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Abstract

This thesis deals with the asymptotic behaviour of various classes of stochastic differen-

tial equations (SDEs) and their discretisations. More specifically, it concerns the largest

fluctuations of such equations by considering the rate of growth of the almost sure running

maxima of the solutions.

The first chapter gives a brief overview of the main ideas and motivations for this the-

sis. Chapter 2 examines a class of nonlinear finite–dimensional SDEs which have mean–

reverting drift terms and bounded noise intensity or, by extension, unbounded noise in-

tensity. Equations subject to Markovian switching are also studied, allowing the drift and

diffusion coefficients to switch randomly according to a Markov jump process. The as-

sumptions are motivated by the large fluctuations experienced by financial markets which

are subjected to random regime shifts. We determine sharp upper and lower bounds on the

rate of growth of the large fluctuations of the process by means of stochastic comparison

methods and time change techniques.

Chapter 3 applies similar techniques to a variant of the classical Geometric Brownian

Motion (GBM) market model which is subject to random regime shifts. We prove that

the model exhibits the same long–run growth properties and deviations from the trend

rate of growth as conventional GBM.

The fourth chapter examines the consistency of the asymptotic behaviour of a discreti-

sation of the model detailed in Chapter 3. More specifically, it is shown that the discrete

approximation to the stock price grows exponentially and that the large fluctuations from

this exponential growth trend are governed by a Law of the Iterated Logarithm.

The results about the asymptotic behaviour of discretised SDEs found in Chapter 4,

rely on the use of an exponential martingale inequality (EMI). Chapter 5 considers a

discrete version of the EMI driven by independent Gaussian sequences. Some extensions,

applications and ramifications of the results are detailed.

The final chapter uses the EMI developed in Chapter 5 to analyse the asymptotic be-

haviour of discretised SDEs. Two different methods of discretisation are considered: a

standard Euler–Maruyama method and an implicit split–step variant of Euler–Maruyama.

v



Chapter 1

Introduction

This thesis examines the almost sure asymptotic growth rate of the large fluctuations of

various classes of stochastic differential equations (SDEs) including equations with Marko-

vian switching and discrete–time approximations of such equations. While Mao and Yuan,

[62], have studied the asymptotic behaviour of SDEs with Markovian switching using an

exponential martingale and Gronwall inequality approach, this thesis adds to the exist-

ing literature by (a) considering a stochastic comparison approach along with a powerful

theorem of Motoo, [65], and (b) considering non–linear equations in finite dimensions.

Moreover, this thesis examines the large fluctuations of discretised SDEs using the expo-

nential martingale and Gronwall inequality techniques commonly used in continuous–time.

Typically, we characterise the size of these fluctuations by finding upper and lower esti-

mates on the rate of growth of the running maxima t 7→ sup0≤s≤t |X(s)|, where {X(t)}t≥0

is the solution of the SDE

dX(t) = f(X(t))dt+ g(X(t))dB(t), t ≥ 0.

Here f is known as the drift coefficient and g is known as the diffusion or noise coefficient.

Our aim is to find constants C1 and C2 and an increasing function ρ : (0,∞) → (0,∞) for

which ρ(t) →∞ as t→∞ such that

0 < C2 ≤ lim sup
t→∞

sup0≤s≤t |X(s)|
ρ(t)

≤ C1, a.s. (1.0.1)

We will refer to such a function ρ as the essential growth rate of the largest deviations

of the process, with the constants C1, C2 being the upper and lower orders of magnitude.

Since it can be shown (see, for example, [53]) that

lim sup
t→∞

|X(t)|
ρ(t)

= lim sup
t→∞

sup0≤s≤t |X(s)|
ρ(t)

, (1.0.2)

for convenience we will in fact state our results in the manner of the former. In applications,

the size of the large fluctuations may represent the largest bubble or crash in a financial
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Chapter 1 Introduction

market, the largest epidemic in a disease model or a population explosion in an ecological

model.

The second chapter considers the size of the large fluctuations of a general class of

finite–dimensional SDEs which have stationary solutions. Our focus centres on equations

in which the drift term tends to stabilise the solution (we refer to this as mean–reversion)

and in which the intensity of the stochastic perturbation is bounded (which we refer to

as bounded noise). These assumptions are suitable for modelling volatilities in a self–

regulating economic system which is subjected to persistent stochastic shocks.

We emphasise the importance of the degree of nonlinearity in f in producing the essential

growth rate ρ in (1.0.1). To be precise, the largest fluctuations are determined via a scalar

function Φ(x) :=
∫ x
1 φ(u)du, where φ determines the degree of nonlinearity and mean–

reversion in f .

Our results are then extended to equations which contain Markovian switching features,

meaning that the drift and diffusion coefficients can change randomly according to a

Markov jump process. In particular, we study an SDE of the form

dX(t) = f(X(t), Y (t)) dt+ g(X(t), Y (t)) dB(t), t ≥ 0,

where Y is an irreducible Markov chain with finite state space S. The rationale for this in

finance is that market sentiment occasionally changes (and often quite rapidly), leading to

differing volatility or growth rates. Similarly, observations in financial market econometrics

suggest that security prices often move from bearish to bullish (or other) regimes. These

regime switches are modelled by the presence of the Markov process Y .

The addition of Markovian switching to the SDE does not play a significant role in

determining ρ, the essential rate of growth of the fluctuations of the SDE. It will however

have an impact on the constants C1 and C2 in (1.0.1), thereby changing the size of the

largest fluctuations.

Recently, there has been increasing attention devoted to hybrid systems, in which con-

tinuous dynamics are intertwined with discrete events. One of the distinct features of such

systems is that the underlying dynamics are subject to changes with respect to certain

configurations. A convenient way of modelling these dynamics is to use continuous–time

2



Chapter 1 Introduction

Markov chains to delineate many practical systems where they may experience abrupt

changes in their structure and parameters. Such hybrid systems have been considered for

the modelling of electric power systems by Willsky and Levy [81] as well as for the control

of a solar thermal central receiver by Sworder and Rogers [78]. Athans [12] suggested to

use hybrid systems control-related issues in Battle Management Command, Control and

Communications (BM/C3) systems. Sethi and Zhang used Markovian structure to de-

scribe hierarchical control of manufacturing systems [74]. Yin and Zhang examined prob-

abilistic structure and developed a two-time-scale approach for control of hybrid dynamic

systems [83]. Optimal control of switching diffusions and applications to manufacturing

systems were studied in Ghosh, Arapostathis, and Marcus [28] and [29]. In addition,

Markovian hybrid systems have also been used in emerging applications in financial engi-

neering [82, 84, 86] and gene regulation [35]. For a detailed treatment of hybrid stochastic

differential equations we refer the reader to [62].

After having considered equations with bounded noise, it is a natural question to ask

whether or not we can allow the noise to be unbounded while still maintaining similar

results. To that end, Chapter 2 also considers equations in which the intensity of the

noise term is unbounded in the sense that lim‖x‖→∞ ‖g(x)‖ = +∞. We emphasise the

importance of the degree of nonlinearity in both f and g in producing the essential growth

rate ρ in (1.0.1). To be precise, the large fluctuations are determined by the scalar function

Ψ :=
∫ x
1 φ(u)/γ2(u)du, where φ determines the degree of nonlinearity and mean–reversion

in f while γ characterises the degree of nonlinearity in the diffusion g.

Although this research into equations with unbounded noise is substantial, due to the

similarities with the equations with bounded noise, we include it only as a subsection and

we state without proof some of the main results and methods.

Having considered equations with Markovian switching (which can be used to model

rapid financial market changes) in Chapter 2, we then turn our attention to applying

these ideas and techniques to a financial market model. This leads us to Chapter 3 where

we consider a special class of one–dimensional SDEs which contain Markovian switching

and we explore its financial market applications. For this class of SDE, both g and xf are

uniformly bounded above and below. We show that the largest deviations of the solution

3



Chapter 1 Introduction

obeys a Law of the Iterated Logarithm, i.e. that the growth function ρ in (1.0.1) takes

the form
√

2t log log t. Moreover, in the case when the diffusion coefficient depends only

on the switching parameter, say g(x, y) = γ(y), it is shown that

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗, a.s.,

where σ2
∗ =

∑
j∈S γ

2(j)πj and π = (πj)j∈S is the stationary distribution of the Markov

chain Y . These large deviation results are then applied to a security price model, where

the security price S obeys

dS(t) = µS(t) dt+ S(t) dX(t), t ≥ 0,

where µ is the instantaneous mean rate of growth of the price. This is a variant of the

classical Geometric Brownian Motion (GBM) model in which the stock price is the solution

of an SDE where the driving Brownian motion is replaced by a semi–martingale which

depends on a continuous–time Markov chain. Despite the presence of the Markov process

(which introduces regime shifts) and an X–dependent drift term (which introduces market

inefficiency) we can still deduce that the new market model enjoys some of the properties

of standard GBM models. In this chapter we also investigate a simple two–state volatility

model and show how our results can be implemented in this case.

The introduction of a market model in Chapter 3 raises the question of how this model

could be implemented in practice. Chapter 4 facilitates this by considering a discretisation

of the model found in Chapter 3. It is shown that one can discretise the model in such a

way that the asymptotic behaviour of the discretised model is consistent with that of the

continuous–time model of Chapter 3.

Unlike in Chapters 2 and 3, where the proofs rely on stochastic comparison techniques

and Motoo’s theorem, the proofs for the discrete equations in Chapter 4 use exponential

martingale inequality (EMI) and Gronwall inequality techniques, similar to those used

in [54]. We must use these alternative techniques because the proof of Motoo’s theorem

(a key element of our continuous–time proofs) hinges on an analysis of the excursions of

solutions of SDEs which cannot easily be applied in discrete time.

Although there are many discrete versions of the Gronwall inequality, the same is not

true of a discrete–time EMI. Nevertheless, a general discrete–time EMI was published
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Chapter 1 Introduction

by Bercu and Touati, [13], which depends on both the total and predictable quadratic

variations of the martingale (in contrast to the continuous–time EMI which depends only

on the predictable quadratic variation). This discrete–time EMI is used to obtain the

results in Chapter 4. However, a comparison of the results found in Chapter 3 with their

discrete–time analogues in Chapter 4 reveals that the discrete–time results are inferior,

due to the use of the general EMI of Bercu and Touati. In Chapter 5 we develop a special

class of discrete–time EMI for martingales driven by Gaussian sequences (which naturally

arise from an Euler–Maruyama discretisation method). This EMI depends only on the

predictable quadratic variation (just as in the continuous–time EMI) and using this EMI

instead of the more general EMI of Bercu and Touati yields results which are directly

comparable to their continuous–time counterparts.

Having developed a suitable discrete–time EMI, which is very effective in determining

the asymptotic behaviour of discretised SDEs, we then return to the asymptotic analysis

of discretised SDEs which was started in Chapter 4. In Chapter 6 we consider a dif-

ferent class of SDEs than those considered in Chapter 4, and moreover we consider two

different methods of discretisation. While Chapter 4 considers only an Euler–Maruyama

discretisation of the SDE, Chapter 6 also considers a split–step implicit variant of Euler–

Maruyama. On implementing each method, we generally obtain results which are natural

discrete analogues of (1.0.1) and are of the form

0 < C2(h) ≤ lim sup
n→∞

|Xh(n)|
ρ(nh)

≤ C1(h), a.s.,

where h represents the fixed step–size used to produce the discretised processXh(n). While

both discretisation methods obtain similar results, in terms of the asymptotic behaviour of

the discretised SDE, they both have benefits and drawbacks which are detailed throughout

the chapter.
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Mathematical Preliminaries

In this section we define the standard notation used in this thesis as well as useful results

used throughout.

1.0.1 Deterministic Preliminaries

Real spaces & vector notation. Let R denote the set of real numbers and R+ the

set of non-negative real numbers. We denote by Z the set of all integers, by N the set of

natural numbers (excluding zero) and by N0 = N ∪ {0}. For two numbers x, y ∈ R, x ∨ y

denotes the maximum of x and y while x ∧ y denotes the minimum of x and y. For any

number x ∈ R, |x| denotes the absolute value of x while bxc denotes the integer part of x.

Moreover, for any x ∈ R we denote (x)+ = max{a, 0}.

Let Rd denote the set of d–dimensional vectors with entries in R. Vectors A ∈ Rd are

thought of as column ones. The transpose of a vector A ∈ Rd is denoted by AT and can

be thought of as a row vector. Denote by ei the ith standard basis vector in Rd with unity

in the ith component and zeros elsewhere. Denote by 〈A,B〉 the standard inner product of

vectors A,B ∈ Rd and the standard Euclidean norm, ‖ · ‖, for a vector A = (a1, . . . , an)T

is given by ‖A‖2 =
∑n

i=1 a
2
i . Moreover we define other norms in Rd such as the 1–norm,

‖A‖1 =
∑d

j=1 |aj |, and the infinity norm (or max norm), ‖A‖∞ = max1≤j≤d |aj |. By norm

equivalence, there exist numbers 0 < K1(d) ≤ K2(d) < +∞ such that

K1(d)‖A‖ ≤ ‖A‖1 ≤ K2(d)‖A‖, A ∈ Rd,

and the same applies to the infinity norm. We also use the Cauchy–Schwarz inequality

|〈A,B〉| ≤ ‖A‖‖B‖, A,B ∈ Rd.

Matrix notation. Let Rd×r be the space of d × r matrices with real entries where I

is the identity matrix . Let diag(α1, α2, . . . , αd) denote the d × d matrix with entries

6



Chapter 1 Introduction

a1, a2, . . . , an along the main diagonal and 0 elsewhere. The transpose of a matrix A is

denoted by AT . The Frobenius norm of a matrix A = (aij) ∈ Rd×r is denoted ‖A‖2
F and

is defined by ‖A‖2
F =

∑d
i=1

∑r
j=1 a

2
ij .

Functional notation. We record here some notation for real–valued functions which

prove useful throughout the thesis. The deterministic indicator function 1N : N0 → {0, 1}

is defined by

1N(x) =


1, if x ∈ N,

0, if x = 0.

If two functions f, g are asymptotic to each other in the sense that limx→∞
f(x)
g(x) = 1, then

we use the notation f ∼ g. We use sgn to denote the signum function, so that sgn(x) = 1

if x > 0, sgn(x) = −1 for x < 0 and sgn(x) = 0 if x = 0. The family of Borel measurable

functions h : [a, b] → Rd with
∫ b
a |h(x)|

p dx <∞ are denoted Lp([a, b]; Rd). Finally, C1(R)

is the subspace of R consisting of continuous functions.

1.0.2 Stochastic Preliminaries

A brief overview of the basic theory concerning stochastic processes is given in this sub-

section. For a more detailed review see texts such as Mao [54] or Karatzas & Shreve [46].

Probability spaces. We consider the probability triple (Ω,F ,P). Here Ω denotes the

sample space where each outcome in Ω is denoted by ω. The family F is a σ–algebra

and any set which belongs to F is said to be F–measurable . A probability measure P on

the space (Ω,F) is a function P : F → [0, 1]. If an event has probability 1 then we say

that it is an almost sure event and we use the shorthand a.s. A filtration {F(t)}t≥0 is an

increasing set of σ–algebras in F . The filtration at time t represents all of the information

available up to time t. The filtered probability space is denoted by (Ω,F , {F(t)}t≥0,P).

7



Chapter 1 Introduction

Standard Brownian Motion. If (Ω,F , {F(t)}t≥0,P) is a filtered probability space

then a 1–dimensional standard Brownian motion {B(t)}t≥0 is a process which has the

following properties: B(0) = 0; the increment B(t) − B(s) is normally distributed with

mean 0 and variance t−s where 0 ≤ s < t <∞; the increment B(t)−B(s) is independent

of Fs where 0 ≤ s < t <∞.

The Brownian motion has many important properties, such as:

• {−B(t)} is a Brownian motion with respect to the same filtration {F(t)},

• {B(t)} is a continuous square–integrable martingale with quadratic variation given

by 〈B〉(t) = t for all t ≥ 0,

• for almost every ω ∈ Ω, the Brownian sample path t 7→ B(t, ω) is nowhere differen-

tiable.

Extensions of probability spaces. Let X = {X(t),F(t); 0 ≤ t < ∞} be an adapted

process on some (Ω,F ,P). We may need a d–dimensional Brownian motion independent

of X, but because (Ω,F ,P) may not be rich enough to support this Brownian motion, we

must extend the probability space to construct this.

Let (Ω̂, F̂ , P̂) be another probability space, on which we consider a d–dimensional Brow-

nian motion B̂ = {B(t), F̂(t); 0 ≤ t <∞}, set Ω̃ := Ω× Ω̂ (where × signifies the Cartesian

product), P̃ := P× P̂ (where × in this case is a product measure), G̃ := F⊗F̂ , and define a

new filtration by G̃(t) := F(t)⊗F̂(t). Here F ⊗G defines the product σ–field formed from

the σ–fields F and G, i.e. F ⊗ G := σ(A×B;A ∈ F , B ∈ G). The new filtration may not

satisfy the usual conditions, so we augment it and make it right–continuous by defining

F̃(t) := ∩s>tσ(G(s) ∪ N ) where N is the collection of P̃–null sets in G̃. We also complete

G̃ by defining F̃ = σ(G̃ ∪ N ). We may extend X and B to {F̃(t)}–adapted processes on

8



Chapter 1 Introduction

(Ω̃, F̃ , P̃) by defining for (ω, ω̂) ∈ Ω̃,

X̃
(
t, (ω, ω̂)

)
= X(t, ω), B̃

(
t, (ω, ω̂)

)
= B(t, ω̂).

Then B̃ = {B̃(t), F̃(t); 0 ≤ t < ∞} is a d–dimensional Brownian motion independent of

X̃ = {X̃(t), F̃(t); 0 ≤ t <∞}.

Stochastic indicator function. If (Ω,F ,P) is a probability triple and A is an event

in the σ–algebra F , we denote by IA : Ω → {0, 1} the indicator random variable of A, so

that

IA(ω) =


1, if ω ∈ A,

0, if ω 6∈ A.

Borel–Cantelli Lemma. Let (Ω,F ,P) be a probability triple. The first Borel–Cantelli

lemma states that if (An : n ≥ 1) is a sequence of events such that each An ∈ F and∑∞
n=1 P[An] <∞, then

P[An, i.o.] = 0,

where {An, i.o.} is the event that the events An are realised infinitely often. The second

Borel–Cantelli lemma states that if (An : n ≥ 1) is a sequence of independent events such

that each An ∈ F and
∑∞

n=1 P[An] = ∞, then

P[An, i.o.] = 1.

Sequences of normal random variables Here we state some useful properties of

normal random variables.

Let Φ be the distribution of a standard normal (i.e., N (0, 1)) random variable N , so

that Φ(x) := P[N ≤ x] = 1√
2π

∫ x
−∞ e−u2/2du, x ∈ R. Mill’s estimate gives us that

1√
2π

x

x2 + 1
e−

x2

2 ≤ 1− Φ(x) ≤ 1√
2π

1
x
e−

x2

2 , x > 0. (1.0.3)

9
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The following can be obtained from the textbook [75].

Lemma 1.0.1. If Z = {Z(n) : n ≥ 0} is a sequence of standard normal random variables

then

lim sup
n→∞

|Z(n)|√
2 log n

≤ 1, a.s.,

and if, moreover, the random variables are independent then

lim sup
n→∞

|Z(n)|√
2 log n

= 1, a.s. (1.0.4)

Proof. For every ε > 0, Mill’s estimate gives

P[|Z(n)| >
√

2(1 + ε) log n] ≤ 2√
2π

1√
2(1 + ε) log n

1
n1+ε

.

Since the right–hand side is a summable sequence, by the first Borel-Cantelli lemma and

by letting ε ↓ 0 through the rational numbers, we have lim supn→∞ |Z(n)|/
√

2 log n ≤ 1,

a.s. Moreover, if the sequence Z(n) is independent then both sides of Mill’s estimate gives

lim
n→∞

P[|Z(n)| >
√

2 log n]
1√
π

1√
log n

1
n

= 1.

Since the denominator is not a summable sequence, by the second Borel–Cantelli lemma

it follows that lim supn→∞ |Z(n)|/
√

2 log n ≥ 1. Combining both, in the case of indepen-

dence, we have the equality (1.0.4).

Law of the Iterated Logarithm (LIL). The following result is one of the most im-

portant results on the asymptotic behaviour of standard Brownian motions,

lim sup
t→∞

|B(t)|√
2t log log t

= 1, a.s.

This theorem shows that for any ε > 0 there exists a positive random variable tε such

that for almost every ω ∈ Ω, the Brownian sample path t 7→ B(t, ω) is within the interval

±(1 + ε)
√

2t log log t whenever t ≥ tε(ω).

10
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Markov Chains. Let Y be a continuous–time Markov chain with state space S. We

assume that the state space of the Markov chain is finite, say S = {1, 2, · · · , N}. Let the

Markov chain have generator Γ = (γij)N×N where

P
[
Y (t+ ∆) = j|Y (t) = i

]
=


γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

and ∆ > 0. Here γij ≥ 0 is the transition rate from i to j if i 6= j while γii = −
∑

j 6=i γij .

It is known (see e.g. [4]) that almost every sample path of Y (t) is a right-continuous step

function with a finite number of jumps in any finite subinterval of [0,∞). As a standing

hypothesis we assume in this paper that the Markov chain is irreducible. This is equivalent

to the condition that for any i, j ∈ S, one can find finite numbers i1, i2, · · · , ik ∈ S such that

γi,i1γi1,i2 · · · γik,j > 0. Note that Γ always has an eigenvalue 0. The algebraic interpretation

of irreducibility is rank(Γ) = N − 1. Under this condition, the Markov chain has a

unique stationary (probability) distribution π = (π1, π2, · · · , πN ) ∈ R1×N which can be

determined by solving the following linear equation

πΓ = 0 subject to
N∑

j=1

πj = 1 and πj > 0 ∀j ∈ S. (1.0.5)

Moreover, the Markov chain has the very nice ergodic property which states that for any

mapping φ : S → R,

lim
t→∞

1
t

∫ t

0
φ(Y (s))ds =

N∑
j=1

φ(j)πj a.s. (1.0.6)

In our analysis in this thesis, we will generally have a continuous–time process driven by a

Brownian motion and for analytical purposes it is convenient to assume that the Markov

process Y is independent of the Brownian motion B. In such a situation, the filtration

{Ft}t≥0 we will work on is the augmentation under P of the natural filtration generated

by the Brownian motion and the Markov chain.
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Martingales. The stochastic process M = {M(t)}t≥0 defined on the filtered probability

space (Ω,F , {F(t)}t≥0,P) is said to be a martingale with respect to the filtration {F(t)}t≥0

if M(t) is F(t)–measurable for all t ≥ 0, E[|M(t)|] <∞ for all t ≥ 0 and

E[M(t)|F(s)] = M(s), a.s., for all 0 ≤ s ≤ t.

Doob’s continuous martingale representation theorem. Suppose M is a continu-

ous local martingale defined on a probability space (Ω,F ,P), and the quadratic variation

〈M〉 is an absolutely continuous function of t for P–almost every ω. Then there is an

extended space (Ω̃, F̃ , P̃) of (Ω,F ,P) on which is defined a one–dimensional Brownian

motion W = {W (t), F̃t; 0 ≤ t <∞} and an F̃t–adapted process X with P̃–a.s.∫ t

0
X2(s) ds <∞, 0 ≤ t <∞,

such that we have the representations P̃–a.s.

M(t) =
∫ t

0
X(s) dW (s), 〈M〉(t) =

∫ t

0
X2(s) ds, 0 ≤ t <∞.

In the proof of the above martingale representation theorem (which can be found in [46],

Theorem 3.4.2 ), the new Brownian motion W is constructed by a continuous local martin-

gale with respect to the original probability space (Ω,F ,P) and another Brownian motion,

say B̂, which is defined on the extended part of (Ω,F ,P) in (Ω̃, F̃ , P̃). Moreover, B̂ is inde-

pendent of M . Therefore in this thesis, any conclusion made with respect to the extended

measure P̃ about the underlying process with diffusion M defined on (Ω,F ,P) coincides

with that with measure P. Therefore we do not make explicit reference to the probability

spaces when stating results.

Stationarity. The following definitions are taken from [31]. The process U = {U(t) :

t ≥ 0}, taking values in R, is called strongly stationary if the families

{U(t1), U(t2), . . . , U(tn)} and {U(t1 + h), U(t2 + h), . . . , U(tn + h)}

12
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have the same joint distribution for all t1, t2, . . . , tn and h > 0. Note that if U is strongly

stationary then U(t) has the same distribution for all t.

The process U = {U(t) : t ≥ 0} is called weakly stationary if, for all t1, t2 and h > 0,

E[U(t1)] = E[U(t2)] and Cov[U(t1), U(t2)] = Cov[U(t1 + h), U(t2 + h)].

Moreover the autocovariance function, Cov[U(t), U(t+h)], of a weakly stationary process

is a function of h only.

1.0.3 Large fluctuations and recurrence of scalar diffusion processes

Here we list some results that are useful in determining the large fluctuations of scalar

SDEs using a stochastic comparison approach. Moreover, we can apply these techniques

to multi–dimensional equations by first applying a transformation to reduce the equation

to a scalar one. Let {X(t)}t≥0 be the scalar solution to the one–dimensional stochastic

differential equation

dX(t) = b(X(t)) dt+ σ(X(t)) dB(t), (1.0.7)

where b is the drift coefficient and σ 6= 0 is the diffusion coefficient.

Definition 1.0.1. A weak solution in the interval (0,∞) of equation (1.0.7) is a triple

(X,B), (Ω,F ,P), {F(t)}t≥0, with (Ω,F ,P) and {F(t)}t≥0 as defined earlier, where:

1. X = {X(t),F(t); 0 ≤ t < ∞} is a continuous, adapted R+-valued process with

X(0) ∈ (0,∞) and B = {B(t),F(t); 0 ≤ t < ∞} is a standard one–dimensional

Brownian motion,

2. with {ln}∞n=1 and {rn}∞n=1 strictly monotone sequences satisfying 0 < ln < rn <∞,

limn→∞ ln = 0, limn→∞ rn = ∞ and Sn := inf{t ≥ 0 : X(t) /∈ (ln, rn)} for n ≥ 1, the

following equations hold:

13
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(i) P
[ ∫ t∧Sn

0 {|b(X(s))|+ σ2(X(s))} ds <∞
]

= 1; ∀ 0 ≤ t <∞,

(ii) P
[
X(t ∧ Sn) = X(0) +

∫ t
0 b(X(s))I{s≤Sn} ds

+
∫ t
0 σ(X(s))I{s≤Sn} dB(s); ∀ 0 ≤ t <∞

]
= 1 valid for every n ≥ 1.

For more details on the properties of weak solutions see [46].

Scale function and speed measure. Let I := (l, r) with −∞ ≤ l < r ≤ ∞ and let

b : I → R and σ : I → R. Moreover, let b and σ satisfy the non–degeneracy and local

integrability conditions:

σ2(x) > 0, ∀x ∈ I; (1.0.8)

∀x ∈ I, ∃ ε > 0 such that
∫ x+ε

x−ε

1 + |b(y)|
σ2(y)

dy <∞. (1.0.9)

Under these conditions the scale function and speed measure of X are defined by

p(x) =
∫ x

a
e
−2

∫ y
a

b(u)

σ2(u)
du
dy, a ∈ R, (1.0.10)

m(dx) =
2

σ2(x)
.

1
p′(x)

dx, x ∈ I. (1.0.11)

These functions help us to establish the recurrence and stationarity of X in I by Feller’s

test for explosions (cf. [46]).

Recurrence. A process {X(t)}t≥0 is a.s. recurrent on, for example (0,∞), when there

exists an a.s. event Ω∗ such that for every t ≥ 0, ω ∈ Ω∗ and x∗ ∈ (0,∞), there exists a

t∗(ω) > t such that X(t∗(ω), ω) = x∗. Thus, any level in (0,∞) will be attained infinitely

many times and there is no “last time” at which a level is attained. The requirements for

recurrence are detailed in the following theorem.

Theorem 1.0.1. Suppose b, σ ∈ C([0,∞),R), and that X is the weak solution of (1.0.7)

in (0,∞) with a deterministic initial condition X(0) ∈ (0,∞). Assume that σ satisfies
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(1.0.8) and that both b and σ satisfy (1.0.9). Suppose further that X has scale function p

and speed measure m defined by (1.0.10) and (1.0.11) respectively. Then:

1. if p(0+) = −∞, p(∞−) = +∞ and m(0,∞) < +∞,

then X is recurrent on (0,∞).

2. if p(0+) > −∞, p(∞−) = +∞, m({0}) = 0 and m[0,∞) < +∞,

then X is recurrent on [0,∞) with a reflecting boundary at 0.

A proof of the recurrence theorem can be found in Chapter 4.12 of [45]. For a more

in-depth study of reflecting boundaries we refer the reader to Chapter 7.3 in [70].

Motoo’s Theorem This is an important tool for determining the largest deviations for

stationary solutions of scalar autonomous stochastic differential equations. We state it

here for future use:

Theorem 1.0.2. Suppose b, σ ∈ C([0,∞),R), σ2(x) > 0 for all x > 0 and that X is the

weak solution of (1.0.7) in (0,∞) with a deterministic initial condition X(0) ∈ (0,∞).

Suppose further that X has scale function p defined by (1.0.10).

Then if X is recurrent we get

P
[
lim sup

t→∞

X(t)
h(t)

≥ 1
]

= 1 or 0,

depending on whether

∫ ∞

c

1
p(h(t))

dt = ∞ or
∫ ∞

c

1
p(h(t))

dt <∞

for some c ∈ R, where h : (0,∞) → (0,∞) is an increasing function with h(t) → ∞ as

t→∞.

A proof of Motoo’s theorem can be found in, for example, [45]. In fact, Motoo’s theorem

can be used to prove the Law of the Iterated Logarith, see [65].
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Chapter 2

On the Growth of the Extreme Fluctuations of

SDEs with Markovian Switching

2.1 Introduction

In this chapter, we study the almost sure asymptotic growth rate of the running maxima

t 7→ sup0≤s≤t ‖X(s)‖, where {X(t)}t≥0 is the solution of a finite–dimensional stochastic

differential equation (SDE). We study two classes of SDEs: autonomous SDEs and SDEs

with Markovian switching.

Since our interest is focussed on unbounded solutions, we consider cases where X obeys

lim
t→∞

sup
0≤s≤t

‖X(s)‖ = ∞, a.s.

This stipulation covers both recurrent and growing processes, but we make assump-

tions which ensure that the processes are mean–reverting (in a sense to be later de-

scribed). In fact, we impose conditions which guarantee that lim inft→∞ ‖X(t)‖ = 0,

and lim supt→∞ ‖X(t)‖ = +∞, thus ensuring that ‖X‖ is fluctuating. We characterise

the size of these fluctuations by finding upper and lower estimates on the rate of growth

of the running maxima. Thus, we find constants C1 and C2 and an increasing function

ρ : (0,∞) → (0,∞) for which ρ(t) →∞ as t→∞ such that

0 < C2 ≤ lim sup
t→∞

‖X(t)‖
ρ(t)

≤ C1, a.s. (2.1.1)

The proofs rely on time change and comparison arguments, constructing upper and lower

bounds on ‖X‖ which are recurrent and stationary processes. The large deviations of
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these processes are determined by means of a classical theorem of Motoo [65]. In the case

when Markovian switching is also present, we ensure that these comparison processes have

dynamics which are independent of the switching process.

The first type of equation studied is

dX(t) = f(X(t))dt+ g(X(t)) dB(t), (2.1.2)

where f : Rd → Rd, g : Rd → Rd×r and B is an r–dimensional standard Brownian motion.

We also study the stochastic differential equation with Markovian switching

dX(t) = f(X(t), Y (t))dt+ g(X(t), Y (t)) dB(t), (2.1.3)

where Y is a Markov chain with finite state space S, and f : Rd×S → Rd, g : Rd×S → Rd×r

and B is again an r–dimensional Brownian motion.

Our main results in this chapter focus on equations in which the drift term tends to

stabilise the solutions (we refer to this phenomenon as mean–reversion) and in which

the stochastic perturbation has bounded intensity (which we refer to as bounded noise).

However, our results extend to the case where the stochastic perturbation has unbounded

intensity.

These assumptions are suitable for modelling a self–regulating economic system which

is subjected to persistent stochastic shocks which (roughly speaking) are stationary pro-

cesses. By studying finite–dimensional equations, we are able to see how the size of the

large fluctuations propagate through the system, and how the interactions between various

components of the system influence the dynamics. In fact, we pay particular attention

to equations in which the most influential factor driving each component of the process

is the degree of mean–reversion of that component on itself. These results therefore find

application to models of the spot interest rates of many currency areas which have strong

economic (particularly trading) links; the volatilities of many stocks trading on the same
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exchange, or in the same economic sector; or the prices of a basket of complementary or

substitute goods which are subject to stationary shocks on either the supply or demand

side. Deterministic nonlinear models of this type in the theory of general equilibrium

which exhibit global stability include [63]. Examples of scalar interest rate models can be

found in [76] and stochastic volatility models in, for example, [26, 42, 69].

Stochastic differential equations with stationary solutions have found favour in modelling

the evolution of the volatility of risky assets. This is in part because they can produce

“heavy tails” in the distribution of the returns of risky assets present in real markets,

see e.g. [32, 66]. In fact, the rate of decay of the tails in the stationary distribution

of the volatility can be related directly to the rate of decay of the tails of the asset

returns’ distribution. Moreover, it is well–known from the one–dimensional theory of

SDEs that there is a direct relationship between the rate of decay of the tails of the

distributions of a stationary solution of an autonomous SDE and the rate of growth of the

a.s. running maxima of the solution, see for example [15]. Thus, our analysis facilitates

in the investigation of heavy tailed returns’ distributions in stochastic volatility market

models in which many assets are traded. Furthermore, one can still analyse the large

fluctuations (and thereby the tails of the distributions) in the case when the market can

switch between various regimes, [21].

By keeping the intensity of the stochastic term bounded, we are able to study more

directly the impact of different restoring forces of the system towards its equilibrium

value. The strength of the restoring force is characterised here by a scalar function φ :

[0,∞) → [0,∞) with xφ(x) →∞ as x→∞, where

lim sup
‖x‖→∞

〈x, f(x)〉
‖x‖φ(‖x‖)

≤ −c2 ∈ (−∞, 0). (2.1.4)

Therefore, the strength of the mean–reversion is greater the more rapidly that x 7→ xφ(x)
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increases. We ensure that the degree of nonlinearity in f is characterised by φ also by

means of the assumption

lim sup
‖x‖→∞

|〈x, f(x)〉|
‖x‖φ(‖x‖)

≤ c1 ∈ (0,∞). (2.1.5)

In our main result, we show how the function ρ in (2.1.1) depends directly on φ. Therefore,

up to the constants C1 and C2 in (2.1.1), we are able to characterise the rate of growth

of the largest fluctuations of the solutions. Moreover, we can show that these recover the

best possible results that are available in the one–dimensional case. As might be expected,

the weaker the strength of the mean–reversion, the more slowly that x 7→ xφ(x) increases,

which leads to a more rapid rate of growth of ρ(t) → ∞ as t → ∞; consequently, as

we might expect, weak mean–reversion results in large fluctuations in the solution. The

contribution here, of course, is our ability to quantify the relation between the degree of

mean–reversion and the size of the fluctuations.

We also study the large fluctuations of the equation (2.1.3) with Markovian switching in

this chapter. There has been a lot of work done on the stability and stabilisation of such

equations, as seen in [1, 2, 3, 30, 49, 55, 59, 72, 73, 85]. However, to the authors’ knowledge

less is known about the asymptotic behaviour (and in particular the large deviations) of

unstable equations. Despite this, an interesting contribution to the theory of SDEs with

Markovian switching in which solutions are not converging to a point equilibrium is given

in [51].

In [51], it is shown that highly nonlinear equations suitable for modelling population

dynamics exhibit stationary–like behaviour, possessing bounded time average second mo-

ments and being stochastically ultimately bounded. Indeed such results should enable

upper bounds on the pathwise growth of the running maxima to be established by means

of standard Borel–Cantelli and interpolation arguments.
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In [60] for example, conditions are given under which an SDE with Markovian switching

of the form (2.1.3) admits an asymptotically stationary solution. The analysis in this

chapter relates closely to [60] and [51]: we determine the size of large fluctuations but for

a more general class of problems.

In this chapter, we emphasise the importance of the degree of nonlinearity in f in

producing the essential growth rate ρ in (2.1.1), as the presence of Markovian switching

does not seem to play a significant role in determining ρ. However, this does not mean

that the switching process does not play a significant role in influencing the size of the

largest fluctuation up to a given time. We conjecture that the switching process may have

a significant impact on the constants C1 and C2 in (2.1.1), thereby changing significantly

the size of the largest fluctuations compared to equations which have the same degree of

nonlinearity, but are not subject to switching. Some evidence of this conjecture appears in

Chapter 3, in which the essential rate of growth of the running maxima of a non–stationary

process is governed by the Law of the Iterated Logarithm, but the constants C1 and C2

(which are equal) depend on the stationary distribution of the switching process.

In our analysis in this chapter, we focus on equations possessing stationary solutions, or

which are in some sense close to equations possessing a stationary solution. Some analysis

on the large fluctuations of a particular class of scalar SDEs which have dynamics close

to a non–stationary process is presented in Chapter 3. For the proofs in this chapter

we reduce the SDE to a scalar equation by means of time and coordinate changes and

use a combination of stochastic comparison techniques and Motoo’s theorem (cf. [65]) to

determine the asymptotic behaviour. On the other hand, while Chapter 3 deals with a

very special class of nonlinear functions f and g, in this chapter we consider much more

general equations.

The chapter is organised as follows. Section 2.2 details the method of proof used in
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this chapter which is an alternative to the deterministic methods used by Mao in [54] for

example. We give a brief overview of a useful class of functions in Section 2.3. A synopsis

and discussion of the main results for equations without switching is given in Section

2.4 while the extensions to equations with switching and to equations with unbounded

noise are given in Sections 2.5 and 2.6 respectively. Proofs can be found from Section 2.7

onwards.

2.2 Stochastic comparison technique

To prove the results in this chapter we use techniques which rely on stochastic comparison

principles and Motoo’s theorem. The first step of this technique is to reduce the d–

dimensional equation (2.1.2) to a scalar equation, using Itô’s formula, to which we can

apply the stochastic comparison theorem detailed below. The idea is to manufacture a

scalar comparison process which has the same diffusion coefficient as the equation we wish

to compare it to, while uniform bounds (in the space variable) on the drift coefficient

allows us to create an upper comparison process or a lower comparison process. This then

allows us to analyse the asymptotic behaviour of the comparison processes (using Motoo’s

theorem) rather than analysing the original process. By construction the comparison

processes will have recurrent and stationary solutions, a requirement of Motoo’s theorem.

The stochastic comparison theorem is stated here and its proof can be found in Section

2.9.

Theorem 2.2.1. Let B be a one–dimensional F(t)–adapted Brownian motion and suppose

that X1 and X2 are F(t)–adapted processes restricted to [0,∞) which obey

Xi(t) = Xi(0) +
∫ t

0
βi(s) ds+

∫ t

0
σ(Xi(s)) dB(s), t ≥ 0, i = 1, 2,
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where the βi are also F(t)–adapted. Suppose also that there exists b : R+ → R with

β1(t) ≥ b(X1(t)), b(X2(t)) ≥ β2(t), t ≥ 0. (2.2.1)

Suppose further that X1(0) ≥ X2(0), a.s. and that for every n ∈ N there exists Kn > 0

such that

|σ(x)− σ(y)| ≤ Kn

√
|x− y|, for all x, y ∈ [0, n], (2.2.2)

|b(x)− b(y)| ≤ Kn|x− y|, for all x, y ∈ [0, n]. (2.2.3)

Define τ (1)
n = inf{t ≥ 0 : X1(t) = n} and τ (2)

n = inf{t ≥ 0 : X2(t) = n} and assume that

either τ (1)
n < +∞ or τ (2)

n < +∞ a.s. Then X1(t) ≥ X2(t) for all t ≥ 0 a.s.

2.3 Regular Variation

In this chapter, some of our analysis is facilitated by the use of regularly varying functions,

see [14]. We give some of their properties in this section. In its basic form, regular variation

may be viewed as the study of relations such as

lim
x→∞

f(λx)
f(x)

= λζ ∈ (0,∞) ∀ λ > 0,

where f is a positive measurable function and we say that f is regularly varying at infinity

with index ζ, i.e. f ∈ RV∞(ζ). By the representation theorem (Thm 1.3.1 in [14]), if

f ∈ RV∞(ζ) then there exists a measurable function c and a continuous function b such

that f(x) = c(x) exp{
∫ x
1 b(u)/u du} for x ≥ 1, where c(x) → c ∈ (0,∞) and b(x) → ζ as

x→∞. Taking logs and using L’Hôpital’s rule, we get the following useful result

log f(x)
log x

=
log c(x)
log x

+

∫ x
1

b(u)
u du

log x
→ ζ as x→∞. (2.3.1)

A positive function f defined on some neighbourhood of infinity varies smoothly with

index α ∈ R, denoted f ∈ SV∞(α), if h(x) := log f(ex) is C∞, and

lim
x→∞

h′(x) = α, lim
x→∞

h(n)(x) = 0 n = 2, 3, . . .
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From the definition of h, it can easily be shown that h′(log(x)) = xf ′(x)/f(x). Therefore,

for a smoothly varying continuous function f ∈ SV∞(α),

lim
x→∞

xf ′(x)
f(x)

= α and moreover, SV∞(α) ⊂ RV∞(α). (2.3.2)

The above limit also allows us to determine whether the function f is increasing or decreas-

ing. More precisely, if f(x) > 0 for x > 0 and α > 0, then we must also have f ′(x) > 0,

and so f is increasing. In fact, by Theorem 1.5.3 in [14], any function f varying regularly

with non–zero exponent is asymptotic to a monotone function.

Also of great importance is the fact that

f ∈ RV∞(ζ) ⇒ F (x) :=
∫ x

1
f(u) du ∈ RV∞(ζ + 1). (2.3.3)

To show this result, note that if it were true we should have xF ′(x)/F (x) = xf(x)/F (x) →

ζ + 1 as x→∞. Applying Karamata’s theorem (Thm 1.5.11 in [14]) with σ = 0 gives us

precisely this result, i.e. xf(x)/
∫ x
1 f(u) du→ ζ + 1 as x→∞, where f ∈ RV∞(ζ) and is

locally bounded on [1,∞) and ζ > −1.

One theorem which is of particular use is the smooth variation theorem, (see Thm 1.8.2,

[14] for proof).

Theorem 2.3.1. If f ∈ RV∞(α), then there exists f1, f2 ∈ SV∞(α) with f1 ∼ f2 and

f1 ≤ f ≤ f2 on some neighbourhood of infinity. In particular, if f ∈ RV∞(α) there exists

g ∈ SV∞(α) with g ∼ f .

Also, the following theorem gives a very useful property of the inverse, (see Thm 1.8.5,

[14] for proof)

Theorem 2.3.2. If f ∈ SV∞(α) with α > 0 then, on some neighbourhood of infinity, f

possesses an inverse function g ∈ SV∞(1/α) with f(g(x)) = g(f(x)) = x.

Combining both of these theorems we get the following lemma:
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Lemma 2.3.1. If there exists a continuous and positive function f ∈ RV∞(ζ) with ζ > −1,

then F (x) :=
∫ x
1 f(u)du possesses an inverse function F−1 ∈ RV∞( 1

ζ+1).

Proof of Lemma 2.3.1. We have f ∈ RV∞(ζ) and, by (2.3.3), F ∈ RV∞(ζ + 1). More-

over, by Theorem 2.3.1 there exists F1 ∈ SV∞(ζ+1) such that F (x)/F1(x) → 1 as x→∞.

So ∀ ε ∈ (0, 1) there exists x(ε) > 0 such that

(1− ε)F1(x) < F (x) < (1 + ε)F1(x), for x > x(ε). (2.3.4)

Note that F−1 exists and is increasing since f is positive and, by Theorem 2.3.2, there

exists F−1
1 ∈ SV∞( 1

ζ+1). Applying F−1 to (2.3.4) we have

F−1
(
(1− ε)F1(x)

)
< x < F−1

(
(1 + ε)F1(x)

)
, for x > x(ε).

Taking the left hand side of the inequality, let y = (1−ε)F1(x). Then F−1(y) < F−1
1 ( y

1−ε)

for y > (1 − ε)F1(x(ε)). Similarly, taking the right hand side of the inequality, let z =

(1 + ε)F1(x). Then F−1(z) > F−1
1 ( z

1+ε) for z > (1 + ε)F1(x(ε)). Combine both of these

by letting u := max(y, z) > (1 + ε)F1(x(ε)) and divide across by F−1
1 (u) to get

F−1
1 ( u

1+ε)

F−1
1 (u)

<
F−1(u)
F−1

1 (u)
<
F−1

1 ( u
1−ε)

F−1
1 (u)

.

Since F−1
1 (λu)/F−1

1 (u) → λ
1

ζ+1 as u → ∞ we can let ε → 0 to get F−1(u)/F−1
1 (u) → 1

as u → ∞. Therefore, as F−1
1 ∈ SV∞( 1

ζ+1) ⇒ F−1
1 ∈ RV∞( 1

ζ+1), it follows that F−1 ∈

RV∞( 1
ζ+1) also.

2.4 Main Results: Equations without Switching

Let f : Rd → Rd and g : Rd → Rd×r be continuous functions obeying local Lipschitz

continuity conditions. Let X(0) = x0 and consider the SDE given by

dX(t) = f(X(t)) dt+ g(X(t)) dB(t), t ≥ 0. (2.4.1)
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We make the standing assumption throughout the chapter that f and g obey this continu-

ity restriction. For economy of exposition these assumptions are not explicitly repeated in

the statement of theorems in this chapter. Under these conditions, there exists a unique

local solution of (2.4.1).

We write fi(x) = 〈f(x), ei〉, i = 1, . . . , d and gij(x) to be the (i, j)–th entry of the d× r

matrix g with real–valued entries. Then the ith component of (2.4.1) is

dXi(t) = fi(X(t))dt+
r∑

j=1

gij(X(t))dBj(t). (2.4.2)

2.4.1 Statement of main results

In what follows, it is convenient to introduce a function φ with the following properties:

φ : [0,∞) → (0,∞) and xφ(x) →∞ as x→∞, (2.4.3a)

φ is locally Lipschitz continuous on [0,∞). (2.4.3b)

We often request that φ and f possess the following properties also:

there exists c1 > 0 such that lim sup
‖x‖→∞

|〈x, f(x)〉|
‖x‖φ(‖x‖)

≤ c1, (2.4.4)

there exists c2 > 0 such that lim sup
‖x‖→∞

〈x, f(x)〉
‖x‖φ(‖x‖)

≤ −c2. (2.4.5)

We define the function Φ according to

Φ(x) =
∫ x

1
φ(u) du, x ≥ 1. (2.4.6)

Since xφ(x) → ∞ as x → ∞ it follows that Φ(x) → ∞ as x → ∞. Therefore, since Φ is

increasing, Φ−1 exists and Φ−1(x) →∞ as x→∞ also.

We suppose that the noise is bounded by imposing the following hypotheses:

there exists K2 > 0 such that ‖g(x)‖F ≤ K2, where ‖g(0)‖F > 0, (2.4.7)

there exists K1 > 0 such that inf
‖x‖∈Rd/{0}

∑r
j=1

(∑d
i=1 xigij(x)

)2
‖x‖2

≥ K2
1 . (2.4.8)
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Observe that by Cauchy–Schwarz, condition (2.4.8) implies ‖g(x)‖2
F ≥ K2

1 .

As mentioned before, under the local Lipschitz continuity conditions on f and g, there

exists a unique local solution of (2.4.1). However we can now show, using the additional

hypotheses above, that in fact there exists a unique global solution to (2.4.1).

Note that by (2.4.5) there exists x1 such that 〈x, f(x)〉 < 0 for all ‖x‖ ≥ x1 and by

(2.4.7), ‖g(x)‖F ≤ K2 for all x ∈ Rd. Thus, sup‖x‖≥x1
{〈x, f(x)〉+ 1

2‖g(x)‖
2
F } ≤

1
2K

2
2 and,

by continuity, sup‖x‖≤x1
{〈x, f(x)〉+ 1

2‖g(x)‖
2
F } =: C(x1). Combining both,

sup
x∈Rd

{
〈x, f(x)〉+

1
2
‖g(x)‖2

F

}
≤ 1

2
K2

2 + C(x1) < +∞.

As a result of this global one–sided bound, Theorem 3.6 in [54] states that there exists a

unique global solution to equation (2.4.1).

We are now in a position to state our main results. Our first result shows that when

the noise is bounded, and f obeys the upper bound (2.4.4), a lower bound on the rate of

growth of the running maxima of ‖X‖ can be obtained.

Theorem 2.4.1. Suppose there exists a function φ satisfying (2.4.3), and that φ and f

satisfy (2.4.4), and that g obeys (2.4.7) and (2.4.8). Then X, the unique adapted contin-

uous solution satisfying (2.4.1), satisfies for any ε ∈ (0, 1)

lim sup
t→∞

‖X(t)‖

Φ−1
(K2

1 (1−ε)
2c1

log t
) ≥ 1 a.s. on Ωε, (2.4.9)

where Φ is defined by (2.4.6) and Ωε is an almost sure event.

The next result shows that when the noise is bounded, and f obeys the mean–reversion

property (2.4.5), an upper bound on the rate of growth of the running maxima of ‖X‖

can be obtained.

Theorem 2.4.2. Suppose there exists a function φ satisfying (2.4.3), and that φ and f

satisfy (2.4.5), and that g obeys (2.4.7) and (2.4.8). Then X, the unique adapted contin-
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uous solution satisfying (2.4.1), satisfies for any ε ∈ (0, 1)

lim sup
t→∞

‖X(t)‖

Φ−1
(K2

2 (1+ε)
2c2

log t
) ≤ 1 a.s. on Ωε, (2.4.10)

where Φ is defined by (2.4.6) and Ωε is an almost sure event.

Observe that results (2.4.9) and (2.4.10) do not preclude the case where ‖X(t)‖ is

growing (i.e. ‖X(t)‖ → ∞ as t→∞) at a rate characterised by Φ−1(c log t). However, the

next theorem shows that the behaviour of (2.4.9) and (2.4.10) arises from the fluctuations

of ‖X‖ rather than the growth of ‖X‖. Indeed, it is Theorem 2.4.3 which allows us to

claim that these are results about the growth of large fluctuations.

Theorem 2.4.3. If X, the unique adapted continuous solution satisfying (2.4.1), satisfies

Theorems 2.4.1 and 2.4.2, then ‖X‖ is recurrent on (0,∞). Furthermore, X obeys

lim inf
t→∞

‖X(t)‖ = 0, a.s. and lim sup
t→∞

‖X(t)‖ = +∞, a.s.

Taking Theorems 2.4.1 and 2.4.2 together, in the special case where φ is a regularly

varying function, we obtain the following result which characterises the essential almost

sure rate of growth of the running maxima of ‖X‖.

Theorem 2.4.4. Suppose there exists a function φ ∈ RV∞(ζ) satisfying (2.4.3), and that

φ and f satisfy (2.4.4) and (2.4.5), and that g obeys (2.4.7) and (2.4.8). Then X, the

unique adapted continuous solution satisfying (2.4.1), satisfies(
K2

1

2c1

) 1
ζ+1

≤ lim sup
t→∞

‖X(t)‖
Φ−1(log t)

≤
(
K2

2

2c2

) 1
ζ+1

a.s., (2.4.11)

where Φ is defined by (2.4.6) and ζ > −1.

Remark 2.4.1. It is interesting to ask whether the asymptotic estimate in (2.4.11) is sharp.

Although this is a difficult question to address in general, we supply now a scalar exam-

ple which demonstrates that, in some cases at least, the asymptotic estimate (2.4.11) is

unimprovable.
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Let c > 0 and K > 0 and consider a simple one-dimensional Ornstein–Uhlenbeck process

dX(t) = −cX(t)dt+K dB(t), t ≥ 0.

In the notation of this section, and Theorem 2.4.4 in particular, we have that d = r = 1,

f(x) = −cx, and g(x) = K. This implies that c1 = c2 = c, K1 = K2 = K, and that

φ(x) = x so φ ∈ RV∞(1). This means that ζ = 1. Thus Φ(x) = x2/2 and Φ−1(x) =
√

2x.

Then applying Theorem 2.4.4 we recover the well–known result

lim sup
t→∞

|X(t)|√
2 log t

=
(
K2

2c

) 1
2

, a.s.

Remark 2.4.2. It is worth mentioning that we prefer hypotheses of the type (2.4.4) and

(2.4.5) on f , as opposed to global estimates, because we only require control on the drift for

large values of ‖x‖ in order to obtain asymptotic results. Intuitively, we would not expect

the behaviour of the drift for small and moderate values of ‖x‖ to have an impact on the

large deviations, so it is natural not to require hypotheses which explicitly deal with these

moderate values of ‖x‖. As a result of this we can obtain sharper asymptotic estimates, in

particular we can obtain better estimates on the constants c1 and c2 on the right hand side

of (2.4.4) and (2.4.5). The downside is that the proofs become slightly more cumbersome

as we have to ensure that the drift is well behaved for small and moderate values of ‖x‖.

Remark 2.4.3. We remark that hypotheses (2.4.7) and (2.4.8) on g are satisfied for certain

equations with additive or bounded noise. For instance, consider the case g(x) = Σ θ(x)

where θ : Rd → R is a locally Lipschitz continuous function such that there exists θ1, θ2 ∈

(0,∞) with θ1 ≤ |θ(x)| ≤ θ2 for all x = (x1, x2, . . . , xd)T ∈ Rd. Also, Σ is a d × r matrix

(d ≤ r) such that Σ 6= 0 and the nullspace of ΣT , denoted null(ΣT ), contains only the

zero vector, where the nullspace is the solution set of ΣTx = 0. Under these conditions,

(2.4.7) and (2.4.8) hold. Also, if θ is constant then we have additive noise, otherwise we

have bounded noise.
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To demonstrate that (2.4.7) and (2.4.8) do in fact hold, note that on the one hand

‖g(x)‖F = |θ(x)|.‖Σ‖F but since ‖Σ‖F is constant and |θ| is bounded above, it follows

that ‖g(x)‖F is bounded above as required in (2.4.7). On the other hand,

∑r
j=1

(∑d
i=1 xigij(x)

)2
‖x‖2

= θ2(x)

∑r
j=1(

∑d
i=1 xiΣij)2

‖x‖2
= θ2(x)

‖ΣTx‖2

‖x‖2
.

