, M. Naehrig, and C. Ritzenthaler. Faster Computation of the Tate

Pairing. To appear in Journal of Number Theory. Cryptology ePrint Archive, Report

2009/155, 2009. http://eprint.iacr.org/.

[3] A. Atkin and F. Morain. Elliptic Curves and Primality Proving. Mathematics of

Computation, 61(203):29 – 68, 1993.

[4] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren.

Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman and Hal-

l/CRC, 2006.

[5] D. Bailey and C. Paar. Optimal Extension Fields for Fast Arithmetic in Public-Key

Algorithms. In H. Krawczyk, editor, Advances in Cryptology – Crypto ’98, volume

1462 of Lecture Notes in Computer Science, pages 472–485. Springer-Verlag, 1998.

[6] S. Baktir and B. Sunar. Optimal Tower Fields. IEEE Transactions on Computers,

53(10):1231–1243, October 2004.

[7] R. Balasubramanian and N. Koblitz. The Improbability that an Elliptic Curve has

Subexponential Discrete Log Problem under the Menezes - Okamoto - Vanstone

Algorithm. Journal of Cryptology, 11(2):141–145, 1998.

162

[8] P. S. L. M. Barreto, S. Galbraith, C. OhEigeartaigh, and M. Scott. Efficient Pairing

Computation on Supersingular Abelian Varieties. Designs, Codes and Cryptography,

42:239–271, 2007. http://eprint.iacr.org/2004/375.

[9] P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient Algorithms for

Pairing-Based Cryptosystems. In M. Yung, editor, Advances in Cryptology – Crypto

2002, volume 2442 of Lecture Notes in Computer Science, pages 354–368. Springer-

Verlag, 2002.

[10] P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing Elliptic Curves with Pre-

scribed Embedding Degrees. In C. Galdi and G. Persiano, editors, Security in Com-

munication Networks – SCN 2002, volume 2576 of Lecture Notes in Computer Sci-

ence, pages 263–273. Springer-Verlag, 2002.

[11] P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In

B. Preneel and S. Tavares, editors, Selected Areas in Cryptography – SAC 2005, vol-

ume 3897 of Lecture Notes in Computer Science, pages 319–331. Springer-Verlag,

2006.

[12] N. Benger, M. Charlemagne, and D. Freeman. On the security of pairing-friendly

abelian varieties over non-prime fields. In H. Shacham and B. Waters, editors,

Pairing-Based Cryptography – Pairings 2009, volume 5671 of Lecture Notes in

Computer Science, pages 52–65. Springer-Verlag, 2009.

[13] N. Benger and M. Scott. Constructing Tower Extensions for the implementation of

Pairing-Based Cryptography, 2010.

[14] I. F. Blake, G. Seroussi, and N. P. Smart, editors. Advances in Elliptic Curve Cryp-

tography. Number 317 in London Mathematical Society Lecture Note Series. Cam-

bridge University Press, 2005.

163

[15] D. Boneh and M. K. Franklin. Identity-Based Encryption from the Weil Pairing. In

J. Kilian, editor, Advances in Cryptology – Crypto 2001, volume 2248 of Lecture

Notes in Computer Science, pages 213–229, London, UK, 2001. Springer-Verlag.

[16] D. Boneh, B. Lynn, and H. Shacham. Short Signatures from the Weil Pairing. In

C. Boyd, editor, Advances in Cryptology – Asiacrypt 2001, volume 2248 of Lecture

Notes in Computer Science, pages 514–532. Springer-Verlag, 2001.

[17] J. Bos and M. Coster. Addition chain heuristics. In G. Brassard, editor, Advances in

Cryptology – Crypto ’89, volume 434 of Lecture Notes in Computer Science, pages

400–407, New York, NY, USA, 1989. Springer-Verlag New York, Inc.

[18] R. H. Brown and A. Prabhakar. Digital Signature Standard (DSS). http://www.

itl.nist.gov/fipspubs/fip186.htm.

[19] C. Cocks. An Identity Based Encryption Scheme Based on Quadratic Residues.

In B. Honary, editor, Cryptography and Coding, volume 2260 of Lecture Notes in

Computer Science, pages 360–363. Springer, 2001.

[20] H. Cohen. A Course in Computational Algebraic Number Theory. Number 138 in

Graduate Texts in Mathematics. Springer-Verlag, Berlin, 1993.

