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Abstract 

There is a growing interest in exploring the role of social networks for understanding 

how individuals spread influence. In customer intelligence, social network analysis is 

fast emerging as an important discipline for predicting and influence consumer 

behaviour. Within online social networking, social media plays a prominent role in 

promotion, marketing and public relations. Hence, itis important to gain some deep 

insights of how information diffuses through social networks. In this context, this 

thesis presents an approach to approximating the diffusion process in social 

networks. It provides an alternative way of estimating the number of nodes reached 

by the initial target set in the diffusion process. Using this quantity as an influence 

measure, the proposed method can provide a way of identifying nontrivial nodes as 

influencer. The thesis conducts empirical analysis on a telecommunication phone 

user’s network to assessing social influence in the bundle adoption processes. This 

thesis also presents a tool for visualizing, exploring and manipulating social network 

data. The tool has rich support for dynamically manipulate and interactively 

exploring social network data. It also supports network visualization techniques such 

as satellite view, “lens effect” and visualizing social network data on a 

geographicalmap. 
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Chapter 1 

Introduction 

This chapter provides an introduction to the thesis. Abrief theoretical background of 

the research is presented followed by a description of the motivation behind the work 

and the contributions provided by the thesis. Finally, an overview of the structure of 

the thesis is given.  

1.1 Motivations & Background 

In this section, firstly I present the motivations of the research. Then I introduce the 

background work and present my research questions.  

1.1.1 Motivation. 

Social network analysis is not a brand new area. The first studies of social networks 

are attributed to J.L.Moreno in the 1930s who investigated how psychological 

wellbeing is related to the structural features of what he termed ‘social 

configurations’.From the “six degrees of separation” theory (Milgram 1967) to Mark 

Granovetter’s “the strength of weak ties” work on network structure (Granovetter 

1973).and D.J. Watts’ small world hypothesis (Watts and Strogatz 1998), social 

network analysis is a well-developed research area. However, many of these 

previous studies are based on small laboratory experiments with social networks 

limited to tens to hundreds of individuals. The extent of analysis has been limited 

due to the difficulty of obtaining data on very large-scale and completely 

representing social relationships. Recently, the emergence of mobile, email and 

online social networking have gradually transformed communication among people. 

Even as these new media have led to changes in our styles of communication, they 

have also remained governed by longstanding human social interaction principles. 

Social interaction through these platforms leaves extensive digital traces by its very 

nature. At unprecedented levels of scale and resolution we can now observe and 

quantify human communication patterns(Kleinberg 2008). 
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Recently, there is a growing interest in exploring the role of social networks for 

understanding how individuals spread influence. Customer intelligence is the process 

of gathering and analyzing information regarding customers; their details and 

activities, in order to build deeper and more effective customer relationships and 

improve strategic decision making. In customer intelligence, as more and more data 

revealing customer communication patterns is available in corporate data warehouse, 

social network analysis is fast emerging as an important discipline for predicting and 

influence consumer behaviour. Business analytics that leverages customer data 

through profiling, segmentation and predictive modelling is widely adopted by many 

customer-driven companies. Yet many companies still face low customer response 

rates to marketing initiatives, coupled with increasing customer churn. Research 

indicates that customers rely on each other's judgment and experience when making 

purchasing and loyalty decisions(Gabbott and Hogg 1994). Ignoring the network 

value of customers may lead to very suboptimal marketing strategies(Domingos and 

Richardson 2001).  

In the context of customer intelligence, social network analysis is concerned with the 

analysis of customer behaviours in terms of how they interact with each other and 

who is influencing who on product purchase or service usage. Instead of focusing on 

individual customer characteristics, how the customers interact with each other is 

also important. It is argued that the value of analyzing customer networks is that the 

insight can help business practices from customer churn management to viral 

marketing campaigns(Doyle 2008). In Rob Cross’s book – ‘Driving Results through 

Social Networks: How Top Organizations leverage Networks for Performance and 

Growth’, it filled with case studies for how leaders can understand and drive value 

through networks (Cross and Thomas, 2009).  

On the other hand, within online social networking, social media plays a prominent 

role in promotion, marketing and public relations. Online social networking is 

booming and plays an ever important role in shaping user behaviours on the internet. 

Social network sites give users the ability to create individual profiles that foster 

interaction among people based on their interests, expertise or work activities. As a 

result of their massive popularity, these sites have been exploited as a platform for 

the dissemination of information, news and opinions(Cha, Mislove and 
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Gummadi2009). For instance, major movie studios place trailers for their movies on 

MySpace; US presidential candidates ran online political campaigns on YouTube; 

and individuals and amateur artists promote their songs, artwork, and blogs through 

these sites, all hoping to reach millions of online users. Hence itis important to gain 

some deep insights of how information disseminate across social networks. 

1.1.2 Background & Research Questions 

Diffusion is a phenomenon in which new ideas or behaviours spread contagiously 

through social networks in the style of an epidemic.A rumour, a political message, or 

a link to an online video-these are all examples of information that can spread from 

person to person contagiously. It is a ubiquitous process in human social networks: 

A news story or an online video suddenly catches millions of attention; a new 

product or service gains sudden widespread popularity through word of mouth 

effect; the transmission of infective disease or computer virus. Many of these 

phenomena are very similar in principle - they tend to start with a few early adopters, 

and these early adopters may influence their friends, who may in turn influence their 

own friends and possibly lead to a cascade of influences(Kleinberg 2007). 

An underlying premise many diffusion models build upon is assuming the existence 

of social influence – people are influenced by their neighbours in the social network 

when making adopting decision. Typically they formulate assumptions on how 

individuals respond to their friends’ influence and further describe the way influence 

flows through the network. In this thesis I focus on models that explicitly represent 

the step-by-step dynamics of adoption. They assume the dynamic process unfolds in 

discrete time unit, with each node following certain probabilistic rule. For instance, 

an individual will adopt a new product or service when a certain threshold fraction of 

neighbours have already adopted (Granovetter 1978). 

Among the many proposed models for diffusion process, two have garnered wide 

acceptance(Kempe, Kleinberg and Tardos 2003). In the Linear Threshold Model 

(LTM)(Granovetter 1978), each node is assigned a randomly chosen threshold, 

representing the fraction of neighbours required for it to adopt the new behaviour. A 

weight is assigned on each edge, indicating the extent of the influence. A node will 

adopt the behaviour if sum of the weights of its neighbours that have already adopted 
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the behaviour is greater than its threshold value. The other popular diffusion model is 

the Independent Cascade Model (ICM)(Goldenberg, Libai and Muller 2001)a 

probabilistic model in which a node catches the behaviour from its neighbours. In 

this model, when a node first becomes active it gives a single chance to activate its 

inactive neighbours with a probability - a parameter of the system. 

While above models address the question of how influence spreads in a network, 

they are based on assumed rather than measured influence effects(Leskovec, Adamic 

and Huberman 2007). The wide variety of rules theoretical diffusion models posed 

on individuals’ behaviour, even if plausible, are often lacking empirical 

support(Cointet and Roth 2007). Furthermore, most of the diffusion models take a 

single snapshot of the evolving network and then build upon this static network 

topology. Even though there are time steps in the simulation of the dynamic process, 

they have nothing to do the actual time of information spread. As such, it becomes 

unclear how accurately existing models render real-world diffusion phenomena. 

Cointet et al. (2007) suggest that future investigations of the diffusion mechanisms 

should begin with adequate empirical protocols; then propose adapted modelling 

frameworks.  

Hence, it is necessary to propose new models that can capture the diffusion 

phenomenon more accurately. On the other hand as I stated earlier, collecting social 

network data has traditionally been hard work; many previous studies on social 

networks are based on small laboratory experiments. The emergence of social media 

has transformed the communication patterns among people. With the availability of 

such large-scale real network data, we can now measure the diffusion phenomenon 

at a more quantitative level. Indeed, it is important to obtain real world network data 

and conduct empirical analysis on such processes. 

In this thesis, I attempt to extend the classic diffusion models to integrate some of 

the recent empirical findings on the diffusion phenomenon.I propose a new method 

to approximate the diffusion processes based on a Non-linear Dynamic System that 

describing disease spread in epidemiology.Meanwhile, I obtain data from a 

telecommunication operator and build call networks. Ianalyze the structure 

properties of the call graphs. Using broadband bundle adoption data I conduct 

empirical analysis to assess social influence in the diffusion processes. 
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Anotherarea this thesis is interested in is visualizing social network data. Central to 

the development of social network analysis are two factors: measurement and 

visualization(Freeman 2000). Network visualization explores the patterns of 

relationships embedded in social networks by means of visual images. It is the 

process of creating a useful visual representation of a social network. It has played 

an important role in generating new insights in social network analysis. Good 

visualisation may reveal the hidden structure of the networks and amplifies human 

understanding, thus leading to new insights, new findings and possible prediction of 

the future.Moreover, the visualization of networks is important because it is a natural 

way to communicate connectivity and allows for fast pattern recognition by humans. 

It is useful for leveraging the perceptual abilities of humans to quickly explore and 

understand large amounts of data in parallel. 

Within social network analysis research, there are many network analysis and 

visualizationsoftware both in commercial and open-source. So why create another 

tool? The reasons are twofold. First, many of the network analysis tools are designed 

for expert practitioner, have complex data handling, and inflexible graphing and 

visualization features that inhibit wider adoption.I believe it is necessary to come up 

with a simple tool that can allow users with little knowledge on social network 

analysis can perform analysis tasks. Second, many of the existing tools have 

extensive and complicated analysis and visualization features. I believe allowing 

users to interactively explore and manipulate network data should be a high priority. 

Motivated by these, my goal is to create an extendible network analysis tool that 

encourages interactive overview, discovery and exploration through “direct” data 

manipulation, graphing and visualization. 

1.2 Contributions 

This thesis offers three principal contributions.  

The first is the method for modelling the diffusion process based on an epidemic 

model that accurately models virus propagationin epidemiology. With proper 

parameters setting on a given network topology, theproposed method can 

numerically calculate each node’s probability to get infected when a set of nodes has 

been initially activated.It provides an alternative way of estimating the number of 
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nodes reached by the initial target set in the diffusion process.Using this quantity as 

an influence measure, experiment results show that the proposed method can provide 

a way of identifying nontrivial nodes as influencer. 

The second is the empirical study that assesses social influence in the 

telecommunication call networks with regard to the bundle adoption event. The 

analysis results show that the call networks are relatively stable during the 

examination period. Using correlation analysis the study confirms the existence of 

social influence in the call networks with regard to bundle adoption event. However, 

the characteristic of the influence is not same as it has been observed in other 

scenarios.  

The third is the prototypical tool for social network data manipulation, analysis and 

visualization. The tool offers extensive features for users to interactively manipulate 

and explore social networks. It also provides distinctive visualization features such 

as allowing users to view the network data on a geographical map. 

1.3 Thesis Structure 

The remainder of this thesis is structured as follows: 

In chapter 2 various literatures related to my work on the diffusion processes in 

social networks and network analysis and visualization tool have been reviewed. 

In chapter 3 I present my work on modelling the diffusion process in social 

networks.  

In chapter 4 I present my work on empirically assessing the social influence and 

measuring diffusion processes in the telecommunication call networks.  

In chapter 5 I introduce the  prototypical tool for social network data manipulation, 

analysis and visualization. 

Conclusions and suggestions for future work are given in Chapter 6.  
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Chapter 2 

Literature Review 

In this chapter, following my research motivations, Ifocus on literature related to the 

diffusion processes in social networks and network visualization. Since most of 

mywork is conducted in the context of social network analysis, I start with an 

overview of social network analysis research. Furthermore, as I try to develop a 

network analysis tool, in section 2.1, I first investigate the methodology and goals of 

conducting network analysis then I provide theoretical background to the analysis 

techniques featured in my tool.  

One of the major research areasthis thesis interested in is the diffusion processes 

within social networks. As mentioned earlier, diffusion processes within social 

networks has known an increased interest in recent years. An extensive amount of 

theoretical and empirical literature has been devoted to this phenomenon and the 

mechanisms behind it. There are many options and approaches.In section 2.2,I 

introduce various state of the art research issues and provide theoretical background 

for my work on modelling diffusion process and empirical diffusion studies. 

Specifically, I summarize some of the major challenges faced when modelling 

diffusion process and common approaches to address these challenges. I categorize 

recent empirical studies on diffusion process and summarize their findings. 

After that,I present literature review related to my work on network analysis and 

visualization tool development.In section 2.3, I provide an overview of some of the 

major social network analysis tools, summarizing their advantages and 

disadvantages.In section 2.4,I introduce various graph layout algorithms that used to 

position the nodes and edges in the network visualization.  

2.1 Social Network Analysis 

As most of my work is conducted in the context of social network analysis, I start 

with providing an overview of this area. Firstly, I examine what social networks are 

in section 2.1.1. I then introduce common notation and fundamental concepts of 
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general network analysis in section 2.1.2.In the literature, numerous measures have 

been defined to statistically assess every aspect of the social networks. However, 

there is no systematic way to interpret networks. In section 2.1.3, I examine the 

methodology and goals of performing network analysis. From this study, I have 

identified the two major objectives of network analysis is to uncover notable nodes 

and cohesive subgraphs. In section 2.1.4 and 2.1.5, I introduce various centrality and 

authority ranking measures to discover “important” nodes. In section 2.1.6, I present 

various concepts related to identify cohesive subgraphs and algorithms that detect 

communitiesin social networks. 

2.1.1 Development of Social Network Analysis 

Social network analysis has emerged as a key technique in modern sociology. People 

have used the idea of “social network” loosely for over a century to connote complex 

sets of relationships between members of social systems that at all scale, from 

interpersonal to international. In social science, the structural approach that is based 

on the study of interaction among social actors is called social network analysis.  

A summary of the development of social networks and social network analysis has 

been written by Linton Freeman(Freeman 2004). In his book, Freeman divides the 

history of the social network paradigm into four distinct periods. The first, which 

lasted from the mid-nineteenth century to the 1920s, is the origins of the social 

network ideas and practices. The second, which started in the late 1920s and run 

through the 1930s, is the birth of social network analysis. A major force behind the 

full-fledged emergence of network analysis was Jacob Levy Moreno. He pioneered 

the systematic recording and analysis of social interaction in small groups. The 

period stretching from the 1940s up to the 1960s Freeman described as a kind of 

“dark ages” for social network analysis. This was a time when social network 

analysisremained fragmented and localized. In was only in the 1970s, during a 

period Freeman describes as “the Renaissance at Harvard”, that social network 

analysis finally became a generalized paradigm for research. One group was 

centeredaround Harrison White and his student at the Harvard University were most 

responsible for this turn of event.  
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2.1.2 Social Network 

Social network is a social structure containing various nodes (usually organizations 

and individuals) which are connected by one or more kinds of relationships. It 

indicates the ways in which they are connected through various social familiarities 

ranging from casual acquaintance to close familiar bonds (Hanneman and Riddle 

2005). Email traffic, disease transmission and criminal activity can all be modelled 

as social networks. The nodes in the social network are called actors, and the links 

between each pair of actors are called relationships. A social network can have 

several different kinds of relationships and even multiple relationships 

simultaneously. Relations can be undirected or directed. For undirected relations, the 

link between two actors does not have a to or from consideration. For directional 

relations the path from node i  to node j  is different from the path from node j  to 

node i . Relations may be weighted or unweighted, and weights, if present, may be 

interpreted as increasing or decreasing the tie between the two entities.  

Social networks can be represented in a graph form. A graph usually denoted 

( , )G V E which consists of set of vertices V together with a set of edges E .In this 

context, vertices denote actors in the social network and edges denote the 

relationships between the actors. In this thesis, we use the term actor, node, vertex 

can interchangeably, and also the term edge and link. Based on the graph nature of 

social networks, the analysis of social network is highly dependent on graph theory. 

The main concepts about graph theory are assigned with walks, paths and distances. 

A sequence of adjacent vertices 0 1, ,..., nv v v  is known as a walk. A walk in which no 

vertex occurs more than once is known as a path.A walk between two vertices whose 

length is as short as any other walk connecting the same pair of vertices is called a 

geodesic. The distance between two vertices is defined as the length of a geodesic 

that connects them. Traditionally there is no social network theory and the graph 

concepts can be employed in distinct social theories, requesting just some additional 

empirical and complementary information.The relations and individuals 

identification are mainly tasked to be performed in order to establish a real social 

network analysis. 



 

Besides graph, a matrix is another common form of representing social network, 

where rows and columns as actors and the elements represent the ties between the 

actors. The simplest and most common matrix is binary. That is, if a tie is present, 

the cell value is one; if th

convention the sender of a tie is the row and the target of the tie is the column. 

of the advantages of using 

allow the application of mathematical and computer tools to summarize and find 

patterns. In the following sections, we can find many matrix

Below in Table 1 

representations:  

Table 1: Different social network representations.

2.1.3 Network Analysis

Social network analysis (SNA) is the study of relat

purpose of social network analysis is to identify important actors, crucial links, 

subgroups, roles, network characteristics, and so on, to answer substantive questions 

about structures. It has emerged as a powerful method for 

importance of relationship

analysts seek to uncover two typ

nodes organized into cohesive social groups and others that uncover subsets of nodes 

having equivalent social positions or roles. 

SNA is based on assumption of the importance of relationships among interacting 

units. Network analysts focus on relationships instead of just the individual 

elements; how the elements are put together is just as important as the elements 

themselves. Prior to this per
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matrix is another common form of representing social network, 

where rows and columns as actors and the elements represent the ties between the 

The simplest and most common matrix is binary. That is, if a tie is present, 

the cell value is one; if there is no tie, the cell value is zero. In a directed graph, by 

convention the sender of a tie is the row and the target of the tie is the column. 
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attributes and neglected the social part of behaviour (how individual interact and the 

influence they have on each other.)(Freeman 2004) 

The power of social network theory stems from its difference from traditional social 

scientific studies is that it focuses on the value of the network structure rather than 

the characteristics of the individual. For instance, the network structure of an 

organization will affect its ability to access new ideas, recruit new individuals, and 

achieve sustainability.This approach has turned out to be useful for explaining many 

real-world phenomena. 

The origin of contemporary social network analysis can be traced back to the work 

of Stanley Milgram(Milgram 1967). In his research, Milgram found that most people 

were connected by six acquaintances. This research led to the famous phrase “six 

degrees of separation”, which is still widely used in popular culture. Another 

important step in the development of social network analysis was the work of Mark 

Granovetter on network structures(Granovetter 1973). It is argued that weak social 

ties (distant and infrequent relationships) are more efficient at sharing knowledge as 

they provide access to novel information from otherwise disconnected parties. An 

example is people so often get job opportunities from their weak ties. D.J. Watts’ 

small world hypothesis builds upon both Milgram’s “six degrees of separation” 

concept and Granovetter’s “weak ties” argument by stating that most networks in the 

natural and man-made world are highly clustered yet far-reaching(Watts and 

Strogatz 1998). In these networks most nodes are not neighbours of one another, but 

most nodes can be reached from every other by a small number of hops or steps. 

Understanding networks is an inherently difficult process. Within graph theory and 

social network analysis, various measures have been defined to statistically assess 

every aspect of social networks, such as size, density, degree, distance, diameter¸ 

centrality and etc. Using these techniques and metrics network analysts can find 

patterns in the structure, witness the flow of resources through a network, and learn 

how individuals are influenced by their surroundings. Social network analysis: 

Methods and Applications, by Wasserman and Faust, is perhaps the most widely 

used reference book for structural analysts (Wasserman and Faust 2007). The book 

presents a review of network analysis methods and an overview of the field. Below 
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in Table 2 is a sample analysis on a network generated by the Network Workbench 

Tool (Team 2006):  

Table 2: Sample Network Analysis & Visualization 

 

This graph claims to be directed. 
Nodes: 113; Isolated nodes: 0 
Node attributes present: label, area 
Edges: 861 
No self loops were discovered. 
No parallel edges were discovered. 
Edge attributes: 

Did not detect any nonnumeric attribute. 
This network seems to be valued. 