As mentioned before, |θ| is bounded below so we just require inf‖x‖6=0 ‖ΣTx‖/‖x‖ > 0 in

order for (2.4.8) to hold. However, the only way that we would not have a positive lower

bound here is if there exists y ∈ Rd/{0} such that ΣT y = 0. In other words, we require

ΣT y 6= 0 for all y ∈ Rd/{0}. This means that the unique solution of ΣT y = 0 must be

y = 0 and this is equivalent to null(ΣT ) = {0}.

Note that in the d = r case, where Σ is a square matrix, null(ΣT ) = {0} is true if and

only if ΣT is invertible, which is true if and only if Σ is invertible.

If d < r then ΣT is an r× d matrix giving rise to the system ΣTx = b, for some b ∈ Rd,

which has more equations than unknowns. Let Σ1 be a d×d matrix formed by taking any

d rows of ΣT in such a way that Σ1 is invertible. Then, after row reduction, the first d

rows of ΣT will be the d× d identity matrix and the remaining (r − d) rows will have all

zero entries. Thus, by well–known matrix properties, the system ΣTx = 0 has the unique

solution x = 0, which guarantees null(ΣT ) = {0}.

If d > r, then ΣT is an r × d matrix giving rise to the system ΣTx = b with fewer

equations than unknowns. Thus, by well–known matrix properties, the system ΣTx =

0 has a nontrivial solution: that is, a solution other than the zero vector. Therefore,

null(ΣT ) 6= {0} and so (2.4.8) does not hold in the case when d > r.

Remark 2.4.4. In Theorem 2.4.4 we have proved a result of the form

0 < C1 ≤ lim sup
t→∞

‖X(t)‖
ρ(t)

≤ C2 < +∞, a.s. (2.4.12)
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where ρ(t) →∞ as t→∞. In an application to a system in economics or population biol-

ogy, where each component of the process represents a quantity of interest, it is reasonable

to ask what the size of the largest component of the system is, rather than focussing on

the Euclidean norm, which may not be as scientifically relevant. Indeed, focussing on the

size of the large deviations of the biggest component gives an idea of the most extreme

behaviour of the system as a whole, and thereby helps in understanding ‘worst case scenar-

ios’ for the system. Equation (2.4.12) enables us to prove that the largest component also

has an essential growth rate ρ. This is a simple consequence of the fact that the max norm

and Euclidean norm in Rd are equivalent, and related by 1√
d
‖x‖ ≤ max1≤i≤d |xi| ≤ ‖x‖.

Thus, combining this with (2.4.12), we can get a result of the form

0 <
1√
d
C1 ≤ lim sup

t→∞

max1≤j≤d |Xj(t)|
ρ(t)

≤ C2 < +∞, a.s.

Remark 2.4.5. Returning to (2.4.11), note that Φ ∈ RV∞(ζ + 1) by (2.3.3) and Φ−1 ∈

RV∞( 1
ζ+1) by Lemma 2.3.1. Now, using the fact that log Φ−1(log t)/ log log t → 1

ζ+1 as

t → ∞ by (2.3.1), we take logs in (2.4.11) to get the following exact rate of growth for

ζ > −1,

lim sup
t→∞

log ‖X(t)‖
log log t

=
1

ζ + 1
, a.s.

In the case where ζ = −1, although Theorem 2.4.4 does not apply, in many cases we can

still get bounds on the asymptotic behaviour by making an appropriate transformation.

Consider, for example, φ(x) = log x/x. Then φ ∈ RV∞(−1) and satisfies xφ(x) → ∞. It

can easily be shown that Φ(x) = 1
2(log x)2 and Φ−1(x) = e

√
2x. Then, following from the

results of Theorems 2.4.1 and 2.4.2, we take logs and let ε→ 0 to get

K1√
c1
≤ lim sup

t→∞

log ‖X(t)‖√
log t

≤ K2√
c2
, a.s.
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2.4.2 Remarks on restrictions on the hypotheses

The results of Theorems 2.4.1, 2.4.2 and in turn Theorem 2.4.4, can be established under

the hypotheses (2.4.3) through to (2.4.8). However, it is reasonable to ask whether these

hypotheses can be relaxed while still proving a result on large deviations. By considering

some examples we demonstrate that, without further analysis, certain hypotheses cannot

be easily relaxed while maintaining an asymptotic relation such as (2.4.11). In each of the

following examples we assume that one of the key hypotheses is false, and from that one

can show that the solution will not obey Theorem 2.4.1.

Take the simple one–dimensional analogue of (2.4.1),

dX(t) = f(X(t))dt+ g(X(t))dB(t), (2.4.13)

where f : R → R and g : R → R. In Example 2.4.1 below we consider a situation where

conditions (2.4.7) and (2.4.8) do not hold, and in Examples 2.4.2 and 2.4.3 we consider

a situation where xφ(x) → L < +∞. Although we can provide rigorous justifications for

the following examples, we choose to omit the details.

Example 2.4.1. Let X be the unique adapted continuous solution satisfying (2.4.13).

Let f(x) = −φ(x) where φ satisfies (2.4.3) and let g be a continuous positive function

such that g(x) → 0 as x→∞.

Then g does not satisfy the inequality (2.4.8) and moreover X does not satisfy (2.4.11)

for φ ∈ RV∞(ζ), ζ > −1.

Example 2.4.2. Let X be the unique adapted continuous solution satisfying (2.4.13) and

assume that the conditions of Theorem 2.4.1 hold, except that g(x) = 1 and f(x) = −φ(x)

where φ satisfies

xφ(x) → L as x→∞, for
1
2
< L < +∞.
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Then Theorem 2.4.1 does not hold, and moreover there exists a sufficiently small ε ∈ (0, 1)

such that

P
[
lim sup

t→∞

|X(t)|

Φ−1
(K2

1 (1−ε)
2c1

log t
) ≥ 1

]
= 0.

Example 2.4.3. Let X be the unique adapted continuous solution satisfying (2.4.13) and

assume that the conditions of Theorem 2.4.1 hold, except that g(x) = 1 and f(x) = −φ(x)

where φ satisfies

φ(x) =
Lx

1 + x2
for 0 < L <

1
2
.

Then Theorem 2.4.1 does not hold, and moreover there exists a sufficiently small ε ∈ (0, 1)

such that

P
[
lim sup

t→∞

|X(t)|

Φ−1
(K2

1 (1−ε)
2c1

log t
) ≥ 1

]
= 0.

2.4.3 Asymptotically diagonal systems

We next consider a typical situation in which conditions of the form (2.4.4) and (2.4.5)

hold. Let f : Rd → Rd be given by f(x) = −ϕ(x)+ψ(x) for x ∈ Rd, where ϕ,ψ : Rd → Rd.

The function ϕ has the form ϕ(x1, x2, . . . , xd) =
∑d

j=1 ϕj(xj)ej , where each ϕj : R → R.

Suppose that φ : [0,∞) → (0,∞) is such that

φ ∈ RV∞(ζ) is locally Lipschitz continuous and lim
x→∞

xφ(x) = ∞. (2.4.14)

Moreover, the scalar function φ determines the asymptotics of f as follows:

for every j = 1, . . . , d, there is αj ∈ (0,∞) s.t. lim inf
|x|→∞

sgn(x)ϕj(x)
φ(|x|)

= αj ; (2.4.15)

for each j = 1, . . . , d there exists βj > 0 s.t. lim sup
|x|→∞

sgn(x)ϕj(x)
φ(|x|)

= βj ; (2.4.16)

lim
‖x‖→∞

|ψj(x)|
φ(‖x‖)

= 0. (2.4.17)

These conditions on φ, ϕ and ψ enable us to verify the conditions on f required to

determine good upper and lower estimates on the rate of growth of the almost sure running
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maxima of the SDE.

Lemma 2.4.1. Let f = −ϕ+ ψ, and let ϕ and ψ obey (2.4.15) and (2.4.17). If φ obeys

(2.4.14), then there exists α∗ > 0 such that

lim sup
‖x‖→∞

〈x, f(x)〉
‖x‖φ(‖x‖)

≤ −α∗. (2.4.18)

Lemma 2.4.2. Let f = −ϕ+ ψ, and let ϕ and ψ obey (2.4.16) and (2.4.17). If φ obeys

(2.4.14), then there exists β∗ > 0 such that

(i) If φ ∈ RV∞(ζ), ζ > −1, then

lim sup
‖x‖→∞

|〈x, f(x)〉|
‖x‖φ(‖x‖)

≤ β∗. (2.4.19)

(ii) If φ ∈ RV∞(−1), and there exists φ1 with φ1(x)/φ(x) → 1 as x → ∞ such that

x 7→ xφ1(x) is non–decreasing, then (2.4.19) holds.

The conditions (2.4.15) and (2.4.16) ensure that the mean–reverting part of f has

strength of mean–reversion φ(|x|) in each component, while condition (2.4.17) means that

the other terms are of a smaller order of magnitude for large ‖x‖. In some sense, it means

that the system is asymptotically diagonal for large ‖x‖.

The condition (2.4.14) essentially restricts our attention to problems where the strength

of mean–reversion φ(x) is no greater than |x|γ for any γ > −1. Condition (2.4.14) holds

for many φ: φ1(x) = (1 + x)γ logβ(2 + x); φ2(x) = (1 + x)γ ; φ3(x) = [log log(e2 + x)]β

satisfy (2.4.14) for instance, for any β > 0, γ > −1. If φ(x) = eγ|x| for γ > 0, then (2.4.14)

does not hold.

2.5 Extensions to equations with Markovian switching

In this section, we consider the asymptotic behaviour of a finite–dimensional autonomous

SDE with Markovian switching. Let Y be a continuous–time Markov chain with state
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space S, and let B be a standard r–dimensional Brownian motion independent of Y . We

assume that the state space of the Markov chain is finite, say S = {1, 2, · · · , N} and the

Markov chain has generator Γ = (γij)N×N . As a standing hypothesis we assume in this

chapter that the Markov chain is irreducible. Under this condition, the Markov chain has

a unique stationary (probability) distribution π = (π1, π2, · · · , πN ) ∈ R1×N which can be

determined by solving the following linear equation

πΓ = 0 subject to
N∑

j=1

πj = 1 and πj > 0 ∀j ∈ S. (2.5.1)

Let f : Rd×S → Rd and g : Rd×S → Rd×r be continuous functions obeying local Lipschitz

continuity conditions. Then for all ‖x‖ ∨ ‖u‖ ≤ n and for all y ∈ S,

‖f(x, y)− f(u, y)‖ ∨ ‖g(x, y)− g(u, y)‖ ≤ Kn‖x− u‖, (2.5.2)

for every n ∈ N. Let X(0) = x0 and consider the SDE with Markovian switching

dX(t) = f(X(t), Y (t))dt+ g(X(t), Y (t)) dB(t). (2.5.3)

We make the standing assumption that f and g obey this continuity restriction, and that

Y is an irreducible continuous–time Markov chain with finite state space S. Under these

conditions there exists a unique local solution of (2.5.3).

We write fi(x, y) = 〈f(x, y), ei〉, i = 1, . . . , d and gij(x, y) to be the (i, j)–th entry of the

d× r matrix g with real–valued entries. The ith component of (2.5.3) is

dXi(t) = fi(X(t), Y (t))dt+
r∑

j=1

gij(X(t), Y (t)) dBj(t). (2.5.4)

Our hypotheses here are direct analogues of the non–switching hypotheses, (2.4.4)

through to (2.4.8), with the inclusion of an extra switching parameter y, over which we

take the supremum or infimum.
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Once again we characterise the nonlinearity of the drift coefficient f via a scalar function

φ which satisfies (2.4.3) and we suppose that φ and f possess the following properties also:

there exists c1 > 0 such that lim sup
‖x‖→∞

{
sup
y∈S

|〈x, f(x, y)〉|
‖x‖φ(‖x‖)

}
≤ c1, (2.5.5)

there exists c2 > 0 such that lim sup
‖x‖→∞

{
sup
y∈S

〈x, f(x, y)〉
‖x‖φ(‖x‖)

}
≤ −c2. (2.5.6)

As before we define the function Φ according to (2.4.6).

We suppose that the noise is bounded by imposing the following hypotheses:

there exists K2 > 0 and K0 > 0 such that ‖g(x, y)‖F ≤ K2 ∀ y ∈ S (2.5.7)

where K0 ≤ ‖g(0, y)‖F ∀ y ∈ S,

there exists K1 > 0 such that inf
‖x‖∈Rd/{0}

y∈S

∑r
j=1

(∑d
i=1 xigij(x, y)

)2
‖x‖2

≥ K2
1 . (2.5.8)

Under the local Lipschitz continuity conditions on f and g, there exists a unique local

solution of (2.5.3). However we can again show that in fact there exists a unique global

solution to (2.5.3). Using (2.5.6), (2.5.7) and the fact that the state space of the Markov

chain in finite, it can be shown analogously to the non–switching case that

sup
y∈S

{
sup
x∈Rd

{〈x, f(x, y)〉+
1
2
‖g(x, y)‖2

F }
}
< +∞.

As a result of this global one–sided bound, by Theorem 3.18 in [62] there exists a unique

global solution to equation (2.5.3).

We could now state exact analogues of Theorems 2.4.1, 2.4.2 and 2.4.3 in the case where

the equation contains Markovian switching. However, to avoid repetition we choose not

to state them. Nonetheless, in order to give the reader an idea of how such results would

be proven we give the statement of the analogy to Theorem 2.4.4 and an extract of its

proof.

In the special case where φ is a regularly varying function, we obtain the following result
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which characterises the essential almost sure rate of growth of the running maxima of ‖X‖

in the case when the process experiences Markovian switching.

Theorem 2.5.1. Suppose there exists a function φ ∈ RV∞(ζ) satisfying (2.4.3), and that

φ and f satisfy (2.5.5) and (2.5.6), and that g obeys (2.5.7) and (2.5.8). Then X, the

unique adapted continuous solution satisfying (2.5.3), satisfies

(
K2

1

2c1

) 1
ζ+1

≤ lim sup
t→∞

‖X(t)‖
Φ−1(log t)

≤
(
K2

2

2c2

) 1
ζ+1

a.s., (2.5.9)

where Φ is defined by (2.4.6) and ζ > −1.

2.6 Extensions to equations with unbounded noise

We can extend (2.4.1) and (2.5.3) to the case of unbounded noise by also characterising

the degree of nonlinearity in g via a scalar function γ which obeys similar properties to

those which φ obeys in (2.4.3). We would allow g to be unbounded by replacing conditions

(2.4.7) and (2.4.8) with:

there exists K2 > 0 such that lim sup
‖x‖→∞

‖g(x)‖F

γ(‖x‖)
≤ K2, where ‖g(0)‖F > 0, (2.6.1)

there exists K1 > 0 such that lim inf
‖x‖→∞

∑r
j=1

(∑d
i=1 xigij(x)

)2
‖x‖2γ2(‖x‖)

≥ K2
1 . (2.6.2)

Since we are still interested in recurrent processes, we would need the strength of the

mean–reversion to be in some sense stronger than the noise intensity. For this purpose we

would impose a condition of the form

xφ(x)
γ2(x)

→∞ as x→∞. (2.6.3)

In this case, we find that if the function Ψ is defined by

Ψ(x) :=
∫ x

1

φ(u)
γ2(u)

du, (2.6.4)
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then, roughly speaking, all of the main results in the bounded case can be generalised to

cover the case of unbounded noise by using the auxiliary function Ψ in place of Φ. In

particular, in the special case where the ratio φ/γ2 is a regularly varying function, we

would get the following analogue of Theorem 2.4.4 which characterises the essential rate

of growth of the largest fluctuations of an SDE with unbounded diffusion coefficient.

Theorem 2.6.1. Suppose there exists functions φ and γ obeying (2.6.3) and that the ratio

φ/γ2 ∈ RV∞(ζ). Suppose further that φ and f satisfy (2.4.4) and (2.4.5) and that γ and

g satisfy (2.6.1) and (2.6.2). Then X, the unique adapted continuous solution satisfying

(2.4.1), satisfies (
K2

1

2c1

) 1
ζ+1

≤ lim sup
t→∞

‖X(t)‖
Ψ−1(log t)

≤
(
K2

2

2c2

) 1
ζ+1

a.s.,

where Ψ obeys (2.6.4) and ζ > −1.

The proof of this theorem is similar in spirit to the proof of Theorem 2.4.4 and for that

reason is not stated.

2.7 Proofs of Results from Section 2.4

Proof of Theorem 2.4.1. Before we begin, note that we often use similar notation from

proof to proof for the purpose of clarity and consistency. In some cases, notation actually

carries over from one proof to another and this will be specified.

The first step of this proof is to apply a time–change and a transformation to (2.4.1)

in order to obtain a 1–dimensional equation with a square root diffusion term. This will

allow us to apply the stochastic comparison theorem (Theorem 2.2.1) and will ensure that

the diffusion coefficient satisfies (2.2.2). Define

G(x) =


√∑r

j=1(
∑d

i=1 xigij(x))2

‖x‖ x 6= 0

K2 ≥ c ≥ K1 x = 0.
(2.7.1)
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Note that by (2.4.7),(2.4.8) and the Cauchy–Schwarz inequality,

K1 ≤ G(x) =

√∑r
j=1(

∑d
i=1 xigij(x))2

‖x‖
≤

√∑d
i=1 x

2
i

∑r
j=1

∑d
i=1 g

2
ij(x)

‖x‖

=
‖x‖.‖g(x)‖F

‖x‖
= ‖g(x)‖F ≤ K2 for x 6= 0. (2.7.2)

Also define θ by

θ(t) =
∫ t

0
G2(X(s)) ds, t ≥ 0.

Then limt→∞ θ(t) = ∞. Since t 7→ θ(t) is increasing, we may define the stopping time τ

by τ(t) = inf{s ≥ 0 : θ(s) > t} so that τ(t) = θ−1(t). Define X̃(t) = X(τ(t)) for t ≥ 0 and

define G(t) = F(τ(t)) for all t ≥ 0 (where (F(t))t≥0 is the original filtration). Then X̃ is

G(t)–adapted. Furthermore, applying this time change to (2.4.2) we have

X̃i(t) = Xi(τ(t)) = Xi(0) +
∫ τ(t)

0
fi(X(s)) ds+Mi(t) (2.7.3)

where

Mi(t) =
∫ τ(t)

0

r∑
j=1

gij(X(s)) dBj(s). (2.7.4)

Note that M = (M1,M2, . . . ,Md)T is a d–dimensional G(t)–local martingale.

Now, to deal with the Riemann integral term in (2.7.3), we use Problem 3.4.5 from

[46], which states that if Ni is a bounded measurable function and [a, b] ⊂ [0,∞) then∫ b
a Ni(s) dθ(s) =

∫ θ(b)
θ(a) Ni(τ(s)) ds. In this case we set

Ni(t) = fi(X(t))/G2(X(t))

and as dθ(t) = G2(X(t)) dt, we obtain

∫ τ(t)

0
fi(X(s)) ds =

∫ τ(t)

0
Ni(s) dθ(s)

=
∫ θ(τ(t))

θ(0)
Ni(τ(s)) ds =

∫ t

0
fi(X̃(s))/G2(X̃(s)) ds. (2.7.5)
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To deal with the martingale term in (2.7.3), we note that the cross variation of M is

given by

〈Mi,Mm〉(t) =
∫ τ(t)

0

r∑
j=1

gij(X(s))gmj(X(s)) ds

=
∫ t

0

r∑
j=1

gij(X̃(s))gmj(X̃(s))/G2(X̃(s)) ds,

where we employ the method used to deduce (2.7.5) to obtain the last equality. Thus by

Theorem 3.4.2 in [46], there is an extension (Ω̃, F̃ , P̃) of (Ω,F ,P) on which is defined a

d–dimensional Brownian motion B̃ = {(B̃1(t), B̃2(t), . . . , B̃d(t))T ; G̃(t); 0 ≤ t < +∞} such

that

Mi(t) =
∫ t

0

r∑
j=1

gij(X̃(s))/G(X̃(s)) dB̃j(s), P̃–a.s. (2.7.6)

The filtration G̃(t) in the extended space is such that X̃ is G̃(t)–adapted.

For reasons of clarity and economy, from this point onward we do not specify the proba-

bility measure with respect to which such events are almost sure. Later in the proof we will

reverse the time change in order to deal with the original process X. Although the time

change is random, the fact that K2
1 t ≤ θ(t) ≤ K2

2 t, t ≥ 0 ensures that X̃(t) = X(θ−1(t))

captures the most important aspects of the growth of the running maxima of ‖X(t)‖.

Moreover, almost sure results about the growth rate of the fluctuations of t 7→ ‖X̃(t)‖ still

correspond to almost sure results about the growth rate of the fluctuations of t 7→ ‖X(t)‖

because (Ω̃, F̃(t), P̃), (G̃(t))t≥0 is an extension of (Ω,F(t),P), (F(t))t≥0.

Thus by (2.7.5), (2.7.6) and (2.7.3) we get

dX̃i(t) =
fi(X̃(t))
G2(X̃(t))

dt+
1

G(X̃(t))

r∑
j=1

gij(X̃(t)) dB̃j(t).

Next, to simplify notation, define a : Rd → R+ by

a(x) =
r∑

j=1

(
d∑

i=1

xigij(x)

)2

. (2.7.7)
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By (2.4.8), a(x) > 0 ∀ x 6= 0. Define for j = 1, . . . , r the functions Aj : Rd → R by

Aj(x) =
1√
a(x)

d∑
i=1

xigij(x), x 6= 0

and Aj(x) = 1/
√
r for x = 0. Then

1
G(x)

d∑
i=1

xigij(x) = ‖x‖Aj(x), x ∈ Rd, (2.7.8)

r∑
j=1

A2
j (x) = 1, x ∈ Rd. (2.7.9)

Now applying Itô’s rule to Z̃(t) := ‖X̃(t)‖2 we get

dZ̃(t) =

[
2〈X̃(t), f(X̃(t))〉+ ‖g(X̃(t))‖2

F

G2(X̃(t))

]
dt

+ 2
r∑

j=1

(
1

G(X̃(t))

d∑
i=1

X̃i(t)gij(X̃(t))

)
dB̃j(t)

so by (2.7.8) and ‖X̃(t)‖ =
√
Z̃(t) we have

dZ̃(t) =

[
2〈X̃(t), f(X̃(t))〉+ ‖g(X̃(t))‖2

F

G2(X̃(t))

]
dt+ 2

√
Z̃(t)

r∑
j=1

Aj(X̃(t)) dB̃j(t). (2.7.10)

Finally define

W̃ (t) =
∫ t

0

r∑
j=1

Aj(X̃(s)) dB̃j(s), t ≥ 0.

By (2.7.9) and e.g. [46, Theorem 3.3.16], W̃ is a standard 1–dimensional Brownian motion

adapted to G̃(t) such that

dZ̃(t) =

[
2〈X̃(t), f(X̃(t))〉+ ‖g(X̃(t))‖2

F

G2(X̃(t))

]
dt+ 2

√
Z̃(t)dW̃ (t). (2.7.11)

The time–change and transformation is now complete. The next step is to derive a lower

bound on the drift coefficient of (2.7.11) in order to create a lower comparison process.

We can then apply the comparison principle.

For y ∈ Rd, define the functions D : Rd → R and ∆− : R+ → R by

D(y) =
2〈y, f(y)〉+ ‖g(y)‖2

F

G2(y)
and ∆−(x) = min

‖y‖=x
D(y).
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Then for y ∈ Rd, D(y) ≥ min‖u‖=‖y‖D(u) = ∆−(‖y‖). Thus, a lower bound on ∆−

represents a lower bound on the drift coefficient of (2.7.11). Note that ∆− is continuous

on (0,∞) and is potentially discontinuous at zero. However, it can be defined at zero. We

construct a locally Lipschitz continuous function φ(ε)
− : R+ → R such that

∆−(x) + φ
(ε)
− (x) > 0, x ≥ 0. (2.7.12)

Then for x ∈ Rd,

D(x) + φ
(ε)
− (‖x‖) ≥ ∆−(‖x‖) + φ

(ε)
− (‖x‖) > 0 (2.7.13)

and so from (2.7.11) we will have

dZ̃(t) =
[
−φ(ε)

− (‖X̃(t)‖) +
{
D(X̃(t)) + φ

(ε)
− (‖X̃(t)‖)

}]
dt+ 2

√
Z̃(t) dW̃ (t)

=
[
−φ(ε)

−
(√

Z̃(t)
)

+D1,ε(t)
]
dt+ 2

√
Z̃(t) dW̃ (t) (2.7.14)

where D1,ε(t) := D(X̃(t))+φ(ε)
− (‖X̃(t)‖) is an adapted process such that D1,ε(t) > 0 ∀ t >

0 a.s. by (2.7.13). We construct, as our comparison process,

dZε(t) = −φ(ε)
−
(√

Zε(t)
)
dt+ 2

√
Zε(t) dW̃ (t), t ≥ 0 (2.7.15)

where 0 ≤ Zε(0) ≤ ‖X̃(0)‖2 = Z̃(0). We will later show, using stochastic comparison

techniques, that Z̃(t) ≥ Zε(t) for all t ≥ 0 almost surely.

Now we return to the construction of the function φ(ε)
− , the mean–reverting drift coeffi-

cient of the lower comparison process (2.7.15). This will effectively act as a lower bound

on the drift coefficient of (2.7.11). However, this construction is made more delicate by

the fact that our hypothesis (2.4.4) is an asymptotic hypothesis rather than a global one.

This means that although we have estimates on f for large values of ‖x‖, we require extra

estimates for small and moderate values of ‖x‖.

First note that for ‖y‖ 6= 0 we have ‖g(y)‖2
F /G

2(y) ≥ 1 by (2.7.2). Define the constant

K3 = min{1, ‖g(0)‖2
F /G

2(0)}. Then ‖g(y)‖2
F /G

2(y) ≥ K3 for all y ∈ Rd and moreover K3
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is strictly positive since G(0) > 0 by definition and ‖g(0)‖F > 0 by (2.4.7).

For an estimate on f observe that since f is continuous, by the Cauchy–Schwarz in-

equality, lim‖x‖→0 |〈x, f(x)〉| = 0. Therefore, for every ε ∈ (0, 1 ∧ 1
4K

2
1K3) there exists

0 < X2(ε) < 1 such that |〈x, f(x)〉| ≤ ε for all ‖x‖ ≤ X2(ε). Let y ∈ Rd such that

‖y‖ ≤ X2(ε). Then 2〈y, f(y)〉 ≥ −2ε. Thus, using (2.7.2),

D(y) =
2〈y, f(y)〉
G2(y)

+
‖g(y)‖2

F

G2(y)
≥ −2ε

K2
1

+K3 ≥
1
2
K3 =: 2φ∗ > 0.

Hence for x ≤ X2(ε),

∆−(x) = min
‖y‖=x

D(y) ≥ min
‖y‖=x

2φ∗ = 2φ∗ > 0.

So this gives us an estimate for ∆− on an interval close to zero. We now look for an

estimate on an interval away from zero. From condition (2.4.4) it follows that for every

ε > 0 there exists X1(ε) > 1 such that |〈x, f(x)〉| ≤ c1(1 + ε)‖x‖φ(‖x‖) for ‖x‖ > X1(ε).

Therefore,

〈x, f(x)〉 ≥ −c1(1 + ε)‖x‖φ(‖x‖) for ‖x‖ > X1(ε).

Let y ∈ Rd such that ‖y‖ > X1(ε). Then using (2.7.2),

D(y) =
2〈y, f(y)〉
G2(y)

+
‖g(y)‖2

F

G2(y)
≥ −2c1(1 + ε)

K2
1

‖y‖φ(‖y‖) + 1.

Hence for x > X1(ε),

∆−(x) = min
‖y‖=x

D(y) ≥ −2c1(1 + ε)
K2

1

xφ(x) + 1. (2.7.16)

And so we have an estimate for ∆− on an interval away from zero. We are now in a

position to construct the drift function φ(ε)
− for the comparison process (2.7.15). However,

because X2(ε) < X1(ε), we must carefully bridge the gap between the estimate close to

zero (x ≤ X2(ε)) and the estimate away from zero (x ≥ X1(ε)) while ensuring that φ(ε)
− is

continuous and that it is a uniform bound for −∆−.
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If there exists X ′
3(ε) ∈ (X2(ε), X1(ε)) such that −∆−(X ′

3(ε)) = −φ∗ then define X3(ε) =

X ′
3(ε). Otherwise, define X3(ε) = 1

2(X2(ε) +X1(ε)). Define

φ2(ε) =
2c1(1 + ε)

K2
1

X1(ε)φ(X1(ε))− 1−
[

max
x∈[X3,X1]

{−∆−(x)} ∨ −φ∗
]

and let αε= |φ2(ε)|+1, cε= αε +φ2(ε), and∆ε= cε +
[
maxx∈[X3,X1]{−∆−(x)}∨−φ∗

]
. Note

that αε ≥ 1, cε ≥ 1 and ∆ε > 0. Finally, define

φ
(ε)
− (x) =



−φ∗ 0 ≤ x ≤ X2(ε)

−φ∗ + ∆ε+φ∗
X3(ε)−X2(ε)(x−X2(ε)) X2(ε) < x ≤ X3(ε)

∆ε X3(ε) < x ≤ X1(ε)

αε − 1 + 2c1(1+ε)
K2

1
xφ(x) x > X1(ε).

(2.7.17)

A visualisation of this drift function is given in Figure 2.1 below.

Figure 2.1: Bounding drift coefficient

Note that φ(ε)
− is locally Lipschitz continuous on [0,∞) since it is locally Lipschitz contin-

uous on each sub–interval. Now, it remains to check that φ(ε)
− (x) + ∆−(x) > 0 as required
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by condition (2.7.12). For x ∈ [0, X2(ε)], since ∆−(x) ≥ 2φ∗,

φ
(ε)
− (x) + ∆−(x) = −φ∗ + ∆−(x) ≥ −φ∗ + 2φ∗ = φ∗ > 0.

For x ∈ (X2(ε), X3(ε)], since φ(ε)
− is increasing on this interval and ∆−(x) ≥ φ∗,

φ
(ε)
− (x) + ∆−(x) > φ

(ε)
− (X2(ε)) + φ∗ = −φ∗ + φ∗ = 0.

For x ∈ (X3(ε), X1(ε)], since ∆ε > −∆−(x) by construction,

φ
(ε)
− (x) + ∆−(x) = ∆ε + ∆−(x) > 0.

By (2.7.16), on the interval (X1(ε),∞) we have

φ
(ε)
− (x) + ∆−(x) = αε − 1 +

2c1(1 + ε)
K2

1

xφ(x) + ∆−(x) ≥ αε > 0.

Hence, φ(ε)
− (x)+∆−(x) > 0 ∀ x ≥ 0. Therefore, in summary, for every ε ∈ (0, 1∧ 1

4K
2
1K3)

there exist 0 < X2(ε) < X1(ε), αε ≥ 1,∆ε > 0 and X3(ε) ∈ (X2(ε), X1(ε)) such that

the function φ
(ε)
− defined by (2.7.17) is locally Lipschitz continuous on R+ and obeys

φ
(ε)
− (x) + ∆−(x) > 0 for x ≥ 0.

We construct the process Zε with Zε(0) ≤ Z̃(0) and

dZε(t) =
[
−φ(ε)

−
(√

|Zε(t)|
)]
dt+ 2

√
|Zε(t)|dW̃ (t). (2.7.18)

However, we must first show the non–negativity of this process so that we can drop the

absolute values. Let τ0 = inf{t ≥ 0 : Zε = 0}. Since Zε(0) ≥ 0, we have Zε(t) ≥ 0 for

t ∈ [0, τ0]. Define now τ (1) = inf{t ≥ τ0 : |Zε(t)| = (X2(ε))2} and let Z0 be defined by

Z0(t ∧ τ (1)) =
∫ t∧τ (1)

τ0

2
√
|Z0(s)| dW̃ (s), t ≥ τ0. (2.7.19)

Then Z0 has the unique solution Z0(t) = 0 ∀ t ≥ τ0 a.s. Notice also that

Zε(t ∧ τ (1)) = Zε(τ0) +
∫ t∧τ (1)

τ0

−φ(ε)
−
(√

|Zε(s)|
)
ds+

∫ t∧τ (1)

τ0

2
√
|Zε(s)|dW̃ (s).
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However, by construction, on the interval τ0 ≤ t ≤ τ (1) we have
√
|Zε(t)| ≤ X2(ε). Thus,

−φ(ε)
− (
√
|Zε(t)|) = φ∗ > 0 on the interval τ0 ≤ t ≤ τ (1) and moreover Zε(τ0) = 0 by the

definition of τ0. Therefore

Zε(t ∧ τ (1)) =
∫ t∧τ (1)

τ0

φ∗ ds+
∫ t∧τ (1)

τ0

2
√
|Zε(s)|dW̃ (s). (2.7.20)

By applying a stochastic comparison principle to (2.7.19) and (2.7.20) we can conclude

that Zε(t ∧ τ (1)) ≥ Z0(t ∧ τ (1)) = 0 for t ≥ τ0 a.s. Hence Zε(t) ≥ 0 a.s. for t ∈ [τ0, τ (1)).

By iteration, define τ1 = inf{t ≥ τ (1) : Zε(t) = 0}. Then Zε(t) ≥ 0 for t ∈ [τ (1), τ1]. Define

τ (2) = inf{t ≥ τ1 : |Zε(t)| = (X2(ε))2} and let Z1 be defined by

Z1(t ∧ τ (2)) =
∫ t∧τ (2)

τ1

2
√
|Z1(s)|dW̃ (s), t ≥ τ1.

Then Z1 has the unique solution Z1(t) = 0 ∀ t ≥ τ1 a.s. Continue as above to prove that

Zε(t) ≥ 0 a.s. for t ∈ [τ1, τ (2)). By induction we can show that Zε(t) ≥ 0 for all t ≥ 0, a.s.

This proves the non–negativity of the lower bound and allows us to drop the absolute

value signs in (2.7.18), so that Zε actually obeys (2.7.15).

We now apply Theorem 2.2.1 to (2.7.14) and (2.7.15). First note that the Brownian

motion W̃ is G̃(t)–adapted. If we set b(x) = −φ(ε)
− (

√
x) then condition (2.2.3) is satisfied

since φ(ε)
− is locally Lipschitz continuous and is constant on [0, X2(ε)]. Also, set β1(t) equal

to the drift coefficient of (2.7.14) and then β1(t) ≥ b(Z̃(t)) since D1,ε(t) > 0 by (2.7.13),

and moreover, β1(t) is G̃(t)–adapted. Set β2(t) equal to the drift coefficient of (2.7.15) so

that b(Zε(t)) = β2(t), and again β2(t) is G̃(t)–adapted. Next, condition (2.2.2) is trivially

satisfied with σ(x) = 2
√
x. Finally, since we can (and will) prove independently that Zε

is recurrent on [0,∞), it follows that τ (2)
n = inf{t > 0 : Zε(t) = n} < +∞ a.s. Therefore

we can apply Theorem 2.2.1 to conclude that for all t ≥ 0, Z̃(t) ≥ Zε(t) a.s.

Now we can approximate a lower bound on the asymptotic behaviour of Z̃ by getting a
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lower bound on the asymptotic behaviour of Zε, satisfying

dZε(t) =
[
−φ(ε)

−
(√

Zε(t)
)]
dt+ 2

√
Zε(t)dW̃ (t).

However, in order to apply Theorem 1.0.2 to determine the asymptotic behaviour, we must

first show that the conditions of Theorem 1.0.1 are satisfied.

The scale function, defined by (1.0.10), is given by

pZε
(x) =

∫ x

X2
2 (ε)

e
−2

∫ y

X2
2(ε)

−φ
(ε)
− (

√
z)

4z
dz
dy (2.7.21)

and observe that this can also be written

pZε
(x)=

∫ X2
1 (ε)

X2
2 (ε)

e
1
2

∫ y

X2
2(ε)

φ
(ε)
− (

√
z)

z
dz
dy+

∫ x

X2
1 (ε)

e
1
2

∫ X2
1(ε)

X2
2(ε)

φ
(ε)
− (

√
z)

z
dz
e

1
2

∫ y

X2
1(ε)

φ
(ε)
− (

√
z)

z
dz
dy

= A1(ε) +A2(ε)
∫ x

X2
1 (ε)

e
1
2

∫ y

X2
1(ε)

φ
(ε)
− (

√
z)

z
dz
dy (2.7.22)

where A1(ε) and A2(ε) are positive bounded measurable functions.

Then on the interval 0 < x ≤ X2
2 (ε) where φ(ε)

− (
√
x) = −φ∗ < 0, (2.7.21) gives

p′Zε
(x) = e

−2
∫ x

X2
2(ε)

−φ
(ε)
− (

√
u)

4u
du

= e
1
2

∫ X2
2(ε)

x
φ∗
u

du =
( x

X2
2 (ε)

)−φ∗
2
. (2.7.23)

Let 0 < δ′ < y ≤ X2
2 (ε). Then the speed measure is given by

m(δ′, y) =
∫ y

δ′

2
4z

( z

X2
2 (ε)

)φ∗
2
dz =

1
φ∗

(X2
2 (ε))−

φ∗
2

[
y

φ∗
2 − (δ′)

φ∗
2

]
.

So now, for y ≤ X2
2 (ε),

m(0, y) = lim
δ′→0+

m(δ′, y) =
1
φ∗

(X2
2 (ε))

−φ∗
2 y

φ∗
2 < +∞

and m({0}) = limy→0+ m(0, y) = 0. On the interval (X2
2 (ε), X2

1 (ε)], the speed measure is

finite due to the continuity of p′Zε
. On the interval x > X2

1 (ε), (2.7.22) gives

p′Zε
(x) = A2(ε)e

1
2

∫ x
X2

1(ε)
φ

(ε)
− (

√
u). 1

u
du
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which by substitution becomes

p′Zε
(x) = A2(ε)e

∫√x
X1(ε)

φ
(ε)
− (v)

v
dv
. (2.7.24)

Since φ(ε)
− (x)/xφ(x) → 2c1(1 + ε)/K2

1 as x→∞ and xφ(x) →∞ as x→∞,

log p′Zε
(x) = logA2(ε) +

∫ √
x

X1(ε)

φ
(ε)
− (v)
v

dv = logA2(ε) +
∫ √

x

X1(ε)

φ
(ε)
− (v)
vφ(v)

.vφ(v).
1
v
dv

and thus log p′Zε
(x) tends to infinity as x→∞. Moreover, by L’Hôpital’s rule,

lim
x→∞

log p′Zε
(x)

log x
= lim

x→∞

∫ √x
X1(ε)

φ
(ε)
− (v)

v dv

log x
= lim

x→∞

1
2x

−1φ
(ε)
− (

√
x)

x−1

= lim
x→∞

c1(1 + ε)
K2

1

√
xφ(

√
x) +

αε − 1
2

= ∞.

Therefore there exists x∗ > X2
1 (ε) such that for x > x∗ we have log p′Zε

(x)/ log x > 1.

Then for x > x∗ we have p′Zε
(x) > x. Finally, looking at the speed measure we have

m(X2
1 (ε),∞) =

1
2

∫ ∞

X2
1 (ε)

1
x
.

1
p′Zε

(x)
dx <

1
2

∫ x∗

X2
1 (ε)

1
x
.

1
p′Zε

(x)
dx+

1
2

∫ ∞

x∗

1
x2
dx < +∞.

Since the speed measure is finite on each interval it follows that m[0,∞) < +∞. Moreover,

as p′Zε
(x) > x for all x > x∗, it follows that pZε

(∞−) = +∞. By (2.7.21), (2.7.23) and

the fundamental theorem of calculus, for x ≤ X2
2 (ε),

pZε
(x) =

∫ x

X2
2 (ε)

p′Zε
(y) dy = −

∫ X2
2 (ε)

x

( y

X2
2 (ε)

)−φ∗
2 dy =

(X2
2 (ε))

φ∗
2

1− φ∗
2

x1−φ∗
2 − X2

2 (ε)

1− φ∗
2

and so pZε
(0+) > −∞ since 1 − φ∗/2 > 0. It can also easily be shown that the local

integrability and non–degeneracy conditions of Theorem 1.0.1 are satisfied. Therefore,

since m({0}) = 0, pZε
(0+) > −∞, m[0,∞) < +∞ and pZε

(∞−) = +∞, the process Zε

is recurrent on [0,∞) with a reflecting boundary at zero. Thus, Motoo’s theorem can be

applied and for that we need to find a function h
(ε)
− such that

∫∞
T p−1

Zε
(h(ε)

− (t)) dt = ∞.

First we simplify our estimate on the scale function pZε
. Define Φ(x) =

∫ x
1 φ(v) dv and
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note that Φ is increasing. Then by (2.7.22), for x > X2
1 (ε),

pZε
(x) = A1(ε) +A2(ε)

∫ x

X2
1 (ε)

e

∫√y

X1(ε)
αε−1

v
+

2c1(1+ε)

K2
1

φ(v) dv
dy

= A1(ε) +K4(ε)
∫ x

X2
1 (ε)

y
αε−1

2 e
2c1(1+ε)

K2
1

Φ(
√

y)
dy,

where K4(ε) := A2(ε)(X1(ε))1−αεe
− 2c1(1+ε)

K2
1

Φ(X1(ε))
> 0. Then since Φ is increasing

pZε
(x) ≤ A1(ε) +K4(ε)e

2c1(1+ε)

K2
1

Φ(
√

x)
∫ x

X2
1 (ε)

y
αε−1

2 dy

≤ A1(ε) +
2K4(ε)
αε + 1

x
αε+1

2 e
2c1(1+ε)

K2
1

Φ(
√

x)
≤ K5(ε)x

αε+1
2 e

2c1(1+ε)

K2
1

Φ(
√

x)
, (2.7.25)

where K5(ε) := A1(ε) + 2K4(ε)
αε+1 > 0 and we have used the fact that 1 ≤ x

αε+1
2 and

1 ≤ exp[2c1(1+ε)
K2

1
Φ(
√
x)] in the last step. Since the exponential term is dominant in (2.7.25),

we find it convenient to absorb the K5(ε)x
αε+1

2 term into the exponent for x large enough.

Since Φ(
√
x) →∞ as x→∞ we have, by L’Hôpital’s rule:

lim
x→∞

logK5(ε) + αε+1
2 log x

2c1
K2

1
Φ(
√
x)

= lim
x→∞

αε+1
2x

c1
K2

1

√
x
φ(
√
x)

= lim
x→∞

(αε + 1)K2
1

2c1
1√

xφ(
√
x)

= 0.

Therefore, for any ε > 0 there exists X4(ε) > 0 such that for all x ≥ X4(ε)

logK5(ε) +
αε + 1

2
log x ≤ 2c1ε

K2
1

Φ(
√
x) and thus K5(ε)x

αε+1
2 ≤ e

2c1ε

K2
1

Φ(
√

x)
.

Set X5(ε) = max(X2
1 (ε), X4(ε)). Then for x ≥ X5(ε),

pZε
(x) ≤ K5(ε)x

αε+1
2 e

2c1(1+ε)

K2
1

Φ(
√

x)
≤ e

2c1(1+2ε)

K2
1

Φ(
√

x)
. (2.7.26)

Let T1(ε) = e
2c1(1+2ε)

K2
1

Φ(
√

X5(ε))
> 1. Then we can define

h
(ε)
− (t) =

[
Φ−1

(
K2

1

2c1(1 + 2ε)
log t

)]2

, for t ≥ T1(ε).

Moreover, since Φ−1 is increasing

√
h

(ε)
− (t) = Φ−1

(
K2

1

2c1(1 + 2ε)
log t

)
≥ Φ−1

(
K2

1

2c1(1 + 2ε)
log T1(ε)

)
=
√
X5(ε)
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and so h(ε)
− (t) ≥ X5(ε) and we can make use of (2.7.26). Hence, for t ≥ T1(ε),

pZε
(h(ε)

− (t)) ≤ e
2c1(1+2ε)

K2
1

Φ(
√

h
(ε)
− (t))

= t.

Thus for all t ≥ T1(ε), ∫ ∞

T1(ε)

1

pZε
(h(ε)

− (t))
dt ≥

∫ ∞

T1(ε)

1
t
dt = ∞.

Therefore, by Theorem 1.0.2, there exists an a.s. event Ωε such that

lim sup
t→∞

Zε(t)

h
(ε)
− (t)

≥ 1, a.s. on Ωε.

So, by the comparison principle

lim sup
t→∞

Z̃(t)

h
(ε)
− (t)

≥ lim sup
t→∞

Zε(t)

h
(ε)
− (t)

≥ 1, a.s. on Ωε.

By taking square roots we get

lim sup
t→∞

‖X(τ(t))‖

Φ−1
(

K2
1

2c1(1+2ε) log t
) = lim sup

t→∞

√
Z̃(t)√
h

(ε)
− (t)

≥ 1, a.s. on Ωε.

Recalling that τ(t) = θ−1(t) and that θ(t) →∞ as t→∞, we let T = τ(t) to get

lim sup
T→∞

‖X(T )‖

Φ−1
(

K2
1

2c1(1+2ε) log θ(T )
) = lim sup

t→∞

‖X(τ(t))‖

Φ−1
(

K2
1

2c1(1+2ε) log t
) ≥ 1, a.s. on Ωε.

Since θ(T ) =
∫ T
0 G2(X(s)) ds and K2

1 ≤ G2(x) ≤ K2
2 we have θ(T ) ≥ K2

1T . Thus, for

T ≥ max(θ−1(T1(ε)), 1/K2
1 ),

lim sup
T→∞

‖X(T )‖

Φ−1
(

K2
1

2c1(1+2ε) logK2
1T
) ≥ lim sup

T→∞

‖X(T )‖

Φ−1
(

K2
1

2c1(1+2ε) log θ(T )
) ≥ 1, a.s. on Ωε.

Note that for every ε ∈ (0, 1) there exists T2(ε) > 0 such that

(1− ε) log T ≤ logK2
1T ≤ (1 + ε) log T for T ≥ T2(ε).

Hence, for T ≥ max(θ−1(T1(ε)), T2(ε), 1/K2
1 ),

lim sup
T→∞

‖X(T )‖

Φ−1
(

K2
1 (1−ε)

2c1(1+2ε) log T
) ≥ 1, a.s on Ωε.
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Since the above holds for all ε sufficiently small, it also holds with ε replaced by ε/(3−2ε).

This proves the result.

Proof of Theorem 2.4.2. As mentioned in the proof of Theorem 2.4.1, certain notation

is common to both proofs while other notation is re–used for clarity and consistency.

Assume the latter unless otherwise stated.

Now, following the same method as in the proof of the lower bound, we arrive at

dZ̃(t) =

[
2〈X̃(t), f(X̃(t))〉+ ‖g(X̃(t))‖2

F

G2(X̃(t))

]
dt+ 2

√
Z̃(t)dW̃ (t) (2.7.27)

where G is defined by (2.7.1) and satisfies (2.7.2). The next step is to derive an upper

bound on the drift coefficient of (2.7.27) in order to create an upper comparison process.

We can then apply the comparison principle.

For y ∈ Rd, define the functions D : Rd → R and ∆+ : R+ → R by

D(y) =
2〈y, f(y)〉+ ‖g(y)‖2

F

G2(y)
and ∆+(x) = max

‖y‖=x
D(y).

Then for y ∈ Rd, D(y) ≤ max‖u‖=‖y‖D(u) = ∆+(‖y‖). Thus, an upper bound on ∆+

represents an upper bound on the drift coefficient of (2.7.27). Note that ∆+ is continuous

on (0,∞) and is potentially discontinuous at zero. However, it can be defined at zero. We

construct a locally Lipschitz continuous function φ(ε)
+ : R+ → R such that

∆+(x) + φ
(ε)
+ (x) < 0, x ≥ 0. (2.7.28)

Then for x ∈ Rd,

D(x) + φ
(ε)
+ (‖x‖) ≤ ∆+(‖x‖) + φ

(ε)
+ (‖x‖) < 0 (2.7.29)

and so from (2.7.27) we will have

dZ̃(t) =
[
−φ(ε)

+ (‖X̃(t)‖) +
{
D(X̃(t)) + φ

(ε)
+ (‖X̃(t)‖)

}]
dt+ 2

√
Z̃(t)dW̃ (t)

=
[
−φ(ε)

+

(√
Z̃(t)

)
+D2,ε(t)

]
dt+ 2

√
Z̃(t) dW̃ (t) (2.7.30)
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where D2,ε(t) := D(X̃(t))+φ(ε)
+ (‖X̃(t)‖) is an adapted process such that D2,ε(t) < 0 ∀ t ≥

0 a.s. by (2.7.29) We construct, as our comparison process,

dZ̄ε(t) = −φ(ε)
+

(√
Z̄ε(t)

)
dt+ 2

√
Z̄ε(t) dW̃ (t), t ≥ 0 (2.7.31)

where Z̄ε(0) ≥ ‖X̃(0)‖2 = Z̃(0). We will later show, using stochastic comparison tech-

niques, that Z̄ε(t) ≥ Z̃(t) for all t ≥ 0 almost surely.

Now we return to the construction of the function φ
(ε)
+ , the mean–reverting drift co-

efficient of the upper comparison process (2.7.31). The construction will be similar to

that of Figure 2.1 and again it is made more delicate by the fact that our hypothe-

sis (2.4.5) is an asymptotic hypothesis rather than a global one. Define the constant

K4 = max{‖g(0)‖2
F /G

2(0),K2
2/K

2
1}. Since K2 ≥ K1 by (2.7.2) it follows that K4 ≥ 1 and

moreover ‖g(y)‖2
F /G

2(y) ≤ K4 for all y ∈ Rd.

Since f is continuous, by the Cauchy–Schwarz inequality we have lim‖x‖→0 |〈x, f(x)〉| =

0. Therefore, for every ε ∈ (0, 1 ∧ 1
2K

2
1K4), there exists 0 < X2(ε) < 1 such that

|〈x, f(x)〉| ≤ ε for all ‖x‖ ≤ X2(ε). Let y ∈ Rd such that ‖y‖ ≤ X2(ε). Then 2〈y, f(y)〉 ≤

2ε. Thus, using the above and the fact that G2(y) ≥ K2
1 by (2.4.8), we have

D(y) =
2〈y, f(y)〉
G2(y)

+
‖g(y)‖2

F

G2(y)
≤ 2ε
K2

1

+K4 ≤ 2K4 =:
1
2
φ∗ > 0.

Hence, for x ≤ X2(ε),

∆+(x) = max
‖y‖=x

D(y) ≤ max
‖y‖=x

1
2
φ∗ =

1
2
φ∗.

So this gives us an estimate for ∆+ on an interval close to zero. We now look for an

estimate on an interval away from zero. From condition (2.4.5) it follows that for every

ε > 0, there exists X1(ε) > 1 such that 〈x, f(x)〉 < −c2(1− ε)‖x‖φ(‖x‖) for ‖x‖ > X1(ε).

Let y ∈ Rd such that ‖y‖ > X1(ε). Then using (2.7.2),

D(y) =
2〈y, f(y)〉
G2(y)

+
‖g(y)‖2

F

G2(y)
≤ −2c2(1− ε)

K2
2

‖y‖φ(‖y‖) +
K2

2

K2
1

.
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Hence for x > X1(ε),

∆+(x) = max
‖y‖=x

D(y) ≤ −2c2(1− ε)
K2

2

xφ(x) +
K2

2

K2
1

. (2.7.32)

And so we have an estimate for ∆+ on an interval away from zero. We are now in a

position to construct the drift function φ
(ε)
+ for the comparison process (2.7.31). Once

again, because X2(ε) < X1(ε) we must carefully bridge the gap between the estimate

close to zero and the estimate away from zero while ensuring that φ(ε)
+ is continuous and

that it is a uniform bound for −∆+.

If there exists X ′
3(ε) ∈ (X2(ε), X1(ε)) such that −∆+(X ′

3(ε)) = −φ∗ then define X3(ε) =

X ′
3(ε). Otherwise, define X3(ε) = 1

2(X2(ε) +X1(ε)). Define

φ3(ε) =
2c2(1− ε)

K2
2

X1(ε)φ(X1(ε))−
K2

2

K2
1

−
[

min
x∈[X3,X1]

{−∆+(x)} ∧ −φ∗
]

and let cε = |φ3(ε)| + 1, αε = cε + φ3(ε), and ∆ε =−cε +
[
minx∈[X3,X1]{−∆+(x)}∧−φ∗

]
.

Note that cε ≥ 1, αε ≥ 1 and ∆ε < −φ∗. Finally, define

φ
(ε)
+ (x) =



−φ∗ 0 ≤ x ≤ X2(ε)

−φ∗ + ∆ε+φ∗
X3(ε)−X2(ε)(x−X2(ε)) X2(ε) < x ≤ X3(ε)

∆ε X3(ε) < x ≤ X1(ε)

2c2(1−ε)
K2

2
xφ(x)− K2

2

K2
1
− αε x > X1(ε).

(2.7.33)

Note that φ(ε)
+ is locally Lipschitz continuous on [0,∞) since it is locally Lipschitz contin-

uous on each subinterval. Now it remains to check that φ(ε)
+ (x) + ∆+(x) < 0 as required

by condition (2.7.28). For x ∈ [0, X2(ε)], since ∆+(x) ≤ φ∗/2,

φ
(ε)
+ (x) + ∆+(x) = −φ∗ + ∆+(x) ≤ −φ∗ +

1
2
φ∗ = −1

2
φ∗ < 0.

For x ∈ (X2(ε), X3(ε)], since φ(ε)
+ is decreasing on this interval and ∆+(x) ≤ φ∗,

φ
(ε)
+ (x) + ∆+(x) < φ

(ε)
+ (X2(ε)) + φ∗ = −φ∗ + φ∗ = 0.

52



Chapter 2, Section 7 On the Growth of the Extreme Fluctuations of SDEs with Markovian Switching

For x ∈ (X3(ε), X1(ε)], since ∆ε < −∆+(x) by construction,

φ
(ε)
+ (x) + ∆+(x) = ∆ε + ∆+(x) < 0.

By (2.7.32), on the interval (X1(ε),∞) we have

φ
(ε)
+ (x) + ∆+(x) =

2c2(1− ε)
K2

2

xφ(x)− K2
2

K2
1

− αε + ∆+(x) ≤ −αε < 0.

Hence, φ(ε)
+ (x) + ∆+(x) < 0 for all x ≥ 0. Therefore, in summary, for every ε ∈ (0, 1 ∧

1
2K

2
1K4) there exist 0 < X2(ε) < X1(ε), αε ≥ 1, ∆ε < −φ∗ and X3(ε) ∈ (X2(ε), X1(ε))

such that the function φ
(ε)
+ defined by (2.7.33) is locally Lipschitz continuous on R+ and

obeys φ(ε)
+ (x) + ∆+(x) < 0 for x ≥ 0.

We construct the process Z̄ε with Z̄ε(0) ≥ Z̃(0) ≥ 0 and

dZ̄ε(t) =
[
−φ(ε)

+

(√
|Z̄ε(t)|

)]
dt+ 2

√
|Z̄ε(t)|dW̃ (t). (2.7.34)

By analogy to the proof of the lower bound, we can prove the non–negativity of this

process allowing us to drop the absolute value signs in (2.7.34), so that Z̄ε actually obeys

(2.7.31). The only difference here is that the process Z̄ε will never hit zero since, as will

soon be shown, it is recurrent on (0,∞).

