

Energy Efficient Hardware

Accelerators for Packet Classification

and String Matching

by

Alan Kennedy, B.Eng.

Submitted in partial fulfilment of the requirements

for the Degree of Doctor of Philosophy

Dublin City University

School of Electronic Engineering

Supervisor: Dr. Xiaojun Wang

September 2010

 i

DECLARATION

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Doctor of Philosophy is entirely my

own work, that I have exercised reasonable care to ensure that the work is

original, and does not to the best of my knowledge breach any law of copyright,

and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed:. .

 Alan Kennedy (Candidate)

ID No.:. .

Date: . .

 ii

ACKNOWLEDGMENTS

Firstly, I would like to thank my supervisor Dr. Xiaojun Wang for taking me on

as his student and giving me a great deal of help, support and guidance during my

time in Dublin City University. I would also like to thank my colleagues in the

Network Processing Group for making the lab an enjoyable place to work and for

giving me their technical advice whenever needed. My gratitude also goes to

Prof. Bin Liu and the other members of the Broadband Switching Laboratory in

Tsinghua University with whom I collaborated.

I would like to give a special thanks to my parents for making this work possible

by giving me their love, help and financial support during my seemingly never-

ending education. Finally I would like to thank Lisa for her love, help and

encouragement during the duration of my Ph.D., and for her understanding of the

long hours spent in the lab.

 iii

TABLE OF CONTENTS

Declaration.. i

Acknowledgments ... ii

Table of Contents ... iii

Abstract..vii

List of Figures...viii

List of Tables .. xi

List of Acronyms ...xii

Publications and Patents Arising from Work ... xiv

Chapter 1 - Introduction .. 1

1.1 Motivation ... 1

1.2 Network Overview .. 3

1.3 Packet Processing Bottlenecks .. 6

1.3.1 Packet Classification... 7

1.3.2 Deep Packet Inspection... 8

1.3.3 Technical Challenges.. 9

1.4 Contributions ... 11

1.5 Thesis Organisation ... 13

1.6 Summary.. 14

Chapter 2 - Background... 15

2.1 Introduction ... 15

2.2 Packet Classification Rulesets ... 16

2.3 Analysis of Software Approaches to Packet Classification............................. 17

2.3.1 Algorithmic Approaches... 18

2.3.2 Simulation Framework ... 24

 iv

2.3.3 Performance Results ... 25

2.3.4 Conclusions... 30

2.4 Deep Packet Inspection Systems ... 30

2.4.1 Snort.. 31

2.4.2 Current Fixed String Matching Approaches ... 32

2.4.3 Conclusions... 34

2.5 Hardware-Based Platforms.. 34

2.5.1 ASIC ... 35

2.5.2 FPGA .. 35

2.5.3 TCAM... 36

2.5.4 Conclusions... 38

2.6 Low Power Design .. 38

2.6.1 Types of Power Dissipation.. 39

2.6.2 Power Benchmarking.. 43

2.6.3 Low Power Design Techniques .. 44

2.7 Summary.. 47

Chapter 3 - Packet Classification Architectures .. 48

3.1 Introduction ... 48

3.2 Decision Tree-Based Packet Classification ... 49

3.2.1 Building a Decision Tree .. 51

3.2.2 Heuristics Used to Reduce Memory Usage .. 54

3.3 Algorithmic Modifications .. 56

3.3.1 Cutting Scheme... 57

3.3.2 Region Compaction .. 59

3.3.3 Rule Storage.. 62

3.4 Cut Selection ... 64

3.5 Memory Organisation.. 66

3.5.1 Ultra-Wide Memory Words.. 66

3.5.2 Reduced Width Memory Words ... 68

3.6 Packet Classification Engine ... 73

3.6.1 Architecture of Engine Using Ultra-Wide Memory Words.................... 74

3.6.2 Architecture of Engines Using Reduced Width Memory Words............ 77

3.7 Configuration of Multiple Engines Operating in Parallel................................ 82

3.7.1 Architecture of Packet Buffer ... 83

3.7.2 Architecture of Sorter Logic Block... 84

3.7.3 Architecture of Classifier Using Ultra-Wide Memory Words................ 85

 v

3.7.4 Architecture of Classifier Using Reduced Width Memory Words 87

3.8 Performance Results .. 89

3.8.1 Hardware Implementation Parameters.. 89

3.8.2 Memory Usage and Worst Case Number of Memory Accesses............. 91

3.8.3 Throughput vs. Power Consumption .. 94

3.8.4 Evaluation Against Prior Art .. 97

3.9 Summary of Contributions .. 100

Chapter 4 - Frequency Scaling Architecture.. 102

4.1 Introduction ... 102

4.2 Analysis of Real Traces... 103

4.2.1 Processing Needs .. 105

4.2.2 Classifier Utilisation ... 106

4.3 Methods for Reducing Power Consumption.. 107

4.3.1 Clock Gating/Turning Off Unused Processing Elements 107

4.3.2 Voltage/Frequency Scaling... 108

4.4 Adaptive Clocking Scheme ... 109

4.4.1 Method for Reducing Frequency Switching ... 110

4.4.2 Adaptive Clocking Unit Architecture ... 113

4.5 Low Power Architecture for Packet Classification 115

4.5.1 Hardware Implementation Parameters.. 115

4.5.2 Power Consumption.. 117

4.6 Performance Testing Using Synthetic Traces.. 122

4.6.1 Power Savings... 124

4.7 Summary of Contributions .. 126

Chapter 5 - String Matching Architecture ... 128

5.1 Introduction ... 128

5.2 String Matching Using Deterministic Finite Automaton............................... 129

5.3 Memory Reduction.. 131

5.3.1 DFA Memory Usage Observations... 132

5.3.2 Insertion of Default Transition Pointers ... 133

5.3.3 Algorithm for Building Search Structure.. 138

5.4 Memory Organisation and Hardware Architecture 142

5.4.1 Memory Layout .. 142

5.4.2 Hardware Accelerator Architecture .. 144

5.4.3 String Matching Engine Architecture ... 147

 vi

5.4.4 String Matching Scheduler Architecture .. 150

5.5 Performance Results .. 151

5.5.1 Characteristics of Snort Ruleset Used in Testing.................................. 151

5.5.2 Hardware Implementation Parameters.. 152

5.5.3 Transition Pointer Reduction .. 154

5.5.4 Throughput vs. Power Consumption .. 157

5.5.5 Evaluation Against Prior Art .. 158

5.6 Summary of Contributions .. 160

Chapter 6 – Conclusions and Future Work.. 161

6.1 Conclusions ... 161

6.1.1 Motivation for Proposed Research – A Summary 161

6.1.2 Summary of Thesis Contributions .. 162

6.1.3 Packet Classification... 162

6.1.4 Frequency Scaling... 164

6.1.5 String Matching .. 164

6.2 Future Work... 165

6.2.1 Multi-Match Packet Classification ... 166

6.2.2 Regular Expression Matching... 166

6.2.3 Reducing the Fixed String Matching Hardware Accelerator’s Power.. 167

Appendix A – Power Usage.. 168

Bibliography .. 170

 vii

ABSTRACT

Energy Efficient Hardware Accelerators for Packet Classification

and String Matching

Alan Kennedy

This thesis focuses on the design of new algorithms and energy efficient high

throughput hardware accelerators that implement packet classification and fixed

string matching. These computationally heavy and memory intensive tasks are

used by networking equipment to inspect all packets at wire speed. The constant

growth in Internet usage has made them increasingly difficult to implement at

core network line speeds. Packet classification is used to sort packets into

different flows by comparing their headers to a list of rules. A flow is used to

decide a packet’s priority and the manner in which it is processed. Fixed string

matching is used to inspect a packet’s payload to check if it contains any strings

associated with known viruses, attacks or other harmful activities.

The contributions of this thesis towards the area of packet classification are

hardware accelerators that allow packet classification to be implemented at core

network line speeds when classifying packets using rulesets containing tens of

thousands of rules. The hardware accelerators use modified versions of the

HyperCuts packet classification algorithm. An adaptive clocking unit is also

presented that dynamically adjusts the clock speed of a packet classification

hardware accelerator so that its processing capacity matches the processing needs

of the network traffic. This keeps dynamic power consumption to a minimum.

Contributions made towards the area of fixed string matching include a new

algorithm that builds a state machine that is used to search for strings with the aid

of default transition pointers. The use of default transition pointers keep memory

consumption low, allowing state machines capable of searching for thousands of

strings to be small enough to fit in the on-chip memory of devices such as

FPGAs. A hardware accelerator is also presented that uses these state machines to

search through the payloads of packets for strings at core network line speeds.

 viii

LIST OF FIGURES

Fig. 1.1. TCP/IP model showing packets being sent between end hosts through a router. 5

Fig. 1.2. Overview of the Internet architecture. ... 6

Fig. 2.1. Structure of rules used for packet classification. ... 16

Fig. 2.2. HiCuts decision tree (left) and its geometric representation (right). 19

Fig. 2.3. HyperCuts decision tree (left) and its geometric representation (right)............. 20

Fig. 2.4. Extended Grid-of-Tries with Path Compression. .. 21

Fig. 2.5. Recursive Flow Classification search structure. .. 22

Fig. 2.6. Tuple Space Search with Tuple Pruning. .. 23

Fig. 2.7. Memory needed for the search structures. ... 25

Fig. 2.8. Worst case number of memory accesses needed to classify a packet................ 26

Fig. 2.9. Energy used building the search structure. .. 27

Fig. 2.10. Average energy needed to classify a packet. ... 28

Fig. 2.11. Total number of packets classified in one second. .. 29

Fig. 2.12. Charging and discharging of a capacitive load.. 39

Fig. 2.13. Switching characteristics of a CMOS inverter. ... 40

Fig. 2.14. Static vs. dynamic power. .. 42

Fig. 2.15. Implementation of a parallel and pipelined three input adder. 45

Fig. 3.1. Cuts performed to the root node of a decision tree.. 52

Fig. 3.2. Cuts performed to the internal node of a decision tree. 53

Fig. 3.3. Traversing a decision tree to find a matching rule... 54

Fig. 3.4. Heuristics used by HyperCuts to reduce memory consumption........................ 55

Fig. 3.5. Region division with and without region compaction. 60

Fig. 3.6. Compacting of a region through pre-cutting.. 62

Fig. 3.7. Encoding scheme used for source and destination IP address. 63

Fig. 3.8. Layout of information needed to match a packet header to a rule..................... 64

Fig. 3.9. Architecture of cut selection logic. .. 65

Fig. 3.10. Layout of root/internal node when using ultra-wide memory. 66

 ix

Fig. 3.11. Layout of leaf node when using ultra-wide memory. 67

Fig. 3.12. Layout of root node cut information when using reduced width memory. 69

Fig. 3.13. Layout of root node pointers when using reduced width internal memory. 69

Fig. 3.14. Layout of internal node when using reduced width internal memory. 70

Fig. 3.15. Layout of leaf node when using reduced width internal memory. 70

Fig. 3.16. Layout of root node pointers when using reduced width external memory. ... 71

Fig. 3.17. Layout of internal node when using reduced width external memory............. 71

Fig. 3.18. Layout of leaf node when using reduced width external memory................... 72

Fig. 3.19. Block diagram of the architecture used by the packet classification engines. . 73

Fig. 3.20. Operation of engine using ultra-wide memory words. 74

Fig. 3.21. Architecture of tree traverser using ultra-wide memory words. 75

Fig. 3.22. Architecture of leaf node searcher using ultra-wide memory words. 76

Fig. 3.23. Operation of engine using reduced width internal memory............................. 77

Fig. 3.24. Architecture of tree traverser using reduced width internal memory. 78

Fig. 3.25. Architecture of leaf node searcher using reduced width internal memory. 79

Fig. 3.26. Operation of engine using reduced width external memory............................ 80

Fig. 3.27. Architecture of leaf node searcher using reduced width external memory. 81

Fig. 3.28. Architecture of packet buffer used by packet classifiers. 84

Fig. 3.29. Architecture of sorter logic block used by packet classifiers. 85

Fig. 3.30. Architecture of hardware accelerator using ultra-wide memory words........... 86

Fig. 3.31. Architecture of hardware accelerator using reduced width memory words. ... 88

Fig. 3.32. Power consumed by packet classifiers implemented using Cyclone III. 95

Fig. 3.33. Power consumed by packet classifiers implemented using Stratix III. 96

Fig. 4.1. Throughput of a 24-hour trace from the CENIC HPR backbone link. 104

Fig. 4.2. Percentage of classifier idle time when classifying packets from the CENIC trace. 106

Fig. 4.3. Switching sequences with all states used... 112

Fig. 4.4. Switching sequences with selected states used.. 112

Fig. 4.5. Architecture of the adaptive clocking unit... 113

Fig. 4.6. Architecture of low power packet classifier. ... 115

Fig. 4.7. Power used by the ASIC implementation of the low power classifier. 118

Fig. 4.8. Power used by the Cyclone III implementation of the low power classifier. .. 119

Fig. 4.9. Power used by the Stratix III implementation of the low power classifier...... 120

Fig. 4.10. Throughput of the synthetic 2.5 Gbps, 10 Gbps and 40 Gbps packet traces. 122

Fig. 4.11. ASIC power usage when classifying packets from synthetic traces.............. 124

Fig. 4.12. Cyclone III power usage when classifying packets from synthetic traces..... 125

Fig. 4.13. Stratix III power usage when classifying packets from synthetic traces. 126

 x

Fig. 5.1. Aho-Corasick state machine showing transition pointers and matched states. 130

Fig. 5.2. Sequence of strings that will be traversed if text (hishersqhhe) is searched.... 131

Fig. 5.3. Use of default transition pointers to states at a depth of one. 134

Fig. 5.4. Use of default transition pointers to states at a depth of two. 135

Fig. 5.5. Use of default transition pointers to states at a depth of three. 137

Fig. 5.6. Recording a state’s depth, character value and forward pointing transitions. . 139

Fig. 5.7. Recording a state’s non-forward pointing transitions...................................... 140

Fig. 5.8. Recording the strings matched if a state is entered.. 141

Fig. 5.9. Memory organisation of information needed to store a state. 142

Fig. 5.10. Possible positioning of the state types in memory and their bit size. 143

Fig. 5.11. Organisation of a lookup table memory word. .. 144

Fig. 5.12. Architecture of a string matching block. ... 145

Fig. 5.13. Architecture of the string matching engine.. 148

Fig. 5.14. Architecture of the string matching scheduler. .. 150

Fig. 5.15. Distribution of string lengths for unique strings found in Snort ruleset. 151

Fig. 5.16. Throughput of the string matchers when using different sized rulesets. 156

Fig. 5.17. Power consumed by Cyclone III implementation of the string matcher. 157

Fig. 5.18. Power consumed by Stratix III implementation of the string matcher. 158

Fig. A. 1. Power usage of ASIC low power classifier using 5,000 rules. 168

Fig. A. 2. Power usage of ASIC low power classifier using 25,000 rules. 168

Fig. A. 3. Power usage of Cyclone III low power classifier using 5,000 rules.............. 169

Fig. A. 4. Power usage of Stratix III low power classifier using 5,000 rules. 169

Fig. A. 5. Power usage of Stratix III low power classifier using 25,000 rules. 169

 xi

LIST OF TABLES

Table 2.1. Sample ruleset containing five rules. .. 18

Table 3.1. Sample ruleset containing nine rules. ... 51

Table 3.2. Maximum number of cuts allowed by the cutting scheme. 59

Table 3.3. FPGA resource utilisation for packet classification hardware accelerators.... 90

Table 3.4. Memory usage (bits) and worst case number of memory accesses. 92

Table 3.5. Performance comparison of packet classification hardware accelerators. 98

Table 4.1. Statistics on packet sizes in the CENIC HPR backbone trace. 104

Table 4.2. Clock speed associated with each state... 110

Table 4.3. FPGA memory and logic utilisation of low power packet classifier. 117

Table 5.1. FPGA resource utilisation for string matching hardware accelerators. 152

Table 5.2. Reduction in number of transition pointers stored in states. 154

Table 5.3. Performance comparison of string matching hardware accelerators. 159

 xii

LIST OF ACRONYMS

ACL – Access Control List

ACU – Adaptive Clocking Unit

ASCII – American Standard Code for Information Interchange

ASIC – Application Specific Integrated Chip

CENIC – Corporation for Education Network Initiatives in California

CMOS – Complementary Metal–Oxide–Semiconductor

CS – Connecting State

DDR2 – Double Data Rate 2

DFA – Deterministic Finite Automaton

DPI – Deep Packet Inspection

DRAM – Dynamic Random Access Memory

EGT-PC – Extended Grid-of-Tries with Path Compression

FPGA – Field Programmable Gate Array

FW – Firewall

Gbps – Gigabits per second

HDL – Hardware Description Language

HPR – High Performance Research

IPC – Internet Protocol Chain

IPTV – Internet Protocol Television

ISP – Internet Service Provider

LPM – Longest Prefix Match

 xiii

LSB – Least Significant Bit

LUT – Lookup Table

Mbps – Megabits per second

Mpps – Million packets per second

MSB – Most Significant Bit

MTU – Maximum Transmission Unit

NAT – Network Address Translation

NLANR – National Laboratory for Applied Network Research

OC – Optical Carrier

OSI – Open System Interconnect

PE – Processing Element

PLL – Phase Lock Loop

QoS – Quality of Services

RAM – Random Access Memory

RFC – Recursive Flow Classification

RISC – Reduced Instruction Set Computer

RTL – Register Transfer Level

SDRAM – Synchronous Dynamic Random Access Memory

SRAM – Static Random Access Memory

TCAM – Ternary Content Addressable Memory

TCP – Transmission Control Protocol

TCP/IP – Transmission Control Protocol/Internet Protocol

TSMC – Taiwan Semiconductor Manufacturing Company

TSS – Tuple Space Search

UDP – User Datagram Protocol

VCD – Value Change Dump

VoIP – Voice over Internet Protocol

VPN – Virtual Private Network

 xiv

PUBLICATIONS AND PATENTS ARISING FROM WORK

Published Papers

D. Bermingham, A. Kennedy, X. Wang, and B. Liu, “Architectures for the

Whirlpool Hashing Algorithm,” In Proc. of the China-Ireland International

Conference on Information and Communications Technologies (CIICT),

Hangzhou, 8-19 Oct. 2006, pp.201-205.

D. Bermingham, A. Kennedy, X. Wang, and B. Liu, “A Survey of Network

Processor Workloads,” In Proc. of the China-Ireland International Conference

on Information and Communications Technologies (CIICT), Dublin, 28-29 Aug.

2007, pp.354-361.

A. Kennedy, D. Bermingham, X. Wang, and B. Liu, “Power Analysis of Packet

Classification on Programmable Network Processors,” In Proc. of the IEEE

International Conference on Signal Processing and Communications (ICSPC),

Dubai, 24-27 Nov. 2007, pp.1231-1234.

A. Kennedy, X. Wang and B. Liu, “Energy Efficient Packet Classification

Hardware Accelerator,” In Proc. of the 22nd IEEE International Parallel &

Distributed Processing Symposium (IPDPS), Florida, 14-18 April 2008.

A. Kennedy, X. Wang, Z. Liu and B. Liu, “Frequency Scaling for

Multidimensional Packet Classification,” In Proc. of the China-Ireland

International Conference on Information and Communications Technologies

(CIICT), Beijing, 26-28 Sept. 2008, pp. 383-387.

A. Kennedy, X. Wang, Z. Liu and B. Liu, “Low Power Architecture for High

Speed Packet Classification,” In Proc. of the 4th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems (ANCS), San José, 6-

7 Nov. 2008, pp. 131-140.

 xv

A. Kennedy, Z. Liu, X. Wang and B. Liu, “Multi-Engine Packet Classification

Hardware Accelerator,” In Proc. of the 19th International Conference on

Computer Communications and Networks (ICCCN), San Francisco, 2-6 Aug.

2009.

Z. Liu, A. Kennedy, O. Ormond, X. Wang, “Power-Efficient Packet Classifier for

Next-Generation Routers”, European Research Consortium for Informatics and

Mathematics (ERCIM), News, No. 79, Oct. 2009.

A. Kennedy, X. Wang, Z. Liu and B. Liu, “Ultra-High Throughput String

Matching for Deep Packet Inspection,” In Proc. of the Conference on Design,

Automation and Test in Europe (DATE), Dresden, 8-12 March 2010.

Patent Application

Patent application: Adaptive clocking system for a packet classifier. UK Patent

application reference number: D07-396-27GB. Applicants: Alan Kennedy,

Xiaojun Wang and Zhen Liu.

1

Chapter 1 - Introduction

1.1 Motivation

The increasing growth in Internet usage has been aided by its ease of access

through a wide range of devices such as desktops, notebooks, netbooks, mobile

phones, portable multimedia players and even watches, putting a real strain on the

networking equipment needed to inspect and process the resultant traffic. A

survey carried out by Internet World Stats [1] shows how this ease of access has

allowed Internet penetration to reach 24.7% of the world’s population as of June

2009, with the number of Internet users growing by 462% between December

2000 and June 2009. This survey also showed that 13.65% of Internet users are

from the USA, which is an important statistic when it is considered that the total

amount of energy used in the year 2000 by various networking devices in the

USA equated to the yearly output of a typical nuclear reactor unit [2]. This would

place the current amount of energy used by networking devices worldwide to be

the same as the yearly output of 17 typical nuclear reactor units. Power

consumption should therefore be a key concern when designing any new

networking equipment for the purpose of processing the ever-increasing amount

of network traffic. This is in order to slow the rapidly growing costs of running

the networking equipment and to reduce their carbon footprint.

Analysis in [3] demonstrated that up to 50% of an Internet Service Provider’s

(ISP) maintenance costs are power related, including the electricity consumed by

the routers and the corresponding cooling systems and so on. A company that

manufactures power efficient networking equipment would therefore have a

distinct advantage over their competitors when selling to Internet Service

Providers as they could reduce their maintenance costs. Networking equipment

Chapter 1- Introduction

 2

used to process network traffic such as high-end routers like the Cisco ASR 9010

router can consume up to 7,600 Watts, with each line card in the router consuming

up to 685 Watts [4]. Due to their large integration scale and high speed, network

processors deployed on a router’s line card can use a large percentage of its power

budget. These network processors can come in a wide range of configurations,

with varying numbers of processing engines. These processing engines can run at

speeds in the GHz range, consuming large amounts of power. The EZchip NP-1,

for example, contains 64 processing engines [5] while the Intel IXP2800 contains

16 and has a peak power consumption of 30W [6]. Each line card on a router

typically contains two network processors for ingress and egress processing, and a

router can contain multiple line cards.

These network processors are used to process packets as they pass through the

network, carrying out applications such as packet fragmentation and reassembly,

queue management, header manipulation, encryption, forwarding, classification

and pattern matching. The growing number of applications and services that need

to be carried out, along with the increase in line rates, have placed the network

processor under increased pressure. Relieving this pressure through the addition

of extra processing capacity is not an easy task due to factors such as tight power

budgets and silicon limitations. Ramping up clock speeds to gain extra

performance is difficult due to physical limitations in the silicon used to

manufacture these devices, while increasing the number of processing cores used

to process the traffic can cause difficulty when it comes to writing the software

needed to control the network processor. Both these approaches can also lead to

large increases in power consumption due to the extra heat generated by

increasing the clock speeds and the extra transistors needed to increase the

number of processing cores.

The use of dedicated hardware accelerators designed to carry out the most

computationally heavy tasks on a network processor can help to reduce power

consumption while increasing processing capacity. This is because a hardware

accelerator can be designed to have a smaller transistor footprint than that of the

general purpose processors used as processing engines in multi-core network

processors. Hardware accelerators can also process greater amounts of data than a

Chapter 1- Introduction

 3

general purpose processor while running at much slower clock speeds as they are

typically optimised to carry out a specific task. This reduction in clock speed and

transistor count will lead to large savings in power consumption.

Offloading the most frequently occurring and computationally heavy tasks from a

network processor’s processing engines will help to prevent it from becoming a

traffic bottleneck on a network, allowing for increases in achievable line rates. It

will also leave the processing engines free to carry out new emerging services and

protocols as they are introduced. These hardware accelerators can be placed

onboard a network processor or as an external processing unit.

An explanation of the network architecture currently used by the Internet is given

in Section 1.2. Section 1.3 outlines existing and emerging traffic processing

bottlenecks in this architecture, which the work presented in this thesis removes

through the implementation of energy efficient high throughput hardware

accelerators. This section also explains the technical challenges that make the

removal of these bottlenecks a difficult task. The research objectives of the thesis

are stated in Section 1.4, along with the main contributions made. The thesis

structure is given in Section 1.5, with Section 1.6 summarising.

1.2 Network Overview

The architecture of the communications network used by the Internet consists of

end hosts, which are devices such as desktop computers, notebooks, mobile

phones, etc. These end hosts communicate with each other through a web of

communication mediums such as fibre optic cables, satellites and wire cables. The

information sent between these end hosts is broken into pieces of data known as

packets. These packets are routed through the various mediums in the

communication network using devices known as routers. The communications

network that these packets are sent across is governed by written standards

documents known as protocols. These protocols are used to ensure the correct and

efficient interoperation of the heterogeneous groups of computer networks using

the Internet. They detail all aspects of communication such as the format of

packets and how these packets should be handled when received. The architecture

of the communications network is divided up into several distinct layers, with

Chapter 1- Introduction

 4

each layer using one or more different protocols. A protocol suite is formed when

the protocols from different layers are combined. The communications network

was originally divided into seven layers before the introduction of the Internet.

This was known as the Open System Interconnect (OSI) Reference Model [7].

The Internet replaced this with a five-layered model known as the Transmission

Control Protocol/Internet Protocol (TCP/IP) model. Each layer is described from

top to bottom as follows, where a layer provides a service to the layer above it and

uses the service of the layer below it.

• Layer 5 is the highest layer and is known as the Application Layer. This layer

represents the reason for communicating and is where the data being

transferred is presented. It is used for applications such as file transfers,

emailing or web browsing. It is the layer that the user most closely interacts

with and is responsible for implementing the protocols that were carried out

by the presentation and session layers. These layers were included in the OSI

model but no longer exist in the TCP/IP model.

• Layer 4 is known as the Transport Layer and it is used to establish, manage

and end a connection between hosts. It is also used to help make sure that

packets arrive in the correct order and are error free. The transport layer is

used to decide if packets should be sent using a Transmission Control Protocol

(TCP) or User Datagram Protocol (UDP). TCP can guarantee data integrity

through the use of a checksum. It also guarantees delivery as it will retransmit

packets until the receiver acknowledges that it has received them. This makes

TCP ideal for services such as the sending of email or file transfer, where the

delivery of all packets is essential. UDP also guarantees data integrity through

the use of a checksum, but does not guarantee the delivery of a packet. For

this reason UDP is used for sending information where the non-delivery of a

few packets is not important. Examples include media applications such as

Voice over Internet Protocol (VoIP) or Internet Protocol Television (IPTV).

• Layer 3 is the Internet Layer, which is used to determine how packets should

be sent from the source network to the destination network through the

handling of the routing. This is done by sending packets from one router to the

next until the final network is reached.

Chapter 1- Introduction

 5

P2P1 P3P4P5P6P7P8

P6Data
TCP/UDP

Header

P6Data
TCP/UDP

Header

IP

Header

P6Data
TCP/UDP

Header

IP

Header

P6Data
TCP/UDP

Header

P6Data
TCP/UDP

Header

IP

Header

P6Data
TCP/UDP

Header

IP

Header

P6Data
TCP/UDP

Header

IP

Header

P6Data
TCP/UDP

Header

P6Data
TCP/UDP

Header

IP

Header

P2P1 P3P4P5

P6Data
TCP/UDP

Header

Ethernet

Header

Ethernet

Header

Ethernet

Header

IP

Header

Ethernet

Header

IP

Header

P6

Fig. 1.1. TCP/IP model showing packets being sent between end hosts through a router.

• Layer 2 is called the Data Link Layer. It is the layer responsible for sending

information between the various nodes in a communication network through

the use of frames. This may involve the breaking up of large packets into

multiple frames.

• Layer 1 is the lowest layer and is known as the Physical Layer. It provides

electrical, optical and mechanical details about how the information should be

sent across the network as bits using the various communication mediums.

An example of how the TCP/IP model can be used to send information from one

end host to another is shown in Fig. 1.1. This model is based on the end-to-end

design principles proposed by Saltzer et. al. [8]. They state that the majority of the

communication protocols should take place at the end points of a communication

system or as close to the end points as is possible. This is because the resources at

the centre of the communications system will be shared by many end hosts and

will therefore not have as much time to process the information being transmitted

as the resources near the edge of the system, which are not so heavily shared.

The end hosts are where most of the processing on a packet occurs. This means

that they require access to the full content of the packets being sent and received.

This content includes the packet header and payload (the data being sent)

information. A packet being sent by an end host will pass through an edge

network where the packets sent by all end hosts in this network gather at an edge

router. These edge networks can operate at Gigabit rates, with examples of such

networks including university campuses or large company headquarters. The high

rates at which these networks operate and a lack of processing capacity typically

Chapter 1- Introduction

 6

Fig. 1.2. Overview of the Internet architecture.

only give an edge router time to inspect a packet’s header, allowing it to forward

packets and implement vital tasks such as firewalls and Quality of Services (QoS).

A packet can be sent from the edge router to an end host in the same edge

network, from an edge network to another edge network or more often to the core

of the network where it is processed by core routers. The core of a network

usually operates at link speeds of 10 Gigabits per second (Gbps), with 40 Gbps

links also in use. At these speeds there is very little time to process a packet as it

passes through a core router. A core router will typically not have time to even

inspect the entire packet header and will only have time to inspect the destination

IP address, allowing the router to forward a packet to its next hop. Fig. 1.2 shows

the topology of the end-to-end communications network used by the Internet.

1.3 Packet Processing Bottlenecks

The work presented in this thesis centres around the design and implementation of

energy efficient hardware accelerators that can relieve a network processor’s

processing engines of some of the most power hungry and computationally hard

networking tasks. This is done to reduce power consumption and to increase a

network processor’s throughput, thus preventing traffic bottlenecks. A network

processor has to carry out many computationally heavy tasks such as packet

fragmentation and queue management. The two tasks targeted for hardware

acceleration in this thesis are packet classification and fixed string matching,

which is used in Deep Packet Inspection (DPI). These tasks are chosen because

Chapter 1- Introduction

 7

they must be carried out on every packet and require search structures that use

large amounts of memory, making them power hungry.

1.3.1 Packet Classification

Single-match, multi-field packet classification is the process of mapping a packet

to one of a finite set of flows or categories using information from the packet’s

header. This information includes the source and destination IP addresses, which

are matched using longest prefix matching, the source and destination port

numbers, which are matched using range matching and the protocol number,

which can be an exact match or wildcard. These fields are extracted from the

Transport and Internet Layers of a packet’s header. Packets belonging to the same

flow match a predefined rule and are processed in the same way by the router’s

line card. The classifier will select the flow with the highest priority in the case

where there are multiple rule matches. This type of packet classification usually

takes place at edge routers, implementing a plethora of services such as:

• Firewalls, which are used to protect the end hosts of an edge network by

blocking incoming and outgoing packets whose header information does not

comply with policy. This helps to prevent harmful activity such as the spread

of viruses and worms. It can also be used by an ISP to block customers from

accessing prohibited websites.

• Traffic monitoring, which allows an ISP to monitor an end host’s network

usage, allowing it to bill appropriately.

• Traffic shaping, where some packets are delayed and others are allowed to

pass through quickly. This can be used by an ISP to give priority to customers

who pay more for a higher bandwidth and to allow time-sensitive traffic such

as VoIP and IPTV packets to pass through quickly.

• Traffic policing, which can be used by an ISP to prevent end hosts from

exceeding their maximum bandwidth limit.

• Network Address Translation (NAT), allowing multiple computers on an edge

network to share a single IP address. The NAT system will rewrite the

packet’s header if it matches a certain flow.

Chapter 1- Introduction

 8

• Load balancing, where large websites increase performance by running copies

of their website on different servers. Packets classification is used to direct

packets in a particular flow to the server with the smallest load.

The process of packet classification is an NP-hard problem, which is further

complicated by the fact that all packets entering a router must be processed at wire

speed. The large number of services being provided by network providers makes

this problem even more difficult as rulesets containing thousands of rules are

needed. Software approaches to packet classification use various algorithms [9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19] which are run on the processing engines of

multi-core network processors. The most common hardware approaches at high

throughput packet classification include the use of power hungry memories such

as Ternary Content Addressable Memory (TCAM) [20].

1.3.2 Deep Packet Inspection

Network intrusion detection/prevention systems used for the deterrence of

malicious attacks depend heavily upon DPI. DPI involves searching a packet’s

header and payload against thousands of rules to detect a possible attack. The end-

to-end architecture of the Internet means that the processing of any Application

Layer data such as the packet content can only take place at end hosts and edge

routers. This is because core routers do not have the processing capacity needed to

inspect the entire content of a packet at wire speed. The lack of intrusion detection

systems in a network leaves end hosts particularly vulnerable to attacks from

malware, which is malicious software that is designed to infiltrate a computer

without the owner’s permission. It can be used for many purposes such as the

destroying of files on a hard disk or the collection of passwords and credit card

details. End hosts are also vulnerable to Internet Bots, used to carry out tasks such

as the spreading of spam email.

The lack of intrusion detection systems in a network also leaves it vulnerable to

viruses or worms. Slammer, the fastest spreading worm in history, infected over

75,000 hosts in only a 10-minute period [21], doubling in size every 8.5 seconds.

The worm did not contain malicious content but was designed to overload a

network, slowing down Internet speeds and even causing the loss of connection

Chapter 1- Introduction

 9

for some end hosts. Another worm that caused mass damage by Denial of Service

attacks was CodeRed, infecting 359,000 hosts in 14 hours [22]. With

viruses/worms spreading at these speeds it would be unrealistic to expect the end

hosts of a network to update their systems to new threats due to the slow time that

it would take to react to the rapid attack. There is also the high cost in both the

maintenance and lost work time due to updating the system.

The rules used for DPI in an intrusion detection system such as Snort [23] consist

of two parts. The first part is a header rule, which involves performing 5-tuple

multi-match packet classification on a packet’s header. Multi-match packet

classification differs from single-match packet classification described in Section

1.3.1 in that it will return all matching rules rather than the rule with the highest

priority. The second part is a content rule, where a specific string or strings must

be searched for in a packet’s payload at given locations. Research in [24] shows

that, for Snort, the fraction of time that network intrusion detection spends finding

these strings on real traces is between 40-70%, using 60-80% of the instructions

executed. These strings can be searched for using regular expression matching,

fixed string matching, or both. The area of multi-match packet classification

contains many solutions [25, 26, 27], with hardware accelerators reporting

throughputs of up to 10 Gbps. There has also been much research done in the area

of regular expression matching [28, 29, 30, 31, 32, 33, 34, 35], with

implementations reporting throughputs of up to 5 Gbps.

The main aim of this thesis is to design hardware accelerators for the

computationally heavy tasks of single-match, multi-field packet classification and

fixed string matching. The work presented in this thesis is not therefore concerned

with the problems of multi-match classification and regular expression matching,

which are required to fully implement DPI. Any reference to packet classification

in future sections will refer to single-match, multi-field packet classification,

while any reference to string matching will refer to fixed string matching.

1.3.3 Technical Challenges

There are many challenges when implementing energy efficient packet

classification and string matching hardware accelerators. These problems include

Chapter 1- Introduction

 10

the low amount of processing time available to process packets and the large

amounts of memory needed to store search structures. It is not possible to process

packets at core network line speeds, which can reach 40 Gbps, by increasing clock

speeds alone. Hardware accelerators designed to meet these speeds would need to

operate in the GHz range if a single processing engine was used. These speeds are

not possible on current state of the art devices such as Field Programmable Gate

Arrays (FPGA), which typically run at a few hundred MHz. Running a hardware

accelerator at these speeds would also have massive power implications due to

large dynamic power consumption. It is therefore necessary to design more

optimized hardware accelerators capable of processing multiple packets in parallel.

The search structures that these hardware accelerators use must be as compact as

possible, using up only small amounts of memory. This is because devices used

for implementing hardware accelerators, such as high-end FPGAs, do not contain

more than a few MB of internal memory. It is important that search structures

should be able to fit inside this internal memory to prevent the need for external

memory. The use of external memory would drastically decrease the performance

of a hardware accelerator, while adding extra power consumption. Specific packet

processing tasks also have their own unique technical challenges:

• Currently packet classification is most commonly implemented on edge

routers, where line rates do not typically exceed speeds of a few Gbps and

rulesets do not usually contain more than a thousand rules [12, 36]. It is

anticipated, however, that these rulesets will grow to contain tens of thousands

of rules as services move into the network core [36]. This means that any new

hardware accelerators designed for packet classification should be able to

classify packets for rulesets containing tens of thousands of rules at line

speeds in excess of 40 Gbps. At these speeds a classifier must be able to

classify a packet in less than 8 ns. This is in order to achieve a maximum

throughput in excess of 125 Million packets per second (Mpps) in the worst

case when 40 byte packets arrive back-to-back.

• One of the most computationally heavy tasks in networking is the task of

searching for strings in a packet’s payload. This is because rulesets used for

DPI such as Snort will typically contain several thousand strings that must be

Chapter 1- Introduction

 11

searched for at wire speed. These strings can come in a variety of lengths,

ranging from a few bytes to a couple of hundred bytes. Any hardware

accelerator implementing string matching must be able to search for these

strings at a fixed rate to guarantee a specific bandwidth, regardless of the

string length. This will leave as little as 0.2 ns to inspect each byte of a packet

as line rates reach 40 Gbps.

1.4 Contributions

As previously mentioned, the main focus of this thesis is on the design of high

throughput and energy efficient hardware accelerators for packet classification

and string matching. The contributions in these areas are described in detail in

Chapters 3, 4 and 5. These contributions are summarised below.

Packet Classification

The contributions towards the field of packet classification include new multi-

engine hardware accelerator architectures capable of classifying packets at line

speeds in excess of 40 Gbps, while using rulesets that contain tens of thousands of

rules. These hardware accelerator architectures allow packet classification to be

used at the core of the network, helping to improve security. They implement

modified versions of the HyperCuts [10] packet classification algorithm, which

breaks a ruleset into different groups, with each group containing a small number

of rules that can be searched linearly. A decision tree is used to guide a packet

based on its header values to the correct group to be searched. The architectures

are divided into two different types, with one type using ultra-wide memory

words, making it ideally suited to classifying packets for rulesets that contain

many wildcard rules. This is because the ultra-wide memory words can be used to

store a large number of rules that can be retrieved from memory and searched in a

single clock cycle. The number of rules in each group can therefore be quite large,

which is ideal for rulesets containing many wildcard rules as they are hard to

break up into small groups.

A second type of hardware accelerator is also presented that uses reduced width

memory words, allowing for higher clock speeds and throughputs. It is ideally

suited to rulesets that do not contain a large number of wildcard rules. This is

Chapter 1- Introduction

 12

because rulesets need to be divided into groups that contain only a small number

of rules, due to the fact that the narrow memory words can only search a couple of

rules on each clock cycle. All architectures use multiple packet classification

engines, which work in parallel using a shared memory. The use of multiple

engines allows for the option of breaking problem rulesets containing many

wildcard rules into different groups, with a separate decision tree built for each

group. Each decision tree can then be searched in parallel using the multiple

packet classification engines. The splitting of problem rulesets can help to

improve storage efficiency and reduce the number of clock cycles needed to

classify a packet. This is because rules with wildcard fields in the same location

can be grouped together, allowing for better cutting efficiency as the non-wildcard

ranges can be used to split the rules into small groups that can be easily searched.

