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Abstract

As location becomes an increasingly important piece of context information regarding

a device, so too must the method of providing this information increase in reliability.

In many situations, false location information may impact the security or objectives of

the system to which it has been supplied. Research concerning localization and location

veri�cation addresses this issue. The majority of solutions, however, revolve around a

trusted infrastructure to provide a certi�ed location.

This thesis presents an enhanced design for a location veri�cation system, moving

veri�cation away from infrastructure-based approaches. Instead, an ad hoc approach is

presented, employing regular local devices in the role usually reserved for trusted entities

- the role of the evidence provider.

We begin with an introduction to the area of localization, outlining the primary tech-

niques employed. We summarize previous approaches, highlighting the improvements and

outstanding issues of each. Following this, we outline a novel metric for use with dis-

tance bounding to increase the accuracy of evidence extracted from the distance bounding

process. We show through emulation that this metric is feasible within an IEEE 802.11

wireless network.

We detail the Secure Location Veri�cation Proof Gathering Protocol (SLVPGP), a

protocol designed to protect the process of evidence gathering. We employ our novel metric

to con�rm the presence of a device in an area. We repeatedly extend the SLVPGP's basic

design to form three protocols, each with increasingly stronger security. These protocols

are formally veri�ed to con�rm their speci�ed security properties.

To complete the design of our veri�cation system, we present two approaches to judging

a claim based on the evidence supplied. We demonstrate the accuracy of these approach

through simulation. We also include a brief outline of the concept of reputation and discuss

an existing approach to its calculation based on the previous behaviour of devices within

the system.
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Chapter 1

Introduction

In recent years, there has been a de�nite shift towards ubiquitous computing. One of

the main advances in this area is the increased importance of mobile computing, such as

Vehicular Ad-hoc Networks (VANETs) [79] and Mobile Ad-hoc Networks (MANETs) [59].

More and more services have moved to a mobile setting, relying upon mobile networks

such as these. For this reason, context has become a key factor, with a user's location

becoming a critical piece of contextual information. It allows security systems to grant

access based on establishing a user's presence within a speci�c area and provides a method

for businesses to tailor services to their customers. It even allows customers to get more

out of existing services in the form of Location Based Services (LBS) [87, 75]. Information

regarding a user's location can be gathered in two main ways, either where a user provides

their location directly (self-location) or where an external entity can locate any user directly

(remote-location).

In the case of self-location, a user supplies the requesting entity with its location. One

simple example of self-location with a Location Based Service would be a user locating

cinemas, restaurants, etc in their vicinity. The user provides their location to a central

look-up service, with the service returning results in the vicinity of the supplied location.

This location may be sourced in a number of ways, from a direct input by the user based

on his or her own knowledge to being provided by a device such as a Global Positioning

System (GPS) unit [46]. As the user is supplying this location information directly, the

information provided cannot be guaranteed to be accurate. In fact, even if the GPS unit

is contained within a Tamper-Resistant Module, the resulting location is not guaranteed,
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as GPS signals can also be interfered with from outside the unit (spoo�ng). These spoofed

signals can result in the computation of an incorrect location, leading to the provision of

a false location to the LBS.

In the case of remote-location, an external entity locates the user itself, rather than the

user providing its location. In order to accomplish this, the user must be carrying some

form of device which the entity can access. It is this device which the entity locates, and not

the user themselves. An obvious example of such a situation would be a mobile telephone

network. Through the use of triangulation and other techniques, mobile phone companies

can calculate the location of a user of their network, once the user remains within the area

of the network. This method of locating a user is somewhat more di�cult to tamper with,

but some simple approaches can be employed. An example of such an approach is the use

of a Faraday Cage or Ho�man Box to block or restrict the signal emitting from the user's

device. However, this form of tampering requires some form of physical interference with

the device, which may not always be viable. Therefore, while remote-location is vulnerable

to interference, it is not as susceptible as self-location. Remote-location's primary weakness

is its reliance on infrastructure to provide a location. This reliance limits the use of any

remote-location system to those areas containing an infrastructure presence and restricts

applicability of the system based on the use of speci�c devices.

As self-location cannot be relied upon to provide trustworthy location information and

remote-location requires adherence to a speci�c device or area in which infrastructure

exists, a new approach must be found. An alternative solution to this is to rede�ne the

problem. Rather than attempting to locate a user's device, the user's device makes a

claim regarding its location that can then be veri�ed. By altering the approach taken, the

problem of providing a trustworthy location becomes much more manageable. The issue of

locating the user is eliminated and the focus is placed on the veracity of the claim. Rather

than a system attempting to prove the location of the user, the user provides proof of

their claim. This prevents the need for special and costly hardware or an overly complex

solution.

To date, similar to the case of remote-location, the trend in localization techniques

relies upon a pre-existing infrastructure to provide trusted devices with which claiming de-

vices can interact. However, reliance upon a �xed or limited infrastructure in this manner
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reduces the applicability of localization technology. In addition to this, the cost of employ-

ing the system increases dramatically. With mobile devices and mobile networks becoming

a staple of current technology, the need for a speci�c infrastructure of devices is no longer

present. This approach is particularly suited to the vehicular network environment, with

devices in this type of network behaving in predictable patterns and possessing su�cient

power to perform even complex encryption.

This thesis presents research on the development of a centralised location veri�cation

system, designed without the requirement of a pre-existing device infrastructure for use

as evidence providers (Proof Providers), to verify the location of a user's claiming device.

Instead, the location veri�cation system employs untrusted devices in the vicinity of the

claiming device (Claimant) as Proof Providers. The system's central entity extracts a

verdict from the Proof Provider collective, based either on a majority verdict or the trust

values of those involved. This verdict indicates the likelihood of the claim being legit-

imate. The location veri�cation system employs a novel distance bounding metric (the

binary metric) when computing evidence, to distinguish between direct and proxied com-

munications over a wireless network. This system was initially developed for use within

VANETs, but has not been deployed in a physical VANET to date. Therefore it is unknown

if the high levels of mobility reached by vehicular mobile devices prevents the system from

attaining useful levels of veri�cation accuracy. However, the system is also suitable for use

in MANETs composed of handheld mobile devices, as these do not usually reach the same

mobility levels.

The development of the location veri�cation system presented here is achieved through

the combination of three main research strands. The �rst strand presents a novel metric

for use in distance bounding [13], employing round trip times to detect proxy attacks.

The second strand introduces a new security protocol designed to protect the gathering of

proof by a device making a location claim. Finally, the third strand presents the design of

a central entity and two approaches to the judging of a location claim.

We present a novel metric for use with distance bounding which indicates whether

or not a device communicating directly or via a proxy, thus providing a method for the

detection of proxy attacks. We discuss the concept of a window of acceptance (WoA) for use

with this metric, to distinguish between the time required for a direct communication and
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that required to complete a proxied exchange. We brie�y discuss the design of a proxied

exchange, outlining the form of proxy that this approach can detect. We present a pair

of protocols for use in establishing the WoA for a speci�c situation. We perform timed

emulations of distance bounding in both wireless and wired settings. These emulations

demonstrate that the employment of this metric is reasonable in both settings, i.e. that the

time required to perform distance bounding between two devices is signi�cantly di�erent

where more than a single network hop is performed.

Following from this, we present the Secure Location Veri�cation Proof Gathering Pro-

tocol (SLVPGP), a security protocol designed to protect the process of gathering proof

for use in a location claim. This protocol employs the distance bounding binary metric

in the proof calculation stage of evidence gathering. We study the security properties re-

quired to build a satisfactorily secure protocol for use in a proof gathering scenario. We

discuss the reasons for developing a three tiered protocol rather than employing a single

all-encompassing approach. We analyse each tier's relative costs incurred in increasing the

level of security provided. This analysis demonstrates that while the third tier incurs a

greater transmission cost, its cryptographic costs are slightly less than those of the second

tier, thus providing a higher level of security with fewer cryptographic operations.

In order to con�rm the upholding of each tier's hypothesised security properties, we

formally analyse the protocols' security. This analysis is carried out in the form of model

checking. We employ a high level modelling language (Casper [58]) to describe the design

and generate a mathematical model for each tier. We then verify these models using

the FDR [83] model checker. The results of this process support the hypothesis that the

desired security properties for each protocol tier hold within the speci�ed environment. As

a supporting side work, we formally investigate the security of broadcasting secure messages

within a system. This investigation is also performed through model checking. The results

of this investigation support the already-held belief that broadcasting a message does not

impact the security of that message, unless said message is insu�ciently protected through

encryption.