We now apply Theorem 2.2.1 to (2.7.30) and (2.7.31). First note that the Brownian

motion W̃ is G̃(t)–adapted. If we set b(x) = −φ(ε)
+ (

√
x) then condition (2.2.3) is satisfied

since φ(ε)
+ is locally Lipschitz continuous and is constant on [0, X2(ε)]. Also, set β1(t)

equal to the drift coefficient of (2.7.31) and then β1(t) = b(Z̄ε(t)), and moreover, β1(t) is

G̃(t)–adapted. Set β2(t) equal to the drift coefficient of (2.7.30) and so b(Z̃(t)) ≥ β2(t)

since D2,ε(t) < 0 by (2.7.29), and again β2(t) is G̃(t)–adapted. Next, condition (2.2.2) is

trivially satisfied with σ(x) = 2
√
x. Finally, since we can (and will) prove independently

that Z̄ε is recurrent on (0,∞), it follows that τ (1)
n = inf{t > 0 : Z̄ε(t) = n} < +∞ a.s.

Therefore we can apply Theorem 2.2.1 to conclude that for all t ≥ 0, Z̃(t) ≤ Z̄ε(t) a.s.
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Now we can approximate an upper bound on the asymptotic behavior of Z̃ by getting

an upper bound on the asymptotic behaviour of Z̄ε, satisfying

dZ̄ε(t) =
[
−φ(ε)

+

(√
Z̄ε(t)

)]
dt+ 2

√
Z̄ε(t)dW̃ (t).

However, in order to apply Theorem 1.0.2 to determine the asymptotic behaviour, we must

first show that the conditions of Theorem 1.0.1 are satisfied.

The scale function, defined by (1.0.10), is given by

pZ̄ε
(x) =

∫ x

X2
2 (ε)

e
−2

∫ y

X2
2(ε)

−φ
(ε)
+ (

√
z)

4z
dz
dy (2.7.35)

and observe that this can also be written

pZ̄ε
(x)=

∫ X2
1 (ε)

X2
2 (ε)

e
1
2

∫ y

X2
2(ε)

φ
(ε)
+ (

√
z)

z
dz
dy+

∫ x

X2
1 (ε)

e
1
2

∫ X2
1(ε)

X2
2(ε)

φ
(ε)
+ (

√
z)

z
dz
e

1
2

∫ y

X2
1(ε)

φ
(ε)
+ (

√
z)

z
dz
dy

= A1(ε) +A2(ε)
∫ x

X2
1 (ε)

e
1
2

∫ y

X2
1(ε)

φ
(ε)
+ (

√
z)

z
dz
dy (2.7.36)

where A1(ε) and A2(ε) are positive bounded measurable functions.

Then on the interval 0 < x ≤ X2
2 (ε) where φ(ε)

+ (
√
x) = −φ∗ < 0, (2.7.35) gives

p′Z̄ε
(x) = e

−2
∫ x

X2
2(ε)

−φ
(ε)
+ (

√
u)

4u
du

= e
1
2

∫ X2
2(ε)

x
φ∗
u

du =
( x

X2
2 (ε)

)−φ∗
2
. (2.7.37)

Let 0 < δ′ < y ≤ X2
2 (ε). Then the speed measure is given by

m(δ′, y) =
∫ y

δ′

2
4z

( z

X2
2 (ε)

)φ∗
2
dz =

1
φ∗

(X2
2 (ε))

−φ∗
2

[
y

φ∗
2 − (δ′)

φ∗
2

]
.

So now, for y ≤ X2
2 (ε),

m(0, y) = lim
δ′→0+

m(δ′, y) =
1
φ∗

(X2
2 (ε))

−φ∗
2 y

φ∗
2 < +∞

On the interval (X2
2 (ε), X2

1 (ε)], the speed measure is finite due to the continuity of p′
Z̄ε

and on the interval x > X2
1 (ε), (2.7.36) gives

p′Z̄ε
(x) = A2(ε)e

1
2

∫ x
X2

1(ε)
φ

(ε)
+ (

√
u). 1

u
du
,
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which by substitution becomes

p′Z̄ε
(x) = A2(ε)e

∫√x
X1(ε)

φ
(ε)
+ (v)

v
dv
. (2.7.38)

Since φ(ε)
+ (x)/xφ(x) → 2c2(1− ε)/K2

2 as x→∞ and xφ(x) →∞ as x→∞,

log p′Z̄ε
(x) = logA2(ε) +

∫ √
x

X1(ε)

φ
(ε)
+ (v)
v

dv = logA2(ε) +
∫ √

x

X1(ε)

φ
(ε)
+ (v)
vφ(v)

.vφ(v).
1
v
dv

and thus log p′
Z̄ε

(x) tends to infinity as x→∞. Moreover by L’Hôpital’s rule,

lim
x→∞

log p′
Z̄ε

(x)

log x
= lim

x→∞

∫ √x
X1(ε)

φ
(ε)
+ (v)

v dv

log x
= lim

x→∞

1
2x

−1φ
(ε)
+ (

√
x)

x−1

= lim
x→∞

c2(1− ε)
K2

2

√
xφ(

√
x)− K2

2

2K2
1

− αε

2
= ∞.

Therefore there exists x∗ > X2
1 (ε) such that for x > x∗ we have log p′

Z̄ε
(x)/ log x > 1.

Then for x > x∗ we have p′
Z̄ε

(x) > x. Finally, looking at the speed measure we have

m(X2
1 (ε),∞) =

1
2

∫ ∞

X2
1 (ε)

1
x
.

1
p′

Z̄ε
(x)

dx <
1
2

∫ x∗

X2
1 (ε)

1
x
.

1
p′

Z̄ε
(x)

dx+
1
2

∫ ∞

x∗

1
x2
dx < +∞.

Since the speed measure is finite on each interval it follows that m(0,∞) < +∞. Moreover,

as p′
Z̄ε

(x) > x for all x ≥ x∗, it follows that pZ̄ε
(∞−) = +∞. By (2.7.35), (2.7.37) and

the fundamental theorem of calculus, for x ≤ X2
2 (ε),

pZ̄ε
(x) =

∫ x

X2
2 (ε)

p′Z̄ε
(y) dy = −

∫ X2
2 (ε)

x

( y

X2
2 (ε)

)−φ∗
2 dy =

(X2
2 (ε))

φ∗
2

1− φ∗
2

x1−φ∗
2 − X2

2 (ε)

1− φ∗
2

and so pZ̄ε
(0+) = −∞ since 1 − φ∗/2 < 0. It can also easily be shown that the local

integrability and non–degeneracy conditions of Theorem 1.0.1 are satisfied. Therefore,

since m(0,∞) < +∞, pZ̄ε
(0+) = −∞ and pZ̄ε

(∞−) = +∞, the process Z̄ε is recurrent on

(0,∞). Thus Motoo’s theorem can be applied and for that we need to find a function h(ε)
+

such that
∫∞
T p−1

Z̄ε
(h(ε)

+ (t)) dt <∞. First we simplify our estimate on the scale function pZ̄ε
.

Define Φ(x) =
∫ x
1 φ(v) dv and note that Φ is increasing. Then by (2.7.36), for x > X2

1 (ε),

pZ̄ε
(x) = A1(ε) +A2(ε)

∫ x

X2
1 (ε)

e

∫√y

X1(ε)

2c2(1−ε)

K2
2

φ(v)−(
K2

2
K2

1
+αε)

1
v

dv
dy

≥ K5(ε)
∫ x

X2
1 (ε)

y
−(

K2
2

2K2
1

+αε
2

)
e

2c2(1−ε)

K2
2

Φ(
√

y)
dy, (2.7.39)
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where K5(ε) := A2(ε)X1(ε)
(

K2
2

K2
1

+αε)
e
− 2c2(1−ε)

K2
2

Φ(X1(ε))
> 0 and we have used the fact that

A1(ε) ≥ 0 in the last step. Since the exponential term is dominant in (2.7.39), we once

again find it convenient to absorb the other terms into the exponent for y large enough.

As Φ(
√
y) →∞ as y →∞ we have, by L’Hopital’s rule:

lim
y→∞

log 1
K5(ε) + ( K2

2

2K2
1

+ αε
2 ) log y

2c2
K2

2
Φ(
√
y)

= lim
y→∞

1
y ( K2

2

2K2
1

+ αε
2 )

c2
K2

2

√
y
φ(
√
y)

= lim
y→∞

K2
2 (K2

2

K2
1

+ αε)

2c2
√
yφ(

√
y)

= 0.

Therefore, for any ε > 0 there exists X4(ε) > X2
1 (ε) such that for y ≥ X4(ε)

log
1

K5(ε)
+
( K2

2

2K2
1

+
αε

2
)
log y ≤ 2c2ε

K2
2

Φ(
√
y) and thus K5(ε)y

−(
K2

2
2K2

1
+αε

2
)
≥ e

− 2c2ε

K2
2

Φ(
√

y)
.

Then by (2.7.39) for x ≥ X4(ε) + 1 > X2
1 (ε),

pZ̄ε
(x) ≥ K5(ε)

∫ X4(ε)

X2
1 (ε)

y
−(

K2
2

2K2
1

+αε
2

)
e

2c2(1−ε)

K2
2

Φ(
√

y)
dy +

∫ x

X4(ε)
e

2c2(1−2ε)

K2
2

Φ(
√

y)
dy

≥
∫ x

x−1
e

2c2(1−2ε)

K2
2

Φ(
√

y)
dy ≥ e

2c2(1−2ε)

K2
2

Φ(
√

x−1)
. (2.7.40)

Let T1(ε) = e
2c2(1−2ε)

K2
2

√
1+ε

Φ(
√

X4(ε))
> 1. Then we can define

h
(ε)
+ (t) =

[
Φ−1

( K2
2

√
1 + ε

2c2(1− 2ε)
log t

)]2

+ 1, for t ≥ T1(ε).

Moreover, since Φ−1 is increasing

√
h

(ε)
+ (t)− 1 = Φ−1

( K2
2

√
1 + ε

2c2(1− 2ε)
log t

)
≥ Φ−1

( K2
2

√
1 + ε

2c2(1− 2ε)
log T1(ε)

)
=
√
X4(ε)

and so h(ε)
+ (t) ≥ X4(ε) + 1 and we can make use of (2.7.40). Hence, for t ≥ T1(ε),

pZ̄ε
(h(ε)

+ (t)) ≥ e
2c2(1−2ε)

K2
2

Φ(
√

h
(ε)
+ (t)−1)

= t
√

1+ε.

Thus for all t ≥ T1(ε),

∫ ∞

T1(ε)

1

pZ̄ε
(h(ε)

+ (t))
dt ≤

∫ ∞

T1(ε)

1
t
√

1+ε
dt < +∞.
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Therefore, by Theorem 1.0.2, there exists an a.s. event Ωε such that

lim sup
t→∞

Z̄ε(t)

h
(ε)
+ (t)

≤ 1 a.s. on Ωε.

So, by the comparison principle

lim sup
t→∞

Z̃(t)

h
(ε)
+ (t)

≤ lim sup
t→∞

Z̄ε(t)

h
(ε)
+ (t)

≤ 1 a.s. on Ωε.

By taking square roots, and noting that h(ε)
+ (t)− 1 behaves asymptotically like h(ε)

+ (t),

lim sup
t→∞

‖X(τ(t))‖

Φ−1
(

K2
2

√
1+ε

2c2(1−2ε) log t
) = lim sup

t→∞

√
Z̃(t)√
h

(ε)
+ (t)

≤ 1 a.s. on Ωε.

Recalling that τ(t) = θ−1(t) and that θ(t) →∞ as t→∞, we let T = τ(t) to get

lim sup
T→∞

‖X(T )‖

Φ−1
( K2

2

√
1+ε

2c2(1−2ε) log θ(T )
) = lim sup

t→∞

‖X(τ(t))‖

Φ−1
( K2

2

√
1+ε

2c2(1−2ε) log t
) ≤ 1, a.s. on Ωε.

Since θ(T ) =
∫ T
0 G2(X(s)) ds and K2

1 ≤ G2(x) ≤ K2
2 we have K2

1T ≤ θ(T ) ≤ K2
2T . Thus,

for T ≥ max(θ−1(T1(ε)), 1/K2
1 ), since Φ−1 is increasing

lim sup
T→∞

‖X(T )‖

Φ−1
( K2

2

√
1+ε

2c2(1−2ε) logK2
2T
) ≤ lim sup

T→∞

‖X(T )‖

Φ−1
( K2

2

√
1+ε

2c2(1−2ε) log θ(T )
) ≤ 1, a.s. on Ωε.

Note that for every ε > 0 there exists T2(ε) > 0 such that

√
1− ε log T ≤ logK2

2T ≤
√

1 + ε log T for T ≥ T2(ε).

Hence, for T ≥ max(θ−1(T1(ε)), T2(ε), 1/K2
1 ),

lim sup
T→∞

‖X(T )‖

Φ−1
( K2

2 (1+ε)
2c2(1−2ε) log T

) ≤ 1, a.s. on Ωε.

Since the above holds for all ε sufficiently small, it also holds with ε replaced by ε/(3+2ε).

This proves the result.

Proof of Theorem 2.4.3. We prove by contradiction. Let y > 0 and recall from Theo-

rems 2.4.1 and 2.4.2 that ‖X̃(t)‖2 ≥ Zε(t) for all t ≥ 0 a.s. and ‖X̃(t)‖2 ≤ Z̄ε(t) for all
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t ≥ 0 a.s. We aim to prove that there exists a time Ty such that ‖X̃(Ty)‖ = y for any y.

There are three cases to consider:

Case 1: Let ‖X̃(0)‖2 > y2 and assume that there does not exists a ty > 0 such that

‖X̃(ty)‖2 = y2. Then we must have ‖X̃(t)‖2 > y2 for all t ≥ 0. However, it was shown in

the proof of Theorem 2.4.2 that Z̄ε is recurrent on (0,∞) and so there exists t̄y > 0 such

that Z̄ε(t̄y) = y2. Then we have y2 = Z̄ε(t̄y) ≥ ‖X̃(t̄y)‖2 > y2, a contradiction. Hence,

there must exist a ty < t̄y such that ‖X̃(ty)‖2 = y2.

Case 2: Let ‖X̃(0)‖2 < y2 and assume that there does not exist a ty > 0 such that

‖X̃(ty)‖2 = y2. Then we must have ‖X̃(ty)‖2 < y2 for all t ≥ 0. However, it was shown in

the proof of Theorem 2.4.1 that Zε is recurrent on [0,∞) and so there exists ty > 0 such

that Zε(ty) = y2. Then we have y2 = Zε(ty) ≤ ‖X̃(ty)‖2 < y2, a contradiction. Hence,

there must exist a ty < ty such that ‖X̃(ty)‖2 = y2.

Case 3: Let ‖X̃(0)‖2 = y2 and assume that there does not exist a ty > 0 such that

‖X̃(ty)‖2 = y2. Then we must have either: a) ‖X̃(t)‖2 < y2 for all t > 0, or b) ‖X̃(t)‖2 >

y2 for all t > 0.

Proceeding as in case 1 or 2 above, we can show that this is impossible and that there

must exist a ty > 0 such that ‖X̃(ty)‖2 = y2.

So in each case above we have shown that there exists a ty > 0 such that ‖X̃(ty)‖2 = y2.

Reversing the time change, we have that for all y > 0 there exists ty > 0 such that

‖X(τ(ty))‖2 = y2. Now let Ty = τ(ty) and take square roots, so that for all y > 0 there

exists Ty > 0 such that ‖X(Ty)‖ = y.

Moreover, since Zε(t) ≤ ‖X̃(t)‖2 and lim supt→∞ Zε(t) = +∞ a.s., it follows that

lim supt→∞ ‖X̃(t)‖2 = +∞ a.s. and thus lim supt→∞ ‖X(t)‖ = +∞ a.s. Similarly, since

‖X̃(t)‖2 ≤ Z̄ε(t) and lim inft→∞ Z̄ε(t) = 0 a.s., it follows that lim inft→∞ ‖X̃(t)‖2 = 0 a.s.

and thus lim inft→∞ ‖X(t)‖ = 0 a.s. This proves the recurrence of ‖X‖ on (0,∞).
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Proof of Theorem 2.4.4. From Theorem 2.4.1 we have

lim sup
t→∞

‖X(t)‖

Φ−1
(K2

1 (1−ε)
2c1

log t
) ≥ 1 a.s. on Ωε

and since φ ∈ RV∞(ζ) it follows by (2.3.3) that Φ ∈ RV∞(ζ + 1) and, by Lemma 2.3.1,

Φ−1 ∈ RV∞( 1
ζ+1). Thus,

lim
t→∞

Φ−1(K2
1 (1−ε)
2c1

log t)
Φ−1(log t)

= lim
x→∞

Φ−1(K2
1 (1−ε)
2c1

x)
Φ−1(x)

=
(
K2

1 (1− ε)
2c1

) 1
ζ+1

.

Therefore,

lim sup
t→∞

‖X(t)‖
Φ−1(log t)

≥
(
K2

1 (1− ε)
2c1

) 1
ζ+1

a.s. on Ωε.

Using the fact that the intersection of almost sure events is itself almost sure, we can let

ε→ 0 through the rational numbers to get

lim sup
t→∞

‖X(t)‖
Φ−1(log t)

≥
(
K2

1

2c1

) 1
ζ+1

a.s. (2.7.41)

Similarly from Theorem 2.4.2 we get

lim sup
t→∞

‖X(t)‖
Φ−1(log t)

≤
(
K2

2

2c2

) 1
ζ+1

a.s. (2.7.42)

Finally, combining (2.7.41) and (2.7.42) we get the desired result.

2.7.1 Proofs of Results from Subsection 2.4.3

Before we prove Lemma 2.4.1 we first state and prove a useful auxiliary result.

Lemma 2.7.1. Let φ ∈ RV∞(ζ). Then there exists C+ > 0 such that

lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

= C+.

Proof of Lemma 2.7.1. There are two cases to consider: 1) φ ∈ RV∞(ζ), ζ 6= 0 and

2) φ ∈ RV∞(0).

Case 1: By norm equivalence in Rd, there exists constants c1 and c2 such that c1‖x‖ ≤
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‖x‖∞ ≤ c2‖x‖ for x ∈ Rd. Since φ ∈ RV∞(ζ) there exists, by Theorem 2.3.1, φ1 ∈ SV∞(ζ)

such that φ1(x)/φ(x) → 1 as x → ∞, φ1 ∈ C1(0,∞) and limx→∞ xφ′1(x)/φ1(x) = ζ, by

(2.3.2). Since ζ 6= 0, it follows that there exists x1 such that for x > x1, either

(i)


φ′1(x) > 0

φ1(x) > 0
if ζ > 0, or (ii)


φ′1(x) < 0

φ1(x) > 0
if ζ < 0.

We consider each of these cases in turn.

Case 1(i): Let ‖x‖ > x1/c1. Then x1 < c1‖x‖ ≤ ‖x‖∞ ≤ c2‖x‖ and so, since φ1 is

increasing, φ1(c1‖x‖) ≤ φ1(‖x‖∞) ≤ φ1(c2‖x‖) for ‖x‖ ≥ x1/c1. Thus,

lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

= lim inf
‖x‖→∞

‖x‖∞
‖x‖

φ(‖x‖∞)
φ1(‖x‖∞)

φ1(‖x‖∞)
φ1(‖x‖)

φ1(‖x‖)
φ(‖x‖)

≥ c1 lim inf
‖x‖→∞

φ1(c1‖x‖)
φ1(‖x‖)

= cζ+1
1

since φ(x)/φ1(x) → 1 as x→∞ and φ1 ∈ RV∞(ζ).

Case 1(ii): Again we have that x1 < c1‖x‖ ≤ ‖x‖∞ ≤ c2‖x‖ for ‖x‖ ≥ x1/c1. Then,

since φ1 is decreasing, φ1(c1‖x‖) ≥ φ1(‖x‖∞) ≥ φ1(c2‖x‖) for ‖x‖ ≥ x1/c1. Thus,

lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

= lim inf
‖x‖→∞

‖x‖∞
‖x‖

φ(‖x‖∞)
φ1(‖x‖∞)

φ1(‖x‖∞)
φ1(‖x‖)

φ1(‖x‖)
φ(‖x‖)

≥ c1 lim inf
‖x‖→∞

φ1(c2‖x‖)
φ1(‖x‖)

= c1c
ζ
2

since φ(x)/φ1(x) → 1 as x→∞ and φ1 ∈ RV∞(ζ).

Case 2: Since φ ∈ RV∞(0) it follows that xφ(x) ∈ RV∞(1). Therefore, there exists

φ2 ∈ SV∞(1) such that xφ(x)/φ2(x) → 1 as x→∞, φ2 ∈ C1(0,∞) and xφ′2(x)/φ2(x) → 1

as x → ∞. Therefore φ′2(x) > 0 for all x > x1 since φ2(x) > 0. Hence, φ2 is increasing

on [x1,∞). Let ‖x‖ > x1/c1. Then x1 < c1‖x‖ ≤ ‖x‖∞ ≤ c2‖x‖ and so, since φ2 is

increasing, φ2(c1‖x‖) ≤ φ2(‖x‖∞) ≤ φ2(c2‖x‖) for ‖x‖ ≥ x1/c1. Thus,

lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

= lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
φ2(‖x‖∞)

φ2(‖x‖∞)
φ2(‖x‖)

φ2(‖x‖)
‖x‖φ(‖x‖)

≥ lim inf
‖x‖→∞

φ2(c1‖x‖)
φ2(‖x‖)

= c1
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since xφ(x)/φ2(x) → 1 as x→∞ and φ2 ∈ RV∞(1).

Therefore, in each case one can find a C+ such that Lemma 2.7.1 holds.

Proof of Lemma 2.4.1. Observe first that by the definition of ϕ and ψ we have that

〈x, f(x)〉 = −
∑d

j=1 xjϕj(xj) +
∑d

j=1 xjψj(x). Due to (2.4.15), for every ε ∈ (0, 1) there

exists x∗j (ε) > 0 such that

sgn(x)ϕj(x)
φ(|x|)

≥ αj(1− ε), |x| ≥ x∗j (ε).

Since x = |x| sgn(x), we get

xϕj(x) ≥ αj(1− ε)|x|φ(|x|) for all |x| ≥ x∗j (ε).

Moreover, if we define Dj(ε) := max|x|<x∗j (ε)

∣∣αj(1− ε)|x|φ(|x|)− xϕj(x)
∣∣ then

xϕj(x) ≥ −Dj(ε) + αj(1− ε)|x|φ(|x|) ∀ x ∈ R. (2.7.43)

Next, by virtue of (2.4.17), for every ε ∈ (0, 1) there is an xj(ε) > 0 such that for

all ‖x‖ ≥ xj(ε) we have |ψj(x)| ≤ εφ(‖x‖). Let X(ε) = maxj=1,...,d xj(ε). Then for

‖x‖ ≥ X(ε) we have

|ψj(x)| ≤ εφ(‖x‖) for j = 1, . . . , d. (2.7.44)

Define D(ε) =
∑d

j=1Dj(ε) and α′ = minj=1,...,d αj > 0. Thus by (2.7.43) and (2.7.44) we

have, for ‖x‖ ≥ X(ε),

〈x, f(x)〉 = −
d∑

j=1

xjϕj(xj) +
d∑

j=1

xjψj(x)

≤
d∑

j=1

Dj(ε)−
d∑

j=1

αj(1− ε)|xj |φ(|xj |) +
d∑

j=1

|xj ||ψj(x)|

≤ D(ε)− α′(1− ε)
d∑

j=1

|xj |φ(|xj |) +
d∑

j=1

|xj |{εφ(‖x‖)}

= D(ε)− α′(1− ε)
d∑

j=1

|xj |φ(|xj |) + εφ(‖x‖)‖x‖1.
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Note that
∑d

j=1 |xj |φ(|xj |) ≥ ‖x‖∞φ(‖x‖∞) for x = (x1, x2, . . . , xd)T and, by norm equiv-

alence, ‖x‖1 ≤ c‖x‖. Therefore, for ‖x‖ ≥ X(ε),

〈x, f(x)〉 ≤ D(ε)− α′(1− ε)‖x‖∞φ(‖x‖∞) + cε‖x‖φ(‖x‖).

Finally, by Lemma 2.7.1 and the fact that D(ε) is constant,

lim sup
‖x‖→∞

〈x, f(x)〉
‖x‖φ(‖x‖)

≤ lim sup
‖x‖→∞

D(ε)
‖x‖φ(‖x‖)

+ lim sup
‖x‖→∞

−α′(1− ε)‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

+ cε

= −α′(1− ε) lim inf
‖x‖→∞

‖x‖∞φ(‖x‖∞)
‖x‖φ(‖x‖)

+ cε

≤ −α′(1− ε)C+ + cε

Since this estimate holds for every ε ∈ (0, 1), by letting ε→ 0, we get

lim sup
‖x‖→∞

〈x, f(x)〉
‖x‖φ(‖x‖)

≤ −α′C+ =: −α∗,

as required in (2.4.18).

Proof of Lemma 2.4.2. First of all, if ζ > −1 then it is trivial to find a function φ1

with φ1(x)/φ(x) → 1 as x→∞ such that x 7→ xφ1(x) is non–decreasing, and this will be

shown at the end of the proof. If φ ∈ RV∞(−1) then this may not always hold but can

be verified directly in some cases. We begin by proving that (2.4.19) can be established

assuming the existence of a φ1 as specified above.

If φ(x)/φ1(x) → 1 as x→∞, we have, by (2.4.16),

lim sup
|x|→∞

sgn(x)ϕj(x)
φ1(|x|)

= βj

Therefore for every ε ∈ (0, 1) there exists x∗j (ε) > 0 such that xϕj(x) < βj(1+ ε)|x|φ1(|x|)

for all x > x∗j (ε). Also there is x∗∗j (ε) > 0 such that

|x|ϕj(x) = x sgn(x)ϕj(x) > βj(1 + ε)xφ1(|x|) = −βj(1 + ε)|x|φ1(|x|), x < −x∗∗j (ε).
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Hence, x < −x∗∗j (ε) implies |xϕj(x)| < βj(1 + ε)|x|φ1(|x|). Let xj(ε) = (x∗j (ε) ∨ x∗∗j (ε)).

Then

|xϕj(x)| < βj(1 + ε)|x|φ1(|x|), |x| > xj(ε).

Since ϕ is continuous, there exist Φ̃j(ε) such that

|xϕj(x)| ≤ Φ̃j(ε), |x| ≤ xj(ε).

Therefore for every ε ∈ (0, 1) we have

|xϕj(x)| < Φ̃j(ε) + βj(1 + ε)|x|φ1(|x|), x ∈ R.

Moreover because φ(x)/φ1(x) → 1 as x → ∞, by (2.4.17) we have ‖ψ(x)‖1/φ1(‖x‖) → 0

as ‖x‖ → ∞. Therefore, for every ε ∈ (0, 1), there exists x(ε) > 0 such that ‖ψ(x)‖1 ≤

εφ1(‖x‖) for all ‖x‖ > x(ε). Now, as we had in the previous proof,

〈x, f(x)〉 = −
d∑

j=1

xjϕj(xj) +
d∑

j=1

xjψj(x).

Therefore for all x := (x1, x2, . . . , xd)T ∈ Rd such that ‖x‖ > x(ε), and β′ = maxj=1,...,d βj ,

by using the monotonicity of x 7→ xφ1(x) on R+, we get

|〈x, f(x)〉| ≤
d∑

j=1

|xjϕj(xj)|+
d∑

j=1

|xj ||ψj(x)|

≤
d∑

j=1

Φ̃j(ε) +
d∑

j=1

βj(1 + ε)|xj |φ1(|xj |) +
d∑

j=1

|xj ||ψj(x)|

≤
d∑

j=1

Φ̃j(ε) + β′(1 + ε)
d∑

j=1

|xj |φ1(|xj |) + ‖x‖‖ψ(x)‖1

≤
d∑

j=1

Φ̃j(ε) + β′(1 + ε)
d∑

j=1

‖x‖φ1(‖x‖) + ε‖x‖φ1(‖x‖).

Therefore, as xφ1(x) →∞ as x→∞, and φ1(x)/φ(x) → 1 as x→∞ we have

lim sup
‖x‖→∞

|〈x, f(x)〉|
‖x‖φ(‖x‖)

≤ β′(1 + ε)d+ ε.
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Letting ε→ 0+, we get

lim sup
‖x‖→∞

|〈x, f(x)〉|
‖x‖φ(‖x‖)

≤ dβ′ =: β∗.

So we have shown that we get the correct result provided φ1 exists.

Now we return to show the existence of a φ1 with the appropriate properties. As

mentioned earlier, to the authors’ knowledge, there is no simple and direct way of choosing

φ1 if ζ = −1. In the case when φ ∈ RV∞(ζ) for ζ > −1, let φ0(x) := xφ(x). Then

φ0 ∈ RV∞(ζ + 1). Since ζ + 1 > 0, there exists a differentiable φ2 ∈ RV∞(ζ + 1) and

x1 > 0 such that φ2(x)/φ0(x) → 1 as x→∞, and φ′2(x) > 0, φ2(x) > 1 for x > x1. Now

define φ1 by

φ1(x) =


φ2(x)/x, x > x1

φ2(x1)/x1, 0 ≤ x ≤ x1

Hence xφ1(x) is asymptotic to φ2(x) and x 7→ xφ1(x) is non–decreasing. Moreover,

lim
x→∞

φ1(x)
φ(x)

= lim
x→∞

xφ1(x)
xφ(x)

= lim
x→∞

φ2(x)
φ0(x)

= 1.

2.8 Proofs of Results from Section 2.5

Proof of Theorem 2.5.1. In order to prove Theorem 2.5.1 we would first need to prove

analogies to Theorems 2.4.1 and 2.4.2 which apply to equations containing Markovian

switching, specifically (2.5.3). Here we give an idea of how one would adapt the proof of

Theorem 2.4.1 to incorporate the switching parameter.

Using similar methods to the non–switching case, we arrive at

dZ̃(t) =

[
2〈X̃(t), f(X̃(t), Ỹ (t))〉+ ‖g(X̃(t), Ỹ (t))‖2

F

G2(X̃(t), Ỹ (t))

]
dt+ 2

√
Z̃(t)dW̃ (t) (2.8.1)
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where

G(x, y) =


√∑r

j=1(
∑d

i=1 xigij(x,y))2

‖x‖ x 6= 0

K2 ≥ c ≥ K1 x = 0.

Let u ∈ Rd and w ∈ S and define the continuous function D∗ : Rd × S → R by

D∗(u,w) =
2〈u, f(u,w)〉+ ‖g(u,w)‖2

F

G2(u,w)
.

By (2.5.7),(2.5.8) and Cauchy–Schwarz, for all w ∈ S and for u 6= 0,

K2
1 ≤ G2(u,w) =

∑r
j=1

(∑d
i=1 uigij(u,w)

)2
‖u‖2

≤
∑d

i=1 u
2
i

∑r
j=1

∑d
i=1 g

2
ij(u,w)

‖u‖2
= ‖g(u,w)‖2

F ≤ K2
2

and so ‖g(u,w)‖2
F /G

2(u,w) ≥ 1, for all u ∈ Rd/{0}, w ∈ S. If u = 0, then, by (2.5.7)

and the fact that G is defined to be constant at zero,

‖g(0, w)‖2
F

G2(0, w)
=
‖g(0, w)‖2

F

c2
≥ K2

0

c2
.

Define K3 =min{1,K2
0/c

2}>0. Then ‖g(u,w)‖2
F /G

2(u,w) ≥ K3, ∀u ∈ Rd, w ∈ S.

By Cauchy–Schwarz, |〈u, f(u,w)〉| ≤ ‖u‖.‖f(u,w)‖. Define Fj(u) = ‖f(u,wj)‖. Then

by (2.5.2), for any u, v with ‖u‖, ‖v‖ ≤ n we have

|Fj(u)− Fj(v)| =
∣∣‖f(u,wj)‖ − ‖f(v, wj)‖

∣∣ ≤ ‖f(u,wj)− f(v, wj)‖ ≤ Kn‖u− v‖.

Thus, the function Fj : Rd → R is locally Lipschitz continuous for each j = 1, . . . , N . Let

F (u) := maxj ‖f(u,wj)‖. Then u 7→ F (u) is continuous since S is finite. Therefore for

every ε ∈ (0, 1 ∧ 1
4K

2
1K3) sufficiently small there is an X2(ε) < 1 such that ‖u‖F (u) < ε

for all ‖u‖ < X2(ε). Then |〈u, f(u,w)〉| ≤ ‖u‖.‖f(u,w)‖ ≤ ‖u‖F (u) < ε for all w ∈ S and

for ‖u‖ ≤ X2(ε). Thus, ∀ w ∈ S and for ‖u‖ ≤ X2(ε),

D∗(u,w) =
2〈u, f(u,w)〉
G2(u,w)

+
‖g(u,w)‖2

F

G2(u,w)
≥ −2ε

K2
1

+K3 ≥
K3

2
=: 2φ∗ > 0.
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Define the function D : Rd → R by D(u) = minw∈SD
∗(u,w). Then D is continuous since

D∗ is continuous. Moreover, D∗(u,w) ≥ D(u) for all w ∈ S. Also, define the function

∆− : R+ → R by ∆−(x) = min‖u‖=xD(u). Then ∆− is continuous since D is continuous.

Moreover, D(u) ≥ min‖j‖=‖u‖D(j) = ∆−(‖u‖). Then, for x ≤ X2(ε),

∆−(x) = min
‖u‖=x

D(u) ≥ min
‖u‖=x

2φ∗ = 2φ∗ > 0.

This gives us an estimate for ∆− on an interval close to zero. We now look for an

estimate on an interval away from zero. From condition (2.5.5), it follows that ∀ ε ∈ (0, 1)

there exists X1(ε) > 1 such that ∀ ‖x‖ > X1(ε) and ∀ y ∈ S, |〈x, f(x, y)〉| ≤ c1(1 +

ε)‖x‖φ(‖x‖). Since x 6= 0 we can use the fact that ‖g(x, y)‖2
F /G

2(x, y) ≥ 1. Let u ∈ Rd

such that ‖u‖ > X1(ε) and let w ∈ S. Then,

D∗(u,w) =
2〈u, f(u,w)〉
G2(u,w)

+
‖g(u,w)‖2

F

G2(u,w)
≥ −2c1(1 + ε)

K2
1

‖u‖φ(‖u‖) + 1.

Recall that D(u) = minw∈SD
∗(u,w). Then for ‖u‖ > X1(ε) and ∀ w ∈ S,

D∗(u,w) ≥ D(u) ≥ −2c1(1 + ε)
K2

1

‖u‖φ(‖u‖) + 1.

Also, recall ∆−(x) = min‖u‖=xD(u). Then for x > X1(ε),

∆−(x) = min
‖u‖=x

D(u) ≥ −2c1(1 + ε)
K2

1

xφ(x) + 1.

And this gives us our estimate for ∆− on an interval away from zero. Note that the

estimates for ∆−(x) are the same as in the proof of the non–switching case so we can

continue as per that proof to construct the function φ
(ε)
− such that ∆−(x) + φ

(ε)
− (x) > 0

for x ≥ 0. Then rewrite (2.8.1) as

dZ̃(t) =
[
−φ(ε)

− (‖X̃(t)‖) +D1,ε(t)
]
dt+ 2

√
Z̃(t)dW̃ (t)
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where, by definition,

D1,ε(t) = D∗(X̃(t), Ỹ (t)) + φ
(ε)
− (‖X̃(t)‖) ≥ D(X̃(t)) + φ

(ε)
− (‖X̃(t)‖)

≥ ∆−(‖X̃(t)‖) + φ
(ε)
− (‖X̃(t)‖) > 0.

Finally, construct the comparison process

dZε(t) = −φ(ε)
−
(√

|Zε(t)|
)
dt+ 2

√
|Zε(t)|dW̃ (t), t ≥ 0.

The proof now follows that of the non–switching case, since the switching dependency has

been removed. We would then arrive at

lim sup
t→∞

‖X(t)‖

Φ−1
(K2

1 (1−ε)
2c1

log t
) ≥ 1, a.s. on Ωε,

where Ωε is an almost sure event. Using similar methods to remove the switching depen-

dency from an analogue of the proof of Theorem 2.4.2 we would get

lim sup
t→∞

‖X(t)‖

Φ−1
(K2

2 (1+ε)
2c2

log t
) ≤ 1, a.s. on Ωε

We could then combine these two results in exactly the same way as was done in the proof

of Theorem 2.4.4 to obtain the desired result (2.5.9).

2.9 Proof of Stochastic Comparison Theorem

Proof of Theorem 2.2.1. Define τn := inf{t ≥ 0 : X1(t) = n or X2(t) = n} and let

∆n(t) = X2(t ∧ τn) −X1(t ∧ τn) for t ≥ 0. Thus τn = τ
(1)
n ∧ τ (2)

n where τ (1)
n and τ

(2)
n are

defined in the statement of Theorem 2.2.1. Also define ∆+
n (t) = (∆n(t))+ for all t ≥ 0.

By defining M by

M(t) =
∫ t∧τn

0
{σ(X2(s))− σ(X1(s))} dB(s)

we have

∆n(t) = X2(0)−X1(0) +
∫ t∧τn

0
{β2(s)− β1(s)} ds+M(t)
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and therefore by the Tanaka–Meyer formula (see [46], Chapter 3, Section 7) we obtain

∆+
n (t) = (X2(0)−X1(0))+ +

∫ t∧τn

0
1(0,∞)(∆n(s)) {β2(s)− β1(s)} ds

+
∫ t∧τn

0
1(0,∞)(∆n(s)) {σ(X2(s))− σ(X1(s))} dB(s) + Λ0

t (∆n), (2.9.1)

where Λ0
t (∆n) is the local time of ∆n at zero. Next, following Exercise 3.7.12 in [46], we

show that Λ0
t (∆n) = 0 for all t ≥ 0 a.s. Towards this end, we note that M(t) = M(τn) for

all t ≥ τn and also that 〈M〉(t) = 〈M〉(τn) for all t ≥ τn a.s. Define ρ0(x) = x for x ≥ 0.

Then for t ≥ τn we have

∫ t

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s) =
∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s),

so therefore for any t ≥ 0 we have

∫ t

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s) ≤
∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s).

For s ≤ τn we have that 〈M〉(s) =
∫ s
0 {σ(X2(u))− σ(X1(u))}2 du, so by (2.2.2) we get

∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s) =
∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

{σ(X2(s))− σ(X1(s))}2 ds

≤
∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

K2
n|X2(s)−X1(s)| ds

= K2
n

∫ τn

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

|∆n(s)| ds ≤ K2
nτn.

By hypothesis either τ (1)
n < +∞ a.s. or τ (2)

n < +∞ a.s., so τn < +∞ a.s., and

∫ t

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s) ≤ K2
nτn < +∞, a.s.

By the occupation density formula (Theorem 3.7.1 (iii) in [46]) we have

∫ t

0

1(0,∞)(∆n(s))
ρ0(∆n(s))

d〈M〉(s) = 2
∫ ∞

0

1
ρ0(a)

Λa
t (∆n) da. (2.9.2)

By the right continuity in a of Λa
t (∆n), if Λ0

t (∆n) > 0, the right–hand side of (2.9.2) is

infinite, because
∫
(0,ε) 1/ρ0(a) da = ∞ and ρ0(a) > 0 for a > 0. But this introduces a
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contradiction because the left–hand side of (2.9.2) is finite. Therefore Λ0
t (∆n) = 0 for all

t ≥ 0 a.s., and so, returning to (2.9.1), by using the fact that X1(0) ≥ X2(0) we get

∆+
n (t) =

∫ t∧τn

0
1(0,∞)(∆n(s)) {β2(s)− β1(s)} ds

+
∫ t∧τn

0
1(0,∞)(∆n(s)) {σ(X2(s))− σ(X1(s))} dB(s). (2.9.3)

Now using (2.2.1), we have β2(s) − β1(s) ≤ b(X2(s)) − b(X1(s)) ≤ |b(X2(s)) − b(X1(s))|.

We consider two cases: if ∆n(s) > 0 then by (2.2.3) we have, for s ≤ t ∧ τn ≤ τn,

β2(s)− β1(s) ≤ Kn|X2(s)−X1(s)| = Kn|X2(s ∧ τn)−X1(s ∧ τn)| = Kn|∆n(s)|

= Kn∆+
n (s).

Therefore if ∆n(s) > 0 and s ≤ t ∧ τn we have

1(0,∞)(∆n(s)) {β2(s)− β1(s)} = β2(s)− β1(s) ≤ Kn∆+
n (s).

On the other hand, if ∆n(s) ≤ 0 then for s ≤ t ∧ τn ≤ τn

1(0,∞)(∆n(s)) {β2(s)− β1(s)} = 0 = Kn∆+
n (s).

So in both cases we have 1(0,∞)(∆n(s)) {β2(s)− β1(s)} ≤ Kn∆+
n (s). Applying this in

(2.9.3) we arrive at

∆+
n (t) ≤ Kn

∫ t∧τn

0
∆+

n (s) ds+
∫ t∧τn

0
1(0,∞)(∆n(s)) {σ(X2(s))− σ(X1(s))} dB(s)

≤ Kn

∫ t

0
∆+

n (s) ds+
∫ t∧τn

0
1(0,∞)(∆n(s)) {σ(X2(s))− σ(X1(s))} dB(s).

Applying the optional sampling theorem we arrive at

E[∆+
n (t)] ≤ Kn

∫ t

0
E[∆+

n (s)] ds, t ≥ 0.

The function t 7→ E[∆+
n (t)] is continuous so by Gronwall’s inequality, E[∆+

n (t)] = 0 for

each t ≥ 0 and ∆+
n (t) = 0 for each fixed t ≥ 0. However, as t 7→ ∆+

n (t) is continuous we
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have ∆+
n (t) = 0 for all t ≥ 0 a.s. This implies that X2(t ∧ τn) −X1(t ∧ τn) = ∆n(t) ≤ 0

for all t ≥ 0 a.s. Hence the event Ωn := {ω : X2(t ∧ τn, ω) ≤ X1(t ∧ τn, ω) for all t ≥ 0}

is almost sure. Let Ω∗ = ∩n∈NΩn. Then Ω∗ is almost sure and if τn → ∞ as n → ∞ a.s.

we have Ω∗ = {ω : X2(t, ω) ≤ X1(t, ω) for all t ≥ 0}, proving the result. To justify that

limn→∞ τn = ∞ a.s. we simply note that neither X1 nor X2 explode in finite time.

70



Chapter 3

The Size of the Largest Fluctuations in a Market

Model with Markovian Switching

3.1 Introduction

In Chapter 2 we examined the large fluctuations of a general class of stationary SDEs;

this chapter applies similar techniques (the stochastic comparison principle and Motoo’s

Theorem) to a class of non-stationary SDEs which can be used to build a financial market

model. These notions of stationarity and non-stationarity are defined in the preliminaries.

The motivation for studying equations with switching in a financial setting comes from

observations in financial market econometrics which suggest that security prices often move

from bearish to bullish (or other) regimes. These regimes are modelled by the presence of

the Markov process Y . One of the seminal contributions on the econometric analysis of

financial time series subject to these regime shifts is [33], and a recent monograph covering

this topic, amongst others, is [27]. Moreover, examples of stochastic volatility (SV) models

with switching can be found in [22], [23] and [79]. Numerical methods for such SV models

with Markovian switching are examined in [57]. Interest rate models with switching arise

in [76].

In contrast to Chapter 2, this chapter deals with scalar non–autonomous SDEs with

Markovian switching of the form

dX(t) = f(X(t), Y (t), t) dt+ g(X(t), Y (t), t) dB(t), (3.1.1)

where g(x, y, t) and xf(x, y, t) are uniformly bounded above and below in (x, y, t), and Y
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is an irreducible continuous–time Markov chain with finite state space S independent of

the Brownian motion B. If the lower bound on xf(x, y, t) is sufficiently large, we show

that X obeys upper and lower laws of the iterated logarithm, in the sense that

√
K2 ≤ lim sup

t→∞

|X(t)|√
2t log log t

≤
√
K1, a.s.

where g2(x, y, t) ∈ [K2,K1]. In the case when g additionally obeys g(x, y, t) = γ(y), it can

be shown that

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗, a.s. (3.1.2)

where σ2
∗ =

∑
j∈S γ

2(j)πj and π = (πj)j∈S is the stationary distribution of Y . The proofs

rely on time change and comparison arguments to construct upper and lower bounds

on |X|. However, in contrast to the proofs in Chapter 2, the equations must undergo

changes of time and scale in order to transform them into stationary processes. The large

deviations of the stationary processes are then determined by Motoo’s Theorem. These

large deviation results are then applied to a security price model, where the security price

S obeys

dS(t) = µS(t) dt+ S(t) dX(t), t ≥ 0, (3.1.3)

and X obeys (3.1.1). We assume that the movement between regimes is not influenced by

the stock price or returns by presuming that Y and the driving Brownian motion B are

independent.

The classical Geometric Brownian Motion model of stock evolution assumes that the

market is informationally efficient, following forms of the Efficient Market Hypothesis

(EMH). A classical statement and discussion about the EMH and its ramifications may

be found in e.g., Fama [24] or the volume edited by Cootner [17]. However, in recent

times, econometric evidence suggesting that financial markets might be inefficient has

accumulated (see e.g., [50]). The equation (3.1.3) models an inefficient market, since the
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increments of the cumulative returns process µt+X(t) are not independent. However, the

fact that xf(x, y, t) is uniformly bounded means that the process X does not depart too

much (in some sense) from Brownian motion, thereby placing limits on the inefficiency

of the market, particularly when the price departs too far from its trend rate of growth.

Therefore, the assumption that xf(x, y, t) be bounded can be seen as hypothesising that

the market is not “too inefficient”. Although the informational inefficiency of a market

can be proven directly for certain models (see [7]), the same argument does not hold for

the model described by (3.1.3) due to the unobservable switching parameter.

Despite the presence of regime shifts and inefficiency, we can still deduce that the new

market model enjoys some of the properties of standard GBM models. Having established

the existence of a trend rate of growth in the price, we use results about the solution of

(3.1.1) to show that the large deviations of the price from this trend rate of growth obey

a law of the iterated logarithm, just as in standard models. Finally, although the returns

are non–Gaussian, we can nevertheless show that the running maxima of the returns have

the same almost sure rate of growth as those of a stationary Gaussian process.

This chapter also considers the size of the largest fluctuations of the returns process

Rδ(t) = log
(
S(t)/S(t − δ)

)
, t ≥ δ, over δ > 0 time units. It is shown that when the

diffusion coefficient is of the form g(x, y, t) = γ(y), then under certain conditions on the

drift coefficient we have

lim sup
t→∞

|Rδ(t)|√
2 log t

= σH

√
δ, a.s., (3.1.4)

where σH = maxj∈S |γ(j)| > 0.

When compared to (3.1.2) this result (3.1.4) reveals an interesting phenomenon, unique

to equations with switching. The magnitiude of the fluctuations in (3.1.2) is determined

by an “average” of the different volatility levels that the process can switch between,

weighted by the stationary probability distribution of the Markov chain. On the other
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hand, the magnitude of the fluctuations of the returns over a short time period, (3.1.4), is

determined only by the largest value of the diffusion coefficient, namely σH . This indicates

that the returns fluctuate most during the periods of highest volatility, something that

one would intuitively expect. This effect cannot be found in equations without switching,

as in the constant diffusion case we would have σ∗ = σH = σ and there would be no

distinction. Both results, (3.1.2) and (3.1.4), highlight the benefits of considering the

special case where the diffusion coefficient depends only on the switching parameter, i.e.

that g(x, y, t) = γ(y). In this case the switching process has a direct influence on the

magnitude of the large fluctuations, while in Chapter 2 for example it was not clear that

the switching would have such an effect on the magnitude of the fluctuations.

The chapter is organised as follows. Useful mathematical preliminaries for this chapter

are detailed in Section 3.2 while the main results on iterated logarithm growth rates for

the solution of (3.1.1) are given in Section 3.3. In Section 3.4, these results are applied to

a stock price model. The proofs of all results are postponed to the final two sections.

3.2 Mathematical Preliminaries

3.2.1 Markov Chains and Jump Processes

Let Y be a continuous–time Markov chain with state space S. To make our theory

more understandable, we assume the state space of the Markov chain is finite, say S =

{1, 2, · · · , N}. As a standing hypothesis we assume in this chapter that the Markov chain

is irreducible.

For n = 0, 1, 2, . . ., denote by Mi(n) the length of the nth visit to state i, by Ti(n)

the time of the nth return to i and by Li(n) the length of the nth excursion to i. For

a visualisation of these quantities see Figure 3.1. By the strong Markov property (of a
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continuous jump chain) at the stopping times Ti(n), we find that

Li(1), Li(2), . . . are independent and identically distributed with mean mi, (3.2.1)

and that

Mi(1),Mi(2), . . . are independent and identically distributed with mean 1/qi, (3.2.2)

where qi =
∑

j 6=i γij is the off–diagonal row sum of the transition matrix. Moreover, since

the Mi’s (the holding times, or waiting times) are exponentially and identically distributed

in a Markov jump process, we know that

the sequence of random variables Mi(1),Mi(2), . . . has finite variance σ2
Mi
. (3.2.3)

An important technical requirement in our analysis is that the second moments of the

excursion lengths Li(n) are finite for all i ∈ S and n ∈ N. Since the process Y is time–

homogeneous, the lengths of the excursions Li(n) are identically distributed for all n.

Moreover, since the excursion time Li(1) is simply the first passage time to state i from

state i, it suffices to show that the second moment of the first passage time from i to i is

finite for all i ∈ S. What follows is doubtless well–known to researchers in Markov jump

processes and Markov chains, but may be less well–known to those whose backgrounds

are in stochastic differential equations, such as the author, and is therefore included for

readers with similar backgrounds.

The connection between the distributions of first passage times and waiting (or holding)

times for semi–Markov processes was established by Pyke [68]. He established that the

first passage distribution function Gij from state i to state j could be written in terms of

the waiting time distributions Fij (where i is the state currently occupied, and j the state

to be visited next) according to

Gij(t) = Fij(t) +
N∑

k=1,k 6=j

∫
(0,t]

Fik(t− s) dGkj(s), t ≥ 0. (3.2.4)
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See [68, Lemma 3.2] or [43, Lemma 1.1]. The jump process Y is a special type of semi–

Markov process with exponentially distributed holding times, so in our case the Fij ’s are

exponential distributions. Therefore the second moments of the distributions Fij are finite.

A consequence of this and the renewal equation (3.2.4) is that the second moments of the

Gij ’s are finite for all i, j ∈ S. See e.g., [43, Lemma 2.1], where a formula relating the

moments of the F ’s and G’s is deduced. Therefore, by invoking this theory, we have that

the sequence of random variables Li(1), Li(2), . . . has finite variance σ2
Li
. (3.2.5)

3.2.2 Stochastic comparison for equations with non-stationary solutions

The method of proof employed in Chapter 2 relies on creating comparison processes (which

have stationary solutions) to which we can apply Motoo’s Theorem. This theorem allows

us to determine the exact asymptotic growth rate of the running maxima of a stationary

(or asymptotically stationary) process governed by an autonomous SDE.

However, the use of stochastic comparison principles does not guarantee that the com-

parison processes will have stationary solutions: in fact in this chapter we deal with

equations with non–stationary solutions. Nonetheless it is possible in some cases to apply

a change in both time and scale to an equation with non–stationary solutions to trans-

form it into an equation with stationary solutions. The asymptotic behaviour of a process

transformed in such a way can then be determined by Motoo’s theorem.

Take, for example, a simple 1–dimensional Ornstein–Uhlenbeck process governed by

dX(t) = −X(t) dt+ dB(t), t ≥ 0, where X(0) = 0.

It can be shown that this process has stationary solutions and that Motoo’s theorem can

be applied. On the other hand, we can solve this equation explicitly to get

X(t) = e−t

∫ t

0
es dB(s) = e−tM(t), (3.2.6)
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where we define the martingale M(t) :=
∫ t
0 e

s dB(s) with quadratic variation given by

〈M〉(t) =
∫ t

0
e2s ds =

1
2
(e2t − 1).

Then by the martingale time–change theorem (cf., e.g., Theorem 3.4.6 in [46]), we may

define a new Brownian motion B∗ by B∗(〈M〉(t)) = M(t). Therefore, (3.2.6) becomes

X(t) = e−tB∗(〈M〉(t)) = e−tB∗(1
2
(e2t − 1)

)
.

The significance of this relation is that the Brownian motion itself, B∗(t), is non–stationary

but by applying the change of time, (e2t−1)/2, and change of scale, e−t, it is transformed

into the process X(t) which has stationary solutions.

For some of the proofs in this chapter, we employ a similar change of time and scale

before applying Motoo’s theorem.

3.3 Statement and Discussion of Main Results

In this section we give sufficient conditions ensuring law of the iterated logarithm–type

behaviour for the solution of (3.3.1).

Let f, g : R× S× [0,∞) → R be continuous functions obeying local Lipschitz continuity

and linear growth conditions. Let X(0) = x0 and consider the stochastic differential

equation with Markovian switching given by

dX(t) = f(X(t), Y (t), t) dt+ g(X(t), Y (t), t) dB(t). (3.3.1)

We assume, unless otherwise stated, that there exists ρ > 0 such that

xf(x, y, t) ≤ ρ for all (x, y, t) ∈ R× S× [0,∞), (3.3.2)

and that f is globally bounded in the sense that

|f(x, y, t)| ≤ F̄ < +∞, for all (x, y, t) ∈ R× S× [0,∞). (3.3.3)

77



Chapter 3, Section 3 The Size of the Largest Fluctuations in a Market Model with Markovian Switching

Under the above conditions, there is a unique continuous and adapted process which

satisfies (3.3.1) (see e.g. [62]). We make the standing assumption throughout the chapter

that f and g obey these continuity and growth restrictions, and that Y is an irreducible

continuous–time Markov chain with finite state space S. For economy of exposition these

assumptions are not explicitly repeated in the statement of theorems in this chapter.

The first two theorems deal with upper and lower estimates on the asymptotic growth

rate of the running maxima.

Theorem 3.3.1. Let X be the unique adapted continuous solution satisfying (3.3.1) and

let f obey (3.3.2). If there exist positive real numbers K1 and K2 such that

K2 ≤ g2(x, y, t) ≤ K1, for all (x, y, t) ∈ R× S× [0,∞) (3.3.4)

then X satisfies

lim sup
t→∞

|X(t)|√
2t log log t

≤
√
K1, a.s. (3.3.5)

The result and hypotheses of this theorem are similar to those of a theorem in Mao [52],

in which no switching process is present. Here in Theorem 3.3.1, a sharper upper bound on

the solution is obtained in that if one were to apply Mao’s theorem in this case we would

get
√
K1

√
e on the right–hand side of (3.3.5). The sharper bound comes at the expense

of a two–sided bound on the diffusion coefficient g. The proof in [52] employs martingale

and integral inequalities, while Theorem 3.3.1 is proven by means of a comparison result.