Average total degree: 15.238938053097344 
Average in degree: 7.619469026548669 
Average out degree: 7.619469026548671 
This graph is weakly connected. 
There are 1 weakly connected components. (0 
isolates) 
The largest connected component consists of 113 
nodes. 
This graph is not strongly connected. 
There are 13 strongly connected components. 
The largest strongly connected component consists of 
101 nodes. 
Density (disregarding weights): 0.06803 
Additional Densities by Numeric Attribute 
densities (weighted against standard max) 
weight: 0.06803 
densities (weighted against observed max) 
weight: 0.06803 

As seen from Table 2, from the network visualization on the left hand side, we can 

gain an initial impression on the structure of the network. From the network statistics 

on the right hand side, we can gain a clearer picture of the network structure: It 

consists of 113 nodes and 861 edges and it is directed. It is a weakly connected 

network with no isolated nodes. There are 13 strongly connected components and so 

on.  

According to Wagner (2003), there are three main levels of interest: the element, 

group, and network level. On the element level, one is interested in properties of 

single actors, links, or incidences. Examples for this type of analysis are bottleneck 

identification and structural ranking of network items. On the group level, one is 

interested in classifying the elements of a network and properties of subnetworks. 

Examples are actor equivalence classes and cluster identification. Finally, on the 

network level, one is interested in properties of the overall network such as 

connectivity or balance.Here Ibriefly summarize the definitions of some of the 

common measures used to describe a social network or graph(Wasserman and Faust 

2007):  
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Degree: the count of the number of ties to other actors in the network. Or in graph 

theory, the degree of a vertex of a graph is the number of edges incident to the 

vertex, with loops counted twice 

Loop: A loop is an edge that connects a vertex to itself.  

Isolated node: A vertex of zero degree, with no edges connected to it. 

Path: is a sequence of vertices such that from each of its vertices there is an edge to 

the next vertex in the sequence. 

Diameter: is the greatest distance between any pair of vertices. To find the diameter 

of a graph, first find the shortest path between each pair of vertices. The greatest 

length of any of these paths is the diameter of the graph. 

Connected component: is a subgraph in which any two vertices are connected to 

each other by paths. A directed graph is called strongly connected if there is a path 

from each vertex in the graph to every other vertex. In particular, this means paths in 

each direction; a path from a to b and also a path from b to a. 

Density: is the number of edges in a network, expressed as a proportion of the 

maximum possible number of edge. Dense network means a network with relatively 

more edges and a complete network is a network with maximum density.  

Cluster coefficient: A measure of the likelihood that two associates of a node are 

associates themselves. A higher clustering coefficient indicates a greater 

'cliquishness'. 

K-core: A k-core is a maximal subgraph in which each vertex has at least degree k 

within the subgraph.  

Clique: a clique in an undirected graph is a subset of its vertices such that every two 

vertices in the subset are connected by edge. 

Closeness: is the inverse of the sum of the shortest distances between each 

individual and every other person in the network. It measures the degree an 

individual is near all other individuals in a network (directly or indirectly). 
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Betweenness: vertices that occur on many shortest paths between other vertices have 

higher betweenness than those that do not. It measures the extent to which a node 

lies between other nodes in the network. 

Centralization: The difference between the number of links for each node divided 

by maximum possible sum of differences. A centralized network will have many of 

its links dispersed around one or a few nodes, while a decentralized network is one in 

which there is little variation between the number of links each node possesses. 

Structural equivalence: Refers to the extent to which nodes have a common set of 

linkages to other nodes in the system. The nodes don’t need to have any ties to each 

other to be structurally equivalent. 

Structural hole: Static holes that can be strategically filled by connecting one or 

more links to link together other points. Linked to ideas of social capital: if you link 

to two people who are not linked you can control their communication. 

2.1.4 Network Analysis Goals &Methodology 

Numerous measures have been proposed by structural analysts to statistically assess 

social networks (Wasserman and Faust 2007). However, there is no systematic way 

to interpret networks, as measures can have different meaning in different networks. 

For instance, even though there are many importance rankings, clustering algorithms 

and statistical techniques for assessing social networks, there is no well-defined 

methodology for performing these operations (Perer and Shneiderman 2008b). In 

this section, I attempt to investigate the general goals and methodology for network 

analysis. During the design of my tool, I try to follow these guidelines so that users 

can assess the social networks in question more efficiently. 

The purpose of social network analysis is to identify important actors, crucial links, 

subgroups, roles, network characteristics, and so on, to answer substantive questions 

about structures (Wagner2003). Some research questions focus on the structure of 

the whole graph or large sub-graphs, other questions focus on identifying individual 

nodes that are of particular interest. Some analysts will want to analyze the whole 

graph aggregated over its entire lifetime; others will want to slice the network into 

units of time to explore the progression of the network’s development. According to 
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Perer and Shneiderman the 7-step methodology for social network analysis is (Perer 

and Shneiderman 2008b): 

1. Overall network metrics, e.g., number of nodes, number of edges, density, 

diameter 

2. Node rankings, e.g., degree, betweenness, closeness centrality 

3. Edge rankings, e.g., weight, betweenness centrality 

4. Node rankings in pairs, e.g., degree vs. betweenness, plotted on a scatter 

gram) 

5. Edge rankings in pairs 

6. Cohesive subgroups, e.g., finding communities 

7. Multiplexity, e.g., analyzing comparisons between different edge types, 

such as friends vs. enemies. 

This is not the only systematic method for social network analysis. At its most basic 

level, the initial step is to grasp basic insights into its overall network structure both 

statistically and visually. This may involve the overall network metrics such as 

density, diameter and number of components and are presented alongside a force-

directed layout of the network. The visualization gives users a sense of the structure, 

clusters and depth of a network, while the statistics provide a way to both confirm 

and quantify the visual findings. Meanwhile from an overview, the network analysts 

can begin to seek sub-elements of the network that are of particular interest. This 

may involve finding sub-groups or cliques and measuring their cohesion in terms of 

the density of their internal connections. 

Next step may include to gaining a deeper understanding of the individual elements 

of the network. Some nodes are notable, for example, because they have an extreme 

degree of connection to other nodes. For network analysts, identifying notable nodes 

in the network are of great importance and application. This may involve using 

statistical importance metrics common in social network analysis to measure the 

nodes and edges. For instance, an analyst can rank the nodes by degree (the most 

connected nodes), betweenness (the gatekeepers), closeness (well-positioned nodes 

to receive information) or other metrics. Some nodes play critical roles as bridges, 

sinks, or sources within the network. With an overview of a network in place, 
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network analysts may seek to find the gaps or holes in the network that could 

indicate missing data, a hidden actor, or a strategic gap that should be filled. 

In the development of the network analysis module of my tool, I try to follow these 

principles. In the following sections, I investigate some of the measures in detail. In 

particular, I are interested in network centrality measures that rank network elements 

and identify “important” nodes; concepts and algorithms that uncover cohesive 

subgroups.  

2.1.5 Network Centrality Measures 

Centrality is a group of measurements measuring how central a node is in a graph. In 

social networks, centrality measures are introduced as importance measures to 

quantify the role played by an actor in the complex interaction and communication 

occurring in the network. A central or prominent actor is defined as “those that are 

extensively involved in relationships with other actors. This involvement makes 

them more visible to the others. ” (Wasserman and Faust 2007) 

Being central in a graph can have many different meanings and therefore there are 

several different kinds of centrality measures. Three measures of centrality that are 

widely used in network analysis are degree centrality, betweenness centrality, 

closeness centrality. Although many other measures of centrality have been proposed 

since, these three continue to dominate. Here in Figure 1 I use a sample network with 

different highest centrality nodes pointed out to illustrate the idea. In the example, 

node 8 has highest betweenness centrality score; node 10 has highest closeness 

centrality score; node 13 has highest degree centrality score. 

In the following section, I will introduce some of these most well-known centrality 

measures, as well as a number of link topological ranking measures. Some of these 

measures exhibit high computational complexity, while others are simple to 

calculate. 
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Figure 1: Example of which nodes have highest value of some centrality measures in 

a social network. 

2.1.5.1 Degree Centrality 

The first and simplest centrality measure is degree centrality. Degree centrality refers 

to the number of ties a node has to other nodes. Degree is a measure in some sense of 

the popularity of an actor. Actors that have more ties may have multiple alternative 

ways and resources to reach goals – and thus be relatively advantaged. If the network 

is directed, then we have to distinguish between indegree and outdegree. Indegree is 

the count of the number of ties directed to the node, and outdegree is the number of 

ties that the node directs to others. The outdegree centrality is defined as 
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Where i  describes the node i  and 
ij

a  is 1 if an edge from node j  to i  exists, 

otherwise it is 0.The degree measure for a node focuses only on its directly 

connected neighbour nodes. To get the global position of a node, this algorithm is 

not applicable. Additionally, it assumes the more ties a node has, the more important 

it is. However, it does not consider the relative importance of its connected 

neighbour nodes. Therefore, other centrality measures must be used to find the 

global position of a node within the network. 
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2.1.5.2 Closeness Centrality 

Recall earlier I have introduced the concepts of walk, path and geodesic distance in 

graph theory. A geodesic path is the shortest path, in terms of number of edges 

traversed, between a specified pair for nodes. It is often the optimal or most efficient 

connection between two nodes. The shortest-path distance between two vertices is 

defined as the length of a geodesic path that connects them. 

Closeness is a measure of the degree to which an individual is near all other 

individuals in a network. Closeness centrality measures how close a node is to all 

other nodes in the graph. The closeness centrality of a node in a graph is the inverse 

of the average shortest-path distance from the node to any other node in the graph. It 

is defined as the mean geodesic distance between a node and all other nodes 

reachable from it. Moreover, closeness can be regarded as a measure of how long it 

will take information to spread from a given node to other reachable vertices in the 

network. The closer a node is to all other nodes, the easier information may reach it, 

the higher its centrality. Formally the closeness centrality is defined as 
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Where ( , )d i j  denotes the distance between node i and j , which is the shortest path 

between node i  and j .The idea behind this measure is that a node’s closeness is 

measured by how quickly it can interact with all other nodes in the network. The 

important actors considered as central are often productive in communication with 

all other actors. One problem with this definition of closeness centrality is that it 

cannot be used for disconnected graphs in which some of the ( , )d i j  will be ∞  and 

the equation (2.3) will be undefined. Obviously, this algorithm is much more time 

consuming than the degree centrality algorithm since it needs to calculate the 

geodesic distance between pair of nodes. 

2.1.5.3 Betweenness Centrality 

Another important class of centrality measures is the class of betweenness measures. 

The idea is that a node is central if it lies between other nodes on their geodesics 
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path, implying that, in order to have a large betweenness value, the node must be 

between many of nodes via their geodesics path. In fact, interactions between two 

non-adjacent nodes might depend on the other nodes in the set of nodes, especially 

those nodes that lie on the path between the two. Those nodes can therefore control 

the interaction between the two non-adjacent nodes. In many social contexts an actor 

with high betweenness will exert substantial influence by virtue not of being in the 

middle of the network but of lying “between” other actors in this way. 

The simplest and most widely used betweenness measure is that of Freeman (1979). 

Formally, the betweenness of node i  is defined to be the fraction of shortest paths 

between pairs of nodes in a network that pass through i , thus the betweenness 

centrality is defined as 
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Where ( )
st

g i  is the number of shortest paths linking the two nodes s  and t  that path 

through i , and st
g  is the total number of shortest paths from s  to t . This may be 

normalised by dividing through the number of pairs of nodes not including i , which 

is ( 1)( 2)n n− −  for directed graphs and ( 1)( 2) / 2n n− −  for undirected graphs. 

Meanwhile, betweenness centrality is an important indicator of control over 

information exchange or resource flows within a network. A node that is situated on 

the geodesics between many pairs of nodes is very important to the flow of 

information within the network. In a network in which flow is entirely or at least 

mostly along geodesic paths, the betweenness of a node measures how much flow 

will pass through that particular node. 

The betweenness centrality measurement offers the most general and powerful way 

of determining the importance of actors. However, it assumes that actor i only 

chooses the shortest path to transmit information to actor j , and the probability of 

choosing multiple shortest paths is evenly distributed. It simply omits the fact that an 

actor which is on geodesic and has large degree may be more expansive than any 

other actors who are also on geodesic but have a relatively small degrees. The actor 

with a large degree should have a higher probability to be chosen on the geodesic. 
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Additionally, it omits all paths between i  and j which have longer length than the 

shortest paths. This assumption is not necessarily valid. For example, in real world 

internet connection, it is possible for one computer to choose a path other than the 

shortest path to send messages to another computer. 

The computation of betweenness centrality is computationally expensive. 

Brandes(2001) proposed an algorithm for betweenness that exploits the sparseness of 

typical networks to reduce running time from 3( )O n  to 2( )O n nk+  and memory 

consumption from 2( )O n to ( )O n k+ . Moreover, other shortest-path based measures, 

like closeness, can be computed simultaneously within the same bounds. 

2.1.5.4 Eigenvector Centrality 

The eigenvector centrality is another measure of the importance of a node in a 

network. This measure is a little more complicated than those considered previously 

and it is usually defined as the limits of some iterative process. The core idea behind 

the eigenvector centrality is that an important node is connected to important 

neighbours. In general, connections to people who are themselves influential will 

lend a person more influence than connections to less influential people. Being 

nominated as powerful by someone seen by others as powerful should contribute 

more to one’s perceived power. 

Typically the eigenvector centrality scores of a network’s nodes were determined 

from the entries of the principle eigenvector of the network’s adjacency matrix. 

Formally, the centrality of node i  is a function of the centrality of the nodes 

connected to i . Let A  be the binary adjacency matrix of the network and be the 

principal eigenvector corresponding to the maximum eigenvalue θ . The eigenvector 

centrality for a node i  can be defined as a single element of the eigenvector 

calculated as: 
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Here, each actor’s status is merely proportional to the weighted sum of the actors to 

whom he is connected. The eigenvector centrality defined in this way accords each 
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vertex a centrality that depends on both on the number and the quality of its 

connections: having a large number of connections still counts for something, but a 

vertex with a smaller number of high-quality contacts may outrank one with a larger 

number of mediocre contacts (Newman 2007).This centrality measure turns out to be 

a revealing measure in many situations. For example, a variant of eigenvector 

centrality is employed by the well-known web search engine Google to rank Web 

pages, and works well in that context. 

2.1.6 Authority Ranking Measures 

Most of the previously described centrality measures except eigenvector centrality 

disregard the type of node. There are very influential vertices to which a connection 

is more valuable than to others. With regard to social networks, a connection to a 

node with high centrality might be more valuable than to a node with only one 

neighbour. Web search algorithms such as HITS (Kleinberg 1999) and PageRank 

(Page, et al. 1998) leverage this information by using the link structure of a network 

of the webpages to assign weights to each page in the network. The weights can then 

be used to rank the pages as authoritative sources. These algorithms share a common 

underpinning; they find a dominant eigenvector of a non-eigenvector matrix that 

describes the link structure of the given network and use the entries of this 

eigenvector as the page weights (Farahat, et al. 2006). HITS emphasizes mutual 

reinforcement between authority and hub webpages, while PageRank emphasizes 

hyperlink weight normalization and web surfing based on random walk models 

(Ding, et al. 2002). Below I will discuss each algorithm. 

2.1.6.1 HITS Algorithm 

Closely related to eigenvector centrality is a web search algorithm called HITS 

(Hyperlink-Induced Topic Search) introduced by Kleinberg (1999). The premise of 

the algorithm is that a web page serves two purposes: to provide information on a 

topic and to provide links to other others giving information on a topic. This gives 

rise to two ways of categorizing web pages: authoritative pages and a set of hub 

pages. Authoritative pages are those web pages pointed by a large number of hubs 

and hubs are those web pages that point to a large number of authoritative pages. The 

HITS algorithm is an iterative algorithm developed to quantify each page’s value as 
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an authority and as a hub. For each page i  a nonnegative authority weight ( )
A

C i  and 

a nonnegative hub weight ( )
H

C i  is associated, and the mutually reinforcing 

relationship between authorities and hubs is represented as 
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Where 
ji

a  is 1 if an edge from node j  to i  exists otherwise 0.An iterative algorithm 

is used to find the equilibrium values for the authority and hub weights of a web 

page or node in a network respectively. This is reached if the difference of the 

weights between two iterations is less than a threshold value. When the equilibrium 

is reached, the most central nodes are those with the highest authority weight. 

2.1.6.2 PageRank 

Another popular web search algorithm is the PageRank algorithm introduced by 

Page and Brin(1998). PageRank uses an idea similar to HITS that a “good” webpage 

should connect to or be pointed to by other “good” webpages. However, instead of 

mutual reinforcement, it adopts a web surfing model based on Markov process in 

determining the scores. Unlike HITS, it maintains only a single metric for each web 

page. The so called PageRank is transmitted from the source page to the link target, 

and the size of the contribution depends on the PageRank of the source page. So a 

link form a page that has large PageRank, such as the Yahoo home page, contributes 

more a link from a page with low PageRank. For example, if a web page has a link 

off the Yahoo home page, it may be just one link but it is very important one. This 

page should be ranked higher than many pages with more backlinks but from 

obscure places. 

The PageRank of page or node i  is the sum of contributions from its incoming links 

or edges. A constant damping factor d  is the probability at each page that the 

“random surfer” will get bored and requests another random page. Additionally 

(1 )d−  is added to each node. This is done because if a node has an out-degree of 

zero then his PageRank would be zero. This zero-value would be passed down to the 
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original node. To avoid this, a constant value is added to the PageRank. The 

PageRank can be defined as: 

 1 1( ) (1 ) ( ( ) / ( ) ... ( ) / ( ))
n n

PR A d d PR T C T PR T C T= − + + +  (2.8) 

Where page A  has pages 1T … n
T  which point to it, ( )C A is defined as the number of 

links going out page A , and the parameter d  is a damping factor which can be set 

between 0 and 1. d isusually set to 0.85. 

2.1.7 Clustering & Community Detection 

Consider the social network of friendships or other acquaintances between 

individuals; it is a matter of common experience that such networks seem to contain 

dense pockets of people who “stick together”. In social science, such subgroups are 

typically called communities or clusters. Intuitively, a community is a cohesive 

group of nodes that are connected more densely to each other than to the nodes in 

other communities, within which node-node connections are dense, but between 

which connections are less dense (Porter, Onnela and Mucha 2009). Community 

structure is ubiquitous in social networks. A community in a social network might 

indicate a circle of friends, a community in the World Wide Web might indicate a 

group of pages on closely-related topics, and a community in a cellular or genetic 

network might be related to a functional module. Below in Figure 2 is an example of 

community structure in a social network.  

Community structure is an important network property and can reveal many hidden 

features of the given network. The ability to detect community structure in a network 

could clearly have practical applications. Individuals belonging to the same 

community are probable to have properties in common, perhaps by interest or 

background. The communities in the blogspace often correspond to topics of 

interests. Monitoring the aggregate trends and opinions revealed by these 

communities provides valuable insight to a number of business applications, such as 

marketing intelligence and competitive intelligence. In biochemical or neural 

networks, communities may be functional groups, and separating the network into 

such groups could simplify functional analysis considerably. Hence, identifying the 

communities is a fundamental step not only for discovering what makes entities 
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come together, but also for understanding the overall structural and functional 

properties of large network (Du, et al. 2007). 

 
Figure 2: An example of community structure in a social network. 

Community detection is closely related to the cluster analysis in data mining. In the 

classic clustering theory, entities are embedded in metric spaces and their similarity 

is derived from the distances between them. Thus, all pairwise similarities were 

known at the beginning. In social network analysis, the networks are typically 

sparse. Therefore, tailored concepts and algorithm are needed which take advantage 

of this special setting. Network data tends to be “discrete”, leading to algorithms 

using the graph property directly. There are numerous alternative methods for 

detecting communities in networks. These include hierarchical clustering (Navarro, 

Frenk and White 1997), partitioning graphs to maximize quality functions such as 

network modularity, k-clique percolation (Derényi, Palla and Vicsek 2005) and etc. 

The differences between many community-detection methods ultimately come down 

to the precise definition of more densely and the algorithmic heuristic followed to 

such sets (Porter, Onnela and Mucha 2009).  