Finally, we present two designs for a veri�cation engine, one employing majority verdicts

and one employing trustworthiness values of the participating devices. We employ an

existing set of techniques such as the beta Probability Density Function [29], used in Josang
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and Ismail's beta reputation system [50], to calculate the trustworthiness of a participating

device at the time of a location claim. This trustworthiness calculation system provides a

method of establishing the trustworthiness of a device's verdict, for use in a trust-based

veri�cation approach. Additionally, the inclusion of a reputation system provides a method

of Proof Provider selection with which a Veri�er can select only those devices most likely

to behave honestly for use in a speci�c claim.

The veri�cation system has been designed to address the reliance of most localization

systems upon trusted devices. We have designed two approaches to veri�cation, one based

on majority verdicts and the other based on the trust values of those devices providing

evidence for that claim. In the summation-based approach, the Veri�er employs a majority

verdict system to compute the possibility of a location claim. Rather than relying on

uniformly trusted infrastructure units, trust is placed in a group as a whole, and the

prevailing verdict on a claim's veracity indicates the claim's possibility. In the trust-based

approach, the Veri�er computes the overall trust value of a claim from the individual

device trust values of those providing supporting evidence, rather than treated each device's

verdict as equal. By computing the trust value of each device based on previous actions,

a distinction can be made between honest and dishonest devices, thus removing the need

for uniformly trusted units.

We employ percentage-based thresholds to dictate the levels the claim's value must

reach to receive a speci�c verdict, thus creating a �exible system. Through a simulation of

both veri�cation approaches, we demonstrate the e�ectiveness of each approach. We prove

that summation-based veri�cation successfully detects fraudulent claims while awarding

positive verdicts to honest claims. This creates a location veri�cation system designed for

mobile networks which requires no existing infrastructure or speci�cally trusted devices for

use as evidence providers.

The thesis is structured as follows:

Chapter two introduces localization and location veri�cation before discussing ex-

isting approachs to solving this problem. We outline several key localization techniques

employed within the �eld. We discuss a selection of existing schemes, provide context

and background information for the research presented in this thesis. We also identify the
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primary attacks attempted on localization schemes and techniques.

Chapter three examines the process of distance bounding and describes a novel twist

on the traditional method of employing the technique, in the form of a novel metric. We

present the concept of a Window of Acceptance (WoA) and describe two protocols for use

in computing the WoA in practice. We also present emulation data which supports the

plausibility of employing distance bounding in this manner and discuss remaining open

issues in this matter.

Chapter four presents the primary aspect of our contribution to the area of localiza-

tion: the Secure Location Veri�cation Proof Gathering Protocol. We discuss the security

properties desired for this protocol and outline the design process undertaken to achieve a

protocol supporting these properties. We propose three variations on the basic design of

the protocol and discuss the relative costs of each variation in comparison to the security

gained.

Chapter �ve examines the security of the Secure Location Veri�cation Proof Gather-

ing Protocol in each of the three variations, using the formal veri�cation technique of model

checking. We outline the limits of formal veri�cation and explain how the model checking

process functions. We discuss the process of formally verifying the protocols through model

checking, including the application of safe simpli�cations. We then analyse the �ndings of

the performed veri�cations.

Chapter six presents the design for a central verifying entity (Veri�er) responsible for

the veri�cation of location claims. We discuss the notion of trust in a device and employ

existing techniques to establish the trustworthiness of all devices within the system. We

outline the responsibilities of the Veri�er during the initialization of a claim, including

the method by which volunteers are gathered and Proof Providers selected. We describe

two approaches for use in the veri�cation of a device's claim: extracting a majority verdict

from the selected group of Proof Providers and employing trust values to calculate a claim's

overall trust level. Finally, we present simulations results demonstrating the accuracy of
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each approach.

Chapter seven sums up this work and discusses several remaining open questions,

outlining possible areas of interest for future work.

The research presented in this work has been published in the proceedings of several

peer-reviewed conferences. [35] gives an early overview of the location veri�cation system

as a whole. [37] presents the SLVPGP and its extensions in an earlier form. It also brie�y

discusses the model checking process performed in order to formally verify the security of

the protocols. Our work on distance bounding and the binary metric is presented in [36],

with discussion and analysis from this presentation leading to the development of the WoA

computation protocols. Finally, [38] presents a recent overview of the system as a whole.

In this paper, we approach the location veri�cation system as a method of abstracting

the process of location veri�cation away from any LBS wishing to employ veri�ed location

information in their services.
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Chapter 2

Background

2.1 Introduction

This chapter provides the context and relevent background for the research presented

in this work. We de�ne the concept of device localization and outline the core techniques

employed in localization to estimate the distance between two devices (ranging techniques),

along with common attacks against them. After explaining the techniques involved in

localization, we discuss its primary research direction, positioning (Section 2.3.1). We

then discuss the speci�c focus of the research presented in this work, location veri�cation

(Section 2.3.2). We provide a comparative overview of existing positioning and veri�cation

systems within these headings, beginning with Want et al's ActiveBadge system [101]. We

then discuss our own work in comparison to these systems, outlining their in�uence on the

�nal design of our work.

2.2 What is Localization?

Within this work, �localization� is de�ned as the act of determining a user's location,

with location taken to mean a user's position either in the real world or relative to other

devices within a particular system. Currently, users can only be located relative to the

devices they carry due to the current limitations of technology. Therefore, localization is

e�ectively the act of determining a device's location, under the assumption that a speci�c

user is located in proximity to that device. There are a number of research substrands

within the area of localization, including positioning (localization's main research topic)
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and location veri�cation. While positioning has received more research attention due to

its commercial appeal, research into systems designed to con�rm a device's location allows

location information regarding devices to be employed in new ways, such as access control.

We discuss both of these areas in further detail in Sections 2.3.1 and 2.3.2.

2.2.1 Localization Techniques

A device's location can be determined relative to other devices within a particular system,

or at an absolute (real world) level. In order for a device's absolute location to be computed

through localization techniques, at least some of the other devices within the system must

be in possession of their own absolute location. This is accomplished either through the

device being in possession of a GPS unit or through being assigned a �xed position and

programmed with this set location information. These devices are commonly referred to

as beacons. In order to calculate a device D's actual location, D must be able to calculate

its location relative to at least one beacon within the system. With D's relative position

known, it can then calculate its absolute location. The more beacons D can calculate its

location relative to, the more accurate a location can be calculated. With only a single

relative position known, D can compute a set of possible locations surrounding the beacon,

based on the estimated distance. As the number of beacons increases, the size of this set

decreases, with at least three required to compute a speci�c position for a 2d system.

Localization has been investigated in many di�erent media settings, such as Ultra-

Wideband (UWB), Infra Red (IR), Radio Frequency (RF) and Ultrasound (US). The

primary method of localizing a device is through the employment of ranging techniques.

The main ranging techniques employed focus on the measurement of three di�erent signal

attributes; the received signal strength, the angle at which a signal arrived and the time

taken to receive a signal. Here, we give a brief outline of these techniques. These allow

for the calculation of a device's location relative to at least one other device within the

system. The greater the number of devices that participate in the localization process, the

more accurate a location can be extracted from the process. A more detailed discussion of

these techniques can be found in [25].

Received Signal Strength (RSS) In ranging approaches based on Received Signal

Strength (RSS) measurements, the distance a signal travels is estimated based on the dif-
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ference between a device's stated transmit power and the power of the signal received.

This loss in power is the result of signal propagation over a distance, based on the as-

sumption that a signal's strength decreases at a speci�c rate as it travels. Once the signal

strength loss is calculated, either theoretical or empirical models can be used to extract an

estimate regarding the distance over which the signal travelled. The models employed to

estimate the distance traveled by a signal assume that the environment in which the signal

is propagating is constant and does not contain any unexpected materials which may a�ect

the rate at which the signal's power is expected to decrease. It also assumes that signal

re�ections (resulting in multipath signals) do not occur, as this can lead to incorrect dis-

tance estimations. Through the combination of distance estimates from multiple devices

and their positions, a location for the source device can be extracted. However, a device

may subvert this approach through supplying a false power level to the receiving devices,

thus allowing the calculated power loss and consequentially the distance estimate to be

controlled to a degree.