Another contribution to the field of packet classification is an adaptive clocking

unit designed specifically for use with packet classification hardware accelerators.

The adaptive clocking unit dynamically changes the clock frequency of the packet

classification hardware accelerator to match fluctuations in traffic on a router’s

line card. It does this with the help of a scheme developed to keep clock

frequencies at the lowest speed capable of servicing the line card, while keeping

frequency switches to a minimum. Line rates are monitored by capturing the

fields from a packet’s header needed for packet classification in a small buffer and

using the number of packets buffered to decide the appropriate clock frequency.

This scheme has been tested extensively using real packet traces, with simulation

results showing that power savings of between 14-88% can be made when using

the adaptive clocking unit rather than a fixed clock speed.

String Matching

The main contributions to the field of string matching are a new multi-pattern

matching algorithm and a hardware accelerator that can search for the fixed

strings contained within a DPI ruleset at a guaranteed rate of one character per

cycle, independent of the number of strings or their length. The algorithm is based

on the Aho-Corasick [37] string matching algorithm, with the modifications made

resulting in a memory reduction of over 98% on strings tested from the Snort

ruleset. This allows the search structures needed for identifying thousands of

Chapter 1- Introduction

 13

strings to be small enough to fit in the on-chip memory of an FPGA. Combined

with a simple architecture for hardware, this leads to high throughput and low

power consumption. The hardware implementation uses multiple string matching

engines working in parallel to search through packets. It can reach a throughput of

over 40 Gbps when implemented on a Stratix III FPGA and over 10 Gbps when

implemented on the low power Cyclone III FPGA.

1.5 Thesis Organisation

The remainder of this thesis is organised as follows. Chapter 2 gives background

information into the area of packet classification, explaining the structure of the

rulesets used to classify packets. It then gives an overview of the most popular

algorithms used for packet classification. An extensive performance analysis of

these algorithms is then carried out in order to identify the algorithms most

suitable for hardware acceleration. A description of the Snort ruleset used for DPI

is given next, followed by an overview of the most effective techniques employed

for string matching. An explanation of the hardware platforms that can be used to

speed up packet classification and string matching is also given. This is followed

by an explanation of the main causes of power consumption in these hardware

platforms and an analysis of low power design techniques that can be used to

reduce power consumption.

Chapter 3 describes the architecture of the hardware accelerators designed for

packet classification, giving detailed descriptions of the cutting schemes used to

build the search structures, and their memory organisation. Performance results

for the hardware accelerators are then given, showing their power consumption,

throughput and memory usage. A comparison with state of the art commercial

approaches and prior art is also given.

Chapter 4 explains the motivation for the use of frequency scaling and presents

the results of an analysis on the bandwidth utilisation of real backbone traces.

Details on the frequency switching scheme developed are then given, along with

an explanation of the adaptive clocking unit architecture. The power savings made

by using the adaptive clocking unit to clock a packet classifier rather than a fixed

clock speed are then presented.

Chapter 1- Introduction

 14

Chapter 5 presents the new multi-pattern matching algorithm and hardware

accelerator. It also gives details on how the search structure built by this algorithm

can be stored in a memory efficient manner. Details of the hardware accelerator

architecture are also given, along with performance results. These performance

results show the memory reductions made by the new algorithm, throughput of

the hardware accelerator, power consumption and a comparison of the work with

prior art.

Chapter 6 summarises the results achieved in Chapters 3, 4 and 5. It also gives

directions for future research ideas.

1.6 Summary

A real strain has been put on the networking devices used to process packets as

they pass through a network. This is due to the ever-increasing growth in Internet

usage and the rising number of applications that need to be provided at the core of

a network to ensure QoS and the protection of end hosts from security threats. The

increased workload has lead to a large increase in the amount of power used by

networking equipment. Two of the applications that need to be provided by

networking devices are the computationally heavy tasks of packet classification

and string matching used to implement DPI. These applications have to process

packets at wire speed, which is not an easy task, with line rates reaching up to 40

Gbps. The work in this thesis helps to remove these packet processing bottlenecks

through the implementation of two energy efficient high throughput hardware

accelerators for packet classification and one for string matching. An adaptive

clocking unit is also presented that dynamically adjusts the clock speed to a

packet classifier so that its processing capacity matches the processing needs of

the network traffic on a router’s line card, reducing power consumption.

15

Chapter 2 - Background

2.1 Introduction

The areas of packet classification and string matching are complex and

challenging fields with a wide range of solutions. This chapter gives a technical

overview of these fields in order to provide context for the research presented in

the following chapters. It begins with an explanation of the rulesets used for

packet classification. This is followed by a detailed analysis of five of the most

popular packet classification algorithms. These algorithms are implemented in C

code and simulated on a SA1100-StrongARM Reduced Instruction Set Computer

(RISC) processor similar to the type used as processing cores in many of today’s

programmable network processors. Their performance is compared in terms of the

amount of memory needed to store their search structure, worst case number of

memory accesses needed to classify a packet, energy used building the search

structure, average energy needed to classify a packet and their average

throughput. The algorithms are tested using rulesets of different sizes. These tests

are carried out in order to determine which algorithm would be best suited to

hardware acceleration and the ability of these algorithms to scale, allowing for the

handling of rulesets containing tens of thousands of rules.

An explanation of the rulesets used in DPI is then given, along with a brief

description of some of the most commonly used approaches at implementing the

task of string matching, which is needed for DPI. A description of the hardware

platforms that can be used to implement hardware accelerators aimed at packet

classification and string matching is also given, stating their advantages and

disadvantages. The types of power dissipation that can occur in digital circuitry

and their causes are also explained, as well as a method for power benchmarking.

Methods for the design of hardware accelerator architectures with reduced power

consumption are also discussed.

Chapter 2- Background

 16

Fig. 2.1. Structure of rules used for packet classification.

2.2 Packet Classification Rulesets

A packet classification ruleset is used to sort packets into flows, with a flow

obeying at least one rule in a ruleset. The fields most commonly used in a packet

header to perform multi-dimension packet classification are the source IP address,

destination IP address, protocol number (all taken from the Internet Layer of the

TCP/IP model), source port and destination port (both taken from the Transport

Layer of the TCP/IP model). Packet classifiers that only use these fields to

classify packets are stateless, which means that they treat each packet in isolation

and have no memory of previous packets. This is in contrast to stateful packet

classifiers which keep track of the state of network connections.

Fig. 2.1 shows an example of two rules, with rule 1 showing the format of a

typical rule and rule 2 showing the format of a rule where all fields are wildcards,

meaning that all packet headers would return a match. The source and destination

IP addresses are 32-bit numbers that are matched using prefix matching. Each IP

address is usually stored in a rule using four 8-bit numbers and a 6-bit mask.

These four 8-bit numbers are concatenated to form the 32-bit IP address. The

mask is used to specify the number of Most Significant Bits (MSB) that must be

an exact match to the corresponding bits in the packet header to record a match.

The remaining Least Significant Bits (LSB) are wildcard bits, meaning that the

corresponding bits in the packet header can be any value and still record a match.

The source and destination port numbers use range matching, with each port

number in a rule stored using two 16-bit numbers, representing the minimum and

maximum range values. A packet will record a match for these fields if its port

Chapter 2- Background

 17

numbers are within these ranges. The final field used is the protocol number,

which can be an exact match or wildcard. Each rule will require eight bits to

specify the protocol number and one bit to state if the corresponding field in the

packet header must match exactly or is a wildcard, meaning that any value will

return a match.

Due to security and confidentiality issues it is difficult to obtain access to real

rulesets used by an ISP. A problem with the use of rulesets used by a specific ISP

in the testing and evaluation of new packet classification algorithms and hardware

accelerators is that it can be difficult to compare the performance of new research

to that of prior art. This is due to the possibility of large differences in the

structure of the rulesets and packet headers used in testing. For these reasons

ClassBench [36] the de facto suite of tools used for the benchmarking of packet

classification algorithms and devices is employed here. The ClassBench suite of

tools consists of a ruleset generator which is used to create synthetic rulesets that

accurately model the characteristics of real rulesets. The suite of tools also

contains a trace generator which creates packet headers that match the rules

contained within the synthetic rulesets created by the ruleset generator.

The ruleset generator creates Access Control List (ACL), Firewall (FW) and

Internet Protocol Chain (IPC) rulesets. ACL rulesets are used for security, Virtual

Private Networks (VPN), and Network Address Translation (NAT) rules for

firewalls and routers. FW rulesets are used for specifying security rules for

firewalls and IPC rulesets are used for security, VPN and NAT rules for software-

based systems. The ruleset generator uses an input parameter file known as a seed

filter set that describes the characteristics of the type of ruleset to be generated.

This is used to create a ruleset in conjunction with settings specified by the user

such as the number of rules to be created, scope of the ruleset (states how specific

the rule values should be) and smoothness of rulesets (used to introduce new

address aggregates when creating large rulesets).

2.3 Analysis of Software Approaches to Packet Classification

The most basic method for implementing packet classification is to perform a

linear search of all rules stored within a ruleset. To do this the rules are stored in

order of decreasing priority. The rules are compared sequentially to the appropriate

Chapter 2- Background

 18

Table 2.1. Sample ruleset containing five rules.

RuleID S. IP D. IP S. Port D. Port Protocol Action

R1 111* 010* 78-78 230-702 UDP ACT1

R2 111* 1*** 0-2000 10-10 UDP ACT 2

R3 1*** 101* 30-80 0-65535 TCP ACT 3

R4 10** 000* 0-65535 960-990 TCP ACT 4

R5 00** 101* 0-65535 800-811 TCP ACT 5

header fields of an incoming packet until a match takes place. This method of

packet classification will result in a storage efficient search structure but will have

a high search time, making it unsuitable for large rulesets. In order to reduce the

search time many algorithms have been developed to carry out packet

classification. These algorithms spend time pre-processing the ruleset guided by

various heuristics in order to build a search structure that reduces search time at

the cost of increased memory consumption. The goal of all these algorithms is to

keep the memory used to store the search structure and the number of memory

accesses required to match a packet to a rule in the ruleset as low as possible. The

algorithms can be divided into three distinct categories. These are decision tree-

based [9, 10, 11, 15, 18] decomposition-based [12, 13] and hash-based [16].

The following section explains five of the most commonly used algorithms when

it comes to implementing packet classifiers in software. These algorithms have

been implemented in C code, with their performance compared against each other.

This is done in order to find out which algorithms scale well in terms of memory

usage and throughput when large rulesets are used. It was also done to figure out

which algorithms might benefit most from hardware acceleration. Table 2.1 shows

a simple ruleset containing five rules and the action that must be taken if a

specific rule is returned as a correct match. The purpose of this ruleset is to aid in

the explanation of the algorithms described in the following section. The number

of bits representing the source and destination IP addresses has been reduced from

32 to 4 bits to aid the explanation.

2.3.1 Algorithmic Approaches

Hierarchical Intelligent Cuttings (HiCuts)

HiCuts by Gupta and McKeown [9] is a decision tree-based algorithm that allows

incremental updates to a ruleset. It takes a geometric view of packet classification

Chapter 2- Background

 19

Fig. 2.2. HiCuts decision tree (left) and its geometric representation (right).

by considering each rule in a ruleset as a hypercube in hyperspace, defined by the

F fields of a packet’s header. The algorithm constructs the decision tree by

recursively cutting the hyperspace one dimension at a time into sub-regions.

These sub-regions will contain the rules whose hypercube overlap. Each cut along

a dimension will increase the number of sub-regions, with each sub-region

containing fewer rules. The algorithm will keep cutting into the hyperspace until

none of the sub-regions contain more rules than is specified by a predetermined

number called binth.

Fig. 2.2 shows a decision tree built from the ruleset in Table 2.1 where a binth

value of two is used. It also includes a geometric representation of the source and

destination IP addresses, showing the cuts made to create the decision tree. The

source IP address is selected to cut the root node in two, resulting in two child

nodes of which one exceeds the binth value. The node exceeding binth value is

split in two using the destination IP address, with the number of rules in both

child nodes equalling the predetermined binth value. The more cuts performed to

an internal node (represented by an ellipse in Fig. 2.2), the fatter and shorter the

decision tree. A fatter decision tree will require fewer memory accesses to classify

a packet as less internal nodes will need to be traversed. Too many cuts, however,

will result in an unacceptable amount of memory needed to store the decision tree.

For that reason the number of cuts that can be performed on a dimension at an

internal or root node is limited using a set of rules and a user defined variable

known as spfac.

Each time a packet arrives the tree is traversed from the root node until a leaf node

(represented by a rectangle in Fig. 2.2) is found. This leaf node will store a small

Chapter 2- Background

 20

Fig. 2.3. HyperCuts decision tree (left) and its geometric representation (right).

number of rules limited by the binth value. Once a leaf node is reached, a short

linear search of the rules contained within it is performed to find the matching

rule. HiCuts uses heuristics to reduce memory usage, such as the merging of

identical nodes to avoid replicated storage and the removal of rules from a leaf

node that can never be matched as they are covered in that leaf node by a rule

with a higher priority.

Multidimensional Cutting (HyperCuts)

HyperCuts by Singh et al [10] is a modification of the HiCuts algorithm that also

allows incremental updates. The main difference between it and HiCuts is that it

recursively cuts the hyperspace into sub-regions by performing cuts on multiple

dimensions at a time. Fig. 2.3 shows an example of a decision tree built from the

ruleset in Table 2.1. It also includes a geometric representation of the source and

destination IP addresses, showing the cuts made to create the decision tree. The

source and destination IP addresses are both cut in two, resulting in one empty

node (represented by a circle) and three leaf nodes. All child nodes conform to the

binth value, meaning that no more cutting is required. HyperCuts acts like HiCuts

if only one dimension is chosen for cutting. The algorithm also limits the number

of cuts that can be performed to an internal or root node to prevent excess

memory usage, using a set of rules and a user defined variable known as spfac.

HyperCuts also takes advantage of extra heuristics that exploit the structure of the

classifier such as region compaction, which allows for more efficient cutting of a

dimension as it only cuts the region covered by the rules rather than the full

region. It also pushes common rule subsets upwards to avoid the replicated storage

Chapter 2- Background

 21

Fig. 2.4. Extended Grid-of-Tries with Path Compression.

of rules by storing rules common to all child nodes in their parent node. A packet

is classified in the same manner as the HiCuts algorithm, with a packet traversing

the decision tree by using the same cutting sequence on the header used to create

the decision tree until a leaf node is found, where a linear search of the rules

within it takes place.

Extended Grid-of-Tries with Path Compression (EGT-PC)

EGT-PC by Baboescu et al [15] is another decision tree-based algorithm that

allows incremental updates. In EGT-PC a path compressed trie is first created

from the prefixes in the ruleset’s first dimension. Each node in this trie, which

represents a valid prefix P in the first dimension, will contain a pointer to another

path compressed trie made up of all the prefixes from the second dimension

whose first dimension prefix is equal to P. Each node in the second dimension trie

corresponding to a valid prefix in this dimension will contain a list of all the rules

that match the prefixes of the first and second dimension nodes. This means that a

rule can only occur in one position. In order to avoid back tracking, all failure

points in the second dimension tries contain a jump pointer, which points to the

next possible second dimension trie that could contain a matching rule. Fig. 2.4

shows the search structure built from the rules in Table 2.1.

The search algorithm works by first performing a Longest Prefix Match (LPM) on

the first dimension trie. The resulting pointer is then followed to a second

dimension trie. A LPM is then carried out on this trie to find nodes containing

matching rules. Each time there is a failure or the end of a second dimension trie

is reached, a jump pointer is followed. This is continued until a node is reached

Chapter 2- Background

 22

Fig. 2.5. Recursive Flow Classification search structure.

that contains no jump pointer. All matching rules along the way are recorded, with

a small linear search of these rules carried out at the end.

Recursive Flow Classification (RFC)

RFC by Gupta and McKeown [12] is a decomposition-based algorithm that

classifies packets at high throughput rates using lookup tables placed across

multiple phases. It does this at the cost of a long pre-processing time when

building these tables, high memory consumption and an inability to allow

incremental ruleset updates. It uses the fields from a packet’s header as indexes to

access direct lookup tables in the first phase. These lookup tables are built from

the corresponding fields of the rules in the ruleset. The size of each lookup table

in this phase will be 2
n
, where n is the number of bits in a given field. The source

IP and destination IP address are usually split into 16-bit chunks to prevent their

lookup tables having excessive memory consumption. This means that each IP

address requires two lookup tables in the first phase, with the remaining fields

requiring one each.

The lookup tables in the first phase are accessed in parallel, returning pre-

processed eqIDs. These eqIDs represent and are smaller than the indexes used to

access the lookup tables. The indexes for performing lookups on tables in the next

phase are formed by combing the eqIDs from the previous phase. The final phase

contains one lookup table, with the value returned from this being the matching

rule number. This is possible because of the way that the lookup tables are

constructed. Fig. 2.5 shows the configuration of the twelve lookup tables in the

implementation used here and how they are spread across four phases.

Chapter 2- Background

 23

Fig. 2.6. Tuple Space Search with Tuple Pruning.

Tuple Space Search (TSS) with Tuple Pruning

TSS by Srinivasan et al [16] is a hash-based algorithm that supports incremental

updates. All rules are divided into groups called tuples, with rules that map to a

particular tuple having the same prefix length for the source and destination IP

addresses. Their source and destination port numbers will either be a wildcard or

the same nesting level inside the port range. Protocol values will either be

wildcard or a specific value. The nesting level of a port will help to distinguish the

tuple group the rule belongs to but will not help to separate the rule from other

rules within a tuple group. For this reason each port address will have a RangeId,

which notes a port’s position inside its nesting level. A packet’s port number is

usually converted to its RangeId using a 65KB direct lookup table.

A hash key is made for a tuple group by using its tuple specification e.g. (3, 1, 1,

2, 17) to pick out the appropriate bits from a packet’s source and destination IP

address, RangeIds (found using the port numbers) and protocol number. All rules

belonging to tuple T are stored in Hashtable (T). A probe of a tuple T is carried out

using the hash key created, with only one memory access needed for each tuple to

determine if it contains a matched rule. The algorithm is motivated by the fact that

a linear search through all tuples will be smaller than a search through all rules.

The number of tuples that need to be searched is further reduced through tuple

pruning. Tuple pruning involves creating LPM tries, which are usually made from

the source and destination IP addresses. Each node in a trie that represents a valid

prefix will contain a bitmap, with each set bit in the bitmap indicating a particular

Chapter 2- Background

 24

tuple that could contain a rule match. The deepest bitmap reached is given as the

result of a LPM. An AND operation is performed on the bitmaps returned from

the source and destination IP address tries in order to figure out which tuples need

to be searched. Fig. 2.6 shows the tuple groups and LPM tries created from the

rules in Table 2.1. It also shows how tuple pruning can be used to reduce the

number of tuples that need to be searched when seeking a rule match for a packet

with a source IP address of 1110 and a destination IP address of 0101. Only one

tuple group will need to be searched in this case instead of a worst case of four.

2.3.2 Simulation Framework

The five packet classification algorithms described have been simulated on a

SA1100-StrongARM processor as it is similar in architecture to the type of

processor used by multi-core network processors. The simulator Sim-Panalyzer

[38] was used to do this as it is able to estimate a program’s run time and average

power consumption. This allows measurements of the amount of energy needed to

build the search structures, average energy needed to classify a packet and

throughput to be taken. Sim-Panalyzer is an infrastructure for microarchitectural

power simulation implemented on top of “Sim-Outorder”, a component within the

SimpleScalar simulator. It simulates the execution of instructions at the level of

individual cycles, keeping track of power changes across cycles.

The simulator consists of several distinct components. These components are

cache power models, datapath and execution unit power models, clock tree power

models and I/O power models. It is worth noting that the simulator does not take

into account the amount of power that would be used by the external memory

needed to save the search structures created by the algorithms. Sim-Panalyzer was

configured to simulate the SA1100-StrongARM processor running at a clock

speed of 200 Mhz, while operating at 1.8 V using 0.18µm technology.

The code written for the five algorithms has been tested extensively using ACL

rulesets and their corresponding packet traces, which were generated using

ClassBench. Gupta and McKeown carried out an extensive study of rulesets [12]

and found that only 0.7% of the rulesets that they examined contained over 1,000

rules and that none contained more than 2,000 rules. These findings were backed

up by analysis of real rulesets by Taylor and Turner [36] which found that the

Chapter 2- Background

 25

Fig. 2.7. Memory needed for the search structures.

rulesets in edge routers do not typically contain more than a thousand rules. With

these points in mind it was decided that the use of rulesets with just over 2,000

rules would be enough to extensively test the algorithms. The rulesets used in

testing contained between 60-2,191 rules.

2.3.3 Performance Results

The first results presented are the amount of memory needed to save the search

structures built by the five algorithms. This is followed by the worst case number

of memory accesses needed to classify a packet. These results have been widely

analysed by prior art [10, 15, 39]. The results in prior art, however, never compare

results such as the energy usage of these algorithms and their throughput, which

are important factors. The results presented here cover these areas extensively,

showing the energy used by the algorithms during the building of the search

structure, average energy needed to classify a packet and the average number of

packets that can be processed per second when running the algorithms on a

SA11000-StrongARM processor.

Memory Consumption

The results in Fig. 2.7 show the memory needed to store the search structures built

by the five algorithms tested. It can be seen that the worst performing algorithm in

this area is RFC, needing over 3 MB of memory when 2,191 rules are used. This

is due to the large amount of memory that is required to store the direct lookup

tables. The second worst performing algorithm tested in this area is TSS. This is

because of the large 65 KB direct lookup tables needed for converting the port

numbers to RangeIds and the hash tables used by the tuple groups to store the

Chapter 2- Background

 26

Fig. 2.8. Worst case number of memory accesses needed to classify a packet.

matching rule numbers. HyperCuts performed best over the full range of rules,

only needing between 1.7-56 KB of memory to store the search structures built for

the rulesets containing between 60-2,191 rules. This is due to the simplicity of its

search structure. The EGT-PC and HiCuts algorithms also performed well as they

have a search structure similar to that used by HyperCuts.

Worst Case Number of Memory Accesses

Fig. 2.8 shows the worst case number of memory accesses needed to classify a

packet, with RFC this time being by far the best performer, needing only twelve

memory accesses to classify a packet for all sized rulesets. This is possible

because RFC uses direct lookup tables, which means that the number of memory

accesses will always be constant no matter how many rules are used. The TSS

algorithm levelled out at a worst case number of memory accesses of 52 after 500

rules. This is due to the fact that the number of distinct tuple specifications

stopped growing after this point, meaning that the LPM trees never got deeper and

the number of tuple groups to be searched never grew. This did not, however,

mean that the TSS algorithm scaled well to large rulesets as the chances of hash

collisions increased significantly as the number of rules increased.

The worst performing decision tree-based algorithm was EGT-PC, due to the fact

that it had one of the most complex search structures. This is because each packet

has to perform a LPM on a decision tree built from the source IP address and on

multiple decision trees built using the destination IP address. HiCuts was the best

performing decision tree-based algorithm, outperforming HyperCuts. This was
due to the fact that HyperCuts needed to access extra information when traversing

Chapter 2- Background

 27

Fig. 2.9. Energy used building the search structure.

the decision tree. This information includes multiple dimensions, which may need

to be cut, and the minimum and maximum range values for these dimensions

when using the Region Compaction heuristic. HyperCuts was also very restrictive

in the number of cuts it allowed to an internal node, meaning that deeper decision

trees were needed.

 It can be seen from looking at Fig. 2.8 that for HyperCuts the worst case number

of memory accesses needed to classify a packet is 103 when 1000 rules are used

and only 70 when 1600 rules are used. This dip is due to the rule HyperCuts uses

to limit the number of cuts that can be made to an internal node when building a

decision tree. The number of cuts allowed to an internal node is proportional to

the number of rules it contains. The decision tree built for the ruleset with 1600

rules allows more cuts to the root node than the decision tree built for the ruleset

1000. For these particular rules the result is that the decision tree built for the

rulesets with 1000 rules will be deeper than the decision tree built for the ruleset

with 1600 rules. That is why in this example the worst case number of memory

accesses needed to classify a packet is smaller for the bigger ruleset.

Energy Used Building the Search Structure

The amount of energy and time used when building a search structure are directly

related, with these metrics not of much importance to algorithms that support

incremental updates. This is because their search structures will not need to be

rebuilt very often. These metrics are, however, of great importance to algorithms

that do not support incremental ruleset updates, as search structures will need to

be rebuilt regularly. Fig. 2.9 shows the amount of energy used when building the

Chapter 2- Background

 28

Fig. 2.10. Average energy needed to classify a packet.

search structures for the five algorithms tested. Looking at Fig. 2.7 it can be seen

that the amount of memory needed to save these search structures is also

proportional to the amount of energy used when building them. This means that

an algorithm with low memory consumption may also use a low amount of energy

and require reduced processing time when building its search structure.

The worst performing algorithm by far is RFC as it uses 1,512 Joules of energy to

build its search structure when using 2,191 rules. This is high when compared to

HyperCuts, the best performing algorithm, which only requires 2.7 Joules. RFC

shows such poor performance due to the complexity involved in building the

many large lookup tables that it needs. The EGT-PC and TSS algorithms also

scale well when it comes to the amount of energy used when building their search

structure for different sized rulesets. HiCuts performs slightly poorer as the

rulesets become large, using 37.9 Joules of energy to build its search structure for

2,191 rules. This should not be a problem, however, as HiCuts supports fast

incremental updates to the ruleset, meaning that the search structure will not have

to be rebuilt regularly.

Average Energy Needed to Classify a Packet

The important metric of the average energy needed to classify a packet can be

seen in Fig. 2.10. For the algorithms that support incremental updates, this graph

will represent the majority of the energy used during packet classification. The

algorithm that uses the least amount of energy when classifying a packet is RFC,

using on average 1.46 µJ. This is due to the simplicity of its search structure,

Chapter 2- Background

 29

Fig. 2.11. Total number of packets classified in one second.

which only requires twelve memory lookups and a few multiplications to classify

each packet. The worst performing algorithm is EGT-PC, using on average 76.57

µJ. This is because the average amount of time it requires to classify a packet is

close to the maximum amount of time taken due to the configuration of its search

structure. TSS is the second worst performing algorithm, using on average 53.25

µJ to classify a packet. It performed poorly due to the large amount of processing

required, with each packet needing to perform direct memory lookups to convert

its port numbers, the search of two LPM tries and the creation of the hash key

required for each hash table lookup. HiCuts and HyperCuts showed similar

performance, with HiCuts using on average 10.89 µJ to classify a packet and

HyperCuts using 19.2 µJ. HyperCuts uses more energy on average classifying a

packet when using the ruleset with 1000 rules than it does when using the ruleset

with 1600 rules. This is due to the same reason that causes the dip in the number

of worst case memory accesses. All five algorithms scaled well across the full

range of rulesets tested.

Throughput

Fig. 2.11 shows the throughput for the five algorithms, and it can be seen that this

is proportional to the average amount of energy used when processing a packet.

This is good news as it means that algorithms with faster classification rates will

have lower energy usage when operating on RISC type processors. The algorithm

with the highest throughput is RFC, classifying on average 400,937 packets per

second (p/s). This is followed by HiCuts, classifying on average 57,042 p/s,

HyperCuts 32,242 p/s, TSS 10,700 p/s and EGT-PC 7,491 p/s.

Chapter 2- Background

 30

2.3.4 Conclusions

The results presented give as fair a comparison as is possible of the five packet

classification algorithms tested. They show that the algorithm with the smallest

memory usage is HyperCuts. It only requires 56 KB of memory to store its search

structure for the ruleset containing 2,191 rules. This is impressive when compared

to the algorithm that uses the largest amount of memory, RFC. It requires over 3

MB of memory to store the search structure it built for the same ruleset.

HyperCuts is also the best performing algorithm in terms of the amount of energy

used building its search structure. The algorithm that performs best in terms of

highest throughput and lowest amount of energy needed to classify a packet is

RFC. This is because it requires the fewest number of memory accesses to classify

a packet and it has the simplest search algorithm. HiCuts and HyperCuts came

second and third respectively when it comes to highest throughput and lowest

amount of energy needed to classify a packet.

It was with these points in mind that it was decided that HyperCuts would be the

algorithm best suited towards hardware acceleration. The main reason for this is

that its low memory usage allows it to build search structures for rulesets

containing tens of thousands of rules that are small enough to fit in the on-chip

memory of devices such as FPGAs, allowing for increased throughput. Its search

algorithm is also suitable for hardware acceleration as it requires a small number

of memory accesses and calculations to be performed when classifying a packet.

2.4 Deep Packet Inspection Systems

There are a wide range of network intrusion detection/prevention systems

requiring DPI with Snort [23], Bro [40] and Cisco [41] being some of the most

popular. Another popular system that employs DPI is Linux L7-filter [42] used to

perform protocol analysis, categorising packets based on their payload content.

The Linux and Cisco systems are signature-based, meaning that they only inspect

a packet’s payload, while the Snort and Bro systems inspect both a packet’s

header and payload. Regular expression matching is used to search for strings in

the Bro, Linux and Cisco DPI systems, with Snort mainly using fixed string

matching and more recently some regular expression matching. Snort, Bro and

Linux are open source, with Snort being the most popular system, with millions of

Chapter 2- Background

 31

downloads and over 250,000 registered users [43]. The Snort ruleset is also used

as a testing benchmark for much of the prior art in the area of DPI. For these

reasons the Snort 2.6.0 ruleset has been used to test the new string matching

algorithm and hardware accelerator presented in this thesis.

The complexity of DPI systems means that they need to be implemented in

software, limiting their packet processing throughputs to Megabits per second

(Mbps) rather than Gbps, even when implemented on high-end processing

systems. A performance evaluation [44] showed that the maximum throughput for

Snort is around 51 Mbps when run using a Linux operating system and 82 Mbps

when Windows Server 2003 is used. This is under normal traffic conditions using

a Pentium 4 processor running at 3.2 GHz with 512 MB of Random Access

Memory (RAM). The maximum throughput drops considerably when Snort is

used to inspect malicious traffic, with 6 Mbps speeds recorded using Linux and

2.5 Mbps using Windows Server 2003. The following section explains Snort.

2.4.1 Snort

The Snort network intrusion detection/prevention system [23] is used to perform

real-time traffic analysis and packet logging on IP networks. It can also perform

protocol analysis, content searching/matching and can be used to detect a variety

of attacks such as worms, viruses, Denial of Service attacks and other harmful

activities. The Snort system is single threaded and consists of three main stages

that process packets sequentially. The first stage uses a packet decoder to strip a

packet of its Data Link Layer information. This information includes the packet’s

Ethernet header. The stripped packet is then passed to the next stage, where a pre-

processor performs IP fragment and TCP stream reassembly. This data is then

passed to a detection engine where most of the packet processing is performed.

The detection engine is used to perform DPI, comparing packet header and

payload information to thousands of rules. This engine can be configured to

perform different actions depending on the rule matched or even if no rule is

matched. These actions could be to allow the packet to pass through, drop the

packet, log the packet or alert the administrator. Alerting the administrator of

unusual activity would be an example of intrusion detection, while the dropping

of a packet would be an example of intrusion prevention.

Chapter 2- Background

 32

Each rule contains a header rule and a content rule as mentioned in Section 1.3.2.

These rules are generated manually by skilled experts. They build rules based on

known information. These rules are built by extracting unusual content from a

packet’s payload and header. As the number of known attacks and packets to be

classified increases, so does the Snort ruleset. These rules contain thousands of

unique strings that must be searched for in a packet’s payload, but only a few

hundred unique headers. This is because many rules will have a common header

rule. The detection engine used in the Snort system matches rules using a rule

chain logic structure. It works by first checking if the packet header matches any

of the unique header rules. The more complex task of searching for a rule’s

content rule will be carried out for all rules that have had their header rule

matched.

The matching of a header rule is an easier task compared to the matching of a

content rule for a number of reasons. The first reason is that there are fewer

unique header rules than there are unique content rules that need to be search for.

The second reason is that the same fields are always used in the packet header to

match the header rule, with these fields in a fixed location. These fields are the

same as the fields used in single-match packet classification, including the source

and destination IP address, the source and destination port numbers and the

protocol number. The content rule, however, will contain strings of arbitrary

length, with their starting location not always known, meaning that the entire

packet payload may need to be searched.

2.4.2 Current Fixed String Matching Approaches

The area of fixed string matching is one of the best studied fields due to its many

applications such as bibliographic search, word processing and use in Internet

search engines. In recent times research has concentrated on its use in the area of

DPI for intrusion detection/prevention systems. Some of the first and best known

algorithms in the area of fixed string matching include the Knuth-Morris-Pratt

[45] and Boyer-Moore [46] methods, which work well for single string matching.

The performance of these algorithms actually improves if the length of the string

being searched for increases. This is because they look at a window of characters

in the text being searched equal in length to the string being sought. The

Chapter 2- Background

 33

characters in the string being searched for are compared to the characters in the

window of text being looked at, with failures at certain points allowing for the

possibility that the window of text being looked at can move forward multiple

characters at a time. This allows for a high average throughput, albeit with a poor

worst case throughput of one character per cycle.

Algorithms that work well for matching multiple strings simultaneously include

Aho-Corasick [37] and Commentz-Walter [47]. They do this through the use of a

state machine built from the strings being searched for. The text being searched

traverses this state machine from a root state at best one character at a time, using

transition pointers stored at each state. The amount of memory needed to store the

states and their transition pointers is a problem for these algorithms as their state

machine memory footprint can grow exponentially in size as new strings are

added. There has also been a host of other string matching algorithms and

hardware accelerators offering improvements that seek to reduce memory

consumption and increase throughput [48, 49, 50, 51, 52, 53].

Two algorithms are presented in [54] based on the Aho-Corasick approach to

string matching. They are designed with hardware acceleration in mind and

reduce memory consumption through the use of bitmaps and path compression.

Path compression combines a series of successive states, each of which contain

only a single pointer. This is done in order to reduce the total number of states that

need to be stored. Bitmaps are used to reduce the number of pointers at a state

from its worst case of 256. A problem with the use of bitmaps is the large logic

delay required to find a pointer, slowing down the performance of any hardware

implementation. Finding a pointer involves the checking and addition of the 256

bits contained within the bitmap, causing large logic delays. Both schemes also

use fail pointers, meaning that they cannot guarantee the processing of a character

on every clock cycle.

Another algorithm based on Aho-Corasick is presented in [55]. It splits the Aho-

Corasick state machine into eight separate state machines. Each state machine is

searched in parallel using one of the eight bits from the input character, reducing

the maximum possible number of transitions at each state from 256 to 2. The

results from each state machine are combined through the ANDing of bitmaps in

Chapter 2- Background

 34

order to figure out if a match has occurred. A drawback of this design is that each

state machine can only be used to search for a small number of strings as each

state needs to store a bitmap whose bits represent the strings being sought. This

means that many small state machines will be needed to store a ruleset containing

thousands of strings.

In [56] bloom filters are used to implement a fixed string matching hardware

accelerator. This approach can search for thousands of strings with very low

memory consumption. All strings of the same length are placed in a separate

bloom filter, with all filters inspecting the packet in parallel. The number of bytes

inspected in a packet in a single clock cycle is equal to the shortest string length

being searched for. Drawbacks with this approach are that rulesets such as Snort

contain strings with many lengths, meaning that it is not possible to implement a

bloom filter for all string lengths. Also, because of their structure, bloom filters

only return that there is a possible match, meaning that an analyser must be used

on the packet to check if the match was correct or a false positive.

2.4.3 Conclusions

Network intrusion detection/prevention systems such as Snort require fixed string

pattern matching algorithms that are capable of searching for thousands of strings

simultaneously in a packet’s payload. Algorithms such as Knuth-Morris-Pratt and

Boyer-Moore are therefore not suitable as they are only good at searching for

single strings. The Aho-Corasick and Commentz-Walter algorithms can search for

multiple strings but require large amounts of memory to save their state machines.

Modified versions of the Aho-Corasick algorithm reduce memory consumption

but cannot guarantee a fixed throughput or can only search for a small number of

strings, while the algorithm that uses bloom filters is not suitable for searching for

the type of strings used by Snort. The fixed string pattern matching algorithm and

hardware accelerator presented in this thesis implement a modified version of the

Aho-Corasick algorithm that uses default transition pointers to reduce memory

usage. They can also search for thousands of strings with a guaranteed throughput.

2.5 Hardware-Based Platforms

There are a wide range of technologies that can be used to implement hardware

accelerators designed to carry out the tasks of packet classification and string

Chapter 2- Background

 35

matching. Each technology has its own advantages such as high speed or low

power consumption. It can also have its own disadvantages such as high cost or

poor flexibility. This means that it is important to carefully consider which

technology the design of any new hardware accelerator is aimed at. This section

reviews the three technologies that are most commonly used to implement

hardware accelerators, stating their advantages and disadvantages.

2.5.1 ASIC

The use of Application Specific Integrated Chips (ASIC) for the implementation

of hardware accelerators has many advantages and disadvantages. Advantages

include the fact that a hardware accelerator implemented using an ASIC can have

the highest throughput, lowest power consumption and smallest footprint of any

hardware platform available. This is because the designer has complete control

over the placing and routing of the logic and memory resources needed to

implement a hardware accelerator. This complete control means that the delay

path between logic components such as AND, OR and XOR gates can be kept as

short as possible, allowing for the highest possible throughput. The designer can

even have control of the process technology used to build the ASIC along with the

type of transistors used to create the logic and memory elements. A hardware

accelerator implemented using ASIC technology can be designed to have no

surplus logic elements, helping to keep power consumption to a minimum.

Disadvantages with the use of ASIC technology are the long time and large

financial cost in developing a hardware accelerator. This is due to the expense of

licensing the logic and memory libraries along with the design software needed to

design an ASIC, high manufacturing cost and the skilled design expertise

required. The development of a hardware accelerator designed as an ASIC is very

slow due to the large amount of testing a design must undergo before being put

into manufacture. An ASIC also offers poor flexibility as it will only ever be able

to implement the tasks that it was designed for.

2.5.2 FPGA

Field Programmable Gate Arrays (FPGA) offer an extremely flexible architecture

for the implementation of energy efficient high throughput hardware accelerators.

Chapter 2- Background

 36

They can run at speeds of a few hundred MHz, enabling the processing of network

traffic at line speeds in excess of 40 Gbps, with substantially lower development

and time to market costs than an ASIC. An FPGA contains programmable

memory, logic and interconnect that can be configured to meet the designer’s

specific requirements. They also allow a wide range of external memory types

such as Dynamic Random Access Memory (DRAM) and Static Random Access

Memory (SRAM) to be used, increasing flexibility. The resources of an FPGA

can be broken up into many different sub-blocks, with these blocks used to

process data in parallel. This makes an FPGA ideally suited to the implementation

of hardware accelerators for packet classification and string matching as multiple

packets can be processed in parallel, allowing for large throughputs.

The Parallel String Matcher [57] by Titan-IC is a commercial hardware

accelerator that can be implemented either on an FPGA or as an ASIC. It can be

used to perform pattern matching for DPI, flow classification, TCP/IP header

lookup, address translation, content/URL inspection/filtering and CAM emulation.

It is able to perform 5-tuple packet classification for rulesets containing between

5-50 thousand rules, or string matching for rulesets containing between 1-10

thousand variable length strings. These tasks can be performed at speeds of

between 120-200 Mpps when implemented using the internal memory of an

FPGA built on 65nm process technology.