An advantage of this comparison approach is that a similar argument also yields a lower

estimate on the large fluctuations of the solution, which we have been unable to obtain

using the methods in [52].

Theorem 3.3.2. Let X be the unique adapted continuous solution satisfying (3.3.1). If

there exist real numbers K1 and K2 such that (3.3.4) holds, and there is an L ∈ R such
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that

inf
(x,y,t)∈R×S×[0,∞)

xf(x, y, t)
g2(x, y, t)

=: L > −1
2
, (3.3.6)

then X satisfies

lim sup
t→∞

|X(t)|√
2t log log t

≥
√
K2, a.s. (3.3.7)

We can combine the arguments used to prove these results to obtain a general result on

the exact size of the large fluctuations, under the assumption that the diffusion coefficient

depends only on the process Y . The result plays a role later in the chapter when we

consider applications of these pathwise large deviation results to finance.

Corollary 3.3.1. Let X be the unique continuous adapted process satisfying the equation

dX(t) = f(X(t), Y (t), t) dt+ γ(Y (t)) dB(t), (3.3.8)

where γ : S → R \ {0} and X(0) = x0. If there exists a real number ρ > 0 such that

sup
(x,y,t)∈R×S×[0,∞)

xf(x, y, t)
γ2(y)

≤ ρ and inf
(x,y,t)∈R×S×[0,∞)

xf(x, y, t)
γ2(y)

> −1
2
, (3.3.9)

then

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗, a.s. (3.3.10)

where

σ2
∗ =

∑
j∈S

γ2(j)πj , (3.3.11)

and π is the stationary probability distribution of Y defined by (1.0.5).

The first condition in (3.3.9) is equivalent to (3.3.2). The second condition is more

subtle. Although it is sufficient to establish an iterated logarithm–type result, it is not

a necessary condition to do so: Theorem 3.3.3 which follows justifies the second part of

this remark. However, examples of equations (3.3.1) exist in which the second condition

in (3.3.9) is false, and the solutions do not obey iterated logarithm type growth bounds.

We supply such an example now.
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Example 3.3.1. Suppose in (3.3.1) that f(x, y, t) = f(x) and that g(x, y, t) = σ 6= 0,

and let f obey limx→∞ xf(x) = limx→−∞ xf(x) = L < −σ2/2. Then, provided f is

continuous, the first condition in (3.3.9) is true, but infx∈R xf(x) < −σ2/2, and so the

second condition in (3.3.9) is false. Routine calculations show that the conditions of

Motoo’s theorem hold. Moreover, by determining the asymptotic behaviour of the scale

function, we can use Motoo’s theorem to show that

lim sup
t→∞

log |X(t)|
log t

exists a.s.

is deterministic and is strictly less than 1/2. Therefore a solution of (3.3.1) under these

conditions cannot obey the law of the iterated logarithm. It can be seen that the second

part of condition (3.3.9) is quite a sharp hypothesis, since in the case that L > −σ2/2 we

can find functions f such that the second part of (3.3.9) holds, and hence the law of the

iterated logarithm holds also.

Remark 3.3.1. We observe that (3.3.10) provides an exact rate of growth of the running

maxima of |X|. This is in contrast with the results of Theorems 3.3.1 and 3.3.2, in which

only bounds on the growth rate are determined. We also notice that the presence of

the switching process Y influences the rate of growth, because the value of σ∗ in (3.3.11)

depends on the stationary distribution of Y . On the other hand, it is not immediately clear

from Theorems 3.3.1 and 3.3.2 that the switching process can influence the asymptotic

behaviour so directly, because the bounds on the diffusion coefficients K1 and K2 are

independent of the switching state Y . Finally, not only is the a.s. rate of growth of the

running maxima deterministic, but it also can be computed explicitly once the generator

of Y and the diffusion coefficient γ are known. The stronger conclusion of Corollary 3.3.1

relies upon the stronger assumption that the diffusion coefficient depends only on the

Markov process Y .
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In Theorems 3.3.1, 3.3.2 and in Corollary 3.3.1, we assume that f obeys a pointwise

bound that depends on x. We can allow f to violate such a bound, provided any “spikes”

that may be present in f are sufficiently narrow. This is achieved by the choice of hypoth-

esis (3.3.12) in the statement of Theorem 3.3.3 below.

Theorem 3.3.3. Let X be the unique continuous adapted process satisfying (3.3.1), with

X(0) = x0. If there exist positive real numbers K1, K2 such that (3.3.4) holds, and there

is a locally Lipschitz continuous function f̃ such that

|f(x, y, t)|
g2(x, y, t)

≤ f̃(x), f̃ ∈ L1(R; R+), (3.3.12)

then X almost surely obeys

√
K2e

−2 supx∈R
∫ x
0 (−f̃(y))dy

e−2
∫∞
0 (−f̃(y))dy

≤ lim sup
t→∞

X(t)√
2t log log t

≤
√
K1e

−2 infx∈R
∫ x
0 f̃(y)dy

e−2
∫∞
0 f̃(y)dy

(3.3.13a)

−
√
K1e

−2 infx∈R
∫ x
0 (−f̃(y))dy

e2
∫ 0
−∞(−f̃(y))dy

≤ lim inf
t→∞

X(t)√
2t log log t

≤ −
√
K2e

−2 supx∈R
∫ x
0 f̃(y)dy

e2
∫ 0
−∞ f̃(y)dy

. (3.3.13b)

We notice in this result that both positive and negative large fluctuations obey an

iterated logarithm growth bound: this contrasts with the results of Theorem 3.3.1, 3.3.2

and Corollary 3.3.1, in which the growth bounds are for the absolute value of the process.

While the estimates on the normalising constants
√
K1 and

√
K2 in Theorems 3.3.1 and

3.3.2 are sharper than those obtained in Theorem 3.3.3, we are able to dispense with the

pointwise bounds required in (3.3.9).

3.4 Application to Financial Market Models

In this section, we consider the application of the results from the previous section to a

variant of Geometric Brownian Motion (GBM) which includes Markovian switching. In

the first subsection, we state and discuss some properties of standard models, and then

do likewise for analogous results for the switching model. These results concentrate on
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the long run growth rate, the size of the largest departures from the trend, and the large

fluctuations of the incremental returns. In the second subsection, we specialise our results

to a market in which there are only two regimes of “high” and “low” volatility.

3.4.1 Discussion of main results

We begin by reviewing briefly some mathematical and economic properties of GBM. GBM

is one of the canonical models used to describe the stochastic evolution of asset prices (see

e.g., Karatzas and Shreve [47]), and is behind the classical Black–Scholes–Merton option

pricing formula (see e.g., Merton [64]). This work has given rise to a great variety of alter-

native market models and has led to an explosion in the variety of financial instruments

that can be priced; a flavour of this activity can be gleaned from the popular textbook [41].

As is well–known, GBM can be characterised as the unique solution of the linear stochas-

tic differential equation

dS∗(t) = µS∗(t) dt+ σS∗(t) dB(t), t ≥ 0, (3.4.1)

where S∗(0) > 0. In the context of financial economics, µ is the instantaneous mean

rate of growth of the price, and σ its instantaneous volatility. The importance of the

GBM model is embodied by the following fact: if security returns are stationary and

independent (so that the market is informationally efficient) and the stock price process

S∗ varies continuously in continuous time, then S∗ must obey (3.4.1). It is well–known

that the logarithm of S∗ is a Brownian motion with drift, having mean and variance at

time t of (µ− σ2

2 )t and σ2t respectively, and that S∗ grows exponentially according to

lim
t→∞

logS∗(t)
t

= µ− 1
2
σ2, a.s. (3.4.2)

Furthermore the maximum size of the large deviations from this growth trend obey the
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law of the iterated logarithm:

lim sup
t→∞

| logS∗(t)− (µ− 1
2σ

2)t|
√

2t log log t
= |σ|, a.s. (3.4.3)

Before discussing other properties of S∗, we explore the significance and implications of

the result (3.4.3) in terms of finance. Since S∗ represents the price of a risky asset, we

cannot expect that S∗ grows at exactly the rate exp[(µ−σ2/2)t] as t→∞. Indeed, as real

stock prices experience departures from such steady growth rates (for example in market

crashes or bubbles), it is advantageous for any model of these prices to also have this

property and to be able to determine how large these bubbles or crashes are likely to be

from the perspective of both long–term investment and portfolio management.

This leads us to consider the size of the largest fluctuations from the trend rate of growth.

We can study these large fluctuations by first removing the exponential trend from the

stock price, leaving us with the process logS∗(t)− (µ− σ2/2)t, which gives the logarithm

of the departure from the trend. The largest deviations of this departure obey a law of

the iterated logarithm, according to (3.4.3). In terms of the stock price itself, roughly

speaking, this means that the stock can be bigger than the smooth exponential trend by

a factor of exp[σ
√

2t log log t], or can be smaller by a factor of exp[−σ
√

2t log log t] as

t→∞, a.s.

Moreover the δ–increments of logS∗ are stationary and Gaussian, with the mean and

variance of the increments depending linearly on δ. These δ–increments, defined by

R∗
δ(t) = log(S∗(t)/S∗(t− δ)), therefore obey

lim sup
t→∞

|R∗
δ(t)|√

2 log t
= |σ|

√
δ, a.s. (3.4.4)

In the following section, we propose a variant of (3.4.1) in which the stock price S is the

solution of

dS(t) = µS(t) dt+ S(t) dX(t) t ≥ 0. (3.4.5)
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Here the driving Brownian motion in (3.4.1) has been replaced by a semi–martingale X

which partly depends on a continuous–time Markov chain. The model departs from (3.4.1)

in that the returns are no longer stationary nor independent. Note that if the cumulative

returns on the security with price S = {S(t) : t ≥ 0} up to time t are defined by R(t),

then

R(t) = log
(
S(t)/S(0)

)
, t ≥ 0, (3.4.6)

and the (log) returns of the security over the time interval [t− δ, t] are defined by

Rδ(t) = R(t)−R(t− δ) = log(S(t)/S(t− δ)), t ≥ δ. (3.4.7)

With these definitions we show that the processes S and Rδ obey analogous properties

to (3.4.2), (3.4.3) and (3.4.4). Therefore, the stock price process grows exponentially,

experiences large deviations from the trend growth rate of iterated logarithm type, and

incremental returns have the same rate of growth as those of stationary Gaussian processes,

despite Rδ being non–Gaussian. The above claims are made precise in the following

Theorems in this section, whose proofs are supplied in Section 6.

Theorem 3.4.1. Let Y be a continuous–time Markov process with state space S. Let X

be the unique continuous adapted process governed by

dX(t) = f(X(t), Y (t), t) dt+ σ dB(t), t ≥ 0, (3.4.8)

with X(0) = 0. Let µ ∈ R, σ ∈ R \ {0}, and S be the unique continuous adapted process

defined by (3.4.5), with S(0) = s0 > 0. Suppose that f obeys (3.3.3) and that (3.3.9) holds

in this special case where γ(y) = σ for all y. Then:

(i)

lim
t→∞

logS(t)
t

= µ− σ2

2
, a.s.

84



Chapter 3, Section 4 The Size of the Largest Fluctuations in a Market Model with Markovian Switching

(ii)

lim sup
t→∞

| logS(t)− (µ− σ2

2 )t|
√

2t log log t
= |σ|, a.s. (3.4.9)

(iii) If Rδ is given by (3.4.7), then for each 0 < δ <∞

lim sup
t→∞

|Rδ(t)|√
2 log t

= |σ|
√
δ, a.s.

Despite the presence of the Markov process Y (which introduces regime shifts) and the

X–dependent drift term f in (3.4.8) (which introduces inefficiency), we see that S obeys

the same asymptotic properties as S∗, namely (3.4.2), (3.4.3) and (3.4.4). These properties

of S∗ are shared by S because condition (3.3.9) guarantees that f becomes small for large

values of X, thereby forcing S and S∗ to remain close, in some sense. Indeed, if f is

identically zero, we see that S and S∗ actually coincide.

On the other hand, the analysis is now more complicated because the increments are (in

general) neither independent nor Gaussian, and it is not possible to write down an explicit

formula for S in terms of B and Y . This complication is worthwhile, however, because it

stems from the addition of inefficiency and regime shifts into the market model.

3.4.2 State–independent diffusion coefficient

We now return to the special case where the diffusion coefficient depends only on the

switching process Y . Let f : R × S × [0,∞) → R and γ : S → R be continuous functions

obeying local Lipschitz continuity and linear growth conditions. Let X(0) = x0 and

consider the stochastic differential equation with Markovian switching given by

dX(t) = f(X(t), Y (t), t) dt+ γ(Y (t)) dB(t). (3.4.10)

Under the above conditions, there is a unique continuous and adapted process which

satisfies (3.4.10) (see e.g. [62])
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This is an important special case for two related economic reasons. The first is the prin-

cipal economic rationale for switching models in finance: namely that market sentiment

occasionally changes, leading to differing volatility or growth rates. The incorporation

of sentiment in this manner is one of the important motivations behind the discipline of

behavioural finance (see e.g., the survey paper [25]). Secondly, it makes the volatility

a stochastic process which cannot be explained purely in terms of the current market

returns. This places the model within the framework of stochastic volatility (SV) mod-

els, particularly as the volatility process is stationary and ergodic. One of the first such

SV models was presented in [42], and a recent textbook devoted to stochastic volatility

models is [26]. A common feature of SV models is that the volatility is described by

the stationary solution of a stochastic differential equation driven by a Brownian motion

which is correlated with, but not equal to, the Brownian motion that drives the stock

price. In our case, although we only have one Brownian motion, we have two sources

of randomness in the security (the other being the switching process). This renders the

market incomplete, as there are more sources of randomness than tradable securities. In

the model proposed here the volatility is also a stationary stochastic process, but unlike

processes in SV models, it can assume only finitely many values, does not change from

instant to instant, and is also uncorrelated with the Brownian motion which drives the

stock price. However, if employed to price options, the model analysed here should lead

to both incomplete markets and the presence of volatility smiles. Volatility smiles have

been shown to exist for other stochastic volatility models in which the volatility assumes

a finite number of values (see e.g., Renault and Touzi [69]).

The first result shows that when the volatility depends on the switching process alone,

there is a well–defined growth rate, and the fluctuations around this growth rate still obey

a law of the iterated logarithm.
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Theorem 3.4.2. Let S be the unique continuous adapted process governed by (3.4.5) with

S(0) = s0 > 0, where X is defined by (3.4.10), with X(0) = 0 and γ : S → R \ {0}.

Suppose that f obeys (3.3.9). Then

(i)

lim
t→∞

logS(t)
t

= µ− σ2
∗
2
, a.s.

(ii)

lim sup
t→∞

| logS(t)− (µt− 1
2

∫ t
0 γ

2(Y (s)) ds)|
√

2t log log t
= σ∗, a.s., (3.4.11)

where σ∗ > 0 is defined by (3.3.11).

Before proceeding further, we pause to examine the relevance of (3.4.11) and its con-

nection with (3.4.9). The limit in (3.4.11) gives, at least superficially, a weaker result

than the limit in (3.4.9). As explained earlier, (3.4.9) can be interpreted in terms of the

size of the fluctuations of the price around its deterministic exponential rate of growth

G(t) := exp[(µ− σ2/2)t]. Hence the log trend is logG(t) = (µ− σ2/2)t, so (3.4.9) can be

written

lim sup
t→∞

| logS(t)− logG(t)|√
2t log log t

= |σ|, a.s.

Similarly, (3.4.11) can be written in this form with σ∗ being the limit on the right–hand

side and the log trend, logG∗(t), in this case is stochastic and given by

logG∗(t) = µt− 1
2

∫ t

0
γ2(Y (s))ds. (3.4.12)

The fact that G∗ is stochastic does not by itself create a difficulty in (3.4.11) but rather

the fact that it depends on the switching process Y which cannot be observed directly

from market data. Therefore it is certainly more cumbersome, and perhaps infeasable, to

remove this stochastic growth trend as easily as in (3.4.9).
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However, we now show that it is possible to recover the full strength of (3.4.9) by

introducing a deterministic log trend logG1(t) := (µ− σ2
∗/2)t.

Theorem 3.4.3. Let S be the unique continuous adapted process governed by (3.4.5) with

S(0) = s0 > 0, where X satisfies (3.4.10), γ : S → R and f obeys (3.3.9). Let Y be

a stationary jump process with finite, irreducible state space S. Then, using the ergodic

theorem for Markov jump processes,

σ∗ −
1
2

∑
i∈S

γ2(i)βi ≤ lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
≤ σ∗ +

1
2

∑
i∈S

γ2(i)βi, a.s., (3.4.13)

where βi = (σMi + πiσLi)/
√
mi > 0 is deterministic and σ∗ obeys (3.3.11).

With this result we can interpret a large value of σ∗ as giving rise to larger fluctuations

from the deterministic exponential growth trend exp[(µ− σ2
∗/2)t].

Theorem 3.4.3 above relies on the rate of convergence of the ergodic theorem for Markov

jump processes. We now state this ergodic theorem and its associated rate of convergence

in the following result.

Proposition 3.4.1. Let S be a finite, irreducible state space, let γ : S → R and let Y be

a stationary jump process. Then by the ergodic theorem for Markov jump processes

lim
t→∞

1
t

∫ t

0
γ2(Y (s)) ds = σ2

∗ =
∑
j∈S

γ2(j)πj ,

where π is the stationary probability distribution of Y defined by (1.0.5). Moreover,

lim sup
t→∞

t√
2t log log t

∣∣∣1
t

∫ t

0
γ2(Y (s))ds− σ2

∗

∣∣∣ ≤∑
i∈S

γ2(i)βi a.s., (3.4.14)

where βi = (σMi + πiσLi)/
√
mi is deterministic.

3.4.3 Large fluctuations of δ–returns

In this subsection, we explore further the case when X is given by (3.4.10), in which

the diffusion coefficient depends only on the switching process Y . We associate the state
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H ∈ S with the largest value of the diffusion coefficient, so that

σH = max
j∈S

|γ(j)| > 0. (3.4.15)

The state H corresponds to the highest volatility state of the market.

We are interested in the large fluctuations of the returns over δ > 0 time units in

continuous time

Rδ(t) := log(S(t)/S(t− δ)), t ≥ δ. (3.4.16)

The increments Rδ closely relate to the increments of Brownian motion because

Rδ(t) = log(S(t)/S(t− δ)) = X(t)−X(t− δ)−
∫ t

t−δ
{µ− 1

2
γ2(Y (s))} ds, (3.4.17)

and due to the fact that the integrand above is bounded, the big fluctuations in the

increments Rδ will come from the big fluctuations in the increments of X which in turn

are caused by the big fluctuations of Brownian increments. Thus we would expect to see

fluctuations in Rδ similar to those of Browian motion, i.e. of the order
√

2 log t. This is

confirmed in the following theorem.

Theorem 3.4.4. Let δ > 0. Let f satisfy (3.3.9) and (3.3.3) and let Y be an irreducible

continuous–time Markov jump process with finite state space S. Let X be the unique

adapted continuous solution to (3.4.10) and let S satisfy (3.4.5). Then Rδ, defined by

(3.4.16), obeys

lim sup
t→∞

|Rδ(t)|√
2 log t

= σH

√
δ, a.s. (3.4.18)

This suggests that the “high” volatility periods are entirely responsible for the largest

fluctuations in the absolute δ–returns. This phenomenon cannot be observed from (3.3.10)

and (3.4.13) which deal with the cumulative returns, which include accumulated contri-

butions from high, moderate and low volatility periods.
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3.4.4 Results for a two–state volatility model

We continue our analysis of the case when X is given by (3.4.10), in which the diffusion

coefficient depends only on the switching process Y . In this example, Y is a two-state

Markov jump process. To capture this in the notation of the previous subsection we let

the state space S = {H,L} so the diffusion coefficient can take the values γ(H) = σH or

γ(L) = σL. This represents a market model where the volatility can be either “high” or

“low”, with values σH > σL > 0 respectively. The generator of Y , denoted Γ, is given by

Γ =

 −γ1 γ1

γ2 −γ2


where γ1 is the rate of transition from the high state to the low state, and γ2 is the

transition rate from the low state to the high state. In a typical situation one would have

γ2 < γ1 so that the process spends more time in the low volatility state in the long run.

We give calculations and interpretations in this case and we note that this can easily be

generalised to a finite number of volatility levels. However, econometric evidence indicates

that a two–state model is very often sufficient.

Recalling Corollary 3.3.1 we have that

lim sup
t→∞

|X(t)|√
2t log log t

= σ∗ a.s., where σ2
∗ =

∑
j∈S

γ2(j)πj (3.4.19)

and π = (πH , πL) can be found by solving πΓ = 0 (or equivalently −πHγ1 + πLγ2 = 0)

subject to the constraint πH + πL = 1. Solving these equations we arrive at

πH =
γ2

γ1 + γ2
, πL =

γ1

γ1 + γ2
.

Thus, σ2
∗ is now simply the weighted average of the different volatility levels

σ2
∗ = σ2

H

γ2

γ1 + γ2
+ σ2

L

γ1

γ1 + γ2
.
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As mentioned earlier, if γ2 < γ1 then more weight will be placed on the lower volatility

regime as more time will be spent in the low volatility state. This means that σ∗ will be

small and thus the fluctuations of |X|, given by (3.4.19), will be relatively small. On the

other hand, if πH is relatively close to unity then σ∗ can be quite large, and thus periods

in the high volatility regime can have a big impact on the fluctuations. Moreover, if σ∗ is

large then the growth rate, given by µ − σ2
∗/2, is reduced. These important features are

somewhat concealed in the statement of (3.4.19).

3.5 Proofs of Results from Section 3.3

Proof of Theorem 3.3.1. Applying Itô’s formula to (3.3.1) we get

dX2(t) =
[
2X(t)f(X(t), Y (t), t) + g2(X(t), Y (t), t)

]
dt

+ 2X(t)g(X(t), Y (t), t) dB(t), t ≥ 0. (3.5.1)

Let N be the local martingale defined by N(t) =
∫ t
0 2X(s)g(X(s), Y (s), s) dB(s). It has

quadratic variation given by 〈N〉(t) =
∫ t
0 4X2(s)g2(X(s), Y (s), s) ds. Then by Doob’s

martingale representation theorem (see Chapter 1 or Theorem 3.4.2 in [46]), there exists

another Brownian motion β in an extended probability space with measure P̃ such that

N(t) =
∫ t

0
2|g(X(s), Y (s), s)|

√
X2(s)dβ(s) P̃-a.s.

Now let Z(t) = X2(t) and let φ(t) = 2X(t)f(X(t), Y (t), t) + g2(X(t), Y (t), t) so that we

can write equation (3.5.1) as

dZ(t) = φ(t) dt+ 2|g(X(t), Y (t), t)|
√
Z(t) dβ(t). (3.5.2)

Let M(t) =
∫ t
0 |g(X(s), Y (s), s)| dβ(s), so 〈M〉(t) =

∫ t
0 g

2(X(s), Y (s), s) ds. Then by

the martingale time–change theorem (cf. e.g., Theorem 3.4.6 in [46]), we may define
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a new Brownian motion β̃ by β̃(〈M〉(t)) = M(t) and the stopping time τ by τ(t) =

inf{s > 0 : 〈M〉(s) > t}. Since g2(x, y, t) ≥ K2 > 0 it follows that 〈M〉 is increasing

and limt→∞〈M〉(t) = ∞. Thus 〈M〉−1 exists and in fact τ(t) = 〈M〉−1(t). Moreover,

M(τ(t)) = β̃(t) and we introduce the processes X̃(t) = X(τ(t)), Ỹ (t) = Y (τ(t)) and

Z̃(t) = Z(τ(t)). So now, applying this time-change to (3.5.2) we get:

Z̃(t) = Z(τ(t)) = Z(τ(0))+
∫ τ(t)

0
φ(s) ds+

∫ τ(t)

0
2|g(X(s), Y (s), s)|

√
Z(s) dβ(s). (3.5.3)

To deal with the stochastic integral above, we use Proposition 3.4.8 from [46], which states

that if η̃(t) = η(τ(t)) and η is Fβ–adapted, then
∫ τ(s)
0 η(u) dM(u) =

∫ s
0 η̃(u) dβ̃(u). In this

case, we set η(t) = 2
√
Z(t) and set M equal to the martingale defined above. Therefore

∫ τ(t)

0
2
√
Z(s) |g(X(s), Y (s), s)| dβ(s) =

∫ τ(t)

0
2
√
Z(s) dM(s) =

∫ t

0
2
√
Z̃(s) dβ̃(s).

To deal with the Riemann integral term in (3.5.3), we use Problem 3.4.5 from [46], which

states that if G is a bounded measurable function, and [a, b] ⊂ [0,∞) then we have∫ b
a G(s) d〈M〉(s) =

∫ 〈M〉(b)
〈M〉(a) G(τ(s)) ds. In this case, we set

G(t) = φ(t)/g2(X(t), Y (t), t)

and as d〈M〉(t) = g2(X(t), Y (t), t) dt, we obtain

∫ τ(t)

0
φ(s) ds =

∫ τ(t)

0
G(s) d〈M〉(s) =

∫ 〈M〉(τ(t))

〈M〉(0)
G(τ(s)) ds

=
∫ t

0

φ̃(s)
g2(X̃(s), Ỹ (s), τ(s))

ds,

where φ̃(t) = φ(τ(t)). So we can now write (3.5.3) as:

Z̃(t) = Z̃(0) +
∫ t

0

φ̃(s)
g2(X̃(s), Ỹ (s), τ(s))

ds+
∫ t

0
2
√
Z̃(s) dβ̃(s). (3.5.4)

Now, using conditions (3.3.2) and (3.3.4), it is easy to see that the drift coefficient of (3.5.4)

is bounded above by (K2 + 2ρ)/K2. Define the process which is uniquely determined by
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the stochastic differential equation

dU(t) = Cu dt+ 2
√
|U(t)| dβ̃(t), a.s. (3.5.5)

with U(0) ≥ Z̃(0) ≥ 0, where Cu = (K2 + 2ρ)/K2. We will now show, using a stochastic

comparison technique, that for all t ≥ 0, Z̃(t) ≤ U(t) a.s.

First, we must show that U(t) is positive so that we can drop the absolute value in

(3.5.5). We apply the stochastic comparison theorem (Theorem 2.2.1) to (3.5.5) and to

the equation dU1(t) = 2
√
|U1(t)| dβ̃(t) with U1(0) = 0; this shows that U(t) ≥ U1(t) a.s.,

and since the process U1 has the unique solution U1(t) = 0, it follows that U(t) ≥ 0 a.s.

Therefore U(t) in fact obeys

dU(t) = Cu dt+ 2
√
U(t) dβ̃(t), a.s. (3.5.6)

Finally, we can apply the comparison theorem to (3.5.4) and (3.5.6) to conclude that for

all t ≥ 0, Z̃(t) ≤ U(t) a.s. Now we can approximate an upper bound for Z̃ by getting

an upper bound for U . However, before we do that we will apply a time-change and

a change of scale to U to get a process with finite speed measure, using the techniques

mentioned in Subsection 3.2.2. Consider V (t) = e−tU(et − 1). By using the product rule

and introducing a new Brownian motion β̄ on an extended space, we can show that

dV (t) = [−V (t) + Cu] dt+ 2
√
V (t) dβ̄(t). (3.5.7)

A scale function of V is given by pV (x) = µ
∫ x
a e

y/2y−Cu/2 dy for a > Cu and µ :=

e−a/2aCu/2. One can check that V satisfies Theorem 1.0.1. Hence Theorem 1.0.2 can be

applied to V . Notice that for all y ≥ a, y 7→ ey/2y−Cu/2 is increasing. By L’Hôpital’s rule

lim
x→∞

pV (x)
µex/2x−Cu/2

= lim
x→∞

(Cu

2x
+

1
2

)−1
= 2,

and so there exists an x0 such that for x ≥ x0 we have pV (x) ≥ µex/2x−Cu/2. Let β > 1
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and define h(t) = 2β log t. Hence for t ≥ ex0/2β,

1
pV (h(t))

≤ 1
µ
e−β log t(2β log t)

Cu
2

and for any ε ∈ (0, β − 1) there exists tε such that for all t ≥ tε ∨ ex0/2β =: t∗ε,β

log
(
p−1

V (h(t)))
log t

≤ −β + ε.

Thus, we can apply Motoo’s theorem since

∫ ∞

t∗ε,β

1
pV (h(s))

ds ≤
∫ ∞

t∗ε,β

1
sβ−ε

ds < +∞.

Therefore lim supt→∞ V (t)/2 log t ≤ β a.s. and letting β ↓ 1 through the rational numbers,

lim sup
t→∞

V (t)
2 log t

≤ 1, a.s.

Using the fact that V (t) = e−tU(et − 1), we find that

lim sup
t→∞

U(t)
2t log log t

≤ 1, a.s.

So

lim sup
t→∞

Z(τ(t))
2t log log t

= lim sup
t→∞

Z̃(t)
2t log log t

≤ 1, a.s.

By definition, τ(t) = 〈M〉−1(t) and τ(·) is monotone, so it follows that

lim sup
t→∞

Z(t)
2〈M〉(t) log log〈M〉(t)

≤ 1, a.s. (3.5.8)

Since K2t ≤ 〈M〉(t) ≤ K1t, t ≥ 0, we can show that

lim
t→∞

log log 〈M〉(t)
log log t

= 1 and
t

〈M〉(t)
≥ t

K1t
=

1
K1

, a.s. for all t > 0.

Therefore (3.5.8) implies lim supt→∞ Z(t)/(2t log log t) ≤ K1 a.s. By taking square roots

on both sides we get the assertion.
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Proof of Theorem 3.3.2. Following the same argument as the previous proof, we arrive

at (3.5.4). Therefore

dZ̃(t) =
φ(τ(t))

g2(X̃(t), Ỹ (t), τ(t))
dt+ 2

√
Z̃(t) dβ̃(t).

By (3.3.6), it is easy to see that the drift coefficient of the above equation can be bounded

below by Cl := L+ 1
2 . Consider the process governed by the following equation

dU(t) = Cl dt+ 2
√
|U(t)| dβ̃(t)

with U(0) ≤ Z̃(0). Then it can be shown, using the same method as used in the previous

proof, that for all t ≥ 0, Z̃(t) ≥ U(t) ≥ 0. Applying changes in both time and scale again,

let V (t) = e−tU(et − 1) to get

dV (t) = (−V (t) + Cl) dt+ 2
√
V (t) dβ̄(t) t ≥ 0.

We proceed as before; the process V obeys Theorem 1.0.1, and so we may apply Theo-

rem 1.0.2 to it. Since a scale function of V is given by pV (x) = µ
∫ x
a e

1
2
yy−Cl/2 dy for a > Cl

and µ = e−a/2aCl/2, then by L’Hôpital’s Rule limx→∞ pV (x)/ex/2 = 0. This implies that

there exists x∗ > 0 such that for all x > x∗, pV (x) < ex/2. Hence if we let h(t) = 2 log t

and t∗ = ex∗/2, then for all t > t∗ we have pV (h(t)) < t and thus
∫∞
t∗

1/pV (h(s)) ds >∫∞
t∗

1/s ds = ∞. Therefore, by Motoo’s theorem, lim supt→∞ V (t)/2 log t ≥ 1 a.s. Since

V (t) = e−tU(et − 1), we get lim supt→∞ U(t)/(2t log log t) ≥ 1 a.s. Since Z̃(t) ≥ U(t), we

get lim supt→∞ Z̃(t)/(2t log log t) ≥ 1 a.s. Hence, as in the previous proof, we have

lim sup
t→∞

Z(t)
2〈M〉(t) log log〈M〉(t)

≥ 1, a.s. (3.5.9)

Proceeding as in the end of the last proof, we get the desired result (3.3.7).

Proof of Corollary 3.3.1. By (3.5.8) and (3.5.9), as Z(t) = X2(t), we have

lim sup
t→∞

X2(t)
2〈M〉(t) log log〈M〉(t)

= 1, a.s. (3.5.10)
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By analogy to the proof of Theorem 3.3.1, we have 〈M〉(t) =
∫ t
0 γ

2(Y (s)) ds and since γ

is bounded it follows that

lim
t→∞

log log t
log log 〈M〉(t)

= 1.

By Proposition 3.4.1 it follows that limt→∞〈M〉(t)/t = σ2
∗ a.s., which together with (3.5.10)

gives

1 = lim sup
t→∞

X2(t)
2t log log t

.
t

〈M〉(t)
.

log log t
log log 〈M〉t

= lim sup
t→∞

X2(t)
2t log log t

.
1
σ2
∗
, a.s.

Taking square roots yields the desired result.

Proof of Theorem 3.3.3. For all t ≥ 0

X(t) = x0 +
∫ t

0
f(X(s), Y (s), s)ds+

∫ t

0
g(X(s), Y (s), s) dB(s).

Let M1(t) =
∫ t
0 g(X(s), Y (s), s) dB(s), so 〈M1〉(t) =

∫ t
0 g

2(X(s), Y (s), s) ds. Hence for all

t ≥ 0, K2t ≤ 〈M1〉(t) ≤ K1t and limt→∞〈M1〉(t) = ∞ almost surely. Moreover 〈M1〉 is

increasing on (0,∞) and admits an inverse. Again we use the time-change theorem for

martingales: for each 0 ≤ t <∞, define the stopping time λ(t) := inf{s > 0 : 〈M1〉(s) > t}.

Thus 〈M1〉(λ(t)) = t and λ(t) = 〈M1〉−1(t) . A process defined byW (t) := M(λ(t)),∀ t ≥ 0

is a standard Brownian motion with respect to the filtration G(t) := F(λ(t)). Therefore,

as in the proof of Theorem 3.3.1, we get

X̃(t) := X(λ(t)) = x0 +
∫ λ(t)

0
f(X(s), Y (s), s)ds+

∫ λ(t)

0
g(X(s), Y (s), s)dB(s)

= x0 +
∫ t

0

f(X̃(s), Ỹ (s), λ(s))

g2(X̃(s), Ỹ (s), λ(s))
ds+W (t)

where Ỹ (t) := Y (λ(t)). Due to (3.3.12), we have

∀ (x, y, t) ∈ R× S× [0,∞), −f̃(x) ≤ f(x, y, t)
g2(x, y, t)

≤ f̃(x).

Consider two processes Z1 and Z2 governed by the following two equations, for t ≥ 0

dZ1(t) = f̃(Z1(t)) dt+ dW (t), dZ2(t) = −f̃(Z2(t)) dt+ dW (t)
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with Z2(0) ≤ x0 ≤ Z1(0). Then again by the stochastic comparison theorem, we can show

that for all t ≥ 0, Z2(t) ≤ X̃(t) ≤ Z1(t) a.s. Consider the scale function of Z1 defined as

the following

pZ1(x) =
∫ x

0
e−2

∫ y
0 f̃(z)dzdy, x ∈ R.

Then pZ1 ∈ C 2(R; R) and for all x ∈ R, we have

p′Z1
(x)f̃(x) +

1
2
p′′Z1

(x) = 0. (3.5.11)

This second order differential equation has solution p′Z1
(x) = exp[−2

∫ x
0 f̃(s)ds]. Since f̃ ∈

L1, there exist real numbers k1, k2 such that
∫∞
0 f̃(z)dz = k1 and

∫ 0
−∞ f̃(z)dz = k2, which

implies limx→∞ p′Z1
(x) = e−2k1 and limx→−∞ p′Z1

(x) = e2k2 . Moreover, by L’Hôpital’s

Rule,

lim
x→∞

pZ1(x)
x

= e−2k1 , lim
x→−∞

pZ1(x)
x

= e2k2 . (3.5.12)

So pZ1(∞) = ∞ and pZ1(−∞) = −∞ and by Proposition 5.5.22 in [46], the process Z1

is recurrent in the sense that lim supt→∞ Z1(t) = ∞ and lim inft→∞ Z1(t) = −∞ a.s. Let

H(t) = pZ1(Z1(t)). Then by Itô’s Rule and (3.5.11)

dH(t) = p′Z1
(Z1(t))dW (t), t ≥ 0,

with H(0) = pZ1(Z1(0)). This technique is known as the method of removal of drift and

can be found in Chapter 5 of [46]. Now since pZ1 is strictly increasing, the above equation

can be written as

dH(t) = l(H(t))dW (t), t ≥ 0,

where l(x) = p′Z1
(p−1

Z1
(x)), for all x ∈ R. H is also a recurrent process on R. Moreover,

(3.5.12) gives

lim
t→∞

sup0≤s≤tH(s)
sup0≤s≤t Z1(s)

= e−2k1 and lim
t→∞

inf0≤s≤tH(s)
inf0≤s≤t Z1(s)

= e2k2 , a.s. (3.5.13)
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For each t ≥ 0, define the continuous local martingale Q given by

Q(t) :=
∫ t

0
l(H(s)) dW (s),

which has quadratic variation 〈Q〉(t) :=
∫ t
0 l

2(H(s)) ds. Thus 〈Q〉′(t) > 0 for t > 0 and

〈Q〉 is an increasing function. Now

inf
x∈R

l2(x) = inf
x∈R

p′Z(p−1
Z (x))2 = inf

x∈R
e−4

∫ p−1
Z

(x)

0 f̃(z)dz = e−4 supx∈R
∫ x
0 f̃(z)dz > 0.

Similarly, supx∈R l
2(x) = e−4 infx∈R

∫ x
0 f̃(z)dz < ∞. Let l21 = infx∈R l

2(x) and let l22 =

supx∈R l
2(x), so for all t ≥ 0,

l21t ≤ 〈Q〉(t) ≤ l22t, (3.5.14)

which implies limt→∞〈Q〉(t) = ∞. Now define, for each 0 ≤ s < ∞, the stopping time

κ(s) = inf{t ≥ 0; 〈Q〉(t) > s}. It is obvious that κ is continuous and tends to infinity

almost surely. Furthermore 〈Q〉(κ(t)) = t, and κ−1(t) = 〈Q〉(t) for t ≥ 0. Then the

time-changed process W̃ (t) := Q(κ(t)) is a standard one-dimensional Brownian motion

with respect to the filtration J (t) := G(κ(t)). Hence we have

H̃(t) := H(κ(t)) = H(κ(0)) +
∫ κ(t)

0
l(H(s))dW (s) = H̃(0) + W̃ (t)

where H̃ is J (t)-adapted. So the law of the iterated logarithm holds for H̃, that is

1 = lim sup
t→∞

H(κ(t))√
2t log log t

= lim sup
t→∞

H(t)√
2〈Q〉(t) log log 〈Q〉(t)

, a.s.

Note by (3.5.14) for all t ≥ 0, that log l21 + log t ≤ log 〈Q〉(t) ≤ log l22 + log t, so we have

lim
t→∞

log log 〈Q〉(t)
log log t

= 1, a.s.

which implies

lim sup
t→∞

H(t)√
2〈Q〉(t) log log t

= 1, a.s.
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Similarly, by the law of the iterated logarithm,

lim inf
t→∞

H(t)√
2〈Q〉(t) log log t

= −1, a.s.

Now as 〈Q〉(t) ≤ l22t, we have

lim sup
t→∞

H(t)√
2t log log t

= lim sup
t→∞

√
〈Q〉(t)
t

· H(t)√
2〈Q〉(t) log log t

≤ l2, a.s.,

and similarly

lim inf
t→∞

H(t)√
2t log log t

≤ −l1, a.s.

Combining the above results with (3.5.13), we get

lim sup
t→∞

Z1(t)√
2t log log t

≤ e2k1 l2, and lim inf
t→∞

Z1(t)√
2t log log t

≤ −e−2k2 l1, a.s.

which implies

lim sup
t→∞

X(λ(t))√
2t log log t

= lim sup
t→∞

X̃(t)√
2t log log t

≤ lim sup
t→∞

Z1(t)√
2t log log t

≤ e−2 infx∈R
∫ x
0 f̃(y) dy

e−2
∫∞
0 f̃(y) dy

, a.s.,

and

lim inf
t→∞

X(λ(t))√
2t log log t

≤ −e−2 supx∈R
∫ x
0 f̃(y)dy

e2
∫ 0
−∞ f̃(y)dy

, a.s.

By an analogous argument to that given in the proof of Theorem 3.3.1, we get

lim sup
t→∞

X(t)√
2t log log t

≤
√
K1e

−2 infx∈R
∫ x
0 f̃(y) dy

e−2
∫∞
0 f̃(y)dy

, a.s.,

lim inf
t→∞

X(t)√
2t log log t

≤ −
√
K2e

−2 supx∈R
∫ x
0 f̃(y)dy

e2
∫ 0
−∞ f̃(y)dy

, a.s.

By considering Z2 in a similar manner, we deduce the lower estimates on lim sup and

lim inf of X in (3.3.13).
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3.6 Proofs of Results from Section 3.4

Proof of Theorem 3.4.1. Combining (3.4.8) and (3.4.5), we have

dS(t) = [µS(t) + f(X(t), Y (t), t)S(t)] dt+ σS(t) dB(t) t ≥ 0.

Thus S(t) = s0e
(µ−σ2

2
)t+X(t), t ≥ 0, which implies logS(t)/t = log s0/t+µ−σ2/2+X(t)/t.

Now by Corollary 3.3.1, we have limt→∞X(t)/t = 0, a.s. Therefore by letting t → ∞,

the first part of the conclusion is obtained. Since X(t) = logS(t) − log s0 − (µ − σ2

2 )t,

t ≥ 0, by applying Corollary 3.3.1 in the simple case in which γ(y) = σ for all y ∈ S, we

get the second part of the conclusion. For the third part, we observe that the assertion is

equivalent to

lim sup
t→∞

|Xδ(t)|√
2 log t

= |σ|
√
δ, a.s.

where Xδ(t) =
∫ t
t−δ f(X(s), Y (s), s) ds + σ(B(t) − B(t − δ)). Now since for all (x, y, t) ∈

R×S×R+ we have −ρσ2/|x| < f(x, y, t) < ρσ2/|x| by (3.3.9), then for any y ∈ S we have

lim|x|→∞ f(x, y, t) = 0. Also, because f is globally bounded by (3.3.3), we have

lim
t→∞

∫ t
t−δ f(X(s), Y (s), s)ds

√
2 log t

= 0, a.s.

Hence it remains to show that

lim sup
t→∞

|B(t)−B(t− δ)|√
2 log t

=
√
δ, a.s.

Consider Zδ(n) := (B(nδ) − B((n − 1)δ))/
√
δ, n ∈ N. Then {Zδ(n)}n∈N is a sequence of

independent standard normal random variables. Thus, by Lemma 1.0.1

lim sup
n→∞

|Zδ(n)|√
2 log n

= 1, a.s. (3.6.1)

It immediately follows that

lim sup
t→∞

|B(t)−B(t− δ)|√
2 log t

≥ lim sup
n→∞

|B(nδ)−B((n− 1)δ)|√
2 log n

=
√
δ, a.s. (3.6.2)
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For the upper estimate, by the triangle inequality

|B(t)−B(t−δ)| ≤ |B(t)−B(n1−ε)|+ |B(t−δ)−B(n1−ε−δ)|+ |B(n1−ε)−B(n1−ε−δ)|

(3.6.3)

where ε ∈ (0, 1). We now consider the first term on the right-hand side of the above

inequality. By properties of Brownian motions,

P[ sup
n1−ε≤t≤(n+1)1−ε

|B(t)−B(n1−ε)| > 1] = 2P[ sup
0≤t≤(1−ε)n̂−ε

B(t) > 1]

= 4P[B((1− ε)n̂−ε) > 1] = 4
(
1− Φ

( 1√
(1− ε)n̂−ε

))
,

where n̂ ∈ [n, n+ 1]. Again by Mill’s estimate and the Borel-Cantelli lemma, we have

lim sup
n→∞

max
t∈[n1−ε,(n+1)1−ε]

|B(t)−B(n1−ε)| ≤ 1 a.s., and (3.6.4)

lim sup
n→∞

max
t∈[n1−ε,(n+1)1−ε]

|B(t− δ)−B(n1−ε − δ)| ≤ 1, a.s. (3.6.5)

Again it can be shown using Lemma 1.0.1 that

lim sup
n→∞

|B(n1−ε)−B(n1−ε − δ)|√
2 log n

≤
√
δ, a.s. (3.6.6)

Therefore, combining the results from (3.6.3) to (3.6.6), for almost all ω ∈ Ω, if n1−ε ≤

t ≤ (n+ 1)1−ε, then for n sufficiently large

|B(t)−B(t− δ)|√
2 log t

≤ 1√
2(1− ε) log n

[
|B(t)−B(n1−ε)|

+ |B(t− δ)−B(n1−ε − δ)|+ |B(n1−ε)−B(n1−ε − δ)|
]

which implies lim supt→∞ |B(t) − B(t − δ)|/(
√

2 log t) ≤
√
δ/
√

1− ε a.s. Finally, letting

ε→ 0 through the rational numbers, we obtain

lim sup
t→∞

|B(t)−B(t− δ)|√
2 log t

≤
√
δ, a.s. (3.6.7)

Combining this with (3.6.2) completes the proof.
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Proof of Theorem 3.4.2. To show the statements in part (i), we observe that

logS(t) = logS(0) + µt−
∫ t

0

1
2
γ2(Y (s))ds+X(t).

which implies

logS(t)
t

=
logS(0)

t
+ µ− 1

2t

∫ t

0
γ2(Y (s))ds+

X(t)
t

.

Now by Corollary 3.3.1, we have limt→∞X(t)/t = 0, a.s. while by the ergodic property of

the Markov chain,

lim
t→∞

1
2t

∫ t

0
γ2(Y (s))ds =

σ2
∗
2

a.s.

Therefore by letting t→∞, the first assertion in part (i) is obtained. Since

logS(t)−
(
µt− 1

2

∫ t

0
γ2(Y (s))ds

)
= logS(0) +X(t),

also by Corollary 3.3.1, we get the second assertion in part (ii).

Proof of Theorem 3.4.3. This proof follows from Proposition 3.4.1 and (3.4.11). We

have

σ∗ = lim sup
t→∞

| logS(t)− µt+ 1
2σ

2
∗t+ 1

2

∫ t
0 γ

2(Y (s))ds− 1
2σ

2
∗t|√

2t log log t

≤ lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
+ lim sup

t→∞

1
2 t|

1
t

∫ t
0 γ

2(Y (s))ds− σ2
∗|√

2t log log t

≤ lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
+

1
2

∑
i∈S

γ2(i)βi.

Therefore we get one part of the assertion,

lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
≥ σ∗ −

1
2

∑
i∈S

γ2(i)βi, a.s. (3.6.8)

Similarly, for the second part of the assertion we have

logS(t)− (µ− 1
2
σ2
∗)t = logS(t)−

(
µt− 1

2

∫ t

0
γ2(Y (s))ds

)
+

1
2
(
σ2
∗t−

∫ t

0
γ2(Y (s))ds

)
.
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Thus, by (3.4.11) and (3.4.14) we get

lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
≤ σ∗ +

1
2

∑
i∈S

γ2(i)βi, a.s. (3.6.9)

Combining (3.6.8) and (3.6.9) gives the desired conclusion (3.4.13).

Before we prove Proposition 3.4.1, we state and prove the following lemma.

Lemma 3.6.1. If a(t), V (t) and U(t), t ≥ 0, are three continuous processes such that

V (t) ≤ a(t) ≤ U(t) where

lim sup
t→∞

|V (t)| ≤ v and lim sup
t→∞

|U(t)| ≤ u,

then

lim sup
t→∞

|a(t)| ≤ max(v, u).

Proof. If we have V (t) ≤ a(t) ≤ U(t), then a2(t) ≤ max(U2(t), V 2(t)) and |a(t)| ≤

max(|U(t)|, |V (t)|). Thus

lim sup
t→∞

|a(t)| ≤ lim sup
t→∞

[
max(|U(t)|, |V (t)|)

]
≤ max

(
lim sup

t→∞
|U(t)|, lim sup

t→∞
|V (t)|

)
≤ max(v, u),

as required.

Proof of Proposition 3.4.1. The first part of this proof is modelled on a similar proof

in [67]. Suppose that Y is recurrent and fix a state i. Then
(
Y (t)

)
t≥0

hits i with probability

1 and the long–run proportion of time in i equals the long–run proportion of time in i

after first hitting i. In other words, without loss of generality, we start in state i.

Denote by Mi(n) the length of the nth visit to i, by Ti(n) the time of the nth return

to i and by Li(n) the length of the nth excursion to i. Thus for n = 0, 1, 2, . . ., setting
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Ti(0) = 0, we have

Mi(n+ 1) = inf{t > Ti(n) : Y (t) 6= i} − Ti(n),

Ti(n+ 1) = inf{t > Ti(n) +Mi(n+ 1) : Y (t) = i},

Li(n+ 1) = Ti(n+ 1)− Ti(n).

Figure 3.1: Excursions of a Markov jump process

In summary, the length of the (n + 1)th visit is the difference between the time of the

nth return and the time of next exit from i. Then the time of the (n+ 1)th return to i is

the next time that Y (t) = i which must at least be greater than the time of the previous

return and its holding time. Finally, the length of the excursions from i is the distance

between two consecutive hitting times of i. Moreover, the time of the nth return to i is

equal to the sum of the n excursions to i since Li(1)+ · · ·+Li(n) = Ti(n)−Ti(0) = Ti(n).
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By the strong Markov property (of the jump process) at the stopping times Ti(n) for

n ≥ 0 we find that Li(1), Li(2), . . . are independent and identically distributed with mean

mi, and that Mi(1),Mi(2), . . . are independent and identically distributed with mean 1/qi.

Here qi =
∑

j 6=i γij is the off–diagonal row sum of the transition matrix. Hence, by the

strong law of large numbers

Li(1) + · · ·+ Li(n)
n

→ mi and
Mi(1) + · · ·+Mi(n)

n
→ 1

qi
as n→∞.

Therefore, with probability 1,

Mi(1) + · · ·+Mi(n)
Li(1) + · · ·+ Li(n)

→ 1
miqi

as n→∞.

Moreover, we note that Ti(n)/Ti(n+ 1) → 1 a.s. as n→∞. Now consider
∫ t
0 1{Y (s)=i}ds

for Ti(n) ≤ t < Ti(n+ 1). Since Ti(n) > inf{t > Ti(n− 1) : Y (t) 6= i} we have

∫ t

0
1{Y (s)=i}ds ≥

∫ inf{t>Ti(0):Y (s) 6=i}

Ti(0)
1 ds+ · · ·+

∫ inf{t>Ti(n−1):Y (s) 6=i}

Ti(n−1)
1 ds

= Mi(1) +Mi(2) + · · ·+Mi(n).

Similarly we can show that

∫ t

0
1{Y (s)=i}ds ≤Mi(1) +Mi(2) + · · ·+Mi(n+ 1).

Combining these estimates along with the fact that 1/Ti(n+ 1) ≤ 1/t ≤ 1/Ti(n), gives

Mi(1) + · · ·+Mi(n)
Ti(n+ 1)

≤ 1
t

∫ t

0
1{Y (s)=i}ds ≤

Mi(1) + · · ·+Mi(n+ 1)
Ti(n)

. (3.6.10)

Now we multiply above and below by Ti(n) on the left–hand side and Ti(n + 1) on the

right–hand side and use the fact that Ti(n) = Li(1) + · · ·+ Li(n) to get

Ti(n)
Ti(n+ 1)

Mi(1) + · · ·+Mi(n)
Li(1) + · · ·+ Li(n)

≤ 1
t

∫ t

0
1{Y (s)=i}ds

≤ Ti(n+ 1)
Ti(n)

Mi(1) + · · ·+Mi(n+ 1)
Li(1) + · · ·+ Li(n+ 1)
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so on letting t→∞ (and thus n→∞) we have, with probability 1

1
t

∫ t

0
1{Y (s)=i}ds→

1
miqi

. (3.6.11)

Since Y is irreducible and the state space S is finite, we are in the positive recurrent case

and we can write

∣∣∣1
t

∫ t

0
γ2(Y (s))ds− σ2

∗

∣∣∣ = ∣∣∣∑
i∈S

1
t
γ2(i)

∫ t

0
1{Y (s)=i}ds−

∑
i∈S

πiγ
2(i)
∣∣∣

=
∣∣∣∑

i∈S
γ2(i)

(1
t

∫ t

0
1{Y (s)=i}ds− πi

)∣∣∣ (3.6.12)

≤ max
j∈S

γ2(j)
∑
i∈S

∣∣∣1
t

∫ t

0
1{Y (s)=i}ds− πi

∣∣∣
where πi = 1/(miqi). By (3.6.11), for all ε > 0 there exists T = T (ω) sufficiently large

such that for t ≥ T (ω)

∑
i∈S

∣∣∣1
t

∫ t

0
1{Y (s)=i}ds− πi

∣∣∣ ≤ ε/max
j∈S

γ2(j)

and thus we have, for t ≥ T (ω),

∣∣∣1
t

∫ t

0
γ2(Y (s))ds− σ2

∗

∣∣∣ < ε,

which establishes the desired convergence. To prove the second assertion we must deter-

mine the rate of this convergence, which is ultimately determined by the rate of conver-

gence of t−1
∫ t
0 1{Y (s)=i}ds to 1/(miqi). For each t ≥ 0 there exists n = n(t) ∈ N such that

Ti(n) ≤ t < Ti(n+ 1) and n(t) →∞ as t→∞ a.s. So by (3.6.10),

1
t

∫ t

0
1{Y (s)=i}ds−

1
miqi

≤
∑n+1

k=1 Mi(k)
Ti(n)

− 1
miqi

=
∑n+1

k=1(Mi(k)− 1/qi)
Ti(n)

− 1
qi

[ 1
mi

− n+ 1
Ti(n)

]
. (3.6.13)

Also, using the fact that Ti(n) =
∑n

k=1 Li(k) we have

1
mi

− n+ 1
Ti(n)

=
Ti(n)− (n+ 1)mi

miTi(n)
=
∑n

k=1(Li(k)−mi)
miTi(n)

− 1
Ti(n)

.
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Combining this with (3.6.13) we see that

t√
2t log log t

(1
t

∫ t

0
1{Y (s)=i}ds−

1
miqi

)
≤
∑n+1

k=1(Mi(k)− 1/qi)√
2t log log t

t

Ti(n)

− 1
qimi

∑n
k=1(Li(k)−mi)√

2t log log t
t

Ti(n)
+

1
qi

t

Ti(n)
1√

2t log log t
=: Ui(t).

By (3.2.3) and (3.2.5), the random variables Mi(k) − 1/qi and Li(k) − mi are both in-

dependent and identically distributed with zero means and finite variances σ2
Mi

and σ2
Li

respectively. Since n : [0,∞) → N is surjective we have by the law of the iterated loga-

rithm,

lim sup
t→∞

|
∑n(t)+1

k=1 (Mi(k)− 1/qi)|√
2n(t) log log n(t)

≤ σMi , lim sup
t→∞

|
∑n(t)

k=1(Li(k)−mi)|√
2n(t) log log n(t)

≤ σLi , a.s.