Angle of Arrival (AoA) In Angle of Arrival (AoA) approaches, the angle at which a

signal arrives is estimated and a device's location extracted based on the combination of

AoA information from multiple sources. The AoA technique is primarily employed within

sensor networks, where nodes are equipped with an array of directional antennas rather

than a single omni-directional one. The angle of arrival of a signal is de�ned as �the

angle between the propagation direction of an incident wave and some reference direction,

known as orientation� [72]. For each node, orientation is de�ned as a �xed direction

and represented in degrees moving clockwise from North. Using the multiple directional

antennas on the node in conjunction with the RSS of a signal allows the relative AoA to

be estimated. Calculating the AoA of a signal can be employed to calculate a device's

location through node co-operation. If node X is being localized, multiple other nodes in

its vicinity attempt to estimate the AoA of a signal from X, relative to their orientation.

This information can then be combined and a point of overlap found, giving a location.

However, AoA approaches must contend with an issue that also a�ects RSS localization:

multipath signals. These are caused by a signal hitting a surface in its path and re�ecting

back o� it on another direction, resulting in a multipath signal. The ability of signals

to re�ect o� surfaces means that the angle at which a signal is received may not be the
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angle from which it was originally sent. The multipath problem can be addressed using

maximum likelihood algorithms [76, 104], which calculate the most likely angle of arrival

of a signal based on statistics.

Time Based Approaches There are two main time-based ranging techniques: Time

of Arrival (ToA) and Time Di�erence of Arrival (TDoA). In both approaches, the time

at which a signal reaches a receiving device is recorded and employed to calculate the

distance between two devices. In ToA-based approaches, this time is used to calculate the

time required for a signal to propagate from its source to the receiver. In practice, the

most common method of accomplishing this is through timing the round trip of a signal

using a challenge-response exchange, a concept also refered to as distance bounding [13].

However, in order for this approach to function correctly, the device being localized (D)

must not be able to respond to a challenge signal prior to receiving it. If this stipulation

is not upheld, D could transmit a response early, thereby reducing the round trip time

calculated and decreasing the estimated distance between the receiver and D. We discuss

distance bounding and its role in localization in greater detail in Chapter 3.

In the case of TDoA-based localization, a signal's recorded time of arrival is employed

slightly di�erently. Rather than timing round trips between the device being localized (D)

and a single receiver (R), D transmits a single signal which is received by several devices

in its vicinity, and its time of arrival is recorded. The time at which D's signal arrives at

each receiving device is slightly di�erent, due to the di�erence in distance between D and

each receiver. These time di�erences are then converted to distance di�erences and used

to estimate D's location through hyperbolic computations. A hyperboloid is a surface with

a constant distance di�erence from two points (in the case of localization, two devices).

Where three receivers (therefore two hyperbola) are available, a device may be localized in

two dimensions through �nding the intersection of the hyperbola. Where four receivers are

available, this process can be employed to localize the device in three dimensions. It must

be noted that in order to function correctly, TDoA-based localization requires receiver

devices to possess a tightly synchronised clock. This ensures the time of arrival recorded

by each receiver is comparable to those recorded by the others involved. The most well

known TDoA-based system is the Global Positioning System [27], which applies the TDoA

technique to received satellite signals in order to compute a device's location relative to the
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positions of the transmitting satellites. This approach to positioning is further discussed

in Section 2.3.1.

2.2.2 Localization Attacks

As localization technology has increased in importance, more attention has been given to

designing methods to subvert the techniques employed in the localization process. These

attacks have been designed to interfere with the accuracy and functionality of localization.

They range in scale from lone devices interfering with local tra�c to collaborative e�orts

by multiple devices. There are two possible approaches which can be used to undermine

the outcome of a localization attempt: attacks directed at the underlying localization

techniques employed in the system and those which attempt to manipulate the system

itself. These approaches are described below.

Common Attacks on Localization Techniques

One of the simplest attacks which can be attempted on a communications system is a

Denial of Service (DoS) attack. The primary objective of a DoS attack in this situation is to

prevent a speci�c device or devices within an area from localizing others or being localized

themselves. In an RF-based system where an attacker does not have access to the internal

workings of other devices, this is achieved through interfering with the devices' ability to

receive and send messages (signals), usually through �ooding the network with messages

of its own. Where an attacker has access to specialized equipment, it can conduct an

alternative DoS attack, using a signal jamming device to disrupt radio signals in the area.

This prevents those devices present from receiving or sending messages, thus rendering

them incapable of localizing or being localized using RF-based approaches. A similar

jamming approach can also be employed on US and UWB systems, assuming the attacker

is in possession of the correct jamming equipment.

However, while DoS attacks are e�ective at removing a device's ability to participate

in localization, they are not particularly suited to manipulation of the process's outcome.

In order for a malicious device to increase the distance estimated based on localization

techniques, it must employ some form of attenuation attack. In an attenuation attack,

specialised equipment, such as an absorbing barrier, decrease the speed and strength at

which a signal can propagate. This makes it appear as though the signal has travelled
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farther, thereby tricking the receiver into believing that the source device is farther from

the receiver than it truly is. Inversely, in an ampli�cation attack, a malicious device may

employ specialised equipment, such as a directional antenna with an extended range, to

achieve localization at a location closer to the receiver devices than it truly is. However,

while ampli�cation attacks can impact localization results where RSS is employed, the

time-based approaches employed in localization are not as easily defrauded. This is because

even though the signal transmitted has been strengthened, the time required for it to reach

a receiver from its source cannot be altered. Therefore, in order to in�uence a receiver's

localization result, malicious devices perform collusion or proxy attacks. These attacks

operate at a system level rather than on localization techniques and are discussed in the

following section.

Common Attacks on Localization Approaches

In this section, we discuss attacks aimed at localization approaches, rather than those

aimed at altering the results produced by the localization techniques employed. The most

common attack attempted on localization systems is the collusion attack. In this form

of attack, a malicious device attempts to in�uence its own localization results by having

a colluding device masquerade as the device being localized and transmit signals from

a closer position to the receivers. The receivers therefore calculate the location of the

colluding device, rather than that of the device being localized, thus providing a malicious

device with a false location in closer proximity to the receivers. This form of attack is

e�ective primarily due to the fact that ranging techniques (such as those described above)

localize the source of a signal, not a speci�c device. Measures regarding the security of

the exchange are left to the scheme in which the techniques are employed. Proxy attacks

capitalise on this weakness by substituting the device being localized with an alternative

source closer to the signal receivers. However, this weakness can be addressed by the

localization scheme tying any signals (or messages) involved to the source device in some

manner. This forces the malicious device to attempt a terrorist fraud [22] in order to deceive

the system, where the messages are forwarded to the receiver by a colluding device acting as

a proxy for the device originating the messages. This approach increases the amount of time

required for the signal to reach the receiver. Therefore, unless there exists an accelerated

means of communication between the colluding device and the device being localized, the

13



advantage of employing a colluder is lost, assuming the goal of the device being localized

is to appear closer. If said device wished to appear farther from the recipient, a terrorist

fraud attack (without the use of accelerated communications equipment) would allow it to

do so. However, this can be achieved using far simpler approaches, such as by delaying the

sending of its response message and falsifying any incriminating time stamping within the

message.

Another form of collusion attack is the wormhole attack [47], in which an attacker

records messages transmitted within its range. It then �tunnels� them to another area for

retransmission, either by another node under its control or by a colluding agent within

the network. �Tunnelling� involves transmitting the recorded messages directly from one

agent to another, without forwarding through multiple nodes. In the case of tunneled

distances longer than the range of a single wireless hop, or where the replay has a time-

critical element, the colluding devices may employ an enhanced long-range wireless link

or a direct wired link. In the case of the latter, systems involving distance bounding may

�nd themselves vulnerable to terrorist fraud, due to the decrease in latency incurred by

transmitting messages over a higher-speed connection.

