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VI 

Abstract 
 

The regulation of metabolic gene expression in human skeletal muscle by exercise: the 

influence of exercise intensity and contraction frequency  

 

Skeletal muscle contraction increases energy expenditure and improves metabolic 

flexibility, but is also a key regulator of metabolic gene expression. Acute exercise 

stimulates a unique set of intracellular signalling cascades resulting in the activation of 

kinases which can subsequently control muscle metabolism. The signalling pathways 

involved are activated by alterations in ATP turnover, calcium flux, cellular stress and 

the redox state in the muscle cell. The aim of this thesis was to impact the main 

variables influencing muscle contraction, the contraction force and frequency, during an 

acute bout of exercise and to investigate the subsequent outcome of altering these 

variables on intracellular signalling and metabolic gene expression in human skeletal 

muscle.  

 

High intensity isocaloric exercise (400 kcal, 80%VO2peak) resulted in greater activation 

of the signalling kinases AMPK and CaMKII than low intensity exercise (40% VO2peak), 

whereas the frequency of contraction (50 vs 80 RPM) had no effect on AMPK and 

CaMKII phosphorylation. PGC-1α mRNA was upregulated after exercise with a greater 

increase observed after high compared to low intensity. PGC-1α mRNA was also 

regulated by the frequency of contraction with a greater increase observed after 

exercising at a higher contraction frequency. Exercise induced a response in a number 

of metabolic genes associated with the regulation of substrate utilisation including 

FOXO1A and PDK4. This may form part of a transcriptional response to exercise that 

promotes fat oxidation and glucose sparing in the recovery from exercise.  

 

These results suggest that an acute bout of exercise induces a transient response in 

intracellular signaling and metabolic gene expression in human skeletal muscle specific 

to the demands placed upon the tissue. 
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Chapter I Introduction 
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1.1 General Introduction 

The overall genetic make-up of Homo Sapiens has changed little in the last 10,000 years 

and I remain genetically predisposed to a pre-agricultural hunter-gatherer lifestyle 

(Eaton et al., 1988); (Fernandez-Real & Ricart, 1999). Pre-agricultural hunter-gatherer 

societies were forced to undertake physical activity on a daily basis in order to provide 

necessities for survival such as food, water, shelter and clothing. Therefore, it is likely 

that we developed metabolic features capable of supporting a physically active lifestyle 

(Fernandez-Real & Ricart, 1999); (Wendorf & Goldfine, 1991). Current daily levels of 

physical activity are likely to be below the levels our genetically-determined physiology 

has evolved to carry out (Cordain et al., 1998). Thus, a sedentary lifestyle is a disruption 

to the homeostatic mechanisms programmed for maintaining metabolic balance and 

subsequently the health of the population. There is evidence that physical inactivity 

increases the incidence of metabolic diseases, cardiovascular diseases, cancer, 

pulmonary diseases, immune dysfunction, musculoskeletal and neurological disorders 

(Booth et al., 2002a). For the purpose of this thesis, the focus will be on the effects of 

exercise on metabolism.  

1.1.1 Metabolic Dysfunction 

Metabolic homeostasis requires the coordinated regulation of energy intake, storage and 

expenditure. With people leading increasingly sedentary lives, their lifestyles are giving 

rise to an imbalance in metabolic homeostasis resulting in the increased prevalence of 

Type 2 Diabetes (T2D), obesity and the metabolic syndrome. The onset of these disease 

states are preceded by resistance to the action of insulin, termed insulin resistance, 

which is present in almost all patients with T2D (DeFronzo et al., 1982). Insulin 

resistance is associated with an impaired ability to utilise fats as a fuel source. Patients 

with T2D and obesity display reduced oxidative enzyme capacity, decreased fatty acid 

(FA) oxidation and inflexibility in regulating fat oxidation when compared with their 

lean, healthy counterparts (He et al., 2001), (Simoneau & Kelley, 1997); (Kelley et al., 

1999). This impaired metabolism leads to increased accumulation of fat stores in the 

muscle (Intramuscular triglycerides, (IMTG)) (Goodpaster et al., 2000).  
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1.1.2 Exercise as a therapeutic intervention 

Physical activity and exercise represents a therapeutic strategy for the prevention and 

treatment of obesity and T2D. Exercise achieves this by providing a metabolic stress 

that acutely increases energy production and expenditure which immediately improves 

the balance of metabolic homeostasis. Furthermore, physical activity and exercise result 

in a number of beneficial metabolic adaptations including a decrease in insulin 

resistance and improved glucose tolerance in obese patients, increased mitochondrial 

size and number, and increased activity of Kreb’s cycle, β-oxidation and the electron 

transport chain (Kelley et al., 1999); (Holloszy & Coyle, 1984). Fat and carbohydrates 

are both utilised during contraction in skeletal muscle (Hargreaves, 2000). Exercise 

training also results in an increase in the relative contribution of fat to total oxidation 

during exercise (Goodpaster et al., 2003). In addition, during the recovery from exercise, 

muscle metabolism primarily depends upon the oxidation of fat as a fuel source (van 

Loon et al., 2003). Regular physical activity is therefore a critical tool in the treatment 

and primary prevention of these chronic diseases (Booth et al., 2002b;Hawley, 2004).  

1.1.3 Regulation of metabolic gene expression 

Skeletal muscle contraction increases energy expenditure and improves metabolic 

flexibility, but is also a key regulator of metabolic gene expression. Acute exercise 

stimulates a unique set of intracellular signalling cascades resulting in the activation of 

kinases which can subsequently control muscle metabolism. The signalling pathways 

involved are activated by alterations in ATP turnover, calcium flux, cellular stress and 

the redox state in the muscle cell. These metabolic pathways act as a coordinated 

network to generate either an acute change in substrate utilisation or a transcriptional 

metabolic adaptation in response to exercise. Transcriptional control of skeletal muscle 

metabolic pathways by intracellular signalling cascades is achieved by the action of 

numerous transcription factors and transcriptional co-regulators by translating these 

signals to a specific subset of genes in response to exercise. 

 

An acute bout of exercise can result in transient increases in the mRNA of genes 

regulating these metabolic processes. However, the molecular mechanisms through 

which exercise induces these proteins are not fully elucidated as of yet. This information 

has practical relevance for maintaining metabolic health. Knowledge of the molecular 

and cellular events that regulate skeletal muscle plasticity can define the potential for 



 

4 

adaptation in metabolism and may lead to the discovery of novel pathways in common 

clinical disease states (Hawley & Holloszy, 2009). Much of this work has previously 

been carried out in animal and cell models, but there is a lack of analysis of these 

processes in humans. The aim of this thesis is to further the understanding of the 

coordinated regulation of genes controlling metabolism and, in particular, substrate 

utilisation in response to an acute bout of exercise. This thesis aims to further our 

knowledge of the transcriptional response to acute exercise by investigating the 

modulation of gene expression in human skeletal muscle under varying physiological 

conditions, including alternate contraction frequencies and divergent exercise intensities. 

This is important because understanding the biochemical, molecular and cellular 

mechanisms of physical activity in the prevention of metabolic disease will provide the 

scientific foundation for appropriate individual prescription of physical activity for 

health (Booth et al., 2000). 

1.2 Thesis overview: aims, objectives and hypotheses 

This thesis will examine the regulation of metabolic gene expression in human skeletal 

muscle following an acute bout of exercise. The main variables influencing muscle 

contraction are the force and the frequency of contraction. This research investigated the 

outcome of altering these variables during an acute bout of exercise on metabolic gene 

expression. Firstly, the effect of divergent exercise intensities on contraction-activated 

signalling cascades and subsequent gene expression of metabolic genes in untrained 

males will be described. Finally, the effect of altering the calcium transients of the 

muscle by varying the rate of contraction frequency during cycling exercise on 

contraction-induced signalling cascades and subsequent metabolic gene expression in 

untrained males will be investigated. 

1.2.1 Experiment I 

Contraction-induced signalling and gene expression of metabolic genes and 

transcriptional regulators in human skeletal muscle: influence of exercise intensity. 

1.2.1.1 Overview 

Eight healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials 

at 40% or 80% VO2peak. Skeletal muscle biopsies from the m. vastus lateralis were taken 

at rest and at +0 h, +3 h and +19 h after exercise. 
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1.2.1.2 Specific aims 

(i) To examine the potential for differential activation of contraction-induced signal 

transduction pathways in response to divergent exercise intensities in human skeletal 

muscle. 

(ii) To investigate the impact of exercise intensity on the expression of genes involved 

in mitochondrial and substrate metabolism in skeletal muscle. 

1.2.1.3 Hypothesis 

(i) There will be greater activation of contraction-induced signalling cascades 

(AMPK, CaMKII) and subsequent expression of genes involved in 

metabolism and substrate selection (PGC-1α, FOXO1A, PDK4) after a 

single bout of high-intensity compared to low-intensity isocaloric exercise. 

1.3.1 Experiment II 

The impact of contraction frequency during an acute bout of exercise on the expression 

of genes involved in metabolism and substrate selection in human skeletal muscle. 

1.3.1.2 Overview 

Eight healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials 

at identical power outputs, eliciting approximately 50% VO2peak, pedalling at a cadence 

of either 50 RPM or 80 RPM. Skeletal muscle biopsies from the m. vastus lateralis were 

taken at rest and at +0 h, +3 h and +19 h after exercise. 

1.3.1.3 Specific aims 

(i) To investigate the effect of altering the calcium transient, by varying the frequency 

of contraction, on the activation of the contraction-induced signalling cascades in 

human skeletal muscle in response to an acute bout of exercise. 

(ii) To examine the effect of the frequency of contraction during an acute bout of 

exercise on the expression of genes involved in metabolism and substrate selection in 

human skeletal muscle. 

1.3.1.4 Hypothesis 

(i) There will be greater activation of the calcium-induced signalling cascades 

(CaMKII in particular) in response to cycling exercise with a greater 

frequency of contraction. 



 

6 

(ii) Cycling exercise at a higher contraction frequency will result in greater 

induction of the metabolic genes regulated by the calcium-activated 

signalling pathways compared with low-contraction frequency. 

1.4 Limitations 

 

The experiments described within this thesis have a number of limitations. Firstly, 

carrying out human research carries with it a lot of difficulties. For example, the number 

of biopsies that could be performed as well as the amount of tissue that could be 

extracted were limited due to ethical considerations. This limited the analysis in terms 

of the number and type of laboratory techniques that were carried out. The invasive 

nature of the study and the time commitment involved made subject recruitment a 

difficult and lengthy process. This, in turn, made the task of scheduling subjects and the 

research team (including Doctor qualified to perform biopsies) difficult.  

 

Controlling for variability in a human population provided a tough task. It is important 

to control for factors such as diet and activity and several measures were taken to ensure 

this (see Methodologies), however, it is impossible to say conclusively if subjects 

followed all directions accurately or reported behaviour outside the laboratory honestly.  

 

There were some issues with the analysis. A considerable period of time was dedicated 

to developing a technique which had not previously been reported in human muscle 

samples. Eventually it became apparent that the antibody being used may not actually 

bind the correct target which could explain, in part at least, the difficulties encountered 

with setting up the technique. This is discussed in further detail in the methodologies 

section.  
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Chapter II Review of Literature 
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2.1 Muscle metabolism and ATP production 

 

2.1.1 General Introduction 

To understand the relationship between exercise and metabolic gene expression in 

muscle one must first have a background knowledge in the cellular processes involved 

in energy storage, production and use and how exercise affects these processes. In this 

chapter the systems capable of producing energy for muscle contraction as well as the 

exercise-related factors affecting these systems will be reviewed. A review of the 

intracellular signalling mechanisms involved in the control of energy production and 

consumption and the effect of exercise on which fuels are utilised under varying 

conditions will also be included. The biochemical processes that facilitate the adaptation 

of the muscle and the main gene players that regulate muscle metabolism will also be 

reviewed in detail. Finally, the impact of exercise on intracellular signalling and gene 

targets, and ultimately the adaptation of metabolism in human skeletal muscle will be 

reviewed in detail. 

 

2.1.2 Cellular Bioenergetics 

Energy is defined as the ability to perform work and is required for all physiological 

processes. Human movement occurs following the conversion of chemical energy, 

derived from nutrients, to mechanical energy for skeletal muscle contraction. Each 

cross-bridge cycle in skeletal muscle requires hydrolysis of adenosine triphosphate 

(ATP) by myosin ATPase in order for muscle contraction to occur. The muscle cells 

require a large and continuous supply of ATP for exercise. Intramuscular stores of ATP 

are very limited (~5mmol/kg wet weight) and is thought to be owed to the fact that 

many metabolic processes are highly sensitive to ATP, ADP and AMP levels. This 

sensitivity enables the muscle to produce a rapid response to replenish ATP stores. 

There is only enough ATP stored in the muscle to sustain maximal exercise for a couple 

of seconds; therefore, prolonged exercise requires rapid resynthesis of ATP from ADP. 
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In addition to a limited store of ATP in the muscle, there is also a limited store of 

phosphocreatine. Skeletal muscle contains about 3-4 times more phosphocreatine than 

ATP (20mmol/kg ww). The fasted method to resynthesise ATP involves the donation of 

a phosphate group from Phosphocreatine (PC) to ADP, catalysed by the enzyme 

creatine kinase. When ATP is split into ADP + Pi to provide energy for muscle 

contraction, the increased concentration of ADP in the cell stimulates creatine kinase to 

break down PC and resynthesise ATP. This sensing of ADP levels acts as a crucial 

feedback mechanism for rapidly forming ATP when stores are depleted. However, there 

are only small amounts of PC stored in a muscle cell so the total amount of ATP that 

can be produced by this reaction is limited (less than 5 seconds). This process, referred 

to as the Creatine Phosphate System, functions to maintain ATP homeostasis during 

contraction at the expense of phosphocreatine. This system is generally utilised at the 

onset of exercise or during high-intensity exercise of a short duration, and crucially, 

does not require oxygen to proceed (Bessman & Carpenter, 1985). 

PCr + ADP    ATP + Cr 

    Creatine Kinase 

 

Figure 2.1 Representative diagram of ATP-PCr reaction. 

 

For exercise to continue following the depletion of the limited ATP and 

phosphocreatine stores, ATP must be resynthesised. As energy is not readily available 

in the cell, the breakdown of energy from substrate stores is required. 

 

2.1.2.1 Sources of Substrate for ATP production 

Fat and carbohydrates are the primary metabolic substrates utilised during contraction in 

skeletal muscle (Hargreaves, 2000). While there are circulating FFAs, fat is mainly 

stored as a fuel reserve in the form of triglycerides (TGs) in adipocytes and in muscle as 

IMTG. Carbohydrate is stored as glycogen in the muscle and liver, and circulates as 

plasma glucose (Watt et al., 2003a). Muscle glycogen provides a direct source of 

carbohydrate for muscle energy metabolism and is the most readily available and 

preferentially used source of carbohydrate. Muscle glycogen undergoes glycogenolysis 

which is the breakdown of glycogen to Glucose-6-Phosphate (G-6-P), a process 

controlled by the activation of the rate-limiting enzyme glycogen phosphorylase. 

Following breakdown from muscle glycogen, G-6-P enters glycolysis for production of 

ATP.  
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Fat is mainly stored as a fuel reserve in the form of TGs in adipocytes and in muscle as 

IMTG. There is also a certain concentration of circulating fre fatty acids (FFAs) in the 

blood. Lipoprotein lipase (LPL) hydrolyses TGs to release FFAs into the plasma or 

sarcoplasm for transport to the mitochondria for oxidation (Hargreaves, 2000). IMTGs 

are usually located adjacent to the muscle mitochondria suggesting they act as a source 

of stored FFA for muscle contraction (Hoppeler et al., 1985). Following release of 

FFAs into circulation, their uptake into the cell occurs at the plasma membrane for 

subsequent oxidation in the mitochondria via β-oxidation as described earlier 

(Rasmussen & Wolfe, 1999). Glycogenolysis in the liver leads to an increase in 

circulating plasma glucose; whereas in the muscle following breakdown from glycogen, 

G-6-P enters glycolysis for production of ATP as described earlier. Circulating glucose 

uptake into the muscle cell is regulated by insulin at rest, as insulin binds to its receptor 

to activate the PI 3-Kinase pathway which stimulates glucose transporter 4 (GLUT4) 

translocation to the plasma membrane for subsequent glucose uptake into the muscle 

(Ryder et al., 2001).  
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Figure 2.2 Overview of metabolic processes in muscle 
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2.1.2.2 Anaerobic metabolism 

2.1.2.2.1 Glycolysis 

Energy can be derived in both the presence and absence of oxygen by aerobic or 

anaerobic metabolism. Glycolysis is an anaerobic pathway to break down glucose and 

glycogen to form two molecules of pyruvate or lactate. This process produces a net gain 

of two molecules of ATP and two molecules of pyruvate per molecule of glucose. If 

muscle glycogen is the starting point for glycolysis, a single glucose molecule, glucose 

1-phosphate, must be split from the large glycogen molecule and this reaction is 

catalysed by glycogen phosphorylase. Glycogen phosphorylase adds a phosphate group 

to the glucose molecule, effectively trapping it in the cell. The activity of glycogen 

phosphorylase is regulated by the release of calcium during contraction. In this way, 

breakdown of glycogen is only activated when the energy demand is high, but is rapid 

in response to contraction. Glucose 1-phosphate is quickly converted to glucose 6-

phosphate. Alternatively, if the starting point of glycolysis is blood glucose, the glucose 

transporter (GLUT 4) takes glucose into the muscle where a phosphate group is added 

to glucose at the expense of ATP by hexokinase to form glucose 6-phosphate. A series 

of biochemical reactions occur, as outlined in Fig. 2.4, with each molecule of 1,3-

diphosphoglycerate producing 2 ATP and 1 pyruvate, for a total of 4 ATP and 2 

pyruvate molecules. This is a net gain of 2 or 3 ATP depending on whether glucose or 

glycogen was the starting point. Under anaerobic conditions, pyruvate accepts the 

hydrogens from NADH to form lactic acid. However, if sufficient O2 is available, 

NADH is shuttled to the mitochondria for later production of ATP. When O2 is 

available, pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate to 

Acetyl CoA, which enters the Tricarboxylix Acid Cycle (TCA) cycle. In this case, 

glycolysis is no longer an anaerobic process but is the first step in the aerobic 

breakdown of carbohydrates. 

 

2.1.2.2.2 Aerobic Metabolism 

The energy systems we have described so far represent ATP production in the absence 

of oxygen, also known as anaerobic metabolism. However, anaerobic metabolism 

cannot continue for a sustained period of time as stores of ATP and phosphocreatine are 

limited. Anaerobic metabolism of glucose will result in the accumulation of lactate, 

reducing the ability to perform exercise. Prolonged exercise requires constant 
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resynthesis of ATP at a rate matching its consumption. For this to occur, the availability 

of oxygen is essential. We will now describe the processes involved in aerobic 

metabolism.  
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Figure 2.3 Diagram of β-oxidation and ATP production from fat sources  

 

2.1.2.2.3 β-oxidation: FFAs are the primary source of lipids used for oxidation during 

exercise. Lipolysis of adipose tissue triglycerides must occur to mobilise FFAs, 

allowing their subsequent uptake into the muscle for oxidation to provide ATP for 

contracting muscle cells. The rate-limiting enzyme in adipose tissue lipolysis is 

Hormone Sensitive Lipase (HSL) (Rasmussen & Wolfe, 1999). HSL is regulated by the 

hormones epinephrine and insulin. Increased concentrations of epinephrine stimulate 

lipolysis through phosphorylation of HSL whereas an increase in insulin is inhibitory. 

Upon activation, HSL hydrolyses two FAs from the glycerol backbone of TGs with the 

third FA being hydrolysed by monoglycerol lipase. The three FFAs leave the adipose 

tissue and enter circulation where they bind to albumin. These FFAs are then taken up 

by the muscle at the plasma membrane by the FA binding protein FAT/CD36. FFA 

uptake into muscle only occurs if the concentration of intacellular FFA is less than the 

extracellular concentration. Once FFAs have entered the cell they are bound by the FA-

binding protein (FABP). Acyl-CoA synthetase then esterifies the FFAs to fatty acyl-
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CoA with the hydrolysis of one molecule of ATP. Following esterification, carnitine 

and the enzyme carnitine palmitoyltransferase I (CPT-I) mediate fatty acyl-CoA 

transport through the inner membrane of the mitochondrion. Malonyl-CoA is a potent 

inhibitor of CPT-I, the rate limiting enzyme in mitochondrial FA uptake. Acetyl-CoA 

carboxylase (ACC), activated by citrate, increases malonyl-CoA and inhibits CPT-1 

when ATP levels are high (Winder & Hardie, 1996). However, ACC is phosphorylated 

and deactivated by an increase in the AMP:ATP ratio, allowing acyl-CoA enter the 

mitochondria. Once inside the mitochondrial matrix the enzymes of the β-oxidative 

pathway act on fatty acyl-CoA resulting in the production of Acetyl CoA and 2 pairs of 

hydrogen atoms. The FA can re-enter the β-oxidative pathway creating 1 Acetyl CoA 

and 2 pairs of hydrogen atoms after each cycle. Palmitate, a long chain FA, undergoes a 

total of 7 cycles to yield a total of 8 molecules of Acetyl-CoA and 14 pairs of hydrogen 

atoms. The 14 pairs of hydrogen atoms enter the electron transport chain as FADH2 and 

NADH. If sufficient oxygen is available, Acetyl-CoA then enters the TCA cycle for the 

production of ATP via oxidative phosphorylation (Rasmussen & Wolfe, 1999).  
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Figure 2.4 Diagram of Glycolysis and ATP production from carbohydrate sources 
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2.1.2.2.4 TCA Cycle: The tricarboxylic cycle (TCA cycle) takes place in the inner 

mitochondrial matrix of the mitochondria. This involves the oxidation of Acetyl-CoA, 

the common product of carbohydrate and fatty acid breakdown, to CO2 with the 

production of hydrogen ions for their subsequent passage to the electron transport chain. 

Acetyl CoA is combined with oxaloacetatic acid (OAA) and catalysed by the enzyme 

citrate synthetase to produce citric acid. For each Acetyl-CoA that enters the cycle, 3 

molecules of NADH, 1 molecule of FADH and 1 ATP are formed. NADH and FADH2 

are transported to the electron transport chain. Isocitrate dehydrogenase (IDH), which 

catalyses the conversion of isocitrate to α-ketoglutarate with the removal of a hydrogen 

ion, is the rate-limiting step of the TCA cycle. IDH is allosterically stimulated by ADP 

and inhibited by ATP (Stanley & Connett, 1991). This shows that the energy producing 

systems are under tight regulatory control in the production of ATP. 

 

2.1.2.2.5 Electron Transport Chain: The ETC is located on the inner mitochondrial 

membrane and consists of a series of cytochromes, iron-protein electron carriers. These 

cytochromes each pass the electrons carried by the hydrogen atom carriers NADH and 

FADH2 along the inner membrane of the mitochondria. The oxidised iron portion of 

each cytochrome is reduced upon accepting an electron. This reduced iron donates its 

electron to the next cytochrome and so on down the membrane. Electrons are carried 

from Complex I to Complex III by coenzyme Q and from complex III to complex IV by 

cytochrome c. By shuttling between the oxidised and reduced state, the cytochromes 

transfer electrons to ATP-synthase (Complex V) where they reduce oxygen to form 

H2O as a by-product. For each pair of hydrogen atoms, 2 electrons flow down the chain 

and reduce one molecule of oxygen to water. As the electrons are passed down to 

Complex V, energy is released and is coupled to form ATP from ADP and Pi. For each 

NADH entering the mitochondria 3 pairs of H
+
 are pumped out and for each FADH 

entering 2 pairs of H+ are pumped out. The movement of hydrogens from the inner 

mitochondrial space to the matrix through an inner mitochondrial channel causes a 

region of decreased pH and positive charge to be created outside the mitochondria. This 

activates ATP synthase which phosphorylates ADP to ATP. NAD
+
 and FAD are now 

available to accept hydrogen ions during glycolysis and the TCA cycle again. The 

complete aerobic oxidation of one molecule of glucose and glycogen is 36 and 37 ATP 

respectively; whereas the complete oxidation of palmitate yields 129 ATP. If an 

adequate supply of oxygen is not available there will be a decrease in the supply of 
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reduced NAD
+
 and FAD and the ETC will not be able to generate ATP by cytochrome 

oxidase. 

2.1.3 Exercise Metabolism 

The immediate source of energy for contraction in the muscle cell is the high-energy 

phosphate compound ATP (Tullson & Terjung, 1991). As discussed earlier, muscle 

cells store limited amounts of ATP so a number of metabolic pathways exist to produce 

ATP when required for muscle contraction. At the onset of exercise, skeletal muscle 

requires an immediate increase in ATP production for muscular contraction. Oxygen 

consumption increases rapidly to resynthesise ATP aerobically, but there is a lag in 

oxygen uptake at the beginning of exercise, termed oxygen deficit, where ATP 

production is anaerobic (Medbo et al., 1988). When oxygen consumption reaches 

steady state, ATP is produced aerobically by oxidative phosphorylation (Hultman, 1973) 

and the rate of ATP production can be maintained for a prolonged period of time, 

depending on substrate and oxygen availability. However, if the intensity of exercise is 

greater than ~75% VO2max, there is a slow rise in oxygen consumption over time 

owing to increased body temperature and increasing levels of epinephrine and 

norepinephrine (Brooks et al., 1971); (Gladden et al., 1982); (Harris et al., 1976).  

 

As discussed above, there are several energy systems utilised during exercise. This 

review will focus on aerobic metabolism. During exercise, fat and carbohydrate are the 

major substrates used for energy supply as proteins contribute less than 2% of the 

substrate used during exercise of less than 1 h in duration (Hood & Terjung, 1990). 

Whether fat or carbohydrate is the primary source of fuel in working muscle depends on 

several factors including diet and the intensity and duration of exercise. 

 

2.1.3.1 Exercise Intensity and Fuel Selection 

As the intensity of exercise increases there is a progressive shift from mainly fat to 

predominately carbohydrate metabolism (Brooks & Mercier, 1994). Plasma FFAs have 

been shown to be the major substrate during low (25% and 28 VO2max) and moderate 

intensity exercise (65% VO2max) (Romijn et al., 1993); (Klein et al., 1994). A similar 

study compared different intensities and found that during exercise at 40% of maximal 

workload (Wmax) fat was the primary fuel source, but there was an intensity-dependent 

shift to carbohydrate at 55% and 75% Wmax (van Loon et al., 2001). This shift results 
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in a decrease in both the relative and absolute contribution of fat oxidation. Fat 

oxidation peaked at 55% Wmax, but a decrease in the oxidation rates of plasma FFA 

and TG stores resulted in a decline in lipid metabolism at 75% Wmax (van Loon et al., 

2001). This evidence of lower fat oxidation with increasing exercise intensity has been 

supported by others, including a study comparing cycling at 40% and 80% VO2peak 

(Sidossis et al., 1997). Much work has been done to elucidate the exercise intensity that 

elicits the maximal rate of fat oxidation. In cycling, the maximal rate of fat oxidation 

was found to occur at ~64% VO2peak, with maximum rates of 0.60 g
.
min

-1
 (Achten et 

al., 2002). The respiratory exchange ratio, which indicates the substrate source, has 

been shown to increase linearly with increments in power output, signifying greater 

reliance on carbohydrate metabolism at higher power outputs (Howlett et al., 1998); 

(Odland et al., 1998). At 90% VO2peak, the respiratory exchange ratio (RER) was 

greater than 1, which suggests ATP production was solely dependent on carbohydrate 

oxidation at this intensity. In agreement with this, the same studies showed PDH 

activation increased as a function of power output, indicating greater carbohydrate 

breakdown as PDH catalyses the conversion of pyruvate to acetyl-CoA (Howlett et al., 

1998); (Odland et al., 1998).  

 

This apparent shift from fat to carbohydrate metabolism at higher exercise intensities 

may be owed to an increase in glycogenolysis. At these intensities, muscle glycogen 

becomes the primary source of substrate. Romijn et al. (1993) found that whole-body fat 

and plasma FFA oxidation rates declined during high-intensity exercise (85% VO2max) 

when muscle glycogen became the primary source of fuel and carbohydrate oxidation 

increased in line with exercise intensity. Similar results were seen by van Loon et al. 

(2001) where muscle glycogen and plasma glucose oxidation rates increased as the 

exercise intensity increased from 40% to 55% and 75% Wmax. Muscle glycogen 

becomes the primary source of substrate for ATP production above 50% of Wmax (van 

Loon et al., 2001); (Romijn et al., 1993). Muscle glycogen utilisation is greater during 

80% VO2peak compared with cycling at 40% VO2peak even though energy expenditure 

was no different between trials (Kraniou et al., 2006). These results are supported by 

Vollestad and Blom who observed greater depletion of muscle glycogen stores with 

increments in intensity (Vollestad & Blom, 1985). 

 

In addition to the switch in substrate utilisation from fat to carbohydrate with increased 

exercise intensity, there is also a change in the lipid source. Romijn et al. (1993) showed 
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that peripheral lipolysis was high at 25% VO2max and did not change with increasing 

intensity, unlike the lipolysis of IMTG which increased with the rise in intensity to peak 

at 65% VO2max. This coincided with a decrease in FFA oxidation and an overall 

decline in fat metabolism (Romijn et al., 1993). In support of these findings, moderate 

intensity exercise (60-70% VO2max) decreased IMTG by 10-36% in both the soleus 

and tibialis anterior of runners; however, running at 83-85% VO2max for approximately 

the same time saw no change in IMTG stores in either muscle (Brechtel et al., 2001).  

 

As the intensity of exercise rises, there is a greater demand for the delivery of ATP to 

the working muscles. The ability to take up oxygen into the muscle is limited. VO2max 

varies between individuals and is dependent on a number of factors such as training 

status, body composition and genetics (McArdle et al., 2006). VO2max indicates an 

individual’s capacity for aerobically synthesising ATP. Since the availability of oxygen 

is limited, the muscle requires the most efficient mechanism of ATP production. 