Thus, since n(t) →∞ and n(t)/t→ 1/mi as t→∞, these sequences obey

lim sup
t→∞

|
∑n(t)+1

k=1 (Mi(k)− 1/qi)|√
2t log log t

≤ σMi√
mi
, lim sup

t→∞

|
∑n(t)

k=1(Li(k)−mi)|√
2t log log t

≤ σLi√
mi
,

(3.6.14)

with probability one. So, using Ti(n) ≤ t < Ti(n+ 1) and Ti(n+ 1)/Ti(n) → 1 as t→∞,

we get

lim sup
t→∞

|Ui(t)| ≤
σMi√
mi

+
1

qimi

σLi√
mi

=
1

√
mi

(
σMi + πiσLi

)
.

Similarly, by (3.6.10) we get the lower bound

1
t

∫ t

0
1{Y (s)=i}ds−

1
miqi

≥
∑n

k=1Mi(k)
Ti(n+ 1)

− 1
miqi

=
∑n

k=1(Mi(k)− 1/qi)
Ti(n+ 1)

− 1
qi

[ 1
mi

− n

Ti(n+ 1)

]
. (3.6.15)

Also, using the fact that Ti(n+ 1) =
∑n+1

k=1 Li(k) we have

1
mi

− n

Ti(n+ 1)
=
Ti(n+ 1)− nmi

miTi(n+ 1)
=
∑n+1

k=1(Li(k)−mi)
miTi(n+ 1)

+
1

Ti(n+ 1)
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Combining this with (3.6.15) we see that

t√
2t log log t

{1
t

∫ t

0
1{Y (s)=i}ds−

1
miqi

}
≥
∑n

k=1(Mi(k)− 1/qi)√
2t log log t

t

Ti(n+ 1)

− 1
qimi

∑n+1
k=1(Li(k)−mi)√

2t log log t
t

Ti(n+ 1)
− 1
qi

t

Ti(n+ 1)
1√

2t log log t
=: Vi(t).

Again the random variables Mi(k)− 1/qi and Li(k)−mi are both independent and iden-

tically distributed with zero means and finite variances σ2
Mi

and σ2
Li

respectively and they

obey the law of the iterated logarithm as per (3.6.14). So, using Ti(n) ≤ t < Ti(n + 1)

and Ti(n+ 1)/Ti(n) → 1 as t→∞, we get

lim sup
t→∞

|Vi(t)| ≤
σMi√
mi

+
1

qimi

σLi√
mi

=
1

√
mi

(
σMi + πiσLi

)
.

Thus, by Lemma 3.6.1,

lim sup
t→∞

t√
2t log log t

∣∣∣1
t

∫ t

0
1{Y (s)=i}ds− πi

∣∣∣ ≤ 1
√
mi

(
σMi + πiσLi

)
=: βi, a.s. (3.6.16)

Returning to (3.6.12) we have

∣∣∣1
t

∫ t

0
γ2(Y (s))ds− σ2

∗

∣∣∣ ≤∑
i∈S

γ2(i)
∣∣∣1
t

∫ t

0
1{Y (s)=i}ds− πi

∣∣∣
and hence, since the sum has finitely many terms,

lim sup
t→∞

t√
2t log log t

∣∣∣1
t

∫ t

0
γ2(Y (s))ds− σ2

∗

∣∣∣
≤
∑
i∈S

γ2(i) lim sup
t→∞

t√
2t log log t

∣∣∣1
t

∫ t

0
1{Y (s)=i}ds− πi

∣∣∣.
Finally, by (3.6.16) we get the desired conclusion.

Before we prove Theorem 3.4.4 we state a useful lemma.

Lemma 3.6.2. Suppose Y is an irreducible Markov jump process with generator Γ and

finite state space S, and moreover that Y is stationary. Let H ∈ S and δ > 0. Define for

n ≥ 0

An = {Y (s) = H for all s ∈ [nδ, (n+ 1)δ]}.
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Then

lim
m→∞

Cov(IAn , IAn+m) = 0. (3.6.17)

Proof of Lemma 3.6.2. Since Y is stationary, it has a stationary distribution π such

that πΓ = 0 and
∑

j∈S πj = 1 with each πj > 0. We note that P[An] = E[IAn ] and that

P[An ∩An+m] = E[IAnIAn+m ]. Therefore

Cov(IAn , IAn+m) = P[An ∩An+m]− P[An]P[An+m]. (3.6.18)

We compute P[An] and P[An ∩ An+m]. First, as Y is stationary and has exponential

holding times, we have

P[An] = P
[
{Y (s) = H for all s ∈ (nδ, (n+ 1)δ]} ∩ {Y (nδ) = H}

]
= P

[
Y (s) = H for all s ∈ (nδ, (n+ 1)δ]|Y (nδ) = H

]
P[Y (nδ) = H]

= P
[
Y (s) = H for all s ∈ (nδ, (n+ 1)δ]|Y (nδ) = H

]
πH = eγHHδπH =: π(δ).

Similarly, due to the stationarity of Y , we find P[An+m] = π(δ) also. Thus by the Markov

property we have for m ≥ 1,

P[An ∩An+m] = P[An+m|An]P[An]

= P
[
Y (s) = H for all s ∈ [(n+m)δ, (n+m+ 1)δ]

∣∣
Y (s) = H for all s ∈ [nδ, (n+ 1)δ]

]
π(δ)

= P
[
Y (s) = H for all s ∈ [(n+m)δ, (n+m+ 1)δ]

∣∣Y ((n+ 1)δ) = H
]
π(δ)

= P
[
{Y (s) = H for all s ∈ ((n+m)δ, (n+m+ 1)δ]}

∩ {Y ((n+m)δ) = H}
∣∣Y ((n+ 1)δ) = H

]
π(δ).
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Finally, using properties of conditional probability and the Markov property we get

P[An ∩An+m] = P
[
Y (s) = H for all s ∈ ((n+m)δ, (n+m+ 1)δ]

∣∣
{Y ((n+m)δ) = H,Y ((n+ 1)δ) = H}

]
× P

[
Y ((n+m)δ) = H

∣∣Y ((n+ 1)δ) = H
]
π(δ)

= P
[
Y (s) = H for all s ∈ ((n+m)δ, (n+m+ 1)δ]

∣∣
Y ((n+m)δ) = H

]
PHH((m− 1)δ)π(δ) = eγHHδPHH((m− 1)δ)π(δ),

where Pij(t) = P[Y (t+ s) = j|Y (s) = i]. Since Y is irreducible and finite, it follows from

Theorem 3.6.2 in [67] that

lim
m→∞

PHH((m− 1)δ) = πH . (3.6.19)

This implies

lim
m→∞

P[An ∩An+m] = eγHHδπHπ(δ).

Therefore, returning to (3.6.18) we have

lim
m→∞

Cov(IAn , IAn+m) = eγHHδπHπ(δ)− π(δ)2 = 0,

where we used the definition of π(δ) at the last step. This completes the proof.

Proof of Theorem 3.4.4. Applying Theorem 4.3 in [9] in the simple case where the

diffusion coefficient is t– and X–independent, gives the upper bound

lim sup
t→∞

|Rδ(t)|√
2 log t

≤ σH

√
δ, a.s. (3.6.20)

We are lead to prove (3.4.18) by the following argument. First Rδ(t) is given by (3.4.17),

so because the limits are finite we have

lim sup
t→∞

|Rδ(t)|√
2 log t

= lim sup
t→∞

|X(t− δ)−X(t)|√
2 log t

, a.s.

110



Chapter 3, Section 6 The Size of the Largest Fluctuations in a Market Model with Markovian Switching

and since

X(t)−X(t− δ) =
∫ t

t−δ
f(X(s), Y (s)) ds+

∫ t

t−δ
γ(Y (s)) dB(s), t ≥ δ

we have, using the fact that f is globally bounded by (3.3.3),

lim sup
t→∞

|Rδ(t)|√
2 log t

= lim sup
t→∞

|
∫ t
t−δ γ(Y (s)) dB(s)|

√
2 log t

, a.s.

In particular, with Un =
∫ (n+1)δ
nδ γ(Y (s)) dB(s) we have

lim sup
t→∞

|Rδ(t)|√
2 log t

≥ lim sup
n→∞

|Rδ((n+ 1)δ)|√
2 log((n+ 1)δ)

= lim sup
n→∞

|Un|√
2 log n

. (3.6.21)

Since Y is stationary, the probability that Y (nδ) = H is πH . Define the event An :=

{Y (s) = H, for all s ∈ [nδ, (n+ 1)δ]}. Then

P[An] = P[Y (nδ) = H]P[no jump from state H for at least δ time units]

= πHe
γHHδ =: π(δ).

Note also that the process {IAn : n ≥ 1} is stationary and that by Lemma 3.6.2 we have

Cov(IAn , IAn+m) → 0 as m →∞. Define Tn =
∑n

j=1 IAj . By Theorem 9.5.2 in [31] there

exists a random variable W such that limn→∞ Tn/n = W where E[W ] = π(δ) and by

Theorem 9.5.3 in [31], E[(Tn/n −W )2] → 0 as n → ∞. Therefore, using Problem 9.7.9

in [31] along with the fact that Cov(IAn , IAn+m) → 0 as m → ∞ it can be shown that

Tn/n→ π(δ) as n→∞ a.s. Let Ln = min{l ≥ n :
∑l

j=1 IAj = n}. By definition IALn
= 1.

Then if we consider the collection of {Uj : j = 1, . . . , n} for which IAj = 1 we have

max
1≤j≤n

|Uj | ≥ max
1≤k≤Tn

|ULk
|.

Next, if IAn = 1 then Y (s) = H for all s ∈ [nδ, (n + 1)δ] and thus we have Un =∫ (n+1)δ
nδ γ(H) dB(s) = γ(H)(B((n+ 1)δ)−B(nδ)). Without loss of generality we consider

the case when γ(H) > 0. If γ(H) < 0 then we can redefine the Brownian motion as
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B− = −B and proceed as in the case where γ(H) > 0. Hence, since γ(H) = σH , we get

max
1≤j≤n

|Uj | ≥ max
1≤k≤Tn

|ULk
| = max

1≤k≤Tn

|σH{B((Lk + 1)δ)−B(Lkδ)}|.

Therefore with ξ(k) := B((Lk + 1)δ)−B(Lkδ) we have

lim sup
n→∞

max1≤j≤n |Uj |√
2 log n

≥ lim sup
n→∞

max1≤k≤Tn |σHξ(k)|√
2 log Tn

·

√
log Tn

log n

= lim sup
n→∞

max1≤k≤Tn |σHξ(k)|√
2 log Tn

= σH lim sup
n→∞

max1≤k≤n |ξ(k)|√
2 log n

,

where we used the fact that Tn →∞ as n→∞ a.s. at the last step. Since B and Y are

independent, it follows that L = {Ln : n ≥ 1} and B are independent. Let m ∈ N and

k1 < k2 < . . . km. Then, because Lk+1 − Lk ≥ 1, we have

P[ξ(k1) ≤ x1, ξ(k2) ≤ x2, . . . , ξ(km−1) ≤ xm−1, ξ(km) ≤ xm]

=
∑

n1<n2···<nm

P[ξ(k1) ≤ x1, ξ(k2) ≤ x2, . . . , ξ(km−1) ≤ xm−1, ξ(km) ≤ xm|

Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm]

× P[Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm]

=
∑

n1<n2···<nm

P
[
B((Lk1 + 1)δ)−B(Lk1δ) ≤ x1, . . . , B((Lkm + 1)δ)−B(Lkmδ) ≤ xm|

Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm]

=
∑

n1<n2···<nm

P
[
B(n1 + 1)δ)−B(n1δ) ≤ x1, . . . , B((nm + 1)δ)−B(nmδ) ≤ xm|

Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm]

=
∑

n1<n2···<nm

P
[
B(n1 + 1)δ)−B(n1δ) ≤ x1, . . . , B((nm + 1)δ)−B(nmδ) ≤ xm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm],
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where we have used the independence of the B’s and L’s at the last step. Since δ > 0 and

we have 1 + ni ≤ ni+1, it follows that (ni + 1)δ ≤ ni+1δ. Therefore, because there is no

overlap of the Brownian increments, each of the random variables B((ni+1)δ)−B(niδ) for

i = 1, . . . ,m are independently and identically normally distributed with zero mean and

variance δ. Therefore if Φδ is the distribution function of a standardised normal random

variable, we have

P[ξ(k1) ≤ x1, ξ(k2) ≤ x2, . . . , ξ(km−1) ≤ xm−1, ξ(km) ≤ xm]

=
∑

n1<n2···<nm

P
[
B(n1 + 1)δ)−B(n1δ) ≤ x1

]
. . .P

[
B((nm + 1)δ)−B(nmδ) ≤ xm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm−1 = nm−1, Lkm = nm]

=
∑

n1<n2···<nm

Φδ (x1) · · ·Φδ (xm)× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm]

=
m∏

i=1

Φδ (xi)
∑

n1<n2···<nm

P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm] =
m∏

i=1

Φδ (xi) .

Thus {ξ(k) : k ≥ 1} is a sequence of independent and identically distributed normal

random variables with mean zero and variance δ. Therefore, by Lemma 1.0.1 and Lemma

3.1 in [6],

lim sup
n→∞

max1≤k≤n |ξ(k)|√
2 log n

= lim sup
n→∞

|ξ(n)|√
2 log n

=
√
δ, a.s.

Hence

Λ := lim sup
n→∞

max1≤j≤n |Uj |√
2 log n

≥ σH

√
δ, a.s.

This implies, again by Lemma 3.1 in [6], that

lim sup
n→∞

|Un|√
2 log n

= Λ ≥ σH

√
δ, a.s. (3.6.22)

Combining (3.6.20), (3.6.21) and (3.6.22) gives (3.4.18).
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Chapter 4

Asymptotic Consistency in the Large

Fluctuations of Discretised Market Models with

Markovian Switching

4.1 Introduction

Chapter 3 examined the application of large deviation results to a variant of the Geometric

Brownian Motion market model containing Markovian switching. This naturally leads to

the question of whether or not these results can be recovered in a discrete–time setting or

whether such results can be reliably captured by simulation. The first paper to appear in

the literature in relation to the numerical simulation of SDEs with Markovian switching

is [61]. The emphasis of this paper lies in error analysis, and in it they show the strong

convergence of the numerical method (in this case Euler–Maruyama) to the exact solution.

In recent years there has also been attention devoted to the question of whether or not

properties of the solution of an SDE are preserved under a discretisation, for example in

[39] and [58]. While the emphasis in these papers is on preserving mean–square stability

and preserving stationarity, we devote our attention to preserving asymptotic behaviour.

In this chapter we study the discretisations of the type of SDEs with Markovian switch-

ing found in Chapter 3, although for simplicity we restrict our attention to autonomous

equations. Moreover, we concentrate on the special case where the diffusion coefficient

depends only on the switching parameter. More specifically, we study the discretisation
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of an SDE of the form

dX(t) = f(X(t), Y (t)) dt+ γ(Y (t)) dB(t), t ≥ 0, (4.1.1)

where γ(y) and xf(x, y) are uniformly bounded above and below, and Y is an irreducible

continuous–time Markov chain with finite state space S independent of the Brownian

motion B. We then examine the influence that X has on the discretisation of the process

S which is governed by

dS(t) = µS(t) dt+ S(t) dX(t), t ≥ 0, (4.1.2)

and X obeys (4.1.1). Again, S may be thought of as a security price. (4.1.1) and (4.1.2)

are motivated by observations from financial market econometrics that security prices

often move from bearish to bullish (or other) regimes. These regimes are modelled by the

presence of the Markov process Y . Asymptotic properties of the continuous–time model

described by (4.1.1) and (4.1.2) are examined in Chapter 3.

This chapter shows that it is possible to discretise (4.1.1) and (4.1.2), by explicit Euler–

Maruyama methods, in such a way that the almost sure asymptotic behaviour of the

discretisation mimics that of the continuous–time equation, at least for all sufficiently

small uniform step sizes h. To make our discussion more precise, recall that

σ2
∗ =

∑
j∈S

γ2(j)πj , (4.1.3)

where π = (πj)j∈S is the stationary distribution of Y . We know from Chapter 3 that the

continuous–time stock price obeys

lim
t→∞

1
t

logS(t) = µ− 1
2
σ2
∗, a.s., (4.1.4)

and that there exist constants C1, C2 > 0 such that

C2 ≤ lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
≤ C1, a.s. (4.1.5)
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We have also shown that if Rδ, the returns process, is defined for δ > 0 by

Rδ(t) := log(S(t)/S(t− δ)), t ≥ δ, (4.1.6)

then

lim sup
t→∞

|Rδ(t)|√
2 log t

= σH

√
δ, a.s., (4.1.7)

where σH = maxj∈S |γ(j)|. It is shown in this chapter that each of these results is recovered

appropriately for the discretisations of (4.1.1) and (4.1.2). More precisely we prove that

if we take a h–uniform time discretisation, then the discretised stock price Sh obeys

lim
n→∞

1
nh

logSh(n) = µ− 1
2
σ2
∗, a.s. (4.1.8)

Moreover, we show that there exists a constant C ′(h) > 0 such that

lim sup
n→∞

| logSh(n)− (µ− 1
2σ

2
∗)nh|√

2nh log log nh
≤ C ′(h), a.s., (4.1.9)

and that the discrete returns Rδ,h defined by

Rδ,h(n) = log(Sh(n)/Sh(n−∆(h, δ)))

where ∆(h, δ) is the smallest integer greater than or equal to δ/h, obey

lim sup
n→∞

|Rδ,h(n)|√
2 log nh

= σH

√
h∆(h, δ), a.s., (4.1.10)

where σH is as defined earlier. Moreover the constant on the right–hand side of (4.1.10)

converges to the constant on the right–hand side of (4.1.7) as h → 0. The asymptotic

results (4.1.8)–(4.1.10) are clearly discrete analogues of (4.1.4)–(4.1.7).

In this chapter, the methods of discretisation and discussion of the main results are

given in Section 4.2, with proofs being postponed to Section 4.3.
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4.2 Discrete–Time Processes

4.2.1 Discretisation of the continuous–time Markov chain

We seek to approximate Y (t), as defined in Chapter 1, at the set of uniformly spaced time

points t = nh for n ≥ 0 and some fixed h > 0. We suppose that

0 < h < h1 := min
i∈S

1∑
j 6=i γij

. (4.2.1)

A consequence of irreducibility is that the denominator in each fraction is positive, so h1

is finite. Thus γii < 0. Now, as h < h1, for each i ∈ S we have

h < min
i∈S

1∑
j 6=i γij

≤ 1∑
j 6=i γij

=
1

−γii
.

Hence 1 + γiih > 0, and clearly we also have 1 + γiih < 1. For i 6= j we have γijh ≥ 0 and

as γij ≤
∑

k 6=i γik we have 1/γij ≥ 1/
∑

k 6=i γik = 1/− γii > h, so hγij < 1. Therefore the

N ×N matrix P (h) defined by

P (h) = IN + hΓ (4.2.2)

has Pij(h) = hγij ∈ (0, 1) for i 6= j and Pii(h) = 1 + hγii ∈ (0, 1). Moreover for each i ∈ S

we have
N∑

j=1

Pij(h) =
∑
j 6=i

hγij + 1 + hγii = 1 + h
(∑

j 6=i

γij + γii

)
= 1.

Therefore for h ∈ (0, h1) we have that P (h) is an N ×N stochastic matrix. We now define

the discrete–time and time–homogeneous Markov chain Yh = {Yh(n) : n ≥ 0} so that

Yh(0) = Y (0), where P (h) is the one–step transition matrix of Yh, namely

Pij(h) = P[Yh(n+ 1) = j|Yh(n) = i].

Note also that if π is the vector representing the stationary distribution of Y then π(h) = π

obeys

π(h)− π(h)P (h) = π − π(IN + hΓ) = −hπΓ = 0, (4.2.3)
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by (1.0.5). Since
∑N

j=1 πj = 1, it follows that π is also a stationary distribution of Yh.

We now show that irreducibility of Y implies that of Yh. The irreducibility of Y im-

plies that for every i, j ∈ S, one can find finite numbers i1, i2, · · · , ik ∈ S such that

γi,i1γi1,i2 · · · γik,j > 0. In this product, we can choose without loss of generality to

have i 6= i1, il 6= il+1 for l = 1, . . . , k − 1, ik 6= j. Therefore we have γi,i1 > 0,

γi1,i2 > 0, . . . , γik,j > 0 with i 6= i1, il 6= il+1 for l = 1, . . . , k − 1, and ik 6= j. Thus

we have Pi,i1(h) = γi,i1h > 0, Pi1,i2(h) = γi1,i2h > 0, . . . , Pik,j(h) = γik,jh > 0 with i 6= i1,

il 6= il+1 for l = 1, . . . , k − 1, and ik 6= j and therefore, by Theorem 1.2.1 in [67], Yh is

irreducible. Since the state space is finite, it follows that the chain is non–null persistent

(cf. e.g., [31, Lemma 6.3.5]) and since it is irreducible, by e.g., [31, Theorem 6.4.3] there

is a unique stationary distribution of Yh. By e.g., [16, Theorem 5.7], the finiteness of the

state space S and irreducibility of Yh we have that

lim
n→∞

[P (h)n]ij = π∗j (h),

where the limit is independent of i, π∗j (h) > 0 for each j ∈ S and
∑

j∈S π
∗
j (h) = 1. Moreover

by e.g., [16, Proposition 5.8] we have that π∗(h) = π∗(h)P (h). Therefore π∗(h) is a

stationary distribution of Yh. However, as the stationary distribution must be unique, and

we already know from (4.2.3) that π is a stationary distribution, we have that π∗(h) = π,

and so

lim
n→∞

[P (h)n]ij = πj , with the limit being independent of i.

We summarise the above discussion by stating a Theorem.

Theorem 4.2.1. Let Y be a continuous time Markov chain with finite state space S =

{1, . . . , N}. Suppose that Y has generator Γ and is irreducible. Let h < h1 where h1 > 0

is defined by (4.2.1). Then

(i) Y has a unique stationary distribution π ∈ R1×N given by (1.0.5).
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(ii) The N ×N matrix P (h) defined by (4.2.2) is stochastic.

(iii) If Yh = {Yh(n) : n ≥ 0} is a discrete–time and time homogeneous Markov chain with

state space S and with one–step transition matrix P (h), then Yh is irreducible and

has unique stationary distribution π.

(iv) If π is given by (1.0.5), and P (h) by (4.2.2) then for every i, j ∈ S we have

lim
n→∞

[P (h)n]ij = πj , with the limit being independent of i. (4.2.4)

(v) If P[Y (0) = i] = πi for all i ∈ S, and we define Yh(0) = Y (0), then both Y and Yh

are strictly stationary.

A proof of this theorem is omitted as the details were presented above.

Remark 4.2.1. It is worth noting that this method of discretising the Markov chain, namely

(4.2.2), is different to that used by Higham, Mao and Yuan in [39] for example, where the

discretisation takes the form

PY (h) = ehΓ. (4.2.5)

Although this discretisation method (4.2.5) does not require an initial step–size restriction

on h, it does however require more computational effort compared to the method described

in (4.2.2). In fact, (4.2.2) represents the first two terms in the Taylor expansion of (4.2.5),

while treating the remaining terms as negligible for small enough step–size. Nonetheless,

the actual simulation of the discrete Markov chain follows the same procedure as outlined

in [39]. Throughout the chapter we use (4.2.2) as an alternative to (4.2.5), although we

are free to use (4.2.5) if we wish to remove the initial step–size restriction.

Remark 4.2.2. It is clear then that the discrete chain Yh with transition matrix (4.2.2) rep-

resents an approximation to the original chain Y, it is not an exact discrete representation.

However, as shown above, P (h) defined in (4.2.2) is a stochastic matrix and it preserves
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the correct stationary distribution of the original chain. Moreover, the approximation is

good for sufficiently small h > 0 since

‖PY (h)− P (h)‖ = ‖ehΓ − (IN + hΓ)‖ ≤
∞∑

n=2

hn‖Γ‖n

n!
= O(h2). (4.2.6)

In fact, we can approximate (4.2.5) by taking the first m+1 terms in the Taylor expansion

and such a matrix will still preserve the stationary distribution of the original chain. So,

provided such a matrix is a stochastic matrix (which may be arranged for sufficiently small

h) this will approximate the original chain where the error is of order O(hm+1).

In a similar fashion to the continuous–time case in Chapter 3, we denote by Ti(r) the

time of the rth return to state i, by Si(r) the length of the rth excursion to i and by Vi(r)

the number of visits to i before time r. One can visualise these quantities in a similar way

to Figure 3.1. By Lemma 1.5.1 in [67],

the non-negative random variables Si(1), Si(2), . . . are i.i.d with mean mSi . (4.2.7)

Since the chain is time–homogenous, for each i ∈ S the lengths of the excursions Si(r)

are identically distributed for all r. The finiteness of the first and second moments of the

length of the excursions is a consequence of analysis of e.g., Hunter [44] and Kemeny and

Snell [48]. Alongside the fact that the second moments are finite, formulae for these finite

moments of passage times between any two states are deduced in [44, Theorem 7.3.10]

and in [48, Theorem 4.5.1], under the assumptions that the Markov chain is irreducible

and has a finite state space. Both of these stipulations are satisfied by our discretised

chain. Since the excursion time Si is simply the passage time to state i from state i, we

can therefore assume that

the sequence of random variables Si(1), Si(2), . . . has finite variance σ2
Si
. (4.2.8)

120



Chapter 4, Section 2Asymptotic Consistency in the Large Fluctuations of Discretised Market Models with Markovian Switching

4.2.2 Main Results

We are now in a position to state our main results. We consider the typical Euler–

Maruyama discretisation of the SDE (4.1.1), which takes the form

Xh(n+ 1) = Xh(n) + hf(Xh(n), Yh(n)) +
√
hγ(Yh(n))ξ(n+ 1), n ≥ 0, (4.2.9)

where h is the step size and ξ is a sequence of independent standard normal random

variables. We assume that there exists ρ > 0 such that

xf(x, y) ≤ ρ for all (x, y) ∈ R× S, (4.2.10)

and that f is globally bounded in the sense that

|f(x, y)| ≤ f̄ < +∞, for all (x, y) ∈ R× S. (4.2.11)

To motivate the discretisation of the stock price (4.1.2), note that Itô’s rule gives

d logS(t) =
[
µ+ f(X(t), Y (t))− 1

2
γ2(Y (t))

]
dt+ γ(Y (t))dB(t).

We define the gains process G by

G(t) := log
S(t)
S(0)

=
∫ t

0
µ+ f(X(s), Y (s))− 1

2
γ2(Y (s)) ds+

∫ t

0
γ(Y (s)) dB(s).

Then, a discretisation of this gains process is given by

Gh(n+ 1) = Gh(n) + h
[
µ+ f(Xh(n), Yh(n))− 1

2
γ2(Yh(n))

]
+
√
hγ(Yh(n))ξ(n+ 1), n ≥ 0 (4.2.12)

where the discretised stock price process obeys

Sh(n) = Sh(0) exp[Gh(n)], n ≥ 0; Sh(0) > 0. (4.2.13)

We note that one nice by–product of this discretisation is that the discretised stock prices

are automatically positive, almost surely.
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Theorem 4.2.2. Let h < h1 where h1 is defined by (4.2.1). Let f satisfy (4.2.10) and

(4.2.11) and let γ : S → R. Then Xh, the unique adapted solution satisfying (4.2.9),

satisfies

lim sup
n→∞

|Xh(n)|√
2nh log log nh

≤ σ∗
√

2e, a.s.

where σ∗ is defined by (4.1.3).

Notice that this result gives the same rate of growth but not the same constant as the

equivalent continuous–time result (3.3.10) in Chapter 3, as this result contains an extra

√
2e term. However, this difference between discrete–time and continuous–time results is

not a consequence of the discretisation process. Rather it is a consequence of the fact that

we use a different method of proof based on the exponential martingale inequality and

Gronwall’s Lemma (as opposed to the stochastic comparison methods used in Chapter

3). A continuous–time version of Theorem 4.2.2 was first established by an exponential

martingale and Gronwall lemma proof in [52]: the proof of Theorem 4.2.2 is modelled on

the argument in that work.

Moreover, the reason we have the factor of two (in contrast to the
√
e term that one would

normally expect when using this method of proof) is that the discrete–time analogue of

the exponential martingale inequality (see Lemma 4.3.1) contains two quadratic variation

terms instead of the usual one.

In light of Theorem 4.2.2 we get the following result for the trend rate of growth of the

stock price process (4.2.13).

Theorem 4.2.3. Let h < h1 where h1 is defined by (4.2.1). Let Sh be the discrete–time

stock price process given by (4.2.13) where Xh is given by (4.2.9). Let f obey (4.2.10) and

(4.2.11) and let γ : S → R. Then Sh obeys

lim
n→∞

1
nh

logSh(n) = µ− 1
2
σ2
∗,
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where σ∗ is defined by (4.1.3).

We also get a result concerning the deviations around this trend rate of growth.

Theorem 4.2.4. Let h < h1 where h1 is defined by (4.2.1). Let f obey (4.2.10) and

(4.2.11) and let Sh be the security price model given by (4.2.13) where Xh satisfies (4.2.9).

Then, using the ergodic theorem for Markov chains,

lim sup
n→∞

| logSh(n)− (µ− 1
2σ

2
∗)nh|√

2nh log log nh
≤ σ∗

√
2e+

1
2

∑
i∈S

γ2(i)
√
hαi, a.s.,

where σ∗ is defined by (4.1.3) and αi = σSi/(mSi

√
mSi) is deterministic.

Remark 4.2.3. On first impressions it appears as though the
√
h term on the right–hand

side above will cause the summation to go to zero, which would be inconsistent with the

continuous–time counterpart (3.4.13). However, a simulation of the problem (see Appendix

A) reveals evidence which suggests that in fact
√
hαi → α∗i as h→ 0 where α∗i is finite.

Also, we are unable to obtain a lower bound on the fluctuations (in contrast to the

continuous–time equivalent (3.4.13) in Chapter 3) because we do not have an exact fluc-

tuations result corresponding to Corollary 3.3.1 in the continuous case.

We now state the ergodic theorem and its associated rate of convergence, as used in the

previous theorem, in the following discrete–time analogue of Proposition 3.4.1.

Proposition 4.2.1. Let h < h1 where h1 is defined by (4.2.1). Let S be a finite, irreducible

state space, let γ : S → R and let Yh be a stationary discrete–time Markov chain. Then by

the ergodic theorem

lim
n→∞

1
nh

n∑
j=1

γ2(Yh(j))h = σ2
∗ =

∑
i∈S

γ2(i)πi.

Moreover, the rate of this convergence is given by

lim sup
n→∞

nh√
2nh log log nh

∣∣∣ 1
nh

n∑
j=1

γ2(Yh(j))h− σ2
∗

∣∣∣ ≤∑
i∈S

γ2(i)
√
hαi a.s.,

where αi = σSi/(mSi

√
mSi) is deterministic.
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4.2.3 Large fluctuations of the discretised δ–returns

In this subsection, we examine the large fluctuations of the δ–returns associated with the

discretised stock price process. We let X be given by (4.1.1) and Xh be given by (4.2.9).

Again the diffusion coefficient in (4.1.1) depends only on the N–state Markov jump process

Y . As before we let Yh be the discrete–time Markov chain which is a discretisation of Y .

We have shown in Chapter 3 that when Y is a stationary irreducible Markov jump

process independent of B, and X is the unique adapted continuous solution to (4.1.1) and

S satisfies (4.1.2), then Rδ, defined by (4.1.6), satisfies

lim sup
t→∞

|Rδ(t)|√
2 log t

= σH

√
δ, a.s., (4.2.14)

where σH = maxj∈S |γ(j)| > 0. We now wish to show that when the δ–returns are

appropriately discretised, the asymptotic behaviour of Rδ captured by (4.2.14) is recovered

in discrete–time. Let ∆ = ∆(h, δ) ∈ N0 be such that ∆(h, δ) =
⌈

δ
h

⌉
so

δ/h ≤ ∆(h, δ) < δ/h+ 1. (4.2.15)

Now we define the discrete–time approximation to the δ return by

Rδ,h(n) := log(Sh(n)/Sh(n−∆(h, δ))), n ≥ ∆(h, δ) (4.2.16)

so that Rδ,h(n) approximates Rδ(nh). We see from (4.2.12) and (4.2.13) that for n ≥ ∆

Rδ,h(n) = Gh(n)−Gh(n−∆) =
∆∑

j=1

[
Gh(n+ 1− j)−Gh(n− j)

]
=

∆∑
j=1

h
{
µ+ f(Xh(n− j), Yh(n− j))− 1

2
γ2(Yh(n− j))

}
+

∆∑
j=1

√
hγ(Yh(n− j))ξ(n+ 1− j).

It proves convenient to introduce the process V∆(n) by

V∆(n) =
n−1∑

l=n−∆

γ(Yh(l))ξ(l + 1), n ≥ ∆, (4.2.17)
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so that Rδ,h is given by

Rδ,h(n) =
n−1∑

l=n−∆

h
[
µ+ f(Xh(l), Yh(l))− 1

2
γ2(Yh(l))

]
+
√
hV∆(n), n ≥ ∆. (4.2.18)

We have the following result concerning the large fluctuations of Rδ,h which corresponds

to (4.2.14) in the continuous–time case.

Theorem 4.2.5. Let f obey (4.2.10) and (4.2.11) and let Y be an irreducible N–state

Markov jump process. Let h < h1 and let Yh be the discrete Markov chain defined in

Theorem 4.2.1. Suppose that Sh is given by (4.2.13). Let δ > 0, and suppose that ∆(h, δ) ∈

N is defined by (4.2.15). Then Rδ,h defined by (4.2.16) obeys

lim sup
n→∞

|Rδ,h(n)|√
2 log nh

= σH

√
h∆(h, δ), a.s., (4.2.19)

where σH = maxj∈S |γ(j)|.

Note that (4.2.19) shows that the discretised returns Rδ,h defined by (4.2.16) have the

same exact a.s. power logarithmic growth in time of its large fluctuations as described

by (4.2.14) which is experienced by the continuous–time process Rδ defined by (4.1.6).

Moreover, as the time step h tends to zero, the growth rates of the discrete process

converges to that of the continuous process since the coefficient c(h) := σH

√
h∆(h, δ) on

the righthand side of (4.2.19) converges to the coefficient c = σH

√
δ on the righthand side

of (4.2.14), because by (4.2.15) we have δ ≤ h∆(h, δ) < δ + h.

4.3 Proofs of Results from Section 4.2

4.3.1 Preliminaries

We first state discrete–time analogues of the well–known Exponential Martingale Inequal-

ity and Gronwall Inequality. These will be useful in proving the subsequent results.
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Lemma 4.3.1. Let M be a locally square–integrable martingale with predictable quadratic

variation 〈M〉n =
∑n

k=1 E[(∆Mk)2|Fk−1] and total quadratic variation given by [M ]n =∑n
k=1(∆Mk)2. Then, for any α, β > 0 and N ∈ N we have

P
[

max
1≤n≤N

{Mn −
α

2
([M ]n + 〈M〉n)} ≥ β

]
≤ e−αβ .

Proof. By Lemma B.1 in [13] it follows that for all α > 0 and n ≥ 0,

Vα(n) := exp
[
αMn −

α2

2
([M ]n + 〈M〉n)

]
is a positive supermartingale with E[Vα(n)] ≤ 1. Then by the supermartingale inequality

(see for example [62]) we have, for any c > 0,

cP
[

max
1≤n≤N

Vα(n) ≥ c
]
≤ E[V0] = 1

and hence

P
[

max
1≤n≤N

exp[αMn −
α2

2
([M ]n + 〈M〉n)] ≥ c

]
≤ 1
c
.

Now, taking logs and dividing by α we obtain

P
[

max
1≤n≤N

{
Mn −

α

2
([M ]n + 〈M〉n)

}
≥ 1
α

log c
]
≤ 1
c
.

Finally, letting c > 0 be such that (log c)/α = β we obtain the desired result.

A more detailed discussion of this discrete–time EMI is postponed to the next chapter.

Lemma 4.3.2. Let a > 0 and c > 0. Let y(·) and b(·) be nonnegative sequences. If

y(n) ≤ a+ c
n−1∑
j=0

b(j)y(j), n ≥ 1,

then

y(n) ≤ a

n−1∏
j=0

(1 + c b(j)), n ≥ 1.
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Proof. Let Y (n) := a + c
∑n−1

j=0 b(j)y(j) for n ≥ 1 where, by the summation convention,

Y (0) = a and Y (n) ≥ a. Then y(n) ≤ Y (n) for n ≥ 1. Now since Y (n + 1) − Y (n) =

c b(n)y(n) ≤ c b(n)Y (n) we have Y (n+ 1) ≤ (1 + c b(n))Y (n) and by iteration Y (n+ 1) ≤

Y (0)
∏n

j=0(1 + c b(j)), from which the result follows.

4.3.2 Ergodic theorem for a product of white noise and a Markov chain

In the proof of Theorem 4.2.2 we encounter a term which involves the product of a white

noise term and a Markov chain. Here we introduce some auxiliary results which will help

us to deal with such terms as they arise. We assume that

ζ = {ζ(n) : n ∈ N} and η = {η(n) : n ∈ N} are independent processes

i.e., ζ(n) and η(m) are independent for each n,m ∈ N (4.3.1)

as well as

ζ is a sequence of i.i.d. non–negative random variables with finite mean µζ (4.3.2)

and

η is an irreducible, stationary Markov chain with transition probability

matrix P , on a finite state space S ⊂ (0,∞). (4.3.3)

If we denote the stationary distribution of η by π, then

µη := E[η(1)] =
∑
j∈S

jπj . (4.3.4)

Lemma 4.3.3. Suppose that the processes ζ and η obey (4.3.1), (4.3.2) and (4.3.3). Then

the process U := ζη is both strictly and weakly stationary.

Lemma 4.3.4. If η is a sequence which obeys (4.3.3) and limn→∞
[
Pn(h)

]
ij

= πj, then

Cov(η(0), η(n)) → 0 as n→∞.
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Proposition 4.3.1. Suppose that the processes ζ and η obey conditions (4.3.1), (4.3.2)

and (4.3.3) and that η satisfies Lemma 4.3.4. Then the process U = ζη obeys

lim
n→∞

1
n

n∑
j=1

U(j) = µζ

∑
j∈S

jπj = µζµη a.s. (4.3.5)

Proof of Lemma 4.3.3. Suppose momentarily that U is strictly stationary. Since ζ and

η are independent and non–negative, we have

E[U(n)] = E[η(n)ζ(n)] = E[η(n)]E[ζ(n)] = µηµζ =: µU .

Next, we consider Cov(U(n), U(n+ k)) for k ≥ 0 and n ∈ N. By definition

Cov(U(n), U(n+ k)) = E[(U(n)− µU )(U(n+ k)− µU )],

if it exists. We will show that E[U(n)U(n + k)] exists and then use this to compute

Cov(U(n), U(n + k)) = E[U(n)U(n + k)] − µ2
U . Since U(n) is non–negative for each n,

E[U(n)U(n + k)] exists, though may possibly be infinite. Now by the independence of η

and ζ and the non–negativity of η and ζ we have

E[U(n)U(n+ k)] = E[η(n)ζ(n)η(n+ k)ζ(n+ k)] = E[η(n)η(n+ k)]E[ζ(n)ζ(n+ k)].

Finally, using the fact that ζ is a sequence of independent random variables with finite

mean, we get E[U(n)U(n + k)] = E[η(n)η(n + k)]µ2
ζ . This quantity is finite because η

assumes only a finite number of values. Therefore

Cov(U(n), U(n+ k)) = E[η(n)η(n+ k)]µ2
ζ − µ2

U = E[η(n)η(n+ k)]µ2
ζ − µ2

ζµ
2
η.

Hence we have Cov(U(n), U(n+k)) = µ2
ζCov(η(n), η(n+k)). Since η is strictly stationary

and assumes only finitely many values, it has finite variance and is therefore weakly sta-

tionary. Therefore Cov(η(n), η(n + k)) = Cov(η(0), η(k)), and so Cov(U(n), U(n + k)) =

µ2
ζCov(η(0), η(k)) =: ρU (k). Therefore U is weakly stationary since the covariance depends

only on k.
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We now turn to the proof that U is strictly stationary. We wish to prove for any n ∈ N,

any collection of non–negative integers j1, . . . , jn and j ≥ 0 and any x1, . . . , xn ∈ R that

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

= P[U(j1 + j) ≤ x1, U(j2 + j) ≤ x2, U(j3 + j) ≤ x3, . . . , U(jn + j) ≤ xn]. (4.3.6)

Let each ζ have distribution function F . We evaluate the lefthand side of (4.3.6) and

deduce by analogy a formula for the righthand side; it will transpire that these formulae

will be equal by virtue of the stationarity of η. By definition

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

= P[η(j1)ζ(j1) ≤ x1, η(j2)ζ(j2) ≤ x2, η(j3)ζ(j3) ≤ x3, . . . , η(jn)ζ(jn) ≤ xn].

The Law of Total probability gives

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

=
∑
l1∈S

∑
l2∈S

· · ·
∑
ln∈S

P[η(j1)ζ(j1) ≤ x1, η(j2)ζ(j2) ≤ x2, . . . , η(jn)ζ(jn) ≤ xn|

η(j1) = l1, η(j2) = l2, . . . , η(jn) = ln]× P[η(j1) = l1, η(j2) = l2, . . . , η(jn) = ln].

Therefore as each lj ∈ S is positive, we have

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

=
∑
l1∈S

∑
l2∈S

· · ·
∑
ln∈S

P[ζ(j1) ≤ x1/l1, ζ(j2) ≤ x2/l2, . . . , ζ(jn) ≤ xn/ln|

η(j1) = l1, η(j2) = l2, . . . , η(jn) = ln]× P[η(j1) = l1, η(j2) = l2, . . . , η(jn) = ln].
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By (4.3.1) we get

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

=
∑
l1∈S

∑
l2∈S

· · ·
∑
ln∈S

P[ζ(j1) ≤ x1/l1, ζ(j2) ≤ x2/l2, . . . , ζ(jn) ≤ xn/ln]

× P[η(j1) = l1, η(j2) = l2, . . . , η(jn) = ln],

and the fact that ζ is a sequence of i.i.d. random variables with distribution function F

implies

P[U(j1) ≤ x1, U(j2) ≤ x2, U(j3) ≤ x3, . . . , U(jn) ≤ xn]

=
∑
l1∈S

· · ·
∑
ln∈S

F (x1/l1)F (x2/l2) . . . F (xn/ln)P[η(j1) = l1, . . . , η(jn) = ln]. (4.3.7)

In the same manner we have

P[U(j1 + j) ≤ x1, U(j2 + j) ≤ x2, U(j3 + j) ≤ x3, . . . , U(jn + j) ≤ xn]

=
∑
l1∈S

· · ·
∑
ln∈S

F (x1/l1)F (x2/l2) . . . F (xn/ln)P[η(j1 + j) = l1, . . . , η(jn + j) = ln],

which by the stationarity of η gives

P[U(j1 + j) ≤ x1, U(j2 + j) ≤ x2, U(j3 + j) ≤ x3, . . . , U(jn + j) ≤ xn]

=
∑
l1∈S

· · ·
∑
ln∈S

F (x1/l1)F (x2/l2) . . . F (xn/ln)P[η(j1) = l1, . . . , η(jn) = ln].

Comparing this with (4.3.7) gives (4.3.6).

Proof of Lemma 4.3.4. We note that as η is stationary, we have P[η(0) = i] = πi and

P[η(n) = i] = πi. Therefore

E[η(n)] = E[η(0)] =
∑
i∈S

iπi. (4.3.8)
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Also we have

E[η(0)η(n)] =
∑
i∈S

∑
j∈S

ijP[η(0) = i, η(n) = j] =
∑
i∈S

∑
j∈S

ijP[η(n) = j|η(0) = i]P[η(0) = i]

=
∑
i∈S

iπi

∑
j∈S

jP[η(n) = j|η(0) = i].

Let P be the transition matrix associated with the Markov chain η. Then P[η(n) =

j|η(0) = i] = [Pn]ij . Now, by assumption we have limn→∞[Pn]ij = πj . Therefore P[η(n) =

j|η(0) = i] → πj as n→∞. Since the state space S is finite, we have

lim
n→∞

E[η(0)η(n)] = lim
n→∞

∑
i∈S

iπi

∑
j∈S

jP[η(n) = j|η(0) = i]

=
∑
i∈S

iπi

∑
j∈S

j lim
n→∞

P[η(n) = j|η(0) = i] =
∑
i∈S

iπi

∑
j∈S

jπj =

(∑
i∈S

iπi

)2

.

Combining this with (4.3.8) we have

lim
n→∞

Cov(η(0), η(n)) = lim
n→∞

E[η(0)η(n)]− E[η(0)]2 = 0,

whence the result.

Proof of Proposition 4.3.1. By Lemma 4.3.3 we have that U is strictly stationary.

Thus it follows from the ergodic theorem for strictly stationary sequences (see e.g., Theo-

rem 9.5.2 in [31]) that there exists a random variable U∗ with E[U∗] = E[U ] and

lim
n→∞

1
n

n∑
j=1

U(j) = U∗, a.s.,

and in mean. Since E[U(j)] = µζµη = µU we have

lim
n→∞

1
n

n∑
j=1

{U(j)− µζµη} = U∗ − µζµη =: V∗, a.s.,

and the random variables V (j) := U(j)−µU in the summand have zero mean. Next notice

that V is also weakly stationary with autocovariance function ρV , where ρV (k) = ρU (k) =

µ2
ζCov(η(0), η(k)) and so ρV (k) → 0 as k →∞. Therefore

λ := lim
n→∞

1
n

n∑
j=1

ρV (j) = 0.
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Thus by Lemma 9.5.12 in [31] we have that E[V∗] = 0 and E[V 2
∗ ] = λ = 0, and so V∗ = 0

a.s., from which we can deduce (4.3.5).

4.3.3 Proofs of main results

Proof of Theorem 4.2.2. Fix h ∈ (0, h1), where h1 is defined by (4.2.1). By squaring

(4.2.9) and by adding and subtracting hγ2(Yh(n)) we have, for n ≥ 0,

X2
h(n+ 1)−X2

h(n) = λh(Xh(n), Yh(n)) + 2h
√
hf(Xh(n), Yh(n))γ(Yh(n))ξ(n+ 1)

+ 2
√
hXh(n)γ(Yh(n))ξ(n+ 1) + hγ2(Yh(n))[ξ2(n+ 1)− 1], (4.3.9)

where λh(x, y) := 2hxf(x, y) + hγ2(y) + h2f2(x, y). Then define

∆M (1)
h (n+ 1) = 2h

√
hf(Xh(n), Yh(n))γ(Yh(n))ξ(n+ 1), n ≥ 0,

∆M (2)
h (n+ 1) = hγ2(Yh(n))[ξ2(n+ 1)− 1], n ≥ 0,

∆θh(n+ 1) = 2
√
hXh(n)γ(Yh(n))ξ(n+ 1), n ≥ 0.

ThusM (1)
h (n+1) :=

∑n
j=0 ∆M (1)

h (j+1), M (2)
h (n+1) :=

∑n
j=0 ∆M (2)

h (j+1) and θh(n+1) :=∑n
j=0 ∆θh(j + 1) are martingales with respect to the natural filtration generated by the

ξ’s. Returning to (4.3.9) and summing on both sides then gives, for n ≥ 0,

X2
h(n+1)−X2

h(0) =
n∑

j=0

λh(Xh(n), Yh(n))+M (1)
h (n+1)+M (2)

h (n+1)+θh(n+1). (4.3.10)

Note that the martingales M (1)
h and M (2)

h have predictable quadratic variation

〈M (1)
h 〉(n+ 1) =

n∑
j=0

4h3f2(Xh(j), Yh(j))γ2(Yh(j)) ≤ (n+ 1)4h3f̄2γ̄2,

〈M (2)
h 〉(n+ 1) =

n∑
j=0

h2γ4(Yh(j))c∗ ≤ (n+ 1)h2γ̄4c∗,

where f̄ is defined by (4.2.11), γ̄ := maxj∈S γ(Yh(j)) and c∗ := Var[ξ2(j + 1)− 1] < +∞.

By Section 12.14 in [80] it follows that

lim
n→∞

M
(k)
h (n+ 1)

〈M (k)
h 〉(n+ 1)

= 0, a.s. for k = 1, 2.
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Therefore we have

lim
n→∞

M
(k)
h (n+ 1)
n+ 1

= lim
n→∞

M
(k)
h (n+ 1)

〈M (k)
h 〉(n+ 1)

.
〈M (k)

h 〉(n+ 1)
n+ 1

= 0, a.s. for k = 1, 2. (4.3.11)

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has predictable quadratic variation given by

〈θh〉(n+ 1) =
n∑

j=0

E[(∆θh(j + 1))2|Fj ] =
n∑

j=0

4hγ2(Yh(j))X2
h(j)E[ξ2(j + 1)|Fj ]

=
n∑

j=0

4hγ2(Yh(j))X2
h(j)E[ξ2(j + 1)] =

n∑
j=0

4hγ2(Yh(j))X2
h(j),

and has total quadratic variation given by

[θh](n+ 1) =
n∑

j=0

(∆θh(j + 1))2 =
n∑

j=0

4hγ2(Yh(j))X2
h(j)ξ2(j + 1), n ≥ 0.

Hence the sum of the quadratic variations is given by

〈θh〉(n+ 1) + [θh](n+ 1) =
n∑

j=0

4hγ2(Yh(j))X2
h(j)

[
1 + ξ2(j + 1)

]
, for n ≥ 0. (4.3.12)

Applying Lemma 4.3.1 where β > 0 and τ > 1 are arbitrary constants we have that for

all n ∈ N,

P
[

max
1≤m≤bτnc

{
θh(m)− β

2τn

m−1∑
j=0

4hγ2(Yh(j))X2
h(j)

[
1 + ξ2(j + 1)

]}
≥ τn+1

β
log n

]
≤ 1
nτ
,

where b·c signifies the integer part. The Borel–Cantelli lemma then yields that for almost

all ω ∈ Ω, where P[Ω] = 1, there is a random integer n0 = n0(ω, h) sufficiently large such

that
⌊
τn0−1

⌋
> e1 and for n ≥ n0 we have

θh(m) ≤ τn+1

β
log n+

2β
τn

m−1∑
j=0

hγ2(Yh(j))X2
h(j)[1 + ξ2(j + 1)], 1 ≤ m ≤ bτnc . (4.3.13)

Recall from (4.3.10) that

X2
h(m) = X2

h(0) +
m−1∑
j=0

λh(Xh(j), Yh(j)) +M
(1)
h (m) +M

(2)
h (m) + θh(m), m ≥ 1. (4.3.14)
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Then define

Th(m) := X2
h(0) +

m−1∑
j=0

λh(Xh(j), Yh(j)) +M
(1)
h (m) +M

(2)
h (m),

and note that by (4.2.10) and (4.2.11) we get

λh(x, y) = 2hxf(x, y) + h2f2(x, y) + hγ2(y) ≤ 2hρ+ h2f̄2 + hγ̄2 := λ̄h.

Therefore, as a result of (4.3.11) it follows that

lim sup
m→∞

Th(m)
m

≤ λ̄h, a.s.

Thus, for each fixed h ∈ (0, h1) there is an m1(h, ω) ∈ N such that Th(m) ≤ 2λ̄hm for

m ≥ m1(h, ω). Moreover, on the finite set m ∈ {1, . . . ,m1(h, ω)−1} there exists a constant

T ∗(h, ω) < +∞ such that Th(m) ≤ T ∗(h, ω). Combining both of these estimates we have

Th(m) ≤ T ∗(h, ω) + 2λ̄hm for m ≥ 1. Using this bound, along with (4.3.13), (4.3.14) and

the definition of Th we have, for n ≥ n0 and 1 ≤ m ≤ bτnc ≤ τn,

X2
h(m) ≤ T ∗(h, ω) + 2λ̄hτ

n +
τn+1

β
log n+

2β
τn

m−1∑
j=0

hX2
h(j)γ2(Yh(j))[1 + ξ2(j + 1)].

Following the notation of Lemma 4.3.2, set y(m) := X2
h(m), ah(n) := T ∗(h, ω) + 2λ̄hτ

n +

β−1τn+1 log n, c(n) := 2βτ−n and bh(j) := hγ2(Yh(j))[1+ξ2(j+1)]. Therefore, for n ≥ n0,

y(m) ≤ ah(n) + c(n)
m−1∑
j=0

bh(j)y(j), 1 ≤ m ≤ bτnc ,

and so we can then apply Lemma 4.3.2 to conclude that for n ≥ n0,

X2
h(m) ≤ ah(n)

m−1∏
j=0

(
1 + c(n)bh(j)

)
, 1 ≤ m ≤ bτnc .

Then using the fact that 1 + x ≤ ex for any x ≥ 0 we get, for n ≥ n0 and 1 ≤ m ≤ bτnc,

X2
h(m) ≤ ah(n) exp

[
2hβτ−n

m−1∑
j=0

γ2(Yh(j))
(
1 + ξ2(j + 1)

)]

≤ ah(n) exp
[
2hβ

1
bτnc

bτnc−1∑
j=0

γ2(Yh(j))
(
1 + ξ2(j + 1)

)]
.
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Now let 1 ≤
⌊
τn−1

⌋
≤ m ≤ bτnc. Then for n ≥ n0,

X2
h(m)

2mh log logm
≤ ah(n)
β−1τn+1 log n

1
2βh

τn+1

bτn−1c
log n

log log bτn−1c

× exp
[
2hβ

1
bτnc

bτnc−1∑
j=0

γ2(Yh(j))
(
1 + ξ2(j + 1)

)]
. (4.3.15)

Notice that limn→∞ ah(n)/(β−1τn+1 log n) = 1 and since τn−1 − 1 ≤
⌊
τn−1

⌋
≤ τn−1 we

have limn→∞ τn+1/
⌊
τn−1

⌋
= τ2. Moreover,

log
[
(n− 1) log τ + log (1− 1/τn−1)

]
≤ log log

⌊
τn−1

⌋
≤ log(n− 1) + log log τ

and thus dividing by log n and taking the limit as n→∞ we find that

lim
n→∞

log log
⌊
τn−1

⌋
log n

= 1.

Moreover, by Propositions 4.2.1 and 4.3.1 we have

lim
n→∞

1
bτnc

bτnc−1∑
j=0

γ2(Yh(j))
[
1 + ξ2(j + 1)

]
= lim

n→∞

1
bτnc

bτnc−1∑
j=0

γ2(Yh(j))

+ lim
n→∞

1
bτnc

bτnc−1∑
j=0

γ2(Yh(j))ξ2(j + 1) = σ2
∗ + σ2

∗.1 = 2σ2
∗. (4.3.16)

Finally, returning to (4.3.15) and using the fact that n→∞ as m→∞ we obtain

lim sup
m→∞

X2
h(m)

2mh log logm
≤ τ2

2βh
e2βh(2σ2

∗), a.s.