Finally, there also exists a common form of attack with a similar impact to the col-

lusion attack, but with only a single attacker involved. This is known as the sybil attack

[26]. In this attack, a system believes itself to be employing several di�erent devices in

a localization, when in reality it employs only one. This is achieved through an attacker

creating multiple identities for itself and attempting to pass them o� as individual devices,

a simple task without the presence of some central authority registering all devices. Where

a central authority is employed, an alternative method may be used to circumvent this

measure, where the attacker steals the identity of another device within the system. This

approach may not be detected if the attacker prevents the legitimate owner of that identity

from communicating with the central authority, or if the owner is not active at that point.

2.3 Localization Methods

While the focus of our work is on location veri�cation, many security and design issues

raised in veri�cation approaches are also found in positioning systems. For this reason, we

have conducted research into both positioning and veri�cation approaches to localization.
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In this section, we discuss the development of research in both areas, outlining a selection

of schemes put forth and the subsequent improvements made by those following, up to the

present day. This is summarized in Tables 2.1 and 2.2. We then discuss the contribution

made by this work to the area of localization and how it addresses the issues of current

approaches.

2.3.1 Positioning

Within this work, positioning is de�ned as the determination of a device's location, either

relative to other devices in a system or on a global level. The Global Positioning System

(GPS) is the most well known and widely used technology to position a device, employing

TDoA to calculate the position of a device relative to a constellation of satellites orbiting

the Earth. However, GPS readings can be forged, and even if users were prevented from

interfering with the output of a GPS unit through including the GPS within a device's

Tamper-Resistant Module, GPS signals can be spoofed [33]. This renders GPS an untrust-

worthy method for localization. The United States military has created a similar system to

GPS known as the Precise Positioning Service (PPS) which encrypts all signals to prevent

spoo�ng, but this technology is unavailable to civilians. An alternative to GPS, known as

Galileo, has been proposed and is undergoing construction in Europe. Galileo's proposed

design is a signi�cant improvement on that of civilian level GPS, with an increased level

of resistance to jamming in addition to including encryption within the signal, thus pre-

venting spoo�ng [70]. However, although GPS and similar satellite-based systems can be

useful for determining a device's position, their usefulness is limited to external locations.

In addition to this, the level of accuracy reached by satellite-based systems decreases sig-

ni�cantly when employed within highly built up areas. Therefore, alternative approaches

to positioning are required.

The �rst major positioning system proposed was ActiveBadge [101], created by Want

et al. Designed to track objects within a speci�c area, ActiveBadge functions through the

combination of a wearable device periodically emitting its unique identity over IR and a

�xed infrastructure of receivers which receive these beaconing messages. The beaconing

message emitted by the device bounces o� (but does not escape) the walls bounding the

room, thus ensuring the signal �lls the room. The receiver �xed within the room receives
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the message and can infer that the device is located within its walls. However, IR is vul-

nerable to dead-spots and interference from other light sources, leaving devices unlocatable

in some areas. Also, due to the poor range of IR, the ActiveBadge system scales poorly.

Want et al presented an improved approach to positioning in the form of the ActiveBat

system, which removed the technology's reliance on IR and instead employs US and RF

TDoA techniques. In the ActiveBat system, a combination of base stations, receivers and

devices are employed to calculate a device's location. An RF-based base station acts as a

centralized starting pistol, transmitting an RF signal to each device in turn to indicate that

they are to be localized. Upon receiving this signal, the device being localized sends an

US signal, which is heard by the receivers in the vicinity. The receivers have also received

the initialisation signal sent by the base station and calculate the time di�erence between

receiving this and receiving the device's US signal. From this di�erence, each receiver can

extract the distance between their location and that of the device being localized and send

this information back to a central hub. This central hub can then combine the distances

from multiple receivers at �xed locations and calculate an location for the device.

Despite addressing some issues within the ActiveBadge system, ActiveBat is heavily

dependant on a centralized approach with a �xed infrastructure, thus limiting its applica-

bility. In contrast, the Cricket [74] system, has been developed to be highly decentralized

and reduce overheads. Though Cricket also employs US and RF techniques, the system

operates in reverse to the approach taken by both ActiveBadge and ActiveBat. The devices

being located (referred to in Cricket as listeners) do not transmit their location. Instead,

beacons concurrently transmit RF messages indicating their location, along with an US

signal. The listener records the location information from the received RF message, along

with its ToA and waits to receive the corresponding US signal. Upon receipt of the US

signal, the listener can compute the TDoA for the message and consequently calculate its

distance from that beacon. It then combines the location information gathered from all

beacons within range and extracts its own location. Through reversing the �ow of infor-

mation, the listener's privacy is preserved and the system does not rely on a centralized

architecture. However, this approach is vulnerable to attack by malicious beacons broad-

casting false information or transmitting their US signals prior to sending the RF messages,

thus tampering with a listener's location calculation. In addition to this, the burden of
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computation is placed on the listening devices, requiring an increased amount of power to

be contained within the devices.

Despite Cricket's decentralized approach, there remains a reliance upon a pre-existing

infrastructure of beacons. In the Ad-Hoc Localization System (AHLoS) [86], Savvides

et al presented an alternative to this approach by designing a localization system which

does not rely on any form of infrastructure. Instead, localization is done in an ad-hoc

fashion, with those nodes already in possession of their location (�beacons�) aiding in the

localization of �unknown� nodes - i.e. nodes without knowledge of their own location. Once

an unknown has calculated its location, it becomes a beacon and aids in the localization

of other unknowns. Similar to Cricket and ActiveBat, AHLoS employs US and RF TDoA

to calculate location, with beacons broadcasting their location simultaneously over RF

and US. Also included within the system is a method of localizing unknowns where three

beacons are not within range, however this approach has been questioned [93]. In addition

to this, while the beacons are not technically infrastructure, some percentage must have

been in possession of their location at the time of system initialisation. Due to the nature of

the nodes employed in the system and its design as an indoor system, ruling out the use of

GPS or similar systems to establish a location, this implies that some position information

was input upon installation.

Many other systems have been proposed which include some variant on the approaches

described above. Systems such as the Precision Asset Location (PAL) system [31, 30]

employ TDoA techniques within an UWB setting to compute asset locations in an indoor

setting. Similarly, an UWB relative location system was put forth by Correal et al [20]

which employs distance bounding to calculate a location relative to other nodes within the

system. However, within the schemes presented to this point, attacks such as the sybil

attack [26], wormholes [47] and collusion attacks have been left undefended against. In

particular, decentralized systems such as Cricket and AHLoS are particularly vulnerable

due to their reliance on the word of other devices. The introduction of SeRLoc [54, 55],

Lazos and Poovendran's Secure Range-Independent Localization scheme for wireless sen-

sor networks brought this issue into the spotlight. Its range-free approach to localization

removes any possibile vulnerabilities from attacks seeking to disrupt the measurement of

distance between devices, as it does not rely on ranging techniques to compute a loca-
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tion. Instead, locator nodes equipped with sectored antennas transmit beacon messages

encrypted with a global symmetric key (shared by locators and regular sensor nodes), com-

posed of their location and the sector of the antenna from which the message was sent.

This sector information indicates the angle at which the message is transmitted at from the

locator. The beacon message is received by devices in the locator's vicinity and employed

to calculate their current location through combining the information received from mul-

tiple beacons to �nd their point of overlap. SeRLoC is robust against sybil attacks, with

the exception of the compromise of a locator's set of secret data. SeRLoC is also robust

against wormholes, as those with a retransmission point in close proximity to the source

of the original beacon message are detected due to the antenna sector uniqueness prop-

erty. This property states that no device can receive multiple beacons originating from the

same locator which were sent through di�erent antenna sectors, as they are transmitted on

di�erent, non-intersecting, trajectories from the locator. Additionally, even when beacons

are tunneled a signi�cant distance away, the presence of legitimate beacons in that area

indicate to a sensor that it is under attack.

However, despite increasing security awareness within the area of localization and ad-

dressing both the sybil and wormhole attacks, SeRLoC remains vulnerable to jamming

attacks. This issue is addressed in Lazos et al's Robust Position Estimation (ROPE) sys-

tem [56]. ROPE combines SeRLoC's approach to location information dissemination with

the Veri�able Multilateration (VM) technique put forth in SPINE [98, 95], Capkun and

Hubaux's range-dependent secure positioning system based on distance bounding. In VM,

the distance between the sensor being localized and each of at least three locators (at

known positions) is calculated using distance bounding. Each distance is used to compute

the radius of the circle centred at that locator's position, and the sensor's position is deter-

mined by calculating the point of intersection between these circles. Through employing

at least three locators in this process, a triangle is formed around the sensor. Due to basic

geometric principles, it is unable to maliciously alter its location with one locator without

also correcting the distance results obtained from the others. If this correction is not per-

formed, the device's malicious behaviour would be discovered, as the distances computed

would not agree. Assuming that all distance bounding exchanges are performed simula-

teously, the employment of distance bounding prevents the sensor from achieving this, as
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it cannot decrease the distance calculated between itself and a locator, only increase it.

