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Abstract. This paper presents the utilisation of Response Surface Methodology (RSM) 

as the prediction tool for the laser micro-machining process. Laser internal micro-

channels machined using pulsed Nd:YVO4 laser in polycarbonate were investigated. The 

experiments were carried out according to 33 factorial Design of Experiment (DoE). In 

this work the three input process set as control parameters were laser power, P; pulse 

repetition frequency, PRF; and sample translation speed, U. Measured responses were 

the channel width and the micro-machining operating cost per metre of produced micro-

channels. The responses were sufficiently predicted within the set micro-machining 

parameters limits. Two factorial interaction (2FI) and quadratic polynomial regression 

equations for both responses were constructed. It is proposed that the developed 

prediction equations can be used to find locally optimal micro-machining process 

parameters under experimental and operational conditions.  

1 Introduction 

Laser micro-machining is a materials-processing technique that employs lasers to induce managed 

vaporisation to provide required micro-scale geometrical shape and dimensional ablations. Despite 

the fact that laser micro-machining is a technically complicated manufacturing process, research 

work has allowed the fabrication of precise, smooth, and clean components at high speed [1-3]. 

Laser micro-machining is employed for many micro-machining applications in the fields of 

telecommunications, glass cutting, micro-sensors [4-6]; micro-via, ink jet printer nozzles, biomedical 

catheter drilling, thin-film scribing [7]; micro-fluidic channels for blood/protein analysis [8]; optical 

vibration sensors [9]; three-dimensional binary data storage [10-12]; and novelty fabrications [13]. 

In order to find a set of laser processing parameters that supplies the preferred micro-channel 

dimensions for a certain application under specific processing constraints, predictive models can be 

utilised. Several statistical and numerical approaches have been used to predict and optimise various 

laser manufacturing processes including design of experiments, Artificial Neural Networks (ANN), 

genetic algorithms, finite elements analysis, ant colony optimisation, and fuzzy logic [3, 14-15].  

The prediction of the dimensions of the laser micro-machining channels is an important 

requirement for selection of appropriate laser control parameters. Based on the intensity range used 

in the experimental work presented in this paper, the induced laser absorption is physically 

characterised as laser supported combustion type. Energy is deposited into the material by the laser 
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pulse and is transported out of the irradiated region by reflection and thermal diffusion. In this case, 

the relative rate of energy absorbed and thermal diffusion determines the damage threshold. 

Dependence of the breakdown threshold on the presence of impurity electrons in the conduction 

band makes the threshold for optical breakdown non-deterministic [16]. Plasma is initiated at the 

target’s surface where the temperature can exceed 10
4
 K during the ablative interaction [17]. All of 

these factors combine to make it difficult to produce models which accurately predict the geometry 

of channels produced during the laser micro-machining process.  

Normally coarse or fine tuning of the laser machining process input parameters is used to 

produce micro-channels with a predetermined specification. Even though, this is usually carried out 

by specially qualified personnel, the parameter selection process is time consuming as it is usually 

implemented via a trial and error method. Since the laser micro-machining process is affected by 

several parameters, this classic parameter selection process is non-systematic and usually does not 

produce an optimised combination of process parameters, which can be used to attain the required 

outcomes. Using a systematic study, such as Response Surface Methodology (RSM), allows for 

estimation of the interactive effects of the process input parameters on the responses [18]. This work 

aims to use RSM to develop mathematical models for the laser machined micro-channel width and 

the micro-machining operating cost in terms of the laser micro-machining input parameters. 

Design of Experiments (DoE) models that were developed and implemented are presented below. 

These models relate the input laser processing parameters namely: power, pulse repetition frequency 

and translation speed, to the output responses namely: the width and the micro-machining operating 

cost per metre of developed micro-channels. These models may be used to select the input 

parameters for required output dimensions and to evaluate process cost in advance of contracted 

work initiation. 

2 Experimental set-up 

2.1 Experimental work 

The laser system used for micro-machining in this work was a Nd:YVO4 laser with 2 W maximum 

power and 1064 nm wavelength. Micro-channels were produced in polycarbonate sheet of 10 mm 

thickness. Since the width measurement was going to be done using an OMNIMET optical 

microscope, the distance between each two micro-channels was set as 2 mm. The polycarbonate 

sample position was set at the start of each experiment such that its back surface plane was 

coincident with the focal plane of the laser. This enabled the laser micro-machining process to be 

started with the laser spot on the back surface of the polycarbonate sheet. The polycarbonate sheet 

work piece was mounted on the 3D positioning stage and then moved along the X axis away from 

the laser source, thus creating the micro-channel from the back to the front of the sample. Fig. 1 

shows optical components setup and the work piece. 