[21] C. Costello, C. Boyd, J. M. González-Nieto, and K. K.-H. Wong. Avoiding full

extension field arithmetic in pairing computations. In D. J. Bernstein and T. Lange,

editors, Progress in Cryptology – Africacrypt 2010, volume 6055 of Lecture Notes

in Computer Science, pages 203–224. Springer-Verlag, 2010.

[22] B. den Boer. Diffie-Hellman is as strong as Discrete Log for certain primes. In

S. Goldwasser, editor, Advances in Cryptology – Crypto ’88, volume 403 of Lecture

Notes in Computer Science, pages 530–539, 1988.

[23] A. J. Devegili, M. Scott, and R. Dahab. Implementing cryptographic pairings over

Barreto-Naehrig curves. In T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto,

164

editors, Pairing-Based Cryptography – Pairing 2007, volume 4575 of Lecture Notes

in Computer Science, pages 197–207. Springer-Verlag, 2007.

[24] W. Diffie and M. E. Hellman. New Directions in Cryptography. In Information The-

ory, IEEE Transactions on Information Theory, volume 22, pages 644–654, 1976.

[25] B. Dodson and A. K. Lenstra. NFS with four large primes: An Explosive Experiment.

In D. Coppersmith, editor, Advances in Cryptology – Crypto ’95, pages 372–385,

London, UK, 1995. Springer-Verlag.

[26] L. J. Dominguez Perez and M. Scott. Automatic Generation of Optimised Crypto-

graphic Pairing Functions. pages 55–71, 2009.

[27] P. Downey, B. Leony, and R. Sethi. Computing sequences with addition chains. Siam

Journal of Computing, 3:638–696, 1981.

[28] S. Duquesne and G. Frey. Background on pairings. In Handbook of Elliptic and

Hyperelliptic Curve Cryptography, pages 115–124. Chapman & Hall/CRC, Boca

Raton, FL, 2006.

[29] I. Duursma, P. Gaudry, and F. Morain. Speeding up the discrete log computation

on curves with automorphisms. In K.-Y. Lam, E. Okamoto, and C. Xing, editors,

Advances in Cryptology – Asiacrypt ’99, pages 103–121. Springer-Verlag, 1999.

[30] I. Duursma and H. Lee. Tate pairing implementation for hyperelliptic curves y2 =

xp−x+d. In C.-S. Laih, editor, Advances in Cryptology – ASIACRYPT ’03, Lecture

Notes in Computer Science, pages 111–123. Springer-Verlag, 2003.

[31] T. ElGamal. A Public Key Cryptosystem and a Signature Scheme based on Discrete

Logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology –

Crypto ’84, volume 196 of Lecture Notes in Computer Science, pages 10–18, New

York, NY, USA, 1985. Springer-Verlag New York, Inc.

165

[32] D. Freeman, M. Scott, and E. Teske. A Taxonomy of Pairing Friendly Ellip-

tic Curves. Journal of Cryptology, 23(2):224–280, 2010. Also available from

http://eprint.iacr.org/2006/372.

[33] G. Frey, M. Müller, and H. Rück. The Tate pairing and the Discrete Logarithm

applied to Elliptic Curve Cryptosystems. IEEE Transactions on Information Theory,

45(5):1717 – 1718, 1999.

[34] G. Frey and H. Rück. A remark concerning m-divisibility and the discrete logarithm

in the divisor class group of curves. Mathematics of Computation, 62(206):865–874,

1994.

[35] S. Galbraith, X. Lin, and M. Scott. Endomorphisms for Faster Elliptic Curve Cryp-

tography on a Large Class of Curves. In A. Joux, editor, Advances in Cryptology

– Eurocrypt 2009, volume 5479 of Lecture Notes in Computer Science, pages 518–

535. Springer-Verlag, 2009.

[36] S. Galbraith and M. Scott. Exponentiation in Pairing-Friendly Groups using Homo-

morphisms. In S. Galbraith and K. Patterson, editors, Pairing-Based Cryptography –

Pairing 2008, volume 5209 of Lecture Notes in Computer Science, pages 211–224.

Springer-Verlag, 2008.

[37] P. Gaudry. Index Calculus for Abelian Varieties and the Elliptic Curve

Discrete Logarithm Problem. Journal of Symbolic Computation, (44):1690–

1702, 2009. Also available at http://www.loria.fr/˜gaudry/publis/

indexcalc.pdf.