If it increases the distance between itself and a locator, it must decrease at least one of

the other distances involved, which is impossible where distance bounding is employed.

However, this functionality requires at least three locators to be in the vicinity of a sensor,

therefore the number of locators required within the �eld is very high. ROPE improves on

SPINE's VM implementation by providing an alternative approach to positioning for use

if three or more locators are not available. In this approach, the sensor's location request

is disseminated farther a�eld by the locators that initially received it. Those locators re-

ceiving the disseminated request send a message indicating their location and details of the

area covered by the antenna employed to transmit the message. The initial sensor receives

these messages and calculates its location based on the intersection of areas contained

within and a pre-computed region of intersection. Through the inclusion of this back up

approach, the number of locators required within the �eld is signi�cantly decreased. While

ROPE cannot protect against a complete jamming-based DoS attack, it is robust against

selective jamming attacks, where attackers jam speci�c transmissions at will. If a sensor is

capable of communicating with just one locator, it can estimate its position to some point

within transmission range of the locator's known position. However, jamming to this level

incurs a very high cost, making it infeasible to employ.

2.3.2 Location Veri�cation

As mentioned previously, the focus of our work on localization has been in location ver-

i�cation. The concept of location veri�cation is that a device may prove its location or

presence in a particular area to a central entity or other device. Excluding those approaches

which employ self-localization, many of the schemes described in the previous section for

positioning can also be employed for the veri�cation of a device's location. If a device's

supplied location matches the location estimated by the positioning scheme, the supplied

location is proven. However, a number of approaches have been designed solely to verify a

device's provided location or presence in a given area, with the latter being designed as a

method of access control [4]. These approaches rely primarily on time-based ranging, with

many employing distance bounding [13] to con�m a claiming device's presence within a

given distance of another device.
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One of the �rst distance bounding based location veri�cation schemes was proposed

by Sastry, Shankar and Wagner in [85]. In this work, they propose the Echo protocol, a

protocol designed to gauge the upper bound on the distance between 2 devices, allowing

the device to prove its presence in a particular location. This is accomplished using a

combination of RF and US signal ToA measurements. RF is used by a veri�er node V

to transmit a packet containing a nonce to device D. When D receives this packet, he

echoes the nonce back to V using ultrasound. As the reply relies on the initial message, D

cannot cheat and transmit the packet early. Therefore D cannot pretend to be closer to V.

However this protocol is vulnerable to a proxy attack, as a colluding device (C) between D

and V can allow D to echo the nonce over RF as far as C. C can then replay the reply back

to V using ultrasound. As RF has a faster propagation time than ultrasound, the attack

would not be detected. Sastry et al also proposed a keyed variant [85] to this protocol, as

the original protocol does not combat the localization vulnerability exploited by collusion

attacks. It proves only that a device is in the area claimed, not that a speci�c device is

located there. However, this variant is still susceptible to the same attack as the encrypted

message can be forwarded by the colluding device as easily as the unencrypted message

could be.

Also in 2003, Waters & Felten proposed the Proximity-Proving Protocol [102], a pro-

tocol also designed to prove a device's presence in a particular area. Similar to Sastry et

al's work, Waters & Felten's approach uses distance bounding in the round trip times of

packets to calculate an upper bound on the distance between devices, However, its reliance

solely on RF removes the primary vulnerability found in Sastry et al's approach: its suscep-

tibility to collusion attacks due to the inclusion of US technology in the challenge-response

exchange. An additional advantage of employing RF is that it is a increasingly common

technology, present in the majority of mobile nodes, therefore it is far more widely employ-

able. Despite this improvement, the Proximity-Proving protocol remains vulnerable to the

terrorist fraud form of collusion attack. This is due to the protocol lacking some form of

tie between the distance bounding portion of the protocol and the device being located. A

colluding device acting as a proxy for a malicious prover could participate in the distance

bounding aspect of the protocol in place of the prover. This shrinks the time taken for

a reply to reach the receiver, making the prover appear closer. In addition to this, the
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protocol relies upon an infrastructure of trusted entities, limiting its range of applicability.

In [97], Capkun et al proposed a novel approach to address a previously unconsidered

aspect of the veri�cation problem. Traditionally, where an infrastructure is employed in

location veri�cation, the locations of the locators or base stations are known in advance.

This gives an attacker an advantage in its attempt to deceive them, as it is possible to

compute the time required to give a speci�c distance in distance bounding, an advantage

of particular relevance when dealing with non-simultaneous VM. Capkun et al's proposal

employs hidden or mobile base stations within the veri�cation process, removing that

advantage from the attacker. In the case of veri�cation employing covert (hidden) base

stations (CBS), the device being veri�ed has no knowledge of the location of the CBS and

transmits blindly. When verifying using mobile base stations (MBS), the device may know

the location of the MBS prior to receiving a localization challenge. However, when the

device acts on this challenge (after waiting for a given time limit), the MBS has changed

location. These base stations measure the TDoA between messages sent simultaneously

over RF and US from the device being localized. As the device cannot tell where the base

stations are in either case, it does not know how to correct the timing of the messages to

achieve a di�erent location. Although it is possible to identify and locate a device based

on �ngerprinting [77], meaning that a hidden base station may be detectable and thus lose

its advantage over an attacker, this is not yet a practical attack.

In addition to those infrastructure-dependent localization schemes developed speci�-

cally to verify a device's location, some positioning systems have the potential to also be

amended for use as veri�cation schemes. In the case of SPINE, location veri�cation is

easily achieved once a device is within range of at least three locators. If the locators deem

the device being veri�ed to be in the same location as has been claimed by that device,

then the claim is veri�ed. However, this requires a high number of locators to be deployed

in the �eld, a requirement which ROPE addresses. Due to its self localization approach,

ROPE is not immediately employable as a veri�cation scheme, though authors do include

a simplistic approach to veri�cation. In this approach, a device proves itself to be within

range of a single locator node through distance bounding. Unfortunately, no mention is

made of tying the interaction to a speci�c device, leaving the approach open to collusion.

The authors note that this is only a simplistic approach and that a more thorough solution

21



could be designed.

Recently, Capkun et al have presented an updated version of their approach to secure

veri�cation which includes a move away from reliance upon infrastructure. In [99], ver-

i�cation within mobile ad hoc networks is achieved using neighbouring devices in place

of base stations. The neighbouring devices employ TDoA on a signed message which has

been broadcast simultaneously over US and RF to calculate a distance to the device being

veri�ed, although the authors do stipulate that any form of passive ranging may be em-

ployed within the scheme. The transmitted message contains the location being claimed

by the device, along with its identity and a timestamp. If the distance computed by the

neighbouring device corresponds to the distance from there to the included location, that

neighbour issues a signed and encrypted statement indicating that the location was veri�ed

to it. These statements can either be transmitted directly back to a central server or sent

via the device being veri�ed. However, while this does address the issue of infrastructure

reliance, the scheme does not address the issue of colluding neighbours working either for

or against the device being veri�ed and leaks personal data to all devices in its vicinity.

Additionally, unless all devices are tightly time-synchronised, a terrorist fraud form of col-

lusion attack is still possible as the only method of retaining a sense of timeliness is through

the inclusion of a timestamp.