Oxidative metabolism of carbohydrate, muscle glycogen in particular, provides the most 

efficient supply of ATP to the muscle as more energy is released per litre of oxygen 

used (Jeukendrup & Wallis, 2005). Glycogen provides 5.02 kcal per litre of oxygen 

compared with an average fatty acid which only provides 4.85 kcal (Jeukendrup & 

Wallis, 2005). It is for this reason, the increased requirement of rapid delivery of ATP, 

that there is a progressive switch to carbohydrate metabolism at increasing exercise 

intensities. 
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Figure 2.5 Relative contribution of carbohydrate and fat energy sources during exercise 

of increasing intensity. Adapted from Holloszy et al. (1998). 
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2.1.3.2 Exercise Duration and Fuel Selection 

The duration of exercise can also affect the substrate source utilised by the muscle. 

During moderate-intensity exercise (65% VO2max) over 2 hours there is a progressive 

decline in the relative proportion of energy produced from muscle glycogen and IMTG 

to an increase in plasma FFA oxidation (Romijn et al., 1993). In support of this, cycling 

at 60% of VO2peak for 2 hours resulted in an increase in FFA oxidation rates with a 

concurrent decline in oxidation of muscle glycogen and ‘other fat sources’ (thought to 

be IMTG in TypeI fibers) (van Loon et al., 2003). In this study there was also a gradual 

increase in plasma glucose utilisation suggesting a duration depedent shift towards the 

use of energy from extramuscular sources. In support of this, muscle glucose uptake 

during exercise increases with the duration of exercise (Katz et al., 1991). Krssak et al. 

(2000) found similar results during exercise at 65-70% VO2peak over 2 hours duration 

(Krssak et al., 2000). Glycogen and IMTG depleted over the course of the trial with a 

decrease in the rate of glycogenolysis towards the end of exercise while simultaneously 

FFA oxidation increased throughout exercise. In addition, a study in trained males who 

cycled for 240 minutes at 57% VO2peak, reported a significant increase in plasma FFA 

concentration after 90 minutes compared with rest and this continued to rise until 

exercise cessation (Watt et al., 2002). Furthermore, IMTG levels were reduced after 120 

minutes but there was no further reduction after 240 minutes. Glycogen stores declined 

at 120 and 240 minutes. Interestingly, fat accounted for almost 40% of the energy 

expended during the first half of exercise, whereas fat supplied just less than 60% in the 

latter half (Watt et al., 2002). As the duration of exercise increases, muscle and hepatic 

glycogen stores become depleted resulting in greater reliance on FA oxidation. As fatty 

acid oxidation requires approximately 2.5 times the amount of oxygen, there is an 

upward drift in oxygen consumption to maintain the rate of ATP production 

(Jeukendrup & Wallis, 2005). This often results in fatigue as there is a limit to oxygen 

consumption rates (Maughan & Gleeson, 2004) . 
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Figure 2.6 Relative contribution of carbohydrate and fat energy sources during exercise. 

Adapted from Van Loon et al (2003). 

 

2.1.3.3 Fuel selection during recovery from exercise 

For a period of time after exercise, oxygen consumption remains above resting levels, 

termed “Excess Post-Exercise Oxygen Consumption” (EPOC) (Gaesser & Brooks, 

1984). This sustained increase in metabolism contributes to the energy cost of exercise. 

The degree of EPOC is dependent upon the intensity and duration of the preceding 

exercise. EPOC has been shown to increase with a rise in intensity when the total work 

is equated between trials (Dawson et al., 1996); (Phelain et al., 1997); (LaForgia et al., 

1997). In a treadmill study where subjects ran for 30 minutes at 70% VO2max or 20 X 1 

minutes at 105% VO2max, the higher intensity exercise resulted in a two-fold increase 

in EPOC over the subsequent 9 hours post exercise (LaForgia et al., 1997). EPOC 

increases linearly with exercise duration (Bahr et al., 1987), (Imamura et al., 2004); 

(Chad & Wenger, 1988); (Knuttgen, 1970). Sixty minutes of cycling at the same 

intensity (60% VO2peak) resulted in a two-fold increase in EPOC compared with the 

thirty-minute exercise bout (Imamura et al., 2004). This increase in metabolism, post 

exercise, allows the body to respond to the metabolic perturbation of exercise and a 

return to energy homeostasis. EPOC supplies energy for phosphagen restoration, lactate 

metabolism and TG/FA cycling in the muscle following exercise (Bahr, 1992); (Bahr et 

al., 1990); (Trost et al., 1997).  
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During recovery from exercise, muscle metabolism primarily depends upon the 

oxidation of fat as a fuel source. In the 2 h following exercise fat sources provided 75% 

of the total energy expended (van Loon et al., 2003). FFA availability and oxidation 

rates increase above resting levels, peaking 15 minutes after exercise and may be 

responsible for the switch to fat as the major substrate (van Loon et al., 2003). Similarly, 

cycling for 3 hours at 44% VO2peak resulted in a decrease in RER suggesting a switch 

to greater fat metabolism and this was supported by an increase in FFA uptake 

(Mourtzakis et al., 2006). Kimber et al. (2003) reported a similar decrease in RER and a 

corresponding increase in plasma FA concentration following exercise to exhaustion 

(Kimber et al., 2003). Furthermore, Kiens & Richter (1998) witnessed a similar RER 

and an increase in FFA concentration which was maintained for 2 h post exercise. 

However, it was also reported that there was a significant decrease in IMTG in the post-

exercise period suggesting an intramuscular contribution to the increase in fat 

metabolism (Kiens & Richter, 1998). This is in contrast with the findings of Kimber et 

al. (2003) who did not find a decrease in IMTG. In fact, IMTG levels have been shown 

to be resynthesised rather than oxidised in the post-exercise period (Krssak et al., 2000). 

This may result from the increased lipolytic rate, FFA mobilisation and plasma TG in 

the post-exercise period (Mulla et al., 2000); (van Loon et al., 2003).  

 

The increase in fat metabolism after exercise coincides with the resynthesis of glycogen. 

Muscle glycogen is replenished from its nadir post exercise back to resting levels in 30 

hours post exercise (Kiens & Richter, 1998). Kimber et al. (2003) also reported similar 

glycogen restoration rates following exercise to exhaustion. The switch from 

carbohydrate to fat metabolism may drive the resynthesis of glycogen in an effort to 

return to metabolic homeostasis. 

 

The regulation of substrate utilisation during and in response to exercise has been 

studied for over a century. However, it is only in more recent years that we have been 

able to investigate the regulatory mechanisms in skeletal muscle. One of the important 

advances made has been the identification and characterisation of intracellular 

signalling cascades that are activated by changes in the bioenergetic status of the cell or 

by muscle contraction. The next section of this review will focus on the action and 

regulation of these signalling cascades. 
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2.2 Intracellular signalling and the regulation of metabolism 

 

Muscle contraction activates a unique set of intracellular signalling cascades that 

regulate muscle metabolism. The major signalling pathways involved are activated by (i) 

the rate of ATP turnover, (ii) calcium flux, (iii) cellular stress, and (iv) the redox state in 

the muscle cell. These metabolic pathways do not act independently and respond to 

exercise in a coordinated manner to regulate substrate utilisation or transcriptional 

activity. For the purpose of this review each of the signalling pathways will be defined 

in terms of their structure, function and activation by exercise independently. The 

consequences of the activation of these signalling cascades on metabolic processes and 

transcriptional regulation will be described collectively. 

 

 

2.2.1 AMPK Signalling cascade 

 

2.2.1.1 ATP Turnover 

The important role for ATP in energy expenditure has been previously described. 

Almost all energy-requiring processes in the cell are driven, either directly or indirectly, 

by the hydrolysis of an acid anhydride bond leading to the formation of ADP or AMP 

and free energy. In eukaryotic cells the enzyme adenylate kinase interconverts ATP, 

ADP and AMP, and maintains this reaction close to equilibrium (Hardie & Hawley, 

2001). During aerobic exercise the demand for ATP increases and must be matched by 

the rate of mitochondrial resynthesis. If demand exceeds supply there will be an 

increase in lactate production and a further increase in the free ADP/ATP ratio. This 

results in an amplification of the AMP/ATP ratio via the adenylate kinase reaction as 

the AMP/ATP ratio is the square of the ADP/ATP ratio (Hardie & Hawley, 2001); 

(Freyssenet, 2007). AMP-activated protein kinase (AMPK) is an AMP-responsive 

enzyme that is allosterically activated by 5’-AMP in response to stresses that increase 

the cellular concentration of AMP relative to ATP owing to either limited ATP 

production or increased energy expenditure (Richter & Ruderman, 2009). Therefore, 
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AMPK functions as a ‘fuel guage’, sensing the energy status of the cell (Jessen & 

Goodyear, 2005). 

 

2.2.1.2 AMPK Structure and Function 

AMPK is an αβγ heterotrimer consisting of an α catalytic subunit and β and γ regulatory 

subunits, with corresponding homologues in all eukaryotes. Multiple isoforms exist for 

each subunit in mammals (α1, α2, β1, β2, γ1, γ2 and γ3), enabling the formation of 12 

heterotrimer combinations that are thought to exhibit differences in subcellular 

localization and signalling functions (Hardie, 2007). The α-subunit, of which there are 

two known isoforms (α1 and α2), contains the catalytic domain that transfers a high-

energy phosphate from ATP to serine and threonine residues on a number of different 

target proteins. The α-subunit also contains a specific threonine residue (Thr
172

) that 

functions as an activating phosphorylation site for one of several ‘upstream’ AMPK 

kinases. Multiple isoforms of β (β1, β2) and γ (γ1, γ2, γ3) regulatory subunits have also 

been identified as essential for full enzymatic activity and cellular localisation of AMPK 

(Kahn et al., 2005;Kahn et al., 2005). In addition, β subunits contain an evolutionally 

conserved glycogen-binding domain that allows AMPK to interact with glycogen 

particles (Bright et al., 2009). AMP binds to AMPK at the γ subunit resulting in a 

conformational change that allows phosphorylation (and activation) by the upstream 

AMPK kinase, LKB1 (Hawley et al., 2003). Calcium-activated kinases have also been 

identified as AMPK kinases capable of inducing phosphorylation at Thr
172

 and thus 

activating AMPK (Jensen et al., 2007;Hawley et al., 2005;Hurley et al., 2005;Hurley et 

al., 2005). In fact, AMPK activation occurs directly as a result of calcium signalling in 

myotubes (Freyssenet, 2007;Freyssenet et al., 2004;Freyssenet et al., 2004). Calcium-

activated signalling cascades will be described later but these findings demonstrate that 

the signalling cascades do not act independently of each other. 

 

2.2.1.3 Regulation of AMPK activity in skeletal muscle 

Physiological activation of AMPK occurs in skeletal muscle during exercise in response 

to an increase in the AMP/ATP ratio, whereby there is an increase in binding of AMP 

and decreased binding of ATP to the γ–subunit (Richter & Ruderman, 2009). The 

elevated AMP/ATP ratio during exercise activates AMPK by increasing the binding of 

AMP and decreasing the binding of ATP to the γ–subunit (Richter & Ruderman, 2009). 
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Acute exercise at intensities above 50–60% VO2peak and varying duration have 

reported an increase in AMPK phosphorylation and its enzymatic activity 

(Wojtaszewski et al., 2000); (Chen et al., 2003); (Park et al., 2002); (Musi et al., 2001); 

(Stephens et al., 2002); (Wojtaszewski et al., 2002), (Fujii et al., 2000); (Wojtaszewski 

et al., 2003b). Exercise in rodents and electrical stimulation of muscle increases AMPK 

activation, supporting the findings in humans (Rasmussen & Winder, 1997); (Winder & 

Hardie, 1996); (Jorgensen et al., 2005); (Jorgensen et al., 2007); (Vavvas et al., 1997). 

Similarly, phosphorylation in the animal model is also intensity dependent (Rasmussen 

& Winder, 1997). However, exercise and electrical stimulation in rodent muscle, 

phosphorylates both the α1 and α2 isoforms of AMPK (Jorgensen et al., 2005); (Toyoda 

et al., 2006;Jorgensen et al., 2007); (Klein et al., 2007), whereas the α1 isoform is not 

activated in humans (Wojtaszewski et al., 2002); (Fujii et al., 2000); (Musi et al., 2001).  

 

AMPK can also be activated during low-intensity exercise as long as the duration of 

exercise is of a sufficient duration to alter energy metabolism (Wojtaszewski et al., 

2002). The increased AMPK activity in this study was tightly associated with the degree 

of Thr
172

 phosphorylation. As with previous studies in humans there was no activation 

of the α1 isoform, and α2 AMPK activity had returned to basal levels 1 hour post 

exercise. At this low intensity, it is likely that decreases in blood glucose and muscle 

glycogen are more important regulators of AMPK activity given the fact that the 

AMP/ATP ratio was unchanged throughout exercise and that AMPK activity increased 

as fuel stores decreased. This suggests that AMPK activity is also regulated by the 

muscle glycogen content. In support of this, the AMPK β-subunit was found to have a 

glycogen binding domain (Hudson et al., 2003); (Polekhina et al., 2003). When muscle 

glycogen is low, AMPK activity is elevated at rest and it increases significantly more 

during exercise than when glycogen is high (Wojtaszewski et al., 2003b); (Derave et al., 

2000); (Steinberg et al., 2006); (Roepstorff et al., 2004a). However, when preexercise 

glycogen levels are similar, the rate of muscle glycogen utilisation does not directly 

regulate the extent of AMPK activation during exercise in humans (Wadley et al., 2006).  

 

In human muscle, only three heterotrimeric AMPK complexes are expressed, α1β2γ1, 

α2β2γ1 and α2β2γ3, and, during intense exercise of up to 20-minutes duration, only the 

α2β2γ3 complex is activated. The other complexes, which comprise as much as 80% of 

the total AMPK pool, are unchanged or even decreased during contraction (Birk & 

Wojtaszewski, 2006). Only after moderate intensity exercise of 60 minutes or more 
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does the activity of the α2β2γ1 complex increase (Treebak et al., 2007). This evidence 

suggests that AMPK is activated in both an intensity-dependent and isoform-specific 

manner in human skeletal muscle while the duration of exercise and glycogen content 

also play a role in the exercise response. 

 

AMPK has been shown to be activated pharmacologically by 5-amino-4-

imidazolecarboxamide ribonucleoside (AICAR) in a time and dose-dependent manner 

(Sullivan et al., 1994). AMPK activation occurs directly as a result of calcium 

signalling following incubation with the calcium ionophore A-23187 in myotubes 

(Freyssenet, 2007;Freyssenet et al., 2004;Freyssenet et al., 2004). Calcium-activated 

kinases have also been identified as upstream AMPK kinases capable of inducing 

phosphorylation at Thr
172

 and thus activating AMPK (Jensen et al., 2007;Hawley et al., 

2005;Hurley et al., 2005;Hurley et al., 2005). 
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Figure 2.7 Diagram of signalling cascades regulated by exercise 

 

2.2.2 Calcium Flux 

Calcium release from the sarcoplasmic reticulum following membrane depolarisation is 

an essential regulator of the actin morphology and the subsequent formation of actin-

myosin cross-bridges. The somatic nervous system releases acetylcholine into the 
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synaptic cleft and causes depolarisation of the muscle cell. A transient increase in 

cytosolic calcium concentration is triggered by each wave of sarcolemmal 

depolarization during muscle contraction and mounting evidence links these calcium 

transients and associated activation of calcium-dependent protein kinases and 

phosphatases with the adaptive response to exercise (Chin, 2004;Chin, 2004;Ojuka, 

2004;Ojuka, 2004). It is thought that the amplitude and duration of these Ca
2+

 transients 

in response to activity can determine the set of genes expressed, coupling the extent of 

muscle excitation to transcription and allowing muscles to adapt to the demands placed 

on them (Chin, 2005). The transient release of intracellular Ca
2+ 

([Ca
2+

]I) activates a 

number of signaling pathways that translate this signal into a prolonged metabolic 

response. The kinases involved in the response include Ca
2+

-dependent phosphatase 

calcineurin (CnA) (Chin et al., 1998); (Ojuka et al., 2002), Ca
2+

/calmodulin-dependent 

kinase II (CaMKII) (Fluck et al., 2000), Ca
2+

/calmodulin-dependent kinase IV 

(CaMKIV) (Zhang et al., 2002a), and Ca
2+

-dependent protein kinase C (PKC) 

(Freyssenet et al., 1999). 

 

2.2.2.1 CaMKs 

The increase in cytosolic calcium following depolarisation is decoded by the 

intermediate binding protein calmodulin (CaM). CaM is a multifunctional signal 

transducer that acts as an intermediate in the activation of downstream signalling 

pathways. By binding Ca
2+

, CaM undergoes conformational and subcellular localisation 

changes before activating other CaM binding proteins such as the CaM-kinases (Chin, 

2005). The specificity of CaM signalling is determined by the CaMK isoforms activated, 

its localisation and the duration, amplitude and frequency of the Ca
2+

 signal (Chin, 

2005). CaMKII is a multimeric enzyme composed of twelve subunits arranged in two 

sets of six subunits in a spoke and wheel pattern (Soderling et al., 2001). The central 

hub contains the carboxy terminus association domain and the spoke portions contain 

the amino terminus catalytic domain and the intervening regulatory domains. The 

calcium-activated CaM binds to the CaM-binding domain of CaMKII, activating 

intramolecular autophosphorylation on Thr
286

 which results in Ca
2+

-independent activity 

(Hook & Means, 2001); (Hudmon & Schulman, 2002). Thus, when the [Ca
2+

]I returns 

to basal levels there is still an increase in CaMKII activity. When pulses are more 

frequent and of a longer duration this leads to greater activation allowing CaMKII to 

decode the Ca
2+

 signal into discrete levels of kinase activity (Chin, 2005). 
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There are numerous CaMK isoforms, however, in human skeletal muscle. CaMKII has 

been shown to be the dominant isoform expressed. In animal studies CaMKII and 

CaMKIV have been implicated in the regulation of skeletal muscle plasticity (Fluck et 

al., 2000;Wu et al., 2002). For these reasons, this review will focus on the role of 

CaMKII and CaMKIV in skeletal muscle metabolism in response to 

exercise/contraction. 

 

2.2.2.2 CaMKII 

Acute exercise increases CaMKII phosphorylation in an intensity- but not time-

dependent manner in human skeletal muscle (Rose & Hargreaves, 2003;Rose et al., 

2006). The intensity-dependent increase in CaMKII activity may be related to (i) the 

recruitment of individual skeletal muscle fibres (Sale, 1987) (ii) the recruitment of 

different fibre types (Baylor & Hollingworth, 2003); or (iii) greater Ca
2+

–CaM 

signalling in recruited fibres. Phosphorylation of CaMKII at Thr
287

 is highly correlated 

with autonomous enzymatic activity (Rose et al., 2006;Rose et al., 2007). 

Autophosphorylation of CaMKII allows it to sustain autonomous enzymatic activity 

between calcium transients, allowing for sustained activity between calcium transients 

and a prolonged activation of downstream ligands (Hudmon & Schulman, 2002). 

Electrical stimulation of isolated rat skeletal muscle and caffeine-stimulated release of 

intracellular calcium have been shown to increase CaMKII phsophorylation (Wright et 

al., 2004). 

2.2.2.3 CaMKIV 

CaMKIV, a multi-functional kinase considered to have multiple isoforms and multiple 

downstream targets, plays an important role in muscle plasticity. It is not widely 

expressed and is believed to be found mostly in neural tissue. CaMKIV autoinhibition is 

relieved by the binding of Ca
2+

/CaM, thus allowing phosphorylation by one of the 

upstream CaMKKs (Hook & Means, 2001). CaMKIV is phosphorylated within its 

activation loop on Thr
196

 in the rat enzyme and Thr
200

 in the human enzyme by both 

CaMKKα and CaMKKβ (Edelman et al., 1996;Selbert et al., 1995). Activation of 

CaMKIV by CaMKKs has been shown to increase CREB-mediated transcription in 

vitro (Enslen et al., 1994). 
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2.2.2.4 Calcineurin 

Calcineurin is a heterodimeric protein phophatase also proposed to act as a Ca
2+

 sensor, 

(Bassel-Duby & Olson, 2006); (Chin et al., 1998). Calcineurin is a cyclosporin-sensitive, 

calcium-regulated Ser/Thr phosphatase (Chin et al., 1998); (Derave et al., 2000); (Wu et 

al., 2001). Binding of calcium to a calmodulin-calcineurin complex stimulates 

serine/threonine phosphatase activity of calcineurin (Chin et al., 1998); (Derave et al., 

2000); (Wu et al., 2001).  

 

2.2.2.5 Protein Kinase C 

Members of the protein kinase C (PKC) family are single polypeptide chains, comprised 

of an N-terminal regulatory region and a C-terminal catalytic region (Newton, 1995). 

The PKC superfamily is divided into three subfamilies, conventional (c) (α, βI, βII, and 

γ isoforms), novel (n) (δ, ε, θ, and η isoforms), and atypical PKCs (ζ and λ/ι isoforms), 

based on differences in structure and responsiveness to the second messengers, Ca
2+

 and 

diacylglycerol (DAG) (Newton, 2003). The conventional PKC isoforms are activated by 

Ca
2+ 

as they have a putative
 
Ca

2+ 
binding site. Skeletal muscle contraction increases 

intracellular Ca
2+

 and has been demonstrated to increase DAG following in situ 

contraction in rat muscle (Cleland et al., 1989). This induces a rapid translocation of 

cPKC isoforms, synergistically activated by Ca
2+

 and DAG (Newton, 2001) from a 

cytosolic to a particulate fraction (Richter et al., 1987), suggesting their activation. 

Treadmill running in mice (Chen et al., 2002) and bicycle exercise in human subjects 

(Beeson et al., 2003); (Nielsen et al., 2003) increases the activity of aPKC and 

abundance and phosphorylation of PKCζ in the membrane fraction (Perrini et al., 2004) 

in skeletal muscle. Electrical stimulation of muscle cells leads to an increase in PKC 

activity in the nucleus (Huang et al., 1992).  

 

2.2.3 MAPK signalling 

The MAPK family of proteins is composed of three distinct signaling cascades capable 

of altering metabolism in skeletal muscle: 1) extracellular signal regulated kinases 

(ERK) 1 and 2 (ERK1/2); 2) p38 MAPK; and 3) c-Jun NH2-terminal kinases (JNK) 

(Kramer & Goodyear, 2007). The MAPK family can be activated by a variety of stimuli 

including cytokines, growth factors, and cellular stress (Long et al., 2004). Exercise, a 
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form of cellular stress, has been shown to act on each of these signalling pathways in rat 

skeletal muscle (Goodyear et al., 1996). MAPKs phosphorylate diverse substrates, 

including transcription factors and coactivators localized in the cytoplasm or nucleus, 

thereby form a basis for the regulation of transcriptional events (Long et al., 2004). The 

individual signalling cascades will be discussed briefly.  

 

2.2.3.1 p38 MAPK 

p38 MAPK consists of four isoforms (p38α, p38β, p38δ, and p38γ) and there is 

evidence to suggest tissue-specific expression and regulation of the p38 MAPK family 

with exercise. Whereas the p38α and p38β MAPK isoforms are ubiquitously expressed, 

p38δ mRNA is detected mainly in the lung and kidney (Ji et al., 2006), and the p38γ 

isoform is almost exclusively expressed in skeletal muscle (Li et al., 1996). Exercise 

phosphorylates and activates p38 MAPK in rodent skeletal muscle and during cycling 

and marathon running in humans (Widegren et al., 1998); (Yu et al., 2001); (Boppart et 

al., 2000). Interestingly, only p38γ (expressed exclusively in skeletal muscle) is 

phosphorylated in response to marathon running (Boppart et al., 2000). The activation 

of p38 is influenced by training status as p38 phosphorylation is greater in untrained 

males following high intensity cycling (Yu et al., 2003). In addition, in well-trained 

skeletal muscle, p38 MAPK is activated when muscle performs unaccustomed exercise 

i.e. endurance-trained athletes perform resistance exercise or resistance-trained athletes 

perform endurance exercise, suggesting the muscle is adapting to the new demands 

being placed on it (Coffey et al., 2006). The intensty of exercise is also an important 

regulatory factor with p38 phosphorylation primarily occurring during high-intensity 

muscle contractions in isolated rat skeletal muscle (Russ & Lovering, 2006); (Wretman 

et al., 2001). These results provide evidence that p38 MAPK is activated in response to 

exercise and may have a role to play in the adaptive response to training.  

 

2.2.3.2 ERK1/2 

Activation of ERK1/2 by phosphporylation and activation has been observed in 

response to exercise in human (Widegren et al., 1998); (Widegren et al., 2000); (Yu et 

al., 2003); (Yu et al., 2001) and rodent skeletal muscle (Nader & Esser, 2001); 

(Goodyear et al., 1996); (Dufresne et al., 2001). The phosphorylation and activation of 

ERK1/2 is dependent on the exercise intensity (Widegren et al., 2000). In this study 
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subjects completed 30 minutes of one-leg exercise at low (40% VO2max) and high 

(75% VO2max) intensity. Activation of both ERK1/2 and its upstream kinase MEK1/2 

increased with high but not low intensity exercise. Resistance exercise has also been 

shown to upregulate ERK1/2 activation in humans (Creer et al., 2005); (Karlsson et al., 

2004). Activation of ERK1/2 in human skeletal muscle by exercise appears to be rapid 

as it is increased after only 10 minutes of cycling but this increase is not sustained as it 

diminishes shortly after exercise. This exercise-induced activation of ERK1/2 is also 

thought to be local as it is only observed in the exercised leg (Widegren et al., 1998).  

 

2.2.3.3 JNK 

The JNK pathway responds to intense exercise and those inducing muscular damage in 

human skeletal muscle (Boppart et al., 2000;Boppart et al., 1999;Aronson et al., 1998). 

JNK activation, as well as its upstream kinase MAPKK4, was increased following both 

concentric and eccentric resistance exercise in humans. However, JNK phosphorylation 

was significantly greater following eccentric exercise, suggesting JNK responds to 

muscular damage/injury (Boppart et al., 1999). In vivo stimulation of rat skeletal muscle 

increased JNK phosphorylation after 15 minutes and this remained elevated at 60 

minutes, with a similar pattern being observed in MAPKK4 (Aronson et al., 1997). In 

isolated rat skeletal muscle, electrical stimulation increased JNK phosphorylation; 

however, a more profound activation was observed with static stretch (similar to the 

stretch component of eccentric contractions) of the isolated muscles (Boppart et al., 

2001). JNK phosphorylation has been shown to increase linearly with escalating levels 

of muscular contraction force (Martineau & Gardiner, 2001). 

 

2.2.4 Cellular Redox State NAD:NADH 

The oxidation of glucose and fatty acids produce acetyl CoA, which is rapidly shuttled 

through the TCA cycle to generate ATP and the reduced equivalents NADH and 

FADH2, which in turn yield more ATP through oxidative phosphorylation in the 

electron transport chain. During exercise or muscle contraction, the NADH/NAD
+
 ratio 

increases as a result of increased cellular metabolic processes. Previous studies have 

demonstarted this change in the redox state of the muscle cell where exercise of 

moderate to high intensity increases NADH concentration (Odland et al., 2000;Sahlin et 

al., 1987) or decreases NAD
+
 concentration (Graham et al., 1978). (Green et al., 1992) 
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have also shown a progressive increase in the NADH/NAD
+
 ratio during 60 minutes of 

exercise at 67-76% VO2peak. Lactate also affects the redox state in an intensity-

dependent manner, as NAD
+
 production is a bi-product of the lactate dehydrogenase 

reaction (Denis et al., 1991). Fluctuations in NADH/NAD
+
 ratio and the production of 

lactate are potential intracellular signals affecting skeletal muscle gene expression 

(Hawley & Zierath, 2004). An example of this is the NAD
+
-dependent changes in the 

protein and enzymatic activity of the deacetylase SIRT1 (Rodgers et al., 2005); 

(Lagouge et al., 2006).  

 

2.2.5 The regulation of metabolic processes by intracellular cascade 

activation 

Activation of the aforementioned signalling cascades enables the muscle to respond to 

any external stimuli such as exercise to regulate muscle metabolism accordingly. At any 

given time point these kinases are modulating the processes involved in muscle 

metabolism such as substrate utilisation to elicit the desired response. 

 

2.2.5.1 Glucose Transport 

During exercise AMPK is thought to help regulate cellular energy homeostasis by 

limiting anabolic processes and switching on alternative pathways for ATP regeneration. 

AMPK phosphorylates glycogen synthase on Ser
7
, reducing its enzymatic activity 

(Carling & Hardie, 1989;Jorgensen et al., 2004), and thereby attenuating glycogen 

synthesis. AMPK has also been proposed as a key player in contraction-stimulated 

glucose uptake (Merrill et al., 1997). AMPK activity regulates glucose uptake in resting 

muscle and is at least partly responsible for contraction-mediated glucose uptake 

(Jorgensen et al., 2004). There are strong correlations between glucose uptake and 

AMPK activity in muscle biopsies following exercise (Wojtaszewski et al., 2003a). 

AMPK-stimulated increases in glucose transport are mediated by the translocation of 

existing GLUT4 containing vesicles to the plasma membrane (Koistinen et al., 2003). 

However, it is unclear if there are other signalling cascades such as CaMK which may 

also be mediating this increase in glucose uptake (Rose & Richter, 2005). Evidence for 

a stimulatory role of intracellular Ca
2+

 or CaMK on muscle glucose transport comes 

from studies showing that a pharmacologically-induced increase in myoplasmic Ca
2+

 

concentration increases glucose transport in non-contracting muscle (Holloszy & 
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Narahara, 1967); (Youn et al., 1991). Similarly, elevating calcium concentrations in 

myotubes leads to an acute increase in glucose uptake (Wright et al., 2004). 

