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We report on an in sifu high resolution core level photoemission study of the early stages of interface
formation between an ultrathin SiO, layer (~0.3 nm) grown on the atomically clean Si(111) surface
and a HfO, dielectric layer. Si 2p core level spectra acquired at 130 eV photon energy reveal
evidence of a chemically shifted component on the lower binding energy side of the substrate peak
which is attributed to interface defect states resulting from the incorporation of silicon atoms from
the substrate into the interfacial oxide at room temperature. This evidence of Si/SiO, interface
disruption would be expected to increase charge carrier scattering mechanisms in the silicon and
contribute to the generally observed mobility degradation in high-k stacks with ultrathin silicon
oxide interface layers. © 2009 American Institute of Physics. [DOI: 10.1063/1.3210794]

Interface formation is a critical aspect relating to the
successful incorporation of high-« dielectric materials, such
as HfO,, into silicon based transistor structures.! Electrical
characterization studies have shown that the absence of an
interfacial silicon oxide layer has a detrimental impact on the
carrier mobility in the silicon substrate.” Different explana-
tions have been proposed to account for this observed deg-
radation including the coupling of carriers to surface soft-
optical phononsS’4 and remote-Coulomb scattering.s’6 Both of
these mechanisms are reported to have a reduced impact on
mobility degradation as the thickness of the SiO, interlayer is
increased however, this negatively impacts on the minimum
equivalent oxide thickness (EOT) which can be realized.
Controlling the thickness of the interfacial silicon oxide is
therefore a prerequisite to achieving EOT values below 1.0
nm which are required for the continued scaling of device
geometries. The objective of this experiment was to deposit a
high-x metal oxide onto the thinnest thermally stable silicon
oxide grown on the Si (111) surface, in an attempt to pre-
serve the structural integrity of the Si/SiO, interface while
benefiting from the high-« value of the HfO,. The interfacial
chemistry of thermal oxide formation on the Si(111) surface
is almost identical to that on the technologically important
Si(100) surface, differing only in the relative intensities of
the individual oxidation states.” A number of high resolution
photoemission studies™ have interpreted the SiO,/Si(111)
interface as being atomically abrupt which would have asso-
ciated benefits in terms of interface perfection for device
applications.

Soft x-ray synchrotron radiation based photoemission
has been used to characterize the formation of the HfO, in-
terface with the preoxidised silicon surface by depositing
hafnium in an oxygen partial pressure and monitoring the
changes in chemistry as the interface is formed. The soft
x-ray photoemission experiments were carried out on the
SGM1 beamline at the Astrid synchrotron in the University
of Aarhus in an ultrahigh vacuum system. The SGM mono-
chromator and the SCIENTA SES-200 electron energy ana-
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lyzer were set up such that the combined instrumental reso-
Iution was 70 meV for the Si 2p acquired with 130 eV
photons. Prior to dielectric deposition, an ultrathin SiO, film
was grown on atomically clean boron doped p-type Si(111)
of resistivity 1-3 m{ cm [(2-5) X 10" cm™], which had
been cleaned by flash annealing to 1050 °C several times in
ultra high vacuum. The oxide was grown in a partial pressure
of 5X 1077 mbar oxygen at 500 °C for 30 min which re-
sulted in a self-limiting oxide similar to that reported by
Morgen et al.'’ The HfO, layers were subsequently grown
by the deposition of hafnium metal from an e-beam evapo-
rator in the same background oxygen partial pressure at room
temperature. All core-level spectra have been referenced to
the Si 2p;,, feature at 99.6 eV and peak attenuation calcula-
tions based on the effective escape depth of the electrons
from the substrate through an overlayer were used to esti-
mate the HfO, thickness.