2.3.3 Our contribution: the Secure Location Veri�cation Proof Gather-

ing Protocol

Tables 2.1 and 2.2 summarise a variety of the proposed approaches to positioning and

veri�cation within the area of localization. A closer look at the �Weaknesses� column

reveals that though signi�cant progress has been made in the area, one of the biggest

issues is that of infrastructure-reliance. While schemes such as AHLoS [86] and Capkun et

al's Mobile/Hidden/Covert Base Stations [97] do address this issue, they are in the minority

and, in the case of AHLoS, sacri�ce participant privacy in order to achieve infrastructure-

independance. The approach presented in this work attempts to create an alternative

method of localization, speci�cally in the area of location veri�cation, that is not only

infrastructure-independant but also addresses two other major issues in the area - terrorist

fraud and private information leakage (privacy).
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Name Technique Strengths Weaknesses

GPS/PPS/
Galileo

TDoA using
satellites

Highly accurate

Vulnerable to spoo�ng
(depending on approach);
Only feasible for external

locations; Relies on
infrastructure; Accuracy
decreases in heavily

built-up areas

ActiveBadge
Device emits

location-limited
beacons

Functions indoors
Relies on infrastructure;
Scales poorly; Dead zone
issues due to use of IR

ActiveBat US & RF TDoA

Functions indoors;
Employs more

reliable technology
(RF & US instead of

IR)

Relies on centralized
system & infrastructure

Cricket US & RF TDoA

Functions indoors;
Highly decentralized;
Preserves privacy of

participants

Vulnerable to spoo�ng;
Requires infrastructure; All

computation done by
device being positioned

AHLos US & RF TDoA

Functions indoors;
No need for

infrastructure;
Ad-hoc/communal

approach

Requires some level of
start-up knowledge; No
regard for privacy issues

SeRLoc

Combining
beacon

messages with
source locations
& angles of
transmission

Functions indoors;
No reliance on

ranging techniques;
Robust against Sybil
attacks & wormholes

Vulnerable to jamming;
Sector uniqueness property
may cause honest messages
to be discarded due to
re�ections; Reliant on

infrastructure

ROPE &
SPINE

Veri�able
Multilateration

(Distance
Bounding)

Functions indoors;
VM can detect false
location claims; High
tolerance to jamming

(ROPE)

SPINE vulnerable to
jamming; ROPE reliant on

infrastructure

Table 2.1: Summary of Positioning-based Localization Approaches
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Name Technique Strengths Weaknesses

Echo
Protocol

RF & US TDoA -

US renders scheme
vulnerable to
replay attack;

Requires
infrastructure; No
identi�ers used to
tie speci�c device
to location being
proven (addressed

in encrypted
varient);

Vulnerable to
jamming

Proximity-
Proving
Protocol

Distance Bounding

Employs a more
generic medium (RF

only); Protects
privacy of participants

Vulnerable to
terrorist fraud;

Requires
infrastructure;

Covert/Hidden/
Mobile Base
Stations

US & RF TDoA

Device being localized
cannot predict where

receiver will be;
Recent revision

removes reliance on
infrastructure

Possible future
vulnerability to

device
�ngerprinting,
thus removing
main strength

Table 2.2: Summary of Veri�cation-based Localization Approaches
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Privacy

With information regarding participants (such as identity or location) being transmitted

during the course of location veri�cation, privacy is of grave concern. In order to protect the

integrity and privacy of this information, we have created the Secure Location Veri�cation

Proof Gathering Protocol (SLVPGP) [37]. This protocol provides a three tiered approach

to security and privacy, employing an increasing combination of digital signatures and

encryption to protect any private data being transmitted. The structure of the protocol

has been based on that of the Proximity-Proving protocol, however alterations have been

made that address some of the original scheme's vulnerabilities, notably those which leave

it vulnerable to terrorist fraud. The SLVPGP's basic design has been extended to three

practical protocols, with each increasing the level of security provided to protect the privacy

of participants. The �rst level is on par with schemes such as ROPE, which call for the

unsecured transmitting of private information. The second level secures these transmissions

through encryption for the devices involved in the exchange, which protects those involved

from eavesdroppers but not malicious internal nodes. The third level provides complete

privacy, preventing the leakage of any personal information regarding any participant.

Terrorist Fraud

As discussed previously, a terrorist fraud (or �proxy attack�) is where two or more de-

vices collude to convince the system that a speci�c device is in one location when it is

really in another, through proxying its messages to the correct area. Many veri�cation

schemes (including both the Echo protocol and the Proximity Proving protocol) are vul-

nerable to terrorist fraud, making reliable location veri�cation di�cult. In order to protect

our location veri�cation approach from terrorist fraud, we have presented a new distance

bounding metric for use in the SLVPGP. This Binary Metric is used to con�rm that a

distance bounding exchange has not been proxied. It does so by timing the exchange and

comparing the result to a previously calculated limit. The limit is calculated to be less than

that required to proxy a message over a single additional hop, and so if a distance bounding

exchange is less than this limit, it must be a direct exchange. The design of the SLVPGP

prevents any circumventing of this metric by ensuring that the distance bounding portion

of the protocol contains a connection to the device being veri�ed. By including a digital

signature on the distance bounding response, it forces the claiming device to produce this
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message itself. If it wishes to prove a false location, it must therefore proxy any distance

bounding responses back to the correct area, which would be detected by the binary metric.

If the message has not been proxied, it must originate in the area, thus providing proof

of a device's location. An exception to this statement is where ampli�cation equipment

is employed by the claiming device to extend its reception and transmission ranges. This

exception is discussed more fully in Chapter 3.

Reliance on Infrastructure

Similar to Capkun et al's ad hoc veri�cation scheme, the SLVPGP does not rely upon

infrastructure to enable veri�cation. Instead, it employs neighbouring devices to supply

proof to a central server for �nal judgement. By employing only RF distance bounding

to con�rm or deny the presence of a speci�c device at a claimed location, the majority of

wireless devices can participate in location claims, making it a highly generic approach.

Just as in schemes employing an existing infrastructure of locator devices designed to verify

a device's location, a device can gather proof of its presence at a speci�c location by distance

bounding with random neighbouring devices to con�rm it is within their transmission

range.

However, it is not enough to merely allow a claiming device to gather proof of its

location from all devices in its vicinity and supply this as evidence, as there is far too

much scope for abuse. For this reason, we have designed a management entity known as

the Veri�er, which serves as a back-end to the system. This entity manages the selection

of suitable local devices from a pool of volunteers and calculates the trustworthiness of the

devices involved based on their behaviour during past interactions with the system. The

Veri�er is also responsible for extracting a �nal verdict on the veracity of a location claim,

based on the evidence supplied to it by the claiming device.

2.4 Summary

In this chapter, we have introduced the area of localization. Research in this area focuses

primarily on positioning approaches, with some attention being paid to the concept of

verifying a device's location claim or presence in a speci�c area (location veri�cation). It

is within this sub-strand that our research lies.
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We de�ned the concept of localization before giving a brief description of some of the

key ranging techniques employed in the area of localization, including TDoA and ToA. We

then discussed some of the major threats to ranging techniques and localization schemes

as a whole, such as DoS, ampli�cation and collusion attacks.

With the area of localization and its common techniques outlined, we proceeded to

discuss the research areas of positioning and location veri�cation, moving from the Active-

Badge [101] positioning system to more recent works such as Capkun et al's hidden and

mobile base stations [99]. We discussed each scheme's contribution to the progression of

research, while identifying unaddressed �aws which have still to be addressed.

Finally, we discussed our own work on the SLVPGP and how it relates to already

existing research, identifying our inspiration for the scheme's structure and how it addresses

open issues within other schemes in the area.

27



Chapter 3

Distance Bounding and the Use of a

Binary Metric

3.1 Introduction

In Chapter 2, we outlined a number of ranging techniques for use in localization, designed

to estimate the location of a device relative to others within its system or on a more global

level. A common method of computing this information was through the estimation of

distance between devices. One such method of estimating distance is distance bounding

[13], in which a challenge-response scenario is used to gauge the time required for a message

to be received. This information allows a distance to be extracted, through combining the

time required for a message to be received with the speed of the communications medium

being employed to give a maximum possible distance traveled in that space of time.

In this chapter, we discuss the technique of distance bounding and its use within our

localization system (Section 3.2). We outline an alternative metric which foregoes the

precise calculations traditionally employed by distance bounding and indicates whether

a pair of devices are in direct communication, or if one device is attempting a collusion

attack (Section 3.3). We investigate the usefulness of the binary metric in IEEE 802.3

[6] (wired) and IEEE 802.11 [5] (wireless) environments through emulation, discussed in

Sections 3.4 and 3.5. In Section 3.6, we introduce the concept of a window of acceptance

and outline a method for its computation, before discussing the need for authentication

within the exchange in Section 3.7. Finally, we summarise the contents of the chapter in
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Section 3.8.