Furthermore, incubating epitrochlearis muscle in concentrations of caffeine that increase 

cytosolic Ca
2+

 levels, but do not induce contraction resulted in increased glucose uptake, 

an action inhibited by the CaMK inhibitors KN62 and KN63. In the same study, rat 

epitrochlearis muscle was incubated with both AICAR and caffeine and the effects of 

both AMPK and CaMKII on glucose transport were additive. When these muscles were 

contracted, both AMPK and CaMKII were phosphorylated with a subsequent increase 

in glucose uptake observed. Incubation with the CaMK inhibitor, KN62, was shown to 

decrease this contraction-induced glucose transport by about 50% in the same study by 

inhibiting CaMKII phosphorylation, while AMPK remained unaffected (Wright et al., 

2004). Caffeine has also been shown to increase the phospohorylation of p38 MAPK 

and its downstream target, ATF-2, an effect that is blocked when CaMKII is inhibited. 

This suggests CaMKII is involved in the activation of p38 MAPK and ATF-2 (Wright 

et al., 2007a). Electrically-induced contraction of isolated EDL muscle increased the 

activity of p38α and p38β MAPK approximately 2-fold causing an increase in 2-

deoxyglucose uptake by the muscle (Somwar et al., 2000). SB203580, an inhibitor of 

p38 MAPK, caused a significant reduction in p38 MAPK phosphorylation and 

subsequent contraction stimulated 2-deoxyglucose uptake (Somwar et al., 2000). This 

suggests that p38 MAPK is involved in contraction-mediated glucose uptake possibly 

through a CaMKII-mediated pathway. These studies demonstrate an integrated 

approach to contraction-mediated glucose uptake involving AMPK, CaMKII and p38 

MAPK.  

 

The stimulation frequency of the muscle cell may be another way in which calcium 

regulates glucose uptake. In rat skeletal muscle, glucose transport increases in parallel 

with the stimulation frequency despite a constant mechanical output of the muscle 

(Ihlemann et al., 2000). As CaMKII is known to be sensitive to the stimulation 

frequency, it is possible that it could decode this signal to influence glucose uptake (De 

Koninck & Schulman, 1998). These data indicate that CaMKII may be involved in the 

Ca
2+

/contraction-stimulated increases in glucose transport and suggest that CaMKII 

signalling may coordinate muscle energy supply with energy demand. PKC has been 

implicated in the regulation of contraction-stimulated muscle glucose transport and 

pharmacological inhibition of cPKCs and nPKCs blunts contraction-stimulated skeletal 
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muscle glucose uptake in a fibre-type specific manner (Cleland et al., 1989); 

(Wojtaszewski et al., 1998). 

 

Although p38 MAPK is implicated in regulation of glucose transport (as described), the 

other kinases of the MAPK cascade do not appear to be involved. Acute exercise effects 

on glucose transport and glycogen synthesis are unlikely to be mediated by ERK1/2, as 

inhibitors of MAPKK and ERKK abolish contraction-stimulated ERK1/2 

phosphorylation without affecting glucose transport (Wojtaszewski et al., 1999). 

Similarly, JNK does not regulate contraction-stimulated glucose transport or glycogen 

metabolism in skeletal muscle (Fujii et al., 2004); (Witczak et al., 2006).  

 

2.2.5.2 Lipid Metabolism 

AMPK has a number of roles in lipid metabolism including AICAR-mediated fatty acid 

uptake in skeletal muscle (Shearer et al., 2004). AMPK activation is associated with 

FAT/CD36 translocation to the plasma membrane and a parallel increase in FA uptake. 

This processes has been suggested to be the regulatory step in contraction-mediated 

fatty acid uptake (Bonen et al., 1999). Furthermore, it has been demonstrated that 

AICAR-stimulated FA uptake is severely blunted in mice that do not express 

FAT/CD36 (Bonen et al., 2007). However, some studies have clearly demonstrated 

inconsistency between FA uptake, FAT/CD36 translocation and AMPK activation in 

response to contraction. Although AICAR stimulates an increase in FA oxidation, low-

intensity muscle contraction increases glucose uptake, FA uptake, and total FA 

oxidation without increasing AMPK activity (Raney et al., 2005); (Turcotte et al., 2005). 

This suggests additional mechanisms regulate FA uptake in skeletal muscle and a 

potential role for calcium and MAPK signalling. Pharmacological activation of Ca
2+

 

increases FA uptake in isolated rodent muscle (MacLean & Winder, 1995) as well as a 

decrease in malonyl-CoA levels in perfused muscle. In a recent report, caffeine and 

electrical stimulation were shown to increase FA uptake and FA oxidation (Raney & 

Turcotte, 2008). The increase in FA uptake and oxidation by contraction was associated 

with phosphorylation of AMPK and ERK1/2. Incubation with KN93 (a CaMK inhibitor) 

abolished caffeine-induced FA uptake, decreased contraction-induced FA uptake by 

33%, and abolished both caffeine- and contraction-induced FA oxidation. The CaMK 

inhibitor KN93 reduced the contraction-induced increase in AMPK activation 

suggesting CaMK might be upstream of AMPK. These results suggest that CaMKII, in 
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part at least, regulates both Ca
2+

 and contraction-mediated FA uptake and oxidation 

(Raney & Turcotte, 2008). Other studies from the same group showed contraction-

mediated increases in ERK1/2 phosphorylation, FA uptake, FA oxidation and an 

increase in plasma membrane FAT/CD36 (Raney et al., 2005;Raney & Turcotte, 2007). 

These effects are decreased following incubation with PD98059, an inhibitor of the 

upstream kinase MEK1/2 which activates ERK1/2. These results suggest an important 

role for the ERK1/2 pathway in regulation of FA uptake and oxidation.  

 

AMPK is also thought to regulate FA oxidation during exercise by controlling 

mitochondrial entry of FA by phosphorylating ACCβ at Ser
218

. Phosphorylation of 

ACCβ reduces its activity by desensitising it to allosteric activation by cytosolic citrate 

(Vavvas et al., 1997) and sensitising it to inhibition by palmitoyl-CoA (Rubink & 

Winder, 2005). Deactivation of ACCβ will decrease the formation of malonyl-CoA, a 

potent inhibitor of carnitine palmitoyl transferase-I (CPT-I), the rate limiting enzyme in 

mitochondrial FA uptake (Winder & Hardie, 1996). In addition, AMPK can lower 

malonyl CoA content by phosphorylating and activating malonyl CoA decarboxylase, 

the enzyme responsible for decarboxylating malonyl CoA to acetyl CoA. These 

combined effects lower malonyl CoA content upon AMPK activation and relieve CPT1 

inhibition, thereby increasing mitochondrial fatty acid oxidation (Hardie & Hawley, 

2001). As noted earlier, caffeine stimulation decreases malonyl CoA activity in rat 

muscle (MacLean & Winder, 1995).  

 

AMPK has also been suggested to be involved in the breakdown of intramuscular 

triglycerides (IMTG) during exercise by phosphorylation of HSL on Ser
565

 (Bangsbo et 

al., 1990;Kiens, 2006). However, there is conflicting evidence surrounding AMPK 

activation and phosphorylation of HSL; thus, we are unable to come to any firm 

conclusions as to the role AMPK plays in IMTG breakdown during exercise (Roepstorff 

et al., 2004a;Watt & Spriet, 2004). Regulation of IMTG breakdown by calcium 

signalling pathways appears to be negative as when intracellular calcium is increased by 

both caffeine and the Ca
+
-ATPase inhibitor cyclopiazonic acid there is a decrease in 

HSL activity. This effect is abolished by the CaMK inhibitor KN93 (Watt et al., 2003b). 

However, MAPK signalling may play a role in the breakdown of IMTG during exercise. 

Exercise at 60% peak pulmonary uptake increases HSL activity after 3 minutes and this 

coincides with an increase in ERK1/2 phosphorylation (Watt et al., 2003c). Furthermore, 

HSL activity has been shown to increase after 1 minute of exercise at 30 and 60% 
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VO2peak and a further increase is observed at 90% VO2peak (Watt et al., 2003a). This 

suggests that the regulation of HSL and IMTG lipolysis during exercise may be 

intensity-dependent. This is in keeping with the finding that ERK1/2 activation, which 

may mediate this response, is also regulated by exercise intensity (Widegren et al., 

2000). 

 

This evidence highlights the importance of the signalling cascades in the regulation of 

metabolic processes in response to an external stimulus such as exercise. The activation 

of these kinases plays an important role in the substrate utilised for enrgy production 

during and after exercise. In this section, the immediate effects of the signalling 

cascades on metabolism such as the uptake, oxidation and storage of carbohydrate 

and/or fat are reviewed. However, these signalling pathways can also modulate the 

expression of a number of genes involved in these metabolic processes. Before 

reviewing the regulation of metabolic gene expression it is important to cover the basic 

science of gene transcription. 

 

2.3 Regulation of Transcription 

Gene transcription is the process resulting in the production of an mRNA “copy” of the 

DNA template that can be used for protein synthesis (Macfarlane, 2000). 

Transcriptional activity is regulated by the coordinated action of numerous transcription 

factors and transcriptional coregulators by transducing hormonal, nutrient and 

metabolite signals to a specific subset of genes. This is in response to physiological 

stimuli such as exercise and contractile activity for the regulation of metabolic 

homeostasis (Giguere, 2008); (Desvergne et al., 2006).  

 

Before transcription can occur, a specific transcription factor must be activated in 

response to a physiological stimulus such as exercise. Transcription factors are proteins 

that interact with the promoter sequence of DNA to modify the rate of transcription of a 

particular gene (Macfarlane, 2000). Transcription factor activation causes them to bind 

to complementary sequences on the promoter where their regulatory domains can 

regulate transcription (Alberini, 2009). This transcription factor can then either recruit 

and bind coregulating (coactivator/corepressor) proteins or act directly on the promoter 

to remodel chromatin. Both the direct and indirect mechanisms result in recruitment of 



 

35 

the transcriptional machinery to a core promoter to begin the process of transcription. 

This first step of the process, termed initiation, consists of the binding of RNA 

Polymerase II with the ‘promoter’ of the gene of interest. The promoter is defined as the 

shortest DNA sequence at which RNA pol II can initiate transcription and it must 

include a TATA box and an Initiator Element, which serves as the binding site for RNA 

pol II and overlaps with the transcriptional start site. The core promoter positions RNA 

pol II, in a state termed the preinitiation complex (PIC), to unwind the DNA helix and 

separate the strands so RNA pol II can begin mRNA synthesis. Elongation, the next step 

in transcription, involves RNA pol II using ATP to move along the unwound DNA 

molecule synthesising a complementary mRNA strand. It finally reaches a termination 

signal, the last step in the process, on the DNA template where it can no longer continue 

and separates from the DNA. These steps are repeated until the cell has synthesised all 

of the mRNA copies of that gene required (Macfarlane, 2000).  

 

The model outlined above is the simplest form of transcription and is not very efficient. 

In reality, the promoter region of a gene will contain many DNA binding domains 

capable of binding transcription factors. Some genes also contain enhancer regions 

which work in combination with the promoter to enhance the efficiency of gene 

transcription (Macfarlane, 2000). After binding a transcription factor, the enhancer 

bends the DNA to increase the activity of RNA pol II in the PIC (Macfarlane, 2000). 

Negatively acting transcription factors repress transcription, either by binding in such a 

way as to block RNA pol II from binding to the DNA or by bending the DNA so as to 

minimise contact and decrease the activity of RNA pol II (Clark & Docherty, 1993). 

Many transcription factors exist as homo/heterodimers. Negatively acting transcription 

factors can also bind to these dimers to render these transcription factors inactive 

(Latchman, 1992).  

 

As mentioned earlier, transcription factors can recruit coregulating proteins to the 

promoter. Transcription factors do not function alone and require coregulators to 

remodel chromatin and confer a second level of specificity to the transcriptional 

response (Feige & Auwerx, 2007). Coregulators are defined as proteins that alter 

transcriptional activity without binding to DNA (Spiegelman & Heinrich, 2004). 

Transcription factors bind to DNA in the promoter region of the gene of interest and 

mark it for activation or repression through the recruitment of coactivator or corepressor 
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proteins, these coregulators then serve as scaffolds for the recruitment of the necessary 

proteins for transcriptional (in)activation (Spiegelman & Heinrich, 2004).  

 

Certain coactivators possessing acetyltransferase capability can modify histones to 

enhance transcriptional activity by allowing greater access of transcription factors to the 

DNA (Hermanson et al., 2002). Acetylation of lysine residues within histone tails 

neutralizes their positive charge, thereby relaxing chromatin structure. This interferes 

with the generation of higher-order chromatin structures, increasing the accessibility of 

transcription factors to their target genes (Shahbazian & Grunstein, 2007). Conversely, 

corepressors have the opposite effect on chromatin, rendering it inaccessible to the 

binding of transcription factors. These corepressors are often associated with histone 

deacetylase activity (HDAC) (Ruthenburg et al., 2007); (Spiegelman & Heinrich, 2004). 

 

The activity of coregulators is also influenced by post translational modifications 

(PTMs). These PTMs exert control over the functional relationship between 

transcription factors and their coregulators and the subsequent regulation of 

transcription (McKenna & O'Malley, 2002). Hyperacetylation has been shown to 

increase transcriptional activity on a number of gene promoters (Deckert & Struhl, 

2001). Numerous coregulators have been shown to be regulated by phosphorylation 

(Rowan et al., 2000); (Akimoto et al., 2005) and acetylation (Rodgers et al., 2005); 

(Lerin et al., 2006). In addition, methyltransferases have been shown to interact with 

coregulators to alter transcriptional activity and some coregulators have been shown to 

contain methylation sites (Teyssier et al., 2005); (Mostaqul et al., 2008).  

 

Post translational modification of coregulators suggest that they may be targets of 

kinase-mediated cellular signalling pathways. Thus, kinase-mediated pathways may be 

exerting control over coregualtor activity and transcription factor binding, allowing the 

cell to transduce physiological stimuli into a tightly regulated transcriptional response. 

Finally, transcription factors and coregulators are themselves under transcriptional 

control. This means that genes encoding transcription factors may be regulated through 

the spatial and temporal control of their expression and activity in response to a 

physiological stimulus. 
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2.3.1 Regulation of transcription of metabolic genes by signalling 

cascades 

The activation of intracellular signalling cascades, as outlined in an earlier section, 

result in dynamic and immediate changes in cellular metabolism, including the uptake, 

oxidation and storage of carbohydrate and/or fat. However, these same signalling 

cascades have been implicated in the regulation of gene expression in muscle cells. 

While the changes in transcriptional activity may not have a real-time impact on cellular 

metabolism, the gene expression profile activated by exercise helps the cell adapt to the 

physiological stress of an acute bout of exercise and to exercise training. It has been 

well documented that aerobic exercise training leads to increased mitochondrial number 

and size, but, for the purpose of this thesis, I will focus on the acute changes in gene 

expression. AMPK, CaMKIV and p38 are involved in GLUT4 expression by 

phosphorylating and altering the activity or cellular localisation of transcription 

complex proteins (Ojuka et al., 2002; Lu et al., 2000; Jager et al., 2007; Zhao et al., 

1999). Other genes involved in metabolism that are regulated by AMPK and CaMK 

include: hexokinase (Jorgensen et al., 2007); pyruvate dehydrogenase kinase 4 (PDK4) 

(Jorgensen et al., 2005); CPT-1 (Winder & Hardie, 1996); and FAT/CD36 (Chabowski 

et al., 2006). The regulation of gene expression following an acute bout of exercise by 

contraction-mediated signalling cascades appears to target genes involved in nutrient 

transport or oxidation. These findings guided the selection of gene targets chosen for 

analysis in my research experiments.  

 

2.3.2 Transcriptional regulation of glucose metabolism 

AMPK has been shown to act on GLUT4, the glucose transporter responsible for 

insulin- and contraction-mediated glucose uptake in the muscle (Ojuka et al., 2002). 

AMPK is known to phosphorylate HDAC5, a transcriptional repressor that inhibits gene 

expression by deacetylating histone lysine residues making them inaccessible to 

transcription factors, on ser
259

 and ser
498

 (McGee & Hargreaves, 2008). Phosphorylation 

of HDAC5 dissociates it from MEF2, a transcription factor responsible for the 

regulation of GLUT4 gene expression, and provides binding sites for 14-3-3 which 

exports HDAC out of the nucleus thereby removing its transcriptional repression of 

MEF2. MEF2 binding to its site on the GLUT4 promoter is required for GLUT4 

expression (Mora & Pessin, 2000). HDAC Ser 
259

 and Ser
498

 phosphorylation are 
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necessary for AMPK induction of GLUT4 (McGee & Hargreaves, 2008). Activation of 

CaMKII by electrical stimulation of cultured muscle cells causes subsequent nuclear 

exclusion of HDAC4, thereby relieving repression of MEF2 transcriptional activity (Liu 

et al., 2005). Evidence to support this comes from another group , who have shown that 

constitutively active CaMKI/IV can dissociate HDAC5 from MEF2C; however, the 

mechanism for this is unknown. This model couples contraction-induced calcium 

signaling to an increase in the rate of transcription of MEF2 target genes such as 

GLUT4 (Lu et al., 2000). The PKC pathway also promotes nuclear export of HDAC5 

by stimulating phosphorylation of the 14-3-3 docking sites (Vega et al., 2004). Further 

studies showed that PKCmu/protein kinase D (PKD) acts as a downstream effector 

kinase of PKC and stimulates the nuclear export of HDAC5 (Bassel-Duby & Olson, 

2006). Therefore, PKC may also regulate GLUT4 expression. Ca
2+

 binding to 

Calcineurin, causes NFAT dephosphorylation and translocation of NFAT from the 

cytosol to the nucleus where it binds to the DNA of gene promoter regions and 

transcription factors including MEF2 (Chin et al., 1998); (Derave et al., 2000); (Wu et 

al., 2001). Transgenic mice that overexpress activated calcineurin in fast-twitch fibres 

have been shown to increase GLUT4 protein content (Ryder et al., 2003). Calcineurin 

can activate MEF2 either directly by MEF2 dephosphorylation (Wu et al., 2001) or 

indirectly by NFAT dephosphorylation and subsequent interaction between activated 

NFAT and MEF2 (Youn et al., 2000). p38 MAPK also acts on MEF2A by 

phosphorylating it on Thr
312

 and Thr
319

 to enhance transcription, thereby having an 

effect on GLUT4 expression (Zhao et al., 1999). AMPK has been shown to 

phosphorylate GLUT4 enhancer factor (GEF) in vitro and to increase its binding to the 

promoter of GLUT4 (Holmes & Dohm, 2004). The AMPK induced expression of 

GLUT4 requires the gene transcription co-activator PGC-1α, and AMPK directly 

phosphorylates PGC-1α and activates the expression of PGC-1α (Jager et al., 2007). 

AMPK is proposed to regulate PGC-1α by direct phosphorylation on Thr
177

 and Ser
538

, 

releasing it from its bound repressor protein p160myb, which inhibits PGC-1α 

activation (Fan et al., 2004). Inhibition of AMPKα does not affect GLUT4 expression in 

response to exercise and HDAC Ser
259

 and Ser
498

 can be phosphorylated by numerous 

kinases suggesting that AMPK’s regulation of GLUT4 expression is important but not 

crucial (Holmes et al., 2004). This evidence shows that both calcium- and AMP-

activated pathways are in control of GLUT4 expression through the regulation of GEF 

activity, HDAC localisation and MEF2 DNA binding activity. A recent paper 

demonstrated that CaMKII, AMPK and calcineurin all play a role in the regulation of 
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GLUT4 (Murgia et al., 2009). In this study, the researchers inhibited calcineurin and 

CaMKII with cain and KIIN, respectively while they used a KD-AMPK mouse model. 

GLUT4 enhancer activity was not affected by incapacitation of a single pathway – it is 

only by inhibition of two pathways that an effect on transcription is observed (Murgia et 

al., 2009). 

 

Hexokinase II (HKII) is an exercise responsive protein important for carbohydrate 

metabolism as it phosphoryates glucose in the first step of glycolysis. Several studies 

have shown induction of the HKII gene following acute bouts of exercise (Kraniou et 

al., 2000); (Pilegaard et al., 2003a); (Pilegaard et al., 2002); (Yang et al., 2005); 

(Pilegaard et al., 2005). Low frequency stimulation causing contraction of rat muscle 

increased both HKII mRNA and protein (Hofmann & Pette, 1994). Phosphorylation of 

α2-AMPK induced by AICAR in rats results in the induction of HKII mRNA (Stoppani 

et al., 2002). Similar results showed α2-AMPK activation by stimulation with AICAR 

as well as training increased HKII mRNA (Jorgensen et al., 2007). Interestingly, the 

training-induced increases in HKII were not reduced in an α2-AMPK-KO mouse 

suggesting that other pathways may also be regulating HKII expression (Jorgensen et al., 

2007). Calcium signalling may represent the alternative pathway to upregulation of 

HKII as treatment of rat muscle cells with ionomycin, associated with an increase in 

calcium, increased HKII mRNA approximately 2-fold (Kusuhara et al., 2007). AMPK 

and CaMKII are also thought to phosphorylate and activate CREB, which would 

theoretically enhance the transcription of genes with CRE binding sites in their 

promoter region, including HKII (Thomson et al., 2008); (Wheeler et al., 2008). These 

results demonstrate the influence of the signalling cascades activated by exercise on the 

adaptation of metabolic genes associated with glucose metabolism.  

 

2.3.3 Transcriptional regulation of lipid metabolism 

In addition to regulating the activity of certain enzymes associated with lipid 

metabolism in skeletal muscle, the exercise-activated signalling cascades can also 

regulate transcription of a number of genes involved in FA oxidation. AMPK activation 

by AICAR and exercise training in mouse muscle has been shown to increase the 

expression of both PDK4 and FOXO1 mRNA two genes central to the regulation of FA 

metabolism (Jorgensen et al., 2005). Induction of the PDK4 gene may control the 

switch to fat metabolism after exercise by phosphorylation and inactivation of the PDC 
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complex to prevent the conversion of pyruvate to acetyl CoA, resulting in allosteric 

inhibition of glycolysis and suppression of glucose oxidation (Pilegaard & Neufer, 

2004). In support of this, numerous studies demonstrate that an acute bout of exercise 

induces PDK4 expression in human skeletal muscle (Cluberton et al., 2005); (Pilegaard 

et al., 2005); (Mahoney et al., 2005); (Coffey et al., 2006); (Pilegaard et al., 2002); 

(Civitarese et al., 2005). FOXO1A promotes the expression of genes involved in energy 

metabolism resulting in the transition from carbohydrate oxidation to lipid oxidation in 

response to fasting and exercise (Bastie et al., 2005) and FOXO1A mRNA has 

previously been shown to be induced by acute exercise in human muscle possibly 

driving this shift in metabolism (Pilegaard et al., 2005); (Mahoney et al., 2005); 

(Russell et al., 2005). There is evidence to support the increase in FOXO1 mRNA seen 

with AICAR stimulation in vivo, however, in C2C12 cells, AICAR and metformin 

stimulation decreases FOXO1 mRNA suggesting there are other regulatory factors at 

play (Nystrom & Lang, 2008). The effect of AICAR on PDK4 and FOXO1 is not seen 

in an α2-AMPK-KO mouse, but the training induced increases in expression are still 

evident suggesting alternative pathways may upregulate these proteins with exercise 

(Jorgensen et al., 2005). This increase in FOXO1 and PDK4 mRNA with training 

cannot be explained by calcium signalling, as incubation of rat muscle cells with 

ionomycin, a cakcium activator, did not increase PDK4 expression (Kusuhara et al., 

2007). PDK4 mRNA is increased with activation of PPARδ by its agonist GW501516 

and this is accompanied by an increase in AMPK activation and FA oxidation (Kramer 

et al., 2007).  

 

PPARδ is thought to be important to lipid metabolism, and activation of PPARδ in 

skeletal muscle cells promotes fatty acid oxidation and utilization (Wang et al., 2003). 

Transgenic mice that overexpress calcineurin display increased protein content of 

PPARδ and PPARα suggesting that calcineurin may act through these proteins (Long et 

al., 2007). These mice have increased lipid oxidation as well as increased expression of 

proteins involved in the breakdown and uptake of FA including LPL, FAT/CD36, and 

CPT-1 (Long et al., 2007); (Ryder et al., 2003). PPARδ activation also increases CPT-1 

expression though this is thought to be mediated by AMPK rather than calcineurin 

(Kramer et al., 2007). (Jorgensen et al., 2005) also found that CPT-1 mRNA was 

increased through the activation of AMPK, as the AICAR-stimulated effect was 

blocked in α2-AMPK-KO mice. CPT-I is thought to be the rate-limiting enzyme in 

mitochondrial FA uptake (Winder & Hardie, 1996). The FA-binding protein FAT/CD36 
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controls the uptake of FA into the muscle at the plasma membrane. Activation of 

AMPK by AICAR has previously been shown to increase FAT/CD36 protein in cardiac 

muscle (Chabowski et al., 2006). In contrast to the calcineurin-dependent effect on LPL 

expression observed by Long and colleagues (2007), LPL mRNA has also been shown 

to be increased by an AMPK-dependent pathway following incubation with either 

AICAR or metformin in L6 muscle cells (Long et al., 2007); (Ohira et al., 2009). LPL is 

responsible for the breakdown of fat and can increase FA oxidation by increasing FFA 

supply.  

 

These findings outline the effect of activation of these signalling pathways on 

transcriptional-regulation skeletal-muscle metabolic proteins associated with FA 

oxidation. It is clear that many of these proteins are regulated by more than one of these 

cascades at any given time, a point which demonstrates the tight regulational control of 

their function and abundance. 

 

 

2.3.4 PGC-1α-Transcriptional Co-activator 

The role of transcription-factor co-regulators in skeletal metabolism is poorly 

understood. However, the identification of the co-activator peroxisome proliferator 

activated receptor gamma co-activator 1α (PGC-1α) has opened up new and exciting 

ways to study metabolic gene expression. 

 

PGC-1α was first identified as a cold-inducible coactivator of nuclear receptors through 

its functional interaction with the transcription factor PPARα in brown adipose tissue 

(Puigserver et al., 1998). It now transpires that PGC-1α co-activates the expression of 

many metabolic genes and is involved in the regulation of nutrient transport, substrate 

utilisation, mitochondrial oxidative metabolism and mitochondrial biogenesis. For the 

purpose of this review, I will focus on the regulation of PGC-1α expression and 

function, and the subsequent effects this may have on the aforementioned metabolic 

processes in skeletal muscle. 
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2.3.4.1 PGC-1α Structure 

PGC-1α is highly expressed in oxidative tissues, particularly the heart and Type I fibers 

of skeletal muscle (Irrcher et al., 2003a). PGC-1α does not possess histone-modifying 

activities itself; however, through a potent NH2-terminal transcriptional activation 

domain, it interacts with cofactors containing histone acetyltransferase (HAT) activity 

to modify chromatin and induce transcription (Puigserver et al., 1999). Nuclear 

hormone receptor coactivator signature motifs (LXXLL) adjacent to the activation 

domain are essential for coactivation of certain nuclear receptors. In addition, PGC-1α 

contains several arginine/serine rich domains within its carboxy-terminal region that 

couple pre-mRNA splicing with transcription (Monsalve et al., 2000).  

 

2.3.4.2 Description of PGC-1 promoter 

There are many binding domains conserved within the PGC-1α promoter which are 

capable of binding transcription factors to regulate PGC-1α expression. The human 

PGC-1α promoter contains a GC box that has been shown to bind Sp1 (Esterbauer et al., 

1999). In addition, there is a cAMP Response Element (CRE) site which binds the 

cAMP Response Element Binding protein (CREB). Domains capable of binding the 

transcription factors MEF2, ATF2 and FOXO1 are also conserved within the PGC-1α 

promoter (Czubryt et al., 2003); (Handschin et al., 2003;Daitoku et al., 2003). 

Furthermore, Irrcher et al. (2008) found three GATA sites, a consensus sequence for 

serum response element (SRE) and putative binding sites for p53 and NF-κβ on the 

promoter of PGC-1α (Irrcher et al., 2008). 
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Figure 2.8 Illustration of the regulation of the PGC-1α promoter by intracellular 

signalling cascades. 

 

The signalling pathways discussed previously regulate PGC-1α expression through 

transcription factors which bind to the PGC-1α promoter. As mentioned earlier, Czubryt 

et al. (2003) identified two MEF2 binding sites on the PGC-1α promoter and 

demonstrated that MEF2 was capable of increasing PGC-1α expression (Czubryt et al., 

2003). PGC-1α induction was blocked by MEF2 association with the histone 

deacetylase 5 (HDAC5). This is not surprising as HDAC is a transcriptional repressor 

that inhibits expression of MEF2 by deacetylating histone lysine residues making them 

inaccessible to transcription factors, on ser
259

 and ser
498

 (McGee & Hargreaves, 2008). 

Phosphorylation of HDAC dissociates it from MEF2 and provides binding sites for 14-

3-3 which exports HDAC out of the nucleus thereby removing its transcriptional 

repression of MEF2 (McGee & Hargreaves, 2008). Interestingly, a number of the 

aforementioned signalling pathways also have an impact on MEF2. AMPK, CaMKII, 

CaMKI/IV and calcineurin signalling have all been shown to phosphorylate HDACs 

either directly or indirectly removing the inhibition of MEF2 by HDACs, allowing it to 

interact with PGC-1α (McGee & Hargreaves, 2008); (Liu et al., 2005); (Lu et al., 2000); 

(Wu et al., 2001). In addition, a SIRT1 induced increase in PGC-1α mRNA expression 

in C2C12 cells was mediated by MEF2 (Amat et al., 2009). p38 MAPK phosphorylates 

MEF2 directly on Thr
312

 and Thr
319

 to enhance transcription (Zhao et al., 1999). This 

evidence suggests that a number, if not all these signalling pathways, are regulating 
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PGC-1α expression through MEF2. It is important to note that MEF2 is also involved in 

a positive autoregulatory loop whereby PGC-1α regulates its own expression 

(Handschin et al., 2003).  