 

 

Fig. 1:  Laser micro-machining optical components arrangement. 
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2.2 Experimental design 

A series of experiments were designed to determine the relationship between the main laser process 

parameters of a Nd:YVO4 laser and the machining process cost and the dimensions of corresponding 

produced micro-channels. After initial screening experiments, a factorial design of experiments was 

carried out using Design-Expert software. The three process parameters analysed in this work were 

the laser power, pulse repetition frequency and translation speed of the processed sample. Each of 

these were analysed at three levels in the form of a 3
3
 factorial design of experiments. The low, 

middle and high levels were chosen for power, pulse repetition frequency and translation speed. The 

low level is represented by -1, the middle by 0 and the high level by 1. Table 1shows laser input 

parameters and the actual and coded experimental design levels used. 

Table 1: Control parameters levels and their corresponding DoE coding. 

Variables 
Actual Coded 

Low Mid High Low Mid High 

P (W) 0.5 1.0 1.5 -1 0 1 

PRF (kHz) 13 23 33 -1 0 1 

U (mm/sec) 0.50 1.74 2.98 -1 0 1 

 

There are 27 possible combinations of the three process parameters at the three levels. Table 2 shows 

a list of these 32 combinations of the laser control parameters that were used in the conducted 

experiments.  

 Table 2: List of laser control parameter of the experiments performed. 

Exp.  

No. 

Run 

order 

P  

(W) 

PRF 

(kHz) 

U  

(mm/sec) 

Exp.  

No. 

Run 

order 

P  

(W) 

PRF 

 (kHz) 

U  

(mm/sec) 

1 23 0.5 13 0.5 17 1 1 33 1.74 
2 15 1 13 0.5 18 16 1.5 33 1.74 

3 11 1.5 13 0.5 19 4 0.5 13 2.98 

4 20 0.5 23 0.5 20 9 1 13 2.98 

5 14 1 23 0.5 21 8 1.5 13 2.98 

6 32 1.5 23 0.5 22 7 0.5 23 2.98 

7 2 0.5 33 0.5 23 21 1 23 2.98 

8 17 1 33 0.5 24 12 1.5 23 2.98 

9 28 1.5 33 0.5 25 27 0.5 33 2.98 

10 24 0.5 13 1.74 26 10 1 33 2.98 

11 22 1 13 1.74 27 26 1.5 33 2.98 

12 30 1.5 13 1.74 28 6 1 23 1.74 

13 3 0.5 23 1.74 29 31 1 23 1.74 

14 18 1 23 1.74 30 13 1 23 1.74 

15 5 1.5 23 1.74 31 25 1 23 1.74 

16 29 0.5 33 1.74 32 19 1 23 1.74 

 

For variability analysis, five additional experiments were repeated at the middle point of the 

investigated ranges, such that the total number of experiments conducted was 32 (=3
3

+5). Fig. 2 

shows the distribution of process control parameters investigated. 
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Fig. 2: 3D representation of the process control parameters’ points investigated. 

 indicates mid-point where five additional experiments were repeated. 

2.3 Micro-machining cost calculation 

Laser of micro-machining processing cost can be roughly evaluated as micro-machining cost per 

length or per time for a specific laser micro-machining operation. Unplanned breakdown and 

maintenance have not been taken into account while estimating the operating cost. Since this laser 

was for experimental purposes labour cost was not considered however, it should be considered 

when dealing with operational system.  

Assuming that electrical consumption of the laser power supply is linearly proportional to the 

laser power emitted by the laser head, the total approximated operating cost per hour as a function of 

the output power can be estimated by 1.4723 + 0.064×P. Table 3 shows a breakdown of estimated 

micro-machining cost per hour. The total approximated operating cost per unit length (in €/m) of the 

weld is given by Equation (1), assuming 85% utilisation.  

Table 3: Breakdown of estimated micro-machining cost per hour. 