Letting τ → 1 and choosing β = (4hσ2
∗)
−1 we get

lim sup
m→∞

X2
h(m)

2mh log logmh
= lim sup

m→∞

X2
h(m)

2mh log logm
≤ 2σ2

∗e, a.s.

Taking square roots on both sides gives the desired result.

Proof of Theorem 4.2.3. By (4.2.13) we have

logSh(n)−
(
µ− 1

2
σ2
∗
)
nh = logSh(0) +Gh(n)−

(
µ− 1

2
σ2
∗
)
nh (4.3.17)
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and using (4.2.9) and (4.2.12) we have

Gh(n+ 1)−Xh(n+ 1) = Gh(n)−Xh(n) + h[µ− 1
2
γ2(Yh(n))].

Define the process Hh(n) := Gh(n)−Xh(n), then we have Gh(n) = Hh(n) +Xh(n) where

Hh(n+ 1) = Hh(n) + h[µ− 1
2γ

2(Yh(n))]. Summing on both sides we find that

Hh(N)−Hh(0) = Nhµ− h

2

N−1∑
n=0

γ2(Yh(n))

where Hh(0) = Gh(0) − Xh(0) = log (Sh(0)/Sh(0)) − Xh(0) = −Xh(0). Returning to

(4.3.17),

logSh(n)−
(
µ− 1

2
σ2
∗
)
nh = logSh(0) +Hh(0) + nhµ− h

2

n−1∑
j=0

γ2(Yh(j))

+Xh(n)−
(
µ− 1

2
σ2
∗
)
nh

= logSh(0)−Xh(0)− nh

2

[ 1
nh

n−1∑
j=0

γ2(Yh(j))h− σ2
∗

]
+Xh(n). (4.3.18)

Finally, dividing by nh and using Proposition 4.2.1 and Theorem 4.2.2, we have

lim
n→∞

logSh(n)
nh

−
(
µ− 1

2
σ2
∗
)

= 0,

which gives the desired result.

Proof of Theorem 4.2.4. Recalling (4.3.18) we have

logSh(n)−
(
µ− σ2

∗
2
)
nh = logSh(0)−Xh(0)− nh

2

[ 1
nh

n−1∑
j=0

γ2(Yh(j))h− σ2
∗

]
+Xh(n).

Thus, by Theorem 4.2.2 and Proposition 4.2.1 we get

lim sup
n→∞

| logSh(n)−
(
µ− 1

2σ
2
∗
)
nh|

√
2nh log log nh

≤ 1
2

∑
i∈S

γ2(i)
√
hαi + σ∗

√
2e, a.s.,

which gives the desired result.

Before we prove Proposition 4.2.1, we state without proof the following discrete–time

analogue of Lemma 3.6.1 of Chapter 3.
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Lemma 4.3.5. If a(n), R(n) and L(n), n ≥ 0, are three sequences such that

R(n) ≤ a(n) ≤ L(n) where

lim sup
n→∞

|R(n)| ≤ r and lim sup
n→∞

|L(n)| ≤ l,

then

lim sup
n→∞

|a(n)| ≤ max(r, l).

Proof of Proposition 4.2.1. The first part of this proof is modelled on a similar proof

in [67]. Define by Ti(r) the time of the rth return to state i, by Si(r) the length of the rth

excursion to i and by Vi(r) the number of visits to i before time r. Thus for r = 0, 1, 2, . . .,

setting Ti(0) = 0 we have

Ti(r + 1) = inf{n ≥ Ti(r) + 1 : Yh(n) = i},

Si(r) = Ti(r)− Ti(r − 1),

Vi(r) =
r−1∑
k=0

I{Yh(k)=i}.

In other words, the time of the (r+ 1)th return to i is the next time that Yh(n) = i which

must be at least one time step after the previous return to i. Then the length of each

excursion is the distance between consecutive return times. Note that Vi(n)/n gives the

proportion of time before n spent in state i.

Without loss of generality, suppose that Yh(n) is recurrent and fix a state i. For T = Ti

we have P[T < ∞] = 1 since the process must return to i in finite time. By the strong

Markov property Yh(T+n), n ≥ 0, is independent of Yh(0), Yh(1), . . . , Yh(T ) and the long–

run proportion of time spent in i is the same for Yh(T +n) and for Yh(n). In other words,

we can assume that we start in state i. By Lemma 1.5.1 in [67], the non–negative random

variables Si(1), Si(2), . . . , are independent and identically distributed with E[Si(r)] = mSi .

Now

Si(1) + Si(2) + · · ·+ Si(Vi(n)− 1) ≤ n− 1,
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the left–hand side being the time of the last visit to i before n. Also

Si(1) + Si(2) + · · ·+ Si(Vi(n)) ≥ n,

the left–hand side being the time of the first visit to i after n− 1. Hence

Si(1) + · · ·+ Si(Vi(n)− 1)
Vi(n)

<
n

Vi(n)
≤ Si(1) + · · ·+ Si(Vi(n))

Vi(n)
. (4.3.19)

By the strong law of large numbers

P
[Si(1) + · · ·+ Si(n)

n
→ mSi as n→∞

]
= 1

and since the Markov process is recurrent, P[Vi(n) → ∞ as n → ∞] = 1. So letting

n→∞ (and thus Vi(n) →∞) we get, for each fixed state i,

P
[Vi(n)

n
→ 1

mSi

as n→∞
]

= 1. (4.3.20)

Assume now that Yh(n) has stationary probability distribution πi = 1/mSi . Then

∣∣∣ 1
nh

n−1∑
k=0

γ2(Yh(k))h− σ2
∗

∣∣∣ = ∣∣∣ 1
n

∑
i∈S

γ2(i)
n−1∑
k=0

I{Yh(k)=i} −
∑
i∈S

γ2(i)πi

∣∣∣ (4.3.21)

=
∣∣∣∑

i∈S
γ2(i)

(Vi(n)
n

− πi

)∣∣∣ ≤ max
j∈S

γ2(j)
∑
i∈S

∣∣∣Vi(n)
n

− πi

∣∣∣
By (4.3.20) there exists N = N(ω) sufficiently large such that for n ≥ N(ω)

∑
i∈S

∣∣∣Vi(n)
n

− πi

∣∣∣ < ε/max
j∈S

γ2(j)

and thus we have, for n ≥ N(ω),

∣∣∣ 1
nh

n−1∑
k=0

γ2(Yh(k))h− σ2
∗

∣∣∣ < ε,

which establishes the desired convergence. To prove the second assertion we must deter-

mine the rate of this convergence, which is ultimately determined by the rate of conver-

gence of n/Vi(n) to mSi . By (4.3.19) we have

n

Vi(n)
−mSi ≤

∑Vi(n)
j=1 (Si(j)−mSi)

Vi(n)
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and so we get the upper bound

n√
2n log log n

{ n

Vi(n)
−mSi

}
≤
∑Vi(n)

j=1 (Si(j)−mSi)√
2n log log n

.
n

Vi(n)
=: Li(n).

Similarly, by (4.3.19)

n

Vi(n)
−mSi ≥

∑Vi(n)−1
j=1 (Si(j)−mSi)

Vi(n)
− mSi

Vi(n)

and so we get the lower bound

n√
2n log log n

{ n

Vi(n)
−mSi

}
≥
∑Vi(n)−1

j=1 (Si(j)−mSi)√
2n log log n

.
n

Vi(n)

− mSi

Vi(n)/n
.

1√
2n log log n

=: Ri(n).

By (4.2.7) and (4.2.8), the random variables Si(j)−mSi are independent and identically

distributed with zero mean and finite variance σ2
Si

, so they obey the law of the iterated

logarithm as follows

lim sup
n→∞

|
∑n

j=1(Si(j)−mSi)|√
2n log log n

= σSi , a.s. (4.3.22)

Since Vi(n) →∞ as n→∞ we have

lim sup
n→∞

|
∑Vi(n)

j=1 (Si(j)−mSi)|√
2Vi(n) log log Vi(n)

≤ σSi , a.s., (4.3.23)

and since Vi(n)/n→ 1/mSi as n→∞ we get

lim sup
n→∞

|
∑Vi(n)

j=1 (Si(j)−mSi)|√
2n log log n

≤ σSi√
mSi

, a.s.

The same result also holds with Vi(n) replaced with Vi(n)− 1. Therefore we have

lim sup
n→∞

|Li(n)| ≤ σSi√
mSi

mSi , a.s.,

and since mSi is finite,

lim sup
n→∞

|Ri(n)| ≤ σSi√
mSi

mSi , a.s.
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Thus, by Lemma 4.3.5

lim sup
n→∞

n√
2n log log n

∣∣∣ n

Vi(n)
−mSi

∣∣∣ ≤ σSi√
mSi

mSi , a.s. (4.3.24)

However, from this we must now determine the rate of convergence of Vi(n)/n to 1/mSi .

Notice that

n√
2n log log n

∣∣∣Vi(n)
n

− 1
mSi

∣∣∣ = n√
2n log log n

|mSi − n/Vi(n)|
mSin/Vi(n)

and so

lim sup
n→∞

n√
2n log log n

∣∣∣Vi(n)
n

− 1
mSi

∣∣∣ = lim sup
n→∞

n√
2n log log n

∣∣∣mSi −
n

Vi(n)

∣∣∣ 1
mSi

Vi(n)
n

.

Therefore, by (4.3.24) and (4.3.20)

lim sup
n→∞

n√
2n log log n

∣∣∣Vi(n)
n

− 1
mSi

∣∣∣ ≤ σSi

mSi

√
mSi

=: αi, a.s. (4.3.25)

Returning to (4.3.21) we have

∣∣∣ 1
nh

n−1∑
k=0

γ2(Yh(k))h− σ2
∗

∣∣∣ ≤∑
i∈S

γ2(i)
∣∣∣Vi(n)
n

− πi

∣∣∣
and hence, since the sum has finitely many terms,

lim sup
n→∞

nh√
2nh log log n

∣∣∣ 1
nh

n−1∑
k=0

γ2(Yh(k))h− σ2
∗

∣∣∣
≤
∑
i∈S

γ2(i)
√
h lim sup

n→∞

n√
2n log log n

∣∣∣Vi(n)
n

− πi

∣∣∣. (4.3.26)

Finally, using (4.3.25) we get the desired result.

Before we can prove Theorem 4.2.5 we need to state and prove two useful results in the

form of Lemma 4.3.6 and Lemma 4.3.7.

Lemma 4.3.6. Suppose W is an irreducible Markov chain with finite state space S and

matrix of one–step transition probabilities P , and moreover that W is stationary. Let

H ∈ S and ∆ ∈ N. Define for n ≥ 1

An = {W (j) = H for all j ∈ {(n− 1)∆, . . . , n∆− 1}}.
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Then

lim
m→∞

Cov(IAn , IAn+m) = 0. (4.3.27)

The proof is almost identical to the analogous result, Lemma 3.6.2, in the continuous–

time case and hence is omitted.

Lemma 4.3.7. Suppose that ∆ ≥ 1 and that

ξ =
(
ξ(l)
)
l≥0

is a sequence of independent standard normal random variables (4.3.28)

and that Yh is a discrete Markov chain with state space S = {1, . . . , N} such that H ∈ S

obeys σH = maxj∈S |γ(j)|. Let V∆(n) be defined by (4.2.17). Then

lim sup
n→∞

|V∆(n)|√
2 log n

≤ σH

√
∆, a.s. (4.3.29)

Proof. By (4.2.17) and the fact that σH = maxj∈S |γ(j)| > 0 we have, for n ≥ ∆

|V∆(n)| ≤
n−1∑

l=n−∆

σH |ξ(l + 1)|.

Let λ > 0. Then as ξ(l) are independent and identically distributed we have

E[eλ|V∆(n)|] ≤ E
[
eλσH

∑n−1
l=n−∆ |ξ(l+1)|

]
=

n−1∏
l=n−∆

E
[
eλσH |ξ(l+1)|

]
=
(
E
[
eλσH |ξ|

])∆
,

where ξ is normally distributed with zero mean and unit variance. Note that since x 7→

eα|x|e−x2/2 is even for any α > 0, we have

E[eα|ξ|] =
1√
2π

∫ ∞

−∞
eα|x|e−x2/2 dx = 2

1√
2π

∫ ∞

0
eαx−x2/2 dx

= 2eα
2/2 1√

2π

∫ ∞

−α
e−u2/2 du ≤ 2eα

2/2.

Thus E[eλ|V∆(n)|] ≤ 2∆e∆λ2σ2
H/2 for n ≥ ∆. Let xn > 0; then by Markov’s inequality we

have

P[|V∆(n)| ≥ xn] ≤ e−λxnE[eλ|V∆(n)|] ≤ e−λxn2∆e∆λ2σ2
H/2.
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Set λ = xn/(∆σ2
H), so that

P[|V∆(n)| ≥ xn] ≤ 2∆e−λxne∆λ2σ2
H/2 = 2∆e−x2

n/(2∆σ2
H).

Let ε > 0, and set xn =
√

2(1 + ε)
√

∆σH

√
log(n+ 1) for n ≥ ∆. Then

P
[
|V∆(n)| ≥

√
2(1 + ε)

√
∆σH

√
log(n+ 1)

]
≤ 2∆(n+ 1)−(1+ε), n ≥ ∆.

Therefore by the Borel–Cantelli lemma we have for every ε > 0 that there is an almost

sure event Ωε such that

lim sup
n→∞

|V∆(n)|
σH

√
2∆ log(n+ 1)

≤
√

1 + ε, on Ωε.

Let Ω∗ = ∩ε∈(0,1)∩QΩε; then Ω∗ is an almost sure event and we have

lim sup
n→∞

|V∆(n)|√
2 log n

≤ σH

√
∆, a.s. on Ω∗,

as required in (4.3.29).

We are now in a position to prove Theorem 4.2.5.

Proof of Theorem 4.2.5. Note that the upper bound obtained in Lemma 4.3.7, to-

gether with (4.2.18) and the fact that f and γ are globally bounded, gives the inequality

lim sup
n→∞

|Rδ,h(n)|√
2 log n

≤ σH

√
h
√

∆, a.s. (4.3.30)

It remains to prove that

lim sup
n→∞

|Rδ,h(n)|√
2 log n

≥ σH

√
h
√

∆, a.s. (4.3.31)

By (4.2.18) we have

lim sup
n→∞

|Rδ,h(n)|√
2 log n

=
√
h lim sup

n→∞

|V∆(n)|√
2 log n

, a.s.

In particular, with Un := V∆(n∆) =
∑n∆−1

l=(n−1)∆ γ(Yh(l))ξ(l + 1), we have

lim sup
n→∞

|Rδ,h(n)|√
2 log n

≥
√
h lim sup

n→∞

|V∆(n∆)|√
2 log n

=
√
h lim sup

n→∞

|Un|√
2 log n

. (4.3.32)
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Since Yh is stationary, the probability that Yh((n − 1)∆) = H is πH . Define the event

An := {Yh(j) = H, for all j ∈ {(n − 1)∆, . . . , n∆ − 1}}. The process {IAn : n ≥ 1}

is stationary so it can be shown in a similar manner to the proof of Lemma 3.6.2 that

P[An] = E[IAn ] =: π(∆) and Cov(IAn , IAn+m) → 0 as m → ∞. Define Tn =
∑n

j=1 IAj .

Then using the same argument as used in the proof of Theorem 3.4.4 we have Tn/n →

π(∆) as n → ∞ a.s. Let Ln = min{l ≥ n :
∑l

j=1 IAj = n}. By definition IALn
= 1.

Then if we consider the collection of {Uj : j = 1, . . . , n} for which IAj = 1 we have

max1≤j≤n |Uj | ≥ max1≤k≤Tn |ULk
|.

Next, if IAn = 1 then Yh(j) = H for all j ∈ {(n − 1)∆, . . . , n∆ − 1} and we have

Un =
∑n∆−1

l=(n−1)∆ γ(H)ξ(l + 1) = γ(H)
∑n∆−1

l=(n−1)∆ ξ(l + 1). Without loss of generality we

consider the case where γ(H) > 0. If γ(H) < 0 then we can redefine the standard normal

random variables as ξ− = −ξ and proceed as in the case γ(H) > 0. Hence we get

max
1≤j≤n

|Uj | ≥ max
1≤k≤Tn

|ULk
| = max

1≤k≤Tn

∣∣∣∣∣∣σH

Lk∆−1∑
l=(Lk−1)∆

ξ(l + 1)

∣∣∣∣∣∣
= σH max

1≤k≤Tn

∣∣∣∣∣∣
Lk∆−1∑

l=(Lk−1)∆

ξ(l + 1)

∣∣∣∣∣∣ .
Define ζ(k) :=

∑Lk∆−1
l=(Lk−1)∆ ξ(l + 1). Then we have

lim sup
n→∞

max1≤j≤n |Uj |√
2 log n

≥ σH lim sup
n→∞

max1≤k≤Tn |ζ(k)|√
2 log Tn

·

√
log Tn

log n

= σH lim sup
n→∞

max1≤k≤Tn |ζ(k)|√
2 log Tn

= σH lim sup
n→∞

max1≤k≤n |ζ(k)|√
2 log n

, (4.3.33)

where we used the fact that Tn → ∞ as n → ∞ a.s. Since ξ and Yh are independent, it

follows that L = {Ln : n ≥ 1} and ξ are independent. Let m ∈ N and k1 < k2 < . . . km.
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Then, because Lk+1 − Lk ≥ 1, we have

P[ζ(k1) ≤ x1, ζ(k2) ≤ x2, . . . , ζ(km) ≤ xm]

=
∑

n1<n2···<nm

P
[
ζ(k1) ≤ x1, ζ(k2) ≤ x2, . . . , ζ(km) ≤ xm

∣∣
Lk1 = n1, Lk2 = n2, . . . , Lkm = nm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm]

=
∑

n1<n2···<nm

P
[ Lk1

∆−1∑
l=(Lk1

−1)∆

ξ(l + 1) ≤ x1, . . . ,

Lkm∆−1∑
l=(Lkm−1)∆

ξ(l + 1) ≤ xm

∣∣
Lk1 = n1, Lk2 = n2, . . . , Lkm = nm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm]

=
∑

n1<n2···nm−1<nm

P
[ n1∆−1∑

l=(n1−1)∆

ξ(l + 1) ≤ x1, . . . ,

nm∆−1∑
l=(nm−1)∆

ξ(l + 1) ≤ xm

∣∣
Lk1 = n1, Lk2 = n2, . . . , Lkm = nm

]
× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm]

=
∑

n1<n2···<nm

P
[ n1∆−1∑

l=(n1−1)∆

ξ(l + 1) ≤ x1, . . . ,

nm∆−1∑
l=(nm−1)∆

ξ(l + 1) ≤ xm

]

× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm].

where we have used the independence of the ξ’s and L’s at the last step. Since ∆ ≥ 1 and

in the sum we have 1+ni ≤ ni+1, it follows that (ni+1−1)∆ > ni∆−1. Therefore, because

there is no overlap from one sum to the next, each of the random variables
∑ni∆−1

l=(ni−1)∆ ξ(l+

1) for i = 1, . . . ,m are independent and identically normally distributed with zero mean

and variance ∆. Therefore if Φ∆ is the distribution function of a standardised normal

random variable, we have

P[ζ(k1) ≤ x1, ζ(k2) ≤ x2, . . . , ζ(km) ≤ xm]

=
∑

n1<n2···<nm

P

 n1∆−1∑
l=(n1−1)∆

ξ(l + 1) ≤ x1

 · · ·P
 nm∆−1∑

l=(nm−1)∆

ξ(l + 1) ≤ xm


× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm]

=
∑

n1<n2···<nm

Φ∆ (x1) · · ·Φ∆ (xm)× P[Lk1 = n1, Lk2 = n2, . . . , Lkm = nm] =
m∏

i=1

Φ∆ (xi) .
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Thus {ζ(k) : k ≥ 1} is a sequence of independent and identically distributed normal

random variables with mean zero and variance ∆. Therefore, by Lemma 1.0.1 and Lemma

3.1 in [6],

lim sup
n→∞

max1≤k≤n |ζ(k)|√
2 log n

= lim sup
n→∞

|ζ(n)|√
2 log n

=
√

∆, a.s.

Hence, combining this with (4.3.33) gives

Λ := lim sup
n→∞

max1≤j≤n |Uj |√
2 log n

≥ σH

√
∆, a.s.

This implies that

lim sup
n→∞

|Un|√
2 log n

= Λ ≥ σH

√
∆, a.s. (4.3.34)

Combining (4.3.30), (4.3.32) and (4.3.34) gives (4.3.31) and hence (4.2.19).
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Chapter 5

A Discrete Exponential Martingale Inequality for

Martingales driven by Gaussian Sequences

5.1 Introduction

The aim of this chapter is to develop a discrete version of the exponential martingale

inequality (EMI) which can be applied specifically to martingales driven by Gaussian

sequences. A comparison of Theorem 4.2.2 in Chapter 4 and Corollary 3.3.1 in Chapter 3

reveals that the discrete version of the result is inferior due to an extra factor of two (the

extra
√
e naturally arises from the alternative method of proof). Upon analysing the proof

of Theorem 4.2.2, it becomes clear that the extra factor of 2 arises from the duplication of

the σ2
∗ term in (4.3.16). This duplication is directly linked to the sum of the two quadratic

variations in the discrete EMI that was used in Chapter 4. It seems reasonable then to

believe that if the discrete EMI depended only on the predictable quadratic variation then

the duplication in (4.3.16) would not appear and we would not get the extra factor of 2

in the final estimate.

This motivates the need for a discrete EMI, containing only one quadratic variation

term, which can be used to estimate more accurately the size of the large fluctuations

of the solutions of discretisations of stochastic differential equations (SDEs). The EMI,

together with a Gronwall inequality argument, was first successfully applied to estimate

these large fluctuations in Mao [52]. More recently, extensions of Mao’s result to a wider

class of SDEs appear in [5], and to stochastic delay differential equations in [56]. Mao’s
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results are collected in [54, Chapter 2, Section 5].

This EMI–Gronwall technique can be readily applied (even to non–autonomous SDEs)

and gives excellent upper bounds on the size of fluctuations of SDEs, as evidenced by

results obtained in [5] by both comparison principle and EMI arguments. The comparison

results rely on the powerful theorem of Motoo [65] which we used in Chapters 2 and 3 to

give very precise upper and lower bounds on the size of the pathwise large fluctuations of

scalar autonomous SDEs which possess recurrent or asymptotically stationary solutions.

However, the proof of Motoo’s theorem hinges on an analysis of the excursions of solutions

of SDEs which cannot easily be applied in discrete time, and therefore to discretisations

of the SDE.

However, based on the evidence of Chapter 4 and by scrutinising the proofs in [54,

Chapter 2, Section 5], it is apparent that asymptotic estimates for the large fluctuations

of an Euler–Maruyama scheme would yield results consistent with those obtained in the

continuous–time case, provided an appropriate version of the EMI is employed. In this

case, we would deem an EMI to be appropriate if the estimate on the martingale de-

pended solely on its predictable quadratic variation, and allowed us to recover an estimate

consistent with that obtained in continuous time. We are however unaware of a result

in the literature that fulfills these two requirements. A significant literature on expo-

nential inequalities already exists, and we refer the reader to work of De La Peña and

co-authors [18, 19, 20].

In our main result (Theorem 5.2.4) we establish such an appropriate EMI for discrete–

time martingales which are driven by Gaussian sequences. We specialise to this class of

martingales because they can be used to approximate Itô integrals in stochastic Euler

methods. We propose, in Chapter 6, to apply Theorem 5.2.4 systematically to study

the large fluctuations of stochastic Euler schemes. Results which apply existing EMIs
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to stochastic Euler schemes, and which highlight current limitations, were presented in

Chapter 4.

As we believe that Theorem 5.2.4 may be of independent interest and utility in stochastic

numerical analysis in particular, we state and prove it in a more general context here. In

particular, it might be of interest to extend our result to martingales driven by e.g.,

heavy tailed sequences of independent and identically distributed random variables with

a known moment generating function. In this way, one might develop a useful tool to

estimate the large fluctuations of discretisations of stochastic differential equations driven

by Lévy processes, by once again imitating the Gronwall–EMI programme outlined in the

works cited above.

The chapter is organised as follows. A synopsis and discussion of existing EMIs as well

as a special case of the EMI for martingales driven by Gaussian sequences is given in

Section 5.2. The proof of the main theorem is given in Section 5.3 while an alternative

proof is given in Section 5.4.

5.2 Statement and discussion of main results

5.2.1 Existing Exponential Martingale Inequalities

In this section we state some existing and well–known exponential martingale inequalities

which we will compare and contrast with our main result.

In the first instance, we consider a result for continuous–time. Let d ∈ N. Denote

the complete filtered probability space by (Ω̃, F̃ , (F̃(t))t≥0, P̃). Here the filtration F̃(t) is

such that B = (B1, . . . , Bd) is a d–dimensional Brownian motion adapted to (F̃(t))t≥0. We

denote by L2(R+; Rd) the space of Rd–valued measurable and (F̃(t))t≥0–adapted processes

V obeying
∫ T
0 |V (s)|2 ds < +∞ P̃–a.s. for every T > 0. If M is a local martingale in
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L2(R+; R) given by

M(t) =
d∑

i=1

∫ t

0
Ui(s) dBi(s), t ≥ 0, (5.2.1)

where each Ui is in L2(R+; R), then the quadratic variation of M is the process denoted

by 〈M〉 where

〈M〉(t) =
d∑

i=1

∫ t

0
Ui(s)2 ds, t ≥ 0.

We are now in a position to state the well–known continuous–time exponential martingale

inequality, found for example in [54].

Theorem 5.2.1. Let U = (U1, . . . , Ud) ∈ L2(R+; Rd) and let B = (B1, . . . , Bd) be a d–

dimensional F̃(t)–Brownian motion. Let M be the local martingale in L2(R+; R) given by

(5.2.1) with quadratic variation 〈M〉. Then for any T, α, β > 0 we have

P̃
[

sup
0≤t≤T

{
M(t)− α

2
〈M〉(t)

}
≥ β

]
≤ e−αβ .

On the other hand, exponential martingale inequalities also exist for discrete–time mar-

tingales. The following example can be developed from work of Bercu and Touati [13].

In this case we work on the complete filtered probability space (Ω,F , (F(n))n∈N0 ,P).

We denote by `2(N0; Rd) the space of Rd–valued measurable (F(n))n∈N0–adapted pro-

cesses V = {V (n) : n ∈ N0} obeying
∑N

n=0 |V (n)|2 < +∞ P–a.s. for every N ∈ N.

If M ∈ `2(N0; R) is an F(n)–martingale, which is null at zero, we define its predictable

quadratic variation 〈M〉 = {〈M〉(n) : n ∈ N} by

〈M〉(n) =
n∑

k=1

E
[
(M(k)−M(k − 1))2

∣∣F(k − 1)
]
,

and its total quadratic variation [M ] = {[M ](n) : n ∈ N} by

[M ](n) =
n∑

k=1

(M(k)−M(k − 1))2.
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Theorem 5.2.2. Let M ∈ `2(N0; R) be an F(n)–martingale, null at zero, which has

predictable quadratic variation 〈M〉 and total quadratic variation [M ]. Then, for any

α, β > 0 and N ∈ N we have

P
[

max
1≤n≤N

{
M(n)− α

2
(
[M ](n) + 〈M〉(n)

)}
≥ β

]
≤ e−αβ .

An outline proof of this theorem was given in Chapter 4. We note that in Theorem 5.2.2

the estimate on M depends on both the predictable and the total quadratic variations; by

contrast, in Theorem 5.2.1 the estimate on M depends only on one quadratic variation.

5.2.2 Statement of Main Result

We now develop a discrete exponential martingale inequality which depends only on the

predictable quadratic variation. Let (Ω,F , (F(n))n≥0,P) be a complete filtered probability

space and suppose that U = {U(n) : n ≥ 0} is an Rd–valued and F(n)–adapted process

given by U(n) =
∑d

i=1 Ui(n)ei, where ei is the unit vector with ith entry one and zeros

elsewhere.

Assumption 5.2.3. We suppose that ξ = {ξ(n) : n ≥ 1} is an Rd–valued and F(n)–

adapted process denoted by ξ(n) =
∑d

i=1 ξi(n)ei where the vectors
(
ξ(n)

)
n≥1

are inde-

pendent and
(
ξi(n)

)
i=1,...,d

are independent and identically distributed standard normal

random variables for each fixed n ≥ 1.

This assumption on the independent Gaussian sequences mimics the presence of a d–

dimensional Brownian motion in Theorem 5.2.1. In this sense, if h > 0,
√
hξi(n + 1)

can be seen as the increment of Brownian motion over the period [nh, (n + 1)h], i.e.,

ξi(n+ 1) =
(
Bi((n+ 1)h)−Bi(nh)

)
/
√
h.

In many situations, it is convenient to let the filtration (F(n))n≥0 be that which is

naturally generated by ξ i.e., F(n) = σ
(
{ξ(j) : 1 ≤ j ≤ n}

)
so that (F(n))n≥0 is the
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natural filtration of ξ. Certainly, if we choose the initial value U(0) to be deterministic,

then we will use such a filtration (F(n))n≥0. However, to maintain generality we may

allow the initial value U(0) to be random and independent of (F(n))n≥0 in which case

we define the filtration to be the combination of the natural filtration of ξ along with the

σ–algebra generated by the initial value U(0).

Theorem 5.2.4. Suppose ξ satisfies Assumption 5.2.3 and let U ∈ `2(N0; Rd). Define the

local martingale M ∈ `2(N0; R), which is null at zero, by

M(n) =
n−1∑
j=0

d∑
i=1

Ui(j)ξi(j + 1), n ≥ 1.

Then for any α, β > 0 and N ∈ N, we have

P
[

max
1≤n≤N

{M(n)− α

2
〈M〉(n)} ≥ β

]
≤ e−αβ .

Remark 5.2.1. We prove Theorem 5.2.4 by showing directly that the discrete–time mar-

tingale M has all of the necessary properties in order for the above conclusion to hold.

Alternatively, Theorem 5.2.4 can be proven using a shorter, less direct approach which

involves sampling a continuous–time martingale driven by a Brownian motion to which

the continuous–time EMI can be applied. For completeness we give both proofs.

Remark 5.2.2. By mimicing the direct proof of Theorem 5.2.4 it is possible to formulate

EMIs when the white noise sequence ξ is a sequence of independent and identically dis-

tributed zero mean random variables, each of which has a common moment generating

function ϕ defined on an interval I ⊆ R. We state a representative result here in the

scalar case. Let (U(j))j≥0 be adapted to the filtration generated by ξ and define the local

martingale M ∈ `2(N0; R), which is null at zero, by

M(n) =
n−1∑
j=0

U(j)ξ(j + 1), n ≥ 1.
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Let α > 0, N ∈ N and suppose that α|U(n)| ∈ I for n = 0, . . . , N a.s. Then one could

prove in a similar manner to the proof of Theorem 5.2.4 that

P
[

max
1≤n≤N

{M(n)− 1
α

n−1∑
j=0

logϕ(αU(j))} ≥ β
]
≤ e−αβ .

In fact, we recover Theorem 5.2.4 in the scalar case by noticing that ϕ : R → R given by

ϕ(α) = eα
2/2 is the moment generating function of a standard normal random variable.

5.3 Proof of Theorem 5.2.4

For θ ∈ N, define the stopping time

τθ = inf
{
n ≥ 0 : A(n) > θ or

d∑
i=1

|Ui(n)| > θ
}

(5.3.1)

where A(n) =
∑n−1

j=0

∣∣∑d
i=1 Ui(j)ξi(j+1)

∣∣ for n ≥ 1 and A(0) = 0. Note that since A(n) is

F(n)–measurable and
∑d

i=1 |Ui(n)| is F(n)–measurable, it follows that {τθ ≤ n} ∈ F(n),

so τθ is indeed a stopping time. Let S1(j) :=
∑d

i=1 Ui(j)ξi(j+1) and S2(j) :=
∑d

i=1 U
2
i (j)

and define for n ≥ 0,

Xθ(n) = exp
[
I{τθ>0}1N(n)

(
α

n∧τθ−1∑
j=0

S1(j)−
1
2
α2

n∧τθ−1∑
j=0

S2(j)
)]
, (5.3.2)

where α is a positive constant. To show that Xθ is a martingale we show that E[Xθ(n)] <

+∞ and that E[Xθ(n+1)|F(n)] = Xθ(n). In the trivial cases where either τθ = 0 or n = 0

we have that Xθ(n) = 1 and so clearly E[Xθ(n)] < +∞. Otherwise we have τθ > 0, n ≥ 1

and

Xθ(n) = exp
[
α

n∧τθ−1∑
j=0

S1(j)−
1
2
α2

n∧τθ−1∑
j=0

S2(j)
]
≤ exp

[
α

n∧τθ−1∑
j=0

|S1(j)|
]
.

Here there are two cases to consider: τθ > n or τθ ≤ n. If τθ > n then

n∧τθ−1∑
j=0

|S1(j)| =
n−1∑
j=0

|S1(j)| =
n−1∑
j=0

∣∣ d∑
i=1

Ui(j)ξi(j + 1)
∣∣ = A(n) ≤ θ,

152



Chapter 5, Section 3 A Discrete Exponential Martingale Inequality for Martingales driven by Gaussian Sequences

by the definition of the stopping time τθ. Thus Xθ(n) ≤ eαθ when τθ > n. If τθ ≤ n then

n∧τθ−1∑
j=0

|S1(j)| =
τθ−1∑
j=0

∣∣ d∑
i=1

Ui(j)ξi(j + 1)
∣∣ = A(τθ − 1) +

∣∣ d∑
i=1

Ui(τθ − 1)ξi(τθ)
∣∣

≤ θ +
d∑

i=1

|Ui(τθ − 1)||ξi(τθ)| ≤ θ + θ

d∑
i=1

|ξi(τθ)|,

where in the last step we have used the fact that |Ui(τθ − 1)| ≤ θ, since the definition of

τθ gives
∑d

i=1 |Ui(τθ − 1)| ≤ θ. Therefore, for τθ ≤ n,

Xθ(n) ≤ exp
[
αθ + αθ

d∑
i=1

|ξi(τθ)|
]
≤ exp

[
αθ + αθ max

1≤j≤n

d∑
i=1

|ξi(j)|
]
. (5.3.3)

Since Xθ(n) ≤ eαθ when τθ > n and αθmax1≤j≤n
∑d

i=1 |ξi(j)| is positive, it follows

that the estimate in (5.3.3) holds for all values of n. Thus it remains to show that

E[exp{αθmax1≤j≤n
∑d

i=1 |ξi(j)|}] is finite. Define ζ(j) :=
∑d

i=1 |ξi(j)|. Then ζ(j)j≥0 are

independent random variables since ξi(n), ξi′(m) are independent for m 6= n and for all

i, i′. Note that since each ξi(j) is independent and normally distributed we have

E
[
eαθ|ξi(j)|

]
=
∫ +∞

−∞

1√
2π

eαθ|x|e−x2/2 dx =
2√
2π

eα
2θ2/2

∫ +∞

−αθ
e−u2/2 du

≤ 2√
2π

eα
2θ2/2

∫ +∞

−∞
e−u2/2 du = 2eα

2θ2/2 < +∞,

and as a result,

E
[
exp{αθζ(j)}

]
=

d∏
i=1

E
[
exp{αθ|ξi(j)|}

]
≤

d∏
i=1

2e(αθ)2/2 < +∞.

Therefore,

E
[
exp{αθ max

1≤j≤n
ζ(j)}

]
≤ E

[
exp{αθ

n∑
j=1

ζ(j)}
]

=
n∏

j=1

E
[
exp{αθζ(j)}

]
≤

n∏
j=1

d∏
i=1

2e(αθ)2/2 =
(
2ded(αθ)2/2

)n
< +∞.
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Thus, we have shown that E[Xθ(n)] < +∞. Now we aim to show that E[Xθ(n+1)|F(n)] =

Xθ(n). From (5.3.2) we have

Xθ(n+ 1) = exp
[
I{τθ>0}1N(n+ 1)

(
α

(n+1)∧τθ−1∑
j=0

S1(j)−
1
2
α2

(n+1)∧τθ−1∑
j=0

S2(j)
)]

= Xθ(n)
{

exp
[
I{τθ>0}α

(
1N(n+ 1)

(n+1)∧τθ−1∑
j=0

S1(j)− 1N(n)
n∧τθ−1∑

j=0

S1(j)
)

− α2

2
I{τθ>0}

(
1N(n+ 1)

(n+1)∧τθ−1∑
j=0

S2(j)− 1N(n)
n∧τθ−1∑

j=0

S2(j)
)]}

. (5.3.4)

For n > 0 there are three cases to consider. If 1 ≤ τθ ≤ n it follows that Xθ(n+1) = Xθ(n).

Moreover, if τθ = 0 then Xθ(n + 1) = 1 = Xθ(n) also. If τθ ≥ n + 1 then Xθ(n + 1) =

Xθ(n) exp[αS1(n) − 1
2α

2S2(n)]. Therefore, for n > 0 we can write (5.3.4) more concisely

as

Xθ(n+ 1) = Xθ(n) exp
[
I{τθ>n}(αS1(n)− 1

2
α2S2(n))

]
.

Moreover, if we define Vi(n) := Ui(n)I{τθ>n} for n ≥ 0 and observe that I2
{τθ>n} = I{τθ>n}

we have

Xθ(n+ 1) = Xθ(n) exp
[
α

d∑
i=1

Vi(n)ξi(n+ 1)− 1
2
α2

d∑
i=1

V 2
i (n)

]
, n ≥ 1.

Note that Vi(n) is F(n)–measurable because Ui(n) is F(n)–measurable and I{τθ>n} is

F(n)–measurable due to the fact that τθ is a stopping time. Moreover, if τθ > n then

by the definition of τθ we have
∑d

i=1 |Ui(n)| ≤ θ and thus |Vi(n)| = |Ui(n)| ≤ θ for each

i = 1, . . . , d. If τθ ≤ n then Vi(n) = 0 ≤ θ for each i = 1, . . . , d. Hence, |Vi(n)| ≤ θ for all

n ≥ 0 and for each i = 1, . . . , d. Now, since Vi(n) is bounded and F(n)–measurable and

E[Xθ(n)] < +∞, we have for n ≥ 1,

E[Xθ(n+ 1)|F(n)] = Xθ(n) exp
(
− α2

2

d∑
i=1

V 2
i (n)

)
E
[
exp

(
α

d∑
i=1

Vi(n)ξi(n+ 1)
)∣∣F(n)

]
.

By Assumption 5.2.3,
(
ξi(n+ 1)

)d
i=1

are mutually independent N(0, 1) random variables,

so each ξi(n + 1) is independent of F(n). If we define the moment generating function
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ϕi(λ) := E[exp(λξi(n+ 1))] = exp(1
2λ

2), then since Vi(n) is bounded we have

E[exp
(
α

d∑
i=1

Vi(n)ξi(n+ 1)
)
|F(n)] =

d∏
i=1

ϕi(αVi(n)) = exp
(1
2
α2

d∑
i=1

V 2
i (n)

)
.

Thus, E[Xθ(n+ 1)|F(n)] = Xθ(n) for n ≥ 1. To deal with the case when n = 0, we note

that

Xθ(1) = exp
[
I{τθ>0}

(
α

1∧τθ−1∑
j=0

S1(j)−
1
2
α2

1∧τθ−1∑
j=0

S2(j)
)]
.

Here, there are two cases to consider. If τθ = 0 then Xθ(1) = 1. If τθ ≥ 1 then Xθ(1) =

exp[αS1(0)− 1
2α

2S2(0)]. This can be written more concisely, for any τθ, as

Xθ(1) = exp
[
I{τθ>0}

(
α

d∑
i=1

Ui(0)ξi(1)− 1
2
α2

d∑
i=1

U2
i (0)

)]
= exp

[
α

d∑
i=1

Vi(0)ξi(1)− 1
2
α2

d∑
i=1

V 2
i (0)

]
,

where Vi(0) is as defined earlier. So again, since Vi(0) is bounded,

E[Xθ(1)|F(0)] = E
[
exp

(
α

d∑
i=1

Vi(0)ξi(1)− 1
2
α2

d∑
i=1

V 2
i (0)

)
|F(0)

]
= exp

(
− α2

2

d∑
i=1

V 2
i (0)

) d∏
i=1

ϕi(αVi(0)) = 1 = Xθ(0).

Therefore,
(
Xθ(n)

)
n≥0

is a positive F(n)–martingale. Thus it follows by Theorem 1.3.8

in [54] that

P[ max
0≤n≤N

Xθ(n) ≥ eαβ ] ≤ e−αβE[Xθ(N)] = e−αβ ,

where E[Xθ(N)] = E[Xθ(0)] = 1. Hence, taking logs and dividing by α we have

P
[

max
0≤n≤N

I{τθ>0}1N(n)
( n∧τθ−1∑

j=0

S1(j)−
α

2

n∧τθ−1∑
j=0

S2(j)
)
≥ β

]
≤ e−αβ . (5.3.5)

Define for n ≥ 0,

X̃θ(n) = I{τθ>0}1N(n)
( n∧τθ−1∑

j=0

S1(j)−
α

2

n∧τθ−1∑
j=0

S2(j)
)
,
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and define its limit

lim
θ→∞

X̃θ(n) = 1N(n)
( n−1∑

j=0

S1(j)−
α

2

n−1∑
j=0

S2(j)
)

=: X̃(n).

Define X̄θ(N) = max0≤n≤N X̃θ(n) so that (5.3.5) gives P[X̄θ(N) ≥ β] ≤ e−αβ and

lim
θ→∞

X̄θ(N) = lim
θ→∞

max
0≤n≤N

X̃θ(n) = max
0≤n≤N

X̃(n) =: X̄(N).

Therefore, for any ε > 0,

P[X̄(N) ≥ β] ≤ P[X̄(N)− X̄θ(N) ≥ ε] + P[X̄θ(N) ≥ β − ε]

≤ P[|X̄(N)− X̄θ(N)| > ε/2] + e−α(β−ε).

However, since limθ→∞ X̄θ(N) = X̄(N), we have that for all ε > 0

lim
θ→∞

P[|X̄(N)− X̄θ(N)| > ε/2] = 0,

and hence P[X̄(N) ≥ β] = limθ→∞ P[X̄(N) ≥ β] ≤ e−α(β−ε). Letting ε→ 0 yields

P
[

max
0≤n≤N

X̃(n) ≥ β
]
≤ e−αβ .

Finally, since X̃(0) = 0 and β > 0 we have

e−αβ ≥ P
[

max
0≤n≤N

X̃(n) ≥ β
]

= P[ max
1≤n≤N

X̃(n) ≥ β]

= P
[

max
1≤n≤N

( n−1∑
j=0

S1(j)−
α

2

n−1∑
j=0

S2(j)
)
≥ β

]
,

which completes the proof.

5.4 Alternative proof of Theorem 5.2.4

For simplicity we consider the scalar case. Let ξ = {ξ(n) : n ≥ 1} be a sequence of

independent and identically distributed standard normal random variables and let U =

{U(n) : n ≥ 0} be a stochastic process which is adapted to the natural filtration of
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the Gaussian sequence on the filtered probability space (Ω,F ,P, (F(n))n≥0). Here the

filtration is F(n) := σ{ξ(j) : 1 ≤ j ≤ n} and we make the simplifying assumption that

U(0) is deterministic. Since U(n) is F(n)–measurable for each n ≥ 1, by the classical

Doob-Dynkin lemma (see [54] page 4), for each n ≥ 1 there exists a deterministic and

measurable function fn : Rn → R such that U(n) = fn(ξ(1), ξ(2), . . . , ξ(n)).

Let B(t), t ≥ 0, be a standard Brownian motion (with B(0) = 0) on a probability

space (Ω̃, F̃ , P̃) with the natural filtration (F̃(t))t≥0. Hence {B(n) − B(n − 1) : n ≥ 1}

and {ξ(n) : n ≥ 1} have the same probability distributions (although they are defined on

different probability spaces). That is, for any N ≥ 1 and any real numbers c1, · · · , cN ,

P̃
[
B(n)−B(n− 1) ≤ cn, 1 ≤ n ≤ N

]
= P

[
ξ(n) ≤ cn, 1 ≤ n ≤ N

]
.

Define Ũ(n) = fn(B(1)−B(0), B(2)−B(1), . . . , B(n)−B(n− 1)) for n ≥ 1 and Ũ(0) =

U(0). Then {ξ(n), U(n) : n ≥ 1} and {B(n) − B(n − 1), Ũ(n) : n ≥ 1} have the same

probability distributions. Now extend Ũ to continuous–time according to

Ũ(t) = Ũ(btc), t ≥ 0

where btc ∈ N0 denotes the integer part (or floor) of t ≥ 0. This process is F̃(t)–adapted.

Define the stopping time τ(θ) by

τ(θ) = inf
{
t ≥ 0 :

∣∣∣∣∫ t

0
Ũ(s) dB(s)

∣∣∣∣+ ∫ t

0
Ũ2(s) ds ≥ θ

}
Moreover, let α > 0, N ∈ N and consider the F̃(t)–adapted process Xθ = {Xθ(t) : 0 ≤ t ≤

N} given by

Xθ(t) = exp

(
α

∫ t∧τ(θ)

0
Ũ(s) dB(s)− 1

2
α2

∫ t∧τ(θ)

0
Ũ2(s) ds

)
, 0 ≤ t ≤ N.

By Theorem 1.7.4 in [54], we find that Xθ(t) is a F̃(t) martingale. Therefore Doob’s

martingale inequality applies and we have

P̃[ max
0≤t≤N

Xθ(n) ≥ eαβ ] ≤ e−αβ .
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Proceeding as in the proof of Theorem 1.7.4 in [54], by taking θ →∞ and using the fact

that τ(θ) ↑ ∞ as θ →∞ we obtain

P̃
[

max
0≤t≤N

{∫ t

0
Ũ(s) dB(s)− 1

2
α

∫ t

0
Ũ2(s) ds

}
≥ β

]
≤ e−αβ . (5.4.1)

Define

F (t) :=
∫ t

0
Ũ(s) dB(s)− 1

2
α

∫ t

0
Ũ2(s) ds, t ∈ [0, N ].

Since Ũ(t) = Ũ(btc) we have for all t ≥ 0 and for each n ∈ {0, . . . , N},

F (n) =
∫ n

0
Ũ(s) dB(s)− 1

2
α

∫ n

0
Ũ2(s) ds

=
n−1∑
j=0

∫ j+1

j
Ũ(s) dB(s)− 1

2
α

n−1∑
j=0

∫ j+1

j
Ũ2(s) ds

=
n−1∑
j=0

Ũ(j)
(
B(j + 1)−B(j)

)
− 1

2
α

n−1∑
j=0

Ũ2(j).

Now, because maxt∈[0,N ] F (t) ≥ maxn∈{1,...,N} F (n) it follows for any β > 0 that

{
max

n∈{1,...,N}
F (n) ≥ β

}
⊆
{

max
t∈[0,N ]

F (t) ≥ β
}

and so, using (5.4.1) we get

P̃
[

max
n∈{1,...,N}

{ n−1∑
j=0

Ũ(j)(B(j + 1)−B(j))− 1
2
α

n−1∑
j=0

Ũ2(j)
}
≥ β

]
≤ e−αβ .

But, recalling that {ξ(n), U(n) : n ≥ 1} and {B(n) − B(n − 1), Ũ(n) : n ≥ 1} have the

same probability distributions, we have

P
[

max
n∈{1,...,N}

{ n−1∑
j=0

U(j)ξ(j + 1)− 1
2
α

n−1∑
j=0

U2(j)
}
≥ β

]

= P̃
[

max
n∈{1,...,N}

{ n−1∑
j=0

Ũ(j)(B(j + 1)−B(j))− 1
2
α

n−1∑
j=0

Ũ2(j)
}
≥ β

]
.

Hence

P
[

max
n∈{1,...,N}

{ n−1∑
j=0

U(j)ξ(j + 1)− 1
2
α

n−1∑
j=0

U2(j)
}
≥ β

]
≤ e−αβ

as required.
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Chapter 6

On the Pathwise Large Fluctuations of

Discretised SDEs

6.1 Introduction

Use of more general exponential martingale inequalities (EMIs) tends, as shown in Chapter

4, to make it more difficult to obtain asymptotic estimates for the discretisations of SDEs

which correspond to those of the underlying continuous–time equation. Moreover, these

estimates can be inferior to their continuous counterparts. For these reasons, in Chapter

5 we developed a discrete EMI for martingales driven by Gaussian sequences as this is the

type of martingale which occurs as a result of a typical Euler–Maruyama discretisation

method applied to an SDE driven by standard Brownian motion. This EMI is more suit-

able for estimating the fluctuations of martingales which may be viewed as discretisations

of Itô integrals.

In this chapter we once again consider the asymptotic behaviour of discretisations of

SDEs but, in contrast to Chapter 4, we now utilise the discrete EMI of Chapter 5. More

specifically, we study the asymptotic behaviour of the numerical solution of the non–

autonomous SDE given by

dX(t) = f(X(t), t) dt+ g(X(t), t) dB(t), (6.1.1)

with drift coefficient f : R× [0,∞) → R and diffusion coefficient g : R× [0,∞) → R. Note

that one could also consider the discretisation of an SDE with Markovian switching but

since our attention in this chapter is on numerical analysis, we consider only non–switching
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SDEs. In particular we attempt to find deterministic upper and lower estimates on the

rate of growth of the running maxima t 7→ sup0≤s≤t |X(s)| by finding constants Cu and

Cl and a function φ : (0,∞) → (0,∞) such that

0 < Cl ≤ lim sup
t→∞

|X(t)|
φ(t)

≤ Cu, a.s. (6.1.2)

As before, we refer to such a function φ as the essential rate of growth of the largest

deviations.

Asymptotic properties of the continuous–time model described by (6.1.1) are examined

in [54] while some new continuous–time results are developed in Section 6.2 of this chap-

ter. The results in [54] are achieved mainly through the combination of the exponential

martingale inequality and Gronwall’s inequality. The main aim of this chapter is to ex-

tend these methods to discrete–time and to obtain results which are consistent with the

continuous–time counterparts.

Before stating comparable results for discrete problems, we give a rough indication of

the main technical challenges that our proofs entail. We establish counterparts to the

continuous–time results by mimicking each of the techniques used in their proofs.

Firstly, we obviate any difficulties relating to discrete Itô formulae by confining attention

to equations where, in continuous time, the square of the process is considered. Secondly,

good discrete analogues of Gronwall’s inequality already exist enabling us, as in continuous

time, to deal easily with the final estimation of the almost sure growth bound. The other

key element of the proofs is the use of an exponential martingale inequality. In the discrete

proofs in this chapter, we now use the more refined version of the discrete EMI developed

in Chapter 5. Consideration of the inequality shows that it retains all of the features of the

continuous EMI, and in particular, depends only on the predictable quadratic variation.

On implementing this programme, we generally obtain results which are natural discrete
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analogues of (6.1.2) and are of the form

0 < Cl(h) ≤ lim sup
n→∞

|Xh(n)|
φ(nh)

≤ Cu(h), a.s., (6.1.3)

where h represents the fixed step–size used to produce the discretised process Xh(n). Here,

the limiting constants Cu and Cl may be h–dependent but will be arbitrarily close to their

continuous–time counterparts provided h is small enough.

Over the last ten years a literature on the dynamic asymptotic consistency of SDEs

has developed, among others [8, 10, 11, 34, 37, 38, 71]. The results (6.1.2) and (6.1.3)

can be thought of in that context, as they show that the asymptotic behaviour of the

SDE and its discretisation are consistent with each other (particularly as the step size

h→ 0). However, most of this literature deals with SDEs and their discretisations which

have asymptotically stable solutions (in either a p–th mean or a pathwise sense), as in [40]

and [58]. Moreover, in [40] it is shown that certain properties can be lost under an Euler–

Maruyama discretisation. To the best of the author’s knowledge, less is known about

the dynamic asymptotic consistency of discretisations of SDEs which have fluctuating

solutions. This chapter attempts, at least in part, to fill this gap.

We consider two alternative methods of discretising (6.1.1). The first is the standard

Euler–Maruyama method, while the second is an implicit variant of Euler–Maruyama

introduced in [36] as the split–step backward Euler method. For the standard explicit

Euler-Maruyama method, we obtain asymptotic behaviour of the form (6.1.3). However

in general this holds provided that the step size h > 0 is chosen sufficiently small and that

some assumptions are imposed on the drift coefficient f which are not required in order to

prove (6.1.2). On the other hand the method is easy to implement and the discretisation

has, in common with the underlying SDE, a unique solution.

In contrast, the implicit split–step variant of the Euler–Maruyama method does not
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necessarily require a restriction on the step size h, nor does it require such additional

assumptions on the drift. However, the method is more difficult to implement than the

explicit scheme and without an extra assumption on f (such as a one–sided Lipschitz

condition), a unique solution of the split–step scheme cannot be guaranteed. Nevertheless

we are able to show, as in deterministic work by Stuart and Humphries [77], that all

solutions have the appropriate long–run behaviour.

Throughout the chapter our results are divided into two categories. In one case we

impose conditions on f so that the drift is mean–reverting and close to being linear. This

makes our solutions asymptotically similar to an Ornstein–Uhlenbeck process. Here our

results, which we call O–U type results, are consistent with the asymptotic behaviour of

the well-known Ornstein–Uhlenbeck process in the sense that the essential rate of growth

is of the order φ(t) =
√

log t. Moreover we are able to obtain lower bounds on the large

deviations of the running maxima which were not found in [54].

Our other class of results we call Iterated Logarithm type results since our solutions obey

the Law of the Iterated Logarithm. That is, the essential growth rate is of the order

φ(t) =
√

2t log log t. Here we impose conditions on f which ensure that (6.1.1) is close to

Brownian motion in the sense that the drift coefficient is small, especially for large values

of X. It is interesting to remark that discrete results in this case can be proven without

any restrictions on h.

To begin with we state results for the simplified constant diffusion case, i.e., where

g(x, t) = σ for all (x, t) ∈ R× [0,∞). We then extend the results to the more general case

(6.1.1) where the diffusion coefficient is globally bounded, and has identifiable asymptotic

behaviour as |x| → ∞. A new feature of the proofs in continuous time, as well as the

corresponding discrete results, is that the asymptotic estimates on the large fluctuations

depend only on the behaviour of f and g as |x| → ∞. This leads to sharper results
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than those obtained in Mao [52], in which related global bounds on the coefficients lead to

asymptotic estimates which depend on these global bounds.

The chapter is organised as follows. In Section 6.2 we establish results for continuous–

time equations obeying either Ornstein–Uhlenbeck type growth bounds, or iterated loga-

rithm type growth bounds. In Section 6.3 we consider an Euler–Maruyama discretisation

of such equations while in Section 6.4 we consider a split–step discretisation method.