 

Further evidence exists for a role of the signalling kinases in PGC-1α expression. 

AMPK activation by AICAR in rodent muscle and skeletal muscle cells increases the 

expression of PGC-1α mRNA and protein (Lee et al., 2006); (Suwa et al., 2003); 

(Irrcher et al., 2008). Zong et al. (2002) found when AMPK was activated by beta-

guanidinopropionic acid (GPA) that a creatine analog, that increases the AMP/ATP 

ratio, PGC-1α mRNA and CaMKIV protein, was increased in WT mice (Zong et al., 

2002). However, in dominant negative-AMPK mice the same treatment did not increase 

PGC-1α or CaMKIV. This suggests that AMPK is required for the AICAR-induced 

increase in PGC-1α expression but that CaMKIV may also be involved. However, 

transgenic mice displaying a constitutively active form of CaMKIV had increased PGC-

1α protein expression (Wu et al., 2002) while adenoviral-mediated expression of a 

constitutively active form of CaMKIV and calcineurin increased PGC-1α mRNA 

expression in cardiac myocytes (Schaeffer et al., 2004). Therefore, some CaMK 

isoforms are likely to be involved in the regulation of PGC-1α expression as well as 

calcineurin, which may also have important functions for PGC-1α. Raising cytosolic 

calcium in L6 myotubes increased PGC-1α protein (Ojuka et al., 2003). Similarly, when 

cytosolic calcium was increased by ionomycin in primary rat muscle cells, PGC-1α 

mRNA was increased, but this effect was blocked by the CaMK inhibitor KN62 

(Kusuhara et al., 2007). The effect of Ca
2+

 signalling on PGC-1α expression is likely to 

act through the transcription factor CREB as it is a substrate of the CaM kinases (Sheng 

et al., 1991) and it can bind to the CRE present on the PGC-1α promoter. Calcineurin is 

also a known activator of MEF2 by dephosphorylation either directly or through NFAT 

(Wu et al., 2001); (Youn et al., 2000). 
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Figure 2.9 Schematic diagram of the regulation of PGC-1α by intracellular signalling 

cascades 

 

There is also evidence that MAPK signalling can effect the expression of PGC-1α. 

ATF2, which has a consensus sequence on the PGC-1α promoter, is phosphorylated by 

p38 MAPK at Thr
69

 and Thr
71

 and activates ATF2 transcriptional activity (Zhao et al., 

1999); (bdel-Hafiz et al., 1992). PGC-1α promoter activity is increased following the 

activation of p38 MAPK by a constitutively active form of its upstream kinases 

MKK3E and MKK6E in myocytes along with ATF2 mRNA expression (Akimoto et al., 

2005). Transgenic mice expressing a muscle specific constitutively active form of 

MKK6E display increased PGC-1α protein expression (Akimoto et al., 2005). 

 

The redox state of the cell also influences PGC-1α expression. PGC-1α expression is 

decreased in SIRT1-KO mice (Amat et al., 2009). Conversely, overexpression or 

activation of SIRT1 in C2C12 muscle cells increases PGC-1α mRNA and this occurs 

through MEF2 and MyoD. SIRT1 binds to the PGC-1α promoter and increases the 

recruitment of PGC-1α to its own promoter (Amat et al., 2009). SIRT1 overexpression 

in PC12 cells also increases PGC-1α mRNA (Nemoto et al., 2005). However, in 
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contrast to these findings, SIRT1 overexpression in rodent muscle leads to a 25% 

decrease in PGC-1α protein expression (Gurd et al., 2009).  

 

These studies demonstrate that PGC-1α expression is controlled by a number of 

signalling pathways including AMPK, CaMK, calcineurin, p38 MAPK and SIRT1. It is 

possible that a number of these cascades may be acting on PGC-1α through a similar 

mechanism 
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Figure 2.10 Illustration of main PGC-1α regulatory sites (adapted from (Rodgers et al., 

2008)) 

 

2.3.4.3 Regulation of PGC-1α activity 

One of the interesting aspects of PGC-1α is that it co-activates its own promoter. 

Therefore, the protein content and activation of PGC-1α have a major impact on PGC-

1α expression and function. This section will review the main post-translational 

modifications affecting PGC-1α function and how they are regulated. 

 

PGC-1α can be phosphorylated, acetylated and methylated to modulate its activity 

(Knutti et al., 2001); (Rodgers et al., 2005); (Teyssier et al., 2005). Three kinases 

directly phosphorylate PGC-1α, including p38 MAPK, AMPK and Akt/PKB. p38 

MAPK phosphorylates PGC-1α on Thr
262

, Thr
298

 and Ser
265

 in the repressor region of 

PGC-1α ,where phosphorylation disrupts the association of the p160myb binding 

protein, a protein that binds to PGC-1α and decreases its transcriptional activity (Fan et 

al., 2004). This leads to PGC-1α being more stable and transcriptionally active (Knutti 

et al., 2001); (Puigserver et al., 2001;Fan et al., 2004). AMPK phosphorylates PGC-1α 

at Thr
177

 and Ser
538

 stimulating PGC-1α activation of its own promoter (Jager et al., 
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2007). Akt/PKB phosphorylation of PGC-1α at Ser
570

 reduces protein stability and 

transcriptional activity (Li et al., 2007).  

 

PGC-1α is acetylated by the histone acetyltransferase GCN5 at several residues and 

negatively regulates its transcriptional activity through nuclear sublocalisation (Lerin et 

al., 2006). On the other hand, SIRT1 is an NAD
+
-dependent deacetylase that increases 

the transcriptional activity of the coactivator (Rodgers et al., 2005); (Gerhart-Hines et 

al., 2007). Caloric restriction, pyruvate and resveratrol along with fluctuations in NAD
+
 

have been shown to deacetylate PGC-1α in a SIRT1-dependent manner (Rodgers et al., 

2005); (Lagouge et al., 2006). PGC-1α is deacetylated in fasting conditions consistent 

with SIRT1 activation resulting in an increase in a number of genes involved in 

mitochondrial fatty acid oxidation (Gerhart-Hines et al., 2007). PRMT1 has been shown 

to methylate PGC-1α at Arg665, Arg667, Arg669 (Teyssier et al., 2005), but relatively 

little is known about the functional significance of methylation at this time.  

 

2.3.4.4 PGC-1α-regulated genes 

Mitochondrial biogenesis is a complex process that requires the coordination of genes 

from the nuclear and mitochondrial genomes. PGC-1α coactivates the transcription 

factors NRF-1, NRF-2 (Wu et al., 1999b) and the orphan nuclear receptor ERRα to 

induce mitochondrial biogenesis (Schreiber et al., 2003). Analysis by Ren and Dynlacht 

(2004) showed that NRF-1 binds to the promoters of a number of genes involved in 

mitochondrial biogenesis and metabolism (Ren & Dynlacht, 2004). PGC-1α can link 

nuclear regulatory events to the transcriptional machinery by coactivating NRF-1/2 to 

target their recognition sites on the promoter of Tfam, a nuclear encoded transcription 

factor that upon activation translocates to the mitchondria to activate transcripton of 

mitochondrial DNA (Gleyzer et al., 2005). PGC-1α has been shown to bind directly 

with NRF-1 to increase its transcriptional activity and expression along with the 

promoter activity of Tfam (Wu et al., 1999b). A dominant negative allele of NRF-1 

blocks the effects of PGC-1α on mitochondrial biogenesis and Tfam, indicating NRF-1 

is required for PGC-1α-induced mitochondrial biogenesis (Wu et al., 1999b).  

 

PGC-1α coactivates ERRα to promote mitochondrial biogenesis by a direct interaction 

via its AF-2 domain and sequence-specific leucine rich (LXXLL) nuclear receptor 

motifs to induce mitochondrial biogenesis (Schreiber et al., 2003). A significant number 
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of gene promoters with mitochondrial functions upregulated by PGC-1α contain binding 

sites for ERRα (Mootha et al., 2004). PGC-1α induction of genes encoding 

mitochondrial proteins was accompanied by an increase in mitochondrial DNA content 

and this could be blocked by siRNA against ERRα or mimicked by a constitutively 

active ERRα construct (Schreiber et al., 2004). ERRα is also shown to interact with 

NRF-2 through a binding site on its promoter to facilitate PGC-1α stimulated induction 

of mitochondrial genes. Inhibition of ERRα abolishes the PGC-1α induced increase in 

NRF-2 in C2C12s, suggesting ERRα is necessary for NRF-2 induction (Mootha et al., 

2004).  

 

The induction of NRF-1, NRF-2 and Tfam by ectopic expression of PGC-1α results in 

an increase in the mRNA of nuclear genes encoding proteins involved in mitochondrial 

oxidative phosphorylation including ATP synthetatse β, COXII, COXIV and 

cytochrome c (Wu et al., 1999b). This is not surprising as NRF-1/2 have been shown to 

occupy the promoters of the mitochondrial proteins cytochrome c and COXIV in 

response to an increase in PGC-1α activity and protein expression (Wright et al., 2007b). 

NRF-2 specifically binds to the COXIV promoter and is suggested as a general activator 

of gene expression of the cytochrome oxidases, essential respiratory chain proteins 

(Scarpulla, 1997); (Virbasius & Scarpulla, 1994). A similar increase in mitochondrial 

genes as well as mitochondrial content is seen in PGC-1α transgenic mice. MCK-PGC-

1 transgenic mice display increased mRNA of the oxphos genes NADH-ubiquinone 

oxidoreductase, cytochrome c, COX5b and ATP synthetase (Choi et al., 2008). Lin et al. 

(2002) showed similar increases in COXII and COXIV in the same mice (Lin et al., 

2002). Wende and colleagues observed comparable increases in the mRNA of the 

mitochondrial proteins COXII, COXIV, cytochrome c and ATP synthase β in a PGC-1 

transgenic mouse model, but these increases were accompanied by an increase in 

mitochondrial function, depicted by an increase in the activity of citrate synthase (CS), a 

marker of mitochondrial activity (Wende et al., 2007). In support of these findings, 

Calvo et al (2008) reported increased CS activity and increased expression of 

mitochondrial proteins in PGC-1α transgenic mice (Calvo et al., 2008). Conversely, 

PGC-1α whole-body KO mice display decreased expression of a number of nuclear 

genes encoding proteins involved in mitochondrial electron transport and oxidative 

phosphorylation including COXIV, cytochrome c and ATP synthetase β (Leone et al., 

2005). Reductions in expression of these mitochondrial proteins were accompanied by 

decreased expression of Tfam and mitochondrial volume and density (Leone et al., 
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2005). This evidence creates a strong argument for the regulation of the aforementioned 

genes and mitochondrial biogenesis by PGC-1α through its transcription factors NRF-1, 

NRF-2, ERR α and Tfam. 

 

PGC-1α targets a number of genes involved in the regulation of substrate selection 

through co-activation of ERRα, an important regulator of mitochondrial energy-

transduction pathways including fatty acid oxidation and oxidative phosphorylation. 

Forced expression of PGC-1α in myotubes has been shown to induce PDK4 mRNA and 

protein expression to promote glucose sparing and fatty acid oxidation through a 

nuclear receptor binding site occupied by ERRα, an effect that is lost in ERRα-null mice 

(Wende et al., 2005). ERRα has been shown to target a number of lipid metabolic genes 

such as Medium-Chain Acyl-CoA Dehydrogenase (MCAD), which mediates the first 

step in β-oxidation of fatty acids, as well as CPT1, FABP3, FAT/CD36 and Acyl-CoA 

oxidase (Huss et al., 2004). PGC-1α co-activates the nuclear receptor Peroxisome 

Proliferator Activated Receptor-α (PPARα) in the control of lipid metabolic genes such 

as MCAD, CPT1, FABP3, CD36 and Acyl-CoA oxidase (Vega et al., 2000). PGC-1α 

co-activates FOXO1, which promotes the expression of genes involved in FA 

metabolism such as CD36 and ACC (Puigserver et al., 2003;Bastie et al., 2005).  

 

Modest PGC-1α overexpression in rat muscle in vivo increases the expression of the FA 

transport proteins FAT/CD36 and FABPpm (Benton et al., 2008). Similar results have 

been seen in PGC-1α transgenic mice where FAT/CD36, FATP and FABP3 were 

upregulated compared with controls (Calvo et al., 2008). This increase in FA transport 

proteins was accompanied by the induction of CPT-1 and a number of markers of the 

mitochondrial FAO pathway including MCAD and LCAD (Calvo et al., 2008). Wende 

et al. (2007) also observed similar increases in FAT/CD36, CPT-1 and MCAD mRNA, 

whereas, Choi et al. (2008) reported increases in the mRNA expression of CPT-1, CPT-

2, LCAD, MCAD and the protein expression of CPT-1 and ACC in PGC-1α transgenic 

mice (Choi et al., 2008). This outlines the function of PGC-1α expression in the control 

of the adaptation towards greater lipid metabolism. 

 

PGC-1α expression affects the utilisation of carbohydrate by increasing glucose uptake 

and repressing glucose oxidation. Adenovirus-mediated PGC-1α expression in C2C12 

and L6 muscle cells co-activates MEF2 to increase the mRNA expression of GLUT4 to 

raise glucose uptake in the muscle (Michael et al., 2001). The increased expression of 
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GLUT4 is dependent upon a binding site on its promoter for the transcription factor 

MEF2 (Thai et al., 1998). The increase seen in GLUT4 is accompanied by increased 

glucose uptake in the cells (Michael et al., 2001). Modest overexpression of PGC-1α in 

a single rat muscle in vivo increases GLUT4 protein expression (Benton et al., 2008). In 

a PGC-1α transgenic mouse model, GLUT4 expression is increased accompanied by an 

increase in muscle uptake of glucose (Wende et al., 2007). PGC-1α expression resulted 

in a reduction in the expression of the gene-encoding phosphofructokinase (PFK), a 

gene that catalyses a tightly regulated, rate-limiting step in the glycolytic pathway – the 

addition of a phosphate group to fructose 6-phosphate to create fructose 1,6-biphosphate 

(Wende et al., 2007). Expression of PGC-1α in myotubes has been shown to promote 

glucose sparing and fatty acid oxidation by increased PDK4 mRNA and protein 

expression through a nuclear-receptor binding site occupied by ERRα (Wende et al., 

2005). Glucose-6-Phosphate levels, which is known to increase glycogen synthesis, 

were increased in PGC-1α transgenic mice in conjunction with increased muscle 

glycogen levels (Wende et al., 2007). These findings prove that PGC-1α regulates a 

number of genes that act to conserve glucose oxidation but increase its uptake and 

storage in the muscle. 

 

In this section, a diverse set of functions of the transcriptional coactivator PGC-1α have 

been outlined. PGC-1α controls mitochondrial biogenesis and the regulation of substrate 

metabolism through co-activation of its transcription factors to regulate the expression 

of its target genes. The multifunctional nature of PGC-1α gives reason to it being 

referred to as a ‘master regulator’ of metabolic processes. 

 

2.3.5 Transcriptional response to exercise 

Both acute and chronic exercise has been shown to modulate the expression of 

metabolic genes, but, for the purpose of this thesis, the effects of acute exercise on gene 

transcription will be discussed. This section will document and compare the effect of an 

acute bout of exercise on PGC-1α expression and the expression of its target genes 

previously outlined in this review. Exercise results in a number of adaptive changes to 

the metabolic pathways governing substrate utilisation including substrate availability, 

transport and oxidation. Exercise is also known to control the expression of a number of 

proteins involved in the oxidation of fuel in the mitochondria. This section will review 

the adaptation of the genes regulating these processes in response to acute exercise. 



 

51 

 

2.3.5.1 Regulation of transcription of PGC-1α by an acute bout of exercise 

Numerous studies have shown that the expression of PGC-1α is increased in response to 

acute endurance exercise of varying mode, intensity and duration in human skeletal 

muscle (Mathai et al., 2008); (Gibala et al., 2009); (Coffey et al., 2006); (Cluberton et 

al., 2005); (Pilegaard et al., 2005); (Russell et al., 2005); (Mahoney et al., 2005); 

(Cartoni et al., 2005); (Vissing et al., 2005); (Norrbom et al., 2004). The exercise-

mediated increase in PGC-1α expression also has clinical significance. PGC-1α mRNA 

was increased five hours after exercise in insulin-resistant muscle; however, this 

increase was significantly less than the response seen in healthy tissue (De Filippis et al., 

2008). Furthermore, Sriwijitkamol et al. (2007) found that PGC-1α expression can 

increase in obese and T2D subjects in response to 40 minutes exercise at both 50% and 

70% VO2max. Therefore, exercise may be important for increasing gene expression as 

well as energy expenditure in metabolic disease such as obesity and type 2 diabetes. 

Similar changes in skeletal muscle PGC-1α mRNA and protein have been reported in a 

variety of rodent models, including aerobic exercise of different intensities and duration 

(Spangenburg et al., 2009); (Wright et al., 2007b); (Terada et al., 2005); (Baar et al., 

2002); (Terada et al., 2002); (Terada & Tabata, 2004) as well as electrical stimulation in 

cell culture (Irrcher et al., 2003b); (Atherton et al., 2005). The expression and function 

of PGC-1α has been implicated in the regulation of metabolic gene expression. 

Therefore, the exercise-mediated increase in PGC-1α expression may be responsible for 

other exercise-mediated adaptations particularly those of PGC-1α-regulated genes. 

 

2.3.5.2 PGC-1αααα and transcriptional control of glucose transport 

Numerous studies have reported an increase in GLUT4 expression following an acute 

bout of exercise at different intensities and duration (Kraniou et al., 2000); (Cluberton et 

al., 2005); (Civitarese et al., 2005); (Kraniou et al., 2006). Similar increases in GLUT4 

mRNA and protein have been observed in rats following exercise (Kuo et al., 1999); 

(Smith et al., 2007). In contrast to these findings, GLUT4 expression was unchanged 

following cycling- and knee-extensor exercise despite increased mRNA of the co-

activator PGC-1α, which is thought to regulate GLUT4 expression (Pilegaard et al., 

2005); (Vissing et al., 2005). However, Neufer and Dohm demonstrated an increase in 

the transcriptional activity of GLUT4 in response to swimming exercise in rats (Neufer 



 

52 

& Dohm, 1993). GLUT4 translocation to the plasma membrane, which correlates with 

glucose transport into the cell (Lund et al., 1997), was increased following sixty 

minutes exercise at 60-70% VO2peak (Kennedy et al., 1999).  

 

The AMPK-induced expression of GLUT4 requires PGC-1α (Zong et al., 2002) and the 

increase in GLUT4 mRNA following exercise is thought to be associated with PGC-1α 

(McGee & Hargreaves, 2006). McGee and Hargreaves reported an increase in the DNA-

binding activity of the MEF2 and the GLUT4 enhancer factor (GEF) promoters in 

response to a single bout of cycling exercise (McGee et al., 2006). Transcription of 

GLUT4 by DNA-bound MEF2 is thought to be inhibited by the association of class II 

HDACs (McKinsey et al., 2001). AMPK has been shown to phosphorylate class II 

HDACs and cause nuclear exclusion. McGee & Hargreaves (2004) found that HDAC-

associated MEF2 and nuclear localisation were reduced following 60 minutes of cycling. 

AMPK has also been shown to phosphorylate GEF in vitro which binds to the promoter 

of GLUT4 and has been shown to increase its DNA binding activity (Holmes et al., 

2005). These findings suggest exercise can control GLUT4 expression by regulating the 

transcriptional activity of GEF and MEF2, through modulation of MEF2 interaction 

with HDACs and the coactivator PGC-1α, which are regulated by the exercise-

responsive signalling cascades.   

 

2.3.5.3 Mobilisation and transport of fatty acids 

Hormone sensitive lipase (HSL) is a key enzyme in the mobilisation of fatty acids from 

intracellular lipid stores. HSL is transiently activated during exercise at 60% VO2peak, 

reaching maximal activation after 60 minutes but returning to near basal activity by 120 

minutes (Watt et al., 2003a). Roepstorff showed that AMPK-dependent phosphorylation 

of HSL on Ser
565

 had no effect on HSL activity (Roepstorff et al., 2004b). In support of 

these findings, endurance training had no effect on HSL activity or protein expression in 

rat skeletal muscle (Donsmark et al., 2004). Lipoprotein Lipase is a key enzyme in the 

hydrolysis of triacylglycerol rich chylomicrons and VLDL. LPL activity has been 

shown to increase following 60 minutes dynamic knee-extensor exercise (Kiens et al., 

1989). Eight weeks of single-leg exercise training increased LPL activity in skeletal 

muscle compared with the untrained leg (Kiens & Lithell, 1989). Numerous studies 

have demonstrated an increase in the transcriptional activation of LPL in response to an 

acute bout of exercise (Pilegaard et al., 2005) (Pilegaard et al., 2003a); (Seip et al., 
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1997); (Hildebrandt et al., 2003); (Kiens & Richter, 1998). Pilegaard and colleagues 

observed an increase in LPL transcriptional activity stimulated by 75 minutes cycling at 

75% VO2peak (Pilegaard et al., 2005). However, these changes in transcriptional 

activity were not matched by an increase in mRNA or protein expression (Pilegaard et 

al., 2005). Cycling for 90 minutes at 60% VO2peak increased LPL mRNA in both 

untrained and trained individuals (Kiens et al., 2004). Similarly, 3 hours of knee-

extensor exercise increased LPL mRNA expression 1 hour post-exercise and remained 

elevated during 8 hours of recovery (Vissing et al., 2005). This evidence suggests that 

exercise plays a role in the adaptation to substrate utilisation by increasing the enzymes 

responsible for lipolysis of TGs and therefore the subsequent availability of circulating 

FA for oxidation.   

 

The transport of FA into the mitochondria for oxidation provides a number of 

significant points of regulation in the supply of FA. The fatty acid binding protein 

(FABP) which is bound to the plasma membrane regulates FA uptake into the skeletal 

muscle cell. An acute bout of knee-extensor exercise increased FABP expression 3 h 

after exercise and remained elevated during 20 h of recovery (Vissing et al., 2005). In 

support of this evidence, an acute bout of bicycle exercise increased FABPpm (FABP 

located on the plasma membrane) and FABPc (FABP located in the cytoplasm) mRNA. 

This suggests an increase in FABP localised to the plasma membrane to allow FA 

uptake into the cell. However, the induction of FABP in this case seems to be gender 

specific as FABPpm mRNA increases in untrained males and trained females whereas 

FABPc is increased only in untrained males (Kiens et al., 2004). The authors suggest 

that women express higher basal levels of FABPc mRNA pre-exercise than men; hence 

the lack of improvement with exercise. In contrast to these findings, 60 minutes of 

intense exercise was shown to have no effect on FABP expression (Roepstorff et al., 

2004a).  

 

Membrane-bound FAT/CD36 also seems to be responsive to an acute bout of exercise 

in human skeletal muscle. Moderate intensity aerobic exercise has been shown to 

increase FAT/CD36 protein content in some: (Roepstorff et al., 2004a); (Holloway et 

al., 2006), but not all studies (Civitarese et al., 2005). There may be an intensity-

dependent response for FAT/CD36 expression as there were no changes in protein 

content following high-intensity aerobic and resistance exercise (Yang et al., 2005). As 

with FATP there may also be a gender specific response. Kiens et al. (2004) reported an 
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increase in FAT/CD36 expression following an acute bout of exercise but only an 

increase in mRNA in males (Kiens et al., 2004). The authors speculate that women 

express higher levels of FAT/CD36 mRNA than men and this is supported by the 

findings of (Steffensen et al., 2002).   

 

2.3.5.4 Transcriptional control of substrate utilisation 

Substrate selection is regulated at a number of points in the cell and is dependent on 

nutrient and oxygen availability. Exercise increases the expression of a number of genes 

that influence substrate selection. The exercise-mediated regulation of these genes may 

form part of the adaptive response to exercise training, facilitating lipid oxidation at rest 

and during submaximal exercise. 

 

In the post-exercise period the contribution of lipid oxidation to energy expenditure is 

increased (Kiens & Richter, 1998). PDK4 may be one of the important components that 

control the switch to fat metabolism by phosphorylation and inactivation of the PDC 

complex to prevent the conversion of pyruvate to acetyl CoA, resulting in allosteric 

inhibition of glycolysis and suppression of glucose oxidation (Pilegaard & Neufer, 

2004). PDK4 could promote carbohydrate sparing in the post-exercise period in an 

attempt to replenish muscle glycogen content. Kimber et al (2003) found that following 

glycogen depleting exercise there was a decrease in glucose oxidation, an increase in 

glycogen synthesis and an increase in mitochondrial fatty acid oxidation (Kimber et al., 

2003). The expression of PDK4 is highly sensitive to alterations in metabolic status 

such as acute exercise, fasting and high-fat/low-carbohydrate diets, and may form part 

of the adaptive response to exercise (Pilegaard et al., 2000;Peters et al., 2001;Pilegaard 

et al., 2003b;Tsintzas et al., 2006). A number of studies have reported increased PDK4 

expression in human skeletal muscle following an acute bout of exercise (Cluberton et 

al., 2005); (Pilegaard et al., 2005); (Mahoney et al., 2005); (Coffey et al., 2006); 

(Pilegaard et al., 2002); (Civitarese et al., 2005). Pilegaard et al (2000) showed that 

PDK4 mRNA and transcription were increased immediately following 75 minutes and 4 

hours of exercise and remained elevated for at least 4 hours after exercise (Pilegaard et 

al., 2000). PDK4 mRNA is increased following aerobic exercise at 50% and 75% 

VO2max (Hildebrandt et al., 2003) and following resistance exercise (Yang et al., 2005). 

The increase in PDK4 mRNA is sustained for longer following aerobic (8-12 h) than 

resistance exercise (2-8 h) (Yang et al., 2005).  
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PDK4 expression is under the control of a number of transcription factors and co-

activators, including PGC-1α. FOXO1 binds directly to the PDK4 promoter in C2C12 

muscle cells and increases PDK4 expression (Furuyama et al., 2003). FOXO1 mRNA is 

increased in response to an acute bout of intermittent exercise in the skeletal muscle of 

mice suggesting it may be involved in the exercise-induced increase in PDK4 (Huang et 

al., 2007). As stated previously, PGC-1α expression is increased by exercise. PGC-1α is 

known to coactivate PPARα and the orphan nuclear receptor ERRα (Vega et al., 2000); 

(Wende et al., 2005). The expression of ERRα increases concurrently with PGC-1α 

following an acute bout of exercise (Cartoni et al., 2005). ERRα cooperates with 

PPARα to amplify the PGC-1α-mediated regulation of metabolic gene expression as 

they have been shown to target MCAD, an enzyme that mediates the first step in β-

oxidation of fatty acids (Huss et al., 2004). PGC-1α increases PDK4 mRNA and 

activates the PDK4 promoter possibly encouraging glucose sparing and fatty acid 

oxidation (Wende et al., 2005). PGC-1α co-activates PDK4 through a nuclear receptor 

binding site occupied by ERRα and this effect is lost in ERRα-null mice (Wende et al., 

2005). The transcription factor PPARα may also play a role as PDK4 mRNA and 

protein are increased in rat skeletal muscle after feeding the PPARα analogue 

WY14,643 (Wu et al., 1999a). Similar increases in PDK4 mRNA levels were seen in 

liver cells stimulated by WY14,643 (Huang et al., 2002). This evidence suggests that 

the PGC-1α/ERRα complex along with PPARα may be involved in the control of 

substrate selection after exercise by inducing PDK4 expression. 

 

Another important step in substrate selection is the regulation of LCFA-CoA transport 

across the inner mitochondrial membrane by CPT1. The transcriptional activity of 

CPT1 increases after a single bout of exercise in human skeletal muscle (Holloway et 

al., 2006). Pilegaard et al (2005) saw an increase in the transcriptional activity of CPT1 

following bicycle exercise at 75% VO2peak; however, this increase was not seen at the 

mRNA level  (Pilegaard et al., 2005). Against this, other studies reported no change in 

CPT1 expression following resistance exercise and aerobic exercise at both high and 

low intensity ((Yang et al., 2005); (Hildebrandt et al., 2003).   

 

These results suggest that PGC-1α co-activated genes play a major role in the adaptive 

response to an acute bout of exercise. However, PGC-1α is also known to be an 

important regulator of nuclear encoded mitochondrial genes and mitochondrial 
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biogenesis. Exercise training has also been shown to increase mitochondrial content, but 

little is known about the response of mitochondrial genes to an acute bout of exercise. 

 

2.3.5.5 Transcriptional response to exercise in mitochondria 

Mitochondrial biogenesis is a complex process requiring the coordinated expression of 

nuclear and mitochondrial genes, protein translation, mitochondria targeting and 

importation followed by protein or subunit complex assembly. As part of this review, I 

will focus on mitochondrial proteins known to be regulated by PGC-1α in response to a 

single bout of exercise, while acknowledging that mitochondrial biogenesis is only 

likely to occur following repeated bouts of exercise. 

 

Citrate synthase (CS), a marker of mitochondrial activity, is an important enzyme in the 

metabolism of carbohydrates and fats as it catalyses the first reaction in Kreb’s cycle. 

Acetyl CoA is combined with oxaloacetatic acid (OAA), and catalysed by the enzyme 

CS to produce citric acid. CS activity is increased in PGC-1α transgenic mice, 

suggesting it is a target of the coactivator (Wende et al., 2007); (Calvo et al., 2008). CS 

expression is upregulated after acute exercise. A single bout of knee-extensor exercise 

resulted in an increase in CS mRNA in human skeletal muscle (Vissing et al., 2005). 

Supporting evidence for these results was seen in rodent models where both the 

transcriptional activity and mRNA expression of CS were increased by exercise (Neufer 

& Dohm, 1993); (Wright et al., 2007b).   