[38] P. Gaudry, F. Hess, and N. P. Smart. Constructive and Destructive facets of Weil

descent on Elliptic Eurves. Journal of Cryptology, 15(1):19–46, 2002.

[39] D. M. Gordon and K. S. McCurley. Massively Parallel Computation of Discrete

Logarithms. In E. F. Brickell, editor, Advances in Cryptology – Crypto ’92, pages

312–323, London, UK, 1993. Springer-Verlag.

166

[40] R. Granger, D. Page, and N. Smart. High Security Pairing-Based Cryptography

Revisited. In F. Hess, S. Pauli, and M. Pohst, editors, Algorithmic Number Theory

Symposium – ANTS VII, volume 4076 of Lecture Notes in Computer Science, pages

480–494. Springer-Verlag, 2006.

[41] R. Granger, D. Page, and M. Stam. On Small Characteristic Algebraic Tori in Pairing

Based Cryptography. LMS Journal of Computation and Mathematics, 9:64–85, 2006.

[42] R. Granger and M. Scott. Faster Squaring in the Cyclotomic Subgroup of Sixth De-

gree Extensions. In Public Key Cryptography – PKC 2010, volume 6056 of Lecture

Notes in Computer Science, pages 209–223, 2010.

[43] D. Hankerson, A. Menezes, and D. Scott. Chapter XII: Software Implementation of

Pairings. In M. Joye and G. Neven, editors, Identity-Based Cryptography, volume 2

of Cryptology and Information Security Series. IOS Press, 2009. Available at http:

//www.cacr.math.uwaterloo.ca/.

[44] D. Hankerson, A. Menezes, and S. Vanstone. Guide to Elliptic Curve Cryptography.

Springer, 2004.

[45] L. Hei, J. Dong, and D. Pei. Implementation of Cryptosystems based on Tate Pairing.

J. Comput. Sci & Technolgy, 20(2):264–269, 2005.

[46] F. Hess, N. Smart, and F. Vercauteren. The Eta Pairing Revisited. IEEE Transactions

on Information Theory, 52(10):4595–4602, 2006.

[47] L. Hitt. On the minimal embedding field. In Pairing-Based Cryptography — Pairing

2007, volume 4575 of Springer LNCS, pages 294–301, 2007.

[48] M. J. Jacobson, N. Koblitz, J. H. Silverman, A. Stein, and E. Teske. Analysis of the

xedni calculus attack. Des. Codes Cryptography, 20(1):41–64, 2000.

[49] A. Joux. A One Round Protocol for Tripartite Diffie – Hellman. In Journal of

Cryptology, volume 17, pages 263–276, 2004.

167

[50] A. Joux and R. Lercier. The Function Field Sieve in the Medium Prime Case. In

S. Vaudenay, editor, Advances in Cryptology – Eurocrypt 2006, number 4004 in

Lecture Notes in Computer Science, pages 254–270, 2006.

[51] A. Joux, R. Lercier, N. Smart, and F. Vercauteren. The Number Field Sieve in the

Medium Prime Case. In C. Dwork, editor, Advances in Cryptology – Crypto 2006,

number 4117 in Lecture Notes in Computer Science, pages 323–341, 2006.

[52] E. Kachisa, E. Schaefer, and M. Scott. Constructing Brezing-Weng Pairing-Friendly

Elliptic Curves using elements in the Cyclotomic Field. In S. Galbraith and K. Pat-

terson, editors, Pairing-Based Cryptography – Pairing 2008, volume 5209 of Lecture

Notes in Computer Science, pages 126–135. Springer-Verlag, 2008.

[53] A. Kerckhoffs. La cryptographie militaire. Journal des sciences militaires, 9:5–38,

1883.

[54] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,

48(177):203 – 209, 1987.

[55] N. Koblitz. Good and bad uses of Elliptic Curves in Cryptography. Mosc. Math. J.,

2:693–715, 2002.

[56] N. Koblitz and A. Menezes. Pairing-Based Cryptography at high security levels.

IMA Int. Conf., 3796:13 – 36, 2005.

[57] N. Koblitz and A. Menezes. Another look at non-standard discrete log and Diffie-

Hellman problems. Journal of Mathematical Cryptology, pages 311 – 326, 2008.