Proofs are postponed to the final three sections: proofs of the continuous–time results can

be found in Section 6.5, proofs of exponential martingale estimates are in Section 6.6 and

proofs in the discrete cases can be found in Section 6.7.

6.2 Continuous–Time Processes

Let X(0) = x0 and consider the stochastic differential equation given by

dX(t) = f(X(t), t) dt+ σ dB(t), t ≥ 0, (6.2.1)

where σ ∈ R/{0} and f : R × [0,∞) → R. We assume throughout the chapter, without

further repetition, that f is locally Lipschitz continuous in the sense that there exists a

constant Mn > 0 such that

|f(x, t)− f(y, t)| ≤Mn|x− y|, for all |x|, |y| ≤ n and t ≥ 0. (6.2.2)

For economy of exposition this assumption is not explicitly repeated in the statement of

theorems in this chapter. We sometimes ask that f obeys the following linear growth

condition.

Assumption 6.2.1. There exists a positive constant Γ such that

lim sup
|x|→∞

|f(x, t)|
|x|

≤ Γ, uniformly for all t ≥ 0. (6.2.3)
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Moreover for every A > 0, there exists c1(A) <∞ such that

sup
|x|≤A

|f(x, t)| ≤ c1(A), uniformly for all t ≥ 0.

Remark 6.2.1. Note that (6.2.3) implies that for all υ ∈ (0, 1) there exists X(υ) > 0,

independent of t, such that |f(x, t)| ≤ Γ(1+υ)|x| for |x| ≥ X(υ). Moreover, for |x| < X(υ)

we have |f(x, t)| ≤ c1(X(υ)). Define Γ0 := c1(X(υ)) and Γ1 := Γ(1 + υ). Then combining

both estimates, for all x ∈ R, we have

|f(x, t)| ≤ Γ0 + Γ1|x| uniformly for all t ≥ 0. (6.2.4)

By Assumption 6.2.1 and the fact that f is locally Lipschitz continuous, there is a unique

continuous and adapted process which satisfies (6.2.1) (see e.g. [54]).

6.2.1 O–U type results

In order to introduce the main ideas in this section we first set out the conditions on the

drift which produce Ornstein–Uhlenbeck type behaviour in the solution.

Assumption 6.2.2. There exists a positive constant γ such that

lim sup
|x|→∞

xf(x, t)
x2

≤ −γ, uniformly for all t ≥ 0. (6.2.5)

Moreover for every A > 0, there exists c2(A) <∞ such that

sup
|x|≤A

xf(x, t) ≤ c2(A), uniformly for all t ≥ 0.

Remark 6.2.2. Note that (6.2.5) implies that for all η ∈ (0, 1) there exists X(η) > 0,

independent of t, such that xf(x, t) ≤ −γ(1 − η)x2 for |x| ≥ X(η). Moreover, for |x| <

X(η),

xf(x, t) ≤ c2(X(η)) = c2(X(η)) + γ(1− η)x2 − γ(1− η)x2

≤ c2(X(η)) + γ(1− η)X2(η)− γ(1− η)x2.
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Define ρ1 := c2(X(η))+γ(1−η)X2(η) and γ1 := γ(1−η). Then combining both estimates,

for all x ∈ R, we have

xf(x, t) ≤ ρ1 − γ1x
2 uniformly for all t ≥ 0. (6.2.6)

In our proofs throughout this chapter we will be using (6.2.4) and (6.2.6) for notational

convenience and for the fact that assumptions of that form are consistent with those used

by Mao in [54]. However, at the final stage of our proofs we will re–introduce the fact

that γ1 = γ(1 − η) and Γ1 = Γ(1 + ν) for η, ν arbitrarily small and we can then allow

η, ν → 0 to obtain results which depend on the asymptotic estimates (6.2.3) and (6.2.5).

The reason for this is subtle yet worthwhile. Although we could simply make global

assumptions on f of the form (6.2.4) and (6.2.6), these might not accurately reflect the

asymptotic behaviour of f , since the conditions must hold for all values of x. By instead

using asymptotic conditions of the form (6.2.3) and (6.2.5), we are isolating the asymptotic

behaviour of f as |x| → ∞ since it should only be these values which contribute to the

asymptotic behaviour of the process.

To that end, we now demonstrate that an asymptotic condition of the form (6.2.5) can

give a sharper result than if one were to use a global condition of the form (6.2.6). This

result mirrors a similar theorem in Mao, [54].

Theorem 6.2.3. Let X be the unique continuous adapted solution to (6.2.1) and let f

obey Assumption 6.2.2. Then,

lim sup
t→∞

|X(t)|√
log t

≤ |σ|
√
e

γ
, a.s. (6.2.7)

It is important to note that if one were to use the global condition (6.2.6) then we would

get the same result, but with γ1 instead of γ. However, since γ ≥ γ1 it follows that (6.2.7)

is slightly sharper than that which is obtained under (6.2.6).
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Under Assumption 6.2.1 we can also get a complementary lower bound on the large

fluctuations of |X|, a result which has not appeared in the literature to date.

Theorem 6.2.4. Let X be the unique continuous adapted solution to (6.2.1) and let f

obey Assumption 6.2.1. Then,

lim sup
t→∞

|X(t)|√
log t

≥ |σ|
2
√

2Γ
, a.s. (6.2.8)

Theorems 6.2.3 and 6.2.4 are reasonably sharp in the sense that in the simple linear case

where f(x, t) = −γx, it is well–known that lim supt→∞ |X(t)|/
√

log t = |σ|/√γ a.s., (see

[54] for example) and the hypotheses (6.2.4) and (6.2.6) effectively represent a perturbation

from the linear case. In fact, the essential growth rate is of the right order (φ(t) =
√

log t)

and the constants on the right–hand sides of (6.2.7) and (6.2.8) are of the right “dimension”

in that they are determined by the diffusion coefficient divided by the square root of the

linearity coefficient, roughly speaking.

6.2.2 Iterated Logarithm type results

One can also derive iterated logarithm type growth bounds on (6.2.1) under the following

condition.

Assumption 6.2.5. There exists a positive constant ρ such that for all x ∈ R,

xf(x, t) ≤ ρ uniformly for all t ≥ 0. (6.2.9)

Under Assumption 6.2.5, (6.2.1) has a unique continuous adapted solution X. Again,

in [54] it was shown that under condition (6.2.9) on f we have

lim sup
t→∞

|X(t)|√
2t log log t

≤ |σ|
√
e, a.s. (6.2.10)

A discrete analogue of this result was first attempted in Chapter 4. However, the use

of a general discrete–time exponential martingale inequality gave us a result which was
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less sharp than (6.2.10). In the next section we use the specialised discrete exponential

martingale inequality from Chapter 5 to obtain a sharper discrete analogue of (6.2.10).

6.2.3 General Diffusion Coefficient

We can also generalise the noise term to study an equation of the form

dX(t) = f(X(t), t) dt+ g(X(t), t) dB(t), t ≥ 0, (6.2.11)

where g : R× [0,∞) → R obeys the following hypothesis.

Assumption 6.2.6. There exists a positive constant K such that

lim sup
|x|→∞

|g(x, t)| ≤ K, uniformly for all t ≥ 0. (6.2.12)

Moreover, we assume that there exists κ > 0 such that for all x, y ∈ R

(
g(x, t)− g(y, t)

)2 ≤ κ(x− y)2 uniformly for all t ≥ 0. (6.2.13)

Under Assumption 6.2.6 on g and Assumption 6.2.5 on f , there is a unique continuous

and adapted process which satisfies (6.2.11).

Remark 6.2.3. Note that (6.2.12) implies that for all ε ∈ (0, 1) there exists X(ε) > 0,

independent of t, such that |g(x, t)| ≤ K(1+ε) for |x| ≥ X(ε). Moreover, by the continuity

of g, for |x| < X(ε) there exists c3 such that |g(x, t)| ≤ c3(X(ε)) < ∞. Define K1 :=

c3(X(ε)) +K(1 + ε). Then combining both estimates, for all x ∈ R, we have

|g(x, t)| ≤ K1 uniformly for all t ≥ 0. (6.2.14)

In some instances in our proofs it may be more convenient to use the global bound (6.2.14)

when dealing with terms which are not asymptotically dominant. It turns out that such

terms do not affect the final asymptotic result. However, when dealing with terms which
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will contribute to the final asymptotic result we will instead use the more accurate asymp-

totic bound on g given by (6.2.12).

In [54], Mao makes the point that under condition (6.2.14) it is clear that the upper

bound results (6.2.7) and (6.2.10) still hold for the solution of equation (6.2.11) with the

corresponding |σ| replaced by K1. In fact, it could easily be shown using (6.2.12) that

the upper bound results (6.2.7) and (6.2.10) still hold for the solution of equation (6.2.11)

with the corresponding |σ| replaced by K, though the details are omitted. We now show

that the lower bound result (6.2.8) also holds for the solution of (6.2.11) provided g is

uniformly bounded below.

Theorem 6.2.7. Let X be the unique continuous adapted solution to (6.2.11). Let f obey

Assumption 6.2.1 and let g be Lipschitz continuous and obey

|g(x, t)| ≥ K2 for all (x, t) ∈ R× [0,∞).

Then,

lim sup
t→∞

|X(t)|√
log t

≥ K2

2
√

2Γ
, a.s. (6.2.15)

6.3 Euler–Maruyama Discretisation Scheme

Having stated results for continuous–time processes in the previous section, we now con-

sider discrete–time analogues of such results. This is achieved through discretisation of

the process X(t). We first consider an Euler–Maruyama discretisation of the SDE (6.2.1),

which takes the form

Xh(n+ 1) = Xh(n) + hf(Xh(n), nh) +
√
hσξ(n+ 1), n ≥ 0, (6.3.1)

where h > 0 is the fixed step size and ξ is a sequence of independent standard normal

random variables. To avoid repetition, we assume throughout the rest of the chapter that
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ξ(n)

)
n≥1

is a sequence of i.i.d. N (0, 1) random variables. This is a commonly used explicit

discretisation method and under our assumptions on f there exists a unique solution to

(6.3.1).

6.3.1 O–U type results

We are now in a position to state our main results in discrete–time. The following is an

analogue of Theorem 6.2.3.

Theorem 6.3.1. Let f obey Assumptions 6.2.1 and 6.2.2 and let h < min(γ/Γ2, 1/(2γ)).

If Xh is the unique adapted solution to (6.3.1), then

lim sup
n→∞

|Xh(n)|√
log nh

≤ |σ|
√
e

γ
C(h), a.s., (6.3.2)

where C(h) > 1 and C(h) → 1 as h→ 0. Moreover, we can write C(h) explicitly as

C(h) :=
[ 2
1− 2hγ + 2h2Γ2

− 1
]( γ

γ − hΓ2

)
.

Remark 6.3.1. Notice that in contrast to Theorem 6.2.3, we must assume both Assumptions

6.2.1 and 6.2.2 in order to prove Theorem 6.3.1. Later in the chapter we will show that a

different discretisation method allows us to drop Assumption 6.2.1.

It is important to note also that the constant on the right–hand side of (6.3.2) is arbi-

trarily close to the analogous constant in the continuous-time result (6.2.7), for h small

enough. The continuous time version of Theorem 6.3.1 was first established by an expo-

nential martingale and Gronwall inequality proof in [52]: the proof of Theorem 6.3.1 is

modelled on the argument in that work except that in the discrete case an extra martin-

gale term arises which must be estimated. This extra ingredient is a result of the inability

to accurately replicate Itô’s rule in discrete time. Therefore, to prove Theorem 6.3.1 we

require new technical results which hinge on a further specialised version of the EMI.

These new technical results can be found in Section 6.6.
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We now state a discrete–time analogue of Theorem 6.2.4.

Theorem 6.3.2. Let f satisfy Assumption 6.2.1 and let h < 2/Γ. If Xh is the unique

adapted solution to (6.3.1), then

lim sup
n→∞

|Xh(n)|√
log nh

≥ |σ|
2
√

2Γ
C(h), a.s., (6.3.3)

where C(h) :=
√

2/
√

2− hΓ/2 > 1 and C(h) → 1 as h→ 0.

Again, the constant on the right–hand side of (6.3.3) is arbitrarily close to the analogous

constant in Theorem 6.2.4, for h small enough.

6.3.2 Iterated Logarithm type results

We now look at a discrete–time analogue of (6.2.10). Once again we use Assumption 6.2.5

on f . We do not require that f be linearly bounded as in Assumption 6.2.1, instead we

request that f be bounded in the sense that there exists a constant f̄ > 0 such that for

all x ∈ R

|f(x, t)| ≤ f̄ uniformly for all t ≥ 0. (6.3.4)

We then get the following result.

Theorem 6.3.3. Let f obey (6.3.4) and Assumption 6.2.5 and let Xh be the unique

adapted solution to (6.3.1). Then

lim sup
n→∞

|Xh(n)|√
2nh log log nh

≤ |σ|
√
e, a.s. (6.3.5)

In this case we are able to recover exactly Mao’s result (6.2.10) in discrete–time, con-

tingent on the additional assumption (6.3.4). In particular, we have eliminated the extra

factor of 2 which was first established in similar results in Chapter 4. Later in this chapter,

we show that an alternative discretisation enables us to prove (6.3.5) without assuming

(6.3.4).
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6.3.3 General Diffusion Coefficient

We can again generalise the noise term in (6.3.1) to study an equation of the form

Xh(n+ 1) = Xh(n) + hf(Xh(n), nh) +
√
hg(Xh(n), nh)ξ(n+ 1), n ≥ 0, (6.3.6)

where g : R× [0,∞) → R obeys Assumption 6.2.6. Since f is continuous there is a unique

continuous and adapted process which satisfies (6.3.6).

Our next results (of O–U type and Iterated Logarithm type respectively) show that

Theorems 6.3.1 and 6.3.3 still hold for the solution of (6.3.6) under Assumption 6.2.6 on

g. To date, we have not been able to recover an analogue of the lower bound estimate

from Theorem 6.3.2 in the case when we have a non–constant diffusion coefficient.

Theorem 6.3.4. Let f satisfy Assumptions 6.2.1 and 6.2.2 and let g satisfy Assumption

6.2.6. Let h < min(γ/Γ2, 1/(2γ)) and let Xh be the unique adapted solution to (6.3.6).

Then

lim sup
n→∞

|Xh(n)|√
log nh

≤ K

√
e

γ
C(h), a.s.

where C(h) > 1 and C(h) → 1 as h→ 0. Moreover, we can write C(h) explicitly as

C(h) :=
[ 2
1− 2hγ + 2h2Γ2

− 1
]( γ

γ − hΓ2

)
.

Theorem 6.3.5. Let f obey (6.3.4) and Assumption 6.2.5 and let g satisfy Assumption

6.2.6. If Xh is the unique adapted solution to (6.3.6), then

lim sup
n→∞

|Xh(n)|√
2nh log log nh

≤ K
√
e, a.s.

6.4 Split–Step discretisation scheme

In our efforts to replicate the effect of Itô’s rule in discrete–time, we very often encounter

additional terms which are estimated with the help of conditions such as (6.2.4) in the
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O–U case and (6.3.4) in the Iterated Logarithm case. In particular, when using an Euler–

Maruyama scheme such as (6.3.1), our proofs seem to require these estimates on f . We

now show that the use of a split–step implicit variant of Euler–Maruyama negates the

need for conditions (6.2.4) and (6.3.4). The discretisation is as follows. Set Xh(0) = X(0)

and define

X∗
h(n) = Xh(n) + hf(X∗

h(n), nh),

Xh(n+ 1) = X∗
h(n) + σ

√
hξ(n+ 1), (6.4.1)

where, as before, h > 0 is the fixed step size and ξ is a sequence of independent standard

normal random variables. The first step of the method is an implicit equation that must be

solved in order to obtain the intermediate approximation X∗
h(n). Having obtained X∗

h(n),

adding the appropriate stochastic increment σ
√
hξ(n+1) produces the next approximation

Xh(n+1). We say that (6.4.1) has a solution if there is a pair of processes (Xh, X
∗
h) which

obey (6.4.1). Such a solution will automatically be global, (i.e., defined for all n ≥ 0) and

will be adapted to the natural filtration generated by the ξ’s.

We now consider the existence of solutions to the discretisation method given by (6.4.1).

In [36] it is shown that under a global one–sided Lipschitz condition on the drift function f

there exists a unique solution to (6.4.1) provided the step size h is chosen to be sufficiently

small.

Assumption 6.4.1. Assume that f ∈ C1(R) and that for all x, y ∈ R there exists a

constant c ∈ R such that

(x− y)(f(x, t)− f(y, t)) ≤ c(x− y)2, uniformly for all t ≥ 0. (6.4.2)

We refer to this condition as a global one–sided Lipschitz condition because the constant

c is independent of x and y in (6.4.2). Although this is weaker than requesting that f
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satisfy a global Lipschitz condition, it places a restriction on f on all R, and still excludes

some functions f which grow faster than polynomially as |x| → ∞.

Moreover, we do not necessarily require this global one–sided Lipschitz condition if

we are willing to sacrifice uniqueness in the solution of (6.4.1). This is in the spirit of

generalised dynamical systems considered by Stuart and Humphries [77]. In Section 6.8,

we will show that either condition (6.2.6) or condition (6.2.9) is enough to guarantee that

(6.4.1) has a (not necessarily unique) solution. However, if uniqueness of the solution of

(6.4.1) is required then we are still free to impose condition (6.4.2) on f , at the expense

of an a–priori size restriction on h.

We are now in a position to state an analogue of Theorem 6.3.1 under the split–step

discretisation scheme. Here, we no longer require Assumption 6.2.1 on f .

Theorem 6.4.2. Let f satisfy Assumption 6.2.2 and let Xh be any adapted solution to

(6.4.1). Then

lim sup
n→∞

|Xh(n)|√
log nh

≤ |σ|
√
e

γ
C(h), a.s., (6.4.3)

where C(h) := 1 + 6hγ + 8h2γ2 > 1 and C(h) → 1 as h→ 0.

Similarly we have an analogue of Theorem 6.3.3 under the split–step discretisation

scheme and here we no longer require condition (6.3.4) on f .

Theorem 6.4.3. Let f satisfy Assumption 6.2.5 and let Xh be any adapted solution to

(6.4.1). Then

lim sup
n→∞

|Xh(n)|√
2nh log log nh

≤ |σ|
√
e, a.s. (6.4.4)

As mentioned earlier, we may also restate Theorems 6.4.2 and 6.4.3 where Xh is the

unique adapted solution to (6.4.1) if we also stipulate that f obeys Assumption 6.4.1 and

that h ≤ (2c+ 1)−1 where c arises from (6.4.2).
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6.4.1 General Diffusion Coefficient

We can again generalise the noise term in (6.4.1) to study a system of the form

X∗
h(n) = Xh(n) + hf(X∗

h(n), nh),

Xh(n+ 1) = X∗
h(n) + g(X∗

h(n), nh)
√
hξ(n+ 1), (6.4.5)

where g : R × [0,∞) → R obeys Assumption 6.2.6. The addition of the non-constant

diffusion coefficient will not affect the existence of a solution of (6.4.5) since g is bounded.

We now show that Theorems 6.4.2 and 6.4.3 still hold for the solution of (6.4.5) under

Assumption 6.2.6 on g.

Theorem 6.4.4. Let f satisfy Assumption 6.2.2 and let g satisfy Assumption 6.2.6. If

Xh is any adapted solution to (6.4.5), then

lim sup
n→∞

|Xh(n)|√
log nh

≤ K

√
e

γ
C(h), a.s.,

where C(h) := 1 + 6hγ + 8h2γ2 > 1 and C(h) → 1 as h→ 0.

Theorem 6.4.5. Let f satisfy Assumption 6.2.5 and let g satisfy Assumption 6.2.6. If

Xh is any adapted solution to (6.4.5), then

lim sup
n→∞

|Xh(n)|√
2nh log log nh

≤ K
√
e, a.s.

Again, we may restate Theorems 6.4.4 and 6.4.5 where Xh is the unique adapted solution

to (6.4.5) if we also stipulate that f obeys Assumption 6.4.1 and that h ≤ ((2c+1)∨4κ)−1

where c and κ arise from (6.4.2) and (6.2.13) respectively.
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6.5 Proofs of Results from Section 6.2

Proof of Theorem 6.2.3. In [54] it was shown that if X is the unique continuous

adapted solution to (6.2.1) then under condition (6.2.6) on f we have

lim sup
t→∞

|X(t)|√
log t

≤ |σ|
√

e

γ1
, a.s.

Now recalling that γ1 = γ(1− η) where η ∈ (0, 1) we get

lim sup
t→∞

|X(t)|√
log t

≤ |σ|
√

e

γ(1− η)
, a.s.

This estimate holds for all outcomes in an event of probability one, say Ωη. By considering

Ω∗ := ∩p∈NΩ 1
p
, i.e. by letting η → 0, we get the desired result.

Proof of Theorem 6.2.4. Let µ > 0. From (6.2.1) we have

dX(t) =
[
− µX(t) + F (X(t))

]
dt+ σ dB(t),

where F (x) := µx+ f(x, t). We can then show that

eµtX(t) = X(0) +
∫ t

0
eµsF (X(s)) ds+M(t), (6.5.1)

where M(t) :=
∫ t
0 σe

µs dB(s) is a martingale with quadratic variation given by 〈M〉(t) =∫ t
0 σ

2e2µs ds = σ2(e2µt − 1)/2µ. Moreover, notice that

lim
t→∞

〈M〉(t)
e2µt

= lim
t→∞

σ2

2µ
(1− e−2µt) =

σ2

2µ
and lim

t→∞

log log 〈M〉(t)
log t

= 1.

Therefore, using the law of the iterated logarithm for martingales (Exercise 5.1.15, [70])

lim sup
t→∞

|M(t)|
eµt
√

log t
= lim sup

t→∞

√
2|M(t)|√

2〈M〉(t) log log 〈M〉(t)
.

√
〈M〉(t)
e2µt

log log 〈M〉(t)
log t

=

√
σ2

µ
, a.s. (6.5.2)

Let c > 0 and define the event

Ac :=
{
ω : lim sup

t→∞

|X(t)|√
log t

< c
}

(6.5.3)
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and assume that P[Ac] > 0. We will demonstrate that this is impossible for the appropriate

choice of c. By (6.5.1) and the triangle inequality it follows that

lim sup
t→∞

|M(t)|
eµt
√

log t
≤ lim sup

t→∞

|X(t)|√
log t

+ lim sup
t→∞

|X(0)|
eµt
√

log t
+ lim sup

t→∞

∫ t
0 e

µs|F (X(s))| ds
eµt
√

log t

< c+ lim sup
t→∞

∫ t
0 e

µs|F (X(s))| ds
eµt
√

log t
, a.s. on Ac. (6.5.4)

Using (6.2.4) we have |F (x)| ≤ µ|x|+ |f(x, t)| ≤ (µ+ Γ1)|x|+ Γ0 for all x, and so

∫ t

0
eµs|F (X(s))| ds ≤ (µ+ Γ1)

∫ t

0
eµs|X(s)| ds+

Γ0

µ
(eµt − 1). (6.5.5)

By (6.5.3) it follows that for every ε > 0 there exists T1(ε, ω) > 0 such that for t ≥ T1(ε, ω)

we have |X(t, ω)| ≤ c(1 + ε)
√

log t, for all ω ∈ Ac. Therefore,

∫ t

0
eµs|X(s, ω)| ds ≤

∫ T1(ε,ω)

0
eµs|X(s, ω)| ds+ c(1 + ε)

∫ t

T1(ε,ω)
eµs
√

log s ds

≤ X∗(ε, ω)
∫ T1(ε,ω)

0
eµs ds+ c(1 + ε)

∫ t

T1(ε,ω)
eµs
√

log s ds, (6.5.6)

where X∗(ε, ω) := max0≤s≤T1(ε,ω) |X(s, ω)| < +∞. By L’Hôpital’s rule

lim
t→∞

∫ t
T1(ε,ω) e

µs
√

log s ds

eµt
√

log t
=

1
µ

lim
t→∞

2t log t
µ−1 + 2t log t

=
1
µ
,

and so using this along with equations (6.5.5) and (6.5.6) we get

lim sup
t→∞

∫ t
0 e

µs|F (X(s, ω))| ds
eµt
√

log t
≤ (µ+ Γ1)c(1 + ε)

µ
, for all ω ∈ Ac.

Moreover, since ε > 0 can be chosen arbitrarily we can allow ε→ 0 through the rationals

to get

lim sup
t→∞

∫ t
0 e

µs|F (X(s, ω))| ds
eµt
√

log t
≤ (µ+ Γ1)c

µ
, for all ω ∈ Ac.

Therefore by (6.5.2) and (6.5.4),√
σ2

µ
= lim sup

t→∞

|M(t)|
eµt
√

log t
< c+

(µ+ Γ1)c
µ

, a.s. on Ac.
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However, we get a contradiction above if we make the choice c =
√
σ2µ/(2µ+ Γ1) which

means that our assumption that P[Ac] > 0 is incorrect. Thus, P[Āc] = 1 and

lim sup
t→∞

|X(t)|√
log t

≥ c =
|σ|√µ

2µ+ Γ1
, a.s.

Then choosing µ = Γ1/2 we get

lim sup
t→∞

|X(t)|√
log t

≥ |σ|
2
√

2Γ1
, a.s.

Now recalling that Γ1 = Γ(1 + υ) where υ ∈ (0, 1) we get

lim sup
t→∞

|X(t)|√
log t

≥ |σ|
2
√

2Γ(1 + υ)
, a.s.

This estimate holds for all outcomes in an event of probability one, say Ωυ. By considering

Ω∗ := ∩p∈NΩ 1
p
, i.e. by letting υ → 0, we get the desired result.

Proof of Theorem 6.2.7. Let µ > 0. From (6.2.11) we have

dX(t) =
[
− µX(t) + F (X(t))

]
dt+ g(X(t), t) dB(t),

where F (x) := µx+ f(x, t). Then by Itô’s rule we can show that

eµtX(t) = X(0) +
∫ t

0
eµsF (X(s)) ds+M(t),

where M(t) :=
∫ t
0 g(X(s), s)eµs dB(s) is a martingale with quadratic variation given by

〈M〉(t) =
∫ t
0 g

2(X(s), s)e2µs ds ≥ K2
2 (e2µt − 1)/2µ. Moreover, notice that

lim
t→∞

〈M〉(t)
e2µt

≥ lim
t→∞

K2
2

2µ
(1− e−2µt) =

K2
2

2µ
and lim

t→∞

log log 〈M〉(t)
log t

≥ 1.

Therefore, using the law of the iterated logarithm for martingales we get

lim sup
t→∞

|M(t)|
eµt
√

log t
= lim sup

t→∞

√
2|M(t)|√

2〈M〉(t) log log 〈M〉(t)
.

√
〈M〉(t)
e2µt

log log 〈M〉(t)
log t

≥

√
K2

2

µ
, a.s.

The proof now follows exactly the same steps as in the proof of Theorem 6.2.4, where σ

is replaced by K2.
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6.6 Proofs of Exponential Martingale Estimates

The following is the (easily derived) moment generating function of a form of Chi–Squared

distribution.

Lemma 6.6.1. Suppose that ξ is a standard normal random variable and that ζ = ξ2− 1.

Then for λ ∈ (0, 1/2)

ϕ(λ) := E[eλζ ] = e−λ

(
1

1− 2λ

)1/2

. (6.6.1)

We will need the following specific form of the exponential martingale inequality.

Lemma 6.6.2. Let N ∈ N. Let (ξ(j))j≥1 be a sequence of independent standard normal

random variables and define ζ(j) = ξ2(j)−1 for j ≥ 1. Let (cj)0≤j≤N−1 be a deterministic

positive sequence. Define M(0) = 0 and

M(n) =
n−1∑
j=0

cjζ(j + 1), 1 ≤ n ≤ N.

Suppose that λN > 0 is such that cjλN < 1/2 for all 0 ≤ j ≤ N − 1. Then for every

βN > 0 we have

P
[

max
1≤n≤N

{
M(n) +

n−1∑
j=0

cj −
1

2λN

n−1∑
j=0

log
( 1

1− 2λNcj

)}
≥ βN

]
≤ e−λNβN . (6.6.2)

Careful perusal of the argument of Lemma 6.6.2 reveals that much of the argument

holds for white noise sequences with general moment generating functions, but to sim-

plify the proof (particularly regarding the domain of definition of the moment generating

function in (6.6.1)) we specialise our calculations during the proof to cover merely the

moment generating function given in (6.6.1). In the forthcoming Lemma 6.6.3, we apply

Lemma 6.6.2 to a particular martingale by choosing carefully the sequences λN and βN in

the statement of Lemma 6.6.2.
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Proof of Lemma 6.6.2. Let ϕ be given by (6.6.1). Since cjλN < 1/2 for j = 1, . . . , N−

1, it follows that ϕ(λNcj) > 0 is well–defined and finite for each j = 1, . . . , N − 1. Define

X(0) = 1 and

X(n) = eλNM(n)
n−1∏
j=0

1
ϕ(λNcj)

, 1 ≤ n ≤ N.

We prove that X is a positive martingale (with respect to the appropriate filtration).

Clearly X(n) is positive a.s. for each n ∈ {1, . . . , N} because M(n) is almost surely finite

for each n ∈ {1, . . . , N}. Now for n ∈ {1, . . . , N} by the independence of ζ(j + 1) for

j = 0, . . . , N − 1 and the finiteness of ϕ(λNcj) we have

E
[
eλNM(n)

]
= E

exp

n−1∑
j=0

λNcjζ(j + 1)

 =
n−1∏
j=0

E [exp (λNcjζ(j + 1))] =
n−1∏
j=0

ϕ(λNcj),

which means that E[|X(n)|] = E[X(n)] is finite for n ∈ {1, . . . , N} and moreover E[X(n)] =

1 for all n ∈ {0, . . . , N}. We now show that E[X(n + 1)|F(n)] = X(n) where we define

F(n) := σ{ζ(j) : 1 ≤ j ≤ n} for n ∈ {1, . . . , N}, so that each F(n) is a (naturally

generated) sigma–algebra, and that (F(n))1≤n≤N is the natural filtration generated by

the sequence (ζ(n))1≤n≤N . We may denote by F(0) the trivial sigma–algebra. With this

definition, ζ(1) is clearly independent of F(0) and we therefore get

E[X(1)|F(0)] =
1

ϕ(λNc0)
E[eλN c0ζ(1)|F(0)] =

1
ϕ(λNc0)

E[eλN c0ζ(1)]

=
1

ϕ(λNc0)
ϕ(λNc0) = 1 = X(0).

For 1 ≤ n ≤ N − 1 we have

X(n+ 1) = eλNM(n+1)
n∏

j=0

1
ϕ(λNcj)

= eλN (M(n+1)−M(n)) · 1
ϕ(λNcn)

X(n),

so as cn is deterministic, E[X(n)] and E[X(n)eλN cnζ(n+1)] are the finite expectations of

non–negative random variables, ζ(n + 1) is independent of F(n), and ϕ(λNcn) is finite,
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we get

E[X(n+ 1)|F(n)] = E[eλN (M(n+1)−M(n)) · 1
ϕ(λNcn)

X(n)|F(n)]

=
1

ϕ(λNcn)
E[eλN cnζ(n+1)X(n)|F(n)] =

1
ϕ(λNcn)

X(n)E[eλN cnζ(n+1)|F(n)]

=
1

ϕ(λNcn)
X(n)E[eλN cnζ(n+1)] = X(n).

Therefore we have that X = {X(n) : 0 ≤ n ≤ N} is a positive martingale relative

to (F(n))0≤n≤N with E[X(N)] = 1. Therefore, for any βN > 0, by Doob’s martingale

inequality we have

P
[

max
1≤n≤N

X(n) ≥ eλNβN

]
≤ E[X(N)]

eλNβN
= e−λNβN .

By the definition and positivity of X, and by using the fact that λN > 0 we get

P

 max
1≤n≤N

M(n) +
1
λN

n−1∑
j=0

log
(

1
ϕ(λNcj)

) ≥ βN

 ≤ e−λNβN .

Since ϕ is given by (6.6.1), we have that

1
λN

log
(

1
ϕ(λNcj)

)
= cj +

1
λN

log (1− 2λNcj)
1/2 ,

and inserting this into the last estimate gives (6.6.2), as required.

Lemma 6.6.2 is now used to establish the following estimate. It concerns a martingale

which appears in the proof of Theorem 6.3.1.

Lemma 6.6.3. Suppose σ2 > 0, h > 0 and αh > 1. Let (ξ(j))j≥1 be a sequence of

independent standard normal random variables. Define Mh(0) = 0 and

Mh(n) =
n−1∑
j=0

hσ2αj+1
h

(
ξ2(j + 1)− 1

)
, n ≥ 1. (6.6.3)

Then

lim sup
n→∞

Mh(n)
αn

h log n
≤ 2hσ2, a.s. (6.6.4)
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Note that the normalising constant on the right hand side of (6.6.4) can be made as

small as desired if h > 0 is chosen sufficiently small. This is precisely the kind of estimate

we require to make the analysis of Mao’s continuous time result sharp in the context of

Theorem 6.3.1. Lemma 6.6.3 yields a sharper (and crucially, h–dependent) estimate than,

for example, a simple term–by–term majorisation of the martingale Mh defined by (6.6.3).

Such a majorisation leads to the normalising constant tending to a non–trivial limit as

h→ 0.

Proof of Lemma 6.6.3. Let N ≥ 2. Define ζ(j) = ξ2(j) − 1 for j ≥ 1 and notice

that Mh defined by (6.6.3) is a martingale relative to the natural filtration generated by

(ζ(j))j≥1. Set cj = hσ2αj+1
h for 0 ≤ j ≤ N − 1. Then (cj)0≤j≤N−1 is a positive sequence

and Mh can be written as

Mh(n) =
n−1∑
j=0

cjζ(j + 1), n ≥ 1.

Define, for any fixed ε > 0,

λN =
1 + ε

(2 + 4ε)hσ2
α−N

h , βN = (2 + 4ε)hσ2αN
h logN.

Then λN > 0 and βN > 0. Also for j = 0, . . . , N − 1 as αh > 1 we have

cjλN =
1 + ε

2 + 4ε
αj+1−N

h ≤ 1 + ε

2 + 4ε
<

1
2
,

and λNβN = (1 + ε) logN . Hence we may apply Lemma 6.6.2 (specifically (6.6.2)) to Mh

to obtain

P

 max
1≤n≤N

Mh(n) +
n−1∑
j=0

cj −
1

2λN

n−1∑
j=0

log
(

1
1− 2λNcj

) ≥ βN

 ≤ 1
N1+ε

.

By the Borel–Cantelli lemma, there exists Ω∗ with P[Ω∗] = 1 such that for each ω ∈ Ω∗

there is an N0 = N0(ω) ∈ N such that

max
1≤n≤N

Mh(n) +
n−1∑
j=0

cj −
1

2λN

n−1∑
j=0

log
(

1
1− 2λNcj

) < βN , N ≥ N0.
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Therefore for N ≥ N0 we have

Mh(N) +
N−1∑
j=0

cj −
1

2λN

N−1∑
j=0

log
(

1
1− 2λNcj

)

≤ max
1≤n≤N

Mh(n) +
n−1∑
j=0

cj −
1

2λN

n−1∑
j=0

log
(

1
1− 2λNcj

) ≤ βN .

Since cj > 0 for 1 ≤ j ≤ N − 1, and by using the definitions of λN and βN , for N ≥ N0

we get the estimate

Mh(N) ≤ βN +
1

2λN

N−1∑
j=0

log
(

1
1− 2λNcj

)
−

N−1∑
j=0

cj

≤ (2 + 4ε)hσ2αN
h logN +

1 + 2ε
1 + ε

hσ2αN
h

N−1∑
j=0

log
(

1− 1 + ε

1 + 2ε
α−N+j+1

h

)−1

= (2 + 4ε)hσ2αN
h logN +

1 + 2ε
1 + ε

hσ2αN
h

N−1∑
l=0

− log
(

1− 1 + ε

1 + 2ε
α−l

h

)
.

Let x = (1 + ε)α−l
h /(1 + 2ε) and note that x ≤ (1 + ε)/(1 + 2ε) since αh > 1. Now by

Taylor’s theorem, for every x ∈ (0, (1 + ε)/(1 + 2ε)] there is cx ∈ (0, x] such that

− log(1− x) = x+
1

2(1− cx)2
x2 ≤ x+

(1 + 2ε)2

2ε2
x2,

where we have used the fact that cx ∈ (0, (1 + ε)/(1 + 2ε)] at the last step. Therefore for

N ≥ N0, we have

Mh(N) ≤ (2 + 4ε)hσ2αN
h logN +

1 + 2ε
1 + ε

hσ2αN
h

N−1∑
l=0

{
1 + ε

1 + 2ε
α−l

h +
(1 + ε)2

2ε2
α−2l

h

}

≤ (2 + 4ε)hσ2αN
h logN + hσ2αN

h

∞∑
l=0

α−l
h +

(1 + 2ε)(1 + ε)
2ε2

hσ2αN
h

∞∑
l=0

α−2l
h

= (2 + 4ε)hσ2αN
h logN +

hσ2αN
h

1− α−1
h

+
(1 + 2ε)(1 + ε)
2ε2(1− α−2

h )
hσ2αN

h .

Recalling that this estimate holds for all N sufficiently large on every sample path of an

a.s. event, we see that

lim sup
N→∞

Mh(N)
αN

h logN
≤ (2 + 4ε)hσ2, a.s.,

and finally upon letting ε→ 0 the result (6.6.4) follows. This completes the proof.
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6.7 Proofs of Discrete Results from Section 6.3

In order to make our exposition self–contained, we first state the version of discrete Gron-

wall inequality that we use in this chapter. Since many forms of the Gronwall inequality

can be formulated, we omit its proof.

Lemma 6.7.1. Let a > 0 and c > 0. Let y(·) and b(·) be nonnegative sequences. If

y(n) ≤ a+ c

n−1∑
j=0

b(j)y(j), n ≥ 1,

then

y(n) ≤ a
n−1∏
j=0

(1 + c b(j)), n ≥ 1.

We are now in a position to prove Theorem 6.3.1.

Proof of Theorem 6.3.1. First fix the step size h < min(γ/Γ2, (2γ)−1) where the con-

stants Γ and γ are defined in Assumption 6.2.1 and Assumption 6.2.2 respectively. Recall

that Γ1 = Γ(1 + υ) and γ1 = γ(1 − η) where υ, η ∈ (0, 1) are arbitrary. For simplicity,

choose υ = η so that Γ1 = Γ(1 + η). Note that if h < γ/Γ2 then hΓ2/γ < 1. Since this

inequality is strict it means that for all η ∈ (0, 1) sufficiently small we can ensure that

hΓ2/γ < (1 − η)/(1 + η)2 < 1 which implies that hΓ2
1/γ1 < 1. Moreover, if h < 1/(2γ)

then it is immediately true that h < 1/(2γ1) for any value of η. Therefore the step size

restriction h < min(γ/Γ2, (2γ)−1) implies also that h < min(γ1/Γ2
1, (2γ1)−1). This allows

us to define αh :=
(
1− 2hγ1 + 2h2Γ2

1

)−1 where αh > 1. Squaring (6.3.1) and multiplying

across by αn+1
h gives

αn+1
h X2

h(n+ 1) = αn+1
h X2

h(n) + 2hαn+1
h Xh(n)f(Xh(n), nh)

+ h2αn+1
h f2(Xh(n), nh) + 2σ

√
hαn+1

h Xh(n)ξ(n+ 1)

+ 2σh
√
hαn+1

h f(Xh(n), nh)ξ(n+ 1) + σ2hαn+1
h ξ2(n+ 1).
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Note that by (6.2.4) and the fact that 2xy ≤ x2 + y2 for any x, y ∈ R we have

f2(x, nh) ≤ (Γ0 + Γ1|x|)2 = Γ2
0 + 2Γ0Γ1|x|+ Γ2

1x
2 ≤ 2Γ2

0 + 2Γ2
1x

2.

Using this and (6.2.6) we get

αn+1
h X2

h(n+ 1)≤ αn+1
h X2

h(n) +αn
hX

2
h(n)− αn

hX
2
h(n) + 2hαn+1

h

[
ρ1− γ1X

2
h(n)

]
+ 2h2αn+1

h Γ2
0 + 2h2αn+1

h Γ2
1X

2
h(n) + 2σ

√
hαn+1

h Xh(n)ξ(n+ 1)

+ 2σh
√
hαn+1

h f(Xh(n), nh)ξ(n+1) + σ2hαn+1
h ξ2(n+1).

By the definition of αh we have

αn+1
h X2

h(n)− αn
hX

2
h(n)− 2hαn+1

h γ1X
2
h(n) + 2h2αn+1

h Γ2
1X

2
h(n) = 0,

so that our equation above becomes

αn+1
h X2

h(n+ 1) ≤ αn
hX

2
h(n) + 2hαn+1

h ρ1 + 2h2αn+1
h Γ2

0 + αn+1
h σ2h

+ 2σ
√
hαn+1

h Fh(Xh(n))ξ(n+ 1) + σ2hαn+1
h [ξ2(n+ 1)− 1] (6.7.1)

where Fh(x) := x+ hf(x, nh). Define the martingale differences

∆Mh(n+ 1) = σ2hαn+1
h

[
ξ2(n+ 1)− 1

]
, n ≥ 0,

∆θh(n+ 1) = 2σ
√
hαn+1

h Fh(Xh(n))ξ(n+ 1), n ≥ 0,

so that Mh(n+1) :=
∑n

j=0 ∆Mh(j+1) and θh(n+1) :=
∑n

j=0 ∆θh(j+1) are martingales.

We also define λh := 2ρ1 + σ2 + 2Γ2
0h so that (6.7.1) reduces to

αn+1
h X2

h(n+ 1)− αn
hX

2
h(n) ≤ hλhα

n+1
h + ∆Mh(n+ 1) + ∆θh(n+ 1).

Summing on both sides yields for n ≥ 0,

αn+1
h X2

h(n+ 1)−X2
h(0) ≤ hλh

n∑
j=0

αj+1
h +Mh(n+ 1) + θh(n+ 1). (6.7.2)
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We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n) =
n−1∑
j=0

4σ2hα2j+2
h F 2

h (Xh(j)), n ≥ 1.

Applying Theorem 5.2.4, where β > 0, δ > 0 and τ > 1 are arbitrary constants, we have

for all n ∈ N,

P
[

max
1≤m≤bnδc

{
θh(m)− 2βα−nδ

h

m−1∑
j=0

σ2hα2j+2
h F 2

h (Xh(j))
}
≥ β−1αnδ

h τ log n
]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n1 := n0(ω, h)∨d1/δe∨2,

θh(m) ≤ β−1αnδ
h τ log n+ 2βα−nδ

h

m−1∑
j=0

σ2hα2j+2
h F 2

h (Xh(j)), 1 ≤ m ≤ bnδc .

For the next segment of the proof, we view the path ω as fixed and suppress it in our

notation. The following argument is, for the most part, deterministic in spirit. Using

(6.2.4) and (6.2.6) it can be shown that

F 2
h (x) ≤ 2hρ1 + 2h2Γ2

0 + x2(1− 2hγ1 + 2h2Γ2
1) = (2hρ1 + 2h2Γ2

0) + x2α−1
h

so that for n ≥ n1,

θh(m) ≤ β−1αnδ
h τ log n+ 2βα−nδ

h σ2h(2hρ1 + 2h2Γ2
0)

m−1∑
j=0

α2j+2
h (6.7.3)

+ 2βα−nδ
h σ2hα−1

h

m−1∑
j=0

α2j+2
h X2

h(j), 1 ≤ m ≤ bnδc .

Define

Th(m) := X2
h(0) + hλh

m−1∑
j=0

αj+1
h + 2βα−nδ

h σ2h(2hρ1 + 2h2Γ2
0)

m−1∑
j=0

α2j+2
h +Mh(m)

so that (6.7.2) along with (6.7.3) gives, for 1 ≤ m ≤ bnδc and n ≥ n1,

αm
h X

2
h(m) ≤ Th(m) + β−1αnδ

h τ log n+ 2βα−nδ
h

m−1∑
j=0

σ2hα2j+1
h X2

h(j). (6.7.4)
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Notice that since m ≤ bnδc ≤ nδ and 2hαh/(αh − 1) = 1/(γ1 − hΓ2
1) we have

Th(m) ≤ X2
h(0) +

λh

2(γ1 − hΓ2
1)
αm

h +
βσ2(2hρ1 + 2h2Γ2

0)αh

(αh + 1)(γ1 − hΓ2
1)

αm
h +Mh(m)

and so by Lemma 6.6.3,

lim sup
m→∞

Th(m)
αm

h logm
≤ lim sup

m→∞

Mh(m)
αm

h logm
≤ 2hσ2, a.s. on Ω1.

Now consider outcomes in Ω2 := Ω0 ∩ Ω1 where P[Ω2] = 1. For every ε ∈ (0, 1) there

exists a number m0(ε) ∈ N such that for m0(ε) ≤ m ≤ bnδc we have Th(m) ≤ 2hσ2(1 +

ε)αm
h logm ≤ 2hσ2(1 + ε)αnδ

h log nδ. Moreover, on the finite set m ∈ {1, . . . ,m0(ε)} there

exists a number T1(ε, h) > 0 such that Th(m) ≤ T1(ε, h). Altogether, for 1 ≤ m ≤ bnδc,

we have

Th(m) ≤ T1(ε, h) + 2hσ2(1 + ε)αnδ
h log nδ =: T ∗h,ε(n).

So now, returning to (6.7.4), for n ≥ n1 and 1 ≤ m ≤ bnδc we have

αm
h X

2
h(m) ≤ T ∗h,ε(n) + β−1αnδ

h τ log n+ 2βα−nδ
h

m−1∑
j=0

σ2hα2j+1
h X2

h(j).

Following the notation of Lemma 6.7.1 we set y(m) := αm
h X

2
h(m), ah(n) := T ∗h,ε(n) +

β−1αnδ
h τ log n, c(n) := 2βα−nδ

h and bh(j) := σ2hαj+1
h . Therefore, for n ≥ n1,

y(m) ≤ ah(n) + c(n)
m−1∑
j=0

bh(j)y(j), 1 ≤ m ≤ bnδc ,

and so we can apply Lemma 6.7.1 to conclude that for n ≥ n1

y(m) ≤ ah(n)
m−1∏
j=0

(
1 + c(n)bh(j)

)
, 1 ≤ m ≤ bnδc .

Then using the fact that 1 + x ≤ ex for x ≥ 0 we get

αmX2
h(m) ≤ ah(n) exp

[
2βα−nδ

h σ2h

m−1∑
j=0

αj+1
h

]
, 1 ≤ m ≤ bnδc , n ≥ n1.

Notice that

2hα−nδ
h

m−1∑
j=0

αj+1
h ≤ 2hα−nδ

h

bnδc−1∑
j=0

αj+1
h ≤ 2hαh

αh − 1
=

1
γ1 − hΓ2

1

.
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Now let n2 be such that b(n2 − 1)δc > 1 and let n3 := n1 ∨n2. Then for 1 ≤ b(n− 1)δc ≤

m ≤ bnδc and n ≥ n3,

α
b(n−1)δc
h X2

h(m) ≤ αm
h X

2
h(m) ≤ ah(n) exp

[ βσ2

γ1 − hΓ2
1

]
,

and moreover, since b(n− 1)δc ≥ (n− 1)δ − 1,

X2
h(m)

logm
≤ ah(n)
αnδ

h log nδ
.
log nδ
logm

α
nδ−b(n−1)δc
h exp

[ βσ2

γ1 − hΓ2
1

]
≤ ah(n)
αnδ

h log nδ
.

log nδ
log b(n− 1)δc

αδ+1
h exp

[ βσ2

γ1 − hΓ2
1

]
Now notice that

lim sup
n→∞

ah(n)
αnδ

h log nδ
= 2hσ2(1 + ε) + β−1τ and lim

n→∞

log nδ
log b(n− 1)δc

= 1.

Therefore, since n→∞ as m→∞ we have

lim sup
m→∞

X2
h(m)

logm
≤ (2hσ2(1 + ε) + β−1τ)αδ+1

h exp
[ βσ2

γ1 − hΓ2
1

]
.

Since this analysis holds on the same event for arbitrary ε > 0, we have

lim sup
m→∞

X2
h(m)

logm
≤ (2hσ2 + β−1τ)αδ+1

h exp
[ βσ2

γ1 − hΓ2
1

]
.

This estimate holds for all outcomes in an event of probability one, say Ωτ,δ. By considering

Ω∗ := ∩p∈NΩ1+ 1
p
, 1
p
, i.e. by letting τ → 1 and δ → 0, we get

lim sup
m→∞

X2
h(m)

logm
≤ (2hσ2 + β−1)αh exp

[ βσ2

γ1 − hΓ2
1

]
, a.s. on Ω∗,

where Ω∗ is an almost sure event. Choose β = (γ1 − hΓ2
1)/σ

2 to get

lim sup
m→∞

X2
h(m)

logmh
= lim sup

m→∞

X2
h(m)

logm
≤ αh

(
2hσ2 +

σ2

γ1 − hΓ2
1

)
e1

= σ2
(1 + 2hγ1 − 2h2Γ2

1

1− 2hγ1 + 2h2Γ2
1

)( γ1

γ1 − hΓ2
1

) e
γ1
, a.s.

Finally, recall that γ1 = γ(1− η) and Γ1 = Γ(1 + η) where η ∈ (0, 1) is sufficiently small.

Letting η → 0 and taking square roots on both sides gives the desired result.
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Proof of Theorem 6.3.2. First fix the step size h < 2/Γ where Γ arises from Assump-

tion 6.2.1. Recall that Γ1 = Γ(1+υ) where υ ∈ (0, 1) is arbitrary and note that if h < 2/Γ

then hΓ/2 < 1. Since this inequality is strict it means that for all υ ∈ (0, 1) sufficiently

small we can ensure that

hΓ
2
<

1
(1 + υ)

< 1 which implies that
hΓ1

2
< 1.

Therefore the step size restriction h < 2/Γ implies also that h < 2/Γ1. This allows us to

define αh := 1/(1− hµ) where µ := Γ1/2 and αh > 1. Multiplying (6.3.1) by αn+1
h gives

αn+1
h Xh(n+ 1) = αn+1

h Xh(n) + αn+1
h hf(Xh(n), nh) + αn+1

h σ
√
hξ(n+ 1), n ≥ 0.

Therefore by adding and subtracting terms we can write this as

αn+1
h Xh(n+ 1)− αn

hXh(n) = hαn+1
h Fh(Xh(n)) + αn+1

h σ
√
hξ(n+ 1), n ≥ 0,

where Fh(x) := µx+f(x, nh) and αn
hXh(n)[αh−1]−hµαn+1

h Xh(n) = 0 by the construction

of αh. Summing on both sides then yields

αn+1
h Xh(n+ 1)−Xh(0) = h

n∑
j=0

αj+1
h Fh(Xh(j)) +

n∑
j=0

αj+1
h σ

√
hξ(j + 1). (6.7.5)

Define Yh(n+1) := α
−(n+1)
h

∑n
j=0 α

j+1
h σ

√
hξ(j+1) for n ≥ 0, and notice that Yh(n+1) ∼

N (0, V (n+ 1)) where

V (n) := Var[Yh(n)] =
σ2h

α2n
h

n−1∑
j=0

α2j+2
h =

σ2h

α2n
h

[α2
h(α2n

h − 1)
α2

h − 1

]
=
σ2hα2

h(1− α−2n
h )

α2
h − 1

.

Since V (n) is increasing it follows that for any k ≥ 1 and m ≥ 0 we have V (k) ≤ V (k+m)

which in turn means that V (k) ≤
√
V (k)V (k +m). Now consider Zh(k) := Yh(k)/

√
V (k)

for k ≥ 1. Then for every k, Zh(k) is a standard normal random variable. Moreover, for

k ≥ 1 and m ≥ 0,

0 ≤ Cov(Zh(k), Zh(k +m)) =
Cov

(
Yh(k), Yh(k +m)

)√
V (k)V (k +m)

≤ Cov(Yh(k), Yh(k +m))
V (k)

,
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where

Cov(Yh(k), Yh(k +m)) =
σ2h

αk
hα

k+m
h

Cov
( k−1∑

j=0

αj+1
h ξ(j + 1),

k+m−1∑
l=0

αl+1
h ξ(l + 1)

)

=
σ2h

αk
hα

k+m
h

k−1∑
j=0

αj+1
h αj+1

h .1 =
σ2h

α2k
h α

m
h

α2
h(α2k

h − 1)
α2

h − 1
=
V (k)
αm

h

.

Thus for k ≥ 1 and m ≥ 0,

Cov(Zh(k), Zh(k +m)) ≤ Cov(Yh(k), Yh(k +m))
V (k)

= α−m
h .

Therefore by Lemma 2 and Lemma 3 in [6], it follows that

lim sup
n→∞

|Zh(n)|√
2 log n

= 1, a.s.,

and using the fact that hα2
h/(α

2
h − 1) = 1/µ(2− hµ) we have

lim sup
n→∞

|Yh(n)|√
log nh

= lim sup
n→∞

|Zh(n)|√
2 log n

√
2V (n) =

√
2σ2

µ(2− hµ)
, a.s. (6.7.6)

Now let c > 0 and define the event

Ac :=
{
ω : lim sup

n→∞

|Xh(n)|√
log nh

< c
}

(6.7.7)

and assume that P[Ac] > 0. We will demonstrate that this is impossible for the appropriate

choice of c. By (6.7.5) and the triangle inequality it follows that

lim sup
n→∞

|Yh(n+ 1)|√
log (n+ 1)h

≤ lim sup
n→∞

|Xh(n+ 1)|√
log (n+ 1)h

+ lim sup
n→∞

|Xh(0)|
αn+1

h

√
log (n+ 1)h

+ lim sup
n→∞

h
∑n

j=0 α
j+1
h |Fh(Xh(j))|

αn+1
h

√
log (n+ 1)h

< c+ lim sup
n→∞

h
∑n

j=0 α
j+1
h |Fh(Xh(j))|

αn+1
h

√
log (n+ 1)h

, a.s. on Ac. (6.7.8)

Using (6.2.4) we have |Fh(x)| ≤ µ|x|+ |f(x, nh)| ≤ (µ+ Γ1)|x|+ Γ0 for all x, and so

h
n∑

j=0

αj+1
h |Fh(Xh(j))| ≤ h(µ+ Γ1)

n∑
j=0

αj+1
h |Xh(j)|+ hΓ0

n∑
j=0

αj+1
h . (6.7.9)
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By (6.7.7) it follows that for all ε > 0 there exists N1(ε, ω) > 0 such that for n ≥ N1(ε, ω)

we have |Xh(n, ω)| ≤ c(1 + ε)
√

log nh, for all ω ∈ Ac. Therefore,

h
n∑

j=0

αj+1
h |Xh(j, ω)| ≤ h

N1(ε,ω)−1∑
j=0

αj+1
h |Xh(j, ω)|+ c(1 + ε)h

n∑
N1(ε,ω)

αj+1
h

√
log jh

≤ X∗
h(ε, ω)h

N1(ε,ω)−1∑
j=0

αj+1
h + c(1 + ε)h

n∑
N1(ε,ω)

αj+1
h

√
log jh, (6.7.10)

where X∗
h(ε, ω) := max0≤j≤N1(ε,ω) |Xh(j, ω)| < +∞. Notice that

h

n∑
j=N1(ε,ω)

αj+1
h

√
log jh = h

{
α

N1(ε,ω)+1
h

√
logN1(ε, ω)h+ · · ·+ αn+1

h

√
log nh

}
≤ h

√
log nh

{
α

N1(ε,ω)+1
h + · · ·+ αn+1

h

}
=
√

log nh
µ

(αn+1
h − α

N1(ε,ω)
h ) ≤

√
log nh
µ

αn+1
h

where we have used the fact that hαh/(αh − 1) = 1/µ. Therefore,

lim sup
n→∞

h
∑n

j=N1(ε,ω) α
j+1
h

√
log jh

αn+1
h

√
log (n+ 1)h

≤ 1
µ
,

and so using this along with equations (6.7.9) and (6.7.10) we get

lim sup
n→∞

h
∑n

j=0 α
j+1
h |Fh(Xh(j, ω))|

αn+1
h

√
log (n+ 1)h

≤ (µ+ Γ1)c(1 + ε)
µ

, for all ω ∈ Ac.