 

Exercise is known to influence the expression and transcriptional activity of a number 

of transcription factors involved in the control of nuclear genes encoding mitochondrial 

metabolic proteins. Nuclear respiratory factor-1 (NRF-1) is one such transcription factor 

implicated in the PGC-1α-mediated control of muscle metabolism with particular 

influence on mitochondrial biogenesis as discussed earlier. PGC-1α binds NRF-1 and 

can activate transcription of NRF-1 target genes involved in mitochondrial respiration 

(Wu et al., 1999b). Exercise has been shown to increase the expression of NRF-1 (De 

Filippis et al., 2008); (Sriwijitkamol et al., 2007) and NRF-2 (Cartoni et al., 2005), 

accompanied with a simultaneous increase in PGC-1α expression in human skeletal 

muscle. This evidence is supported in C2C12 muscle cells where stimulation of 

contractile activity is shown to upregulate both NRF-1 and PGC-1α (Irrcher et al., 

2003b). In contrast, various other exercise studies reported an increase in PGC-1α 
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expression with no change in either of these transcription factors in human muscle 

(Pilegaard et al., 2003b); (Norrbom et al., 2004).  

 

Both NRF-1 and 2 have binding sites in the promoter region of Tfam (Virbasius & 

Scarpulla, 1994); (Larsson et al., 1998); (Rantanen et al., 2001). Overexpression of 

PGC-1α in myotubes coactivates NRF-1 and 2 (Wu et al., 1999b) to regulate expression 

of Tfam (Fisher et al., 1992); (Garesse & Vallejo, 2001); (Larsson et al., 1998). As 

mentioned previously, stimulation of contractile activity is shown to upregulate both 

NRF-1 and PGC-1α, and this is coincident with an increase in Tfam protein expression 

in C2C12 muscle cells (Irrcher et al., 2003b). An acute bout of exercise in rats increases 

Tfam protein content (Kang et al., 2009). PGC-1α can link nuclear regulatory events in 

response to exercise to the transcriptional machinery by targeting the NRF-1/2 binding 

sites on the Tfam promoter leading to increased mRNA expression (Gleyzer et al., 

2005). This evidence indicates NRF-1 and NRF-2, coactivated by PGC-1α, are 

important for control of the expression of genes involved in mitochondrial function and 

metabolism in response to exercise. 

 

There is evidence to suggest that an acute bout of exercise results in an adaptive 

response to a number of the enzymes involved in oxidative phosphorylation in the 

mitochondria. Exercise has been shown to augment the DNA binding activity of NRF-1 

and NRF-2. NRF-2 specifically binds to the COX IV promoter (Scarpulla, 1997); 

(Virbasius & Scarpulla, 1994). In addition, COX IV is also increased by a single-

exercise session. COX IV mRNA was increased 24 hours after a 10km bike trial 

(Cartoni et al., 2005). Intermittent cycling exercise at high intensity also increased COX 

VI mRNA (De Filippis et al., 2008). Swimming was shown to increase the binding of 

the transcription factor NRF-2 to the promoter region of COX IV after a single bout of 

exercise in rats (Baar et al., 2002); (Wright et al., 2007b). Cytochrome c expression is 

also upregulated following a 6-h swimming exercise in rats (Wright et al., 2007b). This 

increase in mRNA is accompanied by binding of the transcription factor NRF-1 to the 

promoter of cytochrome c. Pharmacological activation of AMPK, a kinase activated by 

exercise, also results in increased expression of cytochrome c (Jager et al., 2007). 

Furthermore, uncoupling protein 3 (UCP3), a mitochondrial carrier protein, is 

transcriptionally activated by acute exercise in human skeletal muscle (Hildebrandt et 

al., 2003); (Pilegaard et al., 2005). UCP3 mRNA increased after 3 hours of knee-
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extensor exercise (Pilegaard et al., 2002). Similar results were observed following only 

60 minutes of cycling in a separate study (Cluberton et al., 2005).  

 

2.4 Effect of exercise on muscle fiber morphology 

 

The adaptive response to exercise in human skeletal muscle is not limited to the 

molecular level. Several morphological and structural adaptations occur in the muscle 

fiber as part of exrcise response. Following an acute bout of exercise myofibrillar 

damage has been observed in the form of disrupted Z-line streaming where Z-lines are 

out of register, loss of thick myofilaments, myosin and titin, as well as disruption of the 

filaments (myosin) in the A-band (Friden et al., 1981); (Friden et al., 1983). Friden et al 

also observed disruption to the localisation of the cytoskeleton protein desmin, which 

links Z-lines together, after a bout of eccentric exercise (Friden et al., 1984). This 

evidence suggests that exercise initially causes damage to the ultrastructure of the 

muscle cell.  

 

An acute bout of exercise has also been shown to affect the extracellular matrix. Stauber 

et al. carried out muscle biopsies following eccentric exercise and observed mast cell 

degranulation in the perimysial area, mononuclear cells in the perimysial and 

endomysial regions, and that the extracelluar matrix had become separated form the 

myofibers (Stauber et al., 1990). Fibrinogen and albumin (plasma constituents) were 

also found in the extracellular space suggesting damage to the capillaries as well as the 

extracellular matrix (Stauber et al., 1990).  

 

In response to exercise, skeletal muscle undergoes capillarisation to allow greater 

oxygen flow to working muscles. An increase in capillary density in the working 

muscle has been observed in both cycling and rowing (Andersen & Henriksson, 1977); 

(Larsson & Forsberg, 1980). This increase in muscle capillarity, is thought to be 

important for improving blood-tissue exchange properties by increasing the surface area 

for diffusion, shortening the average diffusion length within the muscle and increasing 

the length of time for diffusive exchange between blood and muscle (Bloor, 2005). 

 

Exercise training is known to increase both the size and number of mitochondria in 

skeletal muscle thought to be an effort to allow greater ATP supply to the working 
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muscles. A standard exercise bicycle training program lasting 6 weeks has been shown 

to increase mitochondrial density by ~40% in the vastus lateralis of subjects (Hoppeler 

et al., 1985). Endurance training has also been shown to preferentially increase 

subsarcolemmal mitochondria as opposed to intermyofibrillar mitochondria (Hoppeler 

et al., 1985). Adaptatiopns in the content of mitochondrial nzymes alsooccur in 

response to exercise but these adaptations are discussed under the heading 

mitochondrial biogenesis elsewhere in the text.  

 

Four types of muscle fiber exist in skeletal muscle (Type I, Type IIa, Type IIb and Type 

IIx). Individual fiber types can be identified by the isoform of Myosin Heavy Chain 

(MYH) present as well as by their oxidative capacity (oxidative/glycolytic). Type I 

fibers possess MYH7 and have a high oxidative capacity and appear red in colour due to 

a high concentration of the oxygen binding protein myoglobin. Type I fibers have low 

glycolytic and slow contraction capabilities but are resistant to fatigue. Type IIa can be 

identified by the MYH2 isoform and possess high glycolytic and oxidative capabilities. 

Type IIx fibers possess the MYH1 isoform and are high in glycolitic but low in 

oxidative properties but capable of fast contractions. Finally, Type IIb fibers are 

identified by the MYH4 isoform and possess the ability to produce rapid contractions 

but have very little fatigue resistance, These fibers tend to be white in appearance as 

they have very low levels of myoglobin or capillaristaion.  

 

In response to exercise there is a shift in the fiber type within the muscle depending on 

the nature of the exercise. Following endurance training or aerobic exercise there is a 

shift from Type IIb fibers to the more oxidative Type I (Howald et al., 1985;Andersen 

& Henriksson, 1977;Simoneau et al., 1985) and Type IIa fibers (Andersen & 

Henriksson, 1977);(Ingjer, 1979). Conversely, there is an increase in the proportion of 

fast fiber types (32-38%) following sprint training accompanied by a concurrent 

decrease in Type I fibers (57-48%) (Jansson et al., 1990). This data suggests the switch 

in fiber types is specific to the exercise stimulus.  

 

The evidence presented in this section demonstrates that the muscle fiber undergoes 

several structural and functional morphological changes in response to both a single 

bout of exercise as well as exercise training. 
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2.5 Summary 

It is apparent from the literature that significant adaptations to the factors governing 

metabolism in the muscle occur in response to an acute bout of exercise. This adaptation 

begins with the activation of a number of signalling kinases with AMPK, CaMKII, p38 

MAPK and NAD
+
 acting as the protagonists in a tightly regulated response to this 

metabolic perturbation (Bassel-Duby & Olson, 2006). As part of the response, these 

signalling kinases regulate the activity of a number of transcription factors and 

transcriptional co-regulators which interact to translate the physiological stimulus of 

exercise into a transcriptional adaptation in a bid to return to homeostasis (Desvergne et 

al., 2006). In turn, this affects the expression and activity of a number of enzymes that 

regulate metabolic processes such as substrate utilisation and mitochondrial function.  

 

In reviewing the literature it is impossible to ignore the significant role of the co-

activator PGC-1α in the exercise-mediated transcriptional adaptations. It is not 

surprising given that the signalling kinases discussed all converge to regulate its 

expression and acivity, added to it’s interactions with several transcription factors and 

the control it exerts over so many metabolic gene targets that it has been termed the 

‘master regulator’ by some researchers (Czubryt et al., 2003;Wu et al., 2002).  

 

In conclusion, it is clear from the literature that a single bout of exercise leads to a 

transient increase in the mRNA content of a plethora of genes involved in mitochondrial 

function, carbohydrate and lipid metabolism in human skeletal muscle as described 

above. Enhanced levels of these gene transcripts can lead to the synthesis of proteins 

and provoke remodelling of the muscle in the long term (Fluck, 2006). These changes in 

mRNA in response to exercise can lead to structural and functional adaptations in the 

muscle specific to the demands being placed on the system (Dufour et al., 2006). 

However, not enough is known about the mechanisms involved in these adaptations. 

Furthermore, the role of exercise and muscle contraction in terms of the mode, 

frequency, intensity and duration in transcriptional regulation is not fully understood. 

This information may have implications for the prevention and treatment of diseases 

such as Type 2 Diabetes Mellitus and obesity, therefore, further investigation into the 

adaptive response of human skeletal muscle to acute bouts of exercise is warranted. 
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Chapter III Methodologies 
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3.1 Introduction 

The overall aim of this thesis was to examine the regulation of metabolic gene 

expression in human skeletal muscle following an acute bout of exercise. For this 

purpose experiments were designed to investigate the impact of altered contraction 

force and frequency on metabolic gene expression.The experimental design for each 

study has many common elements to allow for comparison. This section will describe 

the experimental design and methodologies for both experiments. The development of 

novel techniques and procedures which had not previously been set up in the Metabolic 

Physiology Research Unit at DCU will also be described. 

 

3.1.1 Experiment I: 

Contraction-induced signalling and gene expression of metabolic genes and 

transcriptional regulators in human skeletal muscle: influence of exercise intensity 

Eight healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials, 

once each at either 40% or 80% VO2peak. A pedal frequency of 75-80RPM was 

maintained throughout both trials. Skeletal muscle biopsies from the m. vastus lateralis 

were taken at rest and at +0 h, +3 h and +19 h after exercise. 

 

 

Figure 3.1 Schematic of experimental design for experiment I 

 

3.1.2 Experiment II:  

Eight healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials 

at identical power outputs, eliciting approximately 50% VO2peak, pedalling at a cadence 

Biopsies 

Meal
s 

Exercise at 40% or 80% VO2peak until 400 kcal 
expended 

Ex. start - 4 h Ex. start + 0 h + 3 h + 19 h 

O/N Fast O/N Fast 
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of either 50 RPM or 80 RPM. Skeletal muscle biopsies from the m. vastus lateralis were 

taken at rest and at +0 h, +3 h and +19 h after exercise. 

 

 

Figure 3.2 Schematic of experimental design for experiment II 

3.1.3 Participants 

Eight healthy young, sedentary, males participated in each study. In all cases the 

participants provided written informed consent, after an explanation of the experimental 

procedures, which were approved by the Dublin City University Research Ethics 

Committee and conformed to the Declaration of Helsinki. Each participant completed a 

health history questionnaire underwent a medical screening examination and 

electrocardiogram to confirm their suitability for the experiment. Subjects were 

excluded if they exercised regularly, smoke, had a BMI >27, had diabetes, suffered 

from other acute or chronic diseases or used drugs that the physician and investigators 

decided would interfere with the normal adaptation to the proposed intervention.  

3.1.4 Peak Oxygen Uptake (VO2peak) and verification of submaximal 

intensity 

All exercise tests were carried out under standard laboratory conditions (19-21°C, 40-

55% relative humidity). Participants performed an incremental exercise test to volitional 

fatigue on an electronically braked cycle ergometer (Ergoline 900, SensorMedics, 

Yorba Linda, CA) to determine VO2peak. Subjects began cycling at 100 W for five 

minutes to warm-up and the power output was increased by 50 W every two minutes 

thereafter until volitional fatigue. Oxygen uptake was considered to have peaked if two 

of the following criteria were met: (i) a levelling off of VO2 with increasing power 

output (increase of less than 2 mL.kg
-1

.min
-1

), (ii) a HR within 10 beats of the age 

predicted HRmax (220 bpm – age in years), (iii) a RER greater than 1.10. Expired air was 

Biopsies 

Meal
s 

Cycle at 50 or 80 RPM at 50% VO2peak until 400 kcal 
expended 

Ex. start - 4 h Ex. start + 0 h + 3 h + 19 h 

O/N Fast O/N Fast 
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collected continuously throughout exercise, sampled from a mixing chamber and 

analysed by the Vmax 29C indirect calorimetry system (SensorMedics, Yorba Linda, 

CA). Heart rate was continuously monitored during exercise by radiotelemetry (Polar 

Vantage NVTM; Polar, Port Washington, NY). 

 

Between four and seven days later, each participant returned to the laboratory to 

perform sub-maximal exercise to verify the power outputs required to elicit 40% and 

80% VO2peak in Experiment I, and 50% VO2peak in Experiment II. The power output 

required to elicit a given percentage of VO2peak was estimated based on the linear 

relationship between oxygen uptake (y-axis) and power output (x-axis). For a given 

percentage of VO2peak, the corresponding power output was estimated by solving for x 

using the linear function, y=mx+c, where y is VO2, x is power output, m is the slope of 

the relationship between VO2 and power output and c is the y-axis intercept.  Subjects 

cycled for 10 min at a number of different power outputs, starting at 15 W below the 

predicted power output and adjusted thereafter until the correct percentage of VO2peak 

was maintained in steady state. This trial took approximately 30-40 minutes. 

3.2 Experimental trials 

Exercise trials were carried out in random order and separated by exactly seven or 

fourteen days depending on the availability of subjects and the research team. The 

experimental design required the participants to complete two main experimental trials 

consisting of cycle exercise at either high (80% VO2peak, HI) or low (40% VO2peak, LO) 

intensity in experiment I or at identical power outputs, eliciting approximately 50% 

VO2peak, pedalling at a cadence of either 50 RPM or 80 RPM in experiment II. The 

exercise bouts were isocaloric in both experiments and required each participant to 

expend 400 kcal. The experimental protocol was identical for the two trials in every 

aspect except for the exercise intensity in experiment I and the contraction frequency in 

experiment II. The isocaloric energy expenditure resulted in a different duration of 

exercise between trials. All experimental trials began between 0730 and 0930 to 

preclude the influence of circadian variation. Participants reported the Metabolic 

Physiology Research Unit after an overnight (8-10 h) fast and were requested to rest 

quietly in a supine position for approximately ten minutes. A resting venous blood 

sample (12 ml) was collected by venipuncture of an antecubital vein and a resting 

muscle biopsy was taken (#1). Subjects then consumed a high CHO breakfast (see 



 

65 

“Dietary Control”) and remained in the laboratory with minimal ambulation until the 

commencement of the exercise bout. Exercise began 4 h after the consumption of the 

morning meal to allow for nutrient digestion, absorption and disposal. Immediately 

prior to exercise, an indwelling catheter (Insyte-W 20/22G, Becton Dickinson, Franklin 

Lakes, NJ) was introduced into an antecubital vein. Blood samples (8 ml) were taken at 

rest, at 10 min intervals throughout exercise and at the termination of exercise. Expired 

air was collected continuously throughout exercise and analysed using the Vmax 29C 

gas analysis system (SensorMedics, Yorba Linda, CA). The intensity of exercise was 

monitored and the minute averages for oxygen consumption and carbon dioxide 

production were used to calculate the rate and total amount of energy expenditure 

(CONSOLAZIO et al., 1963). Participants were required to maintain the cycle cadence 

between 70 and 75 rpm in experiment I and at either 50 or 80 rpm in experiment II. A 

second muscle biopsy (#2) was taken immediately after exercise. In the 3-hrs post 

exercise participants remained in the laboratory with minimal ambulation and were 

permitted to consume only water ad libitum. Another muscle biopsy (#3) was taken 3-

hrs after exercise and a standardised meal was consumed after which participants were 

free to leave the laboratory. Subjects were provided with a standardised evening meal 

and snack, and water was permitted ad libitum. The following morning participants 

reported to the laboratory after a similar overnight fast and were requested to rest 

quietly for approximately ten minutes. A resting venous blood sample was collected and 

a fourth muscle biopsy (#4) was taken at 19 h after the termination of exercise. 

3.2.1 Muscle Biopsies 

A biopsy was then taken from the middle portion of the vastus lateralis using a 

percutaneous muscle biopsy needle (United HealthCare), as previously described 

(Bergstrom et al., 1962).  

After the area of the skin above the muscle to be biopsied was identified the area was 

shaved and cleaned by the application of a fluid antiseptic (Betadine) which was by an 

alcohol swap. After cleaning, the muscle was anaesthetised with 2% w/v Lidocaine HCl. 

This was done by injecting a small amount (1 ml) of the anaesthetic to raise a bleb 

under the skin and more (3-5 ml) into the covering of the muscle (fascia).  

 

The anaesthetic was given 5–minutes prior to biopsy to desensitise the muscle and then 

a small incision (approx 0.5-1 cm) was made with a #11 scalpel. The incision was made 

through the skin and the covering (fascia) of the muscle. The biopsy needle was then 
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introduced through the fascia and a number of muscle pieces were cut after brief suction. 

The needle was removed from the leg and the muscle sample (~100-150 mg) was 

immediately snap frozen in liquid nitrogen and stored at -80°C for subsequent analysis. 

The incision was then closed with steri-strips and wrapped in a large pressure bandage.  

 

Biopsies #1 and #4 were taken from the right leg; biopsies #2 and #3 were taken from 

the left leg. For each biopsy, a fresh incision was made at the biopsy site, at least 2 cm 

distal or proximal to any other site. In the case of biopsy #2, local anaesthetic was 

administered immediately prior to exercise during the high intensity trial of experiment 

I. During the low intensity trial and both trials of experiment II, exercise was interrupted 

briefly approximately fifteen minutes prior to the estimated end of exercise and the 

anaesthetic was administered. The post-exercise muscle biopsies were completed within 

90 seconds. 

 

Ideally, we would have liked to investigate a time course of metabolic signalling and 

gene expression over a 24 h period with more time points but as the muscle biopsy is an 

invasive procedure ethical considerations limited the number of biopsies performed. 

Due to the transient nature of contraction signalling, transcriptional activation and 

mRNA and protein expression, it was important to time the biopsies to coincide with 

critical events in the metabolic response to exercise. A fasting muscle biopsy was 

performed on the morning of each trial to provide a resting/control sample. Activation 

of various signalling kinases has been shown during exercise but this decreases rapidly 

upon cessation of contraction (Wojtaszewski et al., 2000); (Chen et al., 2003); (Rose et 

al., 2006); (Widegren et al., 1998). This evidence prompted us to carry out a biopsy 

immediately post exercise. Numerous studies have shown that the mRNA of a number 

of exercise responsive genes are upregulated between 2-4h after exercise in humans 

(Civitarese et al., 2005);(Kraniou et al., 2000);(Yang et al., 2005);(Cluberton et al., 

2005);(Vissing et al., 2005). It is for this reason we elected to perform a biopsy 3 h post 

exercise. The final biopsy at 19 h post exercise was performed to determine if there had 

been any changes in protein content following the exercise bout. 

 

3.2.2 Dietary Control 

It was important to control dietary intake during the experimental trials as nutrient 

availability has been shown to alter the activity of signalling kinases and the expression 
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of some metabolic genes (Pilegaard et al., 2003a); (De Lange et al., 2006). Pre-exercise 

preparation was the same for each exercise test. Subjects were instructed to abstain from 

caffeine and alcohol and refrain from physical activity of any nature for 24 h prior to 

testing. Subjects were asked to keep a one day food diary on the day prior to the first 

experimental trials and to replicate their dietary intake for the second trial.  The dietary 

intake during each experimental trial was standardised, in terms of total energy intake 

and macronutrient composition for each participant. Total energy intake was based on 

an estimate of daily energy expenditure using the Harris-Benedict (1918) equation (see 

below) multiplied by an appropriate activity factor. As the subjects performed very little 

activity throughout the day of the experimental trial an activity factor of 1.4 was 

adopted based on a paper by (Durnin, 1996), plus 400 kcal added for energy expended 

during the exercise trial, therefore, the total energy expended was estimated at (1.4 * 

Harris-Benedict) + 400.  This caloric intake was provided in the form of three main 

meals and one snack. Each of the main meals provided 30% of the total caloric intake 

with the remaining 10% provided by the evening snack. Total energy, carbohydrate, fat 

and protein intake was 36 kcal.kg
-1

 BM, 6.0 g.kg
-1

 BM, 0.8 g.kg
-1

 BM, and 1.2 g.kg
-1

 

BM, respectively. Hence, the percentage contribution of each macronutrient was 67% 

CHO, 20% fat and 13% protein. No consumption of other food or beverage other than 

water was permitted. 

 

BMR (kcal) = (13.75 * body mass in kg) + (5 * height in cm) - (6.76 * age in yr) + 66 

3.3 Laboratory analysis 

3.3.1 Blood analysis 

Blood samples (4 ml) were collected in vacutainers (FX Plus, Becton Dickinson, 

Franklin Lakes, NJ) and stored on ice until centrifugation at 3000 rpm for 15 min at 4°C. 

Plasma glucose and lactate was determined in duplicate using an automated analyser 

(YSI 2300 Stat Plus, Yellow Springs Instruments, OH). In addition, blood samples (4 

ml) were collected into vacutainers (Z, Becton Dickinson, Franklin Lakes, NJ) and 

centrifuged as above. The serum was stored at -80°C for later analysis. 
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3.3.2 RNA isolation and qPCR 

Total RNA was isolated from ~20 mg crude tissue based on the acid guanidinium 

thiocyanate-phenol-chloroform extraction method of Chomczynski & Sacchi (1987) 

using TRI reagent (Sigma-Aldrich, UK; T9424) as per the manufacturer’s instructions. 

Total RNA was determined spectrophotometrically at 260 nm and the integrity of each 

RNA sample was verified by measuring the spectrophotometric 260/280 nm ratio (>1.8) 

(RNA 6000 Nano Lab Chip & 2100 Bioanalyzer, Agilent Technologies, Palo Alto, CA). 

Following DNase digestion (RQ1 RNase-free DNase; Promega, Madison, WI; M6101), 

2 µg of RNA was reverse transcribed to cDNA using the Reverse Transcription System 

(Promega, Madison, WI; A3500) primed with oligo-dT(15) as per the manufacturer’s 

instructions. The cDNA template was stored at -20°C until further analysis.  

 

Real-time PCR was performed using the ABI Prism 7900 high throughput sequence 

detection system and software package (version 1.1; Applied Biosystems, Foster City, 

CA) and Assay-on-Demand pre-designed gene-specific primer and probe sequences 

(P/N 4331182; Taqman® Gene Expression Assays, Applied Biosystems, Foster City, 

CA). The PCR reaction mix in each well consisted of 30 ng cDNA template (6 ng/µl), 

Taqman probe, forward and reverse primer set, Taqman Universal Master Mix (Applied 

Biosystems, Foster City, CA) and nuclease-free water up to 20 µl. The PCR profile for 

all genes consisted of one cycle at 50°C for 2 min, followed by a denaturing cycle at 

95°C for 10 min, followed by 40 cycles of denaturing at 95°C for 15 sec and annealing 

and elongation at 60°C for 1 min.  

 

Each sample was analysed in duplicate and the mRNA content was calculated from a 

standard curve (critical threshold cycle number vs. log dilution) run with the samples. 

The standard curve was constructed using serial dilutions of an RNA sample pooled 

from the entire sample set and included in the RT-PCR reaction. The average CT value 

of the unknown samples was converted to relative expression data using the appropriate 

standard curve. mRNA data was expressed as the ratio between the gene of interest and 

the housekeeper gene, GAPDH. We tested a number of housekeeping genes, based on 

previous papers that measured mRNA following exercise. Our analysis showed that 

GAPDH was constitutively expressed and stable at all four sampling points for both 

studies (Figure 3.3). In contrast, we found considerable variation in the expression of 
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other housekeeper genes, β2-microglobulin and cyclophilin, at the same time points 

(data not shown). 

 

Table 3.1 Gene targets and assay ID for the pre-designed primer and probe sequences 

used for the experiments. 

        

Target   

Gene 

ID Assay ID 

    

COXIV   1327 Hs00266371_m1  

CPT1  1375 Hs00189258_m1  

CREB  1385 Hs00231713_m1  

ERRα  2101 Hs01067166_g1  

FOXO1A   2308 Hs00231106_m1  

GEF   56731 Hs00219920_m1  

GLUT4  6517 Hs00168966_m1  

MEF2A   4205 Hs00271535_m1  

MEF2D   4209 Hs00232237_m1  

NRF-1  4899 Hs00192316_m1  

NRF-2  2551 Hs00745591_s1  

PDK4  5166 Hs00176875_m1  

PGC1α  10891 Hs00173304_m1  

PPARδ  5467 Hs00602622_m1  

RIP140  8204 Hs00534035_s1  

Sirt1  23411 Hs01009006_m1  

UCP3  7352 Hs00243297_m1  

        

    

Assay ID corresponding to the TaqMan® Gene Expression Assay ID (P/N 4331182; 

Applied Biosystems). Probe and primer sequences are proprietary information. 
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Figure 3.3. Verification of GAPDH as a stable reference gene 
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3.3.3 Western Blot Analysis 

Approximately 20-25 mg of crude muscle was homogenised in 1 ml of ice-cold 

homogenisation buffer for the determination of protein content (20 mM Tris [pH 7.8], 

137 mM NaCl, 2.7 mM KCl, 1 mM MgCl2, 1% Triton X-100, 10% [wt/vol] glycerol, 10 

mM NaF, 1 mM EDTA, 5 mM sodium pyrophosphate, 0.5 mM Na3VO4, 1 µg/ml 

leupeptin, 0.2 mM phenylmethyl sulfonyl fluoride, 1 µg/ml aprotinin, 1 mM 

dithiothreitol, 1 mM benzamidine, and 1 µM microcystin) using a motorised pestle. 

Muscle homogenates were rotated end over end for at least 60 min at 4°C. Samples 

were centrifuged (12,000 g for 15 min at 4°C), and protein concentration of the 

supernatant was determined using the Bio-Rad Protein Assay Kit (Bio-Rad Laboratories, 

Hercules, CA; 500-0002), which is based on the Bradford method of protein 

determination (Bradford, 1976). An aliquot of muscle homogenate (50 µg protein) was 

mixed with Laemmli buffer containing β-mercaptoethanol (protein concentration, 2 

µg/µl) and subjected to sodium dodecyl sulphate-polyacrylamide gel electrophoresis 

(SDS-PAGE). Samples for each subject from the respective exercise trials were 

compared in parallel. Proteins were separated by SDS-PAGE (7.5-10% resolving gel) 

by running overnight (~13 hours) at 35mA in electrophoresis buffer (Tris base 25mM, 

Glycine 192mM, 1% SDS). Proteins were then transferred to polyvinylidine fluoride 

(PVDF) membranes (Immobilon P-IPVH00010, Millipore, Billerica, MA) by running 

for 4 hours at 500mA in transfer buffer (Tris base 25mM, Glycine 192mM, 10% 

Methanol). Membranes were blocked with Tris-buffered saline (pH 7.6) with 0.02% 

Tween 20 (TBS-t) containing 5% non-fat dried milk protein for 2 h. Membranes were 

incubated overnight with specific antibodies at concentrations listed in Table 3.3. 