[58] B. A. LaMacchia and A. M. Odlyzko. Solving large sparse linear systems over finite

fields. In A. Menezes and S. A. Vanstone, editors, Advances in Cryptology - Crypto

1990, number 537 in Lecture Notes in Computer Science, pages 109–133. Springer-

Verlag, 1990.

168

[59] S. Lang. Elliptic Curves: Diophantine Analysis, volume 231 of Grundlehren der

mathematischen Wissenschaften. Springer-Verlag, 1978.

[60] S. Lang. Algebra, volume 211 of Graduate Texts in Mathematics. Springer, New

York, revised third edition, 2002.

[61] E. Lee, H-S. Lee, and C-M. Park. Efficient and Generalized Pairing Computation

on Abelian Varieties. Cryptology ePrint Archive, Report 2008/040, 2008. http:

//eprint.iacr.org/2008/040.

[62] F. Lemmermeyer. Reciprocity Laws: From Euler to Eisenstein. Springer Mono-

graphs in Mathematics. Springer-Verlag, 2000.

[63] A. K. Lenstra. Unbelievable Security: Matching AES Security Using Public Key

Systems. In C. Boyd, editor, Advances in Cryptology – Asiacrypt ’01, volume 2248

of Lecture Notes in Computer Science, pages 67–86, London, UK, 2001. Springer-

Verlag.

[64] A. K. Lenstra and H. W. Lenstra Jr., editors. The development of the Number Field

Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993.

[65] A. K. Lenstra and E. R. Verheul. Selecting Cryptographic Key Sizes. In H. Imai and

Y. Zheng, editors, Public-Key Cryptography 2000, volume 1751 of Lecture Notes in

Computer Science, pages 446–465, London, UK, 2000. Springer-Verlag.

[66] R. Lidl and H. Niederreiter. Finite Fields. Number 20 in Encyclopedia of Mathemat-

ics and its Applications. Cambridge University Press, Cambridge, UK, 2nd edition,

1997.

[67] S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Optimised versions of the Ate

and Twisted Ate Pairings. In S. Galbraith, editor, Cryptography and Coding, volume

4887 of Lecture Notes in Computer Science, pages 302–312. Springer, 2007.

169

[68] A. Menezes. Elliptic Curve Public Key Cryptosystems, volume 234 of series in

engineering and computer science, SECS. Kluwer Academic Publishers, 1993.

[69] A. Menezes, T. Okamoto, and S. Vanstone. Reducing Elliptic Curve Logarithms to

Logarithms in a Finite Field. In Symposium on Theory of Computing – STOC ’91,

pages 80–89, New York, NY, USA, 1991. ACM. http://doi.acm.org/10.

1145/103418.103434.

[70] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Ap-

plied Cryptography. CRC Press, Boca Raton, Florida, 1996. URL:

http://cacr.math.uwaterloo.ca/hac.

[71] V. S. Miller. Use of Elliptic Curves in Cryptography. In H. C. Williams, editor,

Advances in Cryptology - Crypto ’85, number 218 in Lecture Notes in Computer

Science, page 417. Springer, 1985.

[72] V. S. Miller. Short Programs for Functions on Curves. unpublished manuscript,

1986.

[73] V. S. Miller. The weil pairing, and its efficient calculation. J. Cryptology, 17(4):235–

261, 2004.

[74] J. S. Milne. Abelian Varieties. In G. Gornell and J. Silverman, editors, Arithmetic

Geometry, pages 103–150, New York, 1986. Springer.

[75] M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On compressible pairings and their

computation. In S. Vaudenay, editor, Progress in Cryptology - Africacrypt 2008,

volume 5023 of Lecture Notes in Computer Science, pages 371–388. Springer, 2008.

[76] Y. Nogami, M. Akane, Y. Sakemi, H. Kato, and Y. Morikawa. Integer variable X-

based Ate Pairing. In S. Galbraith and K. Patterson, editors, Pairing-Based Cryp-

tography – Pairing 2008, volume 5209 of Lecture Notes in Computer Science, pages

178–191. Springer-Verlag, 2008.

170

[77] J. Olivos. On vectorial addition chains. Journal of Algorithms, 2:13–21, 1981.

[78] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of

Computation, 32:918–924, 1978.

[79] K. Rubin and A. Silverberg. Supersingular abelian varieties in cryptology. In

M. Yung, editor, Advances in Cryptology – Crypto 2002, volume 2442 of Lecture

Notes in Computer Science, pages 336–353, 2002.