Moreover, since ε > 0 can be chosen arbitrarily we can allow ε→ 0 through the rationals

to get

lim sup
n→∞

h
∑n

j=0 α
j+1
h |Fh(Xh(j, ω))|

αn+1
h

√
log (n+ 1)h

≤ (µ+ Γ1)c
µ

, for all ω ∈ Ac.

Therefore by (6.7.6) and (6.7.8),√
2σ2

µ(2− hµ)
= lim sup

n→∞

|Yh(n+ 1)|√
log (n+ 1)h

< c+
(µ+ Γ1)c

µ
, a.s. on Ac.

However, we get a contradiction above if we make the choice

c =

√
2σ2µ/(2− hµ)

2µ+ Γ1
,
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which means that our assumption that P[Ac] > 0 is incorrect. Thus, P[Āc] = 1 and

lim sup
n→∞

|Xh(n)|√
log nh

≥ c, a.s.

Then recalling that µ = Γ1/2 we get

lim sup
n→∞

|Xh(n)|√
log nh

≥ |σ|
2
√

2− hΓ1/2
.

1√
Γ1
, a.s.

Finally, we reintroduce the fact that Γ1 = Γ(1 + υ) where υ ∈ (0, 1) is sufficiently small.

Letting υ → 0 proves the desired result.

Proof of Theorem 6.3.3. By squaring (6.3.1) we can show that for n ≥ 0,

X2
h(n+ 1)−X2

h(n) = λh(Xh(n)) + 2σ
√
hFh(Xh(n))ξ(n+ 1)

+ σ2h[ξ2(n+ 1)− 1], (6.7.11)

where λh(x) := 2hxf(x, nh) + h2f2(x, nh) + σ2h and Fh(x) := hf(x, nh) + x. Define the

martingale differences

∆Mh(n+ 1) := σ2h[ξ2(n+ 1)− 1], n ≥ 0,

∆θh(n+ 1) := 2σ
√
hFh(Xh(n))ξ(n+ 1), n ≥ 0,

so that Mh(n+1) :=
∑n

j=0 ∆Mh(j+1) and θh(n+1) :=
∑n

j=0 ∆θh(j+1) are martingales.

Thus, returning to (6.7.11) and summing on both sides yields

X2
h(n+ 1)−X2

h(0) =
n∑

j=0

λh(Xh(j)) +Mh(n+ 1) + θh(n+ 1), n ≥ 0. (6.7.12)

It is clear, by the strong law of large numbers, that there is an almost sure event Ω1 such

that on Ω1,

lim
n→∞

Mh(n)
n

= σ2h lim
n→∞

1
n

n−1∑
j=0

[ξ2(j + 1)− 1] = σ2hE[ξ2(j + 1)− 1] = 0, (6.7.13)
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where we are using the fact that ξ has a standard normal distribution. We now apply

the exponential martingale inequality to the martingale θh(n + 1) which has quadratic

variation given by

〈θh〉(n+ 1) =
n∑

j=0

4σ2hF 2
h (Xh(j)), n ≥ 0.

Applying Theorem 5.2.4, where β > 0 and τ > 1 are arbitrary constants, we have for all

n ∈ N,

P
[

max
1≤m≤bτnc

{
θh(m)− βτ−n

2

m−1∑
j=0

4σ2hF 2
h (Xh(j))

}
≥ β−1τn+1 log n

]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that
⌊
τn0−1

⌋
> e1 and for n ≥ n0 we

have

θh(m) ≤ β−1τn+1 log n+ 2βτ−n
m−1∑
j=0

σ2hF 2
h (Xh(j)), 1 ≤ m ≤ bτnc .

For the next part of the proof we view the path ω as fixed and suppress it in our notation.

The following argument is, for the most part, deterministic in spirit. Using (6.2.9) and

(6.3.4) it is clear that

F 2
h (x) = h2f2(x, nh) + 2hxf(x, nh) + x2 ≤ h2f̄2 + 2hρ+ x2,

so that for n ≥ n0 and 1 ≤ m ≤ bτnc we have

θh(m) ≤ β−1τn+1 log n+
2β
τn

m−1∑
j=0

σ2h
(
h2f̄2 + 2hρ

)
+

2β
τn

m−1∑
j=0

σ2hX2
h(j). (6.7.14)

Define

Th(m) := X2
h(0) +

m−1∑
j=0

λh(Xh(j)) + 2βτ−n
m−1∑
j=0

σ2h
(
h2f̄2 + 2hρ

)
+Mh(m),

so that (6.7.12) gives, for 1 ≤ m ≤ bτnc and n ≥ n0,

X2
h(m) ≤ Th(m) + β−1τn+1 log n+ 2βτ−n

m−1∑
j=0

σ2hX2
h(j). (6.7.15)
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Note that by (6.2.9) and (6.3.4) and the fact that m ≤ bτnc ≤ τn we have

Th(m) ≤ X2
h(0) + (2hρ+ h2f̄2 + σ2h)m+ 2βσ2h

(
h2f̄2 + 2hρ

)
+Mh(m),

and so by (6.7.13),

lim sup
m→∞

Th(m)
m

≤ 2hρ+ h2f̄2 + σ2h := λ̄h, a.s. on Ω0 ∩ Ω1,

where P[Ω0∩Ω1] = 1. Thus, for every ε ∈ (0, 1) there exists a number m0(ε) ∈ N such that

for m0(ε) ≤ m ≤ bτnc we have Th(m) ≤ λ̄h(1+ε)m ≤ λ̄h(1+ε)τn. Moreover, on the finite

set m ∈ {1, . . . ,m0(ε)− 1} there exists a number T1(ε, h) > 0 such that Th(m) ≤ T1(ε, h).

Combining both of these estimates gives,

Th(m) ≤ T1(ε, h) + λ̄h(1 + ε)τn := T ∗h,ε(n), 1 ≤ m ≤ bτnc .

So now, returning to (6.7.15), for n ≥ n0 and 1 ≤ m ≤ bτnc we have

X2
h(m) ≤ T ∗h,ε(n) + β−1τn+1 log n+ 2βτ−n

m−1∑
j=0

σ2hX2
h(j).

Following the notation of Lemma 6.7.1 we set y(m) := X2
h(m), ah(n) := T ∗h,ε(n) +

β−1τn+1 log n, c(n) := 2βτ−n and bh := σ2h. Therefore, for n ≥ n0,

y(m) ≤ ah(n) + c(n)
m−1∑
j=0

bhy(j), 1 ≤ m ≤ bτnc ,

and so we can apply Lemma 6.7.1 to conclude that for n ≥ n0,

y(m) ≤ ah(n)
m−1∏
j=0

(
1 + c(n)bh

)
, 1 ≤ m ≤ bτnc .

Then using the fact that 1 + x ≤ ex for x ≥ 0 we have for 1 ≤ m ≤ bτnc ≤ τn,

X2
h(m) ≤ ah(n) exp

[
2βτ−n

m−1∑
j=0

σ2h
]
≤ ah(n) exp

[
2βσ2h

]
, n ≥ n0.

Now let 1 ≤
⌊
τn−1

⌋
≤ m ≤ bτnc where n ≥ n0. Then

X2
h(m)

2mh log logm
≤ ah(n)
β−1τn+1 log n

1
2βh

τn+1

m

log n
log logm

exp
[
2βσ2h

]
≤ ah(n)
β−1τn+1 log n

1
2βh

τn+1

bτn−1c
log n

log log bτn−1c
exp

[
2βσ2h

]
.
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Notice that

lim
n→∞

ah(n)
β−1τn+1 log n

= 1, lim
n→∞

τn+1

bτn−1c
= τ2, and lim

n→∞

log log
⌊
τn−1

⌋
log n

= 1.

Therefore, since n→∞ as m→∞ we have

lim sup
m→∞

X2
h(m)

2mh log logm
≤ τ2

2βh
e2βσ2h,

where this estimate holds for all outcomes in an event of probability one, say Ωτ . By

considering Ω∗ := ∩p∈NΩ1+ 1
p
, i.e. by letting τ → 1, we get

lim sup
m→∞

X2
h(m)

2mh log logm
≤ 1

2βh
e2βσ2h, a.s. on Ω∗,

where Ω∗ is an almost sure event. Finally, choose β = 1/(2hσ2) to get

lim sup
m→∞

X2
h(m)

2mh log logmh
= lim sup

m→∞

X2
h(m)

2mh log logm
≤ σ2e1, a.s.

Taking square roots on both sides gives the desired result.

Proof of Theorem 6.3.4. First fix the step size h < min(γ/Γ2, (2γ)−1) where the con-

stants Γ and γ are defined in Assumption 6.2.1 and Assumption 6.2.2 respectively. By the

same argument as that used in the proof of Theorem 6.3.1, this step size restriction also

implies that h < min(γ1/Γ2
1, (2γ1)−1) which allows us to define αh :=

(
1−2hγ1+2h2Γ2

1

)−1

where αh > 1. Squaring (6.3.6) and multiplying across by αn+1
h gives

αn+1
h X2

h(n+ 1) = αn+1
h X2

h(n) + 2hαn+1
h Xh(n)f(Xh(n), nh)

+ h2αn+1
h f2(Xh(n), nh) + 2

√
hαn+1

h Xh(n)g(Xh(n), nh)ξ(n+ 1)

+ 2h
√
hαn+1

h f(Xh(n), nh)g(Xh(n), nh)ξ(n+ 1).

+ g2(Xh(n), nh)hαn+1
h ξ2(n+ 1)

Note that by (6.2.4) and the fact that 2xy ≤ x2 + y2 for any x, y ∈ R we have

f2(x, nh) ≤ (Γ0 + Γ1|x|)2 = Γ2
0 + 2Γ0Γ1|x|+ Γ2

1x
2 ≤ 2Γ2

0 + 2Γ2
1x

2.
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Using this and conditions (6.2.6) and (6.2.14) we get

αn+1
h X2

h(n+ 1) ≤ αn+1
h X2

h(n)− αn
hX

2
h(n) + αn

hX
2
h(n) + 2hαn+1

h

[
ρ1 − γ1X

2
h(n)

]
+ 2h2αn+1

h Γ2
0 + 2h2αn+1

h Γ2
1X

2
h(n) + 2

√
hαn+1

h Xh(n)g(Xh(n), nh)ξ(n+1)

+ 2h
√
hαn+1

h f(Xh(n), nh)g(Xh(n), nh)ξ(n+1) +K2
1hα

n+1
h ξ2(n+1).

By the definition of αh we have

αn+1
h X2

h(n)− αn
hX

2
h(n)− 2hαn+1

h γ1X
2
h(n) + 2h2αn+1

h Γ2
1X

2
h(n) = 0,

so that our equation above becomes

αn+1
h X2

h(n+ 1) ≤ αn
hX

2
h(n) + 2hαn+1

h ρ1 + 2h2αn+1
h Γ2

0 + αn+1
h K2

1h

+ 2
√
hαn+1

h Fh(Xh(n))ξ(n+ 1) +K2
1hα

n+1
h [ξ2(n+ 1)− 1] (6.7.16)

where Fh(x) := xg(x, nh) + hf(x, nh)g(x, nh). Define the martingale differences

∆Mh(n+ 1) = K2
1hα

n+1
h

[
ξ2(n+ 1)− 1

]
, n ≥ 0,

∆θh(n+ 1) = 2
√
hαn+1

h Fh(Xh(n))ξ(n+ 1), n ≥ 0,

so that Mh(n+1) :=
∑n

j=0 ∆Mh(j+1) and θh(n+1) :=
∑n

j=0 ∆θh(j+1) are martingales.

We also define λh := 2ρ1 +K2
1 + 2Γ2

0h so that (6.7.16) reduces to

αn+1
h X2

h(n+ 1)− αn
hX

2
h(n) ≤ hλhα

n+1
h + ∆Mh(n+ 1) + ∆θh(n+ 1).

Summing on both sides yields for n ≥ 0,

αn+1
h X2

h(n+ 1)−X2
h(0) ≤ hλh

n∑
j=0

αj+1
h +Mh(n+ 1) + θh(n+ 1).

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n) =
n−1∑
j=0

4hα2j+2
h F 2

h (Xh(j)), n ≥ 1.
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Applying Theorem 5.2.4, where β > 0, δ > 0 and τ > 1 are arbitrary constants, we have

for all n ∈ N,

P
[

max
1≤m≤bnδc

{
θh(m)− 2βα−nδ

h

m−1∑
j=0

hα2j+2
h F 2

h (Xh(j))
}
≥ β−1αnδ

h τ log n
]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n1 := n0(ω, h)∨d1/δe∨2,

θh(m) ≤ β−1αnδ
h τ log n+ 2βα−nδ

h

m−1∑
j=0

hα2j+2
h F 2

h (Xh(j)), 1 ≤ m ≤ bnδc .

Using (6.2.4) and (6.2.6) it can be shown that

F 2
h (x) = g2(x, nh)

(
x+ hf(x, nh)

)2 ≤ g2(x, nh)
[
(2hρ1 + 2h2Γ2

0) + x2α−1
h

]
Recall from Remark 6.2.3 that for all ε ∈ (0, 1) there exists X(ε) > 0, independent of t,

such that |g(x, t)| ≤ K(1 + ε) for |x| ≥ X(ε) uniformly in t. Moreover, by the continuity

of g, for |x| < X(ε) we have |g(x, t)| ≤ c3(X(ε)) <∞. Thus,

m−1∑
j=0

hα2j+2
h F 2

h (Xh(j)) =
m−1∑
j=0

hα2j+2
h F 2

h (Xh(j))1{|Xh(j)|≥X(ε)}

+
m−1∑
j=0

hα2j+2
h F 2

h (Xh(j))1{|Xh(j)|<X(ε)}

≤
m−1∑
j=0

hα2j+2
h K2(1 + ε)2

[
(2hρ1 + 2h2Γ2

0) +X2
h(j)α−1

h

]
+

m−1∑
j=0

hα2j+2
h c23(X(ε))

[
(2hρ1 + 2h2Γ2

0) +X2(ε)α−1
h

]
.

By splitting the sum in this way, we can isolate the terms where we can bound g using

the asymptotic bound given in Assumption 6.2.6, which only comes into effect for large

enough values of Xh(j). This results in an addition term which we can define as M∗
h(m) :=∑m−1

j=0 hα2j+2
h c23(X(ε))

[
(2hρ1 + 2h2Γ2

0) +X2(ε)α−1
h

]
. For n ≥ n1 and 1 ≤ m ≤ bnδc this
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gives

θh(m) ≤ β−1αnδ
h τ log n+ 2βα−nδ

h K2(1 + ε)2h(2hρ1 + 2h2Γ2
0)

m−1∑
j=0

α2j+2
h

+ 2βα−nδ
h M∗

h(m) + 2βα−nδ
h K2(1 + ε)2hα−1

h

m−1∑
j=0

α2j+2
h X2

h(j).

Note that the only major difference between this estimate and the equivalent estimate

(6.7.3) in the proof of Theorem 6.3.1 is the extra term 2βα−nδ
h M∗

h(m). However, it can

be shown that this term is of order αnδ
h and so it will be donimated by the term of order

αnδ
h log n as n→∞ and it will not contribute to the final asymptotic estimate.

The proof now follows similar steps to the proof of Theorem 6.3.1 where σ is replaced

by K(1 + ε) and we will ultimately let ε→ 0 to get the desired result.

Proof of Theorem 6.3.5. By squaring (6.3.6) we can show that for n ≥ 0,

X2
h(n+ 1) ≤ X2

h(n) + h2f2(Xh(n), nh) + 2hf(Xh(n), nh)g(Xh(n), nh)
√
hξ(n+ 1)

+ 2hXh(n)f(Xh(n), nh) + 2Xh(n)g(Xh(n), nh)
√
hξ(n+1) +K2

1hξ
2(n+1),

where we have used (6.2.14). To simplify the notation, define λh(x) := 2hxf(x, nh) +

h2f2(x, nh) +K2
1h and Fh(x) := hf(x, nh)g(x, nh) + xg(x, nh) so that we can write our

equation as

X2
h(n+ 1)−X2

h(n) ≤ λh(Xh(n)) + ∆Mh(n+ 1) + ∆θh(n+ 1), n ≥ 0, (6.7.17)

where

∆Mh(n+ 1) := K2
1h[ξ

2(n+ 1)− 1], n ≥ 0,

∆θh(n+ 1) := 2
√
hFh(Xh(n))ξ(n+ 1), n ≥ 0.

ThereforeMh(n+1) :=
∑n

j=0 ∆Mh(j+1) and θh(n+1) :=
∑n

j=0 ∆θh(j+1) are martingales.

Thus, returning to (6.7.17) and summing on both sides yields

X2
h(n+ 1)−X2

h(0) ≤
n∑

j=0

λh(Xh(j)) +Mh(n+ 1) + θh(n+ 1), n ≥ 0.
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It is clear, by the strong law of large numbers, that

lim
n→∞

Mh(n)
n

= K2
1h lim

n→∞

1
n

n−1∑
j=0

[ξ2(j + 1)− 1] = K2
1hE[ξ2(j + 1)− 1] = 0,

where we are using the fact that ξ has a standard normal distribution. We now apply

the exponential martingale inequality to the martingale θh(n + 1) which has quadratic

variation given by

〈θh〉(n+ 1) =
n∑

j=0

4hF 2
h (Xh(j)), n ≥ 0.

Applying Theorem 5.2.4, where β > 0 and τ > 1 are arbitrary constants, we have for all

n ∈ N,

P
[

max
1≤m≤bτnc

{
θh(m)− βτ−n

2

m−1∑
j=0

4hF 2
h (Xh(j))

}
≥ β−1τn+1 log n

]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that
⌊
τn0−1

⌋
> e1 and for n ≥ n0 we

have

θh(m) ≤ β−1τn+1 log n+ 2βτ−n
m−1∑
j=0

hF 2
h (Xh(j)), 1 ≤ m ≤ bτnc .

Using (6.2.9) and (6.3.4) it is clear that

F 2
h (x) = g2(x, nh)

(
hf(x, nh) + x

)2 ≤ g2(x, nh)
[
h2f̄2 + 2hρ+ x2

]
.

Recall from Remark 6.2.3 that for all ε ∈ (0, 1) there exists X(ε) > 0, independent of t,

such that |g(x, t)| ≤ K(1 + ε) for |x| ≥ X(ε) uniformly in t. Moreover, by the continuity

of g, for |x| < X(ε) we have |g(x, t)| ≤ c3(X(ε)) <∞. Thus,

2βτ−n
m−1∑
j=0

hF 2
h (Xh(j))

=
2β
τn

m−1∑
j=0

hF 2
h (Xh(j))1{|Xh(j)|≥X(ε)} +

2β
τn

m−1∑
j=0

hF 2
h (Xh(j))1{|Xh(j)|<X(ε)}

≤ 2β
τn

m−1∑
j=0

hK2(1 + ε)2
[
h2f̄2 + 2hρ+X2

h(j)
]
+

2β
τn

m−1∑
j=0

hc23(X(ε))
[
h2f̄2 + 2hρ+X2(ε)

]
.
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Define M∗
h(m) := 2βτ−n

∑m−1
j=0 hc23(X(ε))

[
h2f̄2 +2hρ+X2(ε)

]
. Therefore, for n ≥ n0 and

1 ≤ m ≤ bτnc we have

θh(m) ≤ β−1τn+1 log n+ 2βτ−n
m−1∑
j=0

hK2(1 + ε)2
(
h2f̄2 + 2hρ

)
+M∗

h(m) + 2βτ−n
m−1∑
j=0

hK2(1 + ε)2X2
h(j).

Note that the only major difference between this estimate and the equivalent estimate

(6.7.14) in the proof of Theorem 6.3.3 is the extra term M∗
h(m). However, it can be shown

that this term will be donimated by the term of order τn+1 log n as n→∞ and it will not

contribute to the final asymptotic estimate.

The proof now follows similar steps to the proof of Theorem 6.3.3 where σ is replaced

by K(1 + ε) and we will ultimately let ε→ 0 to get the desired result.

6.8 Proofs of Results from Section 6.4

Before proving our main results we first show that even without the one-sided Lipschitz

condition (6.4.2) on f , we can prove that there exists a (not necessarily unique) solution

to (6.4.1) in both the O–U case and the Iterated Logarithm case. Notice that there will

be a solution of (6.4.1) provided that, for every x ∈ R and t ≥ 0, there is a solution y ∈ R

of

y = x+ hf(y, t). (6.8.1)

First we consider the O–U case where our condition on f is given by (6.2.6).

Lemma 6.8.1. Let h > 0 and suppose that f obeys (6.2.6). Then for every x ∈ R and

t ≥ 0 there is at least one solution y of (6.8.1).

Proof. Fix t ≥ 0 and define for each x ∈ R the function Gx : R× [0,∞) → R

Gx(y, t) = y − x− hf(y, t), y ∈ R, t ≥ 0.
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Note that the continuity of f ensures that Gx is continuous for each fixed t. Therefore, if

we can find values y+, y− such that Gx(y+) > 0 and Gx(y−) < 0 then there must exist a

solution y ∈ (y−, y+). Define y∗ := (x2 + 2hρ1)/(1 + 2hγ1). Then for |y| ≥ √
y∗

yGx(y, t) = y2 − xy − hyf(y, t) ≥ y2(
1
2

+ hγ1)−
1
2
x2 − hρ1 ≥ 0

where we have used (6.2.6) and the fact that xy ≤ 1
2x

2 + 1
2y

2. This means that y and

Gx(y, t) have the same sign when y ≥ √
y∗ and y ≤ −√y∗. Thus, setting y+ =

√
y∗ > 0

and y− = −√y∗ < 0 means that Gx(y+, t) > 0 and Gx(y−, t) < 0 for every fixed t and so

there exists a solution y ∈ (y−, y+).

We now consider the Iterated Logarithm case where our condition on f is (6.2.9).

Lemma 6.8.2. Let h > 0 and suppose that f obeys (6.2.9). Then for every x ∈ R and

t ≥ 0 there is at least one solution y of (6.8.1).

Proof. Following on from the proof of Lemma 6.8.1, define y∗ := x2 + 2hρ. Then for

|y| ≥ √
y∗

yGx(y, t) = y2 − xy − hyf(y, t) ≥ 1
2
y2 − 1

2
x2 − hρ ≥ 0

where we have used (6.2.9) and the fact that xy ≤ 1
2x

2 + 1
2y

2. This means that y and

Gx(y, t) have the same sign when y ≥ √
y∗ and y ≤ −√y∗. Thus, setting y+ =

√
y∗ > 0

and y− = −√y∗ < 0 means that Gx(y+, t) > 0 and Gx(y−, t) < 0 for every fixed t and so

there exists a solution y ∈ (y−, y+).

Proof of Theorem 6.4.2. Consider the first step of the discretisation given by (6.4.1).

Multiplying across by X∗
h(n) on both sides gives

(
X∗

h(n)
)2 = Xh(n)X∗

h(n) + hX∗
h(n)f(X∗

h(n), nh), n ≥ 0.

Then using (6.2.6) and the fact that xy ≤ 1
2x

2 + 1
2y

2 for x, y ∈ R, we can show that

(
X∗

h(n)
)2 ≤ X2

h(n)
1 + 2hγ1

+
2hρ1

1 + 2hγ1
, n ≥ 0. (6.8.2)
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Now consider the second step of the discretisation given by (6.4.1). Squaring it gives

X2
h(n+ 1) =

(
X∗

h(n)
)2 + 2σ

√
hX∗

h(n)ξ(n+ 1) + σ2hξ2(n+ 1)

≤
X2

h(n) + 2hρ1

1 + 2hγ1
+ 2σ

√
hX∗

h(n)ξ(n+ 1) + σ2h[ξ2(n+ 1)− 1] + σ2h

Define αh := 1 + 2hγ1, where γ1 arises from condition (6.2.6). Note that αh > 1 for any

h > 0 since γ1 > 0. Multiplying both sides of the above equation by αn+1
h gives

αn+1
h X2

h(n+ 1) ≤
αn+1

h X2
h(n)

1 + 2hγ1
+ αn

hX
2
h(n)− αn

hX
2
h(n) +

αn+1
h 2hρ1

1 + 2hγ1
+ αn+1

h σ2h

+ αn+1
h 2σ

√
hX∗

h(n)ξ(n+ 1) + αn+1
h σ2h[ξ2(n+ 1)− 1]. (6.8.3)

However, by the construction of αh we have αn+1
h X2

h(n)/(1 + 2hγ1) − αn
hX

2
h(n) = 0.

Defining λh := σ2 + 2ρ1/(1 + 2hγ1) and summing on both sides of (6.8.3) then yields

αn+1
h X2

h(n+ 1)−X2
h(0) ≤ hλh

n∑
j=0

αj+1
h + θh(n+ 1) +Mh(n+ 1), n ≥ 0,

where we define the martingales

θh(n+ 1) :=
n∑

j=0

2σ
√
hαj+1

h X∗
h(j) ξ(j + 1), n ≥ 0,

Mh(n+ 1) :=
n∑

j=0

σ2hαj+1
h [ξ2(j + 1)− 1], n ≥ 0.

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n+ 1) =
n∑

j=0

4σ2hα2j+2
h

(
X∗

h(j)
)2
.

Applying Theorem 5.2.4, where β > 0, δ > 0 and τ > 1 are arbitrary constants, we have

for all n ∈ N,

P
[

max
1≤m≤bnδc

{
θh(m)− β

2αnδ
h

m−1∑
j=0

4σ2hα2j+2
h

(
X∗

h(j)
)2} ≥ αnδ

h τ log n
β

]
≤ 1
nτ
.
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The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n1 := n0 ∨d1/δe∨ 2, and

for 1 ≤ m ≤ bnδc,

θh(m) ≤
αnδ

h τ log n
β

+
β

2αnδ
h

m−1∑
j=0

4σ2hα2j+2
h

(
X∗

h(j)
)2

≤
αnδ

h τ log n
β

+
4βσ2h2ρ1

αnδ
h

m−1∑
j=0

α2j+1
h +

2βσ2h

αnδ
h

m−1∑
j=0

α2j+1
h X2

h(j), (6.8.4)

where we have used (6.8.2) in the last step. One can now immediately see the similarites

between this estimate and the analogous estimate (6.7.3) arising in the Euler–Maruyama

case. Here, our estimate does not depend on the constants Γ0,Γ1 of the linear growth

bound (6.2.4). Our proof now follows exactly the same steps as in the proof of Theorem

6.3.1 up until

lim sup
m→∞

X2
h(m)

logm
≤ (2hσ2 + β−1τ)αδ+1

h exp
[
2βα−nδ

h σ2h
m−1∑
j=0

αj+1
h

]
, (6.8.5)

where, by the definition of αh and the fact that m ≤ bnδc ≤ nδ,

2βα−nδ
h σ2h

m−1∑
j=0

αj+1
h ≤

2βσ2hα−m
h αhα

m
h

αh − 1
=
βσ2αh

γ1
.

The estimate (6.8.5) holds for all outcomes in an event of probability one, say Ωτ,δ. By

considering Ω∗ := ∩p∈NΩ1+ 1
p
, 1
p
, i.e. by letting τ → 1 and δ → 0, we get

lim sup
m→∞

X2
h(m)

logm
≤ (2hσ2 + β−1)αh exp

[βσ2αh

γ1

]
, a.s. on Ω∗

where Ω∗ is an almost sure event. Finally, choose β = γ1/σ
2αh to get

lim sup
m→∞

X2
h(m)

logmh
= lim sup

m→∞

X2
h(m)

logm
≤ σ2

γ1
[1 + 6hγ1 + 8h2γ2

1 ]e, a.s.

Once again, we recall from Remark 6.2.2 that γ1 := γ(1− η) where η ∈ (0, 1) is arbitrary.

Letting η → 0 and taking square roots on both sides gives the desired result.
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Proof of Theorem 6.4.3. Consider the first step of the discretisation given by (6.4.1).

Multiplying across by X∗
h(n) on both sides gives

(
X∗

h(n)
)2 = Xh(n)X∗

h(n) + hX∗
h(n)f(X∗

h(n), nh), n ≥ 0.

Then using (6.2.9) and the fact that xy ≤ 1
2x

2 + 1
2y

2 for x, y ∈ R, we can show that

(
X∗

h(n)
)2 ≤ X2

h(n) + 2hρ, n ≥ 0. (6.8.6)

Now consider the second step of the discretisation given by (6.4.1). Squaring it gives

X2
h(n+ 1) =

(
X∗

h(n)
)2 + 2σ

√
hX∗

h(n)ξ(n+ 1) + σ2hξ2(n+ 1)

≤ X2
h(n) + 2hρ+ σ2h+ 2σ

√
hX∗

h(n) ξ(n+ 1) + σ2h[ξ2(n+ 1)− 1]

Defining λh := σ2h+ 2hρ and summing on both sides then yields

X2
h(n+ 1)−X2

h(0) ≤
n∑

j=0

λh + θh(n+ 1) +Mh(n+ 1), n ≥ 0,

where we define the martingales

θh(n+ 1) :=
n∑

j=0

2σ
√
hX∗

h(j) ξ(j + 1), n ≥ 0,

Mh(n+ 1) :=
n∑

j=0

σ2h[ξ2(j + 1)− 1], n ≥ 0.

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n+ 1) =
n∑

j=0

4σ2h
(
X∗

h(j)
)2
.

Applying Theorem 5.2.4, where β > 0 and τ > 1 are arbitrary constants, we have for all

n ∈ N,

P
[

max
1≤m≤bτnc

{
θh(m)− βτ−n

2

m−1∑
j=0

4σ2h
(
X∗

h(j)
)2} ≥ β−1τn+1 log n

]
≤ 1
nτ
.
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The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n0, and for 1 ≤ m ≤ bτnc,

θh(m) ≤ β−1τn+1 log n+
βτ−n

2

m−1∑
j=0

4σ2h
(
X∗

h(j)
)2

≤ β−1τn+1 log n+ 2βτ−n
m−1∑
j=0

2σ2h2ρ+ 2βτ−n
m−1∑
j=0

σ2hX2
h(j), (6.8.7)

where we have used (6.8.6) in the last step. One can now immediately see the similarites

between this estimate and the analogous estimate (6.7.14) arising in the Euler–Maruyama

case. Here, our estimate does not depend on the constant f̄ of condition (6.3.4). Our

proof now follows exactly the same steps as in the proof of Theorem 6.3.3 to get

lim sup
m→∞

X2
h(m)

2mh log logmh
≤ σ2e, a.s.

Taking square roots on both sides gives the desired result.

Before we begin the proofs of Theorems 6.4.4 and 6.4.5 we must first prove auxiliary

results.

Lemma 6.8.3. If f is locally Lipschitz continuous as per (6.2.2) and obeys either As-

sumption 6.2.2 or 6.2.5, then there exists c5 > 0 such that |f(0, t)| < c5 for all t ≥ 0.

Proof. Assumption 6.2.2 implies that f(1, t) ≤ c2(1) and −f(−1, t) ≤ c2(1) for all t ≥ 0.

On the other hand Assumption 6.2.5 implies that f(1, t) ≤ ρ and that −f(−1, t) ≤ ρ

for all t ≥ 0. Therefore, in either case, there exists c4 > 0 such that f(1, t) ≤ c4 and

f(−1, t) ≥ −c4 for all t ≥ 0. By (6.2.2) there exists M1 > 0 such that

|f(1, t)− f(0, t)| ≤M1 and |f(−1, t)− f(0, t)| ≤M1 for all t ≥ 0.

Therefore f(0, t) ≤ f(1, t) + M1 ≤ M1 + c4 for all t ≥ 0. Similarly, we have f(0, t) ≥

f(−1, t)−M1 ≥ −c4 −M1 for t ≥ 0. The result follows with c5 := M1 + c4 + 1.
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In Lemmas 6.8.1 and 6.8.2 it was shown that if f obeys either Assumption 6.2.2 or 6.2.5,

then for any x ∈ R there exists x∗ = x∗(x, t) ∈ R such that

x∗ = x+ hf(x∗, t). (6.8.8)

In the proof of Theorem 6.4.4 we need to know that in an equation of the form (6.8.8), if

|x| is of a certain size then we can also bound |x∗|. This connection between x and x∗ is

detailed in the following lemma.

Lemma 6.8.4. Let f be locally Lipschitz continuous as per (6.2.2) and let f obey either

Assumption 6.2.2 or 6.2.5. Suppose that c5 is defined by Lemma 6.8.3 and that c ≥ c5. If

|x| > c then for any x∗ which obeys (6.8.8) we have |x∗| > Ht(c) where Ht is an increasing

function which obeys Ht(c) →∞ as c→∞.

Proof. First define the function

Fc,t(y) := y + hmax
|u|≤y

|f(u, t)| − c, for every t ≥ 0,

and notice that y 7→ Fc,t(y) is continuous and increasing for every t ≥ 0. Then Fc,t(c) =

hmax|u|≤c |f(u, t)| ≥ 0 for every t ≥ 0. Moreover, by Lemma 6.8.3 we have |f(0, t)| < c5

for all t ≥ 0 and so Fc,t(0) = |f(0, t)| − c < c5 − c ≤ 0 for every t ≥ 0. Since the function

changes sign it follows that for every c ≥ c5 there must exist a Ht(c) ∈ (0, c] such that

Fc,t(Ht(c)) = 0. Now let |x| > c and suppose that |x∗| ≤ Ht(c). Then using the fact that

Fc,t(Ht(c)) = 0 we have

|x| = |x∗ − hf(x∗, t)| ≤ |x∗|+ h|f(x∗, t)|

≤ Ht(c) + h max
|u|≤Ht(c)

|f(u, t)| − c+ c = c,

which forces a contradiction. Therefore, the assumption that |x∗| ≤ Ht(c) is incorrect.

Thus, |x| > c implies that |x∗| > Ht(c).
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We now show that c 7→ Ht(c) is increasing and that Ht(c) → ∞ as c → ∞. Let

a2 > a1 > c5. Then for every t ≥ 0 we have

Fa2,t(y) = y + hmax
|u|≤y

|f(u, t)| − a2 < y + hmax
|u|≤y

|f(u, t)| − a1 = Fa1,t(y).

Using this fact we have

Fa1,t(Ht(a1)) = 0 = Fa2,t(Ht(a2)) < Fa1,t(Ht(a2)),

which means that

Fa1,t(Ht(a1)) < Fa1,t(Ht(a2)).

However, since y 7→ Fc,t(y) is increasing we must have Ht(a1) < Ht(a2), which in turn

means that Ht is increasing. Now suppose that limc→∞Ht(c) = Lt < +∞. Since

Fc,t(Ht(c)) = 0 we have

Ht(c) + h max
|u|≤Ht(c)

|f(u, t)| = c, for every t ≥ 0.

However, taking the limit as c → ∞ on both sides yields a contradiction since the limit

on the left–hand side is Lt + hmax|u|≤Lt
|f(u, t)| which is finite for every t ≥ 0 since f is

continuous. Thus, our assumption that limc→∞Ht(c) = Lt < +∞ was incorrect and so

we must have limc→∞Ht(c) = ∞.

We need one final estimate on H−1
t , to hold independently of t.

Lemma 6.8.5. Suppose that f is locally Lipschitz continuous as per (6.2.2) and obeys

either Assumption 6.2.2 or 6.2.5, and let c5 be the number defined in Lemma 6.8.3. Let

t ≥ 0. If Ht is the invertible function defined in Lemma 6.8.4, then for all d > c5, there

exists a finite Fh(d) > 0 such that

H−1
t (d) ≤ Fh(d), t ≥ 0.
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Proof. For any t ≥ 0 and c ≥ c5 we have by definition that Ht(c) is the unique solution of

c = Ht(c) + h max
|u|≤Ht(c)

|f(u, t)|, where Ht(c) ∈ (0, c].

Let d > c5. Then d > c5 ≥ Ht(c5). Thus H−1
t (d) > c5. Therefore, for each d > c5, there

exists a c > c5 such that c = H−1
t (d). Therefore for each d > c5 we have that

H−1
t (d) = d+ hmax

|u|≤d
|f(u, t)|.

By Assumption 6.2.2 or 6.2.5 it follows, in the same way as was shown in the proof of

Lemma 6.8.3, that there exists a finite c6 = c6(d) > 0 such that df(d, t) ≤ c6(d) and

−df(−d, t) ≤ c6(d). Therefore

f(d, t) ≤ c6(d)/d, f(−d, t) ≥ −c6(d)/d.

By condition (6.2.2), for all |u| ≤ d there exists Md > 0 such that

|f(u, t)− f(d, t)| ≤Md|u− d| ≤ 2dMd, |f(u, t)− f(−d, t)| ≤Md|u+ d| ≤ 2dMd.

Therefore for all |u| ≤ d we have

f(u, t) ≤ f(d, t) + 2dMd ≤ c6(d)/d+ 2dMd,

and

f(u, t) ≥ f(−d, t)− 2dMd ≥ −c6(d)/d− 2dMd.

Hence |f(u, t)| ≤ c6(d)/d+ 2dMd for all t ≥ 0 and |u| ≤ d. Therefore we have that

H−1
t (d) = d+ hmax

|u|≤d
|f(u, t)| ≤ d+ h[c6(d)/d+ 2dMd].

Defining Fh(d) = d+ h[c6(d)/d+ 2dMd] yields the desired result.

Proof of Theorem 6.4.4. Consider the first step of the discretisation given by (6.4.5).

Multiplying across by X∗
h(n) on both sides gives

(
X∗

h(n)
)2 = Xh(n)X∗

h(n) + hX∗
h(n)f(X∗

h(n), nh), n ≥ 0.
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Then using (6.2.6) and the fact that xy ≤ 1
2x

2 + 1
2y

2 for x, y ∈ R, we can show that

(
X∗

h(n)
)2 ≤ X2

h(n)
1 + 2hγ1

+
2hρ1

1 + 2hγ1
, n ≥ 0. (6.8.9)

Now consider the second step of the discretisation given by (6.4.5). Squaring it gives

X2
h(n+ 1)=

(
X∗

h(n)
)2+ 2

√
hX∗

h(n)g(X∗
h(n), nh)ξ(n+1)+ g2(X∗

h(n), nh)hξ2(n+1)

≤
X2

h(n) + 2hρ1

1 + 2hγ1
+ 2

√
hX∗

h(n)g(X∗
h(n), nh)ξ(n+1) +K2

1hξ
2(n+ 1),

where we have used (6.2.14). Define αh := 1+2hγ1, where γ1 arises from condition (6.2.6).

Note that αh > 1 for any h > 0 since γ1 > 0. Multiplying both sides of the above equation

by αn+1
h gives

αn+1
h X2

h(n+ 1) ≤
αn+1

h X2
h(n)

1 + 2hγ1
+ αn

hX
2
h(n)− αn

hX
2
h(n) +

αn+1
h 2hρ1

1 + 2hγ1
+ αn+1

h K2
1h

+ αn+1
h 2

√
hX∗

h(n)g(X∗
h(n), nh)ξ(n+ 1) + αn+1

h K2
1h[ξ

2(n+ 1)− 1].

However, by the construction of αh we have αn+1
h X2

h(n)/(1 + 2hγ1) − αn
hX

2
h(n) = 0.

Defining λh := K2
1 + 2ρ1/(1 + 2hγ1) and summing on both sides then yields

αn+1
h X2

h(n+ 1)−X2
h(0) ≤ hλh

n∑
j=0

αj+1
h + θh(n+ 1) +Mh(n+ 1), n ≥ 0,

where we define the martingales

θh(n+ 1) :=
n∑

j=0

2
√
hαj+1

h X∗
h(j)g(X∗

h(j), jh) ξ(j + 1), n ≥ 0,

Mh(n+ 1) :=
n∑

j=0

K2
1hα

j+1
h [ξ2(j + 1)− 1], n ≥ 0.

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n+ 1) =
n∑

j=0

4hα2j+2
h

(
X∗

h(j)
)2
g2(X∗

h(j), jh).
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Applying Theorem 5.2.4, where β > 0, δ > 0 and τ > 1 are arbitrary constants, we have

for all n ∈ N,

P
[

max
1≤m≤bnδc

{
θh(m)− 2hβ

αnδ
h

m−1∑
j=0

α2j+2
h

(
X∗

h(j)
)2
g2(X∗

h(j), jh)
}
≥ τ log n
βα−nδ

h

]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n1 := n0 ∨d1/δe∨ 2, and

for 1 ≤ m ≤ bnδc,

θh(m) ≤ τ log n
βα−nδ

h

+
2hβ
αnδ

h

m−1∑
j=0

α2j+2
h

(
X∗

h(j)
)2
g2(X∗

h(j), jh)

≤ τ log n
βα−nδ

h

+
4βh2K2

1ρ1

αnδ
h

m−1∑
j=0

α2j+1
h +

2βh
αnδ

h

m−1∑
j=0

α2j+1
h g2(X∗

h(j), jh)X2
h(j),

where we have used (6.8.9) and the fact that g2(x∗, jh) ≤ K2
1 .

Recall from Assumption 6.2.6 that for every ε ∈ (0, 1) there is an X(ε) > 0 such

that g2(x∗, t) ≤ K2(1 + ε)2 for all |x∗| ≥ X(ε) and for all t ≥ 0. Now let X1(ε) :=

max(X(ε), c5)+ε for every t ≥ 0, where c5 is derived in Lemma 6.8.3. Then X1(ε) > X(ε)

and X1(ε) > c5 for every t ≥ 0. Now consider

m−1∑
j=0

α2j+1
h g2(X∗

h(j), jh)X2
h(j) =

m−1∑
j=0

α2j+1
h g2(X∗

h(j), jh)X2
h(j)1{|Xh(j)|>H−1

jh (X1(ε))}

+
m−1∑
j=0

α2j+1
h g2(X∗

h(j), jh)X2
h(j)1{|Xh(j)|≤H−1

jh (X1(ε))}

where Hjh is defined in Lemma 6.8.4 and is shown to be increasing, resulting in H−1
jh being

well–defined. By splitting the sum in this way, we aim to isolate the terms where we can

bound g using the asymptotic bound given in Assumption 6.2.6, which only comes into

effect for large enough values of X∗
h(j). Doing so is more complicated in the split–step case

because the terms in the summations above involve a combination of X∗
h(j) and Xh(j)

terms. Lemmas 6.8.3, 6.8.4 and 6.8.5 effectively allow us to estimate both simultaneously.

Recall thatHjh(X1(ε)) ≤ X1(ε) sinceX1(ε) > c5. Therefore by Lemma 6.8.4, in the case

when |Xh(j)| > H−1
jh (X1(ε)) ≥ X1(ε) > c5, we must have |X∗

h(j)| > Hjh(H−1
jh (X1(ε))) =
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X1(ε) > X(ε) and so we can bound g using Assumption 6.2.6. In the case when |Xh(j)| ≤

H−1
jh (X1(ε)), we can simply bound g using the global bound (6.2.14) and we can bound

X2
h(j) using the fact that H−1

jh (X1(ε)) ≤ Fh(X1(ε)) < +∞ by Lemma 6.8.5. Therefore we

have that

m−1∑
j=0

α2j+1
h g2(X∗

h(j), jh)X2
h(j) ≤ K2(1 + ε)2

m−1∑
j=0

α2j+1
h X2

h(j) +M∗
h(m),

where we define M∗
h(m) := K2

1F
2
h (X1(ε))

∑m−1
j=0 α2j+1

h . Thus, for n ≥ n1 and for 1 ≤ m ≤

bnδc,

θh(m) ≤ β−1ταnδ
h log n+ 4βh2K2

1ρ1α
−nδ
h

m−1∑
j=0

α2j+1
h + 2βhα−nδ

h M∗
h(m)

+ 2βhα−nδ
h K2(1 + ε)2

m−1∑
j=0

α2j+1
h X2

h(j).

Note that the only major difference between this estimate and the equivalent estimate

(6.8.4) in the proof of Theorem 6.4.2 is the extra term 2βhα−nδ
h M∗

h(m). However, it can

be shown that this term is of order αnδ
h and so it will be dominated by the term of order

αnδ
h log n as n→∞ and it will not contribute to the final asymptotic estimate. The proof

now follows similar steps to the proof of Theorem 6.4.2 to obtain the desired result.

Proof of Theorem 6.4.5. Consider the first step of the discretisation given by (6.4.5).

Multiplying across by X∗
h(n) on both sides gives

(
X∗

h(n)
)2 = Xh(n)X∗

h(n) + hX∗
h(n)f(X∗

h(n), nh), n ≥ 0.

Then using (6.2.9) and the fact that xy ≤ 1
2x

2 + 1
2y

2 for x, y ∈ R, we can show that

(
X∗

h(n)
)2 ≤ X2

h(n) + 2hρ, n ≥ 0. (6.8.10)

Now consider the second step of the discretisation given by (6.4.5). Squaring it gives

X2
h(n+ 1) =

(
X∗

h(n)
)2+ 2

√
hX∗

h(n)g(X∗
h(n), nh)ξ(n+1)+ g2(X∗

h(n), nh)hξ2(n+1)

≤ X2
h(n) + 2hρ+ 2

√
hX∗

h(n)g(X∗
h(n), nh) ξ(n+ 1) +K2

1hξ
2(n+ 1),
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where we have used the fact that g2(x, nh) ≤ K2
1 . Defining λh := K2

1h+2hρ and summing

on both sides then yields

X2
h(n+ 1)−X2

h(0) ≤
n∑

j=0

λh + θh(n+ 1) +Mh(n+ 1), n ≥ 0,

where we define the martingales

θh(n+ 1) :=
n∑

j=0

2
√
hX∗

h(j)g(X∗
h(j), jh) ξ(j + 1), n ≥ 0,

Mh(n+ 1) :=
n∑

j=0

K2
1h[ξ

2(j + 1)− 1], n ≥ 0.

We now apply the exponential martingale inequality to the martingale θh(n + 1) which

has quadratic variation given by

〈θh〉(n+ 1) =
n∑

j=0

4h
(
X∗

h(j)
)2
g2(X∗

h(j), jh).

Applying Theorem 5.2.4, where β > 0 and τ > 1 are arbitrary constants, we have for all

n ∈ N,

P
[

max
1≤m≤bτnc

{
θh(m)− 2hβ

τn

m−1∑
j=0

(
X∗

h(j)
)2
g2(X∗

h(j), jh)
}
≥ τn+1 log n

β

]
≤ 1
nτ
.

The Borel–Cantelli lemma then yields that for all ω ∈ Ω0, where P[Ω0] = 1, there is a

random integer n0 = n0(ω, h) sufficiently large such that for n ≥ n0, and for 1 ≤ m ≤ bτnc,

θh(m) ≤ β−1τn+1 log n+
2hβ
τn

m−1∑
j=0

(
X∗

h(j)
)2
g2(X∗

h(j), jh)

≤ β−1τn+1 log n+
2β
τn

m−1∑
j=0

2K2
1h

2ρ+
2βh
τn

m−1∑
j=0

g2(X∗
h(j), jh)X2

h(j),

where we have used (6.8.10) and the fact that g2(x, jh) ≤ K2
1 . Using the same method as

used in the proof of Theorem 6.4.4 we can show that

m−1∑
j=0

g2(X∗
h(j), jh)X2

h(j) ≤ K2(1 + ε)2
m−1∑
j=0

X2
h(j) +M∗

h(m),
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where we define M∗
h(m) := K2

1F
2
h (X1(ε))m. Thus for n ≥ n0,

θh(m) ≤ β−1τn+1 log n+
2β
τn

m−1∑
j=0

2K2
1h

2ρ+ 2βhτ−nM∗
h(m)

+ 2βhτ−nK2(1 + ε)2
m−1∑
j=0

X2
h(j), 1 ≤ m ≤ bτnc .

Again, the only major difference between this estimate and the equivalent estimate (6.8.7)

in the proof of Theorem 6.4.3 is the extra term 2βhτ−nM∗
h(m). However, it can be shown

that this term will be dominated by the term of order τn+1 log n as n→∞ and it will not

contribute to the final asymptotic estimate. The proof now follows similar steps to the

proof of Theorem 6.4.3 to obtain the desired result.
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Appendix A

Simulation of a Simple Two–State Markov Jump Process

The need for the simulation of a Markov jump process became evident in light of the

analysis in Chapter 4 and in particular, the comments made in Remark 4.2.3. The issue is

that the rate of convergence of the ergodic theorem for Markov chains (Proposition 4.2.1)

appears to depend upon the step size h of the discretisation process. As a result, the log of

the discretised stock price Sh (minus its trend) obeys an iterated logarithm growth bound

of the form

lim sup
n→∞

| logSh(n)− (µ− 1
2σ

2
∗)nh|√

2nh log log nh
≤ σ∗

√
2e+

1
2

∑
i∈S

γ2(i)
√
hαi, a.s.,

as seen in Theorem 4.2.4. On the other hand, the underlying continuous–time stock price

S (minus its trend) obeys an iterated logarithm growth bound of the form

lim sup
t→∞

| logS(t)− (µ− 1
2σ

2
∗)t|√

2t log log t
≤ σ∗ +

1
2

∑
i∈S

γ2(i)βi, a.s.,

as seen in Theorem 3.4.3. Therefore, if it was true that
√
hαi → 0 as h→ 0, then the result

for the discretised stock price would not be consistent with the result for the continuous–

time stock price. This prompted further analysis and led us to attempt to simulate the

problem numerically and to give evidence which suggests that in fact
√
hαi → α∗i as h→ 0

for some finite value α∗i . The Matlab code used to produce these simulations was adapted

from code originally developed by Craig L. Zirbel and can be found here:

http://www-math.bgsu.edu/z/ap/

Due to computational and time constraints, we simplify the problem to study a two–state

Markov jump process with generator matrix

Γ =

 −γ1 γ1

γ2 −γ2

 .
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Then our discretised Markov chain has a matrix of transition probabilities of the form

P (h) = I + hΓ =

 1− hγ1 hγ1

hγ2 1− hγ2

 where h < max
( 1
γ1
,

1
γ2

)
.

As mentioned in Remark 4.2.2, this is an approximation of the chain. To begin with, we

choose γ1 = 1, γ2 = 3 and h = .05 so that 1 − hγ1 = 0.95 meaning that the probability

of staying in state 1 is 0.95 and similarly, 1− hγ2 = 0.85 meaning that the probability of

staying in state 2 is 0.85. Moreover, the stationary distribution π = (π1, π2) can be found

by solving πΓ = 0 subject to π1 + π2 = 1. This gives

π1 =
γ2

γ1 + γ2
=

3
4

and π2 =
γ1

γ1 + γ2
=

1
4
,

which means that in the long run the process will spend 75% of the time in state 1 and

25% of the time in state 2. The simulation of such a chain over 100 time steps is given

below using the notation pij as the i− jth entry of the transiton matrix P (h).

Figure A.1: Two–state Markov chain

Using this code we can also count the number of times that the chain has been in a

particular state up to a given number of time steps and in this two–state example we can

restrict our attention to state 1 only. The number of times that the chain has been in a

state is crucial to the estimation of the rate of convergence of the ergodic theorem as it
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corresponds to the quantity Vi(n) in the proof of Proposition 4.2.1. Indeed we see from

(4.3.26) that the rate of convergence we require is determined by the rate of convergence

of V1(n) to nπ1. With this information we can plot |V1(n)− nπ1| alongside
√

2n log log n

to see that it does indeed obey an iterated logarithm growth bound as seen in the figure

below.

Figure A.2: Fluctuations from trend of V1(n) vs.
√

2n log log n

This simulation is very much consistent with (4.3.25), which states that

lim sup
n→∞

|V1(n)− π1n|√
2n log log n

≤ α1, a.s. (A.0.1)

We then want to approximate the magnitude, α1, of the iterated logarithm growth rate.

That is, by considering the running maximum of V1(n)− nπ1 divided by
√

2n log log n at

the final time step we get an estimate on a value A1 where

lim sup
n→∞

|V1(n)− π1n|√
2n log log n

= A1.

Averaging a number of such calculations gives a value of approximately A1 ≈ 0.96. There-

fore, in the case when h = 0.05 we have
√
hA1(h) ≈ 0.215.
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We then repeat such calculations where the step size is smaller by a factor of 100, i.e.

h = 0.0005. Averaging a number of these calculations gives a value of approximately

A1(h) ≈ 10.5 which (significantly) is bigger than the previous A1(h) by a factor of
√

100.

Therefore, in this case when h = 0.0005 we have
√
hA1(h) ≈ 0.235.

One can continue like this to obtain approximations of similar orders of magnitude. We

conclude from this that there exists a finite number A∗
1 such that

√
hA1 → A∗

1 as h→ 0.

Unfortunately, due to the fact that we have to sum along the sequence Vi(n) in (4.3.23)

instead of summing along the integers as in (4.3.22), we lose equality in (4.3.23) and

consequently in (A.0.1) and thus we cannot be certain that A1 is actually equal to α1.

Although we are unable to prove it, we conjecture that the sequence Vi(n) is such that

equality is in fact preserved in (4.3.23) which would result in equality in (A.0.1). This

would mean that the estimate A1 of the numerical simulation coincides with the bound

α1. Clearly it is far from a solid argument, but we believe that due to the Markov property

and the resulting loss of memory, the sequence Vi(n) has sufficient independence and near–

linear growth that the equality in (4.3.23) is preserved and that there is a correspondence

between the A1 and α1.

Naturally, if this is true it would also extend to a Markov process with finite state space

S and to any i ∈ S. This leads us to believe that for each i ∈ S there exists α∗i such that
√
hαi → α∗i as h→ 0.
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