A popular quantitative definition called network modularity (Newman 2006), 

proposed by Girvan and Newman, is widely used as a quality metric for assessing 

the partitioning of a given network into communities. Good partitions, which have 

high values of the modularity, are those in which there are dense internal connections 

between the nodes within communities but only sparse connections between 
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different communities. The search for the largest modularity value is a NP-hard 

problem due to the fact that the space of possible partitions grows faster than any 

power of the system size. By definition, modularity considers the number edges 

which is smaller than expected: 

Q = (number of edges within communities) – (expected number of such 

edges). 

Most actual networks are made of highly overlapping cohesive subgroups of nodes 

simply because individuals often belong to numberous different kinds of 

relationships simultaneously (Palla, et al. 2005). For example, each of us may 

participate in many social cycles according to our hobbies, educational background, 

working environment and family relationships. As a result, when the network is 

large and the overlapping is significant, most of the existing algorithms in general 

will have high computation cost due to their heuristic optimization strategies (Du, et 

al. 2007). 

2.1.7.1 Density, k-core & Cliques 

Before formally describing different community detection techniques, I start with 

some of the traditional techniques of detecting cohesive subgroups in social science. 

Intuitively, cohesion means that a social network contains many ties. More ties 

between people yield a tighter structure, which is, presumably, more cohesive. In 

network analysis, the density of a network captures this idea. It is the percentage of 

all possible lines that are present in a network. Maximum density is found in a 

complete simple network, that is, a simple network in which all pairs of vertices are 

linked by an edge or by two arcs, one in each direction. 

K-core in graph theory was introduced by Seidman(1983) in 1983 and by 

Bollobas(1984)in 1984. Cores are clusters of nodes that are tightly connected 

because each node has a particular minimum degree within the cluster. These 

clusters are called k-cores and k indicates the minimum degree of each node within 

the core; for instance, a 2-core contains all nodes that are connected by degree two or 

more to other nodes within the core. A k-core identifies relatively dense 

subnetworks, so they help to find cohesive subgroups. 
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Cliques are a stricter structure form of a cohesive subgroup. A clique is a set of 

nodes in which each node is directly connected to all other nodes. In other words, a 

clique is a subnetwork with maximum density. The size of a clique is the number of 

nodes in it. Below in Figure 3 are cliques of size 3, 4 and 5. Maximal complete 

subnetworks of size 1 and 2 exist, but they are not very interesting because they are 

single nodes and edges, respectively. Therefore, cliques must contain a minimum of 

three nodes. Unfortunately, it is very difficult to identify cliques in large networks: 

the computational method is very time-consuming and even medium-sized networks 

may contain an enormous number of cliques. In social network analysis, one is 

typically interested in either a maximum clique or an enumeration of all maximal 

cliques. Despite the rather simple structure of cliques, both problems are NP-hard to 

solve. 

 
Figure 3: Cliques of Size 3, 4 and 5. 

2.1.7.2 Edge Betweenness Clustering 

A commonly used algorithm for communities finding is based on the graph-theoretic 

measure betweenness proposed by Girvan and Newman (2002). Rather than 

constructing communities by adding the strongest edges to an initially empty node 

set, they construct them by progressively removing edges from the original graph. 

As I have introduced in the previous section, for any node, node betweenness is 

defined as the number of shortest paths between pairs of nodes that run through it. It 

is a measure of the influence of a node over the flow of information between other 

nodes, especially in cases where information flow over a network primarily follows 

the shortest available path. Girvan and Newman have extended this definition to the 

case of edges, defining edge betweenness as the number of shortest paths that 

traverse it. 
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The main idea behind the algorithm is that if a network contains communities or 

groups that are only loosely connected by a few intergroup edges, then all shortest 

paths between different communities must go along one of these few edges. Thus, 

the edges connecting communities will have high edge betweenness. By iteratively 

removing these edges, groups can be separated from one another and the underlying 

community structure of the graph can be revealed. The edge betweenness 

distinguishes inter-community edges, which link many vertices in different 

communities and have high betweenness, from intra-community edges, whose 

betweenness is low. The algorithm proposed for identifying communities is simply 

stated as follows: 

1. Calculate the betweenness for all edges in the network. 

2. Remove the edge with the highest betweenness. 

3. Recalculate betweenness for all edges affected by the removal. 

4. Repeat form step 2 until no edges remain. 

This algorithm has been employed by a number of authors in the study of such 

diverse systems as network of email messages, social network of animals and 

collaboration of jazz musician (Newman 2004). It also has been shown to have 

useful biological applications, in defining subsystems within food webs and to 

investigate biological function in protein-protein interaction networks (Dunn, 

Dudbridge and Sanderson 2005). However, as pointed out by Newman and Girvan, 

the principle disadvantage of their algorithm is the high computational demands it 

makes. In its simplest and fastest form, it runs in worst-case time 2( )O m n  on a 

network with m  edges and n  vertices, or 3( )O n  on a sparse network. With typical 

computer resources available at the time of writing, this limits the algorithm’s use to 

networks of a few thousand vertices at most, and substantially less than this for 

interactive applications. 

2.1.7.3 Voltage Cluster 

Another method for communities finding is using a physics approach by considering 

the social network as an electric circuit with each edge having the same resistance 

(Newman 2004, Wu and Huberman 2004). Specifically, social networks are 

modelled using concepts from electrical circuits, voltage, current, conductance and 



 28

etc. Source node has +1 volts, sink has 0 volts and current will flow from source to 

sink. The weight of the edges can be represented by conductance. When comes to 

communities structure, physically thinking, because nodes inside a community are 

densely connected, their voltages tend to be close. A big voltage gap happens about 

halfway between two communities, where the edges are sparse and the local 

resistance is large. 

One advantage of the algorithm is that it allows for the discovery of a community 

surrounding a given node without having to extract all the communities out of a 

graph. One volt is applied to the given node, and zero volts to some other randomly 

choose node. The voltages at all nodes are then calculated using Kirchhoff’s Laws, 

and the nodes are split into two groups by sorting all the voltages, picking the 

median voltage, and splitting the nodes on either side of this median into two 

communities. The important idea is that the voltages can be calculated approximately 

using iterative methods requiring only ( )O V E+  time but with the quality of 

approximation depending only on the number of iterations and not on the graph size. 

This algorithm runs in linear time, but this particular method needs a priori 

knowledge of the number of expected communities. The reason behind the speed of 

this method lies in its focus on communities themselves and not on their hierarchical 

structures. In contrast, Girvan and Newman’s betweenness method detects not only 

the communities but also the complete hierarchy tree using much longer times. One 

defect of the method is that the number of communities wish to divide the graph into 

should be specified, a piece of information which one does not often have 

beforehand (Wu and Huberman 2004). 
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2.2 Diffusion Processes in Social Networks 

With the explosive growth of online social networks and great potential of viral 

marketing, studies of the information diffusion over social networks have attracted 

more and more attention. Traditionally, studies on diffusion process in social 

networks have span across multiple disciplines including sociology (Rogers 1995)，

(Granovetter 1978), marketing (Mahajan, Muller and Bass 1990), and epidemiology 

(Anderson and May 1992). In social science and marketing literature there is a long 

history of research on the role of social network in new product diffusion. In the 

1950s, Rogers’ diffusion of innovation theory (Rogers 1995) has divided the 

innovation adoption process into different stage and classified the adopters of the 

innovation into categories. The two-step flow of communication model (Lazarsfeld, 

Berelson and Gaudet 1944, Katz and Lazarsfeld 1955) hypothesizes that ideas flow 

from mass media to opinion leaders and from them to a wider population. The 

influences stemming from the mass media first reach ‘opinion leaders’, who in turn, 

pass on what they read and hear to their friends for whom they are influential. In 

epidemiology, numbers of epidemic models have been proposed to describe the 

transmission of infectious disease among large populations.Recently, with the 

availability of large-scale network data, researchers have contributed a plethora of 

studies, approaches and theoretical contributions related to various aspects of the 

diffusion phenomenon.  

My reasons to conduct a thorough review on this area are twofold. Firstly, despite 

the piles of studies related to diffusion processes in recent years, there are only rare 

research articles consolidating and reviewing the various options. There are many 

options and approaches. This makes it very difficult for researchers to understand the 

various approaches and identify their advantages and challenges. Second, this review 

can provide a good foundation and theoretical background on my work on modelling 

diffusion processes and empirically assess the phenomenon.  

In the following sections, I aim to contribute an overview of the most prominent 

approaches related to the studies of the diffusion phenomenon. I present a framework 

and research overview for this area. I believe my framework can assist researchers 
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and practitioners to understand the challenges in studying information diffusion over 

social networks and identify suitable solutions to address those challenges.  

2.2.1 Modelling Diffusion Processes 

Kleinberg (2008) argues that while the outcomes of the diffusion processes are easily 

visible, their inner workings have remained elusive. According to Cha, Mislove and 

Gummadi(2009)neither the characteristics of the information diffusion nor the 

mechanisms by which information is exchanged are well understood. Models of 

diffusion process aim to provide a clear picture of how such dynamic process 

unfolds by defining the way information flows between individuals. From Bass 

model (Mahajan, Muller and Bass 1990)describing the new product diffusion to 

epidemic models modelling the spread of infectious diseases over large population, 

many attempts have been made to model such dynamic process from diverse areas.  

I consider a collection of probabilistic and game-theoretic diffusion models. I 

categorize three major challenges faced when modelling the diffusion phenomenon: 

modelling the dynamic adoption process, the factors affect adopting decisions and 

the diffusion of competing technologies, as illustrated in Table 3. I then summarize 

common approaches to address these challenges: the adoption process can be 

described explicitly representing the step-by-step dynamics of adoption, as a 

coordination game or a markov process. Besides social influence, there are some 

other factors such as the intrinsic tendency to adopt might also affect people’s 

adopting decision. In real world scenario, it’s common that several competing 

technologies diffuse in the system at the same time. In the following sections, I 

address each challenges and approaches in detail.  

Table 3: Diffusion modelling challenges and approaches. 
Challenge Modelling Approaches 

The dynamics of 
adoption process 

Explicitly 
represent step-
by-step 
dynamics of 
adoption 

Game-
theoretic 
approaches 

Markov 
process 

Modelling social 
influence  

Threshold-rule Infection 
rate  

Individual 
heterogeneity 
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Modelling diffusion 
of competing 
technologies 

Coordination game Consider only one 
technology diffuse 

2.2.1.1 The Dynamics of Adoption Process 

One of the most common approaches of modelling the adoption process is to 

explicitly represent the step-by-step dynamics of adoption (Kempe, Kleinberg and 

Tardos 2003). Typically, it assumes the dynamic process unfolds in discrete time 

unit with each individual following certain rule when making adopting decision. An 

individual who has adopted the behaviour is called being active and inactive 

otherwise. A set of individuals are chosen to be initial active set which corresponds 

to the early adopters of the behaviour. Starting with the initial active set the process 

then unfolds as follows: at each time step, individuals who were active at previous 

time step remain active; an individual will be activated according to certain rules 

such as a threshold number of his neighbours have been activated. The dynamic 

process continues until no more activation is possible.Below I use Figure 

4toillustrate this approach. 

 
Figure 4: Explicitly represent the step-by-step dynamics of adoption process. 

In the economics literature, diffusion models have been studied from a game-

theoretic perspective (McPherson, Smith-Lovin and Cook 2001). This approach 

builds on work investigating how a new technology A might be spread through a 

social network of individuals who are currently users of technology of B. The 

diffusion process is modelled as the dynamic of a coordination game played on the 

social network, in which the adoption of a common strategy between players has a 

higher payoff. In particular, in every time step, each player in a social network has 

two available choices A and B. Each player receives a positive payoff for each of his 
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neighbours that has the same choice as he does, in addition to an intrinsic benefit that 

he derives from his choice (Gruhl, et al. 2004). 

Beyond above approaches explicitly modelling the evolution of the actions over 

time, an alternative is to consider the diffusion process as a Markov process. Song et 

al. (2007) proposed a rate-based information flow model based on Continuous-Time 

Markov Chain. Each state in the Markov chain corresponds to one particular system 

configuration of all individuals. Each individual can be in one of two states (active or 

inactive), the weight is represented as the transition probability, and the delay is 

represented as the staying time in each state. 

2.2.1.2 Modelling Social Influence 

An underlying premise many diffusion models build on is that people are influenced 

by their neighbours in the social network when making adopting decision. Social 

influence determines to a large extent what we adopt and when we adopt it. One 

simple way to capture this effect is to assign each individual in the network a 

threshold value(Granovetter 1978, Kempe, Kleinberg and Tardos 2003). An 

individual becomes active if a certain pre-specified number or fractions of his 

neighbours are active. The threshold value indicates the personal tendency of an 

individual to adopt the behaviour when his neighbours do. In addition to the number 

of adopted friends, how those friends are connected to one another could also have 

an impact on individual’s propensity of adopting. It is argued that if two actors 

related to the same individual are also related to each other, they have greater power 

over that individual than if they were unrelated(Burt 2005). A primitive approach to 

incorporate this idea is to postulate the adoption likelihood of individual increases as 

a function of the density of relationships among their adopted neighbours(Katona, 

Zubcsek and Sarvary 2009). 

Another way to encode neighbour influence is by using infection rate, inspired by the 

epidemic models. In the Independent Cascade Model (Kempe, Kleinberg and Tardos 

2003, Goldenberg, Libai and Muller 2001)every time an individual contacts with an 

active neighbour, he has a constant chance of getting activated. Obviously, a 

constant infection rate seems not accurate enough. Kempe, Kleinberg and 

Tardos(2005)refined the Independent Cascade Model to interpret the idea that an 
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individual's receptiveness to influence depends on the past history of interactions 

with his neighbours. Contrary to a constant rate, an individual's probability of being 

activated is a function of the set of neighbours have already tried and failed to 

influence him. This modification is generally consistent with Leskovec, Adamic and 

Huberman’s finding(Leskovec, Adamic and Huberman 2007)that the probability of 

infection decreases with repeated interaction when analyzing the patterns of 

influence in a recommendation network. 

It is commonly accepted that social influence affects adopting decision. However, it 

is not the only factors that drive information diffusion. Van den Bulte and 

Stremersch(2004)argue that S-shaped diffusion curves can also result from 

heterogeneity in the intrinsic tendency to adopt. In the context of new product 

diffusion, individuals are different with respect to subject matter expertise, strength 

of opinion, personality traits, media exposure or perceived adopting costs. Efforts 

have been made to capture this effect. For instance, Katona, Zubcsek and 

Sarvary(2009)model the adoption decision of individuals as a binary choice affected 

by three factors: the local network structure formed by already adopted neighbours, 

the average characteristics of adopted neighbours, and the characteristics of the 

potential adopters. Hartline, Mirrokni and Sundararajan(2008)model a buyer’s 

decision to buy an item is influenced by the set of other buyers that own the item and 

the price at which the item is offered. 

Meanwhile, there is a debate in the literatures as to what role influential individuals 

actually play in social cascades. Duncan Watts have performed a number of 

interesting experiments which suggest that the role of influential is overstated (Watts 

and Dodds, 2007).  

2.2.1.3 Modelling Diffusion of Competing Technologies 

Most models discussed above typically focus on the diffusion of one behaviour or 

technology. What is often ignored is that several different behaviours may coexist in 

a system at the same time and possibly compete with each other. Some may have a 

better chance to survive and spread than others. In fact, this scenario frequently 

arises in the real world. According to (Carnes, et al. 2007)in consumer market, 

producers of consumer technologies often must introduce a new product into a 
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market where a competitor will offer a comparable product, which makes them vie 

for sales with competing word-of-mouth cascades. Thus it is important to examine 

the diffusion of competing technologies in social networks.  

As mentioned earlier, such phenomena can be modelled as a coordination game 

played on the edges of the social network with multiple equilibria. An influential 

paper by Morris (2000)provided a set of elegant game-theoretic characterizations for 

when these qualitatively different types of equilibria arise in terms of the underlying 

network topology and the quality of technology A relative to technology B. In recent 

work, Immorlica et al. (2007)incorporates compatibility between technologies and 

discuss how this effects the diffusion. Their results show that in some cases, for one 

technology to survive the introduction of another, the cost of adopting both 

technologies must be balanced with a narrow, intermediate range. Another work by 

Carnes et al. (2007)assumes that consumers will use only one of the two products. 

They propose two models for the spread of influence of competing technologies and 

consider the influence maximization problem from the follower’s perspective.  

2.2.2Empirical Diffusion Studies 

Several recent studies have empirically measured the dynamics of information 

diffusion through large-scale social networks such as blogspace(Gruhl, et al. 2004), 

person-to-person recommendation network (Leskovec, Adamic and Huberman 

2007)and mobile phone network (Onnela, et al. 2007). These studies have offered 

some deep insights and fundamentally advanced our knowledge of how information 

diffuses in social networks. On the other hand, contagion and cascading behaviour 

have been employed in proposals for social computing applications such as word-of-

mouth recommendation systems. In this section, I provide an overview of recent 

research examining the diffusion phenomenon empirically.  

Most of the recent empirical studies on information diffusion focus on addressing the 

following fundamental questions: 

• What are the characteristics of social influence? 

• What are the patterns of information cascade? 

• How does network structure affect diffusion process? 
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2.2.2.1Characteristics of Social Influence 

If we view the diffusion process as a cascade of social influence, a natural starting 

point is to understand the local mechanism of the influence. Social influence can be 

described as the actions of an individual can induce his or her friends to behave in a 

similar way. A number of recent diffusion studies (Leskovec, Adamic and Huberman 

2007, Backstrom, et al. 2006, Christakis and Fowler 2007, Anagnostopoulos, Kumar 

and Mahdian 2008, Crandall, et al. 2008)have measured to what extent social 

influence affects adopting decision empirically. 

Backstrom et al. (2006)investigated the membership problem in online communities 

and measured how propensity of individuals to join a community depends on friends 

already within the community. Specifically, they measured the joining probability as 

a function of the number of friends already in the community. As shown in Figure 5, 

the adoption curve exhibits a diminishing returns pattern in which it continues 

increasing, but more and more slowly, even for large numbers of friends. In addition, 

they examined the dependence of joining tendency on more subtle features such as 

how these friends are connected and found that joining probability increases as the 

density of linkage increases among the individual’s friends in the community. 

 
Figure 5: Probability of joining a 

community when k friends are 
already members. 

 
Figure 6: Probability of buying DVD 

with incoming recommendations 

This kind of diminishing returns pattern has also been observed in many other 

studies. For example, Christakis and Fowler (2007)studied the spread of obesity in 

large social network over 32 years and found out that people were most likely to 

become obese when friends became obese. Leskovec et al. (2007)also found that the 

probability of purchasing a product increases with the number of recommendations 
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received, but quickly saturates to a constant and relatively low probability, as shown 

in Figure 6. However, Kleinberg (2007)argued that the dependence of adopting 

probability on the number of friends adopted expressed in this way reflects an 

aggregate property of the full population, and does not imply anything about an 

particular individual’s response to their friends’ behaviour. One is observing social 

activity in aggregate and doesn’t necessarily know what any one particular 

individual or social connection signifies (Kleinberg 2008). 

Anagnostopoulos et al. (2008)argues that while these studies have established the 

existence of correlation between user actions and social affiliations, they do not 

address the source of the correlation. There are factors such as 

homophily(McPherson, Smith-Lovin and Cook 2001)or unobserved confounding 

variables that can induce statistical correlation between the actions of friends in a 

social network. Homophily is the tendency for people to choose relationships with 

people who are similar to them, and hence perform similar actions. Distinguishing 

social influence or interpersonal induction from homophily requires dynamic, 

longitudinal network information such as the emergence of ties between individuals 

(Christakis and Fowler 2007). Recently, Anagnostopoulos et al. (2008)proposed a 

statistical test to distinguish social influence from correlation using time series data 

of user actions. Crandall et al. (2008)developed techniques for identifying and 

modelling the interactions between social influence and social selection process and 

found an elaborate interplay between the two factors. 