[80] K. Rubin and A. Silverberg. Using abelian varieties to improve pairing-based cryp-

tography. Journal of Cryptology, 22(3):330–364, 2009.

[81] O. Schirokauer. Using Number Fields to Compute Logarithms in Fi-

nite Fields. Mathematics of Computation, 231(69):1267–1283, 2000.

http://www.jstor.org/stable/2585027.

[82] O. Schirokauer. The Number Field Sieve for integers of low weight. Cryptology

ePrint Archive, Report 2006/107, 2006. http://eprint.iacr.org/.

[83] B. Schneier. Applied cryptography (2nd ed.): protocols, algorithms, and source code

in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[84] M. Scott and P. Barreto. Compressed Pairings. In M. K. Franklin, editor, Advances

in Cryptology – Crypto 2004, volume 3152 of Lecture Notes in Computer Science,

pages 140–156. Springer-Verlag, 2004. Also available from http://eprint.

iacr.org/2004/032/.

[85] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa.

Fast Hashing to G2 on Pairing-Friendly Curves. In H. Shacham and B. Waters,

editors, Pairing-Based Cryptography – Pairing 2009, volume 5671 of Lecture Notes

in Computer Science, pages 102–113. Springer, 2009.

[86] M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Perez, and E. J. Kachisa.

On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves.

171

In H. Shacham and B. Waters, editors, Pairing-Based Cryptography – Pairing 2009,

volume 5671 of Lecture Notes in Computer Science, pages 78–88. Springer, 2009.

[87] A. Shamir. Identity-Based Cryptosystems and Signature Schemes. In G. R. Blakley

and D. Chaum, editors, Advances in Cryptology – Crypto ’84, volume 196 of Lecture

Notes in Computer Science, pages 47–53, 1984.

[88] M. Shirase. Universally Constructing 12-th Degree Extension Field for Ate Pairing.

Cryptology ePrint Archive, Report 2009/623, 2009. http://eprint.iacr.

org/.

[89] M. Shirase. Barreto-Naehrig Curve With Fixed Coefficient - efficiently construct-

ing pairing-friendly curves -. Cryptology ePrint Archive, Report 2010/134, 2010.

http://eprint.iacr.org/.

[90] J. H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in

Mathematics. Springer, New York, 1986.

[91] J. H. Silverman. The Xedni Calculus and the Elliptic Curve Discrete Logarithm

Problem. Designs, Codes and Cryptography, 20(1):5–40, 2000.

[92] J. H. Silverman and J. Suzuki. Elliptic Curve Discrete Logarithms and the Index

Calculus. In K. Ohta and D. Pei, editors, Advances in Cryptology – Asiacrypt ’98,

pages 110–125, London, UK, 1998. Springer-Verlag.

[93] J. H. Silverman and J. Tate. Rational Points on Elliptic Curves, volume 106 of

Undergraduate Texts in Mathematics. Springer, New York, 1992.

[94] M. Stam and A. K. Lenstra. Efficient Subgroup Exponentiation in Quadratic and

Sixth Degree Extensions. In CHES 2002, volume 2523 of Lecture Notes in Computer

Science, pages 318–332. Springer-Verlag, 2002.

[95] D. R. Stinson. Cryptography: Theory and Practice, Second Edition. Chapman &

Hall/CRC, 2002.

172

[96] A. Sutherland. Record CM constructions of elliptic curves, 2010. http://

www-math.mit.edu/˜drew/CMRecords.html.

[97] E. Thomé. Computation of Discrete Logorithms in GF(2607). NMBRTHRY mailing

list, Feb 2002.

[98] F. Vercauteren. Optimal Pairings. IEEE Transactions on Information Theory,

(56):455–461, 2010. http://eprint.iacr.org/2008/096.

[99] E. R. Verheul. Evidence that XTR is more secure than Supersingular Elliptic Curve

Cryptosystems. Journal of Cryptology, 17(4):277–296, 2004.

[100] L. C. Washington. Introduction to Cyclotomic Fields, volume 83 of Graduate Texts

in Mathematics. Springer-Verlag, 1997.

[101] P. Zajac. Basic remarks on the NFS complexity. Cryptology ePrint Archive, Report

2008/064, 2008. http://eprint.iacr.org/.

173