3.2 Distance Bounding

Before discussing our work on the binary metric, an alternative metric for use in distance

bounding, we outline the technique of distance bounding itself. We discuss proxy attacks -

the main form of attack launched on this form of ranging technique - on both a basic and

a more technologically complex level.

3.2.1 What is Distance Bounding?

Distance bounding is a process in which bits are sent rapidly between two devices, in order

to establish a limit on the distance between the two. The process involves a device A (the

sender) sending a challenge bit to device B (the prover) and timing the delay between

transmission and receiving the corresponding response bit. This delay time is then used to

calculate an upper bound on the distance between devices A and B. In practice, a series of

these exchanges is done to lessen the e�ects of network delays on the overall result. This

process is primarily useful in limiting the distance within which a device could be found.

This makes it a prime technique for use in the location proving area.

Distance bounding is employed within this research to provide proof of a device's pres-

ence in the area for use by the location veri�cation system. The technique allows the loca-

tion veri�cation system to distinguish whether a device is within a claimed area, through

the claiming device (the Claimant) distance bounding with neighbouring devices (Proof

Providers) from that area. In the distance bounding exchange, the Claimant plays the role

of the prover, with the Proof Provider taking the role of the sender. This proof is used by

the system to corroborate a device's claim of being in a particular location at a given time.

However, distance bounding is vulnerable to many attacks [44]. Examples of these attacks

include prematurely responding to challenges and proxy attacks with the aid of colluding

devices. Proxy attacks are discussed further in Section 3.2.2.

The premature response method of attack is technically simple, whereby the prover

sends its response prior to even receiving the challenge bit. This gives the impression that

the prover is closer to the sender than they are, by shortening the time taken to respond

to the challenge. This attack can be prevented in a number of ways. Examples of these
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include forcing the bits being sent back by the prover to depend on those bits received from

the sender, or by the sender sending out bits with randomly chosen delay times, preventing

the prover from anticipating the time at which the bit will be sent.

3.2.2 Proxy Attacks

As discussed previously, a proxy (collusion) attack on a ranging technique is where two or

more devices work together in order to convince a third that one of the attackers is in its

vicinity. In the case of a proxy attack on distance bounding, the prover colludes with one

or more interim devices in the hope of convincing the sender to unknowingly give a false

reading for its location. When a sender directs a challenge to the prover, the colluding

or �proxy� device can either respond in place of the prover or forward the challenge on

to receive the appropriate response. If the proxy has the ability to respond as the prover

without detection, the attack is invisible to the sender. However, the response may require

some piece of information that only the prover has access to and cannot share. An example

of such a situation would be where the appropriate response is to encrypt the frame, using

encryption keys only available in a tamper resistant unit. In this case, the proxy is forced to

forward all challenges received from the sender to the prover and wait for the appropriate

response in return. The forwarding of messages between the receiving device and the proxy

in this manner greatly delays the sending of the response back to the sender, thus allowing

the attack to be detected.

Within our system, the simplest form of proxy attack involves only a single additional

device acting as a proxy between the Proof Provider (the sender) and the Claimant (the

prover). However, this basic form attack has two distinct subtypes, with vastly di�ering

levels of impact. In the �rst and simplest basic subtype, all devices communicate using

the same medium, thereby meaning that a proxy attack would require at least twice the

time taken by a direct challenge-response exchange. In the second subtype, the proxy and

Claimant communicate over a much faster medium, thus providing the attackers with an

advantage and decreasing the time required to complete the challege-response exchange.

While the time required in this situation would still be greater than that required to com-

plete an honest exchange, the additional hops incurred could, depending on the communica-

tions medium employed, be so rapidly accomplished that an attack would be undetectable.

30



For example, if a Proof Provider was to communicate with a proxy device using wireless

communications, it would expect a reply back using the same medium. This medium is

relatively slow, particularly in comparison with wired communications, which can reach

speeds of over 1 gigabit/s. If the proxy was in possession of a direct wired connection

to the Claimant, it could easily complete the additional hops required to transmit the

challenge to the Claimant and receive back its response for forwarding without adding any

signi�cant period of time to the overall exchange, due to wireless's slow transmission speed.

However, this approach requires the existance of a wired connection between the Claimant

and its proxy, a requirement that is not usually common of a mobile node. Therefore,

when discussing proxy attacks throughout this work, we deal solely with the �rst subtype,

where all devices employ the same communications medium, and acknowledge that further

work is required to investigate the detectability of the second form of basic proxy attack.

Although a similar e�ect could be achieved within the wireless medium through the use

of a directional antenna with increased power levels, the impact on time would be greater

than where a wired connection is employed, increasing the likelihood of detectability.

In order to discover whether a proxy attack could successfully receive a false positive on

a location claim through completing distance bounding within the time frame of an honest

exchange, a security analysis of the �rst basic proxy subtype scenario was conducted. This

analysis was carried out through the emulation of both honest and proxied exchanges in

various network settings, and the resulting times from each were compared.

3.3 The Binary Metric

In this section, we outline the premise and examine the usefulness of a binary metric

for use with distance bounding in a wireless network. The binary metric proposed is a

yes/no "visibility" metric. It is assumed that a device can only participate in a distance

bounding exchange via a direct connection to a verifying device or through a proxying

device. Therefore if a Claimant appears visible to a Proof Provider, it is either participating

honestly or is attempting to mount a proxy attack. The binary metric employs this fact to

detect whether or not a Claimant is a single wireless network hop from its Proof Provider.

As the distance over which a message can travel in a single hop on a wireless network

is limited, this de�nition provides an upper bound on the possible distance between the
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Claimant and its Proof Provider.

We employ the binary metric within the Secure Location Veri�cation Proof Gathering

Protocol (SLVPGP), which protects the proof gathering exchange. The binary metric

protects the integrity of the verdict produced by distance bounding through con�rming

that the Claimant involved is not attempting to perpetrate a proxy attack. Neighbouring

devices (Proof Providers) within the wireless network produce a yes or no verdict indicating

whether the Claimant is able to communicate with them within a reasonable time limit.

It is these verdicts which are utilised as a tool to verify the location claim, in place of

the round trip times used by other approaches. If a distance bounding exchange results

in a positive binary metric verdict, then the Claimant participating in that exchange is

both able to communicate with the Proof Provider and is not communicating via a proxy,

proving that they are in the area. One possible exception to this is where a Claimant

employs ampli�cation equipment to extend its transmission range, thereby allowing its

direct message range to extend beyond that of a normal device.

3.3.1 Honest vs Proxy Exchanges

The proposed use of a binary metric in distance bounding removes the reliance on timing

to calculate an upper bound on the possible distance between the Claimant and a Proof

Provider. However when dealing with the binary metric, a upper bound is placed on the

allowable delay time between the Proof Provider sending its challenge and receiving the

Claimant's response. This limit is included to distinguish between a proxy attack and

an honest distance bounding exchange. The calculation of the limit is further discussed

in Section 3.6. When a Proof Provider engages in distance bounding with an honest

Claimant, the response time is 2x+d, where d is the computational delay and x is the

message's transmission time for a single network hop. However, when a Proof Provider

engages in distance bounding with a malicious Claimant via a proxy, the response time must

be greater than 2x+d. This is because during the course of a proxy attack, the message

being transmitted undergoes one or more additional network hops in each direction, rather

than only a single hop. Finally, when a Proof Provider distance bounds with a Claimant

employing ampli�cation equipment, the time required to complete an exchange is 2y+d

(where y is the message's transmission time for a single ampli�ed hop). This is because the
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signal is required to travel farther in both directions. However, unlike in proxied exchanges,

the computational delay remains unchanged as only one set of devices are involved in the

exchange.

In an honest exchange, a challenge is sent by the Proof Provider to the Claimant and

the Claimant's response is sent directly back. However, during a proxy attack, the Proof

Provider's challenge is sent to a proxy device within its transmission range. The proxy then

forwards it on through at least one network hop to reach the Claimant. The Claimant's

response must then also travel the extra steps to reach the proxy before being relayed

back to the Proof Provider. It is these additional message hops that increase the response

time of a proxy attack. We propose to use this �aw in the proxy attack's design to detect

its occurrence. A Claimant cannot communicate with its Proof Providers without either

a direct or proxied connection. Therefore, the ability of the binary metric to detect the

presence of a proxy attack also allows it to function as a veri�cation method, proving that

the Claimant is in the claimed area. However, while this is the case for comparing proxied

and direct exchanges, it is not necessarily so for ampli�ed exchanges. Computational delay

is higher than signal transmission times, and while proxied exchanges incur multiple rounds

of this form of delay (with the number depending on the number of proxy devices involved),

ampli�ed exchanges incur only one. This di�erence means that ampli�ed exchanges can

be expected to require less time to complete than proxied exchanges, and therefore may

not be as easily detectable, particularly in a congested/high-tra�c network.