2.2.2.2Patterns of Information Cascade 

Although above studies have shed light on the mechanisms of social influence, the 

overall patterns by which the influence spreads through social networks have been a 

mystery. Several recent studies have been conducted to illustrate the existence of 

cascade and observe patterns of cascading behaviour. In particular, Leskovec et al. 

(2007)consider information cascades in a recommendation network. According to 

their observation, the distribution of cascade sizes can be approximated by a heavy-

tailed distribution. Generally cascades are shallow but occasional large bursts also 

occur. Another recent study on cascading behaviour in large blog network 

(Leskovec, et al. 2007)found that blog posts do not have a bursty behaviour; they 

only have a weekly periodicity. 
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Liben-Nowell and Kleinberg (2008)traced the information cascade process on a 

global scale by using methods to reconstruct the propagation of massively circulated 

Internet chain letters. Contrary to predictions that large-scale information spreads 

widely and reaches many people in very few steps, their results show that the 

progress of these chain letters proceeds in a narrow but very deep tree-like pattern, 

continuing for several hundred steps. 

2.2.2.3Role of Network Structure 

Researchers have long emphasized the important role played by the network 

structure in determining properties of information diffusion. However, the way such 

dynamic process is affected by network structure is still poorly understood.  How 

widely does information spread? Does it spread only in local region? Does it spread 

quickly on a dense network? Several studies on real-world network data have been 

conducted to address questions like these. 

Typically strength of the influence one individual exerts on another is represented by 

the strength or weight of the tie connecting them. Tie strength varies from strong to 

weak depending on the number and types of resources they exchange, the frequency 

of exchanges, and the intimacy of the exchanges between them. In the case of a 

telecom call network, tie strength can be defined by the aggregated duration or 

frequency of calls exchanged between two individuals over observing period. Strong 

ties bear greater influence on the receiver’s behaviour than weaker ties due to the 

frequency and perceived importance of social contact among strong-tie individuals. 

Granovetter’sweak ties hypothesis (Granovetter 1973)states that weak ties typically 

act as connectors between different communities or circles of friendship. Using 

mobile call records, Onnela et al. (2007)have observed a coupling between 

interaction strengths and the network’s local structure, confirming the weak tie 

hypothesis. Specifically, they found that weak ties appear to be crucial for 

maintaining the network’s structural integrity, but strong ties play an important role 

in maintaining local communities. In addition, they investigated how the dynamics 

of different tie strengths influence the spread of information in the network. They 

show that the coupling between tie strength and network structure significantly slows 

the diffusion process, resulting in dynamic trapping of information in communities 
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and find that both weak and strong ties have a relatively insignificant role as conduits 

for information. 

2.2.3 Diffusion Application 

Understanding how information diffuses on a large scale may have applications in a 

variety of areas. One example is viral marketing. Consider the following scenario: A 

company tries to use word-of-mouth effects to market a product with limited budget. 

How should they choose the set of customers to target? Influence maximization 

(Kempe, Kleinberg and Tardos, 2003) is the problem of identifying influential set of 

nodes in a network that can trigger the largest cascade. This problem was first 

introduced by Domingos and Richardson and has been studied extensively from a 

theoretical perspective. Kempe et al. (2003) has proven this problem is NP-hard and 

provided a simple approximate solution with provable performance guarantees. 

Hartline et al. (2008) focus on the algorithmic question of finding revenue 

maximizing marketing strategies. They identify a family of influence-and-exploit 

strategies that are easy to implement and approximately optimal.  

2.3Social Network Analysis Tools 

Along with the increased relevance of social network analysis and the growing size 

of considered networks, adequate software for social network analysis is becoming 

more and more important. Social network analysis tools are used to identify, 

represent, visualize or simulate nodes (e.g. agents, organizations, or knowledge) and 

edges (relationships) from various types of input data (relational and non-relational), 

including mathematical models of social networks. Network analysis tools allow 

users to investigate representations of networks of different size - from small (e.g. 

families, project teams) to very large (e.g. the Internet, disease transmission). These 

tools often feature an impressive number of analysis techniques that users can 

perform on networks. More specifically, they can help users to answer questions 

like: what patterns are created by the aggregate of interactions in a network? How 

are the actors connected to one another? What social roles exist and who plays 

critical roles like connector, broker and etc.? How do network structure correlate 

with the contributions people make within the social network? 
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Visual representations of social networks are important to understand network data 

and convey the result of the analysis. Visualization is often used as an additional or 

standalone data analysis method. For example, algorithmically generated layouts 

have useful spatial properties: a force-directed layout can be quite effective for 

spatially grouping connected communities, while a radial layout intuitively portrays 

network distances from a central actor. Color, size, and shape have been used to 

encode both topological and non-topological properties such as centrality, 

categorization, and gender. With respect to visualization, network analysis tools are 

used to change the layout, colors, size and other properties of the network 

representation. 

Over the years there are dozens of software tools designed to help analysts 

understand social networks.For example, Pajek is a network analysis and visualize 

program, specifically designed to handle large data sets. GUESS is a novel graph 

exploration system that combines an interpreted language with a graphical front 

end(Adar2006). JUNG is a Java toolkit that provides users with a framework to build 

their own social network analysis tools(O’Madadhain, et al. 2005). A systematic 

overview and comparison of a selection of software packages fro social network 

analysis was provided by Huisman and Van Duijin(2005). A large list of software 

packages and libraries can be found under Computer Programs for Social Network 

Analysis, maintained by the International Network for Social Network Analysis 

(INSNA). According to an overview of common social network analysis software 

platforms, SNA tools can be divided into the following broad categories as shown in 

Table 4: 

Table 4: Summary of social network analysis tool types. 
Type Description 

Advanced/Academic social network 
analysis tools 

Often used in academic settings and intended 
for the most sophisticated types of social 
network analysis 

Often built for performance as opposed to 
usability 

User guides and help files are not 
comprehensive or are written for more 
sophisticated audiences 

Example: Pajek, UCINET, GUESS. 
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Accessible but advanced social 
network analysis tools  

Used in more general settings, including 
corporate environments 

Built with the user in mind and tend to be 
more intuitive and easier to use than tools for 
primarily academic applications 

Software help files are more comprehensive 
and user guides are written for a general user 
audience 

Example: NetMiner, Visone 
Simple, easy to use social network 
analysis tools 

Can be used by users less familiar with social 
network analysis 

Tools are built without complex functionality 
and are very easy to navigate and use 

Help files are simple and clear 

Example: Smart Network Analyzer 
Online Tools that enable 
visualization of pre-existing user 
generated data 

Used to analyze existing data made available 
by users 

Often simple to use with intuitive 
functionality 

Example: Xigi 

2.4 Network Visualization 

Network visualization is the process of creating a useful visual representation of a 

social network. Visual representations of social networks are important to understand 

network data and convey the result of the analysis. Good visualization may reveal 

the hidden structure of the networks and amplifies human understanding, thus 

leading to new insights and new findings. Social network research has made 

extensive use of visualization since Moreno first introduced the sociogram(Freeman 

2000, Brandes, Raab and Wagner 2001). Actors are usually represented as points, 

and relations among actors are represented by lines, with relational direction 

indicated by arrows. Network visualization deals with all aspects of representing 

relational structures and spans a diverse field ranging from matrix-like 

representations to figurative drawings of nodes connected by lines. Successful 
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visualization enables users to gain meaningful high-level information from an 

overview as well as to ascertain the details of each node and link. 

2.4.1 Graph Layout Algorithm 

Nodes in a graph can be drawn anywhere in a simple visualization, including on top 

of one another. The basic graph drawing problem can be put simply: given a set of 

nodes with a set of edges, calculate the position of the nodes and the curve to be 

drawn for each edge (Herman and Marshall 2000). Graph layout try to position the 

nodes of that graph using a layout algorithm that attempts to fulfil certain aesthetic 

requirements; then add and remove control points of edges in the graph using a 

layout algorithm that attempts to fulfil certain aesthetic requirements. Exact what 

these aesthetic criteria are depend upon individual application or layouts 

requirements. Generally, these might involve spreading out vertices evenly without 

them overlapping each other, avoiding edges overlapping vertices and crossing other 

edges, clustering connected vertex neighbours and ordering vertices to reflect overall 

graph direction. 

According to Shneiderman and Airs (2006), the literature on graph layout has been 

dominated by force-directed strategies because they produce elegant spreading of 

nodes and reasonable visibility of links. A second common layout strategy, which 

generates familiar and comprehensible layouts, visualizes nodes on a geographical 

map. Another common strategy uses a circular layout for nodes that produces an 

elegant presentation with crisscrossing lines through the centre of the circle. In the 

development of my tool I have selectively implemented some of the graph layout 

algorithms that are most common in practice. In the following section, I first 

examine the criteria of good layout then I introduce each of the graph layout 

algorithms in detail.  

2.4.1.1 Criteria of Good Layout 

Network visualization can be an important tool over and beyond the mere illustration 

of data, and that not every network visualization is equally effective in doing so 

(Brandes, Kenis and Raab 2006). According to Tufte’s principles of graphical 

excellence (Tufte and Howard 1983) that good graphics is the well-designed 
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presentation of interesting data – a matter of substance, of statistics, and of design. 

Regarding to graph visualization, Brandes et al. (1999) argued that in order to 

produce effective visualizations one has to clearly identify the relevant information, 

that is, filter, transform, and process the collection of actors, links, and attributes to 

identify the interesting substance, define and appropriate mapping to a graphical 

representation, and generate the image accordingly without introducing artifacts. 

More specifically, they have defined three aspects which should be carefully 

considered when creating visualizations: 

• The substance the viewer is interested in. 

• The design which maps the data to graphical features. 

• The algorithm employed to realize the design. 

Graph drawing aesthetics are used to pinpoint the criteria that make a graph easier to 

perceive. In fact, even with small graphs, a bad layout can make a graph difficult to 

comprehend. While it is difficult to interpret the graph with a random layout in 

Figure 7, it becomes considerably easier to perceive the structure when its layout is 

improved as in Figure 8. 

 

Figure 7: A graph with random layout. 

 

Figure 8: A graph with circular layout. 

Graph layout algorithms typically take into account one or more aesthetic criteria, 

with the assumption that by doing so, the readability of the drawing is increased. The 

success of these algorithms is typically measured by their computational efficiency 

and the extent to which they conform to aesthetic criteria (Purchase, Carrington and 

Allder 2002). Some of the frequently used aesthetic criteria include, for example, 

minimising the number of edge crossings, maximising the depiction of symmetry, 
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and maximising the minimum angle between adjacent edges leaving a node 

(Purchase 2002). 

2.4.1.2 Circular Layout 

Circular layouts are among the most prominent and oldest conventions used to draw 

graphs. In such layouts, all nodes are drawn on the perimeter of a circle, while the 

edges connecting these nodes are line segments passing within the circle (Gansner 

and Koren 2006). Circular layouts are a very popular representation of social 

networks because the uniform placement induces no implicit hierarchy between the 

nodes, edges and nodes are clearly separated and do not cover each over, and last but 

not least they are easy to understand. It helps point out on the first sight which nodes 

are connected to many other nodes (graph density), and helps you find out in an 

intuitive way the critical nodes of your graph. In particular, a circular layout is 

appropriate for applications that emphasize the clustering decomposition of a graph, 

where each cluster is drawn on a separate circle (Gansner and Koren 2006). Note 

that a circular layout is also the base for the radial and group visualizations and, with 

extensions, for the multi-circular visualization. 

In general, circular layout is a very simple layout algorithm which gives a good 

overview of the number of nodes and edges in a network. It can provide a compact 

presentation, focusing on individual nodes and edges. On the other hand, this strong 

regularity can obscure other information. For example, these drawings can be very 

dense, and following paths on them can be difficult. Circular layouts are a rather 

restrictive layout scheme, offering a simple and highly regularized picture of the 

graph where nodes cannot be occluded. The limiting nature of circular layouts makes 

it very important to capitalize on all available degrees of freedom (Gansner and 

Koren 2006). It is not useful for visualizing large networks and it does not give us 

any idea about the structure of the network. Typically it is used to visualize small 

and medium networks. 

The algorithm is trivial and takes as input the number of nodes and the graph center 

position. It computes the adequate radius of the circle centred at the old graph center, 

nodes will be laid at its circumference. Once the radius is calculated, the algorithm 
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places the nodes according to an assigned angle (360/number of nodes) and the circle 

radius. 

2.4.1.3 Geographic Layout 

As I stated previously, another common layout strategy, which generates familiar 

and comprehensible layouts, visualizes nodes on a geographical map. In some 

network, the spatial information about the nodes may be available. Hence, the 

network may have a natural spatial layout as does a geographical trade-flow 

network, or may be abstract as in a personal communications network (Becker, Eick 

and Wilks 1995). Geographic maps are the most intuitive way to describe and 

explain the spatial organization of a phenomenon that involves geographically 

referenced data, that is to say data which has locational references within its 

structure. 

2.4.1.4 Force-directed Algorithms 

Among various graph drawing techniques reported in the literature, the force-

directed approaches have received much attention and have become very popular for 

drawing general undirected graphs. Force-directed approaches use a physical 

analogy to model the graph drawing problem, namely a system of forces acting on 

the nodes (Tunkelang 1999). It views the graph as a virtual physical system, where 

the nodes of the graph are bodies of the system. These bodies have forces acting on 

or between them. Often the forces are physics-based, and therefore have a natural 

analogy, such as magnetic repulsion or gravitational attraction (Quigley 2003). The 

most straightforward force-directed algorithm uses attractive forces between adjacent 

nodes and repulsive forces between all other pair of nodes (Tamassia 2006). 

Regardless of the exact nature of the forces in the virtual physical system, force 

directed algorithms aim to compute a locally minimum energy layout of the nodes 

(Quigley 2003). This is usually achieved by computing the forces on each node and 

iterating the system in discrete time steps. By using certain law of physics, forces 

around each node is computed and then equilibrium state is sought. New values for 

the node position are computed and the whole net of nodes is rearranged. An energy 

model is associated with the graph layouts. Low energy states correspond to nice 
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layouts. Hence, the drawing algorithm is an iterative optimization process – energy 

minimization. A force directed graph drawing system consists of: 

• Model: a force system calculating force based on the vertices and edges. 

• Algorithm: a method for finding the equilibrium state of the force system, i.e. 

where the total force on each vertex is 0. 

 
Figure 9: A graph drawing through a number of iterations of a force directed 

algorithm. 

The trick is to find a force system that is both quick to calculate and forms a good 

graph layout. Here in Figure 9 is an example illustrates the step by step iteration of 

force directed algorithm, where the edges can be modelled as gravitational attraction 

and all nodes have electrical repulsion between them (Quigley 2003).  

Force-directed algorithms are often used in graph drawing due to their flexibility, 

ease of implementation, and the aesthetically pleasant drawings they produce 

(Quigley 2003). Graphs drawn with these algorithms tend to be aesthetically 

pleasing, exhibit symmetries and tend to produce crossing-free layouts for planar 

graphs (Tamassia 2006). Additionally, they are very intuitive because of their 

relation to the real physical world. Furthermore, it is comparably easy to incorporate 

custom constraints into these models, e.g., to consider not only “points and lines” but 

also the area of the elements or varying preferred distances between different pairs of 

vertices. 

However, classical force directed algorithms are unable to handle larger graphs due 

the inherent N squared cost at each time step, where N is the number of bodies in the 

system (Quigley 2003). This is a common problem and has prohibited the practical 

use of force directed algorithms for even moderately sized graphs of a few hundred 
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nodes. The utility of the basic force-directed approach is limited to small graphs and 

results are poor for graphs with more than a few hundred nodes. There are multiple 

reasons which traditional force-directed algorithms do not perform well for large 

graphs. One of the obstacles to the scalability of these approaches is the fact that the 

physical model typically has many local minima (Tamassia 2006). Even with the 

help of sophisticated mechanisms for avoiding local minima the basic force-directed 

algorithms are not able to consistently produce good layouts for large graphs. 

Besides, typically force directed algorithms produce a different final layout each 

time the algorithm is invoked, which is disorienting. Furthermore, when they are 

applied to graphs with labelled nodes, the resulting layouts suffer from severe node 

occlusions. 

Generally speaking, force-directed layouts are particularly suited for sparse graphs 

with few shortcuts only, i.e., only some edges connect very different regions of the 

graph. Resulting layouts often expose the inherent symmetric and clustered structure 

of a graph, and feature a well-balance distribution of vertices and few edge 

crossings. Contrarily, in dense graphs or graphs of low diameter, vertices tend to 

cluster in the central area of the drawing. 

2.4.1.5 Fruchterman-Reingold Layout 

The earliest heuristics of force-directed placement were based on the spring 

embedder model (Eades 1984). Nodes are considered as mutually repulsive charges 

and edges as springs that attract connected nodes. The spring embedding algorithm 

assigns force between each pair of nodes. When two nodes are too close together, a 

repelling force comes into effect. When two nodes are too far apart, they are subject 

to an attractive force. This scenario can be illustrated by linking the vertices with 

springs—hence the name "spring embedding." 

The spring system starts with a random initial state, and the vertices move 

accordingly under the spring forces. It iteratively improves an initial random layout 

by moving all vertices simultaneously in proportion to the net force acting on them. 

By iteratively computing the forces on all vertices and updating positions 

accordingly, the system approaches a stable state, in which no local improvement is 

possible. An optimal layout is achieved as the energy of the system is reduced to 
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minimal. One way to minimize the energy function is by iteratively moving each of 

the vertices along the direction of the spring force until an approximate equilibrium 

is reached. Multilevel techniques are used to overcome local minima. The 

equilibrium configuration, where the sum of repulsive forces due to rings and 

attractive forces due to springs is zero, normally results in a good drawing. Below in 

Figure 10 is an example of the spring embedder layout. 

 
Figure 10: An example of the spring embedder layout. 

Despite its simplicity, the spring embedder produces satisfactory output in many 

cases. To even out some shortcomings of the method, several refinements have been 

developed. These refinements mainly aim at faster computation, but sometimes also 

at improved quality of the layout. Fruchterman and Reingold(1991) subsequently 

presented an effective modification of the model. A number of heuristics is used by 

Fruchterman and Reingold to speed up many aspects of layout computation. Firstly, 

the forces are modified to allow faster evaluation. A second heuristic to speed up 

computation does not change the objective function, but the precision of evaluation. 

Their algorithm ignores the repulsive forces between vertices far away from each 

other and introduces a cooling parameter which increasingly limits vertex movement 

in later iterations. Additionally, the maximum displacement of each node in an 

iteration is limited by a constant that is slightly decreased with each iteration. These 

modifications introduce a trade-off between quality and computation time: the 
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algorithm converges faster to a stable state but this state is typically not a local 

optimum. 

The Fruchterman-Reingold Algorithm (Fruchterman and Reingold 1991) is useful 

for visualizing very large undirected networks. It guarantees that topologically near 

nodes are placed in the same vicinity, and far nodes are placed far from each other. 

Using a global temperature creates an overall satisfying layout; however there will 

be deficiencies in some local areas of the graph. This can be improved by using the 

"adaptive temperature scheme" based on local temperatures. 

2.4.1.6 Kamada-Kawai Layout 

Another very popular algorithm fall into the category of force-directed is Kamada-

Kawai (KK) layout (Kamada and Kawai 1989). It is also based on the idea of 

balanced spring system and energy minimization. However, different to FR-layout, 

KK-layout attempts to utilize the derivatives of the force equations to achieve faster 

convergence. Unlike the original spring embedder algorithm, which does not 

explicitly incorporate Hooke’s law, Kamada and Kawai’s algorithm moves vertices 

into new positions one at a time, so that the total energy of the system is reduced 

with the new configuration. It also introduces the concept of a desirable distance 

between vertices in the drawing: the distance between two vertices is proportional to 

the length of the shortest path between them. Kamada and Kawai avoid a second 

potential for repulsion by using springs of different length and strength between 

every pair of vertices. Their specific choice of springs is governed by the assumption 

that the ideal distance between two vertices is the length of a shortest path between 

them, multiplied by the ideal length of a single edge. 