Membranes were washed in TBS-t (4 X 15min) and incubated with appropriate 

secondary horseradish peroxidase-conjugated antibodies for 2 hours and the wash step 

was repeated (1:20000; Bio-Rad Laboratories, Hercules, CA). Immunoreactive proteins 

were visualized by enhanced chemiluminescence (incubated for 5 mins, dried and 

placed in cassette) (ECL; Amersham Biosciences, Arlington Heights, IL) on developing 

film and quantified by densitometry (GS710 Calibrated Imaging Densitometer, Biorad 

Laboratories, Hercules, CA) using the Quantity One software package (BioRad 

Laboratories, Hercules, CA). 
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Table 3.2 Resolving and stacking gels for SDS-PAGE separation and analysis by 

Western blot 

           

Resolving gels 6% 7.5% 10% 12% Stacking gel  

ddH2O (ml) 21.8 19.4 16.4 14 ddH2O (ml) 6.2 

1.5M Tris pH 8.8 

(ml) 10 10 

              

10 

            

10 

0.5M Tris pH 6.8 

(ml) 2.5 

30% Acrylamide 

(ml) 8 10 

            

13.2 

           

16 

30% Acrylamide 

(ml) 1.3 

10% SDS(ul) 400 400 400 400 10% SDS(ul) 100 

10% APS (ul) 180 200 180 200 10% APS (ul) 100 

Temed (ul) 16 20 16 20 Temed (ul) 10 

 

 

 

 

Table 3.3 Antibodies directed against target proteins for immunoblot analysis 

          

Target Supplier Code 

           

Source 

Molecular 

Weight Concentration 

      

COXIV Cell Signaling 4844 

Polyclonal 

Rabbit IgG 

17 kDa 

1:1000 

CPT1 Santa Cruz sc-20670 

Polyclonal 

Rabbit IgG 

~75 kDa 

1:500 

ERRα Santa Cruz sc-32972 

Polyclonal 

Goat IgG 

~50 kDa 

1:500 

FOXO1A Cell Signaling 9454 

Polyclonal 

Rabbit IgG 

78-82 

kDa 1:1000 

GAPDH Santa Cruz sc-25778 

Polyclonal 

Rabbit IgG 

37 kDa 

1:500 

HKII Cell Signaling 2106 

Polyclonal 

Rabbit IgG 

102 kDa 

1:1000 

PDK4 Abgent AP7041b 

Polyclonal 

Rabbit IgG 

46 kDa 

1:500 

PGC-1α Santa Cruz sc-13067 

Polyclonal 

Rabbit IgG 

75 kDa 

1:500 

PGC-1α Calbiochem ST1202 

Polyclonal 

Mouse IgG 

90-95 

kDa 1:1000 

phospho-

Ser
133

-CREB Cell Signaling  9191 

Polyclonal 

Rabbit IgG 

43 kDa 

1:1000 

phospho-

Ser
79

-ACC  Cell Signaling 3661 

Polyclonal 

Rabbit IgG 

280 kDa 

1:500 

phospho-

Thr
172

-

AMPK  Cell Signaling 2531 

Polyclonal 

Rabbit IgG 

62 kDa 

1:1000 

phospho- Cell Signaling 3361 Polyclonal 50-75 1:1000 
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Thr
286

-

CaMKII  

Rabbit IgG kDa 

 

 

 

3.3.4 PGC-1α Acetylation 

Aliquots of muscle homogenates (200 µg protein) were used to determine PGC-1α 

acetylation. 20 µl of recombinant Protein A Agarose beads (#20365, Thermo Scientific) 

were added to the muscle homogenates and left to incubate for 1 hour at 4°C to pre-

clear the lysate. The samples were spun at 14,000 rpm for 1 minute and the supernatant 

was transferred to another tube. 4µg of antibody (PGC-1α H-300, Santa Cruz 

Biotechnology) was added to 200µg of muscle homogenate and made up to 200µl with 

homogenate buffer. Samples were rotated for 8 hours at 2-4
0
C. 50µl of Protein A 

Agarose beads (Pierce) were added to each sample and allowed to rotate overnight at 2-

4
0
C. Samples were spun at 14000 RPM for 1 minute to pellet the beads. The supernatant 

was removed and discarded (or kept as control during optimisation of technique). 1ml 

of homogenate buffer was added to each sample and samples were agitated briefly. 

Samples were spun at 14000 RPM for 1 minute. The supernatant was removed and this 

wash step was repeated 3 times with homogenate buffer and twice with TBS. The 

supernatant was removed and discarded. Samples were resuspended in Laemmli buffer 

and heated to 95
o
C for 5 minutes and disturbed occasionally. Samples were spun at 

14000 RPM for 1 minute. The supernatant was separated by SDS-PAGE, transferred to 

polyvinylidine fluoride (PVDF) membranes (Immobilon PIPVH00010, Millipore, 

Billerica, MA) and blocked with Tris-buffered saline (pH 7.6) with 0.02% Tween 20 

(TBS-t) containing 5% non-fat dried milk protein for 2 h. Membranes were incubated 

overnight in Acetyl-Lysine antibody (#9441 Cell Signalling) or PGC-1α (H-300 Santa 

Cruz Biotechnology) at a concentration of 1:1000. Membranes were washed in TBS-t 

and incubated with appropriate secondary horseradish peroxidase-conjugated antibodies 

(1:20000; Bio-Rad Laboratories, Hercules, CA). Immunoreactive proteins were 

visualized by enhanced chemiluminescence (ECL; Amersham Biosciences, Arlington 

Heights, IL) and quantified by densitometry (GS710 Calibrated Imaging Densitometer, 

Biorad Laboratories, Hercules, CA) using the Quantity One software package (BioRad 

Laboratories, Hercules, CA). 
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3.3.5 Glycogen determination 

Frozen muscle samples (~10 mg) were lyophilised for 17-19 h and dissected free of 

blood and connective tissue. 0.5ml 2N HCl was added to ~2mg of muscle, the volume 

of tubes were weighed and noted. Samples were covered with marbles (to allow some 

ventilation during boiling) and hydrolysed in 2N HCL by incubation at 100°C for 2 h 

with agitation every 15 min.  Once cooled samples were weighed and reconstituted to 

original volume with ddH2O. Samples were then neutralised by adding 1.5ml 0.67N 

NaOH and agitated vigorously to ensure muscle was in solution. .  1 ml of reagent mix 

containing Tris base, HCl, MgCL2, DTT, ATP, NADP, HK and G-6-PDH was added to 

each sample and a glucose standard. The reaction was allowed to proceed for 10 

minutes and samples were excites at 340nm on a fluorometer. A blank value was 

calculated on the flourometer by using the reagent mix and this was then subtracted 

from sample values (Passonneau & Lauderdale, 1974). 

 

Glycogen Formula 

∆Sample = Sample – Blank 

∆Std = Standard – Blank 

C = mM concentration of standard 

V = ml volume of standard 

D = Dilution 

W = weight of muscle 

((∆Sample/ ∆Std)*(C*V)*(D)) = Glycogen mmol.kg
-1

.dw 
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3.3.6 Substrate Utilisation 

Values for VO2, VCO2, RER, VE (STPD), and FEO2 were recorded from expired air using 

60 s averages by a member of the research team. This data was used to calculate the rate 

of energy expenditure, carbohydrate and fat oxidation in real time. This enabled us to 

determine when 400 kcal had been expended during the exercise trials along with 

providing data on substrate utilisation during exercise. (CONSOLAZIO et al., 1963).  

 

3.3.7 Statistical analysis 

Experimental data are presented as mean ± SE. Data were evaluated using the 

SigmaStat for Windows v3.11 software package (Systat Software, Inc, San Jose, CA). 

Two-way (trial x time) repeated measures ANOVA with pair-wise comparisons was 

used to determine differences between the two intensities of exercise for variables with 

serial measurements. The significance level was set at α=0.05 for all statistical tests. 

 

3.4 Methodological Development 

It is important to note that none of these analytical techniques had been developed in the 

laboratory prior to these experiments. As a result a significant amount of time and effort 

was dedicated to developing, optimising and validating these methodologies. As 

expected with the setting up of any technique there was much trial and error involved 

but I had to ensure the data analysis was reliable. This proved to be an invaluable 

experience in terms of the understanding I have gained and an appreciation of the 

challenges faced in establishing techniques.  

 

As part of the PhD process I sought the guidance of more experienced researchers in 

other departments within DCU such as the National Institute for Cellular Biotechnology 

(NICB), and the Vascular Health Research Centre and at other institutions. I spent two 

months at the Karolinska Institutet, under the guidance of Prof. Juleen Zierath learning 

to perform western blots and qPCR.  

 

In the process of developing the methods and optimising assays we identified a number 

of issues that are worthwhile noting in this section. In particular the evaluation of PGC-
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1α protein and acetylation were particularly challenging. As PGC-1α was such a 

criticial element of the experiments, a significant amount of time was spent optimising 

these assays. Some of the issues are now highlighted. The PGC-1α acetylation method 

described earlier had never been performed with human tissue before so this required 

the development of a novel technique. There were many issues encountered in the 

development of the assay including antibody specificity and quantitiy, protein quantity, 

Protein A/G agarose beads, and the make up of the homogenisation buffer including 

protease and acetylase inhibitors. In all, the development of this technique took 

approximately six months.  

3.5 Methodological issues 

 

3.5.1 PGC-1α protein 

A number of commercial antibodies are available for the detection of PGC-1α protein 

by immunoblot techniques and we have tried all of them in an attempt to determine their 

specificity and validity. There have been reservations about the specificity of a number 

of these antibodies among researchers in the field which have been voiced at conference 

proceedings. We have learnd from our collaborators that one of the antibodies we had 

tried detected a band in PGC-1α-null mice (Brendan Egan, Alexander Chibalin, 

Karolinska Institutet, personal communication). Therefore, we spent a lot of time 

optimising this assay and interpret published data using PGC-1α antibodies with caution.  

 

Initially we used the PGC-1α H-300 antibody (sc-13067, Santa Cruz Biotechnology), 

based on the fact that it had been used in previously published papers (Taylor et al., 

2005;Akimoto et al., 2005;Hancock et al., 2008). However, an issue arose as this 

antibody repeatedly produced a band at a molecular weight of ~75 kDa as opposed to 

the 92-105 kDA molecular weight of the full-length protein. To troubleshoot these 

problems we used samples from separate protein extractions to ensure there had been no 

degradation of the protein to no avail. We also used a rat tissue sample we had received 

as a gift from our collaborators at the Karolinska Institutet. Many different 

concentrations of antibody were used as well as alternative blocking solutions such as 

milk protein and Bovine Serum Albumin to minimise the background and possibility of 

non-specific antibody binding. We sought assistance from Santa Cruz Biotechnology 
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and they assured us of the specificity of the antibody. While other studies report PGC-

1α protein using this antibody, none have reported the molecular weight of the detected 

band. Recently, we were informed of an antibody (PGC-1α, ST1202, Calbiochem) 

(Puigserver et al., 1998), which was detecting a band at ~90-95 kDa in human skeletal 

muscle samples by a collaborator (Brendan Egan, Karolinska Institutet, Personal 

communication). We have since used this antibody with greater success, producing a 

blot with much less background and less non-specific bands. The band also appears at 

an appropriate molecular weight of approximately 90-95 kDa. The protein data 

presented in this document were obtained using this antibodyand the bands shown 

appeared at the correct molecular weight. 

 

3.5.2 PGC-1α acetylation 

This area of research has been evolving at a fast rate during our experiments. It became 

clear that not only the protein content, but the post-translational modification of PGC-

1α, in particular protein acetylation, was very important. In light of this, and the finding 

that SIRT1 which is known to deacetylate PGC-1α was increased in response to 

exercise we decided to investigate the acetylation status of PGC-1α. However, this had 

not previously been done in human skeletal muscle samples so required the 

development of a new technique.  

 

(Rodgers et al., 2005) had previously demonstrated PGC-1α acetylation in mouse liver 

tissue so we used a modified version of their protocol to begin with. An anti-PGC-1α 

(H-300 Santa Cruz Biotechnology) antibody was used as this had previously been 

shown to immunoprecipitate PGC-1α  and measure acetylation (Rodgers et al., 2005).  

We have subsequently found that there are specificity issues with this antibody as 

discussed, but it was the only one to have been reported in the literature at that time. 

When we used this antibody to immunoprecipitate PGC-1α several non-specific bands 

appeared at ~50, ~60 and ~150 kDa, whereas a band appeared at ~75 kDa in the 

supernatant which was run as a control. This suggests the antibody did not bind to its 

antigen. As this antibody had been used previously we persevered with it and decided to 

increase the quantity of antibody used until this was optimised at 4 µg. We also 

optimised the quantity of protein at 200 µg. Initially, muscle was homogenised as 

described (general methodology). The quantity of beads used also had to be optimised. 
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Following a number of unsuccessful attempts, doubts were cast as to the constituents of 

the homogenate buffer. We experimented with a modified RIPA buffer and the buffer 

used by (Rodgers et al., 2005) and found that the latter produced the best results, 

probably due to the addition of nicotinamide, an acetylase inhibitor. Recently, another 

paper has been published with PGC-1α acetylation data (Canto et al., 2009). In this 

study, the researchers used an extra deacetylase inhibitor (sodium butyrate) that we 

were unaware of at the time of analysis which may have improved the measurement of 

acetylation in our samples if we had included it in our buffer. After much optimisation 

we eventually produced blots displaying a band at ~75 kDa where no band was detected 

in the corresponding supernatant which was used as a control. It is difficult to state that 

this blot actually represents the true acetylation status of PGC-1α as the antibody used 

in this experiment has since been proved to be questionable. 
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Chapter IV Contraction-induced signalling and 

gene expression of metabolic genes and 

transcriptional regulators in human skeletal 

muscle: influence of exercise intensity 
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4.1 Introduction 

 

It has been well established that skeletal muscle is a highly malleable tissue, capable of 

metabolic and morphological adaptations in response to contractile activity (i.e. exercise) 

(Hood et al., 2006). This ability to adapt to physiological cues is termed muscle 

plasticity and allows the muscle to adjust its structure and function to the demands 

being placed on it. A single bout of exercise leads to a transient increase in the mRNA 

content of a plethora of genes involved in metabolic function in human skeletal muscle 

Enhanced levels of these gene transcripts can lead to the synthesis of proteins and 

provoke remodelling of the muscle if the stimulus is repeated frequently (Fluck, 2006). 

These changes in mRNA in response to exercise may gradually accumulate and alter 

muscle structure or function (Hoppeler & Fluck, 2002).  

 

An important feature of skeletal muscle plasticity is the specificity of the adaptive 

response to a given stimulus (Fluck & Hoppeler, 2003). Stimulation of rat muscle 

mimicking endurance and resistance exercise resulted in the upregulation of two 

different gene programs (Atherton et al., 2005). The specificity of the response is 

dependent on the intracellular signalling cascades that are activated and the magnitude 

of their activation. The signalling pathways involved are activated by alterations in ATP 

turnover, calcium flux, cellular stress and the redox state in the muscle cell. These 

metabolic pathways act as a coordinated network to (i) regulate substrate utilisation 

during after exercise and (ii) alter the expression of genes that will assist muscle 

adaptation to te physiological stress of exercise.  As outlined in Chapter 2, the 

identification of the transcription factor co-activator, PGC-1α, is particularly important 

for co-ordinating the expression of metabolic genes. 

 

The purpose of this project was to determine the impact of exercise intensity on the 

activation of contraction-mediated signalling cascades and PGC-1α gene expression. In 

addition, I sought to determine if the intensity of exercise altered the expression of 

PGC-1α co-activated genes and if these changes were associated with an increase in 

PGC-1α mRNA, protein content or protein function. We hypothesised that a single bout 

of high intensity exercise would result in greater activation of the AMPK and calcium 



 

80 

signalling cascades when compared to a single bout of isocaloric low intensity exercise, 

and that this would result in a differential transcriptional response of the metabolic 

proteins. 

 

4.2 Experimental design 

 

A detailed overview of the experimental design was provided in Chapter 3. Briefly, 

eight healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials, 

at either 40% or 80% VO2peak. Skeletal muscle biopsies from the m. vastus lateralis 

were taken at rest and at +0 h, +3 h and +19 h after exercise. 

 

Biopsies

Meals

Exercise at 40% or 80% VO2peak until 400 kcal expended

Ex. start - 4 h Ex. start + 0 h + 3 h + 19 h

O/N Fast O/N Fast

Biopsies

Meals

Exercise at 40% or 80% VO2peak until 400 kcal expended

Ex. start - 4 h Ex. start + 0 h + 3 h + 19 h

O/N Fast O/N Fast

 

Figure 4.1 Schematic representation of experimental design for experiment I 

 

Table 4.1 Physical characteristics of participants 

      

    n=8 

   

Age (yr)  24±1 

Height (m)  1.79±0.02 

Mass (kg)  80.3±2.2 

BMI (kg•m-2) 25.1±1.2 

Body fat (%) 16.0±3.3 

VO2peak (L•min-1) 3.23±0.18 

      

   

(Values are mean±SE) 
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4.3 Results for Experiment I  

 

4.3.1 Whole body energy expenditure and substrate utilization 

In both exercise trials subjects exercised at the target intensity and expended a similar 

amount of energy (Table 4.2). As a result the 400 kcal energy expenditure target was 

achieved significantly quicker in the high intensity trial (p<0.05). The rate of energy 

expenditure was greater during the high intensity trial (p<0.05) and this resulted in a 

greater reliance on the relative (p<0.05) and absolute (p<0.05) contribution of 

carbohydrate to energy expenditure . As expected the contribution of fat oxidation to 

total energy expenditure was lower during the high intensity trial (p<0.05).  

 

Table 4.2. Energy expenditure and substrate utilization during isocaloric low and high 

intensity exercise trials.  

   

  
Low 

Intensity 

High 

intensity 

   

Total EE (kcal) 412±11 403±1 

Rate of EE (kcal·min
-1

) 6.0±0.3 11.5±0.7** 

Exercise intensity (%VO2peak) 38.8±0.4 79.4±1.5** 

Exercise time (min) 69.9±4.0 36.0±2.2** 

RER 0.90±0.01 0.98±0.01** 

CHO oxidation rate (g•min
-1

) 0.9±0.1 2.5±0.2** 

Total carbohydrate oxidized (g) 64±2 89±3** 

Rate of fat oxidation (g•min
-1

) 0.23±0.02 0.12±0.04** 

Total fat oxidized (g) 15±1 4±1** 

Rate of glycogen utilization (mmol•kg
-1

 dw•min
-1

) 1.3±0.2 3.1±1.0** 

Plasma lactate at termination (mM) 1.22±0.11 7.23±1.07** 

      

Data are presented as mean±SE. ** significantly different compared to low intensity 

trial (p<0.05). 

 

Muscle glycogen content was similar at baseline (259±17 vs. 249±19 mmol•kg
-1

 dw for 

the LO and HI trials, respectively) and significantly decreased following both exercise 

trials (176±22 vs. 128±34 mmol•kg
-1

 dw for the low and high intensity trials, 
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respectively; p<0.05), but returned to baseline the following morning. As anticiated the 

rate of glycogen utilization was greater during the high intensity trial (Table 4.2). 

Plasma lactate concentration was unchanged from baseline during low intensity 

exerccise, but increased to 7.23±1.07 mM at the end of the high intensity trial (p<0.001 

compared to both baseline and low intensity exercise). This reflects the high intensity 

nature of the exercise. 
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Figure 4.2 Breakdown of the rate of carbohydrate utilisation by time over the course of 

each exercise protocol. Data are presented as mean±SE. 
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Figure 4.3 Breakdown of the rate of fat utilisation by time over the course of each 

exercise protocol. Data are presented as mean±SE. 
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4.3.2 Contraction-activated signalling cascades 

AMPK phosphorylation (Fig. 4.2A) was similar at baseline between trials, and 

increased 4.1-fold immediately following the high intensity exercise trial (p<0.05). 

However, there was no significant change in AMPK phosphorylation following 

isocaloric low intensity exercise, creating an intensity dependent difference between 

trials (p<0.05). AMPK phosphorylation is important but does not completely represent 

AMPK activity so it was decided to determine if a downstream marker of AMPK 

activation, acetyl CoA carboxylase β (ACCβ) phosphorylation. ACCβ phosphoylation 

was increased 3.6-fold (p<0.05) following low intensity exercise and 7.9-fold (p<0.05) 

after the high intensity trial. The intensity dependent difference in AMPK 

phosphorylation was also present with ACCβ phosphorylation. This corroborates the 

contention that there is greater activation of the AMPK signalling cascade following 

high intensity exercise compared with low intensity. 

 

Total CaMKII phosphorylation was defined as the summation of βM and γ/δ isoforms as 

previously describted (Rose et al., 2006;Rose et al., 2007)]. CaMKII phosphorylation 

increased immediately following the high intensity (42%, p<0.05), but not low intensity 

trial. There was an intensity dependent difference between trials (Fig. 4.4C; p<0.05). 

This suggests activation of the calcium signalling cascade during high intensity exercise 

but that low intensity is not sufficient to induce activation of this pathway. CREB is a 

downstream target of CaMKII and I determined if either exercise trial increased CREB 

phosphorylation. Phosphorylation of CREB (Fig. 4.4D) was unaltered immediately or 3 

h after exercise, but tended to increase after 19 h of recovery. Phosphorylation of other 

CaMKII substrates phospholamban and SRF was unaltered either immediately after 

exercise or in the recovery period. 
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Figure 4.4 Protein phosphorylation of (A) AMPK, (B) ACCβ, (C) CaMKII and (D) 

CREB, normalised to GAPDH protein content. Representative blots for each protein are 

included. Values are mean±SE. ** significantly different to Pre (p<0.05); † significant 

difference between trials (p<0.05). 
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4.3.3 Gene expression 

Transient changes were observed in a number, but not all, of the metabolic genes during 

the recovery from exercise. PGC-1α mRNA increased 3-hrs after both exercise trials in 

an intensity dependent manner and with a similar pattern to the intracellular kinases. 

(Fig. 4.5). PGC-1α mRNA was elevated by 3.8- and 10.2-fold 3 h after the low intensity 

and high intensity trials, respectively (p<0.05). There was a significant difference in 

PGC-1α mRNA between trials (p<0.05).  
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Figure 4.5 PGC-1α mRNA (Values are mean±SE, normalised to GAPDH mRNA. * 

significantly different to Pre (p<0.05); † significant difference between trials (p<0.05). 

 

 

We then decided to quantify the expression of known PGC-1α targets to determine if 

the intensity of exercise differentially expressed these genes, indicating a PGC-1α-

mediated response. Firstly, I quantified the mRNA of PGC-1α co-activated 

transcription factors NRF-1, NRF-2 and ERRα. I did not find an exercise or intensity 

dependent response for any of these target genes. As these transcription factors are 

primarily involved in the expression of nuclear encoded mitochondrial genes and that 

this process is unlikely to be responsive to an acute bout of exercise I decided to focus 

on genes that regulate substrate utilisation. 
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Figure 4.6 mRNA expression of selected genes (A) NRF-1, (B) NRF-2, (C) ERRα 

mRNA. (Values are mean±SE, normalised to GAPDH mRNA.  

 

The expression of FOXO1A mRNA (Fig. 4.7A) increased immediately and 3 h 

following the low and high intensity exercise trials (p<0.05). FOXO1A mRNA was 

greater 3 h following the high intensity compared to the low intensity trial (p<0.05). 

FOXO1A has been implicated in the expression of PGC-1α and the timeframe of these 

changes would suggest an increase in FOXO1A mRNA prior to a change in PGC-1α. 

However, there was no change in the protein expression of FOXO1 after exercise. The 

expression of PDK4 mRNA (Fig. 4.7B) was increased similarly 3 h after both high and 

low intensity exercise with no difference between trials (p<0.05). Therefore, the PDK4 

response to exercise may be dependent more on caloric expenditure and not the 

intensity of exercise. I also looked at the expression of PPARδ and found that mRNA 

expression was increased 3 h after high but not low intensity exercise (p<0.05). I did not 

find a change in the expression of CPT-1, the mitochondrial regulator of substrate 

utlisation or the uncoupling protein, UCP3. 
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Figure 4.7  mRNA expression of selected genes  (A) FOXO1A, (B) PDK4, (C) PPARδ, 

(D) CPT-1, (E) UCP3 mRNA. Values are mean±SE, normalised to GAPDH mRNA. * 

significantly different to Pre (p<0.05); † significant difference between trials (p<0.05). 
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Figure 4.8 Protein expression of FOXO1. Representative blots are included.  Values are 

mean±SE, normalised to GAPDH protein content.  

 

Finally, I decided to investigate GLUT-4 mRNA, which has previously been shown to 

increase following exercise. To our surprise I did not find a change in GLUT-4 mRNA 

following the high or low intensity exercise trials (Figure 4.9A). I performed further 

analysis of GEF and MEF2A&D expression, the enhancer and transcription factor for 

both PGC-1α and GLUT-4. I did not observe a change in the expression of any of these 

genes. These results suggested to us that changes in PGC-1α protein content or function 

is required before the regulation of down-stream genes is seen in the post-exercise 

period. 
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Figure 4.9 mRNA expression of selected genes (A) GLUT4, (B) GEF, (C) MEF2A, (D) 

MEF2D. (Values are mean±SE, normalised to GAPDH mRNA. 

 

 

4.3.4 PGC-1αααα protein content and acetylation 

I then decided to investigate the possibility that the activation of PGC-1α by 

postranslational modification, as well as its abundance, would be regulated by exercise. 

To examine this, I measured PGC-1α acetylation and protein content at each time point 

under both exercise conditions. I found that both PGC-1α protein content and 

acetylation were unchanged at any time point following exercise. 
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Figure 4.10 PGC-1α total protein and acetylation. Values are mean±SE, normalised to 

total PGC-1α protein expression. 

 

4.3.5 Transcription factor co-repressor Receptor Interacting Protein 

140 (RIP140) 

After this study had been completed I became aware of a recently identified 

transcription co-factor. This was RIP140, a co-repressor of metabolic gene expression 

and a negative regulator of PGC-1α mediated gene expression. A more detailed 

explanation of RIP140 function is provided in the discussion but our subsequent 

analysis identified for the first time in human skeletal muscle that RIP140 mRNA 

increased following an acute bout of exercise. I found increased RIP140 mRNA 

immediately and 3-hrs following both exercise trials but no differences between trials 

(p<0.05). (Fig. 4.11).  
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Figure 4.11 RIP140 mRNA. (Values are mean±SE, normalised to GAPDH mRNA. * 

significantly different to Pre (p<0.05); † significant difference between trials (p<0.05). 

 

4.4 Summary 

In summary, high intensity exercise caused a greater upregulation of AMPK and 

CaMKII phosphorylation compared with low intensity. This suggests that high intensity 

exercise produces greater activation of the signalling cascades in control of metabolic 

regulation. This was accompanied by a similar intensity-dependent effect on the mRNA 

expression of the transcriptional co-activator PGC-1α. This may have implications for a 

number of PGC-1α co-activated genes and downstream gene targets. A similar intensity 

effect was seen in the expression of the transcription factor FOXO1A. PDK4 mRNA 

expression was increased after both exercise conditions and no change was observed in 

GLUT4 expression. These results suggest that exercise regulates substrate utilisation 

and that the intensity of exercise may play a role in that regulation. Finally, I observed 

an increase in the expression of the transcriptional repressor RIP140 after exercise, 

which was a novel finding. The significance and implications of these results will be 

discussed in detail in Chapter 6.  
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Chapter V The impact of contraction frequency 

during an acute bout of exercise on the expression 

of genes involved in metabolism and substrate 

selection in human skeletal muscle. 
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5.1 Introduction 

The intensity of exercise is often used to differentially regulate skeletal muscle function. 

However, the frequency of contaction is also an important determinant of exercise 

outcomes. A transient increase in cytosolic calcium concentration is triggered by each 

wave of sarcolemmal depolarization during muscle contraction and mounting evidence 

links these calcium transients and associated activation of calcium-dependent protein 

kinases and phosphatases with the adaptive response to exercise (Chin, 2004;Chin, 

2004;Ojuka, 2004;Ojuka, 2004). It is thought that the amplitude and duration of Ca
2+

 

transients in response to activity can determine the gene transcription profile, coupling 

the extent of muscle excitation to transcription and allowing muscles to adapt 

specifically to the demands placed on them (Chin, 2005). The specificity of signal 

transduction by calmodulin is determined by the specific CaMK isoform activated, their 

localisation and the duration, amplitude and frequency of Ca
2+

 flux (Chin, 2005). 

 

We sought to alter the calcium transient by varying the frequency of contraction while 

maintaining the power output during exercise. We believed that a higher frequency of 

contraction would result in a greater number of muscle contractions with a lower 

amplitude and duration of calcium flux. The purpose of this experiment was to 

investigate the impact of altered calcium flux, by varying the frequency of skeletal 

muscle contraction, on the activation of contraction-mediated signalling cascades and 

on the expression of genes of metabolic genes following an acute bout of exercise. We 

hypothesised that there would be greater activation of the calcium-induced signalling 

cascades (CaMKII in particular) in response to cycling exercise with a greater frequency 

of contraction. We also predicted that cycling at a higher contraction frequency would 

result in greater induction of the metabolic genes regulated by the calcium-activated 

signalling pathways compared with low contraction frequency. 

 

 

5.2 Experimental design 

A detailed overview of the experimental design was provided in Chapter 3. Briefly eight 

healthy, sedentary males performed two isocaloric (400 kcal) cycle exercise trials at 
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identical power outputs, eliciting approximately 50% VO2peak, pedalling at a cadence of 

either 50 RPM or 80 RPM. Skeletal muscle biopsies from the m. vastus lateralis were 

taken at rest and at +0 h, +3 h and +19 h after exercise. 

 

 
 

Figure 5.1 Schematic representation of experimental design for experiment II 

 

Table 5.1 Physical characteristics of participants.  

 

      

    n=8 

   

Age (yr)  21.6±4.3 

Height (m)  1.82±0.06 

Mass (kg)  81±7.2 

BMI (kg•m-2) 24.5±2.48 

Body fat (%) 13.4±5.6 

VO2peak (mL•kg.min-1) 37.4±5.9 

      

   

(Values are mean±SE) 

 

 

Biopsies 

Meal
s 

Cycle at 50 or 80 RPM at 50% VO2peak until 400 kcal 
expended 

Ex. start - 4 h Ex. start + 0 h + 3 h + 19 h 

O/N Fast O/N Fast 
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5.3 Results for Experiment II 

 

5.3.1 Whole body energy expenditure and substrate utilisation 

Total energy expenditure and the rate of energy expenditure were similar between trials 

(Table). The low frequency trial lasted approximately 6-mins longer despite working at 

the same power output in both trials. The non-significant difference in exercise duration 

was related to a lower relative oxygen consumption during the low frequency trial 

(p<0.05). This difference may also have accounted for the greater rate of carbohydrate 

oxidation (p<0.05) despite a similar respiratory exchange ratio. There was no difference 

in the fat oxidation rate or total fat utilisation between trials. Plasma lactate 

concentration was unaltered from baseline at any time point with no variation between 

contraction frequencies. This was probably due to the low intensity nature of the 

exercise. 

 

Table 5.2 Energy expenditure and substrate utilization during isocaloric exercise trials at 

50 and 80 RPM.  