Another advantage that can be gained by the use of FPGAs is that it is a well

developed technology, with companies such as Xilinx [58] and Altera [59]

spending millions of dollars each year on research and development. This means

that existing designs for hardware accelerators will be able to gain an increase in

throughput and energy efficiency simply by porting to more modern FPGAs. A

drawback that comes with using FPGA rather than ASIC technology is the

increased power consumption due to the unneeded circuitry contained within an

FPGA. Another drawback is reduced throughput due to the increased length of the

interconnect used to join logic and memory elements.

2.5.3 TCAM

One of the most popular technologies for implementing packet classification

hardware accelerators at present is Ternary Content Addressable Memory

Chapter 2- Background

 37

(TCAM). TCAM is popular because it can match all rules from a ruleset in an

O(1) clock cycle. This is achieved by carrying out parallel comparisons on all

stored rules in a single clock cycle plus the use of pipelining. State of the art

technology such as the Cypress Ayama 10000 Network Search Engine [20] can

perform 133 million 144-bit search key per second. This high lookup rate,

however, comes at a large cost of consuming between 4.86-19.14 Watts,

depending on the TCAM size.

Besides the high power consumption, another drawback for TCAM is its poor

storage efficiency of rulesets when using rules containing ranges. This is because

a memory word’s bits are stored in a 1, 0 or do not care state. This makes TCAM

very efficient at storing fields that use longest prefix matching but poor at storing

fields that use range matching. Range splitting must be performed to convert

ranges into prefix formats. This further complicates the problem of power

consumption as large amounts of memory are needed to store rulesets. Research

of real world databases in [60] showed that TCAM storage efficiency ranged

between 16-53%, with an average of 34%.

TCAMs also take up large amounts of die area, with one bit requiring 10-12

transistors, compared to SRAM, which only requires 4-6 transistors per bit and

DRAM, which requires only 1 transistor and a capacitor. A search engine

implemented using this approach will require multiple chips, including a host

ASIC or FPGA, TCAMs and the corresponding SRAMs. Another problem with

TCAM is its high price per bit due to the fact that it is a speciality type of memory

and is not as commonly used as other memory types such as SRAM or DRAM.

There has been much research [60, 61, 62] into reducing the power consumption

of TCAM and increasing the storage efficiency of rulesets, but these issues still,

however, remain a problem.

The use of TCAM for fixed string matching is not so common due to the fact that

commercial TCAM only returns a single match, which is not a good feature when

all matching strings are required. The use of do not care bits means that there can

be many matches to the TCAM entries. TCAM will therefore only return the

matching TCAM entry with the highest index number. Another drawback is that

there will be a lot of memory wastage if the width of a TCAM entry is configured

Chapter 2- Background

 38

to accommodate that of the longest string. The Snort ruleset uses strings with a

large range of lengths. A TCAM-based multi-pattern matching scheme is

presented in [63] that attempts to tackle these issues. It handles the issue of

memory wastage associated with searching for long strings by breaking them up

before storing them in TCAM. It searches through the packet one byte at a time

by looking at a set of strings equal to the TCAM width. It records all partial

matches and their position to identify if a full match has taken place. They deal

with issues such as optimum TCAM width and are able to search for correlated

patterns and patterns with negations. There are also other methods [64, 65, 66] for

implementing fixed string matching through the use of TCAM. A drawback with

all of these approaches is the high power consumption associated with TCAM.

2.5.4 Conclusions

The hardware accelerators presented in this thesis avoid the use of TCAM in order

to keep power consumption to a minimum. They are instead implemented using

FPGAs and as an ASIC in some cases. ASICs and FPGAs allow the use of on-

chip SRAM which keeps throughputs high as external memory accesses are not

required. Keeping the logic and memory on a single chip also has the advantage

of allowing for a one-chip solution which further reduces power consumption.

The flexibility of ASICs and FPGAs also means that they can implement multiple

packet processing engines. This further increases throughput as multiple packets

can be processed in parallel.

2.6 Low Power Design

The main goal of this thesis is to design energy efficient hardware accelerators for

packet classification and string matching. It is therefore essential that power

consumption is taken into account at all steps of the design process when trying to

achieve high throughput. This section outlines the main causes of power

consumption in Complementary Metal–Oxide–Semiconductor (CMOS) digital

circuitry. It also discusses common design techniques that can be used when

designing the architecture of a hardware accelerator, such as parallel processing

and pipelining. These design techniques can be used to reduce power consumption

whilst still achieving high throughput.

Chapter 2- Background

 39

Fig. 2.12. Charging and discharging of a capacitive load.

2.6.1 Types of Power Dissipation

It is important to know the main types of power consumption in an integrated

circuit and their causes before beginning the design of new hardware. Equation

2.1 shows the three main causes of power consumption in CMOS digital circuitry.

 PTotal = PDynamic + PShort-Circuit + PStatic (2.1)

This includes PDynamic and PShort-Circuit, which are caused by switching and PStatic,

which is a constant source of power consumption caused by current leakage. The

rest of this section describes the cause of each of these types of power

consumption in more detail.

Dynamic Power Consumption

The largest source of power consumption in a CMOS circuit is dynamic power,

caused by the charging and discharging of a capacitive load [67, 68]. A CMOS

inverter, which is made up of a PMOS and NMOS transistor, can be modelled

using two resistors and a capacitor as shown in Fig. 2.12. The capacitance is

present due to the unwanted parasitic effects between the tightly compacted wires

and transistors that make up a circuit. The resistors Rc and Rd are the resistances of

the charging and discharging circuits respectively. The switch is a model for the

change in logic state, and the capacitor CL is a model for the capacitive load. An

input transition from one to zero will turn on the PMOS transistor, charging the

capacitor. The resistance of the PMOS transistor is modelled by Rc, with the

current ic charging the capacitive load. The energy used as the capacitor is

charged from time t0 to t1 can be calculated using Equation 2.2.

21

0

1

0
arg

)(
ddL

t

t

C
ddL

t

t
cddech VCdt

dt

tdv
VCdtiVE === ∫∫ (2.2)

Half of the energy is stored in the capacitor and the other half is dissipated as heat

in the resistor Rc. The energy stored in the capacitor Ecap can be calculated using

Chapter 2- Background

 40

rτ fτ
f/1

Fig. 2.13. Switching characteristics of a CMOS inverter.

Equation 2.3, while Equation 2.4 can be used to calculate the energy dissipated by

the resistor Ec.

21

0 2

1
)()(ddL

t

t
cccap VCdttitVE == ∫ (2.3)

2

arg
2

1
ddLcapechc VCEEE =−= (2.4)

An input transition from zero to a one will turn on the transistor NMOS. This will

discharge the capacitor through the NMOS transistor, whose resistance is

modelled by Rd. The energy in the capacitor is dissipated as heat in the resistor Rd.

The energy dissipated will be equal to Ecap if the capacitor is given time to fully

discharge. The dynamic power consumption of a circuit can be calculated using

Equation 2.5, where f is the clock frequency in Hz and α is the probability of CL

being charged or discharged.

 αfVCP ddLDynamic

2
= (2.5)

Short-Circuit Power Consumption

Short-circuit power is a source of power consumption in CMOS circuitry that is

caused by PMOS and NMOS transistors both being on at the same time during the

switching of input signals. Fig. 2.13 is used to highlight this phenomenon,

showing a CMOS inverter and its switching characteristics. Only one transistor

should ever be on in normal operation. The input signals, however, have a finite

rise and fall time, which means that both transistors will be on for a very short

amount of time. The term for the dynamic power consumption derived in the last

Chapter 2- Background

 41

section did not take these rise and fall times into account. Both transistors being

on will cause a direct current path between the supply voltage and ground.

For simplicity it can be assumed that βp= βn=β (where β is the gain of a transistor).

It can also be assumed that -VTp=VTn=VT (where VTp is the threshold of the PMOS

transistor and VTn is the threshold of the NMOS transistor) and that time period t1-

t3 is symmetrical with respect to t2. This leads to Equation 2.6 for the mean

current over one time period [69].

 ∫∫ −==
2

1

2
2

1
))((

2
4)(

/1

2
2

t

t
Tin

t

t
mean dtVtVfdttI

f
I

β
 (2.6)

Equation 2.7 also gives the mean current, where τ/)(tVtV ddin = , assuming that the

input signal is symmetrical with equal rise and fall times (τττ == fr
) and that

there is a linear relationship between the input voltage (Vin) and time (t) during

transitions. In this equation t1 is expressed as
ddT VV /).(τ and t2 as 2/τ .

∫

−

−=

ddT VV

T
dd

T
dd

mean V
tV

dV
tV

fI
/).(

2/

..
2

τ

τ ττ
β (2.7)

The solution for this is given in Equation 2.8.

 fVV
V

I Tdd

dd

mean τ
β 3)2(

12

1
−= (2.8)

The short-circuit power consumption can therefore be expressed using Equation

2.9 where PShort-Circuit=ImeanVdd.

 fVVP TddCircuitShort τ
β 3)2(
12

−=− (2.9)

It can be seen that the short-circuit power consumption can be reduced by

decreasing the rise and fall times of the input signals. This, however, would come

at the expense of increased power consumption in the circuitry generating the

input signals. Using a large capacitor would also decrease the short-circuit power

consumption as the output voltage would respond more slowly, resulting in both

transistors being on for a shorter amount of time. A larger capacitor would,

however, increase the dynamic power consumption. This is not therefore worth

doing as short-circuit power consumption is typically small, only consuming 10%

of the power used by dynamic power consumption [70].

Chapter 2- Background

 42

Fig. 2.14. Static vs. dynamic power.

Static Power Consumption

A CMOS circuit should ideally consume no power when it is in a steady state

with no switching taking place. This, however, is not the case as there is a

constant source of power consumption known as static power that is caused by

sub-threshold current leakage and reverse biased diode junction current leakage.

Dynamic power consumption has historically been the main cause of power

consumption in a CMOS circuit, with static power consuming a much smaller

percentage. The trend of implementing CMOS circuits using ever smaller process

technologies has meant that static power is starting to use a much larger percentage

of the power used. This is due to the fact that the dynamic power is proportional

to the square of supply voltage, and supply voltage is reduced each time a smaller

process technology is used. This means that reducing the supply voltage

significantly reduces the dynamic power. The use of smaller process technologies

worsens current leakage, meaning that it could become the main source of power

consumption in the future. Fig. 2.14 shows a graph highlighting this trend [71].

The sub-threshold current leakage is caused by current flowing from a transistor’s

source to its drain, even if the gate to source voltage is lower than the transistor’s

threshold voltage VT. This occurs because of carrier diffusion between the source

and drain regions of the CMOS transistor in weak inversion. Sub-threshold

current leakage will become significant when the gate to source voltage is just

below the threshold voltage of the transistor. Equation 2.10 gives the formula for

calculating the sub-threshold power consumption [72] where K and n are

experimentally derived, W is the gate width, V0 is the thermal voltage (about

Chapter 2- Background

 43

25mv at room temperature), Vdd is the source supply voltage and Vj is the voltage

across the junction.

)1(00
// VVnVV

ddsub

jT eKWeVP
−− −= (2.10)

The other source of static power consumption is reverse biased diode junction

current leakage, caused by parasitic diodes that form between the diffusion region

of a transistor and the substrate. It can be calculated using Equation 2.11 [70]

where Is is the reverse current in a diode caused by the diffusion of minority

carriers from the neutral region to the depletion region.

)1(0/
−=

VV

sddjunc

jeIVP (2.11)

The work in [73] investigates various methods for reducing static power

consumption such as turning off unused devices, using less leaky transistors and

partitioning the design to allow for lower supply voltages. A dual threshold

technique is introduced in [74] that assigns high thresholds to transistors in the

non-critical path and low thresholds to transistors in the critical path. This allows

transistors in the critical path to be fast but means that they consume a lot of static

power, while the transistors in the non-critical path are slow but consume very

little static power.

2.6.2 Power Benchmarking

The power consumption of the logic used in the ASIC implementation of the low

power packet classifier presented in Chapter 4 has been estimated using a Taiwan

Semiconductor Manufacturing Company (TSMC) 65nm low power process

technology. Due to licensing issues the power consumption of the memory used in

this ASIC implementation has been estimated using Chartered Semiconductor

Manufacturing 130nm dual and single port RAM compilers. A method for

normalising the power consumed is therefore needed so that the power consumed

by circuits implemented using different process technologies that operate at

different voltages can be compared. The normalisations used in this thesis ignore

leakage power and assume that dynamic power is the major component. This

assumption gives good first order normalisations [75] and is true for the libraries

used in the ASIC implementations here, with leakage power being two orders of

magnitude less than the dynamic power consumption [76]. The equation for

Chapter 2- Background

 44

dynamic power consumption (Equation 2.5) is restated here for convenience as

Equation 2.12.

αfVCP L

2= (2.12)

The load capacitance of a transistor CL can be expressed using Equation 2.13 [68,

75] (This is the gate capacitance of the transistor and ignores other gate and

interconnect parasitics, which scale similarly). The permittivity of the gate oxide

is represented by ε0 in this equation, L is the channel length, W is the channel

width and H is the gate oxide thickness.

H

WL
CL

××
= 0ε

 (2.13)

The frequency f and switching probability α do not have to be scaled as they are

independent of the process technology used. The channel length and width of the

transistor are scaled by a factor S, while the gate oxide thickness and voltage are

scaled by a factor U. This leads to Equation 2.14, which can be used to normalise

P with respect to V and Equation 2.15, which can be used to scale CL.

2)(' UPVP ×= (2.14)

U

S
C

U

S

H

WL

UH

SWSL
C LL

22

00

)(

)()(
' ×=×

××
=

×

××××
=

εε
 (2.15)

Equation 2.16 can therefore be used to normalise P with respect to V and L.

USP
U

S
UPLVP ××=××= 2

2
2),(' (2.16)

2.6.3 Low Power Design Techniques

It is widely recognised that power consumption should be factored into the design

of new hardware accelerators at all stages [77, 78, 79], especially at the higher

levels of the design stage, as this is where the most design freedom exists and is

where the most power can be saved. It is estimated that power savings of up to

20× can be made at the system design stage, compared to savings of less than

20% at the design layout stage [78].

Algorithmic

Large savings in power consumption can be made by keeping the amount of tasks

an algorithm has to perform when processing data to a minimum. Reducing the

Chapter 2- Background

 45

Fig. 2.15. Implementation of a parallel and pipelined three input adder.

number of tasks that need to be performed will reduce the amount of switching

and time taken when processing data. A reduction in the amount of switching will

lower the dynamic and short-circuit power consumption, whilst a reduction in

processing time will allow clock speeds and voltage levels to be reduced, with the

same level of throughput maintained. Efforts should also be made to keep the

processing tasks as simple as possible so that the amount of hardware required is

kept to a minimum. This will reduce the amount of transistors required to

implement a design, reducing the amount of static power consumed because of

leakage current. The packet classification and string matching algorithms

presented in this thesis have been carefully designed so that the hardware

accelerators implementing them do not need to perform any logic intensive tasks

such as floating point division. Their design means that only simple tasks such as

shifting and addition need to be performed when processing data.

Architectural

There is also scope for large power savings at an architectural level, after the

algorithmic details have been decided on. Techniques that can be used at an

architectural level to reduce power consumption include parallel processing and

pipelining. These techniques allow a targeted level of throughput to be reached

with reduced clock frequencies and voltage levels. Fig. 2.15 shows an example

where a simple three input adder has been implemented using parallel processing

Chapter 2- Background

 46

and pipelining. Parallel processing can be implemented if the amount of area

available to lay out a design is not tight. It involves increasing the amount of

processing modules available to carry out certain computational tasks. This allows

clock frequencies and voltage levels to be reduced as more modules are available

to process data. The disadvantage of parallel processing is that extra resources are

required to implement a design. Pipelining involves breaking up a design into

stages, with each stage separated by registers. Breaking a design up into stages

will reduce the length of the critical path, allowing the same clock frequency to be

obtained at a reduced voltage level. The disadvantage of pipelining is that it will

add extra delay to the amount of time that it takes to process data.

An analysis of the power reduction that can be achieved by implementing parallel

processing and pipelining was carried out in [80] on a simple design consisting of

an adder and a comparator. It found that power consumption could be reduced by

64% if parallel processing was carried out, with the computational resources

doubled. This increased the board area by a factor of 2.15, with the clock

frequency and voltage levels reduced by 50% and 42% respectively. It also found

that power savings of 61% could be made by using pipelining, with the board area

increased by a factor of 1.15 and the voltage levels reduced by 42%. Power

savings of 80% were made by implementing a combination of parallel processing

and pipelining.

Register Transfer Level (RTL) Coding

The power savings that can be made by carefully coding a design using a RTL

Hardware Description Language (HDL) such as VHDL or Verilog are

significantly less than the savings that can be made at an algorithmic or

architectural level. However, they are still worth considering as even a power

saving of only a few percent can be important if power budgets are tight. Simple

coding techniques that can be used to reduce power consumption include using

one-hot or grey coding in state machines to reduce the amount of switching

activity. Switching can also be reduced by enabling all registers so that data only

changes on their output when required. Another method for saving power is to

balance the logic within data paths so that data arrives to the input of logic

modules at the same time. This minimises the glitching that occurs as signals

settle to their final values.

Chapter 2- Background

 47

Implementation and Layout

Great care should also be taken when laying out a design as an ASIC or on the

chosen FPGA so that power consumption is kept to a minimum. A design should

be laid out so that the paths that have the heaviest switching load are kept as short

as possible. Careful consideration should also be given to the amount of

input/output pins used and their positioning, as it is estimated that they can cause

33% of the total power consumption [79]. Using an ASIC with on-chip memory

or the internal block RAM of an FPGA where possible will lead to large power

savings as the routing interconnect and number of input/output pins can be greatly

reduced. The algorithms presented in this thesis go to great effort to keep memory

usage as small as possible, so that the hardware accelerators that implement them

can use on-chip memory, keeping power consumption to a minimum.

2.7 Summary

This chapter has provided detailed background information into the areas covered

in the remainder of this thesis. It has explained the structure of the rulesets used

for testing the packet classification algorithm and hardware accelerators that are

presented in Chapters 3 and 4. A detailed survey of the most commonly used

software approaches for implementing packet classification was also carried out,

identifying the HyperCuts algorithms as being an ideal contender for hardware

acceleration. This is because it scales well in terms of memory consumption and

throughput when large rulesets are used. An explanation of network intrusion

detection/prevention systems was given next, with particular attention given to

Snort, as it is the system that relies most heavily on fixed string matching when

detecting intrusions. Snort is also given particular attention as its ruleset is used to

test the new fixed string matching algorithm and hardware accelerator presented

in Chapter 5. A detailed survey was carried out on approaches used for fixed

string matching to give context to the work presented in Chapter 5. Popular

hardware platforms for implementing such hardware accelerators and their

sources of power consumption were also given, along with design methods that

should be used when implementing an energy efficient hardware accelerator.

48

Chapter 3 - Packet Classification Architectures

3.1 Introduction

Packet classification is used by networking devices to carry out advanced Internet

services like network security, sophisticated traffic billing, giving priority to VoIP

and IPTV packets, rate limiting, load balancing, NAT and resource reservation. It

is a complex task that needs to be carried out using devices such as programmable

multi-core network processors. The flexibility of these devices reduces their

throughput, limiting packet classification to edge routers where line speeds are

typically only a few Gigabits per second. Analysis of popular packet classification

algorithms in Section 2.3.3 showed that even the best performing algorithm in

terms of throughput RFC [12] can only classify around 400,000 packets per

second. This is when it is implemented in software and run on an SA1100-

StrongARM RISC processor similar to the type used as the processing cores in

many of today’s programmable network processors. Current commercial

hardware approaches that could allow packet classification to be performed at

core network line speeds of up to 40 Gbps use large amounts of power. The

Cypress Ayama 10000 Network Search Engine [20], for example, uses up to

19.14 Watts when classifying 125 million packets per second. The structure of

TCAM also makes it poor at storing large rulesets due to its difficulty in storing

rules that contain ranges.

This chapter introduces novel hardware architectures for packet classifiers that

can be implemented using an FPGA or as an ASIC. They are capable of handling

line speeds in excess of 40 Gbps for rulesets containing tens of thousands of rules,

allowing packet classification to be performed at core network line speeds. The

architectures use energy efficient memories that are well suited to storing packet

Chapter 3- Packet Classification Architectures

 49

classification rulesets. A modified version of the HyperCuts [10] packet

classification algorithm is used to build the search structures for these

architectures. The architectures are divided into two types, with one type using

ultra-wide memory words and the other using reduced width memory words. The

hardware accelerator that uses ultra-wide memory words performs well when

using rulesets that contain a lot of wildcard rules, while the hardware accelerator

that uses reduced width memory words can achieve higher throughput and

performs well when using rulesets that do not contain a lot of wildcard rules.

The hardware accelerator architectures presented in this chapter implement

modified versions of the HyperCuts packet classification algorithm. Section 3.2

therefore gives a detailed explanation of the HyperCuts algorithm, which was

briefly explained in Section 2.3.1. This is done so that the modifications made to

make the algorithm more suited to hardware acceleration can be better

understood. These modifications are explained in Section 3.3. The architecture of

the logic used to select the correct path as a packet traverses the decision tree is

common to all architectures presented and it is explained in Section 3.4. The

memory organisation of the search structures built for the different hardware

accelerator architectures are explained in Section 3.5. Section 3.6 explains the

architecture of the different packet classification engines used, while Section 3.7

explains how they can be configured to work in parallel. The performance results

including memory usage, throughput, and power consumption are presented in

Section 3.8. This section also compares the performance of the hardware

accelerators against prior art. Section 3.9 concludes the chapter.

3.2 Decision Tree-Based Packet Classification

The linear search of a packet’s header against each rule in a ruleset for a match

will result in an unacceptably large worst case amount of processing time,

preventing a classifier from classifying packets at the speeds required for it to

work at the core or even edge of a network. This worst case amount of processing

time can be reduced by using the HyperCuts packet classification algorithm. It is a

decision tree-based algorithm that builds a search structure that allows

incremental updates to a ruleset. Search structures that allow incremental updates

do not have to be rebuilt each time a ruleset has a rule added or deleted.

Chapter 3- Packet Classification Architectures

 50

HyperCuts works by breaking a ruleset into different groups, with each group

containing a small number of rules suitable for a linear search. The maximum

number of rules that can be contained within a group is limited using a predefined

number known as binth to ensure that only a short linear search is required. Each

group of rules is stored in a leaf node of a decision tree, with a packet finding the

leaf node that contains the matching rule by traversing the decision tree using

values from its header to guide it.

HyperCuts creates this decision tree by taking a geometric view of a ruleset, with

each rule considered to be a hypercube in hyperspace. The boundaries of each

hypercube are defined by the range specifications of the rule it represents. The

algorithm cuts into this hyperspace by performing cuts to the fields used to define

it. Each cut will create sub-regions, with each sub-region containing the rules

whose hypercubes overlap. The information regarding the first set of cuts used to

divide the hyperspace is stored in the root node of a decision tree. This

information includes the number of cuts that are to be performed to each field and

the memory location of each of the resulting sub-regions. These sub-regions are

known as the root’s child nodes, with sub-regions that contain no rules known as

empty nodes. Sub-regions whose number of rules does not exceed the binth value

are known as leaf nodes. Each leaf node stores one rule group that can be searched

linearly. A sub-region that contains more rules than is allowed by the binth value

is known as an internal node and the space it occupies must be further broken up

into smaller sub-regions. This internal node will store information specifying the

number of cuts that must be performed to each field used to split the space it

occupies into smaller sub-regions. It also stores the memory location of the

resulting sub-regions that are the internal node’s child nodes. An internal node can

also have empty, leaf and internal nodes. The dividing of the hyperspace into

ever-smaller sub-regions will end when the number of rules in all sub-regions

does not exceed the binth value.

The algorithm uses a set of rules to determine the fields that should be considered

for cutting the hyperspace covered by an internal or root node. It examines the

rules that overlap the hyperspace being cut, calculating the number of distinct

range specifications for each field. It then selects the fields for cutting whose

distinct number of range specifications is greater than or equal to the mean number

Chapter 3- Packet Classification Architectures

 51

Table 3.1. Sample ruleset containing nine rules.

RuleID S. IP D. IP S. Port D. Port Protocol Action

R1 111* 010* 78-78 230-702 UDP ACT1

R2 111* 1*** 0-2000 10-10 UDP ACT 2

R3 1*** 101* 60-80 0-65535 TCP ACT 3

R4 10** 000* 0-65535 960-990 TCP ACT 4

R5 00** 101* 0-65535 800-811 TCP ACT 5

R6 000* 0111 30-80 0-65535 UDP ACT 6

R7 00** 0101 30-80 0-65535 TCP ACT 7

R8 000* 0100 30-80 0-65535 UDP ACT 8

R9 001* 0110 0-65535 0-65535 UDP ACT 9

of distinct range specifications. HyperCuts also has a rule for limiting the number

of cuts that the combination of cuts between the chosen dimensions can equate to

in order to prevent the decision tree from using up large amounts of memory. The

maximum number of cuts that can be made to an internal or root node is specified

by Equation 3.1.

max cuts to node i ≤ spfac*sqrt(number of rules at i) (3.1)

Where i is the internal or root node being cut and spfac is a user defined value

used to control memory usage. Small spfac values will result in fewer cuts to

nodes, creating a deep and narrow decision tree, while large values for spfac will

allow more cuts, resulting in a wide but shallow decision tree. A deep and narrow

decision tree will generally require less memory but will have a larger worst case

processing time when matching a packet to a rule as more internal nodes will need

to be traversed. The HyperCuts algorithm does not make it clear how to choose

the best combination of cuts among the fields chosen to cut an internal or root

node. Here all possible combination of cuts between the chosen dimensions are

considered that conform to the equation limiting the maximum number of cuts

that can be made to an internal or root node. The maximum number of rules stored

in a child node for each combination of cuts is recorded, with the combination that

results in the smallest number of maximum rules stored in a child node chosen.

3.2.1 Building a Decision Tree

This section describes step by step how to build a decision tree from the ruleset

shown in Table 3.1. The source and destination IP addresses have been reduced

from 32 to 4 bits to aid the explanation. The first step in building the decision tree

Chapter 3- Packet Classification Architectures

 52

Fig. 3.1. Cuts performed to the root node of a decision tree.

is to decide a value for spfac and binth. In this example they will both be set equal

to two. The next step involves deciding which dimensions should be used by the

root node to cut the hyperspace. This is done by first calculating the number of

distinct range specifications for each field, with the source IP address having six,

the destination IP address having eight, the source and destination ports both

having five and the protocol number having two, giving a mean number of 5.2.

The source and destination IP addresses shall therefore be considered for cutting

as they both have a distinct number of range specifications greater than the mean.

The maximum number of cuts that can be performed to the root node is calculated

next using Equation 3.1, limiting the maximum number of cuts to six. The number

of cuts that can be performed to a node is limited to be a power of two for ease of

implementation, which means a maximum of four cuts can be performed.

The next step involves trying all combinations of cuts between the chosen

dimensions that are less than or equal to four, with the maximum number of rules

stored in a child node for each combination of cuts recorded. The combinations of

cuts that can be made to the source and destination IP address are [0, 2], [0, 4], [2,

0], [2, 2] and [4, 0]. The combination that results in the smallest maximum

number of rules stored in a child node is to cut both the source and destination IP

address in two. Fig. 3.1 shows how the decision tree will look after performing

these cuts. It also includes a geometric representation of the source and

destination IP addresses, showing the cuts made to the root node (represented by

an octagon in the decision tree). It can be seen that these cuts create four sub-

regions. Three of these sub-regions conform to the binth value as they contain two

Chapter 3- Packet Classification Architectures

 53

Fig. 3.2. Cuts performed to the internal node of a decision tree.

or less rules. This means that they are leaf nodes (represented by rectangles in the

decision tree). The fourth sub-region contains more rules than the binth value

allows. This means that it is an internal node (represented by an oval in the

decision tree) that must be cut further.

The first step that must be carried out when cutting the internal node is to decide

which dimensions should be considered for cutting. This is done by calculating

the number of distinct range specifications for each field using the rules contained

within the sub-region. This time the source IP address has three distinct range

specifications, the destination IP address has four, the source port and protocol

number has two and the destination port has one, giving a mean number of 2.4.

The source and destination IP addresses are again considered for cutting as they

both have a distinct number of range specifications greater than the mean.

Equation 3.1 is used again to calculate the maximum number of cuts that can be

performed to the internal node, which is four in this case. The combinations of

cuts that can be made to the source and destination IP address are the same as the

combinations tried when cutting the root node. This time the combination that

results in the smallest maximum number of rules stored in a child node is to

perform four cuts to the destination IP address. This results in four sub-regions,

with all sub-regions containing two or less rules, which means that they all

conform to the binth value and no more cutting needs to take place.

Fig. 3.2 shows the finished decision tree and the cuts performed to the destination

IP address when cutting the internal node. It can be seen that two of the sub-

regions contain no rules which means that they are empty nodes (represented by

circles in the decision tree). The remaining two sub-regions are stored as leaf

nodes. A packet with a header value [0001, 0111, 50, 80, UDP] would traverse the

Chapter 3- Packet Classification Architectures

 54

Fig. 3.3. Traversing a decision tree to find a matching rule.

decision tree to find a matching rule in the following manner, with Fig. 3.3

showing the path traversed. The root node is first looked at and it can be seen that

it specifies that two cuts must be performed to both the source and destination IP

address. This is done by examining the MSB of each header field. Only one bit

needs to be examined for each field, as each field only has two cuts, which can be

represented by one bit. The MSB for each field in this case is [0001, 0111]. These

bits are concatenated to form the index 00, which represents the child node that

must be traversed to. This child node is an internal node, meaning that more cuts

need to be performed to the packet header in order to find the appropriate leaf

node to search. The internal node is split by performing four cuts to the destination

IP address. The next two MSBs must therefore be examined in the destination IP

address of the packet header as two bits are needed to represent the four possible

cuts. The value of these bits are [0111] giving the index 11, which represents the

child to be traversed to. This child is a leaf node, which is searched linearly by

comparing each of the rules to the packet header one by one until a match is

found. This will return rule R6 as the matching rule in this example.

3.2.2 Heuristics Used to Reduce Memory Usage

The HyperCuts packet classification algorithm uses different heuristics to

minimise the amount of memory needed to save a decision tree and reduce the

number of memory accesses required to match a rule. These heuristics are

illustrated in Fig. 3.4.

• The first heuristic is called Node Merging, which is used to avoid the

replicated storage of identical nodes. Node Merging is carried out by first
.

Chapter 3- Packet Classification Architectures

 55

Fig. 3.4. Heuristics used by HyperCuts to reduce memory consumption.

searching the decision tree for leaf nodes that contain the same list of rules.

The pointers to these nodes (stored in root and internal nodes) are then

modified so that they point to just one of these leaf nodes, meaning that

multiple copies do not need to be stored.

• HyperCuts uses a second heuristic called Rule Overlap to avoid the storage

of rules in leaf nodes that can never be matched. A rule can never be matched

and is therefore removed from a leaf node if the hypercube of a rule with a

higher priority completely covers the space it occupies within the leaf node’s

sub-region.

• A third heuristic used to avoid the replicated storage of rules is called Pushing

Common Rule Subsets Upwards. This heuristic stores rules at a parent node

that would otherwise need to be stored in all its child nodes. Internal and root

nodes could also need to be searched if this heuristic is used.

• The final heuristic used is called Region Compaction and it is employed to aid

in the more efficient cutting of the hyperspace. Each node in a decision tree

will cover a specific region of the hyperspace. The rules associated with a

node may, however, cover a smaller region. Region Compaction shrinks the

Chapter 3- Packet Classification Architectures

 56

area covered by a node so that it only covers the minimum amount of

hyperspace that will cover all rules associated with the node. This means that a

smaller region will need to be cut when dividing the hyperspace occupied by a

node into sub-regions. This could result in fewer cuts, reducing memory

consumption.

3.3 Algorithmic Modifications

The HyperCuts algorithm works well when implemented in software and run on a

general purpose processor. It is not, however, optimised for implementation using

dedicated hardware. This section explains the modifications made to the cutting

scheme, region compaction heuristic and rule storage method in order to make the

algorithm better suited to hardware acceleration. The modified cutting scheme

improves throughput by making the decision tree as shallow as possible so as to

reduce the number of memory accesses required to classify a packet. It can easily

be configured to build search structures tailored to architectures with different

width memory words.

The region compaction scheme introduced in the HyperCuts algorithm is modified

because it requires floating point division to be carried out when a packet

traverses the decision tree. It also requires the minimum and maximum values of

the area covered by all fields to be stored at a decision tree’s internal and root

nodes so that it is possible to calculate the child node to be traversed to. An

alternative scheme is introduced here that uses pre-cutting to compact the region

covered by a node more intelligently so that floating point division does not need

to be performed when traversing the decision tree. The new scheme instead uses

only simple shift and AND operations when deciding which path to take when

traversing the decision tree. Using pre-cutting to compact the region to be cut also

has the advantage of not requiring the minimum and maximum values for each

field to be stored at an internal or root node, reducing memory consumption. The

removal of floating point division simplifies the hardware accelerator’s

architecture, allowing for increased speed and reduced power consumption. Pre-

cutting is explained in detail in Section 3.3.2.

The method for storing rules in a leaf node is also modified here by using simple

compression techniques to lower memory consumption and reduce the required

Chapter 3- Packet Classification Architectures

 57

number of memory accesses needed to search a leaf node. The pushing common

rule subsets upwards heuristic is not used as it was found during testing of ACL,

FW and IPC rulesets to make only a fractional reduction in memory usage. It

would also result in a more complicated search structure that would slow down

the hardware accelerator as it would have to be able to search root, internal and

leaf nodes for matching rules. Pushing common rule subsets upwards can also add

extra memory accesses when classifying a packet. This is because a leaf node

might still need to be searched even if a matching rule is found at an internal or

root node. This is due to the fact that a leaf node might contain an alternative

matching rule with a higher priority. Such a case would mean that the search of

the rules at internal or root nodes was needless. Another disadvantage with this

heuristic is that the number of rules stored at a parent node could exceed the limit

on the maximum number of rules that can be stored in a leaf node. This would

lead to excessively long search times.

3.3.1 Cutting Scheme

The cutting scheme employed to build the search structures used by the hardware

accelerator architectures requires three pieces of information to be specified

before building of the decision tree can begin. This information includes:

• The number of cuts to be performed to the root node.

• The maximum number of cuts that can be performed to an internal node.

• The maximum number of rules that can be stored in a leaf node.

The cutting scheme performs the majority of cuts to the root node because this

will result in a shallow decision tree with the leaf nodes located closer to the root

of the decision tree. The number of cuts that can be performed to an internal node

is limited to only a few cuts to prevent the decision tree from using too much

memory. It also means that the information needed to traverse an internal node

can be placed in a single memory word, allowing them to be traversed in a single

clock cycle. The hardware accelerator designed to use ultra-wide memory words

can hold 48 rules on each memory word, which can be accessed and searched in a

single clock cycle. It therefore limits the number of rules that can be stored in a

leaf node to multiples of 48. Such large leaf nodes mean that only a small number

Chapter 3- Packet Classification Architectures

 58

of cuts are required to divide the hyperspace into sub-regions whose number of

rules do not exceed the maximum limit. The hardware accelerators designed to

use reduced width memory words limit the number of rules that can be stored in a

leaf node to multiples of two as they can only store two rules on each memory

word. These architectures therefore need to perform a large number of cuts to the

hyperspace so that the resulting sub-regions do not exceed the maximum limit on

the number of rules that they can contain.

The algorithm begins by first performing the required number of cuts to the root

node. The number of cuts must be 2
n
 where n can be any whole number in the

range 1-9 if the architecture that uses ultra-wide memory words is used. A limit of

512 cuts is placed on the root node because the memory words have been

designed so that they are wide enough to hold all the information required to store

an internal or root node. The memory words are 7,704 bits wide, which leaves

only enough room to store the root node’s cutting information and pointers for

512 child nodes. The architectures that use reduced width memory words limit n

to any whole number between 1-18 if the architecture that uses internal memory is

used and 1-19 if the architecture that uses external memory is used. Caps of

262,144 and 524,288 cuts respectively are used because of limitations on the

amount of memory available to save the search structures. These architectures

require two memory accesses to traverse a root node, with one memory access

used to retrieve the root node’s cutting information and another to retrieve the

memory address of the child node to be traversed to.

The algorithm uses the same method employed by HyperCuts to select the fields

that should be considered for cutting. It only considers fields whose number of

distinct range specifications is greater than or equal to the mean number for all

fields. All combinations of cuts between the chosen fields that equal the 2
n
 limit

are tried on the root node. The child node with the maximum number of stored

rules is recorded for each combination of cuts, with the combination where this

number is smallest chosen.

The algorithm searches through all child nodes created from cutting the root node,

with more cuts performed to the nodes whose number of rules exceeds the

maximum specified limit. The number of cuts that can be performed to the

Chapter 3- Packet Classification Architectures

 59

Table 3.2. Maximum number of cuts allowed by the cutting scheme.

Architecture
Max Cuts to

Root Node

Max Cuts to

Internal Node

Width of a

Memory Word

Ultra-wide memory 512 512 7,704-bit

Reduced width memory (internal) 262,144 16 324-bit

Reduced width memory (external) 524,288 4 288-bit

internal nodes is the same as the number that can be performed to the root node

for the architecture that uses ultra-wide memory words. This is because it only

allows a small number of cuts to both internal and root nodes, which it can

traverse in a single clock cycle. The number of cuts that can be performed to the

internal nodes for the architectures that use reduced width memory words is 2
m
,

where m can be any whole number between 1-4 if internal memory is used and 1-

2 if external memory is used. The number of cuts that can be performed to an

internal node has been capped at 16 and 4 respectively so that all the information

needed to traverse an internal node can fit in a single memory word, allowing

them to be traversed in a single clock cycle. Information on the number of cuts

allowed to the root and internal nodes for the different architectures is shown in

Table 3.2.

The architecture that uses internal memory can perform more cuts to the internal

nodes because it uses wider memory words, allowing it to store more pointers.

The architecture that uses external memory also has to store more information

with each of its pointers, as explained in Section 3.5.2. Limiting the number of

cuts also prevents excess memory usage and reduces the amount of time required

to build the decision tree. The cutting of an internal node differs from the cutting

of a root node in that all combinations of cuts are tried between the dimensions

chosen for cutting that are less than or equal to the maximum limit. All

combinations of cuts that are less than or equal to the maximum limit can be tried

because there are only a few valid combinations that can be tried quickly. Cutting

is complete when the number of rules in all sub-regions does not exceed the

maximum specified limit.

3.3.2 Region Compaction

This section begins by giving a detailed explanation of the region compaction

heuristic used by HyperCuts so that the modifications made here can be better

Chapter 3- Packet Classification Architectures

 60

Fig. 3.5. Region division with and without region compaction.

understood. Fig. 3.5 illustrates two methods of dividing a region defined by two

fields in a way that none of the resulting sub-regions contain more than two rules.

The method shown in Fig. 3.5 (A) does this by performing eight cuts along the

full length of field F1, with all resulting sub-regions containing two or less rules.

This method of dividing the region allows for a simple scheme to be used when

deciding which sub-region a packet should traverse to, with only two pieces of

information required for each field. This information includes the number of cuts

that need to be performed to each field of a packet header and the bits in these

fields where the cuts need to be performed. A packet with a header value 1011 for

field F1 will use its three MSBs to represent the index of the sub-region that must

be selected as it is the first time that this region is cut. There are eight cuts to be

performed, meaning that three bits are needed to represent the eight possible sub-

regions that could be selected.