Finding a global minimum is difficult in a large search space. The strategy used in 

Kamada and Kawai’s algorithm is to find a local minimum first. Nodes are moved 

into new positions if the movement leads to the fastest reduction of the total energy. 

The procedure is repeated until it converges – when the maximum improvement is 

less than a small fixed threshold. Instead of moving all vertices in the direction 

indicated by the force acting on them, their optimization reduces the inherent 

potential energy of the model by changing one vertex at a time. 
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The Kamada-Kawai algorithm achieves faster convergence and can be used to layout 

networks of all sizes. However, to obtain an aesthetically pleasing layout it 

sometimes becomes necessary to use the Fruchterman-Reingold algorithm after the 

Kamada-Kawai generates an approximate layout. 

2.4.1.7 Inverted Self Organising Map Layout 

A major drawback of the force-directed approach is the complexity of calculating the 

forces between all pairs of nodes. An alternative approach is the Inverted Self-

Organising Map (ISOM) by Meyer (1998). Although not strictly a force-directed 

layout, the ISOM layout uses the idea of filling the space evenly with nodes and of 

causing connected nodes to attract each other. A form of competitive learning is used 

to update node positions by using a random input vector or stimulus. The position of 

the closest node to the stimulus is updated, along with its topological neighbours. By 

using a restricted update neighbourhood, only a constant number of nodes are 

updated at each iteration(Chan, et al. 2003). Although it is difficult to bound the 

required number of iterations, necessary for complexity analysis, this algorithm has 

been experimentally verified to have nearly linear time complexity (Meyer1998, Au, 

et al. 2004). 

The advantages of the ISOM layout method, which has an extremely simple 

implementation, are its adaptability to different types, shapes, or dimensions of 

layout areas and event to different metric spaces. On top of this it consumes only 

little computational resources which render it comparatively fast. Even though ISOM 

is impressively fast, it often yields poor layout results when used on its own. The 

resulting visual appearance for complex graphs is often not as symmetric as the 

results from Kamada-Kawai. The primary difficulty lies in the fact that it does not 

explicitly optimize the node overlap aesthetic, resulting in an unreadable layout for 

some graphs, particularly larger ones. 

2.4.1.8 Tree Layout 

Force-Directed Layouts can be a good choice when you're drawing general graphs 

and you don't have domain specific or any other topological information about them. 

Tree layouts however are a special case of graphs: this means that tree layouts have 
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more constraints and therefore there's more contextual information for drawing a tree 

than for drawing a general graph. Typically tree layout arranges the nodes, starting 

from a specified node(s), into a tree-like structure. Trees can be layed out nicely in a 

plane in polynomial time. The performance of the tree layout is proportional to 

number of nodes in the layout. They are easy to understand and nicely support 

abstraction and aggregation. Also, trees are easier to grasp for the human eye than 

"general graphs". There's that intrinsic notion of hierarchy that can be used to draw 

aesthetically pleasing graph layouts. 

Consequently, additional aesthetics rules have also been formulated for them. For 

example, nodes with equal depth should be placed on a same horizontal line; 

distance between sibling nodes is usually fixed, etc. The Reingold and Tilford 

algorithm (Reingold and Tilford 1981) for trees is a good example of a layout 

algorithm achieving these aesthetics goals. Isomorphic subtrees are laid out in 

exactly the same way, and distance between nodes is a parameter of the algorithm. 

On the other hand, the more straightforward and naïve algorithm for displaying a 

tree, consisting of distributing the available horizontal space to subtrees according to 

their number of leaves, actually fails to achieve some of the aesthetic rules listed 

above. Here is in Figure 11 is an example of the radial tree layout:  

 
Figure 11: An example of the tree layout 

In the implementation, this layout takes as input a Tree Graph to compute on internal 

structure. By combining this internal structure to a Walker algorithm, the algorithm 

places the graph nodes in hierarchically arranged layers where each parent node is 

centred on its sub-tree according to the hierarchical flow direction. 
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Chapter 3 

Modelling Diffusion Processes in Social Networks 

In this chapter, I present my work of approximating the diffusion processes in social 

networks. In section 3.1, I introduce the motivations of my work – why try to come 

up with anew method of describing the diffusion processes. After that, I describe my 

proposed method of approximating the diffusion processes in section 3.2. Ithen 

evaluate the accuracy of my proposed method by conducting experiments over real 

network data in section 3.3. In section 3.4, I investigate the influence measurement 

and ranking problem based on my proposed method. Finally,I discuss my work and 

give a conclusion in section 3.5.  

3.1 Motivations 

Recall in section 2.2.1, I have categorized the three major challenges of modelling 

diffusion processes. One of them is how to capture social influence. In the diffusion 

processes, social influence determines to a large extent what we adopt and when we 

adopt it. Common approaches to address this problem include using a constant 

infection rate to encode neighbours’influence. As in the Independent Cascade Model 

(ICM) every time an individual contacts with an active neighbour, he has a constant 

rate of getting activated (Goldenberg, Libai and Muller 2001). However, many 

recent empirical studies (Leskovec, Adamic and Huberman 2007)have found that an 

individual’s receptiveness to influence depends on past history of interactions with 

his neighbours as Ihave presented in section 2.2.2. Hence it is necessary to 

incorporate these empirical findings and propose adapted modelling frameworks. 

On the other hand, as I have mentioned earlier, diffusion processes tend to start with 

a few early adopters of the behaviour and these early adopters may influence their 

friends, who may in turn influence their own friends and possibly lead to a cascade 

of influences (Kleinberg 2007). A natural question to ask is how many people will 

adopt the behaviour in the end. Formally, it is the problem of predicting the number 

of nodes reached by an initial target set (the early adopters of the behaviour) in the 
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diffusion processes. It is an open question to compute this quantity exactly by an 

efficient method.Typical method is to simulate the random diffusion process 

thousands of times to reach equilibriumand then average the result (Kempe, 

Kleinberg and Tardos 2003). However, according to Estevez, Vera and Saito this 

approach has a heavy computation load for large-scale network, which make it, may 

not be applicable in real world settings(Estevez, Vera and Saito 2007). Here I try to 

provide an alternative way of estimating the number of nodes reached by an initial 

target set in the end of the diffusion process.  

3.2 Proposed Method 

In this section, I describe mymethod of modelling the diffusion processes. It is 

argued that the process of new behaviours diffuse through social networks is very 

similar to the transmission of infected diseases (Leskovec, Adamic and Huberman 

2007). Indeed, in the literature, it is common to describe the adoption process by 

using an infected disease spread analogy. HereI capture the diffusion process based 

on a non-linear dynamical system (NLDS) that accurately models virus propagations 

in epidemiology (Chakrabarti, et al. 2008).  

Specifically in my method, given the initial active set and certain parameters we 

numerically calculate each node’s probability to get activated. Following up to the 

Independent Cascade Model, we call nodes that adopt a behaviour is being active 

and inactive otherwise. Like many of the models I have discussed previously, there 

is explicit notion of dynamics or time in my model. It can tell us the probability that 

each node is activated at some point during the process and say nothing about the 

particular order in which the activation occur. The calculation of the probability is 

based on probability theory. For instance, the probability of node v  is activated at 

current step is the probability of the event node v  is not activated at previous step 

and v  get infected from its neighbours happens at the same time. The calculation 

proceeds step by step until the increment of the sum of all probabilities is less than 

one, which means the number of nodes reached by the initial active set has been 

obtained. Formally, the method can be described as: 

Input: ),( EVG ; Globe diffusion rate 1p , 2p ; Initial Active Set A . 
Output: )(Aσ - expected influence nodes count of A . 
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Begin 

Start with time step 1=t . 
While ∑ ∑ ≥−+ 1,1, tvtv PP  for all Vv∈ - )(Aσ  keeps increasing.  

For all Vv∈ calculate the probability of v  get activated at current 
time step tvP , . 

Get the sum of all probability values∑ tvP , . 

Go to next time step 1+t . 
End 

Where the social network is represented by a graph ( , )G V E , where V  is the set of 

nodes and E  is the set of edges. Let A  denotes the set of initial active nodes at the 

beginning of the diffusion process, and it corresponds to the early adopters of a 

behaviour. Let ( )Aσ  represent the number of nodes reached by the initial active set 

in the diffusion process. Let the probability that a node v  is activated at time step t

by ,v t
P . Clearly, for all nodes in the initial active set ,0v

P is 1 and ,v t
P is 0 for the time 

step afterwards. For the rest of nodes in the network ,0v
P is equal to 0.Where 1p , 2p  

denotes the globe diffusion rate. 

As one can see from the pseudo code, the central of my method lies in the computing 

of each node’s probability to become active each time step. Let’s start with the 

compute of node v ’s probability to become active at time step t . Considering node v

’s neighbour node w , node v  has no chances of getting infected from node w  is 

either because node w  is inactive at previous time step or node w  is active but 

failed to infect node v  through the link they are connected by with probability 1 θ− , 

where θ be the infection catch rate on a link connected by an infected node. 

Therefore the probability that node v  has no chances of getting infected from w is

, 1 , 1(1 ) (1 )
w t w t

P Pθ
− −

− + − which is , 11 *
w t

Pθ
−

− . It is the probability of the event that 

node w  is active at time step 1t −  and succeeded in infecting node v  through the 

link they are connected by has not happened. Assuming the behaviour that each 

neighbour attempting to infect node v  is independent of each other, hence the 

probability of node v  has a chance of getting infected from any of its neighbours is: 

 , 1
( )

1 (1 * )
w t

w N v

Pθ
−

∈

− −∏  (3.1) 
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Where ( )N v  denotes the set of neighbours of node v .Hence node v becomes active 

at time step t  if node v  is inactive at time step 1t −  and node v has a chance of getting 

infected from its neighbours: 

 , , 1 , 1
( )

(1 )*(1 (1 * ))
v t v t w t

w N v

P P Pθ
− −

∈

= − − −∏  (3.2) 

In epidemiology a susceptible individual can become infective on contact with 

another infective individual, and then heal herself with some probability to become 

susceptible again (Chakrabarti, et al. 2008). Here I only focus on the case where an 

active node can not be switched back to be inactive as this scenario is more common. 

Taking customer churn in business analytics as an example, companies typically 

consider churner customers that come back to the network as new customers. 

Note θ  stands for the probability that a node get infected through a particular link 

with an activated neighbour. It is frequently assumed in epidemic models that 

individuals have equal probability of being infected every time they interact. 

According to Leskovec, Adamic and Hubermanthis may not be right(Leskovec, 

Adamic and Huberman 2007). Through observing the propagation of 

recommendations on a person-to-person recommendation network they found out 

that the probability of activation decreases with repeated interactions. For instance, if 

one of your friends recommended you to buy a product and you did not buy it, the 

next time your friends recommended it makes sense that you are less likely to buy it. 

This observation is somehow consistent with the decreasing cascade model(Kempe, 

Kleinberg and Tardos 2005), in which a node’s propensity for being activated 

changes as a function of which of its neighbours have already attempted (and failed) 

to influence it.  

Inspired by these studies, I attempt to encode the rule that the effectiveness of the 

influence through a particular link changes as the calculation unfolds and it depends 

on the past history of interactions. When a node first tries to influence its neighbour - 

its probability of being activated is not equal to 0 – we start to keep track of the 

number of trial times. Let k denotes the number of trial times. Let the probability 

that node v attempts to infect node w through their link by the first time be 1p , and by 

second and afterwards times be 2p , then 
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1

2
1 2 2,

, 1

(1 )(1 ) 2k

p k

p p p k
θ

−

=
= 

− − ∀ ≥
 (3.3) 

The reason I distinguish the first trial from the rest is motivated by a generalization 

of Independent Cascade Model (de Kerchove, et al. 2009)that considering different 

probabilities for being activated depending on the number of contacts with the 

information. Their results show that first and subsequent trials play different roles in 

the propagation process.  

Given the network structure and specified value of 1p  and 2p  we can calculate the 

probability for each node to get activated at every time step with the specified initial 

activate set. The sum of all probabilities values will keep increasing as the 

calculation proceeds. When the increment is less than one the calculation will 

terminate, as that means the expected activated nodes count has been obtained. 

Meanwhile, when a node’s probability of getting activated is less than the value of 

one divided by size of the network it will be considered as negligible, which means 

we no longer calculate its probability in the following time steps. 

3.3 Experimental Validation 

Having described my proposed method, I will focus on understanding its behaviour 

in practice. As I have mentioned earlier, an important quantity diffusion models need 

to predict is the number of nodes reached by an initial target set. Traditionally this is 

done by simulating the random diffusion process thousands of times to reach 

equilibrium and then average the result (Kempe, Kleinberg and Tardos 2003, 

Estevez, Vera and Saito 2007). In my method, I explicitly calculate this quantity. 

Hence here in order to validate my proposed method, we need to check whether it 

can give a good prediction.  

Specifically, using two coauthorship network data I evaluate the accuracy of 

myproposed method of modelling diffusion processes by comparing its prediction 

performance against diffusion simulations. I examine the time evolution of the 

activated nodes count at both my method and the diffusion simulation. Further, I 

compare the activated nodes count at the end in both cases. Experiments show that 
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my proposed method yields very close results comparing to the diffusion 

simulations.  

3.3.1 The Network Data 

In my experiment, two different size data sets of scientific coauthorship network 

were tested. It has been argued extensively that coauthorship networks capture many 

of the key features of social networks more generally (Kempe, Kleinberg and Tardos 

2003). The first one is a coauthorship network of scientists working on network 

theory and experiment, as compiled by M. Newman in May 2006. It contains 1589 

nodes and 4331 edges. This data set will be referred as NS dataset in my 

experiments. The second one is a weighted coauthorship network between scientists 

posting preprints on the High-Energy Theory E-Print Archive. There are 8361 nodes 

and 15751 edges in the network. It consisted of 581 connected components, and the 

number of nodes in the largest connected component is 5835. It is a scale-free 

network with a power-law degree distribution. This data set will be referred as Hep-

th dataset in my experiments. Both of the networks were obtained from Mark 

Newman’s network data collection (http://www-personal.umich.edu/~mejn/netdata/). 

3.3.2 The experiments 

I measure the diffusion process by examining the time evolution of the 

activatednodes count as the dynamic process unfolds. The diffusion simulation was 

used as a baseline to validate the accuracy of my method in modelling diffusion 

process. More specifically, I keep records of the overall activated nodes count in the 

network at each time step in both cases, then check whether they are close to each 

other approximately. In the calculation case, the overall activated nodes count refers 

to the integer value of the sum of probabilities of all nodes in the network at current 

time step. In the simulation case, at each random process the overall activated nodes 

count at each time step was stored. In Kempe, Kleinberg and Tardos (2003)’s work, 

the random process will reach equilibrium after 10k simulations. My result is 

consistent with that. Experiments indicate that the result of 10k times is comparable 

to 100k times or more. The overall activated nodes count at each step then estimated 

by get a mean value of the 10k simulation results. 
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Meanwhile I make sure the experiments are conducted with the same set of initial 

active nodes on a given network topology. Parameters 1p  and 2p  should be 

specified in advance like in the Independent Cascade Model. The value of 1p  should 

be the same as the universal diffusion rate in Independent Cascade Model, with 

typically value 10%, and the value of 2p  should be smaller than 1p  The simulation 

was conducted using the Independent Cascade Model. In the NS dataset, the 

universal diffusion rate for the ICM simulations is 10%, and the 1p , 2p  value for my 

proposed estimation method is 10% and 7.8%, respectively. In the Hep-th dataset, 

the universal diffusion rate for the ICM simulations is 9%, and the 1p , 2p  value for 

my proposed estimation method is 9% and 8%, respectively. The initial active set A  

was chosen randomly. With different initial active sets, the results were almost the 

same – two curves are similar two each other. Below in Figure 12 and 13shows the 

time evolution of the activated nodes count in both simulation and calculation in the 

two datasets.  

 

Figure 12: The plots show the time 
evolution of activated nodes 
count in the diffusion process 
with both simulation and 
calculation in the NS dataset. 

 

Figure 13: The plots show the time 
evolution of activated nodes 
count in the diffusion process 
with both simulation and 
calculation in the Hep-th dataset. 

As we can see from the figures, in both datasets the two curves exhibit qualitatively 

similar shapes, dominated by a diminishing returns property in which the curve 

continues increasing, but more and more slowly and eventually flattened. As shown, 

my method nicely tracks the simulation results. 
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However, with regard to the computational complexity, the calculation did not 

outperform the simulation as I expected. Though it does not need to run the random 

diffusion process thousands of times, my proposed method still requires a heavy 

computational load. This probably attributes to the calculation of each node’s 

probability to get activated at each time step, as it involves large amount of java 

floating point arithmetic, which can be time consuming.  

3.4 Measuring Influence and Identifying Influencer 

As we stated previously, social network analysis is fast emerging as an important 

discipline for predicting and influence consumer behaviour. Let’s consider the 

scenario when companies want to start a viral marketing campaign, which set of 

customers should they target as trendsetters in the first place? A simple answer is 

influential customers but the question is how we identify those influential customers. 

A fundamental question lies in the applications of social network analysis is to 

establish reasonable influence measures and further pinpoint influential customers. 

Recall in section 2.1, I have introduced various network centrality measures. A 

major problem in social network analysis is to identify the important actors at both 

the individual and group levels of analysis. Who is the most important or central 

actor in this network? There are many answers to this question, depending on what 

we mean by important. For instance,degree is a measure in some sense of the 

popularity of a node. Closeness measures how close a node is to all other nodes in 

the graph. Betweenness is a measure of the extent to which a node lies on the paths 

between others. 

In the customer network scenario, intuitively, high connectivity in the network could 

be a factor as the commonly used centrality based heuristics in the sociology 

literature (Freeman 1979). However, finding the customers that influence the buying 

decisions is not trivial. A customer who is not widely connected may in fact have 

high influence value if one of the neighbours is highly connected (Domingos and 

Richardson 2001). Customers influence does not end with the immediate neighbours. 

Those neighbours may in turn influence their own neighbours and possibly lead to a 

cascade of influence. This is closely related to the diffusion processes in social 
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networks. Clearly, the number of customers reached by that customer in the diffusion 

process could be an important influence indicator. 

In this section, I look into the possibility of measuring nodes’ influence value and 

identify influential nodes in social networks based on my proposed method. I use the 

number of nodes reached by an initial target set in the diffusion process as an 

indicator of the importance or influence of the initial target set. In the last section I 

have demonstrated the accuracy of method in modelling diffusion process. Hence I 

can use the sum of all probability values as an approximate estimation to the number 

of nodes reached in the diffusion process.  

Specifically, the algorithm I used to calculate this quantity can be described as 

follows: The inputs needed are the network structure, proper parameters setting and 

initial target set. Starting with time step 1, calculate each node in the network’s 

probability to get activated at current time step and sum up all the probability values, 

and then go to next time step. Repeat this process until the increment of all 

probability values is less than one. Here I calculate this quantity (For simplicity, I 

refer to it as influence value) for each node in the NS dataset, and further compare 

the influence value calculated with traditional centrality measures such as degree 

centrality. Below in Figure 14 shows the distribution of influence value for all nodes 

in the NS dataset; in Figure 15 compares the influence value and node degree 

centrality for all nodes in the NS dataset.  

 

Figure 14: The plot shows the 
distribution of influence value for 
all nodes in the NS dataset. 

 

Figure 15: The plot compares the 
influence value and node degree 
for all nodes in the NS dataset. 

As shown in Figure 14, in the NS dataset most of the nodes can only influence one 

or two nodes in the diffusion process, while only a few nodes can influence more 
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than two nodes. Intuitively, it seems beneficial to target those nodes that can 

influence more than two nodes in the diffusion process to spread viral marketing 

campaigns. As shown in Figure 15, node degree and influence value calculated are 

not fully correlated. For instance, there is one node with degree 4 and influence value 

around 8. High degree does not necessarily mean high influence value, and vice 

versa. This implies that the influence value metrics provides ranking methods that in 

general extract nontrivial nodes as influential nodes. 