The change in profile of the Si 2p core-level features
acquired at 130 eV photon energy as a function of HfO,
room temperature deposition up to a coverage of approxi-
mately 1 nm is shown in Fig. 1. This photon energy corre-
sponds to the maximum surface sensitivity for the Si 2p core
level, giving experimentally determined electron escape
depths of 0.33 and 0.71 nm for Si and SiO,, respectively.7 In
this figure, the peak intensities have been normalize to the
height of the substrate peak so that the relative increase in
the oxide signal can clearly be seen. Deposition of HfO, on
top of the ultrathin interfacial oxide layer should not alter the
ratio of Si—O to Si integrated intensities, since both signals
should be equally attenuated by the HfO, overlayer.11 The
HfO, deposition has therefore catalyzed the oxidation at the
interface between the silicon substrate and the chemically
stable ultra thin thermally grown oxide. This increase in in-
terfacial oxide thickness with high-k deposition has previ-
ously been observed in a number of studies'>™"* and has been
identified as forming in the initial phase of deposition. The
likely cause of this interfacial oxide growth at room tempera-
ture is the enhanced dissociation of O, into atomic oxygen in
the presence of hafnium atoms due to the metal atom cata-
Iytic effect.'"* The emergence of a shoulder on the low bind-
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FIG. 1. (Color online) Core level photoemission spectra of the clean silicon
surface and following sequential HfO, depositions showing an increase in
the intensity of the interfacial oxide as the substrate peak intensity is nor-
malized. The inset plots the increase in interfacial oxide thickness and the
increase in the intensity of the low binding energy silicon component iden-
tified as Si* in the figure with HfO, deposition.

ing energy side of the silicon substrate peak as the interfacial
oxide grows is also apparent in this figure.

These interactions are more clearly observed in the curve
fitted spectra in Fig. 2. The surface oxide thermally grown
prior to HfO, deposition is similar to that reported by Mor-
gen et al."® and shows evidence of the presence of the four
separate oxidation states which are resolved by curve fitting
in agreement with previous studies.” The thickness of the self
limiting oxide was calculated from the ratio of the oxide to
substrate integrated intensities to be approximately 0.3 nm
which effectively means that it is one monolayer thick, as
previously reported by Miyata et al.”® The core-level chemi-
cal shift between the Si** component and that of the silicon
substrate signal (ABE*") reduces from 3.54 eV for the ultra-
thin thermally grown oxide to 3.3 eV after 1 nm of HfO,
deposition. The change in oxide binding energy with HfO,
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FIG. 2. Curve fitted core level photoemission spectra for (a) the flash
cleaned Si surface, (b) the thermally grown ultrathin SiO, oxide, and (c) an
interfacial oxide following HfO, deposition with the low binding energy
component labeled as X.

Appl. Phys. Lett. 95, 072903 (2009)

&
= 4
2
2 i
o
E 0.3 nm
[ - -
<

0.2 nm

'_ %]nm _

* T » 1 . T ¥ T v I
24 22 20 18 16 14
Binding Energy (eV)

FIG. 3. Normalized photoemission spectra of the Hf 4f core level through
the deposition sequence showing the suppression of a hafnium suboxide
feature as the thickness of the dielectric layer increases.

deposition has alternatively been interpreted in terms of the
formation of a hafnium silicate interfacial layelr]é_]8 or the
formation of an oxygen deficient substoichiometric interfa-
cial SiO, layer.'*! While it is difficult to definitively deter-
mine which of these contrasting explanations more accu-
rately describe the interface chemistry, both agree that the
composition differs significantly from homogenous SiO,.
The position of the lower binding energy silicon component
at 99.2 eV labeled X in the figure is similar to that observed
for the three coordinate rest atoms on atomically clean un-
passivated silicon” and so could indicate the presence of
silicon atoms at the interface without a full complement of
four silicon ne:ighbors.23 For the spectra shown in Fig. 1, the
low binding energy silicon component continues to increase
in intensity as a function of HfO, deposition for the indicated
coverage and how this correlates with the observed increase
in the silicon-oxygen bond related signal is shown in the
inset. While higher coverage of HfO, lead to the suppression
of the Si 2p spectral features, the decrease in signal to noise
makes accurate unambiguous spectral analysis impossible.
Separate XPS measurements of identically prepared samples
indicated a 0.6 nm estimated saturation thickness of the in-
terfacial layer. A number of previous high resolution syn-
chrotron radiation photoemission studies of monolayer ter-
minated Si(111) surfaces have also reported the presence of a
chemically shifted silicon component on the lower binding
energy side of the substrate {)eak and attributed this feature to
defect states at the surface.”*?