Performing eight cuts to the full length of field F1 is wasteful in this example as

the three rules that must be divided only span a small length of field F1. The

region compaction heuristic used by HyperCuts overcomes this problem and is

illustrated in Fig. 3.5 (B). As mentioned, region compaction only cuts the area

covered by the rules and not the full region. Fewer cuts may therefore be needed

to divide the region in a way that results in none of the sub-regions containing

more than two rules. In this example region compaction reduces the number of

cuts that are needed to divide the region from eight to two. The use of region

compaction requires three pieces of information to be stored for each field in

order to calculate the correct sub-region that must be traversed to. This

Chapter 3- Packet Classification Architectures

 61

information includes the minimum and maximum limits of the compacted region

for a given field (Fmin and Fmax) and the number of cuts (nc) that must be

performed to this field in a packet’s header (Fheader). Equations 3.2 and 3.3 show

how the index for each field is calculated.

 dncFF =+− /)1)((minmax
 (3.2)

 indexdFFheader =− /)(min (3.3)

A packet with the header value 1011 for field F1 will have its index calculated as

follows. F1index= 15.1/)911(=− where the denominator d= 5.12/)1)911((=+− .

This index is the sub-region that must be traversed to as only field F1 is used for

cutting. Use of the region compaction heuristic used in HyperCuts can lower

memory consumption by reducing the number of sub-regions that need to be

stored. It is not, however, suitable for hardware implementation as extra logic is

needed to carry out the floating point division, which is required when calculating

the sub-region that must be selected. The delay caused by the extra logic and

additional clock cycles needed for floating point division will slow down the

hardware accelerator, decreasing throughput and increasing power consumption.

Compacting of a Region through Pre-Cutting

A new method for compacting the region to be cut at each internal or root node in

the decision tree through pre-cutting of the hyperspace is presented here. It uses

the same methods employed by the scheme that uses no region compaction when

calculating the sub-region a packet should traverse to. This scheme only requires

an internal or root node to store the number of cuts that must be performed to each

field of a packet header and the bits in these fields where the cuts need to be

performed. The simplicity of this scheme helps to improve throughput and

decrease power consumption. The region that needs to be divided is compacted by

recursively cutting all fields in two. This cutting of a specific field in two stops

and will not be carried out if it results in rules being contained in more than one

sub-region. Each pre-cut to a field used to divide the region will halve the number

of sub-regions that need to be stored and the number of cuts that need to be

performed to a packet header when selecting the correct sub-region to traverse to.

Each pre-cut to a field also means that the bits which need to be inspected in that

field of a packet’s header are shifted to the right one place.

Chapter 3- Packet Classification Architectures

 62

Fig. 3.6. Compacting of a region through pre-cutting.

Fig. 3.6 shows an example where pre-cutting is used to compact a region so that it

can be cut more efficiently. The process begins by performing pre-cuts to field F1

and F2 as shown in step A, reducing the area that needs to be considered for

cutting by 75%. Pre-cuts can be performed to both fields as it results in only one

sub-region that contains rules. In step B only field F1 is pre-cut as pre-cutting

both fields F1 and F2 would result in more than one sub-region that contains

rules. Pre-cutting field F1 in step B reduces the area that needs to be considered

for cutting by another 50%. Finally, in step C no more pre-cuts can be performed

so the compacted region is split in two, with none of the resulting sub-regions

containing more than two rules. Pre-cutting gives the same effect as the region

compaction heuristic used by HyperCuts in this example, with the number of sub-

regions that need to be stored reduced from eight to two when compared to the

method where no form of region compaction is used.

A packet with a header value of 1011 for field F1 can calculate the sub-region that

it must traverse to by simply using its third MSB as an index. The two MSBs are

ignored because field F1 has been pre-cut twice. Only the third MSB is required

as an index as only two cuts are performed to this field, meaning that one bit can

represent both possible sub-regions that could be selected.

3.3.3 Rule Storage

Some slight modifications have also been made to the way that a rule is stored in a

leaf node to reduce both memory consumption and the number of memory

accesses needed to retrieve the information required to match a packet header to a

rule. The first modification is to store the actual rule in the leaf node rather than a

Chapter 3- Packet Classification Architectures

 63

Fig. 3.7. Encoding scheme used for source and destination IP address.

pointer to the rule. This was found during testing of the ACL, FW and IPC

rulesets created using ClassBench to have only a small increase in memory

consumption for some rulesets and a reduction in memory consumption for others

as pointers to rules do not need to be stored. Storing the actual rule rather than a

pointer to it allows for a large increase in throughput as data is presented to the

hardware accelerator one clock cycle earlier.

A second modification is to reduce the amount of bits required to store the source

and destination IP address from 76 bits down to 70 by using an encoding scheme.

An IP address usually requires 32 bits to store its address and 6 bits to store its

mask. The mask number is used to specify the number of MSBs of the address

that must be an exact match to the corresponding bits in a packet header to record

a match. The remaining LSBs are wildcard bits, meaning that the value of the

corresponding bits in a packet header can have any value and still record a match.

The encoding scheme stores the 32-bit IP address and 6-bit mask as a 35-bit

number. The lowest bit is used to indicate if more than 28 bits of the IP address

need to be matched exactly. If not set, 32 bits are used to store the IP address, with

the remaining two bits indicating the actual number of bits that need to be

matched. If set, 28 bits are used to store the IP address, with the remaining 6 bits

indicating the actual number of bits that need to be matched. The encoding

scheme used by the hardware accelerators is shown in Fig. 3.7. This method of

encoding the IP address and mask can easily be modified so that only 33 bits are

needed, with only a slight increase in the logic needed to decode the information.

Each rule will require 143 bits to record the information needed to match it to a

packet header, with the source and destination IP address each requiring 35 bits.

The source and destination port numbers both require 32 bits, with each port

number’s minimum and maximum range values needing 16 bits. A total of 9 bits

Chapter 3- Packet Classification Architectures

 64

Fig. 3.8. Layout of information needed to match a packet header to a rule.

are required to store the information needed to match the protocol number, with 8

bits used to store the protocol number and 1 bit to store its mask. The mask only

requires 1 bit as the protocol number can only be an exact match or wildcard.

Each rule also has a flag bit that is set if it is the last rule in a leaf node. The

packet classifier will know that it has finished searching a leaf node if it comes

across a rule with this bit set. Fig. 3.8 shows the memory layout of the information

needed to match a packet header to a rule.

3.4 Cut Selection

The cutting information for each field consists of two pre-computed values. The

first pre-computed value is called Cuts and it is used to indicate how many cuts

can be performed on a given field. The number of cuts that can be performed on a

given field is limited to be a power of two for ease of implementation. An 8-bit

protocol number limited to 256 cuts, for example, can only have 0, 2, 4, 8, 16, 32,

64, 128 or 256 cuts performed to it. To save space a 4-bit number for Cuts can be

used to represent the nine different cut values. The number of bits needed to store

the Cuts value for a field can be calculated using Equation 3.4 where MaxCuts is

the maximum number of cuts allowed to the field.

 1))((loglog 22 += MaxCutstsNumberOfBi (3.4)

The value of Cuts is also the length of the bit-mask for a given field. This bit-

mask will be ANDed with the appropriate bits of a packet field to extract the

index for this field. Before the index of the child node is calculated, the Cuts

information is extended to form the bit-mask for each field. The second pre-

computed value for each field is called BPos, and it is used to indicate the bits that

the bit-mask should be ANDed with. In the calculation of a child node index,

BPos is the number of lower bits in a packet field that need to be removed by

shifting the field right, before the operation of ANDing with the bit-mask can be

performed. The protocol number, for example, will require three bits to store its

BPos value as it will need to be shifted right 0-7 places. The number of bits needed

Chapter 3- Packet Classification Architectures

 65

Fig. 3.9. Architecture of cut selection logic.

to store the BPos value for a given field is calculated using Equation 3.5 where

LengthOfField is the number of bits used to store the field.

)(log2 eldLengthOfFitsNumberOfBi = (3.5)

The architecture of the cut selection logic is shown in Fig. 3.9. It can calculate the

appropriate child node that a packet must traverse to in a single clock cycle as a

result of the simplicity of the new region compaction and cutting schemes that

have been presented here. These schemes can generate the appropriate child node

index by performing simple shift and AND operations. The shifting of bits is

carried out using multiplexers so that all shift operations can be performed in a

single clock cycle. The child node index is generated in two stages. The first stage

generates the sub-index for each field, while the second stage concatenates these

sub-indexes together to form the final index of the child node to be selected. The

sub-index for a field is generated by first shifting it to the right. The BPos value

for the field specifies how many bits it should be shifted. This shifted value is

ANDed with the bit-mask for the field to create its sub-index. As previously

mentioned, the bit-mask for a field is generated by extending its Cuts value. The

sub-indexes are concatenated in the final stage to form the final index of the child

node by left shifting the sub-index of each field by the length of the sub-index of

the next field and then ORing them together. This is done until the indexPR is

combined with the others as illustrated in Fig. 3.9. The length of the sub-index of

each field is specified by its Cuts value.

Chapter 3- Packet Classification Architectures

 66

Fig. 3.10. Layout of root/internal node when using ultra-wide memory.

3.5 Memory Organisation

This section explains how to store the root, internal and leaf nodes of the decision

tree search structures built for the architectures designed to use ultra-wide and

reduced width memory words. It also explains how the nodes are carefully

arranged in memory after the decision tree has been built to ensure that there are

as few gaps of unused memory as possible.

3.5.1 Ultra-Wide Memory Words

The architecture that uses ultra-wide memory employs 7,704-bit wide memory

words that can hold all the information needed to store a root or internal node, or

up to 48 rules of a leaf node. This helps to reduce the number of memory accesses

required to classify a packet. It was found through testing that 7,704-bit wide

memory words offered the best trade-off in terms of number of memory accesses

needed to classify a packet and maximum obtainable clock speed when using

ClassBench generated rulesets that contained a large number of wildcard rules. A

root or internal node can perform a maximum of 512 cuts when dividing the

hyperspace, limiting the number of bits required to store them to 7,208. Fig. 3.10

shows the layout of a root/internal node that contains the maximum allowed

number of 512 child nodes. Each cut uses 14 bits to store the pointer to its child

node. These pointers use 10 bits to store the memory address of their child node,

with an address of zero indicating that the child node is empty and no matching

rule has been found. The remaining 4 bits are used to indicate the starting position

of the child node in a memory word and whether it is an internal or leaf node. All

internal nodes are stored at the start of a memory word, while a leaf node can have

one of 15 possible starting positions. This gives one memory word the ability to

store up to 15 different leaf nodes.

Chapter 3- Packet Classification Architectures

 67

Fig. 3.11. Layout of leaf node when using ultra-wide memory.

An internal or root node requires 40 bits to store its cutting information. This

information is made up of the Cuts and BPos values for each field. The source and

destination IP addresses and port numbers are each limited to 512 cuts, meaning

that 4 bits are adequate to store the Cuts value for each of these fields. This is

because a limit of 512 cuts allows only ten possible cut values. A total of 3 bits

are required to store the Cuts value for the protocol number as it has nine possible

cut values. Each 32-bit source and destination IP address will require 5 bits to

store its BPos value as they can be shifted 0-31 places. The 16-bit source and

destination port numbers require 4 bits to store this value as they can be shifted 0-

15 places, while the 8-bit protocol number requires 3 bits as it can only be shifted

0-7 places. Each packet being classified needs to pass through the root node. The

root node is therefore stored in a register separate from main memory to reduce

the number of memory accesses needed to classify a packet.

A total of 160 bits are required to store each rule contained within a leaf node, of

which 16 bits are used to store a rule’s ID, 143 bits to store the information

needed to match a rule to a packet header and 1 bit to indicate if it is the last rule

stored in a leaf node. Each memory word storing a leaf node will also store the

address of the next memory word. This address is used when retrieving the rules

of a leaf node that cannot fit in a single memory word. Storing this address

reduces logic as the starting address of a leaf node spanning multiple memory

words does not need to be stored and incremented when retrieving its rules. Fig.

3.11 shows the layout a leaf node with 48 rules stored in a single memory word.

In order to reduce memory consumption the nodes are rearranged after the search

structure has been built. All the internal nodes are stored first, followed by the leaf

nodes. This means that the leaf nodes can be saved contiguously in the search

structure, thus improving the storage efficiency of rules. The HyperCuts algorithm

uses parameters known as spfac and binth to trade off throughput against memory

consumption. A parameter introduced here to trade throughput against memory

consumption for the architecture that uses ultra-wide memory words is called

Chapter 3- Packet Classification Architectures

 68

speed. The leaf nodes are packed one after another as tightly as possible when the

speed parameter is not set. This means that the search structure is saved in the

most memory efficient way possible but will not result in the highest possible

throughput, with the number of memory accesses needed to classify a packet

calculated using Equation 3.6.

 xposzssesMemoryAcce +++= 1)48/)(((3.6)

Where the number of internal nodes traversed to reach the leaf node is represented

by x. The starting position of the leaf node in a memory word is represented by

pos, and z is the position of the matching rule in the leaf node. The speed

parameter being set will mean that a leaf node is only stored in a memory word

with a staring position greater than zero if Equation 3.7 is satisfied:

RulesStoredInLeaf+pos≤48 (3.7)

This means that there may be reduced storage efficiency as the leaf nodes might

no longer be stored as tightly as possible. Reduced storage efficiency will,

however, lead to an increase in throughput as the number of memory accesses

needed to classify a packet will be calculated using Equation 3.8. The starting

position of the leaf node pos will have no effect on the number of memory

accesses needed to classify a packet, meaning that it can be removed.

 xzssesMemoryAcce ++= 1)48/((3.8)

3.5.2 Reduced Width Memory Words

Two similar architectures that use reduced width memory words are presented

here. The first architecture uses the internal memory of an FPGA, exploiting the

flexibility of this internal memory by using 324-bit wide memory words. The

second architecture is designed to use external memory and is limited to using

288-bit wide memory words due to the rigidity of external data bus widths.

Internal Memory

The architecture that uses internal memory requires 45 bits to store the Cuts and

BPos values used to cut the root node. This cutting information is again placed in

a register separate from main memory as it must be accessed by every packet

being classified. As with the previous architecture this reduces the number of

memory accesses needed to classify a packet by one. The source and destination IP

Chapter 3- Packet Classification Architectures

 69

Fig. 3.12. Layout of root node cut information when using reduced width memory.

Fig. 3.13. Layout of root node pointers when using reduced width internal memory.

addresses have been limited to performing a maximum of 262,144 cuts to the

hyperspace as explained in Section 3.3.1. This means that 5 bits are required to

store their Cuts value as there are 19 possible cut values. The source and destination

port numbers can perform up to 65,536 cuts when dividing the hyperspace, which

means that they also require 5 bits to store their Cuts value as they have 17

possible cut values. The protocol number requires 4 bits to store its Cuts value as

it has nine possible cut values. The remaining 21 bits are used to store the BPos

values used for indicating which bits of the five fields should be used to form the

child node index. Fig. 3.12 shows the layout of the root node cutting information.

The root node requires 18 bits to store each of its child node pointers. This means

that each memory word can hold 16 pointers, with the MSBs of the child node

index used to retrieve the memory word where its pointer is stored and the LSBs

used to indicate its position in that memory word. The pointer uses 16 bits to store

the child node’s address in memory, with a value of zero again meaning that the

child node is empty and no matching rule has been found. Another bit is used to

indicate if the child is an internal or leaf node, while the final bit indicates the

starting position of the node at its memory location if it is a leaf node. This bit is

required because each memory word can hold two rules. Fig. 3.13 shows the

layout of a root node’s pointers. In this example the root node has 32 child nodes,

with the pointers to these nodes occupying two memory words.

Each internal node requires 36 bits to store its cutting information. The only

difference in the cutting information for an internal node and the root node is that

the Cuts value for all five dimensions only requires 3 bits as the number of cuts to

Chapter 3- Packet Classification Architectures

 70

Fig. 3.14. Layout of internal node when using reduced width internal memory.

Fig. 3.15. Layout of leaf node when using reduced width internal memory.

each dimension has been limited to 16, meaning that there are only five possible

cut values for each field. An internal node can therefore fit fully in one memory

word as the cutting information and maximum of 16 pointers will require 324 bits

to store. Fig. 3.14 shows the layout of an internal node with the maximum allowed

number of 16 child nodes, while Fig. 3.15 shows the layout of a leaf node

containing 4 rules, with these rules stored across two memory words. Each rule in

a leaf node for this architecture requires 162 bits, of which 18 bits are used to

store the rule ID, 143 bits to store the information needed to match a rule to a

packet header and 1 bit to indicate if the rule is the last rule stored in a leaf node.

The nodes that form the decision tree are again rearranged after it has been built in

order to obtain maximum storage efficiency, with the rearranging carried out

carefully so that no extra memory accesses are added to the worst case required to

classify a packet. The pointers of the root node’s child nodes are stored first,

followed by the internal nodes. Leaf nodes that contain an even number of rules

are stored next and then the leaf nodes that contain an odd number of rules. This

will ensure that there are no gaps of unused memory, with no extra memory

accesses added to the worst case when searching a leaf node. This is because each

memory word stores two rules.

External Memory

The architecture that uses external memory employs 288-bit wide memory words.

This allows the use of cheap Double Data Rate 2 Synchronous Dynamic Random

Chapter 3- Packet Classification Architectures

 71

Fig. 3.16. Layout of root node pointers when using reduced width external memory.

Fig. 3.17. Layout of internal node when using reduced width external memory.

Access Memory (DDR2 SDRAM) reading in 72-bit wide memory words in bursts

of four. As with the previous architecture, the information required to perform

cuts to the root node requires 45 bits, with this information stored in a separate

register to reduce memory accesses. This time the pointers for the root node

require 64 bits, with 22 of these bits used to give the memory address where the

child node is stored. A value of zero again indicates an empty child node and no

match. The pointer also includes a bit that indicates the node type and another bit

that gives the node’s starting position in a memory word if it is a leaf node. Each

pointer also stores 20-bit rule IDs for the first two rules that could be stored if the

child node is a leaf. This is done because the 288-bit wide memory words are only

wide enough to store the rule information used for comparison and not the rule

ID. A packet matching one of the first two rules in a leaf node will not require an

extra memory access to retrieve its rule ID. A memory word can hold a maximum

of four pointers due to the large amount of information that a pointer stores. Fig.

3.16 shows the layout of a root node’s pointers. The root node in this example has

eight child nodes, with the pointers to these nodes occupying two memory words.

The cutting scheme used for the internal nodes has again been designed so that all

information needed to traverse them can fit fully in a single 288-bit wide memory

word. Each internal node is allowed a maximum of four child nodes, with the

pointer for each using 64 bits. The cutting information has been reduced to 32 bits

as each field can perform a maximum of four cuts, which means that 2 bits are

required to store the Cuts value for each field as each field has only three possible

cut values. The layout of an internal node is shown in Fig. 3.17. This example

shows an internal node with the maximum allowed number of 4 child nodes.

Chapter 3- Packet Classification Architectures

 72

Fig. 3.18. Layout of leaf node when using reduced width external memory.

Each rule in a leaf node requires 143 bits for its comparison information as

explained previously, and an additional bit to indicate if it is the last rule stored in

a leaf node. The leaf node will come in two parts if the number of rules stored

exceeds two. The first part will store the rule ID for the third and subsequent rules

in the leaf node, with each memory word storing up to eight 20-bit rule IDs. The

second part stores the rule comparison information. Fig. 3.18 shows an example

of how a leaf node is laid out. This example shows a leaf node containing six rules

with the information needed to match a rule to a packet header and the rule IDs

stored across four memory words. It can be seen that the leaf node only needs to

store the rule IDs for the third and subsequent rules. This is because the rule IDs

for the first two rules are stored with the pointer to the leaf node.

The starting position of the rule comparison information is given as the address of

the leaf node. One of the first two rules matching will mean that a memory access

for the rule ID will not be needed as this information was already given in the leaf

node pointer. A counter is used to count how many memory accesses were

required for rule comparison information before a match takes place. The MSBs

of this counter are subtracted from the leaf node’s starting address when a match

takes place. This gives the memory address of the matching rule ID. The location

of the matched rule and LSBs of the counter are used to locate the position of the

matching rule ID on this memory word.

This search structure is compacted to ensure that there are as few gaps of unused

memory as possible by first storing the pointers of the root node, followed by the

internal nodes. All leaf nodes that contain two or more rules are then stored. The

final step involves storing the leaf nodes that contain a single rule in places where

the memory would otherwise not have been used. This is done to plug as many

gaps as possible. These gaps are located in memory words used to store less than

eight rule IDs and at the end of leaf nodes that contain an odd number of rules.

Chapter 3- Packet Classification Architectures

 73

Fig. 3.19. Block diagram of the architecture used by the packet classification engines.

3.6 Packet Classification Engine

Fig. 3.19 shows a block diagram of the architecture used by the packet

classification engines designed to use on-chip ultra-wide memory, on-chip

reduced width memory and external reduced width memory. All three engines

presented are built using two main modules. The first module is a tree traverser

that is used to traverse a decision tree using header information from the packet

being classified. The decision tree is traversed until an empty child node is

reached, meaning that there is no matching rule, or until a leaf node is reached. A

leaf node being reached will result in the tree traverser passing the packet header

and information on the leaf node reached to the second module known as the leaf

node searcher. The leaf node searcher compares the packet header to the rules

contained within the leaf node traversed to until either a matching rule is found or

the end of the leaf node is reached with no rule matched. The leaf node searcher in

all three engines presented employs multiple comparator blocks that work in

parallel. This allows the searching of more than one rule on each memory access,

reducing lookup times.

Information on the decision tree’s root node is stored in registers in the tree

traverser for all three engines. This makes it possible for the tree traverser to begin

classifying a new packet, while the previous packet is being compared to rules in

the leaf node it traversed to for a matching rule using the leaf node searcher. This

use of pipelining allows for a maximum throughput of one packet every clock

Chapter 3- Packet Classification Architectures

 74

Fig. 3.20. Operation of engine using ultra-wide memory words.

cycle when the packet classification engine designed to utilise ultra-wide memory

words is used. A maximum throughput of one packet every two clock cycles can

be achieved when using the packet classification engine designed to use on-chip

reduced width memory.

3.6.1 Architecture of Engine Using Ultra-Wide Memory Words

The flow chart shown in Fig. 3.20 explains the operation of the packet

classification engine designed to use on-chip ultra-wide memory. The engine has

been designed to traverse the root node of a decision tree without requiring any

memory accesses. This is possible because its tree traverser can hold all the

information needed to traverse the root node in registers. This can be done

because of the limited number of cuts allowed to the root node when this engine is

used, reducing the amount of information that needs to be stored. The information

stored is the root node’s cutting information and its child pointers, of which there

can be a maximum of 512. All internal nodes require one memory access to be

traversed, while a leaf node can be searched at a rate of 48 rules per memory

access. This makes it possible for the packet classification engine to classify a

packet in one memory access at worst when the decision tree is made up of only

root and leaf nodes, with each leaf node storing no more than 48 rules.

To classify a packet, the search structure is first saved to memory. The root node

cutting information is also registered to the R Node Cut Data register and the

pointers to the root’s child nodes are stored in the R Node Pointers register. These

Chapter 3- Packet Classification Architectures

 75

Fig. 3.21. Architecture of tree traverser using ultra-wide memory words.

registers can be seen in Fig. 3.21, which shows the architecture of the tree

traverser module. The tree traverser begins by monitoring a Start signal from a

small packet buffer used to store the fields of a packet’s header that are needed for

classification. This Start signal notifies the classification engine when there are

packets available to be classified. The tree traverser will load a packet header

from the buffer to its Packet Header register when it becomes available for

classification and will assert a Ready signal to notify the buffer that it has loaded

the header. The header and root node cutting information are used to calculate the

index of the child node that should be traversed to. This index picks which of the

root’s child pointers should be selected from the R Node Pointers register. The

pointer selected stores the node’s type, address in memory and starting position in

the memory word located at this address if a leaf node is traversed to.

The node’s address is analysed to check if it is an empty node. The address will be

zero if an empty child node has been reached and no matching rule has been

found. In this case the classification engine will assert an Empty Child signal to

indicate that no matching rule has been found and go back to scanning the buffer

for more packets to be classified. A value greater than zero means that the node is

not empty. In this case the value is analysed that indicates the node’s type and

starting position in the memory word where it is located to see if the node to be

traversed to is a leaf or internal node. All the steps required to traverse the root

Chapter 3- Packet Classification Architectures

 76

Fig. 3.22. Architecture of leaf node searcher using ultra-wide memory words.

node from registering the packet header to finding the address, type and starting

position in a memory word of the child node to be traversed to is carried out in

one clock cycle.

An internal node being traversed to will require the loading of the internal node’s

cutting information to the I Node Cut Data register and its pointers to the I Node

Pointers register. The same tasks used to traverse the root node are performed to

the packet header stored in the Packet Header register using the registered internal

node information. These tasks involved finding out if the child node to be

traversed to is an empty node and if not its address, its type and starting position

in the memory word where it is located. The traversal of an internal node also

requires one clock cycle.

A leaf node being reached will mean passing the header belonging to the packet

being classified and the leaf node’s starting position in the memory word where it

is located to the leaf node searcher, whose architecture is shown in Fig. 3.22. The

leaf node searcher registers this packet header to the Packet Header register. The

leaf node data returned from memory is stored using the Leaf Node Data register.

This data is made up of the information required to compare up to 48 rules and

their rule IDs. The leaf node searcher uses 48 separate comparator blocks that

work in parallel to compare the rule information loaded with the packet header to

be classified. The output of each comparator is checked to see if a match has been

found. No rule being matched will mean checking the flag bit of the rules loaded

to determine if the last rule in the leaf node has been reached. No match and the

last rule in the leaf not being reached will mean using the address stored in the

Chapter 3- Packet Classification Architectures

 77

Fig. 3.23. Operation of engine using reduced width internal memory.

current memory word being analysed to load the memory word containing the

next 48 rules. This process is continued until a matching rule is found or the last

rule in the leaf has been reached and no match found. A matching rule being

found will mean asserting a Match signal and outputting the appropriate rule ID.

No matching rule being found will mean asserting a NoMatch signal.

The tree traverser module is able to traverse the root node for a new packet if

there are packets available to be classified while the leaf node searcher is

searching the leaf node of the previous packet. The tree traverser asserts its Ready

signal and loads a new packet to its Packet Header register and repeats the steps

required to traverse the root node. The leaf node searcher can then begin searching

the leaf node for this packet as soon as it has finished searching the leaf node of

the previous packet. This means that it is possible to classify a packet on every

clock cycle when the decision tree only contains a root and leaf nodes, with a leaf

node containing no more than 48 rules. The packet classification engine will

remain in an idle state if there are no packets to be classified, where it

continuously monitors the buffer’s Start signal. It does this until a packet becomes

available for classification, in which case it will assert its Ready signal and repeat

the process described all over again to classify the new packet.

3.6.2 Architecture of Engines Using Reduced Width Memory Words

The flow chart shown in Fig. 3.23 explains the operation of the packet

classification engine designed to reduced width internal memory. The engine has

been designed to traverse a root or internal node in one memory access. It can also

Chapter 3- Packet Classification Architectures

 78

Fig. 3.24. Architecture of tree traverser using reduced width internal memory.

search leaf nodes at a rate of two rules per memory access. This makes it possible

for the packet classification engine to classify a packet in two memory accesses at

worst if the decision tree is made up of only a root node and leaf nodes storing no

more than two rules.

A packet is classified by first saving the search structure to memory and

registering the root node cutting information to the R Node Cut Data register

located in the tree traverser, whose architecture is shown in Fig. 3.24. The tree

traverser then communicates with a packet buffer used to store the required fields

of a packet’s header needed for classification in the same manner described in the

explanation of the previous engine through the use of Ready and Start signals. The

tree traverser loads a packet header to the Packet Header register when it becomes

available for classification. The header loaded and the stored root node cutting

information are used to calculate the child node that should be traversed to.

Loading the packet header and calculating which of its child nodes should be

traversed to takes one clock cycle. The MSBs of the child node index calculated

are used to load the memory word containing the child node’s pointer on the next

clock cycle.

On this clock cycle the memory word containing the correct child node pointer is

registered to the register labelled R Node Pointers. The LSBs of the child node

Chapter 3- Packet Classification Architectures

 79

Fig. 3.25. Architecture of leaf node searcher using reduced width internal memory.

index are used to select the pointer in this memory word that should be selected.

The address of the child node being traversed to is analysed to check if it is zero.

An Empty Child signal is asserted if it is zero to indicate that no matching rule has

been found and that the classification engine should begin the process of

classifying a new packet. An address greater than zero will mean examining the

bit indicating the node type to see if the node to be traversed to is a leaf or internal

node. Loading and analysing the root node pointer takes one clock cycle.

In the case where an internal node is to be traversed to, the memory word loaded

on the next clock cycle will contain the internal node’s child pointers and cutting

information. These child pointers are stored using the I Node Pointers register,

while the cutting information is stored using the I Node Cut Data register. The

cutting information is again used to calculate which of the internal node’s child

nodes is to be traversed to, with this index used to select which of its pointers

loaded is to be analysed. The internal node pointer information is analysed in the

exact same way as the root node pointer information. Traversing an internal node

takes one clock cycle.

A leaf node being traversed to will mean using the leaf node searcher whose

architecture is shown in Fig. 3.25 to search the leaf for a matching rule using the

steps described by the packet classification engine that uses the ultra-wide

memory words. One difference is that this leaf node searcher can only compare

two rules per memory access due to the reduced width memory words. Another
.

Chapter 3- Packet Classification Architectures

 80

Fig. 3.26. Operation of engine using reduced width external memory.

difference is that the reduced width memory words do not have enough space to

store the address of subsequent memory words, which may need to be fetched

when retrieving the rules belonging to a leaf node. These addresses must be

generated by the leaf node searcher using a counter that increments the leaf node’s

starting address.

The tree traverser module is again able to begin the process of classifying a new

packet if there are packets available to be classified while the leaf node searcher is

searching the leaf node of the previous packet. The tree traverser loads a new

packet to its Packet Header register and uses the root node’s cutting information

stored in the R Node Cut Data register to calculate the index of the child node that

must be traversed to. The pointer belonging to this child can be returned from

memory as soon as the leaf node searcher is finished with the previous packet.

External Memory

Finally, the last packet classification engine presented is the engine that uses

reduced width external memory. Fig. 3.26 shows a flow chart explaining its

operation. The architecture of the tree traverser used by this engine is almost

identical to the one shown in Fig. 3.24. It traverses the root and internal nodes in

the same way, with the only difference being that a child pointer will contain the

rule IDs of the first two rules stored in the node it points to, if the node pointed to

is a leaf node. These rule IDs are passed to the leaf node searcher, along with the

Chapter 3- Packet Classification Architectures

 81

Fig. 3.27. Architecture of leaf node searcher using reduced width external memory.

packet header being classified, address of the leaf node to be searched and its

starting position in the memory word located at this address. As explained, a

pointer stores these rule IDs because the 288-bit wide memory words used by this

architecture are only wide enough to store the comparison information needed for

two rules and not their rule IDs. A match in one of the leaf node’s first two rules

will mean that a memory access is not required to retrieve the ID of the matching

rule, while a matching rule not located in the first two rules will require an

additional memory access to retrieve the appropriate rule ID.

The leaf node searcher used by the engine is shown in Fig. 3.27. It works by first

registering the packet passed to it by the tree traverser in the Packet Header

register. It also stores the leaf node information returned from memory in the Leaf

Node Data register and the starting address of this leaf node in the register

labelled L Address. Again two comparators are used in parallel to compare the

rule information to the packet header being classified. A match in the first attempt

will mean asserting the Match signal and using the appropriate rule ID from the

leaf node’s pointer, loaded previously. The No Match signal will be asserted if the

end of the leaf node is reached and there is no matching rule. In either case a new

packet can be loaded from the buffer if available on this clock cycle and its child

index calculated using the root node’s cutting information stored in the tree

traverser. The root node’s pointer will be loaded from memory on the next clock

cycle if a new packet is available, otherwise the state where the classifier waits for

a packet will be entered.

Chapter 3- Packet Classification Architectures

 82

The leaf node’s address will be incremented in the case where the leaf end is not

reached and there is no matching rule, with the retrieved rules stored in the Leaf

Node Data register. This address is generated by adding the leaf node’s starting

address to the value of a counter that increments each time another two rules need

to be loaded. The next two rules in the leaf node are again compared to the packet

header stored. This process continues until a match takes place or a leaf end is

reached with no match. A leaf end reached with no match will mean loading a

new packet if available, while a match will mean retrieving the matching rule ID.

The address of the matching rule ID is generated by subtracting the MSBs of the

counter from the starting address of the leaf node.

The memory word with the matching rule ID is loaded on the next clock cycle

with the LSBs of the counter and matching rule position used to pick the correct

rule ID from the memory word retrieved. During this cycle the Match signal will

be asserted and the packet buffer checked for new packets that could be classified.

Again, a packet being available will mean calculating the index of the child node

the new packet must traverse to and loading its pointer on the next clock cycle,

while no available packet will mean going to the state where the engine waits for

a new packet to be classified. The engine’s architecture makes it possible to

classify a packet in two memory accesses at worst if the decision tree is made up

of only a root and leaf nodes, where the leaf nodes store no more than two rules.

3.7 Configuration of Multiple Engines Operating in Parallel

The packet classification engines that use on-chip ultra-wide memory and reduced

width memory have been implemented using Stratix III and Cyclone III FPGAs.

The maximum clock speed that can be obtained by these packet classification

engines when implemented using an FPGA is much slower than the maximum

clock speed that can be obtained by an FPGA’s internal memory. This is due to

the logic delay in the components used by the engines such as the comparator

blocks that compare a packet header with rules in a leaf node. It is therefore

necessary to use multiple engines working in parallel so that the packet

classification hardware accelerator can achieve maximum throughput. The use of

multiple engines will help to ensure that the bandwidth of an FPGA’s internal

memory is better utilised.

Chapter 3- Packet Classification Architectures

 83

Another reason for using multiple packet classification engines working in

parallel is that it allows rulesets that contain many wildcard rules to be broken up

into groups. The engines can work in parallel to classify a packet, with each group

being searched using a separate engine. The matching rule with the highest

priority (rule with the lowest rule ID) will be chosen in the case where multiple

engines return a matching rule. The search structure for each group can be saved

to the same block of memory that is shared by the engines. Splitting up rulesets

that contain many wildcard rules into groups can help to reduce the amount of

memory needed to save a ruleset’s search structure and reduce the worst case

number of memory accesses it takes to classify a packet, improving throughput.

This is possible because rules where wildcard ranges occur in the same fields can

be grouped together, with these fields not used for cutting, where possible. This

makes it easier to divide a ruleset into sub-regions that contain a small number of

rules and reduces the replicated storage of rules.

This section explains how the packet classification engines can be configured to

work in parallel, sharing the same memory. It also explains the architecture of

additional building blocks required to allow multiple engines to work in parallel.

These building blocks include a high speed packet buffer used to capture the

fields of a packet’s header required for packet classification. The packet buffer is

also used to distribute the packet headers among the classification engines. The

classification results and packet ID for each engine is inputted into another

building block known as a sorter logic block. This logic block has two functions.

The first is to compare matching results between engines in the case where the

ruleset has been split into multiple groups. This is done to make sure that the

matching rule with the highest priority is selected in the case of multiple rule

matches. The second function is to make sure that the classification results for the

packets are outputted in the same order as the order that the packets were captured

by the buffer.

3.7.1 Architecture of Packet Buffer

The packet buffer stores the source and destination IP address, source and

destination port number and protocol number from the incoming packets at speeds

of up to 250 Mpps. This allows the hardware accelerator to operate at line speeds

Chapter 3- Packet Classification Architectures

 84

Fig. 3.28. Architecture of packet buffer used by packet classifiers.

in excess of 40 Gbps. The buffer works on a first come, first served basis, with

packets being outputted from the buffer to the packet classification engines in the

same order that they were inputted. The architecture of this buffer can be seen in

Fig. 3.28. Every time a packet header appears at the input a Load signal will be

asserted. This Load signal increments the write address that gives the memory

location where the packet header will be saved in the buffer.

The packet classification engines as mentioned previously will assert a Ready

signal when they are ready to classify a packet and there are packets to be

classified. This signal will increment the read address of the buffer so that packet

headers are read from the correct location. The write and read addresses of the

packet buffer are subtracted from each other, with a difference between these

addresses causing a Start signal to be asserted. The Start signal is used to notify

the packet classification engines when there are packets ready to be classified.

The read address is also outputted from the packet buffer with the packet header

and used as a Packet ID. The Packet ID is used to make sure that the matching

rule IDs are outputted by the hardware accelerator in the same order that the

packet headers were inputted to the system.

3.7.2 Architecture of Sorter Logic Block

Fig. 3.29 shows the architecture of the sorter logic block used to make sure that

the matching rule IDs are outputted in the correct order and that the rule with the

highest priority is selected when there are multiple rule matches in the case where

rulesets are broken up into groups. The sorter logic block accepts the Match, No

Match, Rule ID and Packet ID signals from each of the packet classification

Chapter 3- Packet Classification Architectures

 85

Fig. 3.29. Architecture of sorter logic block used by packet classifiers.

engines. It knows that an engine has finished classifying a particular packet

represented by its Packet ID when either the Match or No Match signals have

been asserted. The logic block labelled Rule ID Selector + Control Logic is used

to make sure that the rule with the highest priority is selected between engines

working in parallel to classify the same packet.

The Rule ID Selector + Control Logic block registers the Match, No Match and

Rule ID signals for a packet that has been classified to a chain of registers and

multiplexers in series. The register selected will depend on the Packet ID number.

The Match, No Match and Rule ID will be registered to the output register if it is

next in the sequence of packet results to be outputted, and stored if not. All stored

rules will be shifted towards the output register each time a rule appears that is

due to be outputted. This process is hidden, with the packet classification

hardware accelerator outputting the result of classified packets on a first come,

first served basis.

3.7.3 Architecture of Classifier Using Ultra-Wide Memory Words

The packet classification hardware accelerator designed to use ultra-wide memory

words employs four packet classification engines working in parallel when

implemented on a Stratix III FPGA and two engines working in parallel when

implemented on the smaller low power Cyclone III FPGA. Both implementations

use 7,704-bit wide memory words, with the Stratix III implementation having

Chapter 3- Packet Classification Architectures

 86

Fig. 3.30. Architecture of hardware accelerator using ultra-wide memory words.

1,024 memory words available to save the search structures required for

classifying packets and the Cyclone III implementation having 512 memory

words available.

Fig. 3.30 shows the architecture of the Stratix III implementation of the packet

classification hardware accelerator. Its engines share access to the same memory

port, with the four engines running at the same clock speed. Each engine uses a

separate clock that is 90º out of phase with the previous engine. This is done to

create a simple memory interface, with the read address of the four engines

multiplexed together. This means that the memory must run at a speed equal to

four times that of each engine to ensure that all engines are never refused a

memory access. Each engine will therefore be guaranteed 25% of the available

memory bandwidth. The sorter logic block must also run at the same clock speed

used by the memory due to the fact that each engine is capable of classifying a

new packet on every clock cycle when the decision tree only contains a root and

leaf nodes, with a leaf node containing no more than 48 rules.