Element of cost Calculations Cost €/hr 

Laser power supply (800 W) (€0.16/kW hr) (P/2) / 1000 0.064×P 

DELL PC Optiplex 170L & monitor (140 W)(€0.16/kW hr) / 1000 0.0224 

CompactRIO - control power (8.2 W) (€0.16/kW hr) / 1000 0.0013 

D-link network switch (4.5 W) (€0.16/kW hr) / 1000 0.0007 

BWD MiniLab - motion power (43 W) (€0.16/kW hr) / 1000 0.0069 

Diode replacement (€ 11,410 / 10000 hr) 1.141 

Maintenance labour (12 hr/2000 hr operation) (€ 50/hr) 0.3 

Total estimated micro-machining cost per hour 1.4723 + 0.064×P 

 

Micro-machining cost [€/m] = 
�.������.�	�×�  €

hr
 


�.���×� ���
��� ���	�� ���

hr
�� �

���� �� �
= 
�.�����.��� ��

�     (1) 

P (W) 
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3 Results and discussion 

3.1 Experimental results 

The width values of the all 32 produced micro-channels were measured, at three different locations 

along the micro-channel, using an optical microscope with a high numerical aperture to ensure a 

high degree of accuracy of the measurement data. This procedure was repeated for three different 

locations along the channel axis and the average width was calculated. A Two Factorial Interaction 

(2FI) model was chosen for the width response and a quadratic model for the cost response. Table 4 

shows the actual versus predicted value of the investigated combinations of the control parameters.  

Table 4: Experimental measured and calculated responses vs predicted from the width and cost models. 

Exp.  

No. 

Width (µm) Cost (€/m) Exp.  

No. 

Width (µm) Cost (€/m) 

Actual Predicted Actual Predicted Actual Predicted Actual Predicted 

1 116.0 105.9 0.991 0.993 17 89.0 96.5 0.289 0.289 

2 180.3 191.1 1.012 1.012 18 122.3 137.1 0.295 0.299 

3 263.2 276.4 1.033 1.031 19 65.2 80.2 0.165 0.167 

4 99.6 99.3 0.991 0.993 20 169.2 145.0 0.169 0.169 

5 152.9 167.4 1.012 1.012 21 211.2 209.8 0.172 0.170 

6 245.0 235.4 1.033 1.031 22 79.0 73.6 0.165 0.167 

7 80.9 75.5 0.991 0.993 23 118.4 121.2 0.169 0.169 

8 123.5 126.3 1.012 1.012 24 152.3 168.8 0.172 0.170 

9 193.0 177.2 1.033 1.031 25 50.8 49.8 0.165 0.167 

10 85.0 86.3 0.283 0.279 26 79.6 80.2 0.169 0.169 

11 163.5 161.3 0.289 0.289 27 113.4 110.6 0.172 0.170 

12 238.7 236.4 0.295 0.299 28 142.9 137.6 0.289 0.289 

13 72.7 79.8 0.283 0.279 29 142.9 137.6 0.289 0.289 

14 141.6 137.6 0.289 0.289 30 132.8 137.6 0.289 0.289 

15 207.4 195.4 0.295 0.299 31 138.5 137.6 0.289 0.289 

16 56.5 55.9 0.283 0.279 32 140.4 137.6 0.289 0.289 

3.2 Analysis of variance (ANOVA) 

Analysis of variance (ANOVA) for the two models was carried out using Design-Expert software in 

order to test the significance of the regression models. The step-wise regression method was selected 

in order to eliminate the insignificant model terms automatically. The ANOVA for the two models 

summarises the analysis of each response in terms of sequential F-test, lack of fit test and show the 

significant model terms. Tables 5 and 6 show the ANOVA results for the width and cost models 

respectively. In addition they show the other adequacy measures R
2
, adjusted R

2
 and predicted R

2
. 

All the adequacy measures are close to 1 and indicate significant relationships considering a 

significance threshold of 0.001. The adequate precision ratios, being above four, in both models 

indicate adequate models discrimination.  
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Table 5: ANOVA analysis for the width model. 

Source Sum of Squares d.f. Mean Square F Value Prob > F 

Model 93472.16 5 18694.43 141.7405 < 0.0001 

P 60181.37 1 60181.37 456.293 < 0.0001 

PRF 18902.16 1 18902.16 143.3155 < 0.0001 

U 9581.894 1 9581.894 72.64958 < 0.0001 

P×PRF 3550.08 1 3550.08 26.91658 < 0.0001 

P×U 1256.653 1 1256.653 9.527901 0.0048 

Residual 3429.191 26 131.8919 
  

Lack of Fit 3355.696 21 159.795 10.87115 0.0074 

Pure Error 73.495 5 14.699 
  

Corrected Total 96901.35 31 
   

R
2 
= 0.965, adjusted R

2 
= 0.958, predicted R

2 
= 0.940, adequate precision = 45.567. 