3.5 Discussion & Conclusion 

In this chapter, motivated by recent empirical findings, I extend an epidemic model 

that accurately models virus propagation to describe the diffusion process in social 

networks. With proper parameters setting on a given network topology, myproposed 

method can numerically calculate each node’s probability to get infected when a set 

of nodes has been initially activated. By comparing its predicting performance with 

diffusion simulations, I validate the accuracy of my proposed method in capturing 

diffusion process. However, it does not outperform traditional diffusion simulations 

as I expected. When it comes to compute the number of nodes reached by set of 

initial active nodes, my model can give a suitable estimation to this quantity. Further, 

using this quantity as an influence measure, experiment results show that my 

proposed method provides ways of extracting nontrivial nodes as influential nodes.  

The development of theoretical models for diffusion process still remains to be an 

open question. First of all, are these models discussed above correctly captured the 

way influence spreads through real network? All the models take a snapshot of the 

network, and then operate upon this fixed snapshot. No dynamic aspects or network 

evolution involves – it does not consider the network growths. Also all the models 

unfold in discrete time step with each node following certain probabilistic rule, and it 

uses this rule to incorporate information from its neighbour over time. Whereas the 

dependence of probability of adopting behaviours on number of friends adopted 

expressed in this way reflects an aggregate property of the full population, and does 

not imply anything about any particular individual’s respond to their friends’ 

behaviours (Kleinberg, 2007). Secondly, the way such dynamic process is affected 

by the network structure is still poorly understood (Kiss and Bichler, 2008). How 
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adoption probability depends on the structural properties of a node’s network 

neighbours? What role does weak and strong ties play in the dynamic process? Is 

information propagates more quickly on a dense network?  

According to Backstrom (2006) it has to date been easier to explore such models 

theoretically than to obtain reasonable estimates for them empirically on large-scale 

data. My future work directions include obtaining actual information diffusion data 

and observing how influence propagates in real network. Therefore we could 

develop ways to infer or estimate relevant model parameters with the historical 

diffusion data (Saito, Nakano and Kimura, 2008). With the support of the empirical 

findings we could make more general assumptions on how individuals respond to 

friends’ influence, which leads to a closer integration of the theoretical models to the 

empirical results. Meanwhile, as my method has not outperformed traditional 

diffusion simulation as we expected, in the future work we need to improve the 

calculation process so that it can be fast.  
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Chapter 4 

Empirically Measuring Diffusion Processes 

In this chapter, I present my work on empirically measuring the diffusion processes. 

I obtain data from a telecommunication operator and construct customer call 

networks using the call records data. I then analyze the call networks and assess 

social influence in the bundle adoption process. Specifically, in section 4.1, I present 

the introduction and motivations of my work. I describe the dataset I used to build 

the call networks in section 4.2 and how I built them in section 4.3. In section 4.4, 

Ipresent the analysis results of the call networks’ structure properties. In section 4.5, 

using bundle adoption data I assess social influence in the customer call networks. 

Finally, the discussion of my work and conclusion are given in section 4.6.  

4.1 Introduction & Motivations 

In the last chapter, I have presented my effort to model the diffusion process and in 

section 2.2, I have introduced various diffusion models. While many of the models 

address the question of how influence spreads in a network, they are based on 

assumed rather than measured influence effects (Leskovec, Adamic and Huberman 

2007). The wide variety of rules theoretical diffusion models posed on individuals’ 

behaviour, even if plausible, are often lacking empirical support (Cointet and Roth 

2007). Furthermore, most of the diffusion models take a single snapshot of the 

evolving network and then build upon this static network topology. Even though 

there is time step in the simulation of the dynamic process, it has nothing to do the 

actual time of information spread. As such, it becomes unclear how accurately 

existing models render real-world diffusion phenomena. Cointet et al. (2007) 

suggests that future investigations of the diffusion mechanisms should begin with 

adequate empirical protocols; then propose adapted modelling frameworks.  

On the other hand, as Istated previously, the emergence of mobile, email and online 

social networking have gradually transformed communication among people. Social 

interaction through these platforms leaves extensive digital traces by its very nature. 
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At unprecedented levels of scale and resolution we can now observe and quantify 

human communication patterns (Kleinberg 2008). Hence, it is necessary to obtain 

real world network data and conduct empirical analysis and further characterize 

social interactions. 

The analysis of telephone call graphs in an exciting area of research, because phones 

are ubiquitous, they have become a strategic component for modern life and modern 

economies, and they are expected to become a key or even the principal conduit not 

just for voice calls ,but for internet access and use in the future as well. Furthermore, 

they can provide detailed information on the spatio-temporal behaviour of users, 

especially on the social networks they build and maintain, as reflected by their phone 

calls. Indeed, several recent studies (Onnela, et al. 2007, Dasgupta, et al. 2008)have 

used call graph data to examine and characterize the social interaction of phone 

users, with a focus on understanding the structural properties of the graph, its 

evolution and the evolution of social groups, or the spread of new products and 

services. 

In the following sections, I obtain four months call records data from a landline 

telecommunication operator. I consider the social networks induced by the calls of 

users in phone network.I present the procedures of how I build the call networks 

using the call detail records data.The call networks retrieved from the Call Detail 

Records can be used to examine and characterize the social interactions of the phone 

users. A social relationship between two subscribe, in this context, is based on the 

duration of the voice calls, call frequency that are exchanged during a certain period 

of time.Ithen present a detailed analysis of the call networks by examining its degree, 

connected component distribution. After that, I assess social influence in the phone 

users in the bundle adoption process.  

4.2 Data Description 

The main information in respect to the social network analysis is certainly the data 

which establish the edges among the nodes. In the telecommunication scenario, this 

is the records which contain the calls among the customers, representing the way 

they relate to each other. This type of call in telecommunication is called CDR – Call 

Detail Record.CDR includes sufficient information to describe the important 
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characteristics of each call. At a minimum, each CDR will include the origin and 

destination phone numbers, the time and duration of the call. In a sense, call records 

data reflects the interaction patterns amongtelecommunication customers. Here I 

emphasize that my interestsis in an aggregate statistical analysis and therefore, I do 

not study any particular customer’s calling pattern. Ianalyze the CDRs and restrict 

my focus to the patterns of calls and networks formed out of these calls.  

As I was involved in a project that collaborated with a landline telecommunication 

operator, I can get access to their call records data and analysed it for research 

purpose. Specifically, I consider fourconsecutive month (from October 2008 to 

January 2009) CDRs of 181, 890 sample residential customers of a landline telecom 

operator, which is around 20% of the whole residential customer base. In each 

month, there are around 10 million call records generated by the sample residential 

customers. These customers’ calls are extracted from the corporate data 

warehouse.In my analysis, in order to maintain privacy and anonymity, data that 

could identify telecom customers is not utilized and Ianalyze the anonymizedCDRs. 

4.3 Build Call Networks 

I construct call graphs from the dataset described above. The nodes represent 

telecommunication customers, and edges indicate the calls exchanged between the 

customers. As my goal is to examine the social interactions among the sample 

residential customers, I only consider calls exchanged within the sample customers 

group. Specifically, during pre-processing, calls to service numbers such as the 

operator’s customer service number and numbers similar to 1-800 numbers have 

been filtered out.Calls involve other operators such as calls to mobile or foreign 

countries have been excluded. As Ihave full access to the customers of the landline 

operator, but only partial access to the activity of other providers. Also calls that are 

not exchanged within the sample customers group have been filtered out.  

Further, in order to translate the data into a network representation that captures the 

characteristics of the underlying communication network, I only consider calls that 

can represent social relationships.Particularly, very short duration calls (for instance 

less than 5 seconds) have been ignored as missed calls or wrong calls. These 

numbers and calls greatly skewed the call distribution may yield incorrect results. It 
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is possible that this may induce some false negatives, for instance some links 

corresponding to genuine social interaction may go undetected.Meanwhile, if A and 

B are two nodes in the call graph, then an edge exists between A and B if and only if 

A and B have called each other at least once during the time period of investigation. 

A single call between two individuals may not contain much information. Therefore 

only mutual calls of long duration can be served as an indication of social 

relationship.  

Note that there can be multiple calls between two customers; still there is only a 

single edge between the corresponding two nodes.I represent multiple calls between 

any two nodes by a single edge, which can be associated with a weight.I aggregate 

the total number of calls and the total duration of the calls between two 

customers.Then the multiplicity of calls can be interpreted as weight of the edges. 

High weight value means long duration and high frequency calls which indicate 

strong social ties.  

In the datasets, take the call records in October 2008 as an example, the raw CDRs 

data contains 10, 476, 250 records. Eliminating service number calls and foreign 

countries calls and etc reduced it to 6,254,577 records. Further, considering calls 

exchanged only within the sample customers group reduced it to 485,783 records. 

By aggregating calls exchanged between two customers reduced it to 122, 885 

records. In the end, I get a call graph containing 85, 421 nodes and 122, 885 edges. 

In fact, in the original 181, 890 sample residential customers, 26% of the customers 

do not generating calls during the examining period. Considering the customers’ 

calls to the mobiles or to other customers not within the sample group, it is 

reasonable that in the end there are only 85, 421 nodes in the call graph.  

4.4 Basic Network Characteristics 

Using the four consecutive month CDRs of the sample customers described above, I 

build four call graphs in a monthly basis. Table 5 displays the summary network 

statistics for the sample customers’ four consecutive month call networks. In the 

table, LWCC stands for Largest Weakly Connected Component which means the 

size of the largest weakly connected component in the network.  
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Table 5: Summary network statistics for the sample customers’ four month call 
networks. 

Month Nodes Edges Density LWCC 

October 2008 85,421 122,885 0.0000168 63,145 

November 
2008 

84,868 121,594 0.0000169 62,000 

December 
2008 

89,885 136,862 0.0000169 70,577 

January 2009 87,173 127,590 0.0000168 64,793 

From Table 5, we can see that despite minor changes on the sizes of nodes and edges 

of the four networks, the density and ratio of nodes of the largest connected 

component remain almost the same. The fluctuation of size of nodes and edges in the 

networks can be explained as some customers who have some usage in a particular 

month and do not present the same usage for the subsequently months. Customers do 

not necessarily have the same communication patterns every month. Roughly, I can 

conclude that the sample customers’ call network is relatively stable during the 

examining four month period. Due to the sizes of the networks, it is challenge to 

validate this observation accurately. Based on this in the following investigation, I 

focus a particular month let’s say October 2008 to study the structure properties of 

the call graph. 

4.4.1 Degree Distribution 

What are the structural properties of the call graph?I begin by examining the degree 

distribution of the nodes. Figure 16 and 17 give sample customers’ October 2008’s 

node in-degree and out-degree distribution. Observing thein-degree and out-degree 

distributions, the call graph topology is found to be characterized by presence of a 

highly heterogeneous topology, with degree distributions characterized by wide 

variability and heavy tails. In general, the degree distributions are skewed with a fat 

tail, suggesting that only a few customers are related to large group of people while 

most of them call a relatively smaller number of people. This call graph 

characteristics is consistent with the power-law degree distribution exhibits in many 

graphs and social networks, which is a typical signature of scale-free networks.  
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Figure 16: The in-degree distribution of 
the sample customers’ October 
2008 call graph. 

 

Figure 17: The out-degree distribution 
of the sample customers’ 
October 2008 call graph. 

4.4.2 Connected Component Analysis 

In a graph, it is said that a subset of the graph is a connected component if it is 

possible to go from each node in that subset to another node in the same subset by 

following links (in any direction). The subset is called a strongly connected 

component if this is possible by respecting the direction of the links otherwise is 

called a weakly connected component. I study the distribution of the sizes of the 

weakly connected components (WCCs) in the call graph. The distribution of the 

sizes of the components is presented in Table 6. From this table, we can see it 

contains a giant connected component, which indicates that there may be a core 

social group forming in the telecommunication customers’ network. As the power 

law degree distribution displayed above, this is also a typical signature of scale-free 

network.  

Table 6: Size of the weakly connected components in the October 2008 call graph. 
Component size Number of components 

2 5461 

3 1430 

4 534 

5 258 

63145 (Giant component)1 

Next I plot the sizes of the connected components in the call graph. As seen from 

Figure 18, a power-law distribution of the sizes of the connected components is 

observed. 
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Figure 18: Distribution of the sizes of the connected components in the October 2008 

call graph. 

4.4.3 Persistence Analysis 

As customers may have different usage pattern in different months, some nodes may 

appear in one month’s call network and disappear in another. Firstly I investigate the 

persistence of the nodes. For each month, we say a node which is in that month’s call 

network will have a persistence value one and otherwise value zero. As there are 

four months, for all the nodes their overall persistence value will be in the form of 

1000, 0101, 1111 and etc. I view this in the binary format and convert it to decimal. 

Hence, for the four months each node will have an overall persistence value ranging 

from 1 to 15. Below Figure 19 shows the distribution of the nodes’ overall 

persistence value. In particular, with value 15 means that node is in all the four 

month’s network. Among the overall 112, 481 nodes, 61706 nodes (54.9%) are in all 

the fourth month’s network, which somehow confirms the observation that sample 

customers’ call networks are relatively stable during the examining four month 

period. 

 
Figure 19: Distribution of nodes’ overall persistence value. 
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Next, I investigate the persistence of the ties. I based my analysis on a link 

persistence measure introduced in a study that explores the correlation between the 

structure of a mobile phone network and the persistence of its links (Hidalgo and 

Rodriguez-Sickert 2008). Specifically, they measure the stability of ties across time 

as the number of panels in which a link is observed, over the total number of panels, 

which can be expressed as:  

 

( )
ij

T
ij

A T

P
M

=
∑

 (4.1) 

Where ( )
ij

A T  is 1 nodes i  and j  communicated on panel T  and 0 otherwise, where 

M  is the total number of panels. Persistence is the probability of observing a tie 

when observing a panel of network data. In my case, M will be four and the tie 

persistence value will be 1/4, 2/4, 3/4 and 1. Below in Figure 20 shows the 

distribution of the tie persistence value. Among the 268, 481 ties, 55.4% has 

persistence value 0.25; 16.6% has persistence value 0.5; 10.7% has persistence value 

0.75; 17.3% has persistence value 1.  

 
Figure 20: Distribution of the tie persistence value. 

 

4.5 Measuring the diffusion 

It has been a challenge to build reasonable models for the patterns of communication 

within a social network: it is difficult to obtain data on social network structure at a 

large scale, and more difficult still to obtain complete data on the dynamics of a 

network’s communication events over time (Kossinets, Kleinberg and Watts 2008). 

Here I focus on communication events that ripple through many nodes over short-

scales following a particular event or activity. Basically, the analysis is performed 
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considering a particular business events happened in the past, and the evaluation of 

the afterwards events in a specific timeframe. For instance, in relation to the bundle 

adoption event, a particular month is taking into consideration and then, all 

customers who adopt the bundle in that month are included in the dataset of starters 

or triggers customers. Therefore, the subsequent events are analyzed considering the 

related customers, which means, the customers who have some relationship with the 

starter or the trigger ones. Typically, I am interested in the related customers’ 

behaviour with regard to the event. For example, the evaluations of how many 

customers from the related ones have followed the starters or the triggers in the same 

event.  

I obtain data related to customer broadband bundle adoption from the corporate data 

warehouse. The operator’s data warehouse has detail records of the date the 

customers join the broadband and for those customer quit the broadband the date 

they cease. Specifically, in the 181, 890 sample customers during the four month 

examining period 97, 212 around 53% customers were once with the broadband. 

Among them 26, 847 around 28% customers has ceased till the end of the examining 

period.  

4.5.1 Correlation Analysis 

As I have stated earlier, an underlying premise many diffusion studies build upon is 

assuming the existence of social influence – people are influenced by their friends in 

the social network when making adopting decision. To understand the characteristics 

of bundle adoption behaviour and relate it to a diffusion process, I first need to find 

out whether there is any evidence of social influence in affecting customers’ 

adopting behaviour. I use the correlation analysis to assess the existence of social 

influence in customers’ call networks. The correlation analysis is basically the 

evaluation of how many customers, from the related ones, have followed the starters 

or the triggers in the same event.  

More specifically, the correlation assessment is performed evaluating how many 

related customers have followed the startersin the same event in the subsequently 

months. The same analysis is performed for the random subset of customers, 

evaluating how many related customers have followed them in the same event in the 
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subsequently months. By comparing the related customers of the triggers and the 

random ones with regard to the same event, I would like to check whether friends of 

the triggers are more likely to participate in the same event. 

I consider the set of customers who adopt the broadband during October 2008 and 

also in that month’s call network as triggers. There are 2516 customers and they are 

related to 4804 customers in October 2008’s call network. Among the related 4084 

customers, 3541 of them (73.7%) are once with the broadband. And 444 of them 

(12.5%) have actually adopted the broadband in the subsequently months. As a 

comparison group, I select random 4804 customers from October 2008’s call 

network. Among them, only 1483 customers (30.9%) are once with the broadband. 

And 154 of them (10.4%) have actually adopted the broadband in the subsequently 

months. From the ratios, we can easily see that friends of the triggers have a higher 

likelihood of adopting the broadband comparing to random ones. This result 

somehow indicates the existence of social influence with regard to the broadband 

adoption in the customer call networks.  

4.5.2Dependence on Number of Friends Analysis 

Having confirmed the existence of social influence in customers’ call networks with 

regard to bundle adoption in the last section, in this section I would like to examine 

the characteristics of the influence. If we view the diffusion process as a cascade of 

social influence, a natural starting point is to understand the local mechanism of the 

influence. In particular, Iwould like to investigate how does one’s probability of 

adopting a new behaviour depends on his friends who have already engaging in the 

behaviour. Start with the easiest, the number of friends who have adopted the 

behaviour.  

Recall in section 2.2, I have introduced various empirical studies that measure to 

what extent social influence affects the adopting decision. Here I adapt the 

dependence on number of friends analysis from a study on the group formation in the 

online communities (Backstrom, et al. 2006). Figure 21 below illustrates the process 

of thedependence on number of friends analysis.  
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Figure 21: Dependence on number of friends analysis. 

In my context, the events are joiningbroadband or ceasing broadband. Firstly, I 

consider the join broadband event. Formally, Let ( )p k  denotes the probability of a 

customer adopt the broadband with k  friends who have already adopted the 

broadband. Let C  represents the set of customers who have adopted the broadband. 

Set U  are the customers of interest; a customer u U∈  is a customer who at the time 

of the first snapshot, did not belong to set C , and customer u  had k  friends in set 

C  at that time. ( )p k is then the fraction of such triples ( , , )u C k  for a given k  such 

that u  belonged to C  at the time of the second snapshot. In figure 6, at the time of 

the first snapshot, among 3 customers in set U  with given k  is 3, 2 customers are in 

set C  at the time of the second snapshot; Hence ( )p k  is 2/3.  

Back to the four month snapshots of the sample customer’s call networks, using the 

November 2008’s call networks, consider the customer join broadband event in 

December 2008. In this scenario, set U  are the total 181, 890 sample customers 

minus the customers who once join broadband before December 2008’s snapshot 

and the size of set U  is 110, 568. Set C  are customers who once join and still with 

the broadband before December 2008’s snapshot and there are 65,530 customers in 

set C .Here I call customers in set U  who actually join broadband in December 

2008 as set W . In this case, there are 5,015 customers in set W . In set U 50, 400 

customers havenon-zero k  value. In set W  1,094 customers havenon-zero k

value.These indicate the number of friends the broadband related customers have in 

the call networks. Some of the broadband related customers or their friends may not 
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in the call networks. Below Figure 22 and 23 shows the distribution of k  value in set 

U  and set W .  

 

Figure 22: Distribution of k  value in set 
U  in join broadband event. 

 

Figure 23: Distribution of k  value in set 
W  in join broadband event. 

 

Below Figure 24shows the distribution of the function ( )p k . X-axis is the value of 

the k  and Y-axis is the value of the ( )p k .  

 
Figure 24: Distribution of the function ( )p k . 

Recall in section 2.2, as it has been observed in many studies (Backstrom, et al. 