The Ready signals from the engines are also multiplexed together and inputted

into the packet header buffer, with each engine having equal access to the packet

buffer. The presence of four engines allows rulesets to be split into a maximum of

four groups. Splitting a ruleset into four separate groups will mean that each

Chapter 3- Packet Classification Architectures

 87

packet being classified requires the use of all four engines working in parallel to

search through the four resulting search structures. This means that the maximum

throughput for the hardware accelerator will be equal to that of an individual

engine. Each packet will require two classification engines to find a matching rule

in the case where the ruleset has been split into two separate groups as only two

search structures need to be searched. This increases the maximum throughput of

the hardware accelerator to twice the maximum throughput of a single

classification engine. This is due to the fact that the hardware accelerator will

contain two pairs of engines working in parallel. Maximum throughput can be

obtained in the case where the ruleset does not need to be split into multiple

groups. This is because there will only be one search structure, meaning that a

single engine can classify a packet on its own. The maximum throughput for the

hardware accelerator will therefore be equal to the sum of the throughput of all

four engines working in parallel.

The architecture of the Cyclone III implementation of the packet classification

hardware accelerator is almost identical to that of the architecture shown in Fig.

3.30. The only difference is that it uses two engines, which again run at the same

clock speed, with the clock of each engine this time out of phase by 180º and the

memory running at a clock speed twice that of an engine. Rulesets can only be

split into a maximum of two groups when using this implementation as there are

only two engines available to search through the resulting search structures.

3.7.4 Architecture of Classifier Using Reduced Width Memory Words

The 7,704-bit wide memory words used by the architecture explained in Section

3.7.3 has limited the Stratix III implementation to four packet classification

engines and the Cyclone III implementation to two engines. This is due to

limitations in the available logic interconnect within these devices. The

architecture presented in this section, which uses on-chip reduced width memory,

does not suffer from such limitations in available logic interconnect as it uses

considerably smaller 324-bit wide memory words. It has also been implemented

using a Stratix III and Cyclone III FPGA, with both implementations using eight

packet classification engines. It takes advantage of the fact that the internal

memory of an FPGA is dual port by placing two separate packet classifiers in

Chapter 3- Packet Classification Architectures

 88

Fig. 3.31. Architecture of hardware accelerator using reduced width memory words.

parallel, sharing the same memory. Each classifier reads data from a separate data

port and has its own packet buffer for storing the headers of incoming packets,

four engines that work in parallel to maximise the bandwidth usage of a data port

and a sorter logic block used to make sure that the classification results are

outputted in the correct order.

The four engines belonging to a classifier again run at the same clock speed, with

the clock used by each engine 90º out of phase with the clock used by the

previous engine. Memory runs at a speed equal to four times that of an engine,

ensuring a simple memory interface with each engine guaranteed access to

memory on each of its clock cycles. Fig. 3.31 shows the hardware accelerator’s

architecture. The Stratix III implementation of this hardware accelerator has

46,080 memory words available to save the search structures required for

Chapter 3- Packet Classification Architectures

 89

classifying packets, while the Cyclone III implementation has 12,288 memory

words available. The memory used in each implementation is made up of a series

of small memory blocks which are connected up so that they act as a continuous

memory space. The memory ports of each memory block have their own enable

signals. These enable signals are used to reduce power consumption by only

activating the memory blocks that are being read from on a given clock cycle.

This architecture also allows the splitting of a ruleset used to classify packets into

groups of four or two in order to reduce the memory consumption and the worst

case number of memory accesses needed to classify a packet for rulesets

containing a large number of wildcard rules.

3.8 Performance Results

The hardware accelerator architectures designed to implement the modified

HyperCuts packet classification algorithm have been tested extensively by

measuring their logic and memory usage, throughput in terms of Mpps, amount of

memory they require when storing the search structures needed to classify packets

for the ACL, FW and IPC rulesets used in testing, worst case number of memory

accesses required to classify a packet and power consumed when classifying

packets. These results have been benchmarked against state of the art dedicated

packet classification hardware accelerators where possible. The ACL, FW and

IPC rulesets and their corresponding packet traces have been explained in Section

2.2. These rulesets and packet traces were generated using the ClassBench suite of

tools.

3.8.1 Hardware Implementation Parameters

The packet classification hardware accelerator architectures presented in Section

3.7 were implemented in VHDL and targeted at two devices:

• A Cyclone EP3C120F484C7 FPGA, which is built on TSMC 65nm process

technology, running at 1.2 Volts.

• A Stratix EP3SE260H780C2 FPGA, which is also built on TSMC 65nm

process technology, running at 1.1 Volts.

The architectures were synthesised using Altera’s Quartus II design software to

obtain maximum clock speeds and resource utilisation summaries. The logic and

Chapter 3- Packet Classification Architectures

 90

Table 3.3. FPGA resource utilisation for packet classification hardware accelerators.

Device Logic element usage Memory usage fmax

Ultra-Wide Memory Words

Cyclone III 45,244/119,088 (38%) M9Ks 431/432 (99.8%) 65 MHz

Stratix III 121,797/254,400 (47.9%) M9Ks 859/864,M144Ks 0/48 (52.6%) 169 MHz

Reduced Width Memory Words

Cyclone III 23,491/119,088 (19.7%) M9Ks 432/432 (100%) 219 MHz

Stratix III 40,070/254,400 (15.7%) M9Ks 852/864,M144Ks 48/48 (99.3%) 433 MHz

memory usage of these architectures, along with the maximum clock speed that

they can obtain are shown in Table 3.3.

It can be seen from looking at the table that the architecture that uses reduced

width memory words is by far the best performer in terms of maximum

achievable throughput and low logic usage. Its memory can achieve a maximum

clock speed of 433 MHz when implemented using a Stratix III FPGA, giving it a

maximum throughput of 433 Mpps. This is possible because each of its engines

can classify a packet in two memory accesses and dual port memory is used,

allowing two memory accesses to be made per clock cycle. A maximum

throughput of 433 Mpps makes it the first packet classification hardware to the

best of the author’s knowledge that can process packets at line rates of up to

138.56 Gbps. To meet these line speeds the hardware accelerator needs to be able

to process 433 Mpps as minimum sized 40 byte packets can arrive back-to-back.

The Stratix III implementation of this architecture uses 99.3% of the FPGA’s

internal memory, allowing it to store the search structure required for rulesets

containing in excess of 80,000 rules.

The Cyclone III implementation of this architecture also achieves a high

throughput, with its memory obtaining a maximum clock speed of 219 MHz. This

allows it to reach line speeds of up to 70 Gbps or 219 Mpps. The Cyclone III

implementation uses 100% of the FPGA’s internal memory, allowing it to store

the search structure required for rulesets containing over 20,000 rules. These high

levels of throughput make it possible for the Stratix III and Cyclone III

implementations to easily cope with core network line speeds, which currently run

at a maximum speed of 40 Gbps. These line speeds can be sustained by the

classifier when it is used to classify packets for rulesets containing tens of

thousands of rules.

Chapter 3- Packet Classification Architectures

 91

The architecture that uses ultra-wide memory words also has no problems in

coping with core network line speeds. The memory used in the Stratix III

implementation of this architecture has a maximum clock speed of 169 MHz. This

allows it to achieve a maximum throughput of 169 Mpps as it is possible for its

engines to classify a packet in a single memory access. Its maximum achievable

throughput is slower than that of the architecture that uses reduced width memory

words for two reasons. The first is that its classification engines contain 48

comparator blocks, which are needed to compare a packet to the rule information

returned from memory. This leaves them with a larger logic delay than is found in

the engines that use reduced width memory words as they only require the use of

2 comparator blocks. The second reason is that the use of ultra-wide memory

words only leaves enough logic interconnect for four engines to be used. The

availability of more engines would allow dual port memory to be used, which

could increase throughput by up to 100%.

The Stratix III implementation of the architecture with ultra-wide memory words

uses 52.6% of the FPGA’s internal memory, allowing it to store the search

structures required to classify packets for rulesets containing up to 49,000 rules.

The M144K block RAM is not used in the FPGA when implementing this

architecture as it is not well suited to being configured as shallow memory with

ultra-wide memory words. The Cyclone III implementation of the architecture

uses 99.8% of its available memory resources, allowing it to store the search

structure of rulesets containing up to 24,000 rules. The maximum clock speed that

can be obtained by this memory is 65 MHz, allowing it to achieve a maximum

throughput of 65 Mpps.

3.8.2 Memory Usage and Worst Case Number of Memory Accesses

The amount of memory required to save the ACL, FW and IPC search structures

built for the packet classification hardware accelerator architectures using the

modified HyperCuts algorithm can be seen in Table 3.4. This table also shows the

worst case number of memory accesses required by the hardware accelerators to

classify a packet when using these search structures. The results followed by an *

show where a ruleset has been split into two groups in order to reduce the memory

needed to save its search structure and to reduce the worst case number of

Chapter 3- Packet Classification Architectures

 92

Table 3.4. Memory usage (bits) and worst case number of memory accesses.

Ultra-Wide Memory Words Reduced Width Memory Words

Stratix III Cyclone III DDR2 SDRAM Stratix III Cyclone III

Ruleset and

number of

rules Memory MA Memory MA Memory MA Memory MA Memory MA

ACL75 23,112 1 23,112 1 48,096 2 23,004 2 23,004 2

ACL300 69,336 1 69,336 1 190,944 2 90,396 2 90,396 2

ACL1200 246,528 1 246,528 1 1,352,736 2 526,500 2 526,500 2

ACL2500 500,760 1 500,760 1 2,719,584 2 1,068,876 2 1,068,876 2

ACL5000 1,093,968 1 1,093,968 1 3,079,584 2 1,473,876 2 1,473,876 2

ACL10000 2,303,496 1 2,303,496 1 3,799,584 2 2,283,876 2 2,283,876 2

ACL15000 3,497,616 1 3,497,616 1 4,519,584 2 3,093,876 2 3,093,876 2

ACL20000 3,975,264 2 3,312,720 3 5,239,584 2 3,903,876 2 3,903,876 2

ACL24920 5,878,152 2 5,948,064 2 4,700,916 2

FW75 23,112 1 23,112 1 29,664 2 17,820 2 17,820 2

FW300 69,336 1 69,336 1 190,944 2 90,396 2 90,396 2

FW1200 246,528 1 246,528 1 1,352,736 2 526,500 2 526,500 2

FW2500 516,168 1 516,168 1 1,539,936 2 753,624 2 753,624 2

FW5000 986,112 1 986,112 1 1,899,936 2 1,491,696 2 1,491,696 2

4,707,144 2 3,798,072 3 24,976,800 6 7,968,456 4 3,933,360 39
FW10000

1,440,648* 2* 1,440,648* 2* 4,979,520* 4* 2,615,976* 4* 2,615,976* 4*

6,879,672 3 3,628,584 8 26,341,632 6 11,708,388 4
FW15000

3,189,456* 2* 3,189,456* 2* 5,699,520* 4* 3,425,976* 4*
3,425,976* 4*

7,311,096 4 3,898,224 27 74,170368 7 14,543,388 16
FW20000

3,782,664* 4* 3,782,664* 4* 6,431,040* 4* 4,235,976* 4*
3,567,240 6*

7,318,800 7 141,404,256 7 14,747,832 53
FW23087

4,314,240* 4*
3,929,040* 5*

6,864,192* 4* 4,736,232* 4*
3,914,244* 9*

IPC75 46,224 1 46,224 1 48,096 2 23,044 2 23,044 2

IPC300 100,152 1 100,152 1 633,312 2 214,812 2 214,812 2

IPC1200 285,048 1 285,048 1 1,352,736 2 526,500 2 526,500 2

IPC2500 546,984 1 546,984 1 2,719,584 2 1,068,876 2 1,068,876 2

IPC5000 1,047,744 1 1,047,744 1 3,079,584 2 1,473,876 2 1,473,876 2

IPC10000 2,080,080 1 2,080,080 1 3,799,584 2 2,283,876 2 2,283,876 2

IPC15000 3,782,664 1 3,782,664 1 4,519,584 2 3,093,876 2 3,093,876 2

IPC20000 4,167,864 2 3,328,128 3 5,239,584 2 3,903,876 2 3,903,876 2

IPC24274 5,870,448 2 5,855,040 2 4,596,264 2

memory accesses needed to classify a packet. The rulesets used for testing contain

between 75 and 25,000 rules. This is more than enough rules to test the algorithm

and hardware accelerator architectures, with research in [12, 36] showing that

rulesets do not usually contain more than a thousand rules.

It can be seen that the amount of memory needed to save the search structures is

the same for both the Cyclone and Stratix implementations of the packet

classifiers when smaller rulesets are used. This is because the amount of available

memory does not restrict how a decision tree is made. The amount of memory

needed to save the search structures differs for larger rulesets because the Cyclone

Chapter 3- Packet Classification Architectures

 93

III FPGA has less memory available which means it must build a deeper decision

tree that uses less memory but takes extra memory accesses to classify a packet.

The results show that all architectures perform well in terms of memory

consumption and worst case number of memory accesses when the ACL and IPC

rulesets are used. The amount of memory needed to save the search structures

built from the ACL and IPC rulesets is linear to the number of rules in the rulesets

for all architectures, showing that the modified algorithm scales well to large

rulesets. The architecture that uses ultra-wide memory words requires the least

amount of memory on average because the fewest number of cuts are performed

when building a decision tree. Few cuts are performed because leaf nodes can

contain a large number of rules and do not therefore need to be broken into small

sub-regions containing a few rules. The architecture that uses external reduced

width memory requires the most memory to save the search structure built from a

ruleset because of the large number of cuts that are made when building a decision

tree and the large amount of information that it needs to store in a pointer. The

architecture that uses reduced width memory words can achieve maximum

throughput for all ACL and IPC rulesets tested, independent of whether internal or

external memory is used, with a worst case number of 2 memory accesses needed

to classify a packet. The architecture that uses ultra-wide memory words can

achieve maximum throughput for the ACL and IPC rulesets containing up to

15,000 rules, with a slight drop off in throughput for larger rulesets. This is

because a deeper decision tree will have to be traversed due to restrictions in the

number of cuts that can be performed to an internal or root node.

The FW rulesets tested do not show the same high performance seen when using

the ACL and IPC rulesets. This is because of the large number of wildcard rules

that are contained within the FW rulesets. The architecture that uses on-chip

reduced width memory, for example, requires 53 memory accesses at worst to

classify a packet when using the search structure built for the FW ruleset

containing 23,087 rules. This search structure requires 14,747,832 bits of memory

to be saved. The architecture that uses the ultra-wide memory has been designed

specifically to maintain high performance when rulesets that contain a large

number of wildcard rules are used. This is because it can have leaf nodes that

contain large numbers of rules due to the fact that it can search up to 48 rules in a

Chapter 3- Packet Classification Architectures

 94

single memory access. It only requires 7 memory accesses to classify a packet

when using the search structure built for the FW ruleset containing 23,087 rules,

with this search structure requiring 7,318,800 bits of memory to be saved. This is

a large improvement when compared to the architecture designed to use on-chip

reduced width memory.

A worst case number of memory accesses of 53 for the architecture that uses on-

chip reduced width memory and 7 for the architecture that uses on-chip ultra-wide

memory will affect their performance by severely reducing their throughput. It

will reduce the throughput of the classifier that uses reduced width memory words

from its maximum of 433 Mpps to a worst case of 16.34 Mpps, while the

classifier that uses ultra-wide memory words will have its throughput reduced

from a maximum of 169 Mpps to a worst case of 24.143 Mpps. These throughputs

can be increased by splitting the FW ruleset containing 23,087 rules into two

different groups, with two packet classification engines used to classify each

packet. Splitting the ruleset will mean that both classifiers will only require 4

memory accesses at worst to classify a packet, increasing the worst case

throughput for these architectures to 216.5 and 42.25 Mpps respectively.

3.8.3 Throughput vs. Power Consumption

The power consumed by the packet classification hardware accelerators designed

to use on-chip memory has been estimated by simulating them using ModelSim,

with the packet headers generated by ClassBench used as input stimulus. The

switching transitions on each node in a hardware accelerator were recorded for the

duration of a simulation using a Value Change Dump (VCD) file. This VCD file

was then analysed using the Quartus 2 PowerPlay Power Analyzer Tool to

estimate the hardware accelerator’s power consumption. The PowerPlay Power

Analyzer Tool used post place and route information of the hardware accelerator

when analysing the VCD files to accurately estimate the power consumption. The

search structures used to estimate the power consumption in the results presented

were created using the ACL ruleset containing 10,000 rules, with other rulesets

showing similar results.

Fig. 3.32 shows the power consumed by the two packet classification hardware

accelerator architectures implemented using the Cyclone III FPGA. This graph

Chapter 3- Packet Classification Architectures

 95

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 25 50 75 100 125 150 175 200 225 250

Millions of Packets Per Second

P
o

w
e

r
C

o
n

s
u

m
e

d
 (

W
a

tt
s

)

AYAMA10128

Ultra-Wide Memory Words

Reduced Width Memory Words

Fig. 3.32. Power consumed by packet classifiers implemented using Cyclone III.

was created by measuring the power consumed by a hardware accelerator while

its clock speed and traffic volume were adjusted to different levels of throughput.

It also shows the power consumed by the state of the art Cypress Ayama 10128

search engine [20], which classifies packets using TCAM. It contains a similar

amount of memory to that used in the hardware accelerators implemented on the

Cyclone III, allowing a fair comparison of power consumption and throughput to

be made. The Cyclone III implementation of the hardware accelerator that uses

ultra-wide memory words has 3,944,448 bits of memory available to save the

search structures required to classify a packet. The implementation that uses

reduced width memory words has 3,981,312 bits of memory available whilst the

Cypress Ayama 10128 search engine has 4,608,000 bits available.

It can be seen that the hardware accelerator that uses ultra-wide memory words is

the worst performer in terms of maximum throughput as it can classify 65 Mpps at

best. Its peak power consumption at this level of throughput is 0.846 Watts which

is similar to the 0.617 Watts consumed by the classifier that uses reduced width

memory words, when classifying packets at the same speed. These power figures

are low compared to the Cypress Ayama 10128 search engine which consumes

2.511 Watts when classifying 65 Mpps. The Cypress Ayama 10128 search engine

has a maximum power consumption of 4.86 Watts when classifying packets at its

maximum speed of 133 Mpps. This is high compared to the hardware accelerator

that uses reduced width memory words as it only consumes 1.11 Watts when

classifying packets at the same speed. The maximum power consumption of this

Chapter 3- Packet Classification Architectures

 96

0

2.5

5

7.5

10

12.5

15

17.5

20

0 50 100 150 200 250 300 350 400 450

Millions of Packets Per Second

P
o

w
e

r
C

o
n

s
u

m
e
d

 (
W

a
tt

s
)

AYAMA10512

AYAMA10256

Ultra-Wide Memory Words

Reduced Width Memory Words

Fig. 3.33. Power consumed by packet classifiers implemented using Stratix III.

hardware accelerator is 1.73 Watts when classifying packets at its maximum

throughput of 219 Mpps. This is a 65% performance increase compared to the

maximum throughput that can be achieved by the state of the art packet classifier

that uses TCAM. This is impressive when the massive reductions in power

consumption of up to 77% that have also been achieved are considered.

The Stratix III implementations of the packet classification hardware accelerators

can achieve an even greater performance increase in terms of maximum

achievable throughput when compared to the state of the art packet classifiers that

use TCAM. Fig. 3.33 shows the power consumed by the two packet classification

hardware accelerator architectures implemented using the Stratix III FPGA. It also

shows the power consumed by the state of the art Cypress Ayama 10256 and

10512 search engines. The Cypress Ayama 10256 search engine has 9,216,000

bits of memory available to save the search structure needed to match packets to

the rules in a ruleset. This means that it can be compared to the classifier that uses

ultra-wide memory words with 7,888,896 bits of memory available. The Cypress

Ayama 10512 search engine has 18,432,000 bits of memory available, making it

suitable for comparison with the classifier that uses reduced width memory words

with 14,929,920 bits of memory available.

It can be seen that the Cypress Ayama search engines are the slowest, with a

maximum throughput of 133 Mpps. At this speed the Cypress Ayama 10256

search engine consumes 9.57 Watts, while the classifier that uses ultra-wide

memory words only consumes 5.12 Watts, even though it has a similar amount of

Chapter 3- Packet Classification Architectures

 97

memory. The Cypress Ayama 10512 search engine consumes 19.14 Watts when

classifying 133 Mpps, with the classifier that uses reduced width memory words

consuming 3.64 Watts when classifying packets at the same speed. The maximum

power consumption for the classifiers that use ultra-wide and reduced width

memory words is 6.08 and 9.03 Watts respectively when classifying packets at

their top speeds of 169 and 433 Mpps. It can be seen that the power consumption

is much higher for the Stratix III implementations compared to the Cyclone III

implementations. This is because the Stratix III is a much larger device, with

greater amounts of logic and memory resources available, leading to a larger

amount of static power consumption. The larger amount of memory and logic

used in the Stratix III implementations combined with the higher speeds will also

cause more dynamic power consumption due to an increased amount of switching.

3.8.4 Evaluation Against Prior Art

The area of packet classification is a well studied field. Most research, however,

has concentrated on the implementation of new packet classification algorithms

tailored towards increased performance with software implementation in mind.

These algorithms rarely consider the effects of power consumption, with their

main aims instead being to increase the storage efficiency of rulesets while

reducing the number of memory accesses needed to classify a packet. Section 2.3

explains several such algorithms.

Research into the improvement of packet classification algorithms for increased

throughput through hardware acceleration with reduced power consumption

remains limited. This is an increasingly important field of research as hardware

accelerators have become essential when trying to meet network line speeds,

which are growing steadily due to advances in optical fibre technology.

Performing packet classification at these ever-increasing line speeds is made more

difficult by the fact that rulesets are expanding because of the ever-increasing

number of services that need to be provided. Most state of the art packet

classification hardware accelerators aim to increase throughput through the use of

TCAM [60, 61, 62, 81, 82, 83, 84, 85, 86]. The use of TCAM, however, makes

these approaches a power hungry solution, even if power reduction techniques are

used.

Chapter 3- Packet Classification Architectures

 98

Table 3.5. Performance comparison of packet classification hardware accelerators.

Approach Device
ACL

Rules

Throug-

hput

Memory

Usage (bits)

Logic usage

(6-LUT)

Pipelined Tree [88] Virtex 5 9,603 250 Mpps 5,013,504 41,228/122,880

Ultra-Wide Memory Stratix III 10,000 169 Mpps 2,303,496 48,719/101,760

Reduced Width Memory Stratix III 10,000 433 Mpps 2,283,876 16,028/101,760

Packet classification hardware accelerators targeted towards the use of FPGAs

and memories such as SRAM instead of high power TCAM include the work

presented in [87]. It introduces a packet classification algorithm known as

Distributed Crossproducting of Field Labels. The algorithm uses multiple search

engines that work in parallel, with a separate search engine used to match each

field of a packet’s header to the corresponding field of the rules within a ruleset.

Each engine will return the rules that matched the field it searched. An aggregator

looks at the matching results from each field and picks the rules where all fields

within a rule match the packet header. The matching rules are passed to a priority

resolution stage that picks the rule with the highest priority as the matching rule.

The search engines used are tailored towards the fields that they search. The

engines that search the source and destination IP addresses are tailored to perform

prefix matching, the source and destination port numbers use engines tailored

towards range matching, while the protocol number uses an engine suited to

performing exact matching. The authors claim that their architecture could

classify 100 million packets per second while using rulesets containing up to 200

thousand rules. These performance figures are unlikely, however, as they assume

that their logic intensive architecture could run at the maximum clock frequency

of an FPGA.

Table 3.5 compares the performance of the Stratix III implementation of the

packet classification hardware accelerators presented here against another packet

classifier based on the HyperCuts algorithm. The work in [88] implements a

decision tree-based, dual pipeline architecture that can classify 250 Mpps when

using rulesets containing up to 10,000 rules. It proposes optimisation techniques

to the HyperCuts algorithm such as a precise range cutting heuristic that reduces

the replicated storage of rules. It also employs a tree to pipeline mapping scheme

to improve memory utilisation. Drawbacks with this design include poor storage

efficiency for rulesets containing many wildcard rules, meaning that very large

Chapter 3- Packet Classification Architectures

 99

rulesets cannot be supported. Another drawback is that the architecture must be

reconfigured if the depth of the decision tree constructed exceeds the worst case

depth allowed by the implemented architecture, reducing the flexibility of the

design and limiting it to FPGA implementations.

The performance of the hardware accelerators are compared when classifying

packets using an ACL ruleset with 10,000 rules, generated using ClassBench. The

performance metrics examined are their throughput in terms of worst case number

of packets that they can classify per second, amount of memory needed to save

the search structure required to classify packets and their logic usage. Power

consumption is not compared as these results were never given by the authors of

the architecture that uses a pipelined decision tree. The hardware accelerators

presented here were implemented on a Stratix EP3SE260 FPGA, while the

approach employed in [88] used a Virtex XC5VFX200T FPGA. A direct

comparison is fair as the performance of both FPGAs is similar due to the fact that

both are manufactured using 65nm process technology. Both devices also have

similar amounts of internal memory resources available, with the Virtex having

16,809,984 bits of memory available and the Stratix having 15,040,512. The

amount of logic available on both devices is also very similar. The logic usage of

the hardware accelerators have been compared using 6 input Lookup Tables

(LUT) as the Virtex gives the logic utilisation in slices, with each slice capable of

implementing four 6 input LUT. The Stratix gives memory utilisation in adaptive

logic modules, with each capable of implementing one 6 input LUT.

It can be seen that the hardware accelerator architectures presented here are by far

the best performers in terms of the amount of memory needed to save the search

structure created from an ACL ruleset. They use less than 50% of the memory

required by the architecture that uses a pipelined decision tree. The architectures

presented here also have the ability to show even higher reductions in memory

consumption when using rulesets that contain many wildcard rules. They do this

by breaking these problem rulesets into multiple sets of rules, which can be

searched in parallel. The architecture that uses a pipelined decision tree cannot do

this, meaning that it would struggle to scale to rulesets containing tens of

thousands of rules. The architecture presented here, which uses the reduced width

memory words, is by far the best performer in terms of throughput, classifying

Chapter 3- Packet Classification Architectures

 100

nearly twice as many packets per second as the architecture that uses a pipelined

decision tree. It also has a much smaller logic footprint, with its implementation

requiring over 60% less 6 input LUT, compared to the architecture that uses a

pipelined decision tree. This small logic footprint helps the architecture presented

here to obtain higher clocking speeds. The architecture that uses the ultra-wide

memory words has the largest logic footprint and lowest throughput when it

comes to classifying packets using the ACL ruleset. This is because the

architecture has been designed to maintain high performance on rulesets that

contain many wildcard rules, such as a firewall ruleset, with the ACL ruleset only

containing a small number of wildcard rules.

3.9 Summary of Contributions

This chapter has presented modifications to the HyperCuts packet classification

algorithm that make it better suited to hardware implementation. These

modifications include changing the cutting scheme so that the need for slow and

logic intensive floating point division is removed when classifying a packet. This

is done by replacing the region compaction scheme used by HyperCuts with a

new scheme that uses pre-cutting. Pre-cutting reduces the number of sub-regions

that need to be stored in a decision tree, thus reducing memory consumption. It

also has the advantage of only requiring simple shift and AND operations to be

used when calculating the path a packet should follow when traversing a decision

tree. This simplifies the architecture of the hardware required to classify a packet,

allowing increased clock speeds. Modifications are also made to how rules are

stored through simple encoding schemes that improve the storage efficiency of

rulesets.

Three new multi-engine packet classification hardware accelerator architectures

were also presented that implement the modified HyperCuts algorithm. All three

architectures can classify packets at core network line speeds using rulesets

containing tens of thousands of rules. One of these architectures uses on-chip

ultra-wide FPGA memory and is ideally suited to classifying packets using

rulesets that contain many wildcard rules. Decision trees built from such rulesets

tend to contain large leaf nodes due to the replicated storage of rules. The ultra-

wide memory words make this architecture ideally suited to searching such

Chapter 3- Packet Classification Architectures

 101

decision trees as it can search up to 48 rules of a leaf node in one memory access.

It has a maximum throughput of 169 mpps. The remaining two architectures use

reduced width memory words and are ideally suited to classifying packets for

rulesets that do not contain a lot of wildcard rules. One of these architectures uses

on-chip FPGA memory. The use of reduced width memory words and on-chip

memory makes it possible for this architecture to classify up to 433 Mpps. The

second architecture that uses reduced width memory words employs external

memory, giving it the ability to classify packets when using rulesets containing up

to one million rules.

102

Chapter 4 - Frequency Scaling Architecture

4.1 Introduction

The packet classification hardware accelerator architectures presented in Chapter

3 have been designed to achieve maximum throughput. They obtain a high

throughput, while achieving low power consumption, when compared to other

state of the art hardware-based platforms used to implement packet classification

such as TCAM. They have not, however, been designed to implement power

saving techniques that exploit the fact that a classifier does not always need to

operate at its full processing capacity. This is because networks can experience

large fluctuations in traffic, leaving room for a reduction in power consumption. A

classifier may be kept busier during peak traffic times such as office hours in

comparison to other times such as the night or during public holidays. At a micro

level traffic can also fluctuate from second to second, with large peaks and

troughs in throughput. This fluctuation in traffic means that it makes sense to

reduce power consumption by adjusting the processing capacity of a classifier so

that it is just enough to meet the processing needs of the network traffic. Matching

the available processing capacity to the traffic volume will reduce the dynamic

power caused by unnecessary switching.

This chapter presents a low power architecture for packet classification that uses

an Adaptive Clocking Unit (ACU) to dynamically adjust the clock frequency of a

packet classifier so that its processing capacity is just enough to meet the

processing needs of a network’s traffic. The chapter is laid out as follows. Section

4.2 presents findings of an analysis carried out on the throughput characteristics of

real network traffic. It also shows the amount of time a classification engine

spends idle when processing packets from a real packet trace, showing why the

Chapter 4- Frequency Scaling Architecture

 103

low power architecture needs only one engine to meet line speeds up to 40 Gbps.

A summary of techniques that can be used to reduce power consumption are given

in Section 4.3. Section 4.4 presents the adaptive clocking scheme, explaining the

methods employed to keep frequency switches to a minimum. It also explains the

architecture of the ACU. The complete low power architecture for packet

classification is explained in Section 4.5, along with the parameters of the

hardware used to implement it. This section also presents the low power

architecture’s power usage figures. Section 4.6 shows the energy savings that can

be made when the low power architecture is used to classify packets from

synthetic traces running at line speeds of up to 40 Gbps. The chapter is

summarised in Section 4.7.

4.2 Analysis of Real Traces

The Internet backbone is made up of a large collection of interconnected

commercial and non-commercial high speed data links that are connected by edge

and core routers. In the past 2.5 Gbps (OC-48) connections were used as the

backbones by many regional ISPs. These connections can transmit a maximum of

7.8125 Mpps when the back-to-back arrival of minimum sized 40 byte packets is

considered. Currently the most common commercial network connection speed is

10 Gbps (OC-192), which allows for a maximum throughput of 31.25 Mpps. With

companies like AT&T already using 40 Gbps (OC-768) line speeds [89], it is

envisaged that these high speed connections will become more commonly

available in the near future. Line speeds of 40 Gbps can transmit a maximum of

125 Mpps. Any low power architecture for packet classification should therefore

be designed so that it is able to meet these 40 Gbps line speeds.

A detailed analysis was carried out on the characteristics of real 2.5 and 10 Gbps

traffic traces stored in a database belonging to the National Laboratory for

Applied Network Research (NLANR) [90]. Traffic traces with throughputs of 40

Gbps could not be analysed as they have not yet become publicly available. The

throughput of these traces was looked at in terms of both bits and packets per

second. This was done because packet classifiers are more interested in

throughput in terms of packets per second rather than bits per second, which is the

metric most networking equipment is interested in. Classifiers are only interested

Chapter 4- Frequency Scaling Architecture

 104

Fig. 4.1. Throughput of a 24-hour trace from the CENIC HPR backbone link.

Table 4.1. Statistics on packet sizes in the CENIC HPR backbone trace.

Packet Length Distribution Number of

Packets

Average

Packet Length 0-200 201 -1400 1401-1500

2,607,169,713 975 bytes 33.56% 7.03% 59.41%

in throughput in terms of packets per second because they only examine a

packet’s header and not its payload.

Fig. 4.1 shows a 24 hour recording taken from the Corporation for Education

Network Initiatives in California (CENIC) High Performance Research (HPR)

backbone link [91]. The characteristics of this trace are typical of all the backbone

traces that have been analysed, with the traffic load varying constantly, with many

short bursts in throughput. It can be seen that these short bursts cause the

throughput to fluctuate wildly from second to second both in terms of bits and

packets per second. The trace shows that even during sharp bursts in throughput,

the 10 Gigabit CENIC backbone link peaks at only 121,801 pps and never reaches

its theoretically highest throughput of 31.25 Mpps. This is due to the fact that a

large number of packets are sent across the network at the size of the Maximum

Transmission Unit (MTU), which is 1,500 bytes at the network layer. This

explains the large average packet size of 975 bytes. A breakdown of the packet

length distribution can be seen in Table 4.1. Analysis of packet traces taken from

the Sprint IP backbone network [92] and the ARIGE and UNINA Wide Area

Chapter 4- Frequency Scaling Architecture

 105

Networks [93] show similar results, with large average sized packets due to

packets being sent at the MTU.

4.2.1 Processing Needs

It is clear from the analysis of real traces that multiple packet classification

engines are not needed to classify packets when looking at traffic volume in terms

of packets per second. This is because a peak throughput of more than 1 Mpps is

not obtainable for 10 Gbps connections due to the large packet sizes. Connections

reaching speeds of 40 Gbps would therefore not be expected to reach throughputs

of more than a few Mpps. The packet classification engines presented in Chapter

3 can easily cope with these levels of throughput. The engine presented in Section

3.6.1 that employs on-chip ultra-wide memory can classify up to 68 Mpps when

implemented on its own, while the engine that employs on-chip reduced width

memory can classify up to 62.5 Mpps.

The low power architecture for packet classification employs the engine that uses

ultra-wide memory words because it performs best when there is only one engine

available. Having only one engine available does not allow the option of breaking

rulesets that contain many wildcard rules into groups, with each group searched in

parallel using a separate engine. The engine that uses ultra-wide memory words

performs best on rulesets that contain many wildcard rules because it can access

large amounts of data in a single clock cycle. This allows it to quickly search

through the large leaf nodes that occur in the decision trees built for rulesets that

contain many wildcard rules. These leaf nodes are large due to the replicated

storage of rules.

Section 3.8.2 shows that the FW ruleset with 23,087 rules is the hardest ruleset to

classify packets for when there is only one engine available. This is because it is

the ruleset with the largest number of wildcard rules. The engine that uses ultra-

wide memory words requires 7 memory accesses at worst to classify packets

when using this ruleset. Running the engine at a speed of 32 MHz would give it

plenty of processing capacity to classify packets on a 40 Gbps connection. This

would allow the engine to classify packets at a sustained rate of 4.5 Mpps, even if

all packets needed a worst case of 7 memory accesses to be classified. The engine

that uses reduced width memory words requires a worst case of 53 memory

Chapter 4- Frequency Scaling Architecture

 106

Fig. 4.2. Percentage of classifier idle time when classifying packets from the CENIC trace.

accesses to classify a packet when using the same rulesets. This would limit its

worst case throughput at 32 MHz to 600 thousand packets per second, which

would not be sufficient to meet 40 Gbps line speeds.

4.2.2 Classifier Utilisation

A cycle accurate simulator was developed in C code that contains a high speed

buffer used to capture the fields from a packet header required for classification. It

also includes a packet classification engine that uses ultra-wide memory words.

The simulator was used to verify that a single engine could classify packets from

the backbone traces stored in the NLANR database without dropping any packets,

when using the ACL, FW and IPC rulesets used in testing. This input stimulus to

the simulator was generated by splicing the timestamp from the packet headers in

the NLANR traces to the packet headers generated by ClassBench for the test

rulesets. It was found that the classifier could easily cope with all traces tested,

with no packets dropped even when the classifier was run at a fraction of its

maximum clock speed.

Fig. 4.2 shows the percentage of time the packet classifier spends in an idle state

when classifying packets from the daylong, 10 Gigabit, CENIC HPR backbone

trace shown in Fig. 4.1. The classifier was run at fixed clock speeds of 250 KHz,

125 KHz and 62.5 KHz. These speeds are well under the classifier’s maximum

clock frequency of 68 MHz. The ruleset used when measuring the idle time for

this graph was the ACL ruleset with 10,000 rules. Its search structure requires one

memory access at worst to classify a packet. It can be seen that the classifier

spends over 90% of its time in an idle state classifying no packets when run at 250

KHz. Running the classifier at a clock speed where its processing capacity is high

Chapter 4- Frequency Scaling Architecture

 107

enough to cope with traffic volumes well above average will result in a small

packet buffer being required. This is because packets will only have to spend a

short time queuing before they are classified. A large amount of available

processing capacity and high percentage of idle time will come at the expense of a

large amount of dynamic power being needlessly wasted due to unnecessary

switching in the clock tree. It has been estimated that the clock tree alone can

account for 30-50% of the total power consumption in a digital circuit [94, 95].

It can be seen that the classifier’s idle time drops to around 50% as its clock

frequency is decreased to 62.5 KHz, reducing the amount of dynamic power

wasted due to unnecessary switching. It is not, however, an ideal solution to run

the classifier at a clock speed where its available processing capacity is only high

enough to meet traffic volumes just above the average level. This is because a

large packet buffer would be required to prevent packets being dropped during

high bursts of traffic. The power used by a large high speed packet buffer would

be more than the dynamic power saved in the classifier. A large buffer and slow

classifier would also result in an unacceptably large delay in the amount of time it

takes to process a packet. It is therefore clear that a method is needed to match the

classifier’s available processing capacity to the traffic volume so that dynamic

power is reduced during times of low traffic and so that only a small packet buffer

is required to cope with high bursts of traffic.

4.3 Methods for Reducing Power Consumption

There have been many methods proposed that aim to reduce the power consumed

by devices that are capable of carrying out packet classification, such as

programmable multi-core network processors. The proposed methods are used to

adjust the available processing capacity of a network processor so that it matches

the processing needs of network traffic over time. This section explains the most

effective methods, stating which are well suited to reducing the power consumed

by a dedicated packet classification hardware accelerator, and which are not.

4.3.1 Clock Gating/Turning Off Unused Processing Elements

One of the most popular methods used to reduce power consumption in digital

circuitry is clock gating [96, 97]. Clock gating can be used when there are

multiple Processing Elements (PEs) available to process data. It involves

Chapter 4- Frequency Scaling Architecture

 108

switching off the clock to unneeded PEs at times when the workload is low. This

reduces the dynamic power consumed in the unneeded PEs to almost zero as the

unnecessary switching of logic elements is eliminated. Clock gating effectively

turns off unused PEs without powering them down, which reduces the amount of

time it takes to reactivate them when they are again needed. Leaving them

powered up will, however, mean that static power consumption remains due to

current leakage. Clock gating is used to turn off the clock of the unneeded PEs of

multi-core network processors in [98] and [99] to reduce dynamic power

consumption at times when there is low traffic volume. This results in energy

savings of up to 30% and 40% respectively, with only a small drop in throughput.

The more aggressive approach of turning a network processor’s PEs on and off

using a power management controller is taken in [100], with the available

processing capacity matched to the processing needs of the network traffic. It was

found that this can reduce a network processor’s core power consumption by 50-

60%, with both static and dynamic power reduced. The disadvantage with

completely turning off unneeded PEs is the large amount of time it takes to turn

them back on. The large power savings of up to 60% come at the price of a large

processing delay, with 50% of packets delayed by more than 600 µs.