 

Analysis of variance indicated that for the width model the main effect of the laser power (P), pulse 

repetition frequency (PRF), translation speed (U), the two level interaction of laser power and pulse 

repetition frequency (P×PRF) and the two level interaction of laser power and translation speed 

(P×U) are the most significant model terms associated with width. In the case of the cost model, the 

main effect of the laser power (P), translation speed (U), the two level interaction of laser power and 

translation speed (P×U) and the second order effect of translation speed (U
2
) are the significant 

model terms. 

Table 6: ANOVA analysis for the cost model. 

Source Sum of Squares d.f. Mean Square F Value Prob > F 

Model 3.917822 4 0.979456 167972.2 < 0.0001 

P 0.001875 1 0.001875 321.4944 < 0.0001 

U 3.200602 1 3.200602 548888.9 < 0.0001 

P×U 0.000926 1 0.000926 158.76 < 0.0001 

U
2
 0.71442 1 0.71442 122519.8 < 0.0001 

Residual 0.000157 27 5.83E-06 
  

Lack of Fit 0.000157 22 7.16E-06 
  

Pure Error 0 5 0 
  

Corrected Total 3.91798 31 
   

 R
2
 = 0.999, adjusted R

2
 = 0.999, predicted R

2
 = 0.999, adequate precision = 904.922. 

3.3 Development of experiential and mathematical models 

Constructing a mathematical model for laser micro-machining process is an important step for 

understanding its behaviour, performance and for optimising the process itself. The experiential 

models for micro-channels’ width and micro-machining cost in terms of actual factors as established 

are shown below: 

 

Width = 19.915 + 223.484 × P + 0.199 × PRF - 2.101 × U - 3.440 × P × PRF -16.505 × P × U  (2) 

Cost = 1.429 + 0.045 × P - 1.008 × U - 0.0142 × P × U + 0.196 × U
2
     (3) 
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While the following final mathematical models are in terms of coded factors: 

 

Width = 136.49 + 57.82 × P - 32.41 × PRF - 23.07 × U - 17.20 × P × PRF - 10.23 × P × U  (4) 

Cost = 0.29 + 0.010 × P - 0.42 × U – 0.008 × P × U + 0.30 × U
2
      (5) 

3.4 Interaction effects of control parameters on the responses 

Fig. 3 (a) & (b) show the interactive effect between translation speed, U, and laser power, P; while 

PRF = 23 kHz on the micro-channels’ width and cost respectively. These two 3D graphs show that 

increased laser power increases the micro-channel width while having negligible effect on process 

cost. To a smaller extent an increase in speed resulted in a decrease in channel size while have a 

significant effect on process cost. This graph demonstrates that the micro-machining cost 

significantly decreases by increasing the sample translation speed and insignificantly increases by 

increasing the laser power. The effect of processing pulse repetition frequency on channel width was 

similar to that of laser power, seen in Figure 3 (a). PFR on the other hand had no effect on micro-

channel cost. 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 3:  Interactive effect (a) on width level for U and P with PFR = 23 kHz and  

(b) on micro-machining cost for P and U with PRF=23 kHz. 

4 Conclusion 

From this work and within the parameters’ limits investigated, several conclusions were reached. 

1. 3
3
 factorial Design of Experiments (DoE) can be utilised as a prediction tool for laser micro-

machining process by constructing experiential and mathematical models which can be used for 

optimisation. The developed models using Response Surface Methodology (RSM) are efficient 

predictive tools for selection of laser micro-machining parameters 

2. Micro-channels of predetermined geometry and least cost can be attained by using the developed 

models to estimate the work input process parameters. 

3. Laser power is the most effective parameter in determining micro-channels width, the pulse 

repetition frequency has less effect and the translation speed of the work piece has the least 

effect. 

4. Translation speed is inversely proportional to micro-machining cost. Moreover, it has a crucial 

role in determining the operating cost, while laser power has an insignificant effect on the cost 

and the pulse repetition frequency has no effect at all. 

(a) (b) 
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