2006,Leskovec, Adamic and Huberman 2007), the diffusion curves should keep 

increasing – as more and more your friends adopting the behaviour, the probability 

of you also adopt the behaviour will increase. However, this is not the situation here 

–the curve displays a different shape. As we can see from the Figure 24, when k  is 3 

and 4, ( )p k  is decreasing instead of increasing. Naturally I expect the probability 

value should keep increase, however in fact it does not.  
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4.6 Summary and Discussion 

In this chapter, I obtain four months call records data from a landline 

telecommunication operator. I consider the social networks induced from the calls of 

users in the phone network.The call networks retrieved from the Call Detail Records 

are used to examine and characterize the social interactions of the phone users. By 

analyzing the basic network characteristics such as degree, connected components 

distribution, nodes and ties persistence of the four month’s call networks, I have 

found that the call networks are relatively stable during the examination period.  

Using the bundle adoption data, I assess social influence in the call networks.By 

comparing the friends of the triggers (early adopters of the bundle) and random ones 

with regard to the bundle adoption event, we have found that friends of the triggers 

are more likely to also adopt the bundle. This result somehow confirms the existence 

of social influence in the call networks. Further, I adapt the dependence on number 

of friends analysis to investigate how does one’s probability of adopting depending 

on number of friends who have already adopted. However, the result is not as 

expected that the probability keeps increasing as more friends adopted, as it has been 

observed in many other scenarios.  

This result makes us to question how the call networks capture the underlying social 

interactions of the phone users. There may be several reasons: (1)when I construct 

the call networks, I only examine a sample of 20% of the whole residential customer 

base and I only consider calls within the sample customer groups. A customer’s 

complete social interactions may not be well captured. (2) As I use landline phone 

records to approximate the social interactions of the phone users instead of mobile 

records, it is generally believe that mobile calls are more likely to represent social 

relationships. (3) AsI only consider the overall statistical analysis result, in fact a 

customer’s adopting decision may alsobe affectedby other factors such as the price 

of the bundle and the quality of the service. At this stage I don’t know is the social 

influence or other factors that influences customers adopting behaviour.  

In the future work, I would like to obtain more detail data that allow us to better 

capture the underlying social interactions within the phone users. Meanwhile, I 

would like to investigate other business events such as customer churn to assess 
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social influence and measure the diffusion process, to see if the same kind of 

characteristics is exhibited in other scenarios.  
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Chapter 5 

Social Network Analysis & Visualization Tool 

In this chapter, I present my work on the prototypical tool for social network data 

manipulation, analysis and visualization. Firstly, I introduce the motivations behind 

my work and give an overview of the tool.Then I present the set of network analysis 

measurements and network visualization techniques I have implemented in my tool 

in detail. Specifically, in section 5.1, I describe the motivations of my work – why I 

try to come up with a new tool. In section 5.2, I give an overview of the prototypical 

tool describing its main features and implementation details. After that, Ihighlight 

the analysis features I have implemented in section 5.3. I present my efforts in 

network visualizations in detail in section 5.4. Finally, I conclude with the discussion 

of challenges and future directions for my work in section 5.5.  

5.1 Introduction & Motivations 

Network structures are important in many disciplines and professions. Interest in 

these structures is growing more common as the world of social networks and 

computer-mediated social content becomes more main stream. Recall in section 2.3, 

I have introduced various network analysis and visualization software tools. 

Researchers have created tools from set of network analysis components not limited 

to R and the SNA library, JUNG, Guess and Prefuse. There are other network 

analysis tool like Pajek, UCINet, and NetDraw that provide graphical interfaces, rich 

libraries of measures, and do not require coding or command line execution of 

features. So why create another network analysis tool?  

The maturity of social network analysis tools has not advanced as fast as the 

popularity of social network analysis (Smith, et al. 2009). There are large amount of 

data revealing communication patterns among people, but the analysis tools for 

understanding the data have lagged. Many of the network analysis tools are designed 

for expert practitioner, have complex data handling, and inflexible graphing and 

visualization features that inhibit wider adoption. While some of the tools are simple 
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they still represent a significant overhead for domain experts who need to acquire 

technical skills and experience in order to explore data in their specific field. Below 

in Table 7 is a typical analysis and visualization routine with traditional social 

network analysis tool Pajek: 

Table 7: Traditional SNA tool Pajek. 

choose a metric generate statistics then visualize 

As we can see from the figures, the main user interface of Pajek containsthe set of 

Networks, Partitions, Vectors and etc currently under investigation. Clearly, to use 

the tool, one need to first understand what Networks, Partitions and Vectors are and 

prepare data in the specific formats. In fact, different tools may have different 

settings and it might take a while for a novice user to get familiar with the 

environment. Besides, the visualization component is separate from the main user 

interface. One has to perform certain operations to get a visual representation of the 

network under investigation. I believe a design that allows users to first grasp a 

visual impression on the network should be helpful. Hence, it is necessary to come 

up with a simple tool that can allow users with little knowledge on social network 

analysis can perform analysis and visualization tasks. 

On the other hand, instead of focusing on coming up with extensive and complicated 

analysis and visualization features, I believe allowing users to interactively explore 

and manipulate network data should be a high priority.Adam Peter and Ben 

Shneiderman(2006) argue that interactive exploration of networks is currently 

challenging because: (1) it is difficult to find patterns and comprehend the structure 

of networks with nodes and links, and (2) current systems are often a medley of 

statistical methods and overwhelming visual output which leaves many analysts 
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uncertain about how to explore in an orderly manner. They present the 

SocialAction(Perer and Shneiderman 2006) tool which provides real-time 

exploration, filtering and clustering functions by integrating statistics and 

visualization. Using case studies they demonstrate that the tight integration of 

statistics and visualizations improves exploratory data analysis and dramatically 

speed insight development (Perer and Shneiderman 2008a). 

I also believe allowing users to effectively develop insights on the networks under 

investigation should be the ultimate design goal for social network analysis and 

visualization tools. Instead of focusing on coming up with complicated analysis and 

visualization features, my strategy in designing the tool is more focused on 

improving interactive manipulation and exploration of the network data. Overall, my 

goal is to create an extendible network analysis tool that encourages interactive 

overview, discovery and exploration through “direct” data manipulation, graphing 

and visualization. 

5.2 Overview of the Tool 

In this section, Igive an overview of my prototypical tool for social network data 

analysis, visualization and exploration. It builds upon JUNG (Java Universal 

Network/Graph Framework) with rich support for dynamically manipulate and edit 

network data. First, I present its implementation details. Then Iintroduce some of the 

main features and techniques I have implemented in my tool to allow users to 

interactively manipulate and explore network data. 

5.2.1 Implementation Detail 

My prototype tool is implemented in Java and it integrates several open-source 

libraries to take advantage of their contributions. JUNG provides my underlying 

node-link data structures, as well as an implementation of most of the network 

analysis and visualization algorithms. JUNG (http://jung.sourceforge.net/) is a java 

library that provides a common and extendible language for the modelling, analysis, 

and visualization of data that can be represented as a graph or network. It provides a 

common framework for graph/network analysis and visualization which allow users 

to build their own social network analysis tools. Jdesktop’sswingx library has been 
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used in the user interface development. Below in Figure 25is a screenshot of the 

main user interface of my prototypical tool: 

 
Figure 25: Main user interface of the prototypical tool. 

As shown in the figure, the overall appearance and many concepts of user interaction 

are similar to many other social network analysis and visualization tools. The main 

window contains the standard elements of typical graphical user interfaces: a menu 

bar and a toolbar on top. Adhering to the common practice, the menu bar provides 

access to all functions, grouped into the self-explanatory menus File, Analysis, 

Visualization and Help. In the toolbar, the most frequently used operations are 

duplicated for user convenience. Most of the window’s area is reserved for the main 

views of the open networks. Each network is displayed in full detail in its own view 

in a separate tab in order to allow users to work on related data simultaneously and to 

compare results of different networks or even different analyses of the same 

network. The main view depicts the network in full detail and allows interactive 

changes to the network structure and the graphical properties of the nodes and edges. 

5.2.2Main Features 

In this section, Ifirst describe a sequence of operations from data import to 

computation of network statistics and refinement of network visualization. Then I 

highlight some of the network data manipulation and visualization features.  
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Starting with importing the data, the users first need to load the data in pre-defined 

network format. In current implementation, data can be imported from Pajek files, 

GraphML files and comma separated value (CSV) files. When the network data was 

loaded, a visual representation of the network with Fruchterman-Reingoldgraph 

layout will be displayed in the main view. Sometimes when the network is too large 

for the graph layout engine to display, an error will report. After successfully loading 

the data, the users now can perform various analysis and exploration tasks on the 

network. Specifically, these may include generate network statistics, add or delete 

nodes or edges, customize the visualizationand etc. The modified network can be 

saved in the Pajek, GraphML and CSV files. The generated network statistics can 

also be saved in CSV files. The visual image of the network visualization can be 

saved in typical image format such as JPEG, GIF, PNG and BMP. 

Besides, in order to allow users to gain better control over the exploration and 

visualization of the networks, there are four mouse modes of operation of a view: 

Edit, Pick, Transform and Annotate. In the Edit mode, the main mouse operation is 

graph elements creation and users can add, delete nodes or edges, and modify their 

properties by simple mouse clicks. In the Pick mode, users can select the specific 

graph elements of interest and these may include nodes, edges and subgraphs. Note 

in order to edit the network structure, users must first go to the Pick mode to select 

the graph elements of interest. In the Transform mode, the main operations are the 

moving of the drawing area and zooming in and out. In this mode, neither the 

structure nor the layout of the graph can be changed. Throughout the process of 

exploring the network, users may come across important discoveries. In the Annotate 

mode, the tool features a light-weight solution for users to annotate these insights 

quickly. Often, annotations are textual comments such as indications of the insights. 

Note also the structure and the layout of the graph can not be changed in this mode. 

5.2.2.1 Network Data Manipulation 

Although both statistical methods and visualizations have been used extensively by 

network analysts, exploratory data analysis remains a challenge (Perer and 

Shneiderman 2008a). In order to allow users to gain a full control on the networks 

under examination, I have a focus on allowing users to dynamically manipulate and 

edit the network data: 
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• Supports the selection of nodes, edges and different actions can be taken on 

selected graph elements. In the Pick mode, users can arbitrarily select certain 

subset of nodes or edges of interest. Operations such as change properties add 

or delete then can be taken on the selected graph elements.  

• Users can dynamically add or delete graph elements (nodes, edges, 

subgraphs). Unlike many other social network analysis tools, the network 

being examined can not be modified. In my tool, users can change the 

network structure, add or delete nodes or edges. These actions are also 

undoable. The modified network can be saved in the standard network 

formats.  

• Supports the Cut- Copy- Paste (transfer) actions on graph elements. Besides 

add or delete, transfer actions like cut, copy and paste are also supported on 

the selected graph elements. For instance, users can copy set of nodes and 

edges from this network paste them to the other.  

• Users can easily edit attributes (shapes, colours, labels, positions etc.) of 

nodes and edges. Once certain graph elements have been selected, users can 

specify various visualization properties of nodes and edges. Below in Figure 

26 is the screenshot of the user interface for setting node visualization 

propertiesThese properties comprise the shape, the colour, the size, the 

coordinates of nodes, and the width of edges and so on. For examples, the 

shape of the nodes can be square, oval, triangle and so on. The shape of the 

edges can be straight lines, dash lines, curve and so on. Additionally, there 

are extensive options to change the appearance like the font, positions of the 

labels of the nodes and edges. Below in Figure 27 is a sample network with 

different node visualization properties. 

 



 83

 

Figure 26: User interface for setting node 
visualization properties. 

 

Figure 27: Sample network with different 
node visualization properties. 

5.2.2.2 Visualization Features 

Existing network visualization often seems impressive because of the colourful 

display of nodes richly connected with links. These visually engaging images enable 

users to estimate the network size while revealing important clusters. However, in 

most examples, the overlapped nodes prevent users from estimating cluster size and 

the crossed links make it possible to follow connections, count node in-degree, or 

carry out other tasks. Regarding to the network visualization, some efforts have been 

made to improve the interactively exploration and visualization of the network data:  

• Rich support for manipulating and controlling the network visualization. In 

the Transform mode, the users can move the drawing area and zooming in 

and out the visualization. In the Annotate mode, the users can annotate the 

network visualization.  

• Supports multiple classic graph layout algorithms such as Kamada-Kawai 

layout, Fruchterman-Reingold layout and Tree layout. Recall Ihave 

introduced in section 2.4, graph layout try to position the nodes of that graph 

using a layout algorithm that attempts to fulfil certain aesthetic requirements. 

In my tool, I have implemented several classic graph layout algorithms that 

are common in practice.  

• Supports the satellite view in which the full graph is always visibleand all 

mouse actions affect the graph in the master view. Visualizations of network 
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data are often cluttered, suffer from occlusion and illegible labels, and are 

difficult to explore. Zooming into sub-sections of the network can solve the 

problem somehow but may force users to lose the global structure. The 

satellite view can allow viewers to grasp the overall network structure when 

the displaying area is very large. Below In Figure 28 is the screenshot of a 

network visualization with a satellite view on the left upside pane.From the 

figure we can see in the satellite view the full graph is always visible. 

• Supports the transform of network visualization via a “lens” effect. The basic 

idea of the lens effect is to use a tool like a magnifying glass to support 

enlarging the region of interest directly in the visualization. The area under 

the magnifying glass is processed using techniques such as fisheye 

projection, and the result is displayed differently than the remaining area. 

Overall, it shows a modified view of the selected region, while the rest of the 

visualization remains unaffected. Below in Figure 29 is the screenshot of a 

network visualization with a lens effect.  

 
Figure 28: Screenshot of a network visualization with satellite view. 
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Figure 29: Screenshot of a network visualization with lens effect. 

5.3 Analysis Features 

In the last section, I have presented an overview of my prototypical tool. In the 

following sections, Iconcentrate on introducing its analysis and visualization features 

in detail.  

 
Figure 30: The edge betweenness community detection algorithm in 

myimplementation. 

Recall in section 2.1, I have identified two major goals of social network analysis: 

uncover notable nodes and discover cohesive subgroups.In the development of the 

analysis component of my tool, I try to follow these principles.In the literature, there 

are many statistical algorithms which reveal nodes that occupy key social positions 

and form cohesive social groups.Selectively, I have implemented some of the 

network measures that are most common in practice. These include various network 

centrality measures and some of the network community detection algorithms. 

Herein Figure 30 is an example of the implementation of the edge 
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betweennesscommunity detection algorithm in my tool. As most of these statistical 

algorithms have already been implemented in the open source library JUNG, all I 

need to do is to call the specific functions and add proper user interfaces.  

On the other hand, social network analysis is inherently complex since analysts must 

understand every node’s attributes as well as relationships between nodes. Despite 

many of the structuremeasures proposed to assess the networks, it is difficult to find 

outliers and patterns in strictly quantitative output. Often in these situations, network 

visualizations are often hard to interpret because overlapping nodes and tangled 

edges.  

As I have introduced earlier, a tight integration of analysis and visualization could 

dramatically speed insight development (Perer and Shneiderman 2008a). The 

combination of visual data representation and statistical analysis support additional 

non-trivial observations about the data. An adequate visualization should highlight 

the graph structure and the result of the analysis measure simultaneously. With 

regard to the analysis component of my tool, I also try to follow this guideline. I try 

to visualize some of the analysis result. Here I use two examples to demonstrate the 

idea. The first one is to use the size of node to depict the degree centrality score of 

nodes as shown in Figure 31. The other one by assigning different nodes colour and 

location, it can differentiate the group each node belongs to as shown in Figure 32. 

 
Figure 31: A network visualization with size of the node scaled to node degree. 
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Figure 32: Differentiate groups by nodes colour and location. 

5.4 Analytical Visualization Features 

In this section, I focus on presenting various efforts I have been made to enhance the 

visualization component of my tool. As I have stated previously, visualization can be 

effective analysis tool for social network; good visualization may reveal the hidden 

structure of the networks and amplifies human understanding, thus leading to new 

insights and new findings. However, visualisation itself cannot serve as an effective 

and efficient analysis tool for large and complex networks, if it is not equipped with 

suitable interaction and navigation methods(Herman and Marshall 2000). Graph 

layout algorithms focus on providing static drawings of relatively large graph and 

show the entire overview of the graph, which can be effective for revealing patterns 

and clusters. It is technically possible to display graphs containing millions of nodes 

or more, but visual clutter, occlusion and other factors can diminish the effectiveness 

of the visualization as the network complexity increases.  

Thus, it is necessary to incorporate various visual analytical techniques to fully 

support exploration tasks in order to cope with larger networks. Specifically, these 

visual analytical techniques may include: (1) the use of standard information 

visualization techniques to augment the network visualization. The simplest 

augmentation is to map a variable for nodes or edges onto an aesthetic, such as 

colour, size, shape, pattern, transparency or dashing. Colour, size and shape can be 

used to depict different characteristic of nodes or edges, which can then be used to 

explain their structural positions or general network characteristics. The basic art of 
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labelling nodes is also an example of this use of aesthetics to convey information. (2) 

Theinteraction and navigation techniques such as zooming, filtering and distortion 

can allow viewers to explore only specific sub-regions of interest. Instead of viewing 

all million nodes, users may get what they need by viewing only the nodes with high 

out-degree, betweenness centrality and etc. Users may also know facts such as node 

labels, which they can specify to view only nodes having the given node labels, or 

their neighbours (Shneiderman and Aris 2006). 

Besides these visual analytical techniques, some efforts have also been made to 

visualize and cluster the network data using multidimensional scaling; allow the 

users to view the network data on a geographical map. Specifically, in section 5.4.1, 

I introduce the basic visual analytical techniques such as using colour, shape and 

label to argument the network visualization. Ithen cover the interaction and 

navigation techniquesI have implemented in section 5.4.2. In section 5.4.3, I present 

my work of visualizing and clustering the network data using multidimensional 

scaling. And in section 5.4.4, I present my work of visualizing the network data on a 

geographical map.  

5.4.1 Basic Analytical Visualization 

In social network analysis, in addition to the connections we often have data on 

attributes of nodes or links of the network; typically in graph visualization we can 

interpret this kind of information using standard information visualization 

techniques. For example, by assigning different color, size or shape to each node we 

can visualize different groups or clusters that each node belongs to as shown in 

Figure 32. Besides depict different characteristic of nodes or edges, these features 

can also be used to display the results of different analyses. For example, drawings 

of networks are often used in combination with an explicit analysis result such as the 

centrality score as shown in Figure 31. In such a drawing, a graphical feature like the 

position of a node or the width of an edge could depict the measure under 

consideration.  

Meanwhile, basic graphical features like the color and size of the graph elements are 

very important for the overall appearance of network drawings. Visualizations based 

on these features thus offer great potential for creating nice drawings. In my tool, 
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Ihave provided interfaces for users to change the visualization properties of the 

nodes and edges as shown in Figure 26. 

5.4.2 Interaction and Navigation Techniques 

Unlike other forms of data, visualizing network data not only involves visualizing 

various attributes for each data point, but it also involves visualizing the links 

between the data points and the attributes of the links. As a result of trying to show 

all these pieces of information, visualization of network data are often cluttered, 

suffer from occlusion and illegible labels, and are difficult to explore. Static 

drawings can sometimes be helpful, but support for discovery requires an interactive 

solution to reduce the complexity and enable users to selectively display components 

of interest. Approaches to an interactive solution involve zooming, filtering, 

clustering and layout techniques to reduce the number of overlaps and minimize the 

amount of data to fit in the space available (Namata, et al. 2007).  

The Visual Information-Seeking Mantra (Shneiderman 2003) summarizes many 

visual design guidelines and provides an excellent framework for designing 

information visualization application: overview first, then zoom and filter, and 

finally, detail on demand. Keim(Keim 2002) argues in addition to the visualization 

technique, for an effective data exploration, it is necessary to use some interaction 

and distortion techniques. Interaction techniques allow the data analyst to directly 

interact with the visualization and dynamically change the visualization according to 

the exploration objectives. Distortion techniques help in the data exploration process 

by providing means for focusing on details which preserve an overview of the data. 

The basic idea of distortion techniques is to show portions of the data a high level of 

detail, while others are shown with a lower level of detail. By incorporating these 

techniques, users can gain a better and more comprehensive understanding of the 

network data is being explored. Hence I aim to provide plenty of interactions 

features for users to explore the networks and find actionable insights.  