   

  50 RPM 80 RPM 

   

Total EE (kcal) 409±2 411±2 

Rate of EE (kcal·min
-1

) 7.0±0.3 8.1±0.425 

Exercise intensity (%VO2peak) 47.8±1.1 54.6±1.4** 

Exercise time (min) 58.5±3.1 52.6±3.0 

RER 0.96±0.01 0.98±0.01 

CHO oxidation rate (g•min
-1

) 1.44±0.10 1.74±0.11** 

Total carbohydrate oxidized (g) 81.9±2.3 89.8±2.7** 

Rate of fat oxidation (g•min
-1

) 0.13±0.01 0.11±0.01 

Total fat oxidized (g) 7.61±1.01 5.53±0.65 

Plasma lactate at termination (mM) 1.74±0.16 2.02±0.25 

      

Values are mean±SE. ** significantly different compared to 50 RPM trial (p<0.05). 
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Figure 5.2 Breakdown of the rate of carbohydrate utilisation by time over the course of 

each exercise protocol. (Values are mean±SE) 
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Figure 5.3 Breakdown of the rate of fat utilisation by time over the course of each 

exercise protocol. (Values are mean±SE) 

 

 

5.3.2 Contraction-activated signalling cascades 

Phosphorylation of AMPK was not significantly different at any time point with no 

difference observed between exercise trials. ACCβ phosphorylation was increased 

(p<0.01) immediately after exercise compared with baseline, 3 h and 19 h of recovery, 

while there was no difference between contraction frequencies.  
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There was a decrease in Total CaMKII phosphorylation 19 h following exercise 

compared with resting and immediately post exercise, and this change was independent 

of the frequency of contraction. Phosphorylation of CREB was unchanged by cycling at 

either 50 or 80 RPM.  
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Figure 5.4 Protein phosphorylation of (A) AMPK, (B) ACCβ, (C) CaMKII and (D) 

CREB, normalised to GAPDH protein content. Representative blots for each protein are 

included. Values are mean±SE. * significantly different to Pre (p<0.05). 

 

5.3.3 Gene expression 

In this experiment we focused on the expression of genes that were exercise responsive 

in experiment I. The intensity of exercise in this experiment was close to the low 

intensity trial in experiment I. There was a transient change in the expression of some, 

but not all of the metabolic genes analysed in response to exercise. Despite the fact that 

AMPK and CaMK phosphorlation were not significantly increased following exercise, 
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PGC-1α mRNA was significantly greater 3 h after the high frequency trial (p<0.05). 

The magnitude of the increase was similar to the low intensity exercise trial in 

experiment I. PGC-1α expression was increased approximately 2-fold after the low 

frequency trial but this did not reach statistical significance. There was also a significant 

difference between trials 3-hrs after exercise (p<0.01).  
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Figure 5.5 PGC-1α protein and mRNA expression. Protein data is relative to GAPDH 

protein. Representative blots are included. mRNA data is relative to GAPDH mRNA. 

Values are mean±SE, normalised to GAPDH mRNA. * significantly different to Pre 

(p<0.05); † significant difference between trials (p<0.05). 

 

The response of PGC-1α led us to examine some of the transcriptional coactivator’s 

downstream targets. Expression of FOXO1A mRNA was increased immediately and 3 

h after exercise (p<0.05) with no difference between contraction frequencies.  PDK4 

mRNA was above baseline at 3 h and 19h post-exercise in both trials (p<0.05). In this 

experiment we decided not to measure PGC-1α acetylation as we were unsure about the 

specificity of the antibody and the cost of running the experiment was not practical. 

Instead we determined if there was a change in the expression of SIRT1 mRNA, the 

NAD
+
-dependent deacetylase that acts on PGC-1α. SIRT1 mRNA was upregulated 19 h 

after exercise (p<0.05) compared with all other time points, while there was no 

difference between frequency of contraction trials. These results suggest that SIRT 1 

regulation of PGC-1α acetylation may persist in the hours or days post exercise. CREB 

mRNA increased 19 h post exercise compared with baseline values (p<0.05) with no 
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difference between exercise trials. Unlike the exercise intensity trial there was no 

change in the expression of RIP140 or ERRα mRNA at any time point and subsequently 

RIP140 and ERRα protein expression was similarly unaffected. However, no changes 

were observed at the protein level in any of the genes we looked at. PGC-1α protein 

expression was unaltered at any time point with no difference between trials. FOXO1 

protein was unchanged after exercise at any time point in either trial. 
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Figure 5.6 mRNA expression of selected transcriptional regulators and metabolic genes, 

(A) FOXO1A, (B) PDK4, (C) ERRα, (D) CREB, (E) RIP140, (F) SIRT1. Values are 

mean±SE, normalised to GAPDH mRNA. * significantly different to Pre (p<0.05).  
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5.4 Summary 

In summary, I did not see upregulation of either AMPK or CaMKII phosphorylation  

after exercise at high or low contraction frequency. There was a significant increase in 

ACCβ phosphorylation immediately after exercise indicating there was some activiation 

of the cascades regulated by ATP turnover. Interestingly, there was an increase in PGC-

1α mRNA in both exercise conditions. However, there was greater upregulation of 

PGC-1α mRNA with high contraction frequency compared with low contraction 

frequency. This suggests that the frequency of contraction during exercise regulates 

PGC-1α mRNA expression. This may have implications for a number of PGC-1α co-

activated genes and downstream gene targets. FOXO1A mRNA was increased 

immediately and 3 h after both exercise conditions. Exercise increased PDK4 mRNA 3 

h after exercise after both high and low contraction frequency. These results suggest that 

exercise regulates substrate utilisation and that the contraction frequency during 

exercise may play a role in that regulation.  
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Chapter VI Discussion 
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6.1 Introduction 

 

The major findings of this thesis are that an acute bout of exercise differentially 

activates intracellular signalling cascades and the transcription of selected metabolic 

genes under varying conditions in human skeletal muscle. We found that the intensity of 

exercise was a more potent stimulator of metabolic gene expression but that contraction 

frequency was also capable of moderate changes. We demonstrate that both AMPK and 

calcium flux signalling pathways are modulated by the intensity of exercise. We also 

show that expression of the transcriptional coactivator PGC-1α is intensity-dependent as 

well as being regulated differentially by contraction frequency. Genes involved in lipid 

metabolism, such as FOXO1A and PPARδ are also under the influence of exercise 

intensity. The finding that RIP140 mRNA was upregulated after exercise is novel as is 

the exercise-induced increase in the NAD
+
-dependent deacetylase, SIRT1 mRNA. In 

this section I will discuss the impact of an acute bout of exercise on metabolic gene 

expression in the control of substrate utilisation and how these outcomes describe a 

sensitive, highly regulated system, in which, there is a exercise specific response to the 

physiological demands being placed on the muscle.  

 

6.2 Regulation of intracellular signalling cascades by acute 

exercise 

AMPK has been shown to be activated in response to exercise due to an increase in the 

AMP:ATP ratio (Richter & Ruderman, 2009). In this study we show that AMPK 

phosphorylation of Thr
172

 occurs in an intensity-dependent manner. AMPK 

phosphorylation increased immediately following exercise at 80% but not 40% 

VO2peak. We found a similar result in Experiment II where AMPK phosphorylation 

was not increased by exercise at 50% VO2peak. (Howlett et al., 1998). suggested that 

low intensity exercise is sufficient to increase ATP turnover, but not necessarily the 

AMP/ATP ratio, which may explain the response in these two experiments (Howlett et 

al., 1998). Exercise has been shown to activate AMPK at higher intensities previously 

(Wojtaszewski et al., 2000), but phosphorylation at low intensity only seems to occur 
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when the exercise is of a significantly longer duration (Wojtaszewski et al., 2002). Even 

though AMPK phosphorylation was not increased at low exercise intensities there was 

an increase in the ACCβ phosphorylation. ACCβ has been shown to be a substrate of 

AMPK in human skeletal muscle and is tightly linked to AMPK activation (Stephens et 

al., 2002). This suggests that ACCβ phosphorylation may act as a downstream marker 

of AMPK activation. We showed a 3.6- and 3.2-fold increase in ACCβ phosphorylation 

at 40% and 50% VO2peak respectively. We also found an intensity-dependent increase 

in ACCβ phosphorylation which supports the evidence that it is tightly coupled with 

AMPK activity. In this study we used phosporylation as an indicator of the activation of 

AMPK. This data suggests that AMPK may be transiently activated in response to low 

intensity exercise but these changes are undetectable following low intensity exercise. 

Therefore, the direct measurement of AMPK activity, as previously described (Barnes 

et al., 2005); (Yu et al., 2003) may be a more sensitive indicator of changes following 

low exercise intensity.  

 

ACCβ phosphorylation decreases protein activity and may play an important role in the 

AMPK-mediated control of lipid metabolism. Deactivation of ACCβ decreases 

formation of malonyl-CoA, a potent inhibitor of CPT-I, the rate limiting enzyme in 

mitochondrial FA uptake (Winder & Hardie, 1996). In addition, AMPK can lower 

malonyl CoA activity by phosphorylating and activating malonyl CoA decarboxylase, 

the enzyme responsible for decarboxylating malonyl CoA to acetyl CoA (Hardie & 

Hawley, 2001). AMPK activation is also associated with FAT/CD36 translocation to the 

plasma membrane and a parallel increase in fatty acid uptake (Bonen et al., 1999). This 

suggests that exercise at both high and low intensity acts through ACCβ and AMPK to 

increase mitochondrial fatty acid oxidation by lowering malonyl CoA and relieving 

CPT1 inhibition while translocating FAT/CD36 to the plasma membrane. In light of the 

results shown here the magnitude of this increase in FA uptake may also be intensity-

dependent. However, we found a decrease in relative and absolute FA oxidation as the 

intensity of exercise increases suggesting that other cellular events influence substrate 

utilisation during exercise but the AMPK-mediated regulation of lipid metabolism may 

be more important during recovery. This explanation is supported by numerous studies 

which report a switch to lipid metabolism in the post-exercise period (van Loon et al., 

2003); (Mourtzakis et al., 2006); (Kimber et al., 2003).  
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The results shown here indicate that AMPK is transiently activated as a result of acute 

exercise and the degree of phosphorylation of AMPK is dependent upon the intensity of 

the exercise. AMPK activation is likely to be a result of ATP turnover and a change in 

the ATP/AMP ratio, allowing the muscle to adapt to the demands being placed on it. 

The results suggest that this adaptation would be greater with high intensity exercise 

and only moderately influenced by contraction frequency. 

 

Exercise and muscle contraction alter calcium flux which, in turn activates the calcium 

sensitive protein kinases in the muscle cell (Chin, 2004). In this study we found that the 

calcium-activated CaMKII is phosphorylated in an intensity-dependent manner. 

Exercise at 80% VO2peak increased CaMKII phosphorylation by 42% while there was 

no change at 40% or 50% VO2peak. An intensity-dependent increase in CaMKII 

activity and its downstream target phospholamban has previously been reported (Rose 

et al., 2006). In contrast to this we did not find an increase in phosphoamban or serum 

response factor-1, another CaMKII target. (Rose & Hargreaves, 2003) also reported an 

increase in CaMKII activity after maximal aerobic exercise compared with submaximal 

exercise. The greater increase in CaMKII activity with high-intensity exercise may be 

related to the recruitment of more skeletal muscle fibres (Sale, 1987), the recruitment of 

different fibre types (Baylor & Hollingworth, 2003), and/or greater Ca
2+

–CaM 

signalling in recruited fibres. We used phosphorylation of CaMKII as an indicator of its 

activation in this study whereas Rose et al. measured CaMKII activity (Rose et al., 

2006). This may be a limitation of our findings but they are in line with the current 

research and the CaMK activity assay has not been widely used in published 

manuscripts. 

 

Calcium flux is both rapid and transient and impossible to measure in human skeletal 

muscle in real-time. We anticipated that calcium flux would increase CaMKII 

autophosphorylation and this would be a suitable marker of contraction-activated 

calcium signalling. Our in vivo experiment was designed to alter the amplitude and 

frequency of the calcium transient by varying the frequency of contraction, which we 

thought would produce a differential response in calcium-activated kinases. We 

hypothesised that a higher contraction frequency would lead to greater calcium flux 

leading to increased calcium signalling. However, we did not find in difference in 

CaMKII phosphorylation following exercise at 50% VO2peak at 50 or 80 RPM. As with 

AMPK, CaMKII phosphorylation may not be a sensitive indicator of calcium signalling 
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following low intensity exercise and the challenge of accurately quantified calcium flux 

in human skeletal muscle remains. In an attempt to further investigate calcium 

signalling we looked at known downstream targets of CaMK. However, we did not find 

a change in CREB phosphorylation in response to changes in exercise intensity or the 

frequency of contraction. This is supported by other studies following exercise at 40%, 

70% and 75% VO2max (Widegren et al., 1998), (Widegren et al., 2000). In my study, 

CREB phosphorylation tended to increase 19-hrs after exercise at 80% VO2peak. 

Interestingly, CREB mRNA was significantly greater 19 h after exercise in Experiment 

II with no difference between 50 and 80 RPM. CaMKII is known to target the 

transcription factor CREB by phosphorylation, indicating that CREB is downstream of 

CaMKII and may therefore explain the time delay in activation of CREB (Sun et al., 

1994). Therefore, exercise may have a sustained impact on metabolic function through 

calcium-mediated transcription of CREB and subsequent regulation of gene expression. 

This response was not evident following an acute bout of exercise.  

 

Increased calcium concentrations in response to caffeine and electrical stimulation of rat 

muscle have been shown to increase FA uptake and oxidation. The effect on FA 

oxidation is completely blocked by incubation with the CaMK inhibitor KN93, and 

contraction-mediated FA uptake is decreased by 33% (Raney & Turcotte, 2008). This 

suggests that CaMKII may have a role in the upregulation of FA oxidation during 

exercise though we see no evidence of it in this study, as fat oxidation was decreased 

after exercise at 80% VO2peak, despite an increase in CaMKII phosphorylation. We do 

not believe that CaMKII is repressing fat oxidation as there are many other factors to 

consider during high intensity exercise such as the supply of oxygen coupled with the 

requirement to use the most efficient energy source which is carbohydrate (Jeukendrup 

& Wallis, 2005). CaMKII may exert its effects on fat metabolism in the post-exercise 

period, in which case, the intensity of exercise may have implications for FA oxidation. 

Similarly, as discussed earlier, AMPK has a role to play in FA oxidation in the recovery 

from exercise and it is likely that both pathways are simultaneously regulating this 

process. It is unlikely that these pathways act independently of each other. CaMKK has 

been suggested as a possible regulator of AMPK activity as CaMK kinase (CaMKK) 

inhibition by STO-609 abolishes AMPK phosphorylation and siRNA against CaMKK 

reduces AMPK and ACCβ phosphorylation in HeLa cells (Hurley et al., 2005). In 

electrically stimulated rat muscle the CaMKII inhibitor KN93 decreases contraction-

induced α2-AMPK activity suggesting that CaMKII lies upstream of AMPK (Raney & 
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Turcotte, 2008). Cross-talk between these pathways makes physiological sense as it 

ensures tight regulation of physiological processes. 

 

6.3 Regulation of PGC-1α by acute exercise 

 

6.3.1 PGC-1α expression 

One of the major findings of our studies was that acute exercise upregulated the mRNA 

expression of the transcriptional coactivator PGC-1α. PGC-1α mRNA was increased in 

an intensity-dependent manner, with a 3.8- and 10.2-fold increase 3 h after low and high 

intensity exercise, respectively. Numerous other studies report similar increases PGC-1α 

mRNA following acute exercise. Mahoney et al. reported a 2.9-fold increase in PGC-1α 

mRNA 3 h after 75 minutes of high intensity cycling exercise and Cluberton and 

colleagues found a ~3-fold increase in the mRNA content of PGC-1α following 60 

minutes of exercise at ~74% VO2peak (Mahoney et al., 2005); (Cluberton et al., 2005). 

The intensity-dependent increase in PGC-1α we found following exercise is supported 

by one other study that was published at the same time our data was collected 

(Sriwijitkamol et al., 2007). This study report PGC-1α mRNA increased by 

approximately 5- and 15-fold following acute exercise at either 50 or 70% VO2max 

respectively. This was accompanied by a statistical difference between the divergent 

intensities. Interestingly, similar to our findings, phosphorylation of AMPK was greater 

at the higher intensity of exercise.  

 

PGC-1α mRNA was increased in Experiment I in a comparable manner to that of the 

signalling cascades. Both CaMKII and AMPK phosphorylation were upregulated in an 

intensity-dependent manner suggesting this may have manifested in the divergent effect 

seen in PGC-1α mRNA and this hypothesis is supported by the results of (Sriwijitkamol 

et al., 2007). In light of this it is important to note that AMPK and CaMKII are involved 

in PGC-1α transcription. Activation of AMPK by βGPA in mice has been shown to 

increase the expression of PGC-1α (Zong et al., 2002). Six hours of low intensity 

swimming in rats and electrical stimulation of rat muscle increases AMPK activation 

and PGC-1α mRNA expression (Terada et al., 2002), (Atherton et al., 2005). In 

addition, AMPK phosphorylates PGC-1α at Thr
177

 and Ser
538

 stimulating PGC-1α 
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activation of its own promoter (Jager et al., 2007). Therefore, AMPK activation is 

associated with increased transcription of PGC-1α and it is not unreasonable to assume 

PGC-1α expression may reflect the level of AMPK phosphorylation. AMPK has been 

shown to phosphorylate HDACs, and decrease nuclear localisation, increasing 

transcriptional activity on the MEF2 binding site of the PGC-1α promoter (McGee & 

Hargreaves, 2008). In a similar way CaMKII may remove the repression of HDAC4 on 

MEF2 by excluding it from the nucleus and increase PGC-1α expression (Liu et al., 

2005). Again the level of phosphorylation of CaMKII and AMPK may provide an 

explanation for the intensity-dependent increase in PGC-1α mRNA expression.  

 

Another major finding of Experiment II was the differential expression of PGC-1α 

mRNA by contraction frequency. PGC-1α mRNA was increased 2.3- and 3.5-fold 3 h 

following cycling at a cadence of 50 or 80 RPM, respectively. These results were only 

significant for the high frequency trial and there was a frequency dependent difference 

also. The study may not have been adequately powered to detect a statistical difference 

after the low frequency trial. The increase in PGC-1α mRNA was comparable to the low 

intensity trial in Experiment I where participants cycled at a cadence of 75-80 RPM also. 

There was no difference between the trials in the phosphorylation of AMPK, ACCβ, 

CaMKII or CREB and the responses of these signalling pathways all reflect what we 

observed in Experiment I at low intensity. Therefore, the disparity in PGC-1α 

expression cannot be explained by the signalling data available to us.  

 

Though we did not find an impact of calcium flux on cellular signalling activation, by 

varying the frequency of contraction while maintaining the absolute workload, we 

believed we would have altered the amplitude and duration of the calcium transients. 

We speculate that this may actually be the case, but CaMKII or CREB phosphorylation 

may not be sensitive enough to decode this change in calcium flux or the alteration may 

not be large enough, particularly at such a low intensity of exercise (50% VO2peak). 

This phenomenon is not reflected in the expression of any of the other genes we 

analysed in this study. We can only speculate that there is some change in the signal that 

may be acting through alternative calcium sensing pathways such as calcineurin or PKC. 

Neither of these pathways have been shown to directly regulate PGC-1α expression but 

both have been shown to act on MEF2 (calcineurin through DNA-binding of NFAT on 

the MEF2 promoter and PKC through nuclear exclusion of HDAC) which can regulate 

PGC-1α expression (Chin et al., 1998); (Derave et al., 2000); (Wu et al., 2001), (Vega 
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et al., 2004). It is also possible that the rate of energy expenditure could influence the 

increased PGC-1α expression observed here. Even though the power output (workload) 

and total energy expenditure were identical in both trials, at the higher cadence the rate 

of energy expenditure was significantly greater than the lower contraction frequency. 

The relative exercise intensity and substrate contribution was also significantly different 

at 80 RPM compared with 50 RPM. The increased PGC-1α expression following high-

frequency contraction could be related to greater recruitment of Type II fibers due to the 

speed of contraction at 80 RPM or the slightly higher intensity. There may also be 

greater recruitment of individual skeletal muscle fibres due to the higher intensity or 

rate of energy expenditure (Sale, 1987). 

 

An increase in mRNA is often referred to as an increase in gene expression in the 

literature. This is technically incorrect, as increased gene expression and its related 

functions are not manifested until there is an increase in the abundance of the protein 

encoded by the gene. Gene expression can be controlled at various points beyond 

transcription, so while gene transcription is an indicator of protein expression, the extent 

to which protein content will increase in response to an adaptive stimulus cannot be 

accurately predicted from the increase in mRNA (Baar et al., 2002). Despite the fairly 

robust increases in PGC-1α mRNA seen in these experiments this is not manifested as 

an increase in PGC-1α at the protein level. In this instance acute exercise of varying 

intensity and duration does not result in a change in PGC-1α protein expression. We 

were restricted in our timing and number of muscle biopsies in the study design. 

Considering the half-life of PGC-1α is estimated at ~2.3 h there is a possibility that we 

may have missed an increase in PGC-1α protein (Puigserver et al., 2001). This is 

unlikely as PGC-1α protein expression has been observed between 0-5 h after exercise 

which means, if elevated we would have observed it at the 3 h time point.  

 

Previously it has been noted that acute changes in mRNA expression are not always 

predictive of changes in protein abundance (Gygi et al., 1999).  A number of studies 

reporting increases in PGC-1α mRNA in humans after an acute bout of exercise do not 

present data for PGC-1α protein (Sriwijitkamol et al., 2007), (Cluberton et al., 2005), 

(Pilegaard et al., 2005), (Russell et al., 2005), (Mahoney et al., 2005), (Cartoni et al., 

2005), (Vissing et al., 2005), (Norrbom et al., 2004). This may be due to the fact that 

there have been issues with the commercial antibodies available in the last 2-3 years as I 

previously highlighted in the methods section. Numerous studies in animal muscle have 
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demonstrated an exercise-induced increase in PGC-1α protein expression (Baar et al., 

2002), (Terada et al., 2002;Terada & Tabata, 2004). An acute bout of swimming results 

in greater expression of PGC-1α mRNA  and an increase in protein of 75% and 95% 

immediately and 6 h after exercise respectively (Terada et al., 2002;Terada & Tabata, 

2004). In the same study, treadmill running increased the PGC-1α protein content by 

175% in soleus muscle, but there was no increase in the epitrochlearis muscle 

suggesting that the response is specific to the muscle being recruited (Terada et al., 

2002;Terada & Tabata, 2004). A study in humans comparing resistance and endurance 

exercise in subjects unaccustomed to one mode of exercise saw increases in PGC-1α 

mRNA in response to endurance exercise (Coffey et al., 2006). In support of our 

findings they did not find a change in PGC-1α protein despite an 8-10-fold increase in 

mRNA. Gibala et al. (2009) reported a 2-fold increase in PGC-1α mRNA following 3 h 

of recovery from an intermittent high intensity bout of cycling (Gibala et al., 2009). 

Similarly, no change in PGC-1α protein abundance was reported. It seems strange that 

an increase in protein abundance of PGC-1α is regularly shown in animal models but 

not in human studies. We speculate that the nature of the exercise bouts in animal 

studies may be an influencing factor as they are often extreme in duration (4-6 hrs) and 

stress (swimming with weighted tails). On the other hand human studies tend to 

submaximal exercise of moderate duration. Take for example the protocol in the papers 

by (Terada et al., 2002;Terada & Tabata, 2004). The duration of exercise (6 h) coupled 

with the fact that there was a 45 minute break in between bouts which would allow 

transcription of mRNA to occur is certainly more likely to produce a response than the 

exercise protocol used in Experiments I and II.  

 

(Mathai et al., 2008) found that exercise to exhaustion at 65% VO2max resulted in a ~3- 

and ~7-fold increase in PGC-1α mRNA immediately and 2 h after exercise. In contrast 

to our findings, this increase in mRNA was accompanied by a 23% increase of PGC-1α 

protein immediately and 2 h post exercise which was 16% greater 24 h after exercise 

(p<0.05). The discrepancy seen between these findings and our results may be 

explained by the duration of the exercise which was greater than 2 h in this case. 

However, a 23% increase is modest and based on my own experience of the variability 

of a western blot I imagine a result of this magnitude would be very difficult to 

reproduce and may be within the margin of error based on the sensitivity of a western 

blot. A study by (De Filippis et al., 2008) also demonstrated a modest increase in PGC-

1α mRNA and protein following a single exercise session in human skeletal muscle. 
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Participants performed 8 minutes at 70% HRmax and 2 minutes at 90% HRmax 

followed by 2 minutes rest and repeated this set 4 times. PGC-1α mRNA was increased 

~8-fold accompanied by a ~50% increase in PGC-1α protein concentration 5 h after 

exercise. The high intensity, intermittent nature of this session may account for the 

discrepancies in PGC-1α protein expression seen between this study and the 

experiments described here.  

 

A number of recent studies have shown that while acute bouts of exercise transiently 

increase PGC-1α mRNA, exercise training is required to increase PGC-1α protein 

content (Burgomaster et al., 2008)(Gibala et al 2009). This is consistent with the 

hypothesis that physiological adaptations are mediated by the accumulation of 

translated protein transcribed from pulses of transiently elevated mRNA associated with 

acute bouts of exercise (Mahoney & Tarnopolsky, 2005); (Fluck, 2006). Further work is 

required to determine if the marked difference in mRNA during the present protocols 

would be manifested as divergent increases in PGC-1α protein content after a period of 

exercise training at the respective intensities.  

 

In summary, these experiments have showed that the mRNA expression of PGC-1α is 

increased 3 h after exercise in an intensity-dependent manner with a far greater increase 

at high intensity. PGC-1α mRNA expression is also regulated by the frequency of 

contraction with a higher contraction frequency resulting in a greater response 3 h after 

exercise. Importantly, these increments in PGC-1α mRNA are not translated into 

increases in protein. This leads us to ask the question that if there is not an increase in 

the abundance of the protein how is PGC-1α exerting control on metabolism in response 

to exercise?  

 

 

6.3.2 PGC-1α Activation 

The necessity for a change in PGC-1α protein content to alter metabolic gene expression 

has been brought into question (Wright et al., 2007b);(Leick et al., 2008). Regulation of 

transcriptional activity occurs via changes in the amount or activity of transcriptional 

regulators (Spiegelman & Heinrich, 2004). As mentioned earlier the activity of PGC-1α 

is regulated by a number of posttranslational modifications including phosphorylation, 
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acetylation and methylation (Wright et al., 2007b;Knutti et al., 2001); (Rodgers et al., 

2005); (Teyssier et al., 2005). (Wright et al., 2007b) discovered that the mRNA of a 

number of PGC-1α mitochondrial targets, was increased in rat skeletal muscle 

immediately after 6h of swimming, despite the fact PGC-1α protein did not increase 

until 3 hr after exercise. This suggests that PGC-1α was activated via phosphorylation 

by p38 MAPK prior to an increase in protein in response to exercise. Furthermore, 

DNA binding of NRF-1 and NRF-2 to the promoters of cytochrome c and COXIV, 

respectively, was markedly increased in response to exercise and occurred before an 

increase in PGC-1α protein (Wright et al., 2007b). Therefore, the activity of the protein 

may be even more important than its abundance. SIRT1 has been shown to deacetylate 

PGC-1α and increase the transcriptional activity of the coactivator (Rodgers et al., 

2005); (Gerhart-Hines et al., 2007). p38 MAPK phosphorylates PGC-1α on Thr
262

, 

Thr
298

 and Ser
265

 in the repressor region of PGC-1α ,where phosphorylation disrupts the 

association of the p160myb binding protein, a protein that binds to PGC-1α and 

decreases its transcriptional activity (Fan et al., 2004). This leads to a protein that is 

more stable and active (Knutti et al., 2001); (Puigserver et al., 2001;Fan et al., 2004). 

AMPK phosphorylates PGC-1α at Thr
177

 and Ser
538

 stimulating PGC-1α activation of 

its own promoter (Jager et al., 2007). Akt/PKB phosphorylation of PGC-1α at Ser
570

 

leads to a less stable protein with decreased transcriptional activity (Li et al., 2007).  

 

6.3.3 PGC-1 Acetylation 

In light of the increase in SIRT1 mRNA and the fact that we had not observed a change 

in PGC-1α protein , we decided to measure the acetylation status of PGC-1α as a means 

of quantifying the activation of PGC-1α. PGC-1α acetylation had not been measured in 

human muscle samples previously and required the development of a novel technique. 

(Rodgers et al., 2005) had previously published a method to determine PGC-1α 

acetylation in rat hepatocytes. We used a modified version of this protocol where we 

firstly, immunoprecipitated PGC-1α protein, followed by a western blot and finally, 

probed with an antibody for acetyl-lysine (see general methodology). As mentioned 

earlier in the methods section, there were several issues with the development of this 

protocol and the technique took quite a lot of refinement. We found that the acetylation 

of PGC-1α did not change in response to exercise at low or high intensity. In contrast, 

(Canto et al., 2009) recently found that an exhaustive single bout of treadmill running in 
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mice transiently activated SIRT1 in an AMPK-dependent manner, deacetylated PGC-1α 

and increased PGC-1α mediated gene expression, with a maximal effect 3 h after 

exercise. The disparity between these findings and our own may be explained by the 

fact that the mice in this study ran to exhaustion which would have depleted glycogen 

and activated AMPK further. In addition, we only see an increase in SIRT1 mRNA 19h 

post-exercise, suggesting SIRT1 is not activated by 3 h as in the study above. Therefore, 

it is possible that deacetylation may occur later than 19 h after exercise in Experiment I 

although this is unlikely. There may also be methodological issues as the lysis buffers 

used in the two experiments are different. (Canto et al., 2009) used an extra deacetylase 

inhibitor (sodium butyrate) that we were unaware of at the time of analysis which may 

have improved the measurement of acetylation in our samples if we had used it. 