The approaches of clock gating and turning off unneeded PEs are not used by the

low power architecture for packet classification presented in this chapter. This is

because the analysis of real network packet traces in the previous two sections

found that one packet classification engine would be more than enough to process

packets at line speeds of up to 40 Gbps, when even the most difficult rulesets are

used. Turning off the only available classification engine during times of low

traffic volume would result in unacceptably large processing delays and could

even lead to packets being dropped if a large enough buffer was not used.

4.3.2 Voltage/Frequency Scaling

Another method that can be used to reduce the power consumed by electronic

devices is to dynamically scale their clock frequency and/or supply voltage,

reducing both dynamic and static power consumption [101, 102, 103, 104, 105,

106, 107]. This is a popular method of reducing power as it does not matter how

many PEs a device has available to process data. An advantage of scaling the

Chapter 4- Frequency Scaling Architecture

 109

clock frequency and voltage of a PE is that it never needs to be turned off. This

means that there is a reduced delay when it comes to increasing and decreasing its

available processing capacity. Frequency scaling reduces the dynamic power

usage of a PE by reducing the unnecessary switching of logic elements, while

reducing the supply voltage of a PE will reduce both its dynamic and static power

consumption. Reducing the supply voltage of a transistor has an adverse effect on

its speed, slowing it down. This means that a PE’s supply voltage must be high

when it is being run at a fast clock frequency during times when it has a heavy

workload. The supply voltage and clock frequency can be reduced when the

workload decreases, therefore saving power.

Dynamic voltage and frequency scaling were used to reduce the power

consumption of a multi-core network processor in [108], leading to power savings

of up to 17%, with throughput dropping by less than 6%. The packet classifier

presented here does not use dynamic voltage scaling. This is because it has been

implemented in testing using commercial FPGAs, where it is hard to implement

dynamic voltage scaling as external circuitry is needed to control the voltage level

[109]. The packet classifier presented here instead uses dynamic frequency

scaling as it can be implemented when using either an FPGA or ASIC. Frequency

scaling is also ideally suited to devices that have only one PE. The packet

classifier uses an ACU that has been designed to dynamically scale the clock

frequency of the packet classification engine and its memory so that its processing

capacity matches fluctuations in traffic volume. It is possible to reduce the packet

classifier’s dynamic power consumption by running it at low speeds when traffic

volume is low. It is also possible to reduce the buffer size, and therefore its power

consumption, by allowing the packet classifier to respond to bursts of packets by

increasing its clock frequency in order to keep the buffer clear.

4.4 Adaptive Clocking Scheme

The ACU employed by the packet classifier uses dual port SRAM to buffer

information from the incoming packet headers. This information includes the

header’s source and destination IP addresses, source and destination port numbers

and the protocol number, which are read in at a speed of 128 MHz. This speed is

selected to avoid packets being dropped when the arrival of back-to-back 40 byte

Chapter 4- Frequency Scaling Architecture

 110

Table 4.2. Clock speed associated with each state.

State S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

Speed MHz f0=0.0625 f1=0.125 f2=0.25 f3=0.5 f4=1 f5=2 f6=4 f7=8 f8=16 f9=32

packets occurs at 40 Gbps line speeds, resulting in up to 125 Mpps as mentioned

previously. The number of packets stored in the buffer is calculated by monitoring

the difference between the buffer’s read and write addresses. This difference is

used as a trigger to determine which clock frequency the packet classification

engine and its memory should be run at. The ACU has been designed to run the

packet classifier at up to N different clock frequencies, with N being equal to 10 in

the experimentation carried out here. Each of the N clocks are generated using a

separate Phase Lock Loop (PLL) output clock. Devices such as Altera’s Stratix III

FPGAs contain up to 12 PLLs, with each PLL capable of generating 10 clocks,

which can be configured to run at different frequencies. Smaller devices such as

Altera’s Cyclone III FPGAs contain up to 4 PLLs, with each PLL capable of

generating 5 clocks. Each clock is generated using a separate PLL output clock to

eliminate the need of PLL frequency changing that requires some time to finish.

Dedicated clock switching logic in the FPGA and ASIC are used to prevent clock

glitches when switching between frequencies. The packet classification engine is

put into an idle state before switching clock frequencies to prevent problems that

may occur due to clock glitches.

4.4.1 Method for Reducing Frequency Switching

The ACU can be easily modified to run the packet classifier at a wide range of

clock frequencies. The clock frequencies selected to run the packet classifier here

were calculated using Equation 4.1, where Fmax is the maximum clock frequency

that the packet classifier is allowed to run at. This Fmax limit has been capped at

32 MHz even though the packet classifier could run at clock speeds of up to 68

MHz. The maximum clock frequency has been capped, as explained previously,

due to the fact that the packet classifier has been designed to keep power

consumption as low as possible and because 32 MHz is fast enough for the packet

classifier to easily cope with 40 Gbps line speeds.

fi=Fmax/2
N-i-1

, i=0, …, N -1 (4.1)

The ACU uses up to N different states, with each state corresponding to a

different clock frequency. Table 4.2 shows the clock frequencies associated with

Chapter 4- Frequency Scaling Architecture

 111

each of the ten states for the experimentation carried out here. The entering and

exiting of each state is triggered by the number of packets stored in the buffer. All

states apart from state SN-1 have a threshold for determining how many packets

can be stored in the buffer before the next higher frequency is used. These

thresholds are variable, with the number of packets stored in the buffer distributed

among the N states, with each state having a width Wi. The width of each state Wi

can be any number between zero and M (total number of packets the buffer can

store) as long as the Equation 4.2 is satisfied.

∑
−

=

=
1

0

N

i

iWM
(4.2)

The ACU has been designed to be as flexible as possible. It allows the thresholds

used to determine when a state is exited and the next higher state entered to be

changed at any time. These thresholds are written to registers within the ACU.

The threshold for each state can be calculated using Equation 4.3.

 ,
0

∑
=

=
i

j

ji WT
i=0, …, N -2 (4.3)

The output clock frequency of the ACU always starts at the frequency of the

lowest-used state and only changes to the frequency of the next higher-used state

if the number of packets stored in the buffer exceeds its threshold. There are two

conditions for leaving the used states between the lowest-used and highest-used

states and thus changing the output clock frequency. The first of these conditions

is that the number of packets in the buffer exceeds the threshold Ti for the current

state Si, with the output clock frequency scaling up to the next higher-used

frequency. The second condition is that the number of packets stored in the buffer

reaches zero, meaning that the output clock frequency scales down to the

frequency of the lowest-used state. The highest-used state will only be exited and

the output clock frequency changed if the buffer is cleared, changing the

frequency to that of the lowest-used state. This means that the number of buffer

slots that the current state can occupy before a frequency change is equal to the

sum of the buffer slots occupied by the previous states plus the number of slots

assigned to the current state itself. This is done to allow larger fluctuations in the

number of packets stored in the buffer without unnecessary frequency drops. It

Chapter 4- Frequency Scaling Architecture

 112

Fig. 4.3. Switching sequences with all states used.

Fig. 4.4. Switching sequences with selected states used.

also keeps the latency time of processing a packet to a minimum by trying to clear

the buffer before reducing the clock frequency. The clock frequency of the packet

classifier remains fixed if all buffer slots are occupied by one state.

Fig. 4.3 shows an example where the buffer’s slots are distributed equally among

all states. In this example the output clock frequency to the ACU will start at f0,

the frequency of the lowest-used state S0. If the threshold for this state T0 is

exceeded (i.e. the buffer slots assigned to state S0 have been filled) then the next

higher-used state S1 will be entered and the clock frequency will change to f1. The

output clock frequency will remain at f1 until the number of packets stored in the

buffer is reduced to zero, returning the output clock frequency to f0, or the

threshold T1 is exceeded in which case the output clock frequency changes to f2.

The same procedure is followed for all states between the lowest and highest used

states. The output clock frequency will remain at f2, for example, until either all

packets in the buffer are cleared, returning the output clock frequency to f0, or the

maximum threshold T2 is exceeded, meaning state S3 is entered, with the output

clock frequency changed to f3. State S9 can only be exited with state S0 entered if

all packets in the buffer are cleared.

Fig. 4.4 shows an example where only states S4, S7, S8 and S9 are used. In this case

the output clock frequency to the packet classifier will start at f4. It will stay at f4

until the threshold T4 is exceeded, increasing the clock frequency to f7. The output

clock frequency will stay at f7 until all packets in the buffer have been cleared,

returning the output frequency to f4, or the threshold T7 is exceeded, increasing the

Chapter 4- Frequency Scaling Architecture

 113

Fig. 4.5. Architecture of the adaptive clocking unit.

output frequency to f8. The same procedure is followed for state S8. State S9 can

only be exited if the buffer is cleared, with the lowest-used state S4 switched to in

such a case.

4.4.2 Adaptive Clocking Unit Architecture

The architecture of the ACU is shown in Fig. 4.5. It contains a high speed packet

buffer used to capture the fields of a packet’s header that are required to classify a

packet at a fixed clock speed, ensuring that all packets will be captured. These

fields are outputted to the packet classification engine used, with the packets

classified on a first come, first served basis. The ACU has an input signal called

Load that is asserted each time there is a new packet header that requires

classification. This Load signal has two purposes. It is used as the write enable for

the buffer and the enable of a counter that increments the buffer’s write address.

This write address is the memory location where a packet header is saved. The

ACU also contains a second counter that is used to increment the buffer’s read

address. This counter is incremented each time the classification engine asserts a

Ready signal, which is used to notify the ACU that it is ready to classify a new

packet. The packet classification engine loads a packet header from the memory

location specified by the buffer’s read address. A subtraction block is used to

calculate the number of packets in the buffer. It does this by subtracting the

buffer’s read address from its write address. The ACU asserts a Start signal if this

Chapter 4- Frequency Scaling Architecture

 114

difference is greater than zero. The Start signal is used to notify the packet

classification engine that there are packets in the buffer that are ready to be

classified. The classification engine will only assert its Ready signal and load a

new packet header when the ACU’s Start signal has been asserted.

The ACU also contains a register that stores the threshold values required to

determine the clock frequency that the packet classification engine and its

memory should be run at. This clock frequency will be the frequency that matches

the classifier’s processing capacity to the processing needs of the incoming

network traffic. These thresholds are inputted into the frequency selector block

along with the output of the subtraction block, which indicates the number of

packet headers in the buffer. The frequency selector block implements the state

machine that was explained in Section 4.4.1, with the aid of Fig. 4.3 and Fig. 4.4.

This state machine uses comparators to compare the number of packets in the

buffer to the threshold value belonging to each state. The output of this state

machine is its current state, which also represents the clock frequency that the

packet classification engine and its memory should be run at. This value is

outputted to the clocking unit, which contains the PLLs and clock switching logic.

The PLLs generate the N different clocks that can be used to run the classifier,

while the clock switching logic uses the output of the frequency selector block to

decide which of these N clocks should be used to clock the classifier.

The state machine in the frequency selector block only changes state when the

classification engine is in an idle state to prevent problems that could occur due to

glitches when the frequency of the classifier’s clock is switched. It puts the

classification engine in an idle state by placing the Start signal low, even if there

are packets in the buffer to be classified. This makes the classification engine

think that there are no packets to be classified, causing it to enter into its idle state

when the packet it may have been processing is classified. The classification

engine asserts an Idle signal when in its idle state. This is the state where it waits

for packets to become available for classification. The state machine in the

frequency selector block monitors this Idle signal and will only change state when

it is asserted. The Start signal will be asserted again when the frequency switch

has taken place and there are packets in the buffer to be classified. This allows the

classifier to continue loading packet headers and classifying packets.

Chapter 4- Frequency Scaling Architecture

 115

Fig. 4.6. Architecture of low power packet classifier.

4.5 Low Power Architecture for Packet Classification

Fig. 4.6 shows the complete architecture of the low power packet classifier,

consisting of the ACU and the packet classification engine that uses on-chip ultra-

wide memory. This packet classification engine was explained in detail in Chapter

3. This engine was chosen as it performs best on all types of rulesets when only

one engine is available to classify packets, as explained earlier. It can be seen that

the architecture of the low power packet classifier is much simpler than the

architecture of the classifiers presented in Chapter 3 that were designed to achieve

maximum throughput, with a sorter logic block no longer required. The function

of a sorter logic block is to make sure that the classification results are outputted

in the same order as the order that the packets were buffered when multiple

engines are used to classify packets. It is also used to make sure that the matching

rule with the highest priority is selected in the case of multiple rule matches

between engines.

4.5.1 Hardware Implementation Parameters

The low power architecture for high speed packet classification was implemented

in VHDL and targeted at three devices:

• A Cyclone EP3C120F484C8 FPGA, which is built on TSMC 65nm process

technology, running at 1.2 Volts.

• A Stratix EP3SE260F1152C47 FPGA, which is also built on TSMC 65nm

process technology, running at 0.9 Volts.

• A 65nm ASIC library by TSMC, running at 1.08 Volts.

Chapter 4- Frequency Scaling Architecture

 116

The low power architecture was synthesised using Altera’s Quartus 2 software for

both the Cyclone III and Stratix III FPGA implementations. Post place and route

timing analysis showed that timing requirements were easily met for the low

power packet classifier when it was implemented on both these devices. The ACU

met its timing requirement of 128 MHz and the packet classifier met its timing

requirement of 32 MHz. The power consumption of these implementations, which

is discussed in the next section, was calculated by carrying out post place and

route simulations that used the Quartus 2 PowerPlay Power Analyzer Tool to

analyse VCD files generated by ModelSim. Section 3.8.3 explained how VCD

files are used to measure power consumption in more detail.

For the ASIC solution the logic for the low power packet classifier was

synthesised using Synopsys design software. Post place and route timing analysis

showed that the timing requirements for both the adaptive clocking logic and

packet classification engine logic were again easily met. The Synopsys Prime

Power tool was used to analyse the annotated switching information from VCD

files generated using ModelSim in order to estimate the power consumption for

the logic. The 65nm TSMC RAM compilers were not available to measure the

power consumed by the memory used by the ACU and the packet classification

engine due to licensing issues. This meant that the power consumption of the

memory had to be estimated using 130nm RAM compilers running at 1.2 Volts

instead. These RAM compilers were obtained from Chartered Semiconductor

Manufacturing.

The power consumption of the memory used by the ACU was estimated using a

dual port RAM compiler as it requires read and write memory accesses on the

same clock cycle when adding and removing packet headers from the buffer. A

single port RAM compiler was used to measure the power consumption of the

memory used by the packet classification engine as it can only be accessed by one

engine that will perform at most one memory access per clock cycle. The power

results for these RAM compilers were normalised so that they were the same as

the 65nm process technology running at 1.08 Volts that was used for the low

power packet classifier’s logic. This was done by using the equation derived in

Section 2.6.2 to normalise power consumption when different process

technologies and voltages are used.

Chapter 4- Frequency Scaling Architecture

 117

Table 4.3. FPGA memory and logic utilisation of low power packet classifier.

Device Logic element usage Memory usage fmax

Cyclone III 21,641/119,088 (18.2%) M9Ks 431/432 (99.8%) 32 MHz

Stratix III 14,881/254,400 (5.9%) M9Ks 859/864, M144Ks 0/48 (52.6%) 32 MHz

Table 4.3 shows the logic and memory usage of the Cyclone III and Stratix III

implementations of the low power packet classifier. It can be seen that the logic

utilisation is low for both devices as only one packet classification engine is used,

with the Cyclone III implementations using 18.2% of its available logic and the

Stratix III implementation using 5.9%. The low clock speeds and logic usage

made it possible for the designs to be constrained for low power consumption

rather than a low area or high clock speeds. This made it possible for even more

power savings to be made. The Cyclone III and Stratix III implementations of the

low power packet classifier have the same high memory utilisations as the

equivalent implementations of the packet classifiers designed for high throughput

that were described in Chapter 3. This is because the low power packet classifier

is still able to classify packets when using rulesets that contain up to 24,000 rules

when using a Cyclone III FPGA and up to 49,000 rules when using a Stratix III

FPGA. The ASIC implementation of the low power packet classifier has also been

implemented with enough memory to allow it to classify packets using rulesets

that contain up to 49,000 rules.

4.5.2 Power Consumption

The power saved by using the ACU in the low power packet classifier was

measured by implementing two different systems:

• System A was the low power packet classifier shown in Fig. 4.6. It uses the

ACU to buffer incoming packets at a clock speed of 128 MHz while clocking

the packet classification engine and its memory at speeds that match the

classifier’s processing capacity to the processing needs of the network traffic.

• System B used the packet buffer explained in Section 3.7.1 to buffer incoming

packets at a clock speed of 128 MHz while clocking the same classification

engine and memory used by system A at a fixed clock speed of 32 MHz.

The power consumption of these two systems could then be compared, with the

difference being the power saving. Power simulations were run for both systems

Chapter 4- Frequency Scaling Architecture

 118

0

10

20

30

40

50

60

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 i

n
 m

W

Buffer Logic Memory

Fig. 4.7. Power used by the ASIC implementation of the low power classifier.

implemented on the Cyclone III and Stratix III FPGAs using the PowerPlay

Power Analyzer tool. Power simulations were also run for both systems

implemented as an ASIC using the Prime Power tool.

The simulation conditions used when measuring the power consumed by both

systems were identical, with packets read in at fixed rates of 32, 16, 8, 4, 2, 1, 0.5,

0.25, 0.125 and 0.0625 Mpps. The exact same packet headers were classified by

both systems. Identical search structures were also used by both systems when

classifying these packets. The search structure used was built from the synthetic

ACL ruleset with 10,000 rules that was created using ClassBench. It requires one

memory access at worst to classify a packet. This meant that it was possible for

the classifiers in both systems to classify a packet on each clock cycle when

reading in 32 Mpps. The power consumption for the two systems implemented on

the three technologies can be seen in Fig. 4.7, Fig. 4.8 and Fig. 4.9. The power

figures for the low power packet classifier are shown on the right for each packet

speed, while the power figures for the classifier that uses a fixed clock speed are

shown on the left.

It can be seen by looking at Fig. 4.7 that the low power packet classifier uses

0.25% more power than the classifier that uses a fixed clock speed when it is

implemented as an ASIC and used to classify packets at a fixed rate of 32 Mpps.

The extra power used is due to the additional logic required by the ACU to enable

frequency scaling. The maximum power consumption of the low power packet

classifier is 56.48 mW when it is used to classify packets at this speed. At this

speed the majority of the power is consumed by the memory used to save the

Chapter 4- Frequency Scaling Architecture

 119

0

50

100

150

200

250

300

350

400

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 i

n
 m

W

Static I/O Dynamic

Fig. 4.8. Power used by the Cyclone III implementation of the low power classifier.

search structure. It consumes 84.4% of the total power, with the memory used by

the high speed packet buffer consuming 8.8% of the power and the remaining

6.8% used by the logic. Fig. 4.7 also shows that the low power packet classifier

uses 89% less power than the classifier that uses a fixed clock speed when the

packet arrival rate drops to 0.0625 Mpps. At this rate its power consumption is

only 6.24 mW, with most of the power now consumed by the memory used by the

high speed packet buffer. It now consumes most of the power as its clock speed is

fixed at 128 MHz, while the logic and memory used to save the search structure

are run at 0.0625 MHz. The memory used by the buffer consumes 77.9% of the

power, followed by the memory used to save the search structure which uses 16%

and then the logic which uses 6.1%. The ASIC implementation shows such good

power savings as most of the power consumed by it is dynamic rather than static.

It can be seen that the power savings flatten out as the packet speeds reach 1

Mpps. This is because the power used by the packet buffer remains steady,

leaving little room for a further reduction in power consumption.

Fig. 4.8 shows the power consumption figures for the Cyclone III implementation

of the low power packet classifier. It uses 0.7% more power than the classifier that

uses a fixed clock speed when packets arrive at a constant rate of 32 Mpps. The

extra power used in this implementation is again due to the additional logic

required by the ACU to enable frequency scaling. The low power packet

classifier’s maximum power consumption rises to 333.9 mW when it is

implemented on a Cyclone III. At this speed 69.6% of the power consumption is

caused by dynamic power, with 20.7% of the power caused by static power and

Chapter 4- Frequency Scaling Architecture

 120

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 32M 16M 8M 4M 2M 1M 0.5M 0.25M 0.125M 0.0625M

Millions of Packets per Second

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 i

n
 m

W

Static I/O Dynamic

Fig. 4.9. Power used by the Stratix III implementation of the low power classifier.

the remaining 9.7% due to input/output power. The low power packet classifier

shows power savings of 57.16% when the packet arrival rate drops to 0.0625

Mpps. At this speed the low power packet classifier consumes 136.36 mW, with

50% of this power now caused by static power, 37.4% caused by dynamic power

and the remaining 12.6% caused by input/output power. The power savings for

the Cyclone III implementation also flatten as packet arrival rates reach 1 Mpps.

This is due to the fact that the static power becomes the dominant cause of power

consumption, with frequency scaling only capable of decreasing dynamic power

consumption. The Cyclone III implementation shows lower power savings than

the ASIC implementation due to the fact that the FPGA has a larger percentage of

its power consumption caused by static power.

Finally, Fig. 4.9 shows the power consumption figures for the Stratix III

implementation of the low power packet classifier. It can be seen that the power

consumed by the adaptive and fixed clock packet classifiers are almost identical

when the packet arrival rate is 32 Mpps. This is because the low power packet

classifier only requires an extra 0.1% of the Stratix III logic resources to

implement frequency scaling. The maximum power consumption of the Stratix III

implementation of the low power packet classifier is 1,807 mW when classifying

32 Mpps, with static power causing most of this. Static power makes up 53.3% of

the total power consumption, with 44.5% caused by dynamic power and the

remaining 2.2% cased by input/output power. The large amount of static power

used by Stratix III means that there is reduced scope for power to be lowered

through the use of frequency scaling. It can be seen that frequency scaling

Chapter 4- Frequency Scaling Architecture

 121

achieves a maximum power reduction of 19% as packet arrival rates drop to

0.0625 Mpps. At this speed the Stratix III consumes 1,449 mW, with 66% of this

caused by static power, 32.8% caused by dynamic power and the remaining 1.2%

caused by the input/output power. This time the power savings flatten as packet

arrival rates reach 4 Mpps due to the large amount of static power, which cannot

be reduced by frequency scaling. It can be seen from looking at Fig. 4.8 and Fig.

4.9 that the power consumption is much higher for the Stratix III FPGA than the

Cyclone III FPGA. This is because the packet classifier implemented on the

Stratix III uses double the memory of the classifier implemented on the Cyclone

III. The Stratix III also has much more logic and memory resources available,

leading to a larger amount of static power consumption.

The power consumption figures presented in this section show that the low power

packet classifier is extremely energy efficient even if frequency scaling is not

used. The Cyclone III implementation of the low power packet classifier has a

maximum power consumption of 333.9 mW when used to classify 32 Mpps. This

compares favourably to the similarly sized Cypress Ayama 10128 TCAM-based

search engine, which consumes 1,380 mW when used to classify packets at the

same rate. It also compares favourably to the Cyclone III implementation of the

packet classifier presented in Chapter 3 that was designed to achieve maximum

throughput by using two packet classification engines working in parallel. It uses

the exact same amount of memory as the low power packet classifier and

consumes 488.86 mW when used to classify packets at the same rate.

The ASIC and Stratix III implementations of the low power packet classifier use

the same amount of memory and have a maximum power consumption of 56.48

mW and 1,807 mW respectively when used to classify 32 Mpps. This is a large

power reduction when compared to the Cypress Ayama 10256 TCAM-based

search engine, which has a similar amount of memory and an average power

consumption of 2,890 mW when used to classify packets at the same rate. The

ASIC and Stratix III implementations of the low power packet classifier also show

large power savings when compared to the Stratix III implementation of the

packet classifier presented in Chapter 3, which has the same amount of memory.

It uses four packet classification engines working in parallel to achieve maximum

Chapter 4- Frequency Scaling Architecture

 122

Fig. 4.10. Throughput of the synthetic 2.5 Gbps, 10 Gbps and 40 Gbps packet traces.

throughput. These four engines cause its power consumption to increase to 2,480

mW when it is used to classify 32 Mpps.

4.6 Performance Testing Using Synthetic Traces

The results in the previous section showed the low power packet classifier’s

power consumption when it is used to classify packets that arrived at fixed rates.

It also showed the power savings made at these rates by comparing the low power

packet classifier to a classifier that uses an identical classification engine that runs

at a fixed clock speed. The results do not, however, show how the low power

packet classifier would perform if it was used to classify packets on an edge or a

core router operating at 2.5 Gbps, 10 Gbps or 40 Gbps line speeds. This section

carries out such an analysis by testing the classifier’s performance on synthetic

2.5 Gbps, 10 Gbps and 40 Gbps line speed packet traces, which were created by

aggregating Abilene, CENIC, and SCO4 backbone packet traces from the

NLANR database until peak line rates of 2.5, 10 and 40 Gbps were reached.

These traces can be seen in Fig. 4.10, which shows their throughput both in bits

per second and the metric of most interest to the classifier, which is packets per

Chapter 4- Frequency Scaling Architecture

 123

second. Synthetic traces had to be created to fully test the low power packet

classifier because the 2.5 Gbps and 10 Gbps network traces in the NLANR

database never got near to their maximum throughput, while 40 Gbps traces are

not yet publicly available.

The 2.5 Gbps and 10 Gbps traces created were looked at over a 6,000 second

period. The peak throughput in terms of packets per second for these traces is

143,768 p/s for the 2.5 Gbps trace and 661,526 p/s for the 10 Gbps trace. The 40

Gbps trace generated was looked at over a 2,000 second period, with its peak

throughput in terms of packets per second being 3,302,488 p/s. This trace was

created by compressing the timestamp of the packets aggregated so that they

spanned a 2,000 second period rather than a 6,000 second period.

The large number of packets in these traces made it impossible to measure power

consumption using the method explained previously, which involves using the

packet headers as input stimulus to the low power packet classifier in order to

generate VCD files using ModelSim. These VCD files would then be analysed

using the Prime Power and PowerPlay power analysis tools. The method which

was instead used was to develop a cycle accurate simulator for the low power

classifier in C code.

This simulator is similar to the one used in section 4.2.2 to verify that one packet

classification engine had enough processing capacity to cope with real network

traces. It works by keeping track of the clock frequency that the packet classifier

is being run at on any given clock cycle. The simulator estimates the power

consumed by the low power classifier on each clock cycle by using the power

figures presented in Fig. 4.7, Fig. 4.8 and Fig. 4.9. These figures give the power

consumed by the low power packet classifier when it is used to classify packets at

different speeds. They were obtained using the Prime Power and PowerPlay

power analysis tools, which were used to analyse VCD files generated using

ModelSim. The time stamps from the headers of the packets in the 2.5 Gbps, 10

Gbps and 40 Gbps network traces were spliced to the headers used by the ACL,

FW and IPC rulesets generated using ClassBench. These traces were then used as

input stimulus to the simulator, which classified the packets using the search

structures built for the ACL, FW and IPC rulesets.

Chapter 4- Frequency Scaling Architecture

 124

0

10

20

30

40

50

60

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e

r
C

o
n

s
u

m
p

ti
o

n
 i

n
 m

W

Fixed Adaptive

Fig. 4.11. ASIC power usage when classifying packets from synthetic traces.

4.6.1 Power Savings

Fig. 4.11, Fig. 4.12 and Fig. 4.13 show the average power consumed by the ASIC,

Cyclone III and Stratix III implementations of the low power packet classifier

when they are used to classify packets from the 2.5 Gbps, 10 Gbps and 40 Gbps

traces using search structures built for the ACL, FW and IPC rulesets containing

20,000 rules. Appendix A contains graphs that show the power consumed when

using the rulesets with 5,000 and 25,000 rules. The results for the rulesets with

20,000 rules are explained in this section because they are the largest rulesets used

for testing in this thesis whose search structures are small enough to fit in the on-

chip memory of all three devices. These rulesets are also difficult to classify

packets for because of their large size.

The power figures for the low power packet classifier are again shown on the right

for each trace and ruleset, while the power figures on the left show the power

consumed by the classifier that operates at a fixed clock speed in order to show

the power saved. Fig. 4.11 shows that the ASIC implementation of the low power

packet classifier shows excellent power savings at all line speeds. It reduces

power consumption by an average of 88.7%, 86.7% and 73.7% when used to

classify packets at 2.5 Gbps, 10 Gbps and 40 Gbps line speeds respectively. It

shows such high power savings due to the fact that it does not usually operate at

more than a few MHz. This is because of the low throughput of the traces in terms

of packets per second due to large average packet sizes and the low number of

clock cycles needed to classify a packet. The low power packet classifier shows

Chapter 4- Frequency Scaling Architecture

 125

0

50

100

150

200

250

300

350

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 i

n
 m

w

Fixed Adaptive

Fig. 4.12. Cyclone III power usage when classifying packets from synthetic traces.

its poorest power saving of 64.6% when used to classify packets at 40 Gbps line

speeds for the FW ruleset. This is because it is the line speed with the highest

throughput and the ruleset that requires the largest worst case number of memory

accesses to classify a packet. The combination of these two factors requires the

packet classifier to operate at a higher clock speed, reducing power savings.

It can be seen from looking at Fig. 4.12 that the Cyclone III implementation of the

low power packet classifier also performs well across all line speeds, with average

power savings of 56.9%, 54.9% and 41.7% when used to classify packets at 2.5

Gbps, 10 Gbps and 40 Gbps line speeds respectively. The Cyclone III

implementation shows poorer power savings than the ASIC implementation for

two reasons. The first is that the Cyclone III implementation has less memory

available, resulting in more clock cycles being needed to classify a packet. The

second reason is that a large portion of the power consumed by the Cyclone III is

static power, which cannot be reduced by frequency scaling. The poorest power

savings by the Cyclone III implementation are again seen when classifying

packets at 40 Gbps line speeds for the FW ruleset due to the same reasons

explained for the ASIC implementation, with the average power consumption

reduced by 31.2%.

Finally Fig. 4.13 shows the power saved when the Stratix III implementation of

the low power packet classifier is used to classify packets from real traces. It can

be seen that the power savings are much lower than those of the ASIC and

Cyclone III implementations due to the fact that the majority of the power

consumed is static power. The Stratix III implementation of the low power packet

Chapter 4- Frequency Scaling Architecture

 126

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e

r
c

o
n

s
u

m
p

ti
o

n
 i

n
 m

W

Fixed Adaptive

Fig. 4.13. Stratix III power usage when classifying packets from synthetic traces.

classifier reduces power consumption by 19%, 18.6% and 16.1% on average when

it is used to classify packets at 2.5 Gbps, 10 Gbps and 40 Gbps line speeds

respectively. These power savings are still significant when you consider the tight

power budget on a router’s line card. The lowest power saving of 14.2% is again

made when classifying packets from the 40 Gbps trace using the FW ruleset.

4.7 Summary of Contributions

This chapter has presented a low power packet classifier that is capable of

classifying packets at 40 Gbps line rates when using rulesets containing thousands

of rules. Its architecture consists of an ACU that dynamically changes the clock

speed of an energy efficient packet classifier so that its processing capacity

matches the fluctuating processing needs of the network traffic on a router’s line

card. It does this with the help of a scheme developed to keep clock frequencies at

the lowest speed capable of servicing the line card, while keeping frequency

switches to a minimum. The low power packet classifier’s small logic footprint

and low power consumption make it ideally suited to being implemented as an on-

chip hardware accelerator relieving the burden from a programmable network

processor’s processing engines, or as an off-chip high speed classifier on a

router’s line card.

The ASIC and Stratix III implementations of the low power packet classifier are

capable of classifying packets for rulesets containing up to 49,000 rules while its

Cyclone III implementation can classify packets for rulesets containing up to

24,000 rules. It has been tested classifying packets from 2.5 Gbps, 10 Gbps and 40

Chapter 4- Frequency Scaling Architecture

 127

Gbps traces created from real network traces obtained from NLANR while using

synthetic rulesets containing up to 25,000 rules. Simulation results show that the

low power packet classifier can achieve power savings of between 14-88% if the

ACU is used to clock the packet classifier rather than a fixed clock speed.

128

Chapter 5 - String Matching Architecture

5.1 Introduction

The availability of a hardware accelerator on a router’s line card dedicated to the

searching of strings/signatures in a packet’s payload is essential if networking

applications employing DPI are to be moved to the edge or even the core of a

network. These applications include network intrusion detection/prevention

systems such as Snort [23], which can be used to protect networking equipment

and end hosts from the spread and effect of viruses, worms, Denial of Service

attacks and other harmful activities. Such attacks can spread rapidly throughout a

network, affecting thousands of vulnerable victims in a matter of minutes [21, 22].

Snort can be used to detect and prevent these attacks by searching through the

header and payload of the packets passing through an inspection point at wire

speed. It searches for known content in packets associated with malicious activity,

using a ruleset that contains thousands of rules. The complexity of doing this

requires Snort to be implemented in software, limiting its throughput to Mbps [44].

The searching of a packet’s payload is the most computationally heavy task in a

network intrusion/detection system as the content being searched for could be

anywhere in the payload. This means that every byte must be examined to check

if any of the thousands of strings being sought are contained within the payload. A

new multi-pattern matching algorithm and hardware accelerator are presented in

this chapter that can search for the fixed strings contained within rulesets at a

guaranteed rate of one character per cycle, independent of the number of strings or

their length. This makes it impossible for attackers to flood a system by creating

packet payloads on which it performs poorly. The algorithm is an improvement on

the Aho-Corasick [37] string matching algorithm. It builds a state machine from

the strings being sought, with the state machine used to search the packet payload.

Chapter 5- String Matching Architecture

 129

A problem with solutions that use state machines is the large amount of memory

required to store the transition pointers used when traversing between states. The

algorithm presented here reduces the number of transition pointers that need to be

stored at a state by storing a small number of default transition pointers to the

states that are most commonly pointed to in a lookup table. These default transition

pointers can be shared by all states, dramatically reducing memory usage.

The rest of this chapter is organised as follows. Section 5.2 explains the operation

of the multi-pattern matching algorithm Aho-Corasick. This is explained so that

the improvements presented can be better understood. Section 5.3 describes why

the characteristics of rulesets used for network intrusion detection/prevention

systems allow for large memory savings when default transition pointers are used.

It also explains how default transition pointers can be used and the steps involved

in building the search structure. The memory organisation of this search structure

and the architecture of the hardware accelerator designed to use it are presented in

Section 5.4. Performance results are presented in Section 5.5, showing the memory

savings made from using default transition pointers on different sized rulesets, the

throughput of the hardware accelerator using the search structures built from these

rulesets and the hardware accelerator’s power consumption. The characteristics of

the strings from the Snort rulesets used to test the algorithm and hardware

accelerator are also presented in this section. It also compares their performance

with the performance of other state of the art hardware-based approaches used to

implement string matching. Section 5.6 concludes this chapter.

5.2 String Matching Using Deterministic Finite Automaton

The Aho-Corasick algorithm matches multiple strings using a deterministic finite

state machine, which is also known as Deterministic Finite Automaton (DFA).

The DFA has a start state from which all strings to be matched are extended. The

start state is the state where no strings have been partially matched. The strings to

be matched extend from the start state one state per character. Strings are added

sequentially to the state machine, with strings that share a common stem also

sharing a number of common states extending from the start state. To match a

string against a payload the search begins at the start state and traverses from one

state to another based on transitions decided by the input characters. Each state in

Chapter 5- String Matching Architecture

 130

Fig. 5.1. Aho-Corasick state machine showing transition pointers and matched states.

the state machine will store its transition pointers and the number of the strings

that will have been matched if the state is entered. A state’s depth in the state

machine is the fewest number of transitions needed to reach it from the start state.

The Aho-Corasick algorithm proposes two methods for storing transition pointers,

with one solution using a failure function and the other a move function. Each

solution will have the same worst case number of transition pointers, which may

need to be stored at a state. This is equal to the number of characters in the ASCII

code, of which there are 256. The solution that uses the failure function requires

the lowest amount of memory on average but cannot guarantee the processing of

one input character on each clock cycle. This is because each state only stores the

transitions for characters whose next state has a depth one level higher than the

depth of the current state. All other characters must follow a fail transition, which

will cause a wasted transition. Multiple fail transitions may have to be followed

until the correct state is found, wasting many cycles.

The second approach, on which the new algorithm is based, uses a move function.

In this approach each state stores the transitions for all states that could be

transitioned to regardless of their depth in the state machine. This means that there

is no need for a fail function and thus no wasted transitions, so that a new input

character can be processed on each clock cycle. The disadvantage of this approach

is that it uses larger amounts of memory to store all possible transition pointers.

Fig. 5.1 shows a state machine constructed from the strings (he, she, his, hers,

sent). The state machine does not use failure pointers, storing all possible transition

Chapter 5- String Matching Architecture

 131

Fig. 5.2. Sequence of strings that will be traversed if text (hishersqhhe) is searched.

pointers instead. This allows each byte from a packet’s payload to be processed in

a single clock cycle. Each state is represented by a circle, with the two values

inside each circle indicating the input character required to transition to that state

(the new algorithm presented here calls this the state’s character value) and the

state’s number. All valid transition pointers are shown for each state, apart from

the transition pointers that point to the start state. All states in this state machine

have a transition pointer that points to the start state. This transition pointer is

followed when a character is inputted from the payload being searched that has no

full or partial string match. A shaded state indicates a state where a string or

strings will have been matched if it is entered. A table is shown in Fig. 5.1 that

lists all states where strings will have been matched if they are entered and the

corresponding matched strings.

The sequence of states that will be traversed if the text (hishersqhhe) is searched

can be seen in Fig. 5.2. It shows that it takes one clock cycle to traverse each input

character. This is true for all possible input character sequences that could be

searched. A guaranteed throughput makes this type of state machine ideally suited

to carrying out DPI for network intrusion/detection systems as it can guarantee a

specific line rate. This is important as it ensures that no packets will be able to

make their way through the network without being inspected.

5.3 Memory Reduction

The storage of transition pointers is the largest cause of memory usage when

saving a state machine used for DPI. This is because each state has to store the

256 pointers needed to represent all possible character transitions unless some

kind of memory compression scheme is used. Even only storing the pointers that

point to a state other than the start state can lead to large memory usage. This

section explains the scheme developed which reduces the amount of transition

pointers that need to be stored at a state.

Chapter 5- String Matching Architecture

 132

5.3.1 DFA Memory Usage Observations

The transition pointers of the states at all depths in a state machine used to

perform DPI for intrusion detection prevention/systems such as Snort mainly

point to a few states near the start of the state machine. This is because of the way

in which the state machine is constructed, with the strings being sought extending

from the start state one state per character, meaning that the majority of states will

only have one forward pointing transition pointer. The majority of the transition

pointers will point to states with a depth less than the current state. For example, a

series of input characters could mean traversing to a state with a depth of twelve

in the state machine. There will typically only be one character at this state that

would mean traversing deeper into the state machine, with all remaining characters

resulting in a traversal backwards to a partial match of another string. The depth

of the state transitioned to will be equal to the length of the partial match.

There is a wide variation among the strings contained within the rules used by the

rulesets of intrusion detection/prevention systems such as Snort. This means that

partial matches are usually small, so transition pointers pointing backwards in the

state machine will normally point to a state with a low depth. A state machine

built for the Snort rulesets with 6,275 strings, using the Aho-Corasick algorithm,

will contain 109,467 states. These states will store a total of 9,524,131 transition

pointers that point to states other than the start state, with 78% of these transition

pointers pointing to states with a depth of one in the state machine, 15% pointing

to states with a depth of two, 4% pointing to states with a depth of three and the

remaining 3% pointing to states with a depth greater than three.