5.4.2.1 Zooming 

As the size and complexity of network increases, visualizations of the network are 

often cluttered. No layout algorithm alone can overcome the problems raised by the 
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large sizes of the graphs occurring in the visualization applications. Zooming is well-

known technique which is widely used in a number of applications. It is quite 

indispensable when large graph structures are explored. In dealing with large 

amounts of data, it is important to present the data in a highly compressed form to 

provide an overview of the data but at the same time allow a variable display of the 

data on different resolutions (Keim 2002). Zooming is particularly well suited for 

graphs because the graphics used to display them is usually fairly simple. It is not 

only a means to display data objects larger but also a means for more details of the 

data to be represented at higher zoom levels.  

In my tool, in the Transform mode it allows users to pan, zoom and scale the graph 

representation in a more refined way. Users could focus on graphically interesting 

clusters and start exploring, usually by zooming in to see the connections in a tight 

group. By scrolling mouse wheel users can zoom in and out for getting detailed 

views of small areas of the graph. Sometimes zooming into sub-sections of the 

network may force users to lose the global structure. In order to allow users to gain 

an overview of the network structure while exploring the detail, I support the satellite 

view as shown in Figure 28. The satellite view can allow viewers to grasp the overall 

network structure, in which the full graph is always visible and all mouse actions 

affect the graph in the master view. 

5.4.2.2 Interactive Filtering 

In exploring large data sets, it is important to interactively partition the data set into 

segments and focus on interesting subsets. This can be done by a direct selection of 

the desired subset or by a specification of properties of the desired subset. Filtering 

mechanisms support the produce subgraphs of an original graph. Instead of viewing 

all the nodes, users may get what they need by viewing only the nodes with high out-

degree, betweenness centrality and etc.  

Specifically, in my tool I support three types of filtering: nodes, links and K-

neighbourhood filter. In the nodes and edges filtering, users can interactively control 

the visualization to display only a small number of nodes and links, possibly from a 

very large network. In the implementation, it transforms the input into one which 

contains only those nodes or links that pass specified predicate. The filtered graph is 
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a copy of the original graph. In the node filter, only those links whose entire incident 

node collection passes the predicate are copied into the new graph. In the link filter, 

all nodes from the original graph are copied into the new graph even if they are not 

incident to any links in the new graph. The K-neighbourhood filter used to extract 

the k-neighbourhood around one or more root nodes. The K-neighbourhood is 

defined as the subgraph induced by the set of nodes that are k or fewer hops away 

from the root node.  

5.4.2.3 Interactive Distortion 

Interactive distortion techniques support the data exploration process by preserving 

an overview of the data during drill-down operations. The basic idea is to show 

portions of the data with a high level of detail while others are shown with a lower 

level of detail. Distortion techniques are suitable for large but not huge networks. 

They allow users to place a focus point on a region of interest of the display, and the 

display redraws so as to magnify the area of interest and de-magnify the rest of the 

display. Popular versions of these techniques include fisheye and hyperbolic 

transformations. 

 
Figure 33: An example of the hyperbolic layout effect. 
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Figure 34:An example of the magnify view effect. 

In my tool I support the hyperbolic and magnify transform. In the hyperbolic 

transform, it creates a fisheye projection of the graph points, with points near the 

center spread out and points near the edges collapsed onto the circumference of an 

ellipse. In the magnify transform it creates an enlarging projection of the graph 

points. Meanwhile, I support both the view and the layout transform. In the view 

transform it will distort node shapes. Here in Figure 33 I show an example of the 

hyperbolic layout effect; in Figure 34 I show an example of the magnify view effect.  

5.4.3Visualize & Cluster Network Data Using Multidimensional 

Scaling. 

A useful goal for most social network layouts is to represent social distance as 

physical distance.This representation allows viewers to get a spatial understanding of 

social relations, as nodes with many relations in common are placed close together 

on the printed page(Moody, McFarland and Bender-deMoll 2005). Multidimensional 

scaling (MDS) is a well-known statistical method for mapping pairwise relationships 

to coordinates that can be used to accomplish this goal. Objects in a data set 

arerepresented as points in a geometric space; distance in this spacerepresents 

proximity or similarity among objects.Objective of MDS is to find coordinates for 

each point that preserve the given pairwise dissimilarities (distances) as faithfully as 

possible.It is often used as a tool for understanding relative measurements when 

absolute measurements are not available(Yang, et al. 2006). A classical MDS 
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algorithm starts with a matrix of item-item similarities, and then assigns a location to 

each item in N-dimensional space, where N is specified a priori. Formally, it can be 

described as given the dissimilarity matrix D of n points: 

 ( , ) ( ) ( )T

ij i j i j i jD d x x x x x x= = − −  (5.1) 

The object is to find the coordinates of points ix that would give rise to D.  

At the core of MDS is an eigendecompostion on an n n×  symmetric matrix. 

Specifically, there are two stages in computing classical MDS. The first is to convert 

the input matrix D  into a matrix of dot products, or a Gram matrix B . This is done 

by multiplying 2D  on both sides with a “centering matrix” H , which subtracts out 

the row and column average of each entry and adds back the overall matrix average. 

 
2

2

HD H
B

−
=  (5.2) 

The second stage is the bottleneck in MDS. Since B  is symmetric, it can be 

eigendecomposedinto T
USU , where U  is a matrix of eigenvectors and S  is a 

diagonal matrix containing the corresponding eigenvalues. MDS derives its lower-

dimensional coordinates by taking successive columns from U S . A complete 

eigendecompostion of B  using QR decomposition takes 3( )O n  time, resulting in a 

3( )O n  time for MDS. Here I use an example to illustrate the calculation process of 

classical MDS: 

• The input similarity matrix D :  

 

• The centred inner product matrix B :  

 

• Eigendecompostion of B  to get the eigenvectors and eigenvalue matrix:  
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• The coordinates matrix: 

 

The use of MDS for network visualization has a long history in social network 

analysis and was first used as such by Laumann and Guttman

graph layouts are available in common network visualization tools, such as 

NetDraw, Krackplot and Guess. Substantively, given the measure of similarities or 

distances between pair of nodes, MDS algorithm calculates the two

coordinates for each node and further plots these nodes. In 

took advantage of the MDS procedures that are already available in some open 

source library, and all 

the points with the coord

the process of MDS based graph layout, in Figure 35 is 

a sample Network. 

Table 8: Process of visualizing network data using MDS.
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The coordinates matrix:  

The use of MDS for network visualization has a long history in social network 

analysis and was first used as such by Laumann and Guttman(1966)

graph layouts are available in common network visualization tools, such as 

NetDraw, Krackplot and Guess. Substantively, given the measure of similarities or 

distances between pair of nodes, MDS algorithm calculates the two

each node and further plots these nodes. In my

took advantage of the MDS procedures that are already available in some open 

source library, and all I need to do is to formalize the node similarity matrix and plot 

the coordinates given. Here in Table 8 is an example to demonstrate 

ocess of MDS based graph layout, in Figure 35 is the MDS procedure output of 

: Process of visualizing network data using MDS. 
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Figure 35: The MDS procedure output of a sample Network.

One of the benefits of using MDS to visualize network data is that it represents 

social distance as physical distance, which allows the viewers to get a spatial 

understanding of the social relations by just looking at the image. A social

based representation of network structure is facilitated when edge lengths are 

equated to relational strengths. An intuitive impression of the network structure can 

emerge from the proximities in the image. 

Figure 36: User interface for setting 

Another benefit is that once the visual coordinates are obtained, we can easily cluster 

the nodes using traditional cluster techniques. Cluste

of grouping information to achieve a more recognizable presentation of the original 

data. The computation of a clustering generally requires a distance measure on the 

data to determine the closeness of data points. In this 

coordinates of each node have already been obtained as the result of the MDS. 

Hence we can easily calculate the distance of the nodes using common distance 
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MDS procedure output of a sample Network. 

One of the benefits of using MDS to visualize network data is that it represents 

social distance as physical distance, which allows the viewers to get a spatial 

of the social relations by just looking at the image. A social

based representation of network structure is facilitated when edge lengths are 

equated to relational strengths. An intuitive impression of the network structure can 

oximities in the image.  

 
: User interface for setting the clustering options. 

Another benefit is that once the visual coordinates are obtained, we can easily cluster 

the nodes using traditional cluster techniques. Clustering is the unsupervised process 

of grouping information to achieve a more recognizable presentation of the original 

data. The computation of a clustering generally requires a distance measure on the 

data to determine the closeness of data points. In this case, the two

coordinates of each node have already been obtained as the result of the MDS. 

Hence we can easily calculate the distance of the nodes using common distance 

 

One of the benefits of using MDS to visualize network data is that it represents 

social distance as physical distance, which allows the viewers to get a spatial 

of the social relations by just looking at the image. A social-distance-

based representation of network structure is facilitated when edge lengths are 

equated to relational strengths. An intuitive impression of the network structure can 

Another benefit is that once the visual coordinates are obtained, we can easily cluster 

ring is the unsupervised process 

of grouping information to achieve a more recognizable presentation of the original 

data. The computation of a clustering generally requires a distance measure on the 

case, the two-dimension 

coordinates of each node have already been obtained as the result of the MDS. 

Hence we can easily calculate the distance of the nodes using common distance 



 96

functions such as the Euclidean distance metric. Further, traditional clustering 

algorithms such as hierarchical clustering can be used to cluster the nodes. In Figure 

36 it shows the user interface for setting the clustering options. In Figure 37 is a 

sample network with three clusters. 

 

Figure 37: A sample network with three clusters. 

This method often produces useful results, although not always for all networks. As 

stated earlier, a complete eigendecompostion of the centred inner product matrix B  

using QR decomposition takes 3( )O n  time, resulting in a 3( )O n  time for MDS. 

Since the time and space complexity here, application of MDS is limited to instances 

with at most a few thousands of nodes. 

5.4.4Visualize Network Data on Geographical Map 

In some social networks, the spatial information about the nodes may be available. 

Hence, these networks may have a natural spatial layout such as a geographical 

trade-flow network or may be abstract as in a personal communications network. In a 

corporate data warehouse, geographically referenced data such as customer address, 

street number or zip code may be available. Geographic maps are the most intuitive 

way to describe and explain the spatial organization of a phenomenon that involves 

geographically referenced data, that is to say data which has locational references 

within its structure(Mothe, et al. 2006). Apparently, visualizing social network data 
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on geographic maps could generate more useful insights than simply visualizing the 

data.  

In many cases, the spatial information we have are in the format of street address or 

zip code. A geographic coordinate system is a coordinate system that enables every 

location on Earth to be specified by coordinates. Normally, the combination of 

latitude and longitude can specify the position of any location on the planet. In order 

to place markers or position address on a geographic map, sometimes we might need 

the geographic coordinates of an address. Geocoding is the process of finding 

associated geographic coordinates often expressed as latitude and longitude from 

other geographic data, such as street addresses, or zip codes. For example, an address 

like "1600 Amphitheatre Parkway, Mountain View, CA" can be converted into 

geographic coordinates like latitude 37.423021 and longitude -122.083739.  

The Google geocoding API provides a direct way to access a geocoder via an HTTP 

request. Additionally, the service allows you to perform the converse operation 

(turning coordinates into addresses); this process is known as "reverse geocoding." 

In my implementation, I use GeoGoogle (http://geo-google.sourceforge.net/)a 

geocoder java API. It is an address standardization API which converting an address 

into a standardize format. It standardizes addresses by utilizing Google’s geocoding 

service.  

After I have got the geographic coordinates for addresses, next thing to do is to put 

these locations on a map. I aim to find open source libraries that can embed mapping 

abilities into Swing-based java applications. The JXMapViewer is an open source 

Swing component created by the developers at SwingLabs. At its core, the 

JXMapViewer is a special JPanel that knows how to load tiles from an image server. 

All of the details of how to convert coordinate to pixels, cache tiles, and stitch them 

together on screen are nicely hidden inside JXMapViewer’s API. All users need to 

do add it to the Swing application the way like any other JPanel. A kit version of 

JXMapViewer includes zoom buttons, a zoom slider, and a mini-view. The 

JXMapKit is just a wrapper for the JXMapViewer that includes the most commonly 

used features. Users can drag the map around and also zoom in and out to different 

levels. The JXMapViewer comes preconfigured with connections to Open Street 
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Map and the Blue Marble, but users can use a custom tile provider to connect to an 

alternate map server such as Google maps.  

To make a geographical map really useful, points that represent locations must be 

drawn on it. In the mapping world, coordinates that represent physical locations are 

called waypoints. In network visualization, nodes are usually represented as points, 

and links among nodes are represented by lines. Similarly, when it comes to 

visualizing network data on a geographical map, we can use waypoints to represent 

the nodes and draw lines among nodes to represent the links. By default, waypoints 

are drawn using a blue teardrop shape, but users can custom the looks of waypoints 

by using the waypoint painter. Painters are classes that implement the painters 

interface and can be set on a SwingX component to customize that component's 

drawing. Easily we can change the size, colour and shapes of waypoints. Besides 

custom the looks of waypoints, we can also custom the overlays to draw some lines 

or polygons between waypoints. Herein Table 9 are some examples with different 

zoom levels: 

Table 9: Screenshots of visualizing social network data on geographical maps. 
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Chapter 6 

Conclusion and Future Work 

In this chapter, the conclusion of the thesis is given. I present the summary of my 

work, its contributions, limitations and future work direction. Specifically, in section 

6.1, I give a summary of my work and explain how this research contributes to both 

theory and practice. In section 6.2, I discuss the limitations of my work. In section 

6.3, the future work direction for this research is given. 

6.1 Summary & Contributions 

In this section, I first present the summary of my work then discuss its contributions.  

6.1.2 Summary of Work 

There is a growing interest in exploring the role of social networks for understanding 

how individuals spread influence. In customer intelligence, social network analysis is 

fast emerging as an important discipline for predicting and influence consumer 

behaviour. Within online social networking, social media plays a prominent role in 

promotion, marketing and public relations. Hence, it is important to gain some deep 

insights of how information diffuses through social networks.  

In this context, in chapter 2, I start with an overview of the social network analysis 

research with a focus on the network centrality measures and cohesive subgroup 

related concepts and algorithms. Ithen introduce various state of the art research 

issues and provide theoretical background for my work on modelling diffusion 

process and empirical diffusion studies.After that, I provide an overview of some of 

the major social network analysis tools, summarizing their advantages and 

disadvantages.Ialso introduce various graph layout algorithms that used to position 

the nodes and edges in the network visualization. 

In chapter 3, I present my work of modelling the diffusion processes in social 

networks.Iextend an epidemic model that accurately models virus propagation to 
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describe the diffusion process in social networks. With proper parameters setting on 

a given network topology, myproposed method can numerically calculate each 

node’s probability to get infected when a set of nodes has been initially activated. By 

comparing its predicting performance with diffusion simulations, I validate the 

accuracy of my proposed method in capturing diffusion process. Further, using the 

number of nodes reached by set of initial active nodes as an influence measure, 

experiment results show that my proposed method provides ways of extracting 

nontrivial nodes as influential nodes. 

In chapter 4, I present my work on empirically measuring the diffusion processes.I 

obtain data from a telecommunication operator and construct customer call networks 

using the call records data. I then analyze the call networks and assess social 

influence in the bundle adoption process. Specifically, the analysis results show that 

the call networks are relatively stable during the examination period. Using 

correlation analysis I confirm the existence of social influence in the call networks 

with regard to bundle adoption event. However, the characteristic of the influence is 

not same as it has been observed in other scenarios.  

In chapter 5, I present my work on the prototypical tool for social network data 

manipulation, analysis and visualization. The tool has rich support for dynamically 

manipulating and interactively exploring social network data. It also supports 

network visualization techniques such as satellite view, “lens effect” and visualizing 

social network data on a geographical map. 

6.1.2 Contributions 

As I have mentioned in the introduction chapter, this thesis offers three principal 

contributions to both theory and practice.  

The wide variety of rules theoretical diffusion models posed on individuals’ 

behaviour, even if plausible, are often lacking empirical support (Cointet and Roth 

2007). It is necessary to propose new models that can capture the diffusion 

phenomenon more accurately. HereI attempt to extend the classic diffusion models 

to integrate some of the recent empirical findings on the diffusion phenomenon. I 

propose a new method to approximate the diffusion processes based on a Non-linear 
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Dynamic System that describing disease spread in epidemiology.With proper 

parameters setting on a given network topology, the proposed method can 

numerically calculate each node’s probability to get infected when a set of nodes has 

been initially activated. It provides an alternative way of estimating the number of 

nodes reached by the initial target set in the diffusion process. Using this quantity as 

an influence measure, experiment results show that the proposed method can provide 

a way of identifying nontrivial nodes as influencer. 

Collecting social network data has traditionally been hard work. The emergence of 

social media has transformed the communication patterns among people. With the 

availability of such large-scale real network data, we can now measure the diffusion 

phenomenon at a more quantitative level. Indeed, it is important to obtain real world 

network data and conduct empirical analysis on such processes. Here I conduct an 

empirical study that assesses social influence in the telecommunication call networks 

with regard to the bundle adoption event. The analysis results show that the call 

networks are relatively stable during the examination period. Using correlation 

analysis the study confirms the existence of social influence in the call networks with 

regard to bundle adoption event. However, the characteristic of the influence is not 

same as it has been observed in other scenarios.  

Many of the network analysis tools are designed for expert practitioner, have 

complex data handling, and inflexible graphing and visualization features that inhibit 

wider adoption. Meanwhile, they have extensive and complicated analysis and 

visualization features. Hence, I believe it is necessary to come up with a simple tool 

that can allow users with little knowledge on social network analysis can perform 

analysis tasks. Here I develop a prototypical tool for social network data 

manipulation, analysis and visualization. The tool offers extensive features for users 

to interactively manipulate and explore social networks. It also provides distinctive 

visualization features such as allowing users to view the network data on a 

geographical map. 

6.2 Limitations 

In this section, I discuss the limitations of the research. With regard to the three 

principal contributions of the thesis, the limitations are as follows: 
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Even though the method I proposed to capture the diffusion process in social 

networks has been proven can give a good approximation, it does not outperform 

traditional methods as I expected. On the other hand, I aim to propose new models 

that can capture the diffusion phenomenon more accurately. It is unclear to what 

extent the proposed method has rendered the diffusion phenomenon. There is still 

much remains unknown regarding to the diffusion phenomenon.  

With regard to the empirical studies I conduct on the diffusion process using the 

broadband bundle adoption data to assess social influence in the call networks, the 

results somehow confirm the existence of social influence in the call networks, as the 

friends of the early adopters are more likely to also adopt the bundle. However, when 

investigating how does one’s probability of adopting depending on the number of 

friends who have already adopted, the results are not as expected that the probability 

keeps increases as more friends adopted, as it has been observed in many other 

scenarios.  

With regard to the tool I developed to visualize, analyze and manipulate social 

network data, it is still very prototypical - many functionalities and features are 

remain to be included.  

6.3 Future Work Direction 

Based on the limitations of the research, the future work directions include: 

With regard to my work on modelling diffusion process, my future work directions 

include obtaining actual information diffusion data and therefore I could develop 

ways to infer or estimate relevant model parameters with the historical diffusion 

data. With the support of the empirical findings I could make more general 

assumptions on how individuals respond to friends’ influence, which leads to a 

closer integration of the theoretical models to the empirical results. Meanwhile, as 

my method has not outperformed traditional diffusion simulation as I expected, in 

the future I need to improve the calculation process so that it can be fast. 

With regard to the empirical studies on diffusion process, in the future work I would 

like to obtain more detail data that allow us to better capture the underlying social 

interactions within the phone users. Meanwhile, I would like to investigate other 
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business events such as customer churn to assess social influence and measure the 

diffusion process, to see if the same kind of characteristics is exhibited in other 

scenarios.  

With regard to the network analysis and visualization tool, my future work include: 

(1) Test the error handling and scalability of the tool (2) Support other network data 

format. (3) Enhance the interactively exploration and navigation features.  
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