 

 

Figure 6.1 Overview of proposed mechanism of transcriptional regulation following an 

acute bout of exercise. 
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6.4 PGC-1α-mediated expression of genes involved in 

substrate use 

An important finding of these experiments was the upregulation of several genes that 

regulate lipid metabolism including FOXO1A, PDK4 and PPARδ. Exercise training 

leads to a shift in substrate utilisation from relying on carbohydrate to fat metabolism 

during submaximal exercise (Henriksson, 1995).  We report an increase in the 

expression of FOXO1A mRNA immediately and 3 h after exercise with an intensity 

dependent effect at 3-hrs post exercise. Contraction frequency had no effect on the 

expression of FOXO1A as there was a similar increase in mRNA at 0 and 3h in both 

trials at 50% VO2peak. We found no change in FOXO1 protein after exercise at 50% 

VO2peak at either 50 or 80 RPM despite the increase in FOXO1 mRNA. These findings 

are not surprising as FOXO1A mRNA has previously been shown to be induced by 

acute exercise in human muscle (Pilegaard et al., 2005), (Mahoney et al., 2005), 

(Russell et al., 2005). Similarly, none of these studies report a subsequent increase in 

FOXO1 protein. However, the finding here that the regulation of FOXO1A is reliant 

upon exercise intensity is novel.  

 

FOXO1A promotes the expression of genes involved in energy metabolism resulting in 

the transition from carbohydrate oxidation to lipid oxidation in response to fasting and 

exercise (Bastie et al., 2005). An inducible form of FOXO1 in C2C12 myotubes 

positively regulates FA metabolism through a number of mechanisms including FA 

uptake and oxidation. Activation of FOXO1 increases FA uptake by a 10-fold increase 

in the plasma membrane content of FAT/CD36, and improves FA oxidation by 

suppressing ACCβ and the induction of Acetyl CoA oxidase and PPARδ (Bastie et al., 

2005).  Ectopic expression of FOXO1 also increases the expression of LPL in C2C12 

muscle cells (Kamei et al., 2003). The robust increase in FOXO1A mRNA observed in 

these experiments provides a mechanism for the greater reliance on fat as a fuel source 

following exercise and the influence of exercise intensity on substrate utilisation.  The 

upregulation of FOXO1A in our experiments suggests a shift from carbohydrate to FA 

oxidation during the recovery from exercise.  

 

We demonstrate a robust increase in PDK4 mRNA 3 h after exercise independent of 

intensity. Induction of the PDK4 gene may also control the switch to fat metabolism 

after exercise by phosphorylation and inactivation of the PDC complex to prevent the 
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conversion of pyruvate to acetyl CoA, resulting in allosteric inhibition of glycolysis and 

suppression of glucose oxidation (Pilegaard & Neufer, 2004). . PDK4 may also be part 

of a transient stress response to exercise that promotes FA oxidation in a bid to conserve 

carbohydrate stores. These findings are well established as numerous studies support 

our results that an acute bout of exercise induces PDK4 expression in human skeletal 

muscle (Cluberton et al., 2005), (Pilegaard et al., 2005), (Mahoney et al., 2005), 

(Coffey et al., 2006), (Pilegaard et al., 2002), (Civitarese et al., 2005). Similarly, PDK4 

transcription was previously shown to be increased by both low and high intensity 

exercise, with no difference between trials (Hildebrandt et al., 2003). The mechanism 

controlling the expression of PDK4 may be mediated through FOXO1A. Expression of 

PDK4, similar to FOXO1, is highly sensitive to alterations in metabolic status such as 

acute exercise, fasting and high-fat/low-carbohydrate diets (Pilegaard et al., 2000;Peters 

et al., 2001;Pilegaard et al., 2003b;Tsintzas et al., 2006). Activation of an inducible 

form of FOXO1 results in greater expression of PDK4 mRNA in C2C12 cells (Bastie et 

al., 2005). Starvation in mice led to the direct binding of FOXO1 to the promoter and 

subsequent induction of the PDK4 gene (Furuyama et al., 2003). In our experiments the 

induction of FOXO1A occurs immediately after exercise, thus preceding an increase in 

PDK4 mRNA, giving further credence to the idea of FOXO1 regulating PDK4. 

However, PDK4 may not solely be under the regulation of FOXO1 as the intensity-

dependent effect of exercise on FOXO1A expression is not reflected in the induction of 

PDK4.  

 

The expression of PGC-1α is known to positively regulate lipid metabolism. PGC-1α 

co-activates the ERRα promoter, an orphan nuclear receptor that regulates 

mitochondrial biogenesis and fatty acid oxidation. A significant number of nuclear 

encoded mitochondrial gene promoters that are upregulated by PGC-1α contain binding 

sites for ERRα (Mootha et al., 2004). PGC-1α overexpression in C2C12 myoblasts 

induces the expression of ERRα (Mootha et al., 2004). ERRα is involved in the PGC-1α 

mediated expression of lipid metabolic genes as it has been shown to target MCAD, 

which mediates the first step in β-oxidation of fatty acids, as well as CPT1, FABP3, 

CD36 and Acyl CoA oxidase (Huss et al., 2004). PGC-1α has been shown to induce 

PDK4 mRNA and protein expression, promoting glucose sparing and fatty acid 

oxidation. This is mediated by a nuclear receptor binding site occupied by ERRα and 

the effect is lost in ERRα-null mice (Wende et al., 2005). These results suggest that 

ERRα is involved in the PGC-1α mediated control of substrate selection.  
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However, we did not find a change in ERRα mRNA following any of the exercise trials, 

depsite greater PGC-1α and PDK4 mRNA levels. In contrast, (Cartoni et al., 2005) 

reported an increase in ERRα mRNA 2 h after high intensity cycling exercise. This may 

be explained by the fact that these subjects were trained as opposed to the untrained 

males who participated in our study. PGC-1α has been shown to bind and coactivate 

FOXO1 in hepatic cells (Puigserver et al., 2003). Interestingly, in transgenic mice 

overexpressing muscle-specific FOXO1A, PGC-1α mRNA levels are increased at rest 

suggesting that FOXO1A promotes PGC-1α gene expression in muscle (Kamei et al., 

2004). As FOXO1A increases prior to induction of PGC-1α mRNA in these 

experiments, could FOXO1A possibly be regulating PGC-1α? The fact that both genes 

were upregulated in an exercise intensity-dependent manner adds strength to this theory. 

Taken together, this data suggests that a model involving interaction between FOXO1A, 

PGC-1α, ERRα, PPARδ and PDK4 is controlling the switch from carbohydrate 

metabolism to a greater reliance on lipid oxidation after exercise. However, PDK4 

expression may not solely be under the control of FOXO1 and PGC-1α as the intensity-

dependent effect of exercise on FOXO1A and PGC-1α expression was not reflected in 

the induction of PDK4. The expression of ERRα is regulated by PGC-1α and is 

necessary for PDK4 expression (Wende et al., 2005;Araki & Motojima, 2006). 

However, it must be remembered that an increase in mRNA does not represent a change 

in the abundance of the functional protein. The regulation of PDK4 mRNA in response 

to exercise has previously been linked to muscle glycogen content (Pilegaard et al., 

2005) and the increased rate of glycogen utilization during high intensity exercise 

would have been expected to elicit a greater response. In light of this, PDK4 mRNA 

may be controlled by other factors such as energy expenditure which was similar in all 

trials. A study carried out by Vissing et al. also showed that the response of PDK may 

be independent of exercise. A control group which didn’t undergo an exercise 

intervention saw similar increases in PDK4 mRNA to those that did exercise, 

suggesting the response of PDK4 mRNA was due to fasting (Vissing et al., 2005). 

 

Exercise increased PPARδ mRNA expression after 3 h of recovery in experiment I with 

a greater increase at 80% VO2peak. An increase in PPARδ mRNA has been 

demonstrated in human and animal exercise after acute exercise and exercise training 

(Russell et al., 2005);(Mahoney et al., 2005);(Fritz et al., 2006); (Spangenburg et al., 

2009). However, an exercise intensity-dependent effect on PPARδ has not been 
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described previously. Activation of PPARδ in skeletal muscle cells promotes fatty acid 

oxidation and utilization (Wang et al., 2003). Activation of an inducible form of 

FOXO1 also increases the expression of PPARδ mRNA in C2C12 cells (Bastie et al., 

2005). This suggests that the model used to describe PDK4 mRNA induction by 

FOXO1A earlier may also apply to PPARδ. Correspondingly, FOXO1A mRNA was 

increased prior to the change in PPARδ mRNA. Furthermore, both FOXO1A and 

PPARδ mRNA are upregulated by exercise in an intensity-dependent manner. 

 

 

6.5 Regulation of glucose oxidation/transport by intracellular 

signalling cascades 

AMPK is considered to be a ‘fuel guage’ for the cell, sensing the energy status, 

switching off anabolic processes and switching on alternative pathways for ATP 

regeneration (Jessen & Goodyear, 2005). To this end, AMPK is thought to increase 

glucose transport and uptake by translocating GLUT-4 containing vesicles to the plasma 

membrane and attenuate glycogen synthesis by phosphorylating glycogen synthase 

(Koistinen et al., 2003), (Carling & Hardie, 1989;Jorgensen et al., 2004). Koistinen et al. 

(2003) found an increase in GLUT-4 translocation following AICAR-stimulated AMPK 

activation. AMPK has been shown to increase GLUT-4 expression by removing HDAC 

inhibition of MEF2, which is responsible for the regulation of GLUT-4 transcription 

(Ojuka et al., 2002). AMPK also phosphorylates GEF in vitro which increases it’s DNA 

binding activity and GLUT-4 expression (Holmes & Dohm, 2004).  However, we did 

not find a change in GLUT4 or GEF mRNA in response to either high or low intensity 

exercise despite considerable activation of AMPK. CaMKII is also thought to regulate 

glucose transport and uptake through GLUT-4. (Smith et al., 2008) found that a 2-fold 

increase in CaMKII phosphorylation following exercise led to hyperacetylation of the 

H3 histone around the MEF2 binding site on the promoter of GLUT-4. This increased 

DNA-binding of MEF2 to the promoter and a subsequent increase in GLUT-4 mRNA 

and protein expression. Furthermore, these effects were abolished with KN93 (CaMKII 

inhibitor) supplementation (Smith et al., 2008). Similar results were demonstrated in 

vitro with caffeine as well as a decrease in nuclear localistaion of HDAC5 which 

inhibits MEF2 binding to the GLUT4 promoter (Mukwevho et al., 2008). These results 

suggest that phosphorylation of CaMKII is necessary to increase GLUT-4 epxression. 
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However, we did not find an increase in GLUT4 mRNA despite increased 

phosphorylation of CaMKII at high intensity and, as mentioned previously, AMPK 

activation. We did not find a change in MEF2A or MEF2D mRNA at any time point 

after exercise. (Kraniou et al., 2006) have previously reported an increase in GLUT-4 

mRNA expression following low and high intensity exercise comparable to the protocol 

seen here with no difference between trials in humans.  

 

CaMKII activity may play a role in glucose oxidation in the muscle. Studies in 

myotubes and rat epitrochlearis muscle have shown that an increase in calcium 

concentration increased glucose uptake in resting muscle (Holloszy & Narahara, 1967); 

(Youn et al., 1991) ; (Wright et al., 2004). This effect was blocked by the CaMK 

inhibitor KN62, which also reduced the contraction-mediated increase in glucose 

transport by 50% (Wright et al., 2004). The intensity-dependent CaMKII 

phosphorylation in this study may explain, at least in part, the increase in carbohydrate 

oxidation during exercise seen at 80% VO2peak.  
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Figure 6.2. Proposed mechanism of the effect of acute exercise on substrate utilisation 
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6.6 Regulation of SIRT-1 by exercise 

 

One of the major findings of this study was that SIRT1 mRNA was greater 19 h after 

exercise (p<0.05) compared with all other time points, while no effect was observed for 

the frequency of contraction. This is the first study to the best of our knowledge to 

report an exercise-induced increase in SIRT1 mRNA in human skeletal muscle. A 

recent paper described an increase in SIRT1 protein expression 2 h after a single bout of 

treadmill running in rats (Suwa et al., 2008). This increase in SIRT1 protein was 

accompanied by an increase in PGC-1α protein 18 h after the bout of acute exercise. 

SIRT1 is an NAD
+
-dependent deacetylase and fluctuations in NAD

+
 have been shown 

to upregulate protein levels and enzyme activity of SIRT1 (Rodgers et al., 2005), 

(Lagouge et al., 2006). SIRT1 has been shown to deacetylate PGC-1α to increase the 

transcriptional activity of the coactivator (Rodgers et al., 2005); (Gerhart-Hines et al., 

2007). SIRT1 has also been shown to deacetylate FOXO transcription factors to confer 

target gene specificity (Brunet et al., 2004).  

 

Interestingly, in the study by (Suwa et al., 2008), SIRT1 protein expression preceded 

PGC-1α expression, suggesting that SIRT1 could deacetylate PGC-1α in the post-

exercise period. Recently, a study in mouse muscle found that AMPK enhances SIRT1 

activity by increasing cellular NAD
+
 levels, resulting in the deacetylation and 

modulation of the activity of downsteeam SIRT1 targets including PGC-1α (Canto et al., 

2009). This may help explain the mechanism behind increased SIRT1 protein 

expression in the study by (Suwa et al., 2008), whereby AMPK may have been 

activated by exercise and increased expression of SIRT1. This may also explain the 

increase in SIRT1 mRNA seen in our study although the time course is very different as 

we only see upregulation of SIRT1 19 h after exercise. Interestingly, SIRT1 is a NAD
+
-

sensing enzyme, but the NADH/NAD
+
 ratio increases during exercise. Therefore, 

SIRT1 may be inactivated during exercise and would contrast with other findings (Suwa 

et al., 2008) unless other regulatory systems become more important. However, this 

may provide an explanation for the delay in SIRT1 expression in our experiment. In the 

post exercise period NADH is oxidised causing an increase in NAD
+
. This increase in 

NAD
+
 during recovery from exercise could activate SIRT1, increase SIRT1 expression 

and promote PGC-1α deacetylation and increase PGC-1α activity.  
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Another potential mechanism for our SIRT1 findings can be supported by the findings 

of (Canto et al., 2009). We have shown that AMPK is phosphorylated immediately after 

exercise at high intensity. This activated form of AMPK could enhance SIRT1 activity 

in the post-exercise period resulting in PGC-1α deacetylation and activation. 

Unfortunately, the increase we see in SIRT1 mRNA is after exercise at 50% VO2peak 

where we did not find an increase in AMPK phosphorylation after exercise. However, 

phosphorylation of ACCβ is increased in response to exercise at 50% VO2peak 

implying that AMPK was somewhat activated during this trial. Using this assumption 

SIRT1 mRNA may have been induced through this theoretical mechanism.  

 

6.7 Regulation of the transcriptional co-repressor RIP140 

 

Corepressors have a significant role to play in the regulation of metabolic transcription 

in skeletal muscle. In the unliganded state many nuclear receptors are associated with 

corepressors, such as N-CoR and SMRT, that dissociate from the receptors upon ligand 

binding allowing recruitment of the coactivator (Jepsen & Rosenfeld, 2002). There are 

also ligand-dependent corepressors such as RIP140 which associate with nuclear 

receptors upon the binding of a specific ligand (Christian et al., 2006). RIP140 is of 

particular interest as several genes that are repressed by RIP140 are also targets of PGC-

1α (Christian et al., 2006). In particular, RIP140 has been shown to control ERRα  

transactivation  by binding to it (Castet et al., 2006). Following depletion of RIP140 

most of the genes that encode enzymes of the TCA cycle, glycolysis, fatty acid 

oxidation, oxidative phosphorylation and mitochondrial biogenesis are upregulated 

(Powelka et al., 2006). RIP140 serves as a scaffold for the docking of additional 

cofactors and enzymes similarly to PGC-1α, except RIP140 recruits HDACs instead of 

HATs, remodelling chromatin in such a way that leads to transcriptional repression 

(Christian et al., 2006). RIP140 contains 4 repression domains that recruit HDACs 

mediated by the binding of C-terminal Binding Proteins (CtBPs) (Christian et al., 2004). 

CtBP is a NAD
+
 sensitive dehydrogenase indicating that the redox state may affect 

RIP140 transcriptional repression (Kumar et al., 2002). The interaction between RIP140 

and CtBP is modulated by phosphorylation and acetylation. Acetylation prevents the 

interaction between RIP140 and CtBP (Vo et al., 2001) thus reducing RIP140’s ability 

to recruit HDACs and repress transcription. MAPK-mediated phosphorylation of 
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RIP140 increases transcriptional repression by increasing recruitment of HDACs (Gupta 

et al., 2005). Phosphorylation of RIP140 can also lead to relocation to the cytoplasm via 

interaction with 14-3-3 (Zilliacus et al., 2001). 

 

The interaction of corepressors and coactivators and their subsequent effect on gene 

transcription is an interesting area. As PGC-1α and RIP140 share similar targets and act 

in a similar manner, although with opposing consequences, the balance between their 

activation could be very important for the transcriptional regulation of muscle 

metabolism.  

 

We report the novel finding that the expression of RIP140 is increased immediately and 

3 h after exercise regardless of intensity. This is the first study to show an increase in 

RIP140 mRNA after exercise in human skeletal muscle. As mentioned previously, 

RIP140 contains 4 repression domains that recruit HDACs mediated by the binding of 

CtBPs (Christian et al., 2004). The repressor function of CtBP is increased by 

decreasing the NAD
+
/NADH ratio, similar to the redox response with exercise (Zhang 

et al., 2002b). This would increase the interaction of RIP140 and CtBPs to enhance their 

repressor function in the post-exercise period. It s possible that RIP140 may have 

counteracted the gene expression profile co-activated by PGC-1α and explain why we 

did not find a change in the expression of ERRα or other metabolic targets. However 

more evidence is required about the protein content, cellular localisation and co-

localisation with PGC-1α before any further conclusions can be made. 

 

6.8 Exercise-mediated mitochondrial biogenesis 

One of the major outcomes of exercise training is an increase in mitochondrial content 

and function, referred to as mitochondrial biogenesis. PGC-1α is thought to be central to 

exercise-stimulated mitochondrial biogenesis as it activates the transcription factors that 

modulate genes encoding mitochondrial proteins (NRF-1, NRF-2, ERRα and TFAM) 

(Lin et al., 2005). As was discussed earlier, PGC-1α mRNA and protein increases in 

response to a single bout of exercise and this is thought to mediate the increase in 

mitochondrial biogenesis (Holloszy, 2008;Mathai et al., 2008). However, we did not see 

an increase in PGC-1α protein after exercise despite a significant increase in mRNA. 

This suggests that the exercise stimulus was not sufficient to increase mitochondrial 
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biogenesis and would explain the fact that the expression of NRF-1, NRF-2 and ERRα 

or their downstream targets COXIV, CPT1 and UCP3 did not increase following 

exercise. Other studies have reported that CPT1 expression does not change following 

high intensity running or resistance exercise (Yang et al., 2005) or low or high-intensity 

exercise (Hildebrandt et al., 2003). (Pilegaard et al., 2005) has reported an increase in 

the transcriptional activity of CPT1 following bicycle exercise at 75% VO2peak but 

there was no change in mRNA.  

 

UCP3 is also shown to be transcriptionally activated by acute exercise in human skeletal 

muscle (Hildebrandt et al., 2003); (Pilegaard et al., 2005); (Pilegaard et al., 2002) and 

UCP3 mRNA levels were also increased following 60 minutes of cycling where there 

was no increase in PGC-1α protein (Cluberton et al., 2005). Similarly, COX IV mRNA 

has previously been shown to increase 24 hours following a 10km bike trial without an 

increase in PGC-1α protein suggesting that increased PGC-1α activity and mRNA is 

sufficient to promote mitochondrial biogensesis (Cartoni et al., 2005). In support of this, 

a study by (Wright et al., 2007b) found that the mRNA levels of a number of PGC-1α 

mitochondrial targets, such as cytochrome c and citrate synthase, were increased in rat 

skeletal muscle immediately after 6h of swimming, despite the fact PGC-1α protein did 

not increase until 3 hr after exercise. This suggests that PGC-1α activity was increased 

prior to an increase in protein following exercise. Furthermore, DNA binding of NRF-1 

and NRF-2 to the promoters of cytochrome c and COXIV, respectively, was markedly 

increased in response to exercise and occurred before an increase in PGC-1α protein 

(Wright et al., 2007b). However, this does not explain the lack of an increase in the 

expression of either the transcription factors NRF-1, NRF-2 and ERRα, or the nuclear-

encoded mitochondrial proteins COXIV, CPT1 and UCP3 observed here. This evidence 

suggests that the exercise bout was insufficient to increase both PGC-1α protein and 

PGC-1α functional activity enough to induce mitochondrial biogenesis. Alternatively, 

RIP140 mRNA expression was increased immediately after exercise and is known to 

affect the transcriptional activity of ERRα (Castet et al., 2006). RIP140 has also been 

shown to negatively effect expression of metabolic and mitochondrial genes including 

CPT-1 and members of the cytochrome c oxidase family (Powelka et al., 2006). It is 

possible that in this case RIP140 is playing an antagonistic role to that of PGC-1α in the 

regulation of mitochondrial biogenesis. This, in concert with the absence of an increase 

in PGC-1α protein expression may go some way to explaining the lack of induction of 

the mitochondrial proteins observed in this study.  
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6.9 Limitations 

 

The experiments described within this thesis have a number of limitations. Firstly, 

carrying out human research carries with it a lot of difficulties. For example, the number 

of biopsies that could be performed as well as the amount of tissue that could be 

extracted were limited due to ethical considerations. This limited the analysis in terms 

of the number and type of laboratory techniques that were carried out. The invasive 

nature of the study and the time commitment involved made subject recruitment a 

difficult and lengthy process. This, in turn, made the task of scheduling subjects and the 

research team (including Doctor qualified to perform biopsies) difficult.  

 

Controlling for variability in a human population provided a tough task. It is important 

to control for factors such as diet and activity and several measures were taken to ensure 

this (see Methodologies), however, it is impossible to say conclusively if subjects 

followed all directions accurately or reported behaviour outside the laboratory honestly. 

There is also the issue of whether the expression of a number of the genes presented in 

this thesis were actually regulated by exercise. A study by Vissing et al. showed that 

PDK4 mRNA is more likely to be regulated by fasting and re-feeding than by exercise 

and the results of a similar study by Pilegaard et al suggest something similar (Vissing 

et al., 2005); (Pilegaard et al., 2003a). We endeavoured to control this through dietary 

control but this has to be put down as a limitation.  

 

There were some issues with the analysis. A considerable period of time was dedicated 

to developing a technique to analyse PGC-1α acetylation, which had not previously 

been reported in human muscle samples. Eventually it became apparent that the 

antibody being used may not actually bind the correct target which could explain, in 

part at least, the difficulties encountered with setting up the technique. This is discussed 

in further detail in the methodologies section.  
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6.9 Future Directions 

The next important step to explain the regulation of gene expression following an acute 

bout of exercise is to gain a better understanding of PGC-1α activation. As mentioned 

previously, a number of posttranslational modifications control the functional activity of 

PGC-1α including phosphorylation, acetylation and methylation (Knutti et al., 2001); 

(Rodgers et al., 2005); (Teyssier et al., 2005). Though there was no change in PGC-1α 

protein after exercise it is likely that PGC-1α is still regulating transcription through an 

increase in its functional activity and demonstration of this would help to explain some 

of our findings. Similar analysis should be carried out on RIP140 to investigate the 

functional activity of this corepressor. This is of particular interest as it is novel and the 

potential interplay between RIP140 and PGC-1α in the regulation of their common 

targets would provide an insight into the complex balance between transcriptional 

activation and repression and the time-course of these events in response to an exercise 

bout. 

 

Exercise studies in human metabolism to date have generally focused on descriptive 

outcomes and do little to further the knowledge of the mechanisms at play. Future 

research should focus on elucidating the mechanisms in control of transcriptional and 

translational regulation of genes and how this results in the expression of enzymatically 

active proteins. This could include investigating the functional activity of transcription 

factors and their coregulators, their co-localisation, their subcellular localisation as well 

as their expression to give a more complete picture of muscle plasticity in response to 

exercise.  

 

The experiments described here focus on the metabolic adaptation to an acute bout of 

exercise and give an insight into the signalling pathways and main protagonists 

involved in the regulation of metabolic gene expression and substrate selection. Further 

investigation into the role of exercise in maintaining metabolic homeostasis and 

prevention of disease is necessary. The adaptations that occur following an acute bout of 

exercise are transient, therefore, investigation into repeated bouts of exercise or exercise 

training would be beneficial. It would be interesting to examine how the exercise 

intensity- or contraction frequency-dependent effects observed here would manifest 

themselves after a period of exercise training following the protocols described here.  
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Novel means of regulating gene expression have recently been discovered. Gene 

expression can be regulated at a number of stages but the recent findings of post-

transcriptional modification of mRNA by microRNA (miRNA) has opened up a whole 

new regulatory mechanism. miRNAs are short sequences of 19-22 nucleotides that 

regulate gene expression by post-transcriptional modification of messenger RNA 

(mRNA) at the 3’ untranslated region (3’UTR). The miRNA interaction with mRNA 

represses protein translation and can destabilise mRNA (Filipowicz et al., 2008; 

Valencia-Sachez et al., 2006). At least 600-700 human miRNA’s have been identified 

(www.microrna.org) and while the total number is unclear it is thought that they may 

account for 2-3% of all genes in the human genome (Bethel et al. 2008, Berezikov et al., 

2005). miRNA are evolutionary conserved in single and multi-cellular organisms and 

may target upto one-third of all human genes (Lewis et al., 2005). miRNA can be 

transcribed in isolation or in parallel with mRNA and may be dependent on the location 

of encoding DNA (30) but it is generally accepted that primary-miRNA are initially 

transcribed as double stranded RNA (dsRNA) by RNA polymerase II with a 5’ cap and 

3’ poly(A) tail similar to mRNA (3,34). ). The majority of mammalian miRNA fold into 

double stranded hairpins that imperfectly pair with mRNA and subsequently either (i) 

block translation initiation/elongation, (ii) initiate the proteolytic degradation of 

polypeptides or (iii) destabilise mRNA by deadenylating the 3’-poly(A) tail (8,35). The 

mechanisms of miRNA mediated translation repression are poorly understood. 

Evidence to date would suggest that the interaction of mRNA with the translation 

initiation machinery can be impaired but that repression can also occur at a distal step in 

the process (reviewed in Filipowicz et al., 2008). The majority of evidence from skeletal 

muscle, to date, suggests that miRNA regulate gene expression during development (8) 

but there are no reports in the literature of post-transcriptional regulation of skeletal 

muscle metabolic gene expression by miRNA. There are currently no research 

publications on the role of miRNA in human skeletal muscle, not least in response to 

exercise. 

 

6.10 Practical Relevance 

The metabolic syndrome is clinically defined as a disorder characterised by at least 

three of the following: central obesity, hyperglycaemia, hypertension, 

hypertriglyceridaemia and a decrease in circulating levels of HDL cholesterol (Grundy, 
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2006). Exercise in addition to preventing obesity, is a means of prevention and 

treatment of the metabolic syndrome and type II diabetes (Hawley, 2004); (Pedersen, 

2006); (Goodyear & Kahn, 1998). The findings of these experiments may provide 

information that can optimise exercise prescription to prevent and treatment metabolic 

diseases. Public health guidelines generally recommend 30-60 min of moderate-

intensity exercise on all or most days of the week. However, most adults fail to meet 

even the minimum physical activity guidelines.  In experiment I, caloric expenditure 

was identical; however, the time to completion was almost half in the high intensity trial. 

In the modern era where time is considered a precious commodity, this information 

must be considered when designing a training programme. Exercising at a higher 

intensity may provide a more efficient method in gaining metabolic benefits and 

expending the necessary calories to maintain health. (Gibala & McGee, 2008) propose 

high intensity interval training as a time-efficient means of increasing skeletal muscle 

oxidative capacity and endurance performance and improving metabolic control. In 

addition to saving time, in this study, high intensity exercise resulted in greater 

activation of the signalling cascades associated with control of metabolic gene 

expression than low intensity exercise. This would suggest, that high intensity exercise 

is more beneficial for health and metabolic control even when caloric expenditure is the 

same. In terms of contraction frequency, it would seem that a higher contraction 

frequency during exercise would prove more beneficial as this resulted in greater 

upregulation of PGC-1α mRNA despite similar caloric expenditure and identical 

workload. However, anecdotally the higher cadence used in experiment II is likely to be 

the self-selected cadence by exercising individuals.    

 

6.11 Conclusion 

 

As a result of this research it is clear that an acute bout of exercise results in a transient 

adaptation in human skeletal muscle and that the nature of the response is specific to the 

metabolic requirement of the exercise. This adaptation is mediated by the activation of a 

number of signalling kinases including AMPK, CaMKII, p38 MAPK and NAD
+
 that 

control the activity of transcription factors and transcriptional co-regulators central to 

muscle metabolism. These transcriptional regulators translate the physiological stimulus 

of exercise into a transcriptional adaptation in a number of enzymes that regulate 
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metabolic processes such as substrate utilisation and mitochondrial function.  

(Desvergne et al., 2006).  

 

The transcriptional co-activator PGC-1α seems to act as a sensitive point of regulation 

in the control of these metabolic processes in response to varying types of muscle 

contraction. The fact PGC-1α can be so easily regulated combined with its ability to 

interact with a number of important metabolic transcription factors make PGC-1α a very 

interesting research target. 

 

Exercise still represents a useful tool to research the regulation of PGC-1α as well as 

other metabolic genes. The findings from this research will shed some light on the 

adaptation of muscle metabolism and substrate utilisation after exercise, however, there 

is still much to learn about the mechanisms involved in these adaptations. This 

information may have implications for the prevention and treatment of diseases such as 

Type 2 Diabetes Mellitus and obesity, therefore, further investigation into the adaptive 

response of human skeletal muscle to acute bouts of exercise is required. 
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