Silicon in a hafnium silicide formation would also ex-
plain the observation of a low binding energy shoulder on the
Si 2p core level, as the Hf-Si component has been shown by
Carazzolle et al.*® to be shifted —0.45 eV with respect to the
substrate peak. The Hf 4f core level spectra shown in Fig. 3,
acquired at 130 eV photon energy, taken at successive stages
during the deposition sequence up to approximately 1 nm
coverage, shows two components. The curve fitted lower
binding energy component which attenuates with increased
deposition is attributed to the formation of Hf suboxides as
observed by Xu et al.™* for a similar in situ study of room
temperature deposition of HfO, on atomically clean silicon.
The position of the higher binding energy component at
18.35 eV is consistent with stoichiometric HfO, and there is
no evidence from the Hf 4f peak profile of any direct Hf-Si
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bond formation, which results in a chemical shift of approxi-
mately 3.1 eV to lower binding energy relative to the fully
oxidized hafnium peak.27 Therefore, the low binding energy
shoulder observed in the Si 2p spectra cannot be due to
Hf-Si formation and is instead attributed to the presence of
silicon atoms without a full arrangement of nearest neighbors
due to the interface disruption at room temperature.

A similar high resolution photoemission study of inter-
face formation between TiO, and an ultrathin oxide on
Si(111) reported by Karlsson et al.®® concluded that the
atomically abrupt SiO,/Si interface had been disrupted by
the metal oxide deposition. The interfacial oxide which most
likely grows in the presence of atomic oxygen by incorpo-
rating silicon atoms from the substrate at room temperature
does not form the same quality interface with the underlying
silicon as SiO, thermally grown in an O, atmosphere. In-
stead, a thin disordered region is left at the interface which
would be expected to contribute to carrier scattering mecha-
nisms and have a negative impact on carrier mobility at the
high-k silicon interface. A recent photoemission study of a
range of ultrathin dielectric oxides deposited by atomic layer
deposition on silicon has linked band bending to the presence
of underoxidised and unpassivated silicon at the high-k/SiO,
interface caused by low temperature deposition.29 Photoelec-
tron diffraction investigations comparing the structural order
at HfO,/Si0,/Si interface with the thermally grown SiO,/Si
interface reported evidence of significantly increased
disorder.”

An initially thicker thermal oxide would be expected to
reduce or eliminate the disruption at the Si/SiO, interface,
however, this would put a limit on the lowest EOT achiev-
able. Therefore, this observed effect of interface disorder
would have a similar dependence on the thickness of a SiO,
buffer layer as the other proposed explanations for mobility
degradation.S_6 While the dielectric constant of the interfa-
cial hafnium silicate layer would be expected to be greater
than that of an equivalently thick SiO, layer, it would be
difficult to compensate for the disrupted nature of the
Si/Si0, interface. In fact, it could be speculated that the
conventional hydrogen based passivation techniques used to
improve the electrical characteristics of the thermally formed
Si/Si0, interface for device application would be less effec-
tive in the case of the hafnium silicate—silicon interface be-
cause of the induced disorder.

In summary, the extreme surface sensitivity of soft x-ray
synchrotron radiation based photoemission has been used to
characterize the evolution of interface formation between ul-
trathin HfO, layers and the preoxidised Si(111) surface. De-
spite the chemical stability of the thin thermally grown sili-
con oxide layer, the HfO, deposition leads to an increase in
the thickness of the interfacial oxide which grows by the
incorporation of silicon atoms from the substrate. While the
saturation thickness of the interfacial layer is estimated to be
<0.6 nm, the induced disorder at the Si/SiO, interface
would be expected to increase carrier scattering mechanisms
and hence be a contributing factor to the observed degrada-
tion in mobility at high-k silicon interfaces. Thicker buffer
oxides which could be grown to prevent the interface disrup-
tion, thereby preserving the high quality Si/SiO, interface,
would have a self-defeating effect in terms of the primary
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objective of reducing the EOT of the dielectric stack. These
results would suggest that the search should focus on the
identification of high-k materials or deposition methods
which can prevent the degradation of the Si/SiO, interface
for ultrathin oxide interlayers in order to preserve its struc-
tural integrity while achieving subnanometer EOT targets.
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