A state machine built to search for thousands of strings will only have a few

hundred states in the heavily pointed to area near the start of the state machine.

This is due to the congested nature of the area near the start, where many strings

share common states. A large reduction in memory usage can be achieved by

removing the transition pointers that point to the same few states near the start and

placing them in a small lookup table where they can be shared by all states. These

transition pointers placed in the lookup table are called default transition pointers.

The number of transition pointers that need to be stored in the states of the state

machine is reduced by over 98% in the Snort ruleset used for testing. This is

Chapter 5- String Matching Architecture

 133

achieved by placing default transition pointers to the most commonly pointed to

states at a depth of one, two and three in a lookup table.

5.3.2 Insertion of Default Transition Pointers

Default transition pointers are used to reduce the amount of memory needed to

save a state machine without affecting the number of transitions needed to

traverse it when searching through a packet’s payload. To do this a lookup table

containing 256 memory words is used. Each memory word stores the default

transition pointers for one of the 256 ASCII characters. Each ASCII character has

default transition pointers to states with its character value at depths of one, two

and three in the state machine.

Default Transition Pointers to States at a Depth of One

The maximum number of states that can occur at a given depth in the state

machine is 256
d
, where d is the depth. This means that it is possible to store a

default transition pointer to all states at a depth of one in the lookup table as there

can only be a maximum of 256. ASCII characters that have a state with its value

at a depth of one in the state machine will store the address of this state as its

default transition pointer, while ASCII characters who do not have a state with its

value at a depth of one in the state machine will store the address of the start state

as its default transition pointer.

A state will only store transition pointers to states that do not contain a default

transition pointer in the lookup table. Each transition pointer stored in a state will

require two pieces of information. The first piece of information is the character

value needed to follow the transition pointer, and the second piece of information

is the memory address of the state being pointed to. An input character will need

to perform the following steps when traversing from one state to another. It begins

by retrieving the information belonging to its default transition pointer stored in

the lookup table. The information belonging to the current state is then analysed.

A transition pointer stored at the current state is followed if one exists for the

current input character, otherwise the default transition pointer retrieved from the

lookup table is followed.

Fig. 5.3 (A) shows how the state machine in Fig. 5.1 looks after the insertion of

default transition pointers to states at a depth of one. It also shows the resulting

Chapter 5- String Matching Architecture

 134

Fig. 5.3. Use of default transition pointers to states at a depth of one.

lookup table. It can be seen that even only using default transition pointers to

states at a depth of one can have a large effect on memory usage, reducing the

average number of transition pointers stored at a state from 2.846 to 1.231, which

is a reduction of 57%. Fig. 5.3 (B), Fig. 5.3 (C) and Fig. 5.3 (D) show how the

state machine and default transition pointers to states at a depth of one are used to

search the text (seq).

Fig. 5.3 (B) shows that the first input character (s) will start at the start state (the

state where there are no partially matched strings). It can be seen that the start

state stores no transition pointers as it can only point to states at a depth of one in

the state machine, with all of these states having default transition pointers. The

input character (s) will use its default transition pointer returned from the lookup

table to transition to state 3. Fig. 5.3 (C) shows the transition made by the next

input character (e). It can be seen that state 3 stores a valid transition pointer for

the input character (e), which means that the default transition pointer character

(e) retrieved from the lookup table does not need to be followed. The valid

transition pointer points to state 10. Fig. 5.3 (D) shows the transition made by the

final input character (q). There is no valid transition pointer stored at state 10 for

(q), which means that it must use its default transition pointer returned from the

lookup table. This default transition pointer points to the start state as there are no

partially matched strings.

Chapter 5- String Matching Architecture

 135

Fig. 5.4. Use of default transition pointers to states at a depth of two.

Default Transition Pointers to States at a Depth of Two

A large percentage of states will also store transition pointers to states at a depth

of two in the state machine because they are close to the start. Storing a default

transition pointer to all possible states at this depth would not be memory efficient

as 65,536 of them would need to be stored. The lookup table therefore only stores

default transition pointers to the four most commonly pointed to states for each

character value at this depth. It was found through testing of strings used in the

Snort ruleset that four was the optimum value as it resulted in the smallest amount

of memory being needed to store the state machine and lookup table. Default

transition pointers pointing to states at a depth of two require two pieces of

information. The first piece of information required is the memory location of the

state pointed to and the second piece of information is the character value of the

state that connects this state to the start state. The character value of the state that

connects it to the start state is needed because there can be multiple states at a

depth of two with the same character value. The character value of the state that

connects it to the start state is used to distinguish which state at a depth of two is

being pointed to.

Fig. 5.4 (A) shows how the state machine in Fig. 5.1 looks after the insertion of

default transition pointers to states at a depth of two and one. It also shows how

the default transition pointers to the four states at a depth of two and two states at

Chapter 5- String Matching Architecture

 136

a depth of one are stored in the lookup table. The columns labelled CS

(Connecting State) show the character value of the state that connects the start

state to the state pointed to at a depth of two. It can be seen in this example that

the ASCII character (e) has two default transition pointers to states at a depth of

two. This is because there are two states at this depth with the character value (e).

These states are states 2 and 10. The default transition pointers to these states are

distinguished by the character value of the state that connects them to the start

state. Here a state with the character value (h) connects state 2 to the start state,

while a state with the character value (s) connects state 10 to the start state.

An input character will now need to perform the following steps when traversing

from one state to another if transition pointers to states at a depth of one and two

are used. The first step involves the input character retrieving its default transition

pointers from the lookup table. It can retrieve a maximum of five default

transition pointers, with one of these pointing to the start state or a state at a depth

of one and the remaining four pointing to states at a depth of two. These default

transition pointers will be analysed if no valid transition pointer at the current

state is found. The default transition pointers to states at a depth of two are

analysed first. This is done by comparing their CS values to the character value of

the current state (value of the previous input character). A default transition

pointer to a state at a depth of two is followed if there is a match, otherwise the

default transition pointer pointing to the start state or a state at a depth of one is

followed.

Fig. 5.4 (B) shows an example of how the default transition pointers to states at a

depth of two are used. In this example the previous input character (s) has

transitioned to state 9. The new input character (e) begins by retrieving its default

transition pointers from the lookup table. It then checks the current state for a

valid transition pointer that it can follow. There is none in this case so it analyses

the default transition pointers to states at a depth of two. Two such pointers exist,

with one pointing to state 2 and the other to state 10. The value of the current state

is compared to the CS value for each of the default transition pointers to states at a

depth of two. The default transition pointer that points to state 10 is followed

because its CS value matches.

Chapter 5- String Matching Architecture

 137

Fig. 5.5. Use of default transition pointers to states at a depth of three.

Default Transition Pointers to States at a Depth of Three

States at a depth of three in the state machine will be pointed to far less often than

the states that precede it. However, through testing it was found that significant

memory savings can be made by saving one default transition pointer to the most

commonly pointed to state for each character at a depth of three. Default transition

pointers to states at a depth of three require three pieces of information. The first

piece of information required is the memory location of the state pointed to and

the second and third pieces of information are the character values of the two

states that connect the start state to the state pointed to. Again these character

values are needed to distinguish the state pointed to at a depth of three from other

states at this depth that can have the same character value.

An input character will now have to check if it can follow the default transition

pointer to a state at a depth of three before it can consider following a default

transition pointer to a state at a depth of two or one. These default transition

pointers need to be checked in the case where there is no valid transition pointer

that can be followed from the current state. Fig. 5.5 shows how the state machine

in Fig. 5.1 looks after the insertion of default transition pointers to states at a

depth of three, two and one. It also shows the complete lookup table. The use of

default transition pointers to states at a depth of three, two and one reduces the

average number of transition pointers stored at a state in this example from 2.846

to 0.154, which is a reduction of 95%. The maximum number of transition

pointers that need to be stored at a state has also been reduced from four to one.

Reductions of this magnitude result in massive savings in memory usage as

Chapter 5- String Matching Architecture

 138

rulesets scale to contain thousands of strings, with these strings ranging in length

from a few bytes to a few hundred bytes. The large reduction in the number of

transition pointers that need to be stored at a state also allows the logic used to

traverse the state machine to be simplified as only small amounts of data need to

be processed during each state traversal.

Fig. 5.5 also shows an example of how to use the complete lookup table and state

machine to traverse from one state to another. In this example the previous input

character (n) has transitioned to state 11. The new input character (s) begins the

process of traversing a state by retrieving its default transition pointers from the

lookup table. It then checks to see if there is a valid transition pointer stored at the

current state that it can follow. There is none in this case which means that the

default transition pointer to the state at a depth of three must be analysed next.

This is done by comparing the previous two input characters to the default

transition pointer’s CS value (character values of the states that connect the start

state to the state pointed to). These values do not match as the previous two input

characters were (e) and (n), with the character values needed to follow the

transition pointer being (h) and (i). This means that the default transition pointers

to states at a depth of two must be analysed next. It can be seen that the character

(s) has no default transition pointers to states at this depth. This means that the

final default transition pointer that points to state 3 must be followed.

5.3.3 Algorithm for Building Search Structure

This section explains the steps that need to be taken when building the state

machine and lookup table required to search a packet’s payload for specific

strings. There is only one user defined constraint that needs to be specified before

the building of the state machine and lookup table can begin. This constraint is the

maximum number of transition pointers that may be stored at a state. This

constraint is used because the string matching hardware accelerator explained in

Section 5.4.2 has been designed to handle a maximum of thirteen transition

pointers at each state in order to simplify the logic needed and to reduce the

amount of memory required to store a state, as explained in Section 5.4.1. The

capacity to store a maximum of thirteen transition pointers at each state is more

Chapter 5- String Matching Architecture

 139

Fig. 5.6. Recording a state’s depth, character value and forward pointing transitions.

than enough due to the large memory reductions achieved through the use of

default transition pointers.

The first step involves recording the states used in the state machine along with

their depth, character value (ASCII value of the input character needed to

transition to it) and forward pointing transitions (transition pointers that point to a

state whose depth is one greater than the depth of the current state). Fig. 5.6 shows

a step by step example of how this is done for the state machine shown in Fig. 5.1.

It is done by extending each string to be matched from the start state one character

at a time. Each character will have a state, with strings that share common stems

also sharing common states. The forward pointing transition pointers are recorded

when laying down each string one character at a time. A state’s depth is the

shortest number of transitions taken to reach it from the start state.

Step two records the remaining transition pointers for each state (transition

pointers that point to a state whose depth is equal to or less than the depth of the

current state). Fig. 5.7 helps to explain how this is done by showing how the

transition pointer for character (h) is recorded in state 9. The transition pointer for

Chapter 5- String Matching Architecture

 140

Fig. 5.7. Recording a state’s non-forward pointing transitions.

each ASCII character at a state that does not already have a transition pointer is

calculated by first forming a string that is made up of:

• The character that the transition pointer is being calculated for (h in Fig. 5.7).

• The character value of the current state (s in Fig. 5.7).

• The character values of the states connecting the current state to the start state

minus the character value of the state nearest the start state (e and r in Fig. 5.7).

This string is checked against the character value of the other states (and the

character values of the states that connect them to the start state) whose depth is

equal to the string length. A match will mean placing a transition pointer to the

matched state. No match will mean shortening the string by dropping the first

character value and re-matching the string to states whose depth is equal to the

length of the new string. This process continues until a state matches or the string

can no longer be shortened, which will lead to the start state being pointed to.

In Fig. 5.7 the string ersh is compared to the character values of state 12 and the

states that connect it to the start state, as the depth of state 12 is equal to the length

of the string. These values do not match so the string ersh is then compared to the

character values of state 9 and the states that connect it to the start state, as the

depth of state 9 is also equal to the length of the string. This does not match either

so the first character is dropped to form the string rsh. This string is then

compared to the character values of state 8 and the states that connect it to the

start state, as the depth of state 8 is equal to the length of the new string, with no

match. The same is also done for states 7, 5 and 11 as they are also at the same

depth, with no match. The first character is again dropped, creating the string sh.

This string matches the character values of state 4 and the state that connects it to

Chapter 5- String Matching Architecture

 141

Fig. 5.8. Recording the strings matched if a state is entered.

the start state, which means that the transition pointer for character (h) will point

to state 4 as shown by the dashed arrow.

In the third step each state records the number of the strings that will have been

matched if it is entered. This is done by making a string for each state comprised

of the character values of the state and the states that connect it to the start state.

This string and shortened versions of it made by dropping the first character are

compared to the list of strings being sought. Matching string numbers will be

recorded in the state. Fig. 5.8 shows how state 5 records the strings that will have

been matched if it is entered.

The remaining steps explain how default transition pointers are inserted in order

to reduce memory usage. Default transition pointers are inserted to states at a depth

of one first, then to states at a depth of three and then to states at a depth of two,

with the following steps explaining why this is done. Detailed diagrams have been

given in Section 5.3.2 that explain how default transition pointers are inserted.

Step four is where the default transition pointers to states at a depth of one are

inserted. To do this each of the possible 256 states at this depth have their state

number placed in the lookup table. The position of each state number in the

lookup table is equal to its ASCII character value. Any position not filled in the

lookup table will mean that no state with its ASCII character value exists at a

depth of one. This means that a pointer to the start state will need to be placed

here. Transition pointers to states at a depth of one are then removed from all

states in the state machine.

The fifth step is where the default transition pointers to states at a depth of three

are inserted. This is done by first counting how many times each state at a depth

of three is pointed to. Default transition pointers to the most commonly pointed to

states for each ASCII character will be inserted in the lookup table. Transition

pointers to the states chosen at this depth are then removed from all states in the

state machine.

Chapter 5- String Matching Architecture

 142

Fig. 5.9. Memory organisation of information needed to store a state.

The sixth step is where the user defined limit on the maximum number of

transition pointers that can be stored at a state is used. States that exceed this limit

(if any) are first selected. The four most commonly pointed to states (by the states

exceeding the threshold) at a depth of two for each ASCII character are first

placed in the lookup table. Transition pointers to the states chosen are then

removed from all states in the state machine. Four default transition pointers may

not have been used for each ASCII character. This will depend on how many

states were pointed to by states exceeding the user defined threshold (if any).

Space for any unused default transition pointers at a depth of two will be filled by

counting the most commonly pointed to states at a depth of two not already in the

lookup table and inserting them in the lookup table. This is done until the lookup

table is full or there are no more states at a depth of two that require default

transition pointers.

5.4 Memory Organisation and Hardware Architecture

5.4.1 Memory Layout

The hardware accelerator has been designed to handle states containing up to 13

transition pointers. Most states, however, will contain less than two transition

pointers on average after the insertion of default transition pointers, making it

wasteful to allocate the same amount of memory for all states. The hardware

accelerator has therefore been designed to handle 15 different state types. A states

type indicates how many pointers it has and its position in a memory word. State

types 1-9 are used to store states containing 0-1 transition pointers, types 10-12

store states containing 2-4 transition pointers, type 13 stores states containing 5-7

transition pointers, type 14 stores states containing 8-10 transition pointers while

type 15 stores states containing 11-13 transition pointers.

Fig. 5.9 shows the number of bits required to store a state’s transition pointers and

matching string information. Each transition pointer stored at a state will require

24 bits, with 8 bits being used to store the character value needed to follow the

Chapter 5- String Matching Architecture

 143

Fig. 5.10. Possible positioning of the state types in memory and their bit size.

pointer. Another 12 bits are used to store the address of the state being transitioned

to and 4 bits to indicate its type. The string numbers that may have been matched

when a state is entered are stored in a memory block separate to the one used to

store the states used by the state machine. This is done to ensure that the fetching

of a state’s matching string numbers does not reduce throughput when traversing

the state machine. Each state uses 12 bits to indicate if any strings have been

matched when it is entered and if so the location of these matching string

numbers. The block of memory used to store a state’s matching string numbers is

27 bits wide. Each memory word holds two 13-bit string numbers and a flag bit. A

state will point to the memory word where its matching string numbers are stored.

These string numbers are outputted two at a time, with the flag bit used to indicate

when all matching string numbers have been outputted.

The number of bits required to store a state ranges from 36 for states containing 0-

1 transition pointers to 324 for states containing 11-13 transition pointers. The

memory words used to save these states must therefore be 324 bits wide to ensure

that the information needed to traverse all states can be accessed in a single clock

cycle. The states used by the state machine will be a variety of different sizes, so it

is important that they are carefully arranged in memory after the state machine has

been built to prevent gaps of unused memory. Fig. 5.10 shows where the different

state types can be positioned in a memory word and the amount of space in bits

that they occupy. State types 15, 14 and 13 are first saved to memory. These state

types are rare due to the memory reduction techniques used. The storage of state

types 14 and 13 will leave gaps of unused memory. States containing 0-1

transition pointers are used to fill these gaps as they are the most commonly used

state in the state machine. The next step involves storing states that contain 2-4

transition pointers, with each memory word being able to store three such states.

The final step stores the remaining states containing 0-1 transition pointers nine at

Chapter 5- String Matching Architecture

 144

Fig. 5.11. Organisation of a lookup table memory word.

a time to each memory word. This results in the states being saved to memory in

the most efficient way, with no gaps of unused memory.

The amount of bits required to save the memory words used by the lookup table

can be reduced from 136 to 49 by saving the states pointed to by the default

transition pointers for each ASCII character at a fixed memory location and

making all states pointed to the same type. Each ASCII character can have a

maximum of six default transition pointers to states with its character value spread

across depths of one, two and three. These states are always saved in the same six

memory locations and saved as type 15 states that can store up to 13 transition

pointers. These memory locations can be used to save other states not pointed to

by a default transition pointer in the event that any of an ASCII character’s six

default transition pointers are not used. These default transition pointers might not

be used because a specific ASCII character might not have states with its value in

the state machine at depths of one, two or three. Not needing to save the address

or type of the state pointed to in the lookup table saves 16 bits for each default

transition pointer.

The organisation of a lookup table memory word can be seen in Fig. 5.11. The

default transition pointer for each ASCII character that points to a state at a depth

of one will require one bit. This bit is used to specify if a state exists at a depth of

one for this ASCII character. The existence of this state will mean traversing to it,

while its non-existence will mean traversing to the start state. The four default

transition pointers to states at a depth of two for each ASCII character will require

eight bits each to store the character value of the state that connects the state being

pointed at to the start state. The default transition pointers to states at a depth of

three require 16 bits to store the character values of the two states that connect the

state being pointed at to the start state.

5.4.2 Hardware Accelerator Architecture

The hardware accelerator has been designed to use multiple string matching

blocks on the same FPGA. The Stratix III implementation uses six string matching

Chapter 5- String Matching Architecture

 145

Fig. 5.12. Architecture of a string matching block.

blocks to achieve a throughput of over 40 Gbps, while the implementation on the

smaller low power Cyclone III uses four string matching blocks to achieve a

throughput of over 10 Gbps. The architecture of a string matching block can be

seen in Fig. 5.12. Each string matching block contains six string matching

engines, which means that the Stratix III implementation has 36 engines in total

and the Cyclone III implementation has a total of 24 engines. Each string

matching block has its own memory, which means that the Stratix III

implementation can store up to six DFAs and the Cyclone III implementation can

store up to four DFAs.

For rulesets containing many thousands of rules the strings being sought can be

broken into different groups, with a different DFA built for each group. Each

DFA can be stored to a separate string matching block. This gives the string

matching blocks the ability to work in parallel on the same packet, with each

Chapter 5- String Matching Architecture

 146

string matching block searching for a subset of the strings. A single DFA can be

built for smaller rulesets. Saving this DFA to all string matching blocks gives

them the ability to work individually, allowing them to search for all strings in a

packet so that the highest possible throughput can be achieved.

A string matching block uses true dual port memory to store the matching string

numbers, state machine and lookup table in order to maximise throughput. Three

engines share access to each of the data ports belonging to the memory used to

save the state machine. The string matching engines search the payloads of the

incoming packets for matching strings, using information from the lookup table

and memory used to save the state machine. A string matching block also has two

string matching schedulers, with each scheduler using a data port of the memory

used to save the matching string numbers. Each scheduler is used to retrieve the

matching string numbers from memory for the three string matching engines

sharing a data port.

Three string matching engines share a data port as the maximum clock speed of

each engine is slower than the maximum clock speed that memory can obtain.

This is due to logic delays in the string matching engines. The memory runs at a

speed equal to three times that of an engine. Each engine sharing a port runs at the

same clock speed, with the clock for each engine 120º out of phase with the clock

of the previous engine. This allows for a simple memory interface as the read

commands for the three engines can simply be multiplexed together, with each

engine having access to 33% of the memory’s bandwidth. Each engine is used to

process a separate packet, meaning that six packets are needed to keep the

memory in a string matching block fully utilised.

The bytes for the packets being searched by the three engines sharing a data port

are multiplexed together and inputted through the same input port, with every

third byte belonging to the same packet. The timing in which the bytes of a packet

are inputted will determine which string matching engine is used to search its

payload. The process of searching for matching strings in a packet works as

follows. The first character or byte being searched is inputted into the string

matching block, with a start signal being set to indicate that it is the first character.

This character will then retrieve its default transition information from the lookup

Chapter 5- String Matching Architecture

 147

table. This default transition information and the character will then be registered

by the string matching engine searching the packet payload on its rising clock

edge. The state transitioned to will be determined by the default transition

information because it is the first character, meaning that it can only transition to a

state with a depth of one, or to the start state. Information on the state transitioned

to will be requested from the memory used to store the state machine.

The string matching engine will register the next character from the packet it is

searching, along with the default transition information that this character will

have returned from the lookup table on its next rising clock edge. It will also

register the state information that will have been requested from memory on the

previous clock cycle. From this information it will then decide whether to traverse

to a state pointed to by a transition pointer stored at the state retrieved from

memory or to a state pointed to by one of the default transition pointers obtained

from the lookup table. This process will continue until the end of the packet is

reached. A matching string will have been found if the 12-bit matching strings

number of a state transitioned to contains an address other than zero. This

matching strings number is used to indicate if any strings have been matched

when a state is entered and if so the location in memory of these matching string

numbers. The memory location of the matching string numbers will be sent to the

match scheduler along with a set bit.

5.4.3 String Matching Engine Architecture

The architecture of a string matching engine can be seen in Fig. 5.13. Each engine

contains registers used to store the current input character, previous two input

characters, state information returned from memory, default transition pointer

information returned from the lookup table and a register used to store the state

type to be analysed. An engine also contains comparator blocks and multiplexers

used to analyse the state and default transition pointer information. The first byte

from the payload of a packet being searched will be registered to the Char1

register, while the default transition pointer information it will have retrieved is

registered to the DTP Info register. The Start input signal will be set as this is the

first byte from the packet’s payload. This means that the State Address signal will

be set to the address of the state pointed to by the default transition pointer which

Chapter 5- String Matching Architecture

 148

Fig. 5.13. Architecture of the string matching engine.

could be a state with a depth of one or the start state. The states pointed to by all

default transition pointers are type 15 states that can store up to 13 transition

pointers. This means that the value 15 will be registered to the Type register used

to record the state type to be analysed on the next clock cycle.

The new input character is registered to the Char1 register on the next clock

cycle, while the Char2 register records the previous input character. The default

transition pointer information that the new input character will have retrieved is

registered to the DTP Info register, and the information on the state returned from

memory is registered to the Data register. This state information and the new

input character are fed into comparator blocks 1-15 and their multiplexers. These

comparator blocks and their multiplexers are used to analyse the different state

types. Each comparator block consists of comparators used to compare the input

character to a state’s transition pointers to see if any are valid. A comparator block

will output a set match signal and the number of the transition pointer if the input

character matches one of the state’s transition pointers. The number of the

transition pointer is inputted into the multiplexer associated with the comparator

block and used to select the appropriate address and type of the state pointed to.

A different comparator block and multiplexer is used for each state type because

they contain different numbers of transition pointers and their information is

Chapter 5- String Matching Architecture

 149

stored at different positions in a memory word. Due to their simplicity the logic

required to use a different comparator block and multiplexer for each state type is

less than the amount of logic it would take to shift and parse data, so that a single

comparator block and multiplexer could be used. The type and memory location

of the state to be traversed to are inputted from the 15 multiplexers to another

multiplexer, where the state type information stored in the Type register on the

previous clock cycle is used to select the correct data.

This multiplexer also selects the correct matching strings information on the

current state. This information will be passed to the string matching scheduler

shown in Fig. 5.12. This information notifies the string matching scheduler if

strings have been matched and if so the memory location of the matching string

numbers. The match signal from comparator blocks 1-15 are analysed to see if a

valid transition pointer has been found at the state returned from memory. A set

match signal will mean setting the state address signal to that of the valid

transition pointer in order to retrieve the state it points to from memory. It also

means that the state type of the state pointed to can be stored to the Type register.

No valid transition pointer being found will mean looking at the default transition

pointers for the current input character. The previous input character recorded by

the Char2 register is used to check if any of the four default transition pointers to

states at a depth of two should be used. None of these being valid will mean using

the default transition pointer that points to a state at a depth of one or the start

state. Whichever default transition pointer is used will mean setting the state

address signal so that the state pointed to by the default transition pointer will be

retrieved from memory. The value of the Type register will also be set to 15.

Finally, on the third and subsequent clock cycles the new input character is

registered to the Char1 register, the Char2 register will record the previous input

character, while the Char3 register records the input character previous to that.

The default transition pointer information that the new input character will have

retrieved is registered to the DTP Info register and the information on the state

returned from memory is registered to the Data register. The steps explained will

be repeated again, with the exception that the default transition pointer which

points to states at a depth of three can now be considered.

Chapter 5- String Matching Architecture

 150

Fig. 5.14. Architecture of the string matching scheduler.

5.4.4 String Matching Scheduler Architecture

The final block to be explained is the string matching scheduler, which can be

seen in Fig. 5.14. The string matching scheduler is used to prevent a reduction in

throughput when retrieving the numbers of the matched strings from memory

during the searching of a packet’s payload. The scheduler is shared by three string

matching engines. An engine will notify the scheduler that it has found strings

being sought. It will also give their location in memory and then leave the

scheduler to retrieve the matching string numbers. The scheduler will record the

number of the engine that found the strings and the memory location of the

matching string numbers in a buffer. The engine that found the strings is recorded

as it is used to identify which packet contained the matching strings. The

scheduler uses the Address Inc. logic block to increment the buffer’s write address

once this information has been stored.

The number of the engine that recorded the matched strings will be outputted

from the hardware accelerator once it reaches the front of the buffer. The memory

location of the matching string numbers will also be used to retrieve the matching

string numbers from memory. These numbers are outputted two at a time from

memory, with a single matching string meaning that one of these numbers is zero.

The memory will return a Flag Bit to the scheduler to notify it if all matching

string numbers have been outputted. This Flag Bit not being set will mean using

the Address Inc. logic block to increment the address of the matching string

Chapter 5- String Matching Architecture

 151

0

50

100

150

200

250

300

350

400

450

1 5 1
0

1
5

2
0

2
5

3
0

3
5

4
0

4
5

5
0

+

Number of Characters in String

N
u

m
b

e
r

o
f

S
tr

in
g

s

500 Rules 634 Rules 1204 Rules 1603 Rules 2588 Rules 6275 Rules

Fig. 5.15. Distribution of string lengths for unique strings found in Snort ruleset.

numbers so that the next two can be outputted. This process continues until a set

Flag Bit is returned. A set bit being returned will cause the buffer’s read address

to be incremented using the Address Inc. logic block, allowing the reading of the

information stored in the next buffer slot.

5.5 Performance Results

5.5.1 Characteristics of Snort Ruleset Used in Testing

The strings used to test the algorithm and hardware accelerator were taken from

the Snort 2.6.0 ruleset explained in Section 2.4.1. This ruleset contains 6,275

unique strings that need to be searched for, with the average number of characters

contained within a string being 22.65. The length distribution of these strings can

be seen in Fig. 5.15. It shows that there is a peak in the number of strings

containing between 4 and 13 characters, with the longest string containing 364

characters. The large number of strings, combined with a wide variation in string

lengths, shows that string matching methods should be avoided that have a run-

time proportional to the number of strings or their length. The algorithm and

hardware accelerator presented here can guarantee a fixed throughput irrespective

of the number of strings or their length. The distribution of the string lengths for

Chapter 5- String Matching Architecture

 152

Table 5.1. FPGA resource utilisation for string matching hardware accelerators.

Device Logic element usage Memory usage fmax

Cyclone III 35,511/119,088 (30%) M9Ks 404/432 (94%) 233.15 MHz

Stratix III 69,585/254,400 (27%) M9Ks 822/864, M144Ks 0/48 (50%) 460.19 MHz

five smaller rulesets that were created from the Snort ruleset can also be seen in

Fig. 5.15. These smaller rulesets were created to test the performance of the

algorithm and hardware accelerator in terms of memory usage when searching for

different amounts of strings. The strings in these rulesets were chosen using a

program created that deletes strings from the Snort ruleset until only a user

defined amount remains. The program deletes these strings while trying to match

the string length distribution of the Snort ruleset as closely as possible.

5.5.2 Hardware Implementation Parameters

The hardware accelerator has been implemented in VHDL and targeted two devices:

• A Cyclone EP3C120F484C7 FPGA, which is built on TSMC 65nm process

technology, running at 1.2 Volts.

• A Stratix EP3SE260H780C2 FPGA, which is also built on TSMC 65nm

process technology, running at 1.1 Volts.

The Stratix III implementation has been implemented with six string matching

blocks, with each block using 3,584 324-bit memory words to store its state

machine and 2,048 27-bit memory words to store the matching string numbers.

Memory limitations have meant restricting the Cyclone III implementation to four

string matching blocks, with each using 2,560 324-bit memory words to store its

state machine and 2,048 27-bit memory words to store the matching string

numbers. The architectures were synthesised using Altera Quartus II design

software to obtain maximum clock speeds and resource utilisation statistics. Table

5.1 shows the memory and logic usage for the hardware accelerators, along with

the maximum clock speed of their memory.

It can be seen that the maximum obtainable clock speed of the Cyclone III

memory is 233.15 MHz when it is used to implement the hardware accelerator.

Each string matching engine in a string matching block runs at one third the clock

Chapter 5- String Matching Architecture

 153

speed of memory, meaning that it can search through each byte of a packet’s

payload at a guaranteed rate of 77.72 million bytes per second (0.33×233.15

MHz), giving it a maximum throughput of 621.73 Mbps (77.72×8 bits). The

memory used in a string matching block is dual port, giving it enough bandwidth

to support six string matching engines, putting the maximum throughput for a

string matching block at 3.73 Gbps (6×621.73 Mbps). This will also be the

hardware accelerator’s maximum throughput when searching for strings contained

within very large rulesets. This is because the strings will need to be broken up

and saved across the memory of all four string matching blocks. The string

matching blocks will therefore need to work together, with each block searching

for a subset of the strings in a packet’s payload.

The throughput of the hardware accelerator will increase to 7.46 Gbps when the

strings being searched for only need to be broken up into two groups, with the

search structure for each group placed in a separate string matching block. The

hardware accelerator will be able to use two pairs of string matching blocks, with

each pair capable of searching for all strings in a packet’s payload. Each pair will

have a throughput of 3.73 Gbps. A maximum throughput of 14.92 Gbps is

possible for rulesets whose search structure is small enough to fit in the memory

of a single string matching block as a packet will only need to use one block to

search its payload for all strings. The throughput will therefore be equal to the

sum of all four blocks.

The maximum obtainable clock speed of the Stratix III memory is 460.19 MHz

when it is used to implement the hardware accelerator. Each of its string matching

blocks will therefore be able to process packets at a speed of 7.36 Gbps. The

Stratix III implementation has six string matching blocks, which means that

strings can be left as a single group or split into groups of two, three or six.

Strings split into groups of six will have the lowest throughput of 7.36 Gbps as all

six blocks are required to search through a packet’s payload. This throughput

increases to 14.73 when strings are split into three groups and saved across three

blocks, 22.09 Gbps when two blocks are used to store the strings needed to search

a packet’s payload and a maximum throughput of 44.18 Gbps when a single block

can be used to search a packet’s payload.

Chapter 5- String Matching Architecture

 154

Table 5.2. Reduction in number of transition pointers stored in states.

Strings 634 1603 2588 6275 500 1204 2588

Aho-Corasick

States 11,796 29,155 46,301 109,467 9,329 22,026 46,301

Avg.Pointers 68.29 81.07 85.00 87.01 67.28 77.07 85.00

New Method Stratix III implementation Cyclone III implementation

Blocks 1 2 3 6 1 2 4

States 11,796 29,226 46,599 109,638 9,329 22,049 46,570

d1 68 97 108 110 67 83 125

Avg.Pointers 8.16 6.77 5.33 4.16 7.17 5.70 5.28

d1+d2 262 493 662 1,131 246 415 723

Avg.Pointers 3.43 2.68 2.09 1.92 2.87 2.21 2.20

d1+d2+d3 323 622 850 1,509 306 531 955

Avg.Pointers 2.39 2.01 1.9 1.54 2.09 1.88 1.18

Reduction 96.5% 97.5% 97.8% 98.2% 96.9% 97.6% 98.6%

Mem.(bytes) 148,259 296,967 445,641 838,298 105,599 214,141 429,656

Speed(Gbps) 44.18 22.09 14.73 7.36 14.92 7.46 3.73

5.5.3 Transition Pointer Reduction

The results in Table 5.2 show the reduction that can be achieved in the average

number of transition pointers that need to be stored at a state and thus the memory

consumption for the Snort ruleset. This reduction is highlighted by showing the

average number of transition pointers that need to be stored at a state for both the

Aho-Corasick algorithm and the new algorithm presented. It also shows the

throughput for the Cyclone III and Stratix III implementations of the hardware

accelerator when searching for different numbers of strings. An explanation of the

reduction in transition pointers and throughput for the rulesets containing 634 and

6,275 strings is given for the Stratix III implementation to aid understanding.

It can be seen that the average number of transition pointers that need to be stored

at a state is 68.29 when using the Aho-Corasick algorithm to build a state machine

for the ruleset containing 634 strings. This ruleset contains strings with 68 unique

starting characters. This means that there will be 68 states at a depth of one in the

state machine. Inserting default transitions to these states in a lookup table reduces

the average number of transition pointers that need to be stored in a state to 8.16.

Further reductions are achieved by inserting default transition pointers to the four

most commonly pointed to states at a depth of two for each ASCII character. This

Chapter 5- String Matching Architecture

 155

will bring the average number of transition pointers that a state will need to store

down to 3.43 and the total number of default transition pointers stored in the

lookup table to 262. The average number of transition pointers that need to be

stored at a state decreases to 2.39 when default transition pointers are inserted in

the lookup table to the most commonly pointed to state at a depth of three for each

ASCII character. This brings the total number of default transition pointers in the

lookup table to 323 and reduces the average number of transition pointers that

need to be stored in a state by 96.5% when compared to the Aho-Corasick

algorithm. The memory required for storing the entire lookup table, state machine

and matching string numbers is 148,259 bytes for the 634 strings used. A string

matching block will therefore have enough memory to store the total search

structure in the Stratix III implementation, enabling the hardware accelerator to

achieve its peak throughput of 44.2 Gbps. This is because all six blocks can work

separately, searching a packet’s payload by themselves.

The average number of transition pointers that a state will need to store is 87.01

when the Aho-Corasick algorithm is used to build a state machine for the Snort

ruleset containing 6,275 strings. The memory required to store the search structure

for this ruleset is too large to fit in a single string matching block. It therefore has

to be split into six separate groups and saved across the six string matching

blocks. A total of 110 default transition pointers to states at a depth of one are

needed for the six resulting state machines. This will bring the average number of

transition pointers that need to be stored at a state down from 87.01 to 4.16. These

six state machines will require a total of 1,021 default transition pointers to point

to the four most commonly pointed to states at a depth of two for each ASCII

character. This will reduce the average number of transition pointers stored at a

state to 1.92. The average number can be further reduced to 1.54 by using default

transition pointers to states at a depth of three. The resulting search structure

needs a total of 838,298 bytes to save the lookup tables, state machines and

matching string numbers for the six search structures. The hardware accelerator

will have a total throughput of 7.36 Gbps, with all six string matching blocks

being needed to search a packet’s payload.

It can be seen that the memory consumption scales very well as the number of

strings grow when using the new algorithm and hardware accelerator. The number

Chapter 5- String Matching Architecture

 156

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500

Number of Strings

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

Cycone 3 Stratix 3

Fig. 5.16. Throughput of the string matchers when using different sized rulesets.

of bits needed to store each string actually decreases as the number of strings

increase. This is because the hardware accelerator allows the strings to be broken

up into multiple groups, with the state machine for each group placed in a separate

string matching block.

Fig. 5.16 shows the achievable throughput for the two implementations of the

hardware accelerator when compared to the number of strings being sought using

the rulesets shown in Fig. 5.15. It can be seen that the Stratix III implementation

performs better than the Cyclone III implementation. This is because it has the

largest amount of memory available, allowing it to employ the most string

matching blocks. It also has the highest maximum clock speed of the two FPGAs.

The Stratix III implementation is able to reach speeds of over 40 Gbps, meaning

that it is ideally suited to being deployed at the core of a network. The Cyclone III

implementation would work better at the edge of a network as its maximum speed

is 14.92 Gbps.

It is worth noting that only half of the Stratix III memory is used. The use of the

other half of this memory and some extra logic would allow the Stratix III

implementation to support twice as many string matching blocks. This would

double the hardware accelerator’s throughput when searching for the strings

contained within the rulesets used for testing. This is because there would be

twice as many blocks available to search through the payload of the incoming

Chapter 5- String Matching Architecture

 157

0

2

4

6

8

10

12

14

16

0 0.5 1 1.5 2 2.5 3

Power Consumption (Watts)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

 500 Strings

1204 Strings

2588 Strings

Fig. 5.17. Power consumed by Cyclone III implementation of the string matcher.

packets. The hardware accelerator could also be used to search for twice as many

strings, as the strings could be split into twice as many groups, with the state

machine for each group saved in a separate block.

5.5.4 Throughput vs. Power Consumption

Post place and route simulations were carried out using the Quartus II PowerPlay

Power Analyzer Tool to analyse VCD files generated by ModelSim. These

simulations were carried out to measure the power consumed by the hardware

accelerator when implemented on the two FPGAs. Fig. 5.17 shows the power

consumed by the Cyclone III implementation when configured to process traffic

at different levels of throughput for the different sized rulesets used in testing.

This graph was created by measuring the hardware accelerator’s power

consumption, while its clock speed and traffic volume were adjusted to different

levels of throughput. It can be seen that the Cyclone III implementation has a

maximum power consumption of 2.78 Watts when all four string matching blocks

are operating at their highest obtainable clock speed. The three sets of strings used

in testing will have different throughputs ranging from 3.73 to 14.92 Gbps at this

peak power consumption because they require a different number of string

matching blocks to search the payload of a packet.

Fig. 5.18 shows the power consumed by the Stratix III implementation when

configured to process traffic at different levels of throughput for the four rulesets

Chapter 5- String Matching Architecture

 158

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14

Power Consumption (Watts)

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

 634 Strings

1603 Strings

2588 Strings

6275 Strings

Fig. 5.18. Power consumed by Stratix III implementation of the string matcher.

used in testing. It can be seen that it has a peak power consumption of 13.28 Watts

when its six string matching blocks are running at their maximum clock speed.

Like the Cyclone III implementation it also has different levels of throughput,

ranging from 7.36 to 44.18 Gbps at its peak power consumption. This is again due

to the different number of string matching blocks required to match a packet’s

payload to the strings contained within the different sized rulesets. As mentioned

in Section 5.5.3, it is possible to double the throughput or amount of strings that

can be searched for by doubling the number of string matching blocks. This

would, however, cause a large increase in the power consumption due to extra

switching and the activation of extra sections of the FPGA. The Stratix III

implementation uses almost five times as much power as the Cyclone III

implementation. This is because the Stratix III is a much larger device, consuming

more static power. It also operates at a much higher clock speed, resulting in

higher amounts of dynamic power consumption.

5.5.5 Evaluation Against Prior Art

This section compares the new string matching algorithm and hardware

accelerator to the work in [54], which presents two string matching algorithms

and their hardware implementations. All approaches are state machine-based, with

their performance compared in terms of throughput and amount of memory

required to save the search structure needed to locate strings in the payload of a

Chapter 5- String Matching Architecture

 159

Table 5.3. Performance comparison of string matching hardware accelerators.

Approach Device Memory (bytes) Throughput (Gbps)

New method Cyclone III 138,470 7.46

New method Stratix III 138,470 22.09

Bitmap[54] ASIC 2,800,000 7.8

Path compression [54] ASIC 1,100,000 7.8

packet. These results can be seen in Table 5.3. The schemes presented in [54] use

bitmaps to reduce the amount of memory needed to save a state’s transition

pointers and path compression to reduce the number of states that need to be

saved. These schemes were tested using rules from an older Snort ruleset that

contained 19,124 characters. The Snort ruleset used here with 6,275 rules contains

142,129 characters, so for fair comparison the program explained in Section 5.5.1

was used to reduce the number of strings, while still keeping the same string

length distribution until only 19,124 characters were left.

It can be seen that the new algorithm presented here requires 20 times less

memory to save the total data structure needed to search for strings when

compared to the scheme that uses bitmap compression. The new algorithm

presented also shows a reduction in memory consumption when compared to the

scheme that uses path compression, requiring eight times less memory. A direct

comparison on throughput is not easy as the bitmap and path compressed schemes

were simulated running on an ASIC using 130nm process technology while the

hardware accelerator presented here was implemented using FPGAs that are built

using 65nm process technology. It would, however, be safe to assume that a

hardware accelerator implemented as an ASIC using 130nm technology would

perform equal to and if not better than a hardware accelerator implemented on an

FPGA using 65nm technology.

Looking at Table 5.3, it can be seen that the Cyclone III implementation shows

equal performance to the bitmap and path compressed schemes in terms of

throughput, while the Stratix III implementation performs three times better. This

performance increase can be attributed to the fact that the algorithm presented

here does not use fail pointers, while the other two schemes do. The use of fail

pointers means that there will be wasted transitions when traversing the decision

tree and a worst case throughput cannot be guaranteed. Also there is a large logic

Chapter 5- String Matching Architecture

 160

delay associated with bitmaps as finding the correct transition pointer involves the

checking and addition of the 256 bits contained within the bitmap. The hardware

accelerator presented here only requires a comparison of no more than thirteen 8-

bit ASCII characters which can be carried out in parallel.

5.6 Summary of Contributions

This chapter has shown that it is possible to implement the computationally heavy

task of string matching at the line speed of a backbone network, with low power

consumption. A new algorithm is presented that uses a state machine with

eliminated fail pointers to guarantee worst case performance. The algorithm uses a

small number of default transition pointers to the most commonly pointed to

states in the state machine. These default transition pointers are placed in a lookup

table where they are shared by all states in the state machine, greatly reducing the

number of pointers that must be stored at a state. This allows the search structure

created for rulesets containing thousands of strings to be compact enough so that

it can be easily packed into the on-chip memory of an FPGA.

The chapter also introduces a hardware accelerator architecture that implements

the algorithm and employs multiple string matching engines. These engines can

be configured to work together, searching a single packet when a very large

ruleset is used. They can also be configured to work separately, searching multiple

packets in parallel when a smaller ruleset is used, thus achieving maximum

throughput. The new string matching algorithm and hardware accelerator

architecture also show large improvements in throughput and memory

consumption when compared to other hardware-based approaches.

161

Chapter 6 – Conclusions and Future Work

6.1 Conclusions

This section summarises the research objectives of this thesis and the results

achieved by the work described in previous chapters.

6.1.1 Motivation for Proposed Research – A Summary

The large plethora of services being provided by ISPs and the growing number of

sophisticated attacks on networks that need to be blocked have made the tasks of

packet classification and Deep Packet Inspection (DPI) increasingly difficult.

Packet classification is required to perform services such as traffic billing based

on Internet usage, network security, giving priority to VoIP and IPTV packets,

rate limiting, load balancing and resource reservation. It does this by matching a

packet’s header to a set of rules, with the rule matched determining the flow a

packet belongs to and all packets in a particular flow being processed in a similar

manner. The increasing number of services that need to be provided means that

the number of rules used to separate incoming packets into appropriate flows has

grown from hundreds to thousands of rules. An important part of DPI is fixed

string matching. Fixed string matching is used to search for strings in a packet’s

payload that are associated with known attacks. The number of strings that need to

be searched for to detect attacks can be several thousand if rulesets from popular

network intrusion prevention and detection systems such as Snort are used.

The constant growth in Internet usage has further complicated the tasks of packet

classification and fixed string matching, with classifiers being required to classify

up to 125 Mpps and fixed string matching hardware accelerators given only 0.2 ns

to search through each byte of a packet’s payload at 40 Gbps line speeds. Another

Chapter 6– Conclusions and Future Work

 162

challenge in implementing these tasks is the tight power budget on a router’s line

card which determines that any new hardware used to process packets must be

energy efficient to reduce operating costs and prevent power related problems

such as overheating.

6.1.2 Summary of Thesis Contributions

The work presented in this thesis tackles the problems associated with packet

classification and fixed string matching by presenting new algorithms and

hardware accelerators that prevent them from becoming a packet processing

bottleneck if implemented at the core of a network. The algorithms build search

structures that use low amounts of memory when compared to existing

algorithms. They are also tailored towards hardware implementation, allowing for

ultra-high throughput. The hardware accelerators presented use low power

memories such as SRAM rather than power hungry TCAM, which is commonly

used in networking applications. The contributions made are summarised in the

following three sections.

6.1.3 Packet Classification

An extensive analysis of popular packet classification algorithms was carried out

in Chapter 2 comparing their performance in terms of memory usage, power

consumption and throughput when operating on a processor similar to the type

used as a processing core in programmable network processors. This analysis

showed HyperCuts to be one of the best all-round performers, scaling well when

rulesets containing thousands of rules are used to classify packets. Chapter 3

presented hardware accelerators that implement modified versions of the

HyperCuts packet classification algorithm. HyperCuts is a decision tree-based

algorithm that divides the hyperspace of a ruleset into multiple groups so that each

group contains only a small number of rules that are suitable for a linear search.

The algorithm was modified so that no floating point division is required when

traversing the decision tree to find the group of rules that must be searched. This

is done to reduce the complexity of the hardware accelerator’s logic, increasing

clock speeds and throughput. Floating point division was removed by replacing

the region compaction heuristic used by HyperCuts to reduce a decision tree’s

Chapter 6– Conclusions and Future Work

 163

memory consumption with a new heuristic that uses pre-cutting. Pre-cutting also

reduces memory consumption while only requiring simple shift and AND

operations to be performed when traversing the decision tree. The cutting scheme

was also modified to make the algorithm better suited to using the wider memory

words employed by the hardware accelerators presented. Modifications were also

made to how rules are stored through simple encoding schemes that improve the

storage efficiency of rulesets.

One of the hardware accelerator architectures presented in Chapter 3 uses ultra-

wide memory words and is capable of classifying up to 169 Mpps when using

rulesets containing up to 49,000 rules. It has been designed to cope with problem

rulesets that contain many wildcard rules. Rulesets that contain wildcard rules are

difficult to break into small groups suitable for a short linear search. The use of

ultra-wide memory words gives the hardware accelerator the ability to access the

information required to search up to 48 rules in a single clock cycle. This means

that it can quickly find a matching rule when searching the large group of rules

found in decision trees built from rulesets containing many wildcard rules. The

chapter also presents two other packet classification hardware accelerators that

use reduced width memory words. The use of reduced width memory makes these

hardware accelerators better suited to classifying packets when using rulesets that

do not contain a large number of wildcard rules. This is because they can only

access enough information to search two rules per clock cycle which means that it

must be possible to break the rulesets being used into groups where each group

contains a small number of rules.

One of the hardware accelerators that uses reduced width memory has been

designed to use on-chip memory while the other has been designed to use external

memory. The architecture that uses on-chip memory can classify up to 433 Mpps

when using rulesets that contain up to 80,000 rules. The architecture that uses

external memory is capable of classifying packets when using rulesets containing

up to a million rules. All packet classification hardware accelerators use multiple

classification engines. This gives them the ability to break problem rulesets

containing a large number of wildcard rules into groups, with a separate packet

classification engine used to search the decision tree built for each group. This can

Chapter 6– Conclusions and Future Work

 164

help to reduce the worst case number of clock cycles needed to classify a packet

and lower memory consumption. The hardware accelerators have been compared

to state of the art packet classifiers that use TCAM, with results showing an

increase in throughput of up to 325% and a decrease in power consumption of up

to 81%.

6.1.4 Frequency Scaling

Another contribution made towards the field of packet classification is an adaptive

clocking unit that is presented in Chapter 4. It dynamically adjusts the clock speed

to a packet classifier so that its available processing capacity matches the

processing needs of the network traffic on a router’s line card. This is done to

keep power consumption low at times when a network’s traffic volume is light.

The adaptive clocking unit stores the headers of the incoming packets in a small

buffer and uses the number of packets stored to decide the clock frequency of the

packet classifier. A scheme was developed to keep clock frequencies at the lowest

speed capable of servicing the line card while keeping frequency switches to a

minimum. A low power architecture for packet classification was implemented as

an ASIC and using FPGAs. It consisted of the adaptive clocking unit and the

packet classification engine presented in Chapter 3 that uses ultra-wide memory

words. The low power architecture was tested extensively using synthetic 2.5

Gbps, 10 Gbps and 40 Gbps packet traces created from real network traces

obtained from the NLANR database while classifying packets using synthetic

rulesets containing up to 25,000 rules. Simulation results show that power savings

of between 14-88% can be made when the adaptive clocking unit is used rather

than a fixed clock speed.

6.1.5 String Matching

A new multi-pattern matching algorithm and hardware accelerator are presented

in Chapter 5 that are used to carry out fixed string matching. They can search

through a packet’s payload at a guaranteed rate of one character per clock cycle

no matter how many strings are being sought or the length of these strings. This

prevents attackers from being able to flood the system by constructing packet

payloads that the fixed string matcher performs poorly on. The new algorithm is a

Chapter 6– Conclusions and Future Work

 165

modified version of the Aho-Corasick algorithm that builds a state machine from

the strings being sought. The largest cause of memory consumption in such a state

machine is the transition pointers stored at each state. Transition pointers are used

to select the state that should be transitioned to on any given clock cycle, with the

input characters used to select the appropriate transition pointer that must be

followed. The new algorithm stores transition pointers to the most commonly

pointed to states in a small lookup table. These transition pointers are called

default transition pointers and they are shared by all states in the state machine.

This reduces memory consumption by over 98% when compared to the original

Aho-Corasick algorithm.

The hardware accelerator that implements the new algorithm can search for

thousands of strings at speeds of over 40 Gbps which is fast enough to meet core

network line speeds. It uses multiple string matching blocks that can be

configured to work together, searching a single packet when a very large ruleset is

used. They can also be configured to work separately, searching multiple packets

in parallel when a smaller ruleset is used, allowing maximum throughput to be

achieved. It has been tested extensively using the Snort ruleset which contains

6,275 unique strings that must be searched for. A comparison with other state of

the art string matching hardware accelerators and algorithms show that the

algorithm and hardware accelerator presented here can reduce memory

consumption by over 87% while increasing throughput by 283%.

6.2 Future Work

The fixed string matching algorithm and hardware accelerator presented in

Chapter 5 help to provide the processing capacity necessary to carry out the

computationally heavy task of DPI at the core of a network, where line speeds can

reach up to 40 Gbps. DPI will still, however, remain a packet processing

bottleneck until algorithms and hardware accelerators are provided that make it

possible for multi-match packet classification and regular expression matching to

be performed at the core of a network. A logical progression for the work carried

out in this thesis would be to modify the algorithms and hardware accelerators

presented so that they can perform multi-match packet classification and regular

expression matching. Another progression for the work carried out would be to

Chapter 6– Conclusions and Future Work

 166

design a power saving mechanism capable of dynamically adjusting the

processing capacity of the fixed string matching hardware accelerator so that its

processing capacity matches the processing needs of the network traffic. This

would allow for a reduction in the amount of dynamic power used. The following

three sections explain briefly how this future work could be carried out.

6.2.1 Multi-Match Packet Classification

The packet classification hardware accelerator presented in Chapter 3 that uses

reduced width memory words could easily be modified so that it returns all

matching rules rather than only the matching rule with the highest priority. This

could be done by always searching a leaf node until its end is reached and

outputting all matched rules found along the way. This would not increase the

worst case number of memory accesses required to classify a packet, making it

possible for a modified version of the hardware accelerator to perform multi-

match packet classification at speeds of up to 138.56 Gbps. The architecture of the

modified hardware accelerator could even be made simpler than the architecture

presented in Chapter 3. This is because it would not need to compare matching

results between engines in order to find the matching rule with the highest priority

in the case where a ruleset has been split into multiple groups with a separate

packet classification engine used to search each group. This is due to the fact that

all matching rule IDs will be outputted rather than just the ID of the matching rule

with the highest priority.

6.2.2 Regular Expression Matching

Deterministic Finite Automata (DFA) is commonly used to carry out the task of

regular expression matching [30, 31, 32, 34, 35]. The hardware accelerator

presented in Chapter 5 also uses DFA to implement fixed string matching. It

would, however, need some modifications in order to make it better suited to

implementing regular expression matching. It currently uses default transition

pointers to states near the start state. These transition pointers are shared by all

states, leading to large memory reductions when carrying out fixed string

matching. This is because fixed string matching does not allow the use of

wildcard characters. It is also because the content being searched for varies widely

Chapter 6– Conclusions and Future Work

 167

between strings. This results in a state machine where the transition pointers at

most states will typically only point to the same few states near the start state.

Regular expression matching allows the use of wildcard characters, which results

in a state machine where a state’s transition pointers will tend to point deeper into

the state machine. This problem could be overcome by using extra default

transition pointers to states further away from the start state. The use of wildcard

characters also means that states tend to store more transition pointers. The

hardware accelerator would also need to be modified so that states can store more

transition pointers to allow for this. The algorithm used to build the state machine

would also need to be modified so that it can handle regular expressions and be

able to intelligently select the default transition pointers that will lead to the

largest memory savings.

6.2.3 Reducing the Fixed String Matching Hardware Accelerator’s Power

Finally, the fixed string matching hardware accelerator presented in Chapter 5

requires six string matching blocks when implemented on an FPGA to meet core

network line speeds of 40 Gbps. The processing capacity of these string matching

blocks will not be fully utilised at times of low traffic volume, resulting in

unnecessary dynamic power being used. The use of multiple processing elements

makes this hardware accelerator ideally suited to clock gating, where the clock to

unneeded processing elements is gated at times of low traffic volume, reducing

dynamic power consumption. A scheme similar to the one used in Chapter 4 could

be employed to decide how many processing elements are needed to cope with the

processing needs of the incoming traffic. This would involve employing a small

buffer to capture the incoming bytes of a packet’s payload and using the number

of bytes stored to decide how many processing elements should be active. The

same methods used in Chapter 4 to keep frequency switches to a minimum could

also be used to reduce the number of times the clocks to processing elements are

gated in order to reduce the processing delays associated with the activating and

deactivating of processing elements.

168

APPENDIX A – POWER USAGE

The following figures show the average power consumed by the ASIC, Cyclone

III and Stratix III implementations of the low power packet classifier, when they

are used to classify packets from 2.5 Gbps, 10 Gbps and 40 Gbps traces, using

search structures built for the ACL, FW and IPC rulesets containing 5,000 and

25,000 rules.

0

10

20

30

40

50

60

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Fig. A. 1. Power usage of ASIC low power classifier using 5,000 rules.

0

10

20

30

40

50

60

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e
r

C
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Fig. A. 2. Power usage of ASIC low power classifier using 25,000 rules.

 169

0

50

100

150

200

250

300

350

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 i
n

 m
w

Fixed Adaptive

Fig. A. 3. Power usage of Cyclone III low power classifier using 5,000 rules.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Fig. A. 4. Power usage of Stratix III low power classifier using 5,000 rules.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

 ACL1

2.5 Gbps

 FW1

2.5 Gbps

 IPC1

2.5 Gbps

 ACL1

10 Gbps

 FW1

10 Gbps

 IPC1

10 Gbps

 ACL1

40 Gbps

 FW1

40 Gbps

 IPC1

40 Gbps

P
o

w
e
r

c
o

n
s
u

m
p

ti
o

n
 i
n

 m
W

Fixed Adaptive

Fig. A. 5. Power usage of Stratix III low power classifier using 25,000 rules.

 170

BIBLIOGRAPHY

[1] Internet World Stats, Usage and Population Statistics. [Online]. Available:

http://www.internetworldstats.com/stats.htm

[2] M. Gupta and S. Singh, “Greening of the Internet, ”In Proc. ACM

SIGCOMM, (Aug. 2003), pp. 19-26.

[3] A. Gallo, “Meeting Traffic Demands with Next-Generation Internet

Infrastructure,” Lightwave, vol. 18, no. 5, (May 2001), pp.118–123.

[4] Cisco ASR 9000 Series Aggregation Services Router. [Online]. Available:

http://www.cisco.com/en/US/docs/routers/asr9000/hardware/ethernet_line

_card/installation/guide/asr9kELCIGapaspecs.html

[5] N. Shah, “Understanding network processors,” Tech. Rep. Version 1.0,

(Sept. 2001).

[6] Intel IXP2800 Network Processor Product brief. [Online]. Available:

http://download.intel.com/design/network/ProdBrf/27905403.pdf

[7] H. Zimmermann, “OSI Reference Model-The ISO Model of Architecture

for Open Systems Interconnection,” IEEE Trans. on Communications, vol.

28, no. 4 , (April 1980), pp. 425-432.

[8] J. H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end arguments in

system design,” ACM Trans. Comput. Syst, vol. 2, no. 4, (Nov. 1984), pp.

277-288.

[9] P. Gupta and N. McKeown, “Packet classification using hierarchical

intelligent cuttings,” IEEE Micro, vol. 20, no. 1, (Feb. 2000), pp. 34-41.

 171

[10] S. Singh, F. Baboescu, G. Varghese and J. Wang, “Packet Classification

Using Multidimensional Cutting,” In Proc. ACM SIGCOMM, (Aug.

2003), pp. 213-224.

[11] M. Abdelghani, S. Sezer, E. Garcia and M. Jun, “Packet Classification

Using Adaptive Rules Cutting (ARC),” In Proc. of the Advanced

industrial Conference on Telecommunications/Service Assurance with

Partial and intermittent Resources Conference/E-Learning on

Telecommunications Workshop, (July 2005), pp. 28-33.

[12] P. Gupta and N. McKeown, “Packet classification on multiple fields,” In

Proc. ACM SIGCOMM, (Sep. 1999), pp. 147-160.

[13] T.V. Lakshman and D. Stiliadis, “High-Speed Policy based Packet

Forwarding Using Efficient Multi-dimensional Range Matching”, In Proc.

ACM SIGCOMM, (Sep. 1998), pp. 203-214.

[14] F. Baboescu and G. Varghese, “Scalable packet classification,”

IEEE/ACM Trans. Netw., vol. 13, no. 1, (Feb. 2005) pp. 2-14, 2005.

[15] F. Baboescu, S. Singh, and G. Varghese, “Packet classification for core

routers: Is there an alternative to CAMs?,” In Proc. IEEE INFOCOM,

(April 2003) , pp. 53-63.

[16] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification using

Tuple Space Search,” In Proc. ACM SIGCOMM, (Sep. 1999), pp. 135-146.

[17] P. Gupta and N. McKeown, “Algorithms for packet classification,” IEEE

Network Mag., vol. 15, no. 2, (Mar. 2001), pp.24-32.

[18] T. Woo, “A modular approach to packet classification: algorithms and

results,” In Proc. IEEE INFOCOM, (Mar. 2000), pp. 1213-1222.

[19] P. C. Wang, C. T. Chan, C. L. Lee and H. Y. Chang “Scalable Packet

Classification for Enabling Internet Differentiated Services,” IEEE Trans.

on Multimedia, vol. 8, no. 6, (Dec. 2006), pp. 1239-1249.

[20] Cypress Ayama 10000 Network Search Engine. [Online]. Available:

http://download.cypress.com.edgesuite.net/design_resources/datasheets/co

ntents/cynse10256_8.pdf

 172

[21] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N.

Weaver, “Inside the slammer worm,” In Proc. IEEE Security and Privacy,

vol. 1, no. 4, (Jul. 2003), pp. 33-39.

[22] D. Moore, C. Shannon, and J. Brown, “Code-Red: A Case Study on The

Spread and Victims of an Internet Worm,” In Proc. of the 2nd ACM

Internet Measurement Workshop, (Nov. 2002), pp. 273–284.

[23] M. Roesch, “Snort - Lightweight Intrusion Detection for Networks,” In

Proc. of the 13th USENIX conference on System administration, (Nov.

1999), pp. 229-238

[24] S. Antonatos, K. G. Anagnostakis and E. P. Markatos, “Generating

realistic workloads for network intrusion detection systems,” In Proc. of

the 4th international Workshop on Software and Performance, (Jan.

2004), pp. 207-215.

[25] F. Yu, R. H. Katz and T. V. Lakshman, “Efficient Multimatch Packet

Classification and Lookup with TCAM,” In IEEE Micro, vol. 25, no. 1

(Jan. 2005), pp. 50-59.

[26] H. Song and J. W. Lockwood, “Efficient packet classification for network

intrusion detection using FPGA,” In Proc. of the ACM/SIGDA 13th

international Symposium on Field-Programmable Gate Arrays, (Feb.

2005), pp. 238-245.

[27] M. Nourani and M. Faezipour, “A Single-Cycle Multi-Match Packet

Classification Engine Using TCAMs,” In Proc. of the 14th IEEE

Symposium on High-Performance Interconnects, (Aug. 2006), pp. 73-80.

[28] R. Sidhu and V. K. Prasanna, “Fast Regular Expression Matching Using

FPGAs,” In Proc. of the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines, (May 2001), pp. 227-238.

[29] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuits

for matching complex network intrusion detection patterns,” In Proc. of

13th International Conference on Field Programmable Logic and

Applications, (Sep. 2003), pp. 956-959.

 173

[30] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley and J. Turner,

“Algorithms to accelerate multiple regular expressions matching for deep

packet inspection,” In Proc. ACM SIGCOMM, (Sep. 2006), pp. 339-350.

[31] F. Yu, Z. Chen, Y. Diao, T.V. Lakshman and R. H. Katz, “Fast and

memory-efficient regular expression matching for deep packet inspection,”

In Proc. of the 2nd ACM/IEEE Symposium on Architecture For

Networking and Communications Systems, (December 2006), pp. 93-102.

[32] S. Kuma, J. Turner and J. Williams, “Advanced algorithms for fast and

scalable deep packet inspection,” In Proc. of the 2nd ACM/IEEE

Symposium on Architecture For Networking and Communications

Systems, (Dec. 2006), pp. 81-92.

[33] I. Sourdis, J. Bispo, J. M. P. Cardoso and S. Vassiliadis, “Regular

Expression Matching in Reconfigurable Hardware,” In Journal of Signal

Processing Systems, vol. 51, no. 1, (Oct. 2007), pp. 99-121.

[34] M. Becchi, and P. Crowley, “An improved algorithm to accelerate regular

expression evaluation,” In Proc. of the 3rd ACM/IEEE Symposium on

Architecture For Networking and Communications Systems, (Dec. 2007),

pp. 145-154.

[35] S. Kumar, B. Chandrasekaran, J. Turner and G. Varghese, “Curing regular

expressions matching algorithms from insomnia, amnesia, and acalculia,”

In Proc. of the 3rd ACM/IEEE Symposium on Architecture For

Networking and Communications Systems, (Dec. 2007), pp. 155-164.

[36] D.E. Taylor and J.S. Turner, “ClassBench: a packet classification

benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, (June 2007), pp.

499-511.

[37] A. V. Aho and M. J. Corasick, “Efficient string matching: an aid to

bibliographic search,” Commun. ACM, vol. 18, no. 6, (Jun. 1975), pp. 333-

340.

[38] Sim-Panalyzer, The SimpleScalar-ARM Power Modeling Project.

[Online]. Available: http://www.eecs.umich.edu/~panalyzer/

 174

[39] Evaluation of Packet Classification Algorithms. [Online]. Available:

http://www.arl.wustl.edu/~hs1/PClassEval.html

[40] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-

Time,” Computer Networks, vol. 31, no. 23-24, (Dec. 2009), pp.2435–

2463.

[41] Cisco IOS IPS Signature Deployment Guide. [Online]. Available:

http://www.cisco.com/

[42] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet

Classifier for Linux,” [Online]. Available: http://l7-filter.sourceforge.net/

[43] SNORT network intrusion prevention and detection system. [Online].

Available: http://www.snort.org

[44] K. Salah and A. Kahtani, “Performance evaluation comparison of Snort

NIDS under Linux and Windows Server,” In Journal of Network and

Computer Applications, (Aug. 2009)

[45] D.E. Knuth, J.H. Morris and V.R. Pratt, “Fast pattern matching in strings,”

SIAM Journal on Computing, vol. 6, no. 2, (June 1977), pp. 323-350.

[46] R. S. Boyer and J. S. Moore, “A fast string searching algorithm,”

Commun. ACM, vol. 20, no. 10, (Oct. 1977), pp. 762-772.

[47] B. Commentz-Walter, “A string matching algorithm fast on the average,”

In Proc. 6th International Colloquium on Automata, Languages, and

Programming, (July 1979), pp. 118-132.

[48] J. J. Fan and K. Y. Su, “An efficient algorithm for matching multiple

patterns,” IEEE Trans. on Knowledge and Data Engineering, vol. 5, no. 2,

(April 1993) pp. 339-351.

[49] U. Manber and S. Wu, “A fast algorithm for multi-pattern searching,” In

Tech.Report TR-94-17, 1994.

[50] M. Fish and G. Verghese, “Fast content-based packet handling for

intrusion detection,” In UCSD Technical Report CS2001-0670, 2001.

[51] M. Crochemore and D. Perrin, “Two-way string-matching,” J. ACM, vol.

38, no. 3, (Jul. 1991), pp. 650-674.

 175

[52] J. V. Lunteren “High-Performance Pattern-Matching for Intrusion

Detection,” In Proc. IEEE INFOCOM, (April 2006), pp. 1-13.

[53] B. Soewito, L. Vespa, A. Mahajan, N. Weng, and H. Wang, “Self-

addressable memory-based FSM: a scalable intrusion detection engine,”

IEEE Network Magazine, vol. 23 no. 1 (Jan 2009), pp. 14-21.

[54] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic

memory-efficient string matching algorithms for intrusion detection.” In

Proc. IEEE INFOCOM, (Mar. 2004), pp. 333-340.

[55] L. Tan and T. Sherwood, “A High Throughput String Matching

Architecture for Intrusion Detection and Prevention,” In Proc. of the 32nd

Annual international Symposium on Computer Architecture, (June 2005),

pp. 112-122.

[56] S. Dharmapurikar, P. Krishnamurthy, T. Sproull and J. Lockwood, “Deep

Packet Inspection Using Parallel Bloom Filters,” IEEE Micro, vol. 24, no.

1, (Jan. 2004), pp. 52-61.

[57] Titan-IC Systems Parallel String Matcher. [Online]. Available: http://

www.titanicsystems.com/products/item/2/parallel-string-matcher-psm/

[58] FPGA solutions from Xilinx. [Online]. Available: http://www.xilinx.com/

[59] FPGA solutions from Altera. [Online]. Available: http://www.altera.com/

[60] E. Spitznagel, D. Taylor, and J. Turner, “Packet Classification Using

Extended TCAMs,” In Proc. of the 11th IEEE international Conference on

Network Protocols, (Nov. 2003), pp. 120-131.

[61] K. Zheng, H. Che, Z. Wang, B. Liu and X. Zhang, “DPPC-RE: TCAM-

Based Distributed Parallel Packet Classification with Range Encoding,”

IEEE Trans. on Computers, vol. 55, no. 8, (Aug. 2006), pp. 947-961.

[62] D. Pao, Y. K. Li and P. Zhou, “An encoding scheme for TCAM-based

packet classification,” In Proc. of the 8th International Conference on

Advanced Communication Technology, (Feb. 2006), pp. 470-475.

 176

[63] F. Yu, R. Katz, and T. V. Lakshman, “Gigabit rate packet pattern-

matching using TCAM.” In Proc. of the 12th IEEE international

Conference on Network Protocols, (Oct. 2004), pp. 174-183.

[64] M. Alicherry, M. Muthuprasanna, V. Kumar, “High speed matching for

network IDS/IPS”, In Proc. of the Proceedings of the 2006 IEEE

international Conference on Network Protocols, (Nov. 2006), pp.187-196.

[65] J. Sung, S. Kang, Y. Lee, T. Kwon, and B. Kim, “A Multi-gigabit Rate

Deep Packet Inspection Algorithm using TCAM,” In Proc. IEEE

Globecom, (Nov. 2005), pp. 453-457.

[66] S. Dharmapurikar and J. Lockwood, “Fast and scalable pattern matching

for content filtering,” In Proc. of the 1st ACM Symposium on Architecture

for Networking and Communications Systems, (Oct. 2005), pp. 183-192.

[67] G. K. Yeap, Practical Low Power Digital VLSI Design, 1st ed. Dordrecht

The Netherlands: Kluwer Academic Publishers, 1998.

[68] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated

Circuits: A Design Perspective, 2nd ed. Prentice Hall, 2003.

[69] H. J. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and

its Impact on the Design of Buffer Circuits”, Journal of Solid-State

Circuits, vol. 19, no. 4, (Aug. 1984) pp. 468-473.

[70] A. P. Chandrakasan and R. W. Brodersen, Low Power Digital CMOS

Design, 1st ed. Dordrecht The Netherlands: Kluwer Academic Publishers,

1995.

[71] A. Kinane, “Energy Efficient Hardware Acceleration of Multimedia

Processing Tools,” Ph.D. dissertation, School of Electronic Engineering,

Dublin City University, (Apr. 2006), [Online]. Available:

http://elm.eeng.dcu.ie/~kinanea/thesis/kinane_final.pdf

[72] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner, J. S. Hu, M. J.

Irwin, M. Kandemir, and V. Narayanan, “Leakage current: Moore’s law

meets static power,” Computer, vol. 36, no. 12, (Dec. 2003), pp. 68–75.

 177

[73] J. A. Butts and G. S. Sohi, “A Static Power Model for Architects,” In

Proc. Of the 33rd Annual IEEE/ACM International Symposium on

Microarchitecture, (Dec. 2000), pp. 191–201.

[74] L. Wei, Z. Chen, K. Roy, M. C. Johnson, Y. Ye, and V. K. De, “Design

and optimization of dual-threshold circuits for low-voltage low-power

applications,” IEEE Trans. on Very Large Scale Integration Systems, vol.

7, no. 1, (Mar. 1999), pp. 16–24.

[75] D. A. Pucknell and K. Eshragian, Basic VLSI Design, 3rd ed. Australia:

Prentice Hall, 1994.

[76] TSMC 65nm Technology Platform, Taiwan Semiconductor Manufacturing

Company. [Online]. Available: http://www.tsmc.com

[77] W. Ruby, (Low) Power To The People, EDAVision Magazine, (Mar. 2002)

[78] A. Krishnamoorthy, (July 2004), Minimize IC Power Without Sacrificing

Performance, [Online]. Available: http://www.eedesign.com/article/sho

wArticle.jhtml?articleId=23901143

[79] F. Poppen. (2002, May), Low Power Design Guide. [Online]. Available:

http://www.lowpower.de/charter/lpdesignguide.pdf

[80] A. P. Chandrakasan, S. Sheng and R. W. Brodersen, “Low-power CMOS

digital design,” Journal of Solid-State Circuits, vol. 27, no. 4, (Apr. 1992),

pp. 473-484.

[81] H. Song, and J. W Lockwood, “Efficient packet classification for network

intrusion detection using FPGA,” In Proc. of the 2005 ACM/SIGDA 13th

international Symposium on Field-Programmable Gate Arrays, (Feb.

2005), pp. 238-245.

[82] K. Lakshminarayanan, A. Rangarajan and S. Venkatachary, “Algorithms

for advanced packet classification with ternary CAMs,” In Proc. of the

2005 Conference on Applications, Technologies, Architectures, and

Protocols For Computer Communications, (Aug. 2005), pp. 193-204.

 178

[83] J. V. Lunteren and T. Engbersen, “Fast and scalable packet classification,”

IEEE Journal on Selected Areas in Communications, vol. 21, no. 4, (May

2003), pp. 560–571.

[84] D. Shah and P. Gupta, “Fast incremental updates on Ternary-CAMs for

routing lookups and packet classification,” In Proc. Hot Interconnects,

(Aug. 2000), pp. 145–153.

[85] K. Zheng, H. Che, Z. Wang, and Bin Liu, “TCAM-based Distributed

Parallel Packet Classification Algorithm with Range-Matching Solution”,

In Proc. IEEE INFOCOM, (Mar. 2005), pp. 293-303.

[86] S. Dharmapurikar, H. Song, J. Turner and J. Lockwood, “Fast packet

classification using bloom filters,” In Proc. of the 2nd ACM/IEEE

Symposium on Architecture For Networking and Communications

Systems, (Dec. 2006), pp. 61-70.

[87] D.E. Taylor and J.S. Turner, “Scalable packet classification using

distributed crossproducting of field labels,” In Proc. IEEE INFOCOM,

(Mar. 2005), pp. 269-280.

[88] W. Jiang and V. K. Prasanna, “Large-scale wire-speed packet classification

on FPGAs,” In Proc. of the ACM/SIGDA international Symposium on

Field Programmable Gate Arrays, (Feb. 2009), pp. 219-218.

[89] AT&T Completes Next-Generation IP/MPLS Backbone Network, World's

Largest Deployment of 40-Gigabit Connectivity [Online]. Available:http://w

ww.att.com/gen/press-room?cdvn=news&newsarticleid=26230&pid=4800

[90] Passive Measurement and Analysis Project, National Laboratory for

Applied Network Research. [Online]. Available: http://pma.nlanr.net

[91] Corporation for Education Network Initiatives in California trace.

[Online]. Available: ftp://pma.nlanr.net/traces/long/cnic/1/

[92] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,

T. Seely, and S. Diot, “Packet-level traffic measurements from the sprint

IP backbone,” IEEE Network, vol. 17, no. 6, (Nov.-Dec. 2003), pp. 6–16.

 179

[93] A. Dainotti, A. Pescape, and G. Ventre, “A Packet-level Characterization

of Network Traffic,” In proc. of the 11th International Workshop on

Computer Aided Modeling and Design of Communication Links and

Networks, (Jun. 2006), pp.38–45.

[94] T.Mudge, “Power: A First-Class Architectural Design Constraint,”

Computer, vol. 34, no. 4, (Apr. 2001), pp.52–58.

[95] K. Chun and A. Ling, (2003, Nov. 24), Placement Approach Cuts SoC

Power Needs. [Online]. Available: http://www.eetimes.com/in focus/sili

con engineering/OEG20031121S0035.

[96] R. Bhutada and Y. Manoli, “Complex clock gating with integrated clock

gating logic cell,” In Proc. of the - 2007 International Conference on

Design and Technology of Integrated Systems in Nanoscale Era, (Sep.

2007), pp. 164-169.

[97] L. Hai, S. Bhunia, Y. Chen, T.N. Vijaykumar and K. Roy, “Deterministic

clock gating for microprocessor power reduction,” In Proc. of the 9th

International Symposium on High-Performance Computer Architecture,

(Feb. 2003), pp. 113-122.

[98] Y. Luo, J. Yu, J. Yang and L. Bhuyan “Low power network processor

design using clock gating,” In Proc. of the 42nd Annual Design

Automation Conference, (June 2005), pp. 712-715.

[99] Y. Luo, J. Yu, J. Yang, and L. N. Bhuyan, “Conserving network processor

power consumption by exploiting traffic variability”, ACM Trans. on

Architecture and Code Optimization, vol. 4, no. 1 (Mar. 2007)

[100] R. Kokku, U. B. Shevade, N. S. Shah, M. Dahlin and H. M. Vin “Energy-

Efficient Packet Processing”, University of Texas at Austin Technical

Report TR04-04.

[101] A. Mallik, B. Lin, G. Memik, P. Dinda and R.P. Dick, “User-Driven

Frequency Scaling,” IEEE Computer Architecture Letters, Vol. 5, no. 2,

(Feb. 2006), pp. 61-64.

 180

[102] G. Semeraro, G. Magklis, R. Balasubramonian, D.H. Albonesi, S.

Dwarkadas and M.L. Scott, “Energy-efficient processor design using

multiple clock domains with dynamic voltage and frequency scaling,” In

Proc. of the 18th International Symposium on High-Performance

Computer Architecture, (Feb. 2002), pp. 29-40.

[103] A. Chattopadhyay and Z. Zilic, “GALDS: a complete framework for

designing multiclock ASICs and SoCs,” IEEE Trans. on Very Large Scale

Integration Systems, vol. 13, no. 6, (Jun. 2005), pp. 641–654.

[104] K.J. Nowka, G.D. Carpenter, E.W. MacDonald, H.C. Ngo, B.C. Brock,

K.I. Ishii, T.Y. Nguyen, and J.L. Burns, “A 32-bit PowerPC system-on-a-

chip with support for dynamic voltage scaling and dynamic frequency

scaling,” IEEE Journal of Solid-State Circuits, vol. 37, no. 11, (Nov.

2002), pp. 1441-1447,

[105] P. Pillai K. G. Shin, “Real-time dynamic voltage scaling for low-power

embedded operating systems,” In Proc. of the 18th ACM Symposium on

Operating Systems Principles, (Oct.2001). pp. 89-102.

[106] T. Pering, T. Burd and R. Brodersen, “The simulation and evaluation of

dynamic voltage scaling algorithms,” In Proc. of International Symposium

on Low Power Electronics and Design, (1998), pp. 76-81.

[107] K. Usami and M. Horowitz, “Clustered voltage scaling technique for low-

power design,” In Proc. of the 1995 international Symposium on Low

Power Design, (Apr. 1995), pp. 3-8.

[108] Y. Luo, J. Yang, L. Bhuyan and L. Zhao, “NePSim: A Network Processor

Simulator with Power Evaluation Framework”, IEEE Micro Special Issue

on Network Processors for Future High-End Systems and Applications,

vol. 24, no. 5, (Oct. 2004), pp. 34-44.

[109] C. T. Chow, L. S. M. Tsui, P. H. W. Leong, W. Luk, and S. Wilton,

“Dynamic voltage scaling for commercial FPGAs,” IEEE International

Conference on Field Programmable Technology, (Dec. 2005), pp.173-180.