In order for the binary metric's method of detection to function, there must be a sub-

stantial di�erence between the times required to complete a proxy attack in comparison

to that required for an honest exchange. If there is no overlap between the possible time

taken for an honest Claimant to complete its distance bounding and a malicious Claimant

to perform a proxy attack, then the occurrence of a proxy attack is easily detectable. One

danger when dealing with this method of detection is that the computational delay will

drown out the di�erence in transmission times between an honest exchange and a proxy

attack. This would make honest and proxied exchanges indistinguishable from each other.

In order to con�rm that this issue does not pose a threat to the functionality of the ap-

proach, we have conducted multiple emulations in both IEEE 802.3 (wired) and IEEE

802.11 (wireless) environments. These emulations are discussed in Sections 3.4 and 3.5.
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The research presented in this work focuses on the ability of the binary metric to distin-

guish between direct and proxied exchanges. Due to equipment limitations, no emulations

have been attempted to ascertain the di�erence between direct and ampli�ed exchanges.

Therefore, while the binary metric has been con�rmed to distinguish between direct and

proxied exchanges, there is no evidence to support its capability of detecting ampli�ed

exchanges, meaning that a device may still reside beyond the area of the claimed location.

This possibility represents an avenue for future research.

As is common in this area of research, the value of d (computational delay) is left as

an unknown, with no attempt to address it. The Proof Provider/receiving device removes

the computational delay incurred by itself, as this value is known, leaving a �nal value

composed of the transmission time plus the computational delay incurred by any other

participating devices. Therefore the possible distance traveled will be slightly less than that

calculated, as part of the time attributed to transmission has been used for computation.

As the de�nition of distance bounding is a process to compute the maximum possible

distance a signal can travel, and is not intended to give an exact distance, this is considered

acceptable.

3.3.2 What Does a �Yes� Verdict Mean?

When using the binary metric to detect the presence of a proxy attack, there are two

possible verdicts which a Proof Provider may provide: the Claimant is visible to it during

distance bounding (�yes�), or the Claimant is not visible (�no�). While these two verdicts

appear to be straightforward, their meanings are not so. If a Claimant is found to be

visible by a Proof Provider and a proxy attack is not deemed to have occured, then that

Claimant is deemed to be within the area of that Proof Provider. It is impossible for a

Proof Provider to mistakenly �nd that a Claimant is in its area when it is not, due to the

employment of digital signatures on the response portion of the exchange. This is dealt

with in further detail in Section 3.7.

If a Proof Provider deems a Claimant visible during distance bounding, it must �rst

have received multiple valid responses to its challenges from that Claimant. Within this

work, we assume that the Claimant is not in possession of ampli�cation equipment and

therefore if it is not in the claimed area, it requires the assistance of a proxying device
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located within the area. Without the aid of a proxy device at a location closer to the Proof

Provider than its own or ampli�cation equipment to increase its reception and transmission

capabilities, the Claimant is not capable of proving itself to be in the area of the Proof

Provider. Proxy attacks are ruled out through employing an upper bound on an acceptable

round trip time, as discussed in Section 3.3.1, and so any positive visibility results on the

part of a Proof Provider cannot be a mistake.

3.3.3 What Does a �No� Verdict Mean?

Unlike in the case of a positive visibility verdict, there are many possible reasons for a

Proof Provider deeming a Claimant not visible during the distance bounding process. The

three main reasons for a negative visibility verdict are: the Claimant is not present in the

area, the Claimant is in the area but not within range of the Proof Provider or that there

are network issues preventing the Claimant from completing distance bounding within the

time limit.

The simplest reason for a negative verdict is that the Claimant is not present in the area.

There are various causes for this to occur, both innocent (where a Claimant mistakenly

having made a false location claim) and malicious (where a Claimant attempts to deceive

the system). Additionally, the device could have moved on from that location before the

distance bounding occurred, a distinct danger if the system is based in the area of VANETs

[79], where participants are usually in motion during exchanges.

The remaining reasons for a negative verdict are caused by a failure of the technology

upon which this system is built. Although the Claimant is in the area in both cases, a

falsely negative verdict is received. Either the range of the Proof Provider is too limited

to allow for the Claimant to distance bound directly with it, or the network over which

distance bounding is to occur is too unreliable to allow it. Distance bounding is undertaken

multiple times to lessen the e�ects of network issues on the eventual outcome. However, if

the network is consistantly poor, either too noisy or too lossy, then the Claimant will not

be able to distance bound successfully within its allowed time frame. It is for these reasons

that we do not factor negative visibility verdicts into the calculation of location at the end

of the distance bounding process. In some cases, negative verdicts are genuinely deserved.

However, there are also multiple scenarios in which a false negative is received, which could
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Figure 3.1: Employing the Binary Metric Results

pollute the location calculations. Therefore, as there can be no mistaken positive verdicts

we employ only these in the �nal location calculation. This is discussed further in Chapter

6.

3.3.4 The Binary Metric vs Precise Calculations

Typically, distance bounding through location veri�cation is used to verify that a device is

within range of a speci�c resource or location ([80, 43, 96, 94]). This is achieved through

calculating an upper bound on the possible distance between the device and required

resource/location and con�rming that this location is within an allowable range. In order

to discover this upper bound, the delay between a Proof Provider sending a challenge and

receiving the appropriate response back from the Claimant is precisely timed. This round

trip time is then used to calculate a greatest possible distance, through using the speed at

which the signal can travel. In the case of the Echo protocol [85], both the speed of sound

and the speed of light are factored into the calculation of distance. When dealing with

distance bounding in wireless networks, such as with Waters and Felten's proximity proving

protocol [102], the processing time on the part of the Proof Provider is subtracted from the

round trip time. This �gure is halved and multiplied by the speed of light (approximately

3 ∗ 108m/s) to calculate an upper bound on the possible distance between the Claimant

and the Proof Provider.

The above approach is similar to that applied in this work, however the work put forth

here does not require the upper bound limit to limit the distance. Instead, this upper

bound merely distinguishes a proxy attack from an honest exchange. Receiving a positive

visibility verdict from multiple Proof Providers regarding the same location claim allows
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for the area in which that Claimant could be located in to be reduced down through a

form of triangulation. In this process, the possible broadcast ranges for each of the Proof

Providers contacted are noted, and the broadcast areas (usually circles or spheres) are

overlaid. This is shown in Figure 3.1. In this �gure, the Claimant has distance bounded

with Proof Providers A, B, C and D. This has resulted in the Claimant's possible location

being reduced down to a minimally sized area of intersection. This area of intersection

of the transmission ranges of all Proof Providers involved is the only region in which the

Claimant could possibly be located, thus giving a location for the Claimant and potentially

proving the location claim being investigated. This concept is employed in the extraction

of a more precise location in Section 6.8 of Chapter 6.

3.4 Distance Bounding Emulations in an IEEE 802.3 Wired

Network

In order for the binary metric to be considered practical for reliable location veri�cation,

it must be able to detect whether a proxy attack is underway during a distance bounding

exchange. If the metric cannot detect this attack, results gained with this approach would

not be trustworthy. The nature of a proxy attack on an exchange increases the transmission

time of any given message and it is this increase in response time which the Proof Provider

checks for when calculating its visibility verdict, in order to con�rm that a proxy attack is

not being carried out. However, one of the main issues with this method of proxy detection

is the possibility that the time lost to network latencies and computational delays would

drown out the di�erence between honest and proxy exchanges. In order to con�rm that this

does not threaten the integrity of the detection approach, we have emulated the round trip

of a message in both situations. An emulation of the two scenarios was carried out rather

than employing a simulation tool such as ns-21, as we wished to gather practical results

rather than relying upon assumptions made within third party software. The emulations

were performed on the DCU computing network at normal hours, with multiple users active

at the time. As the scenarios were emulated on a real network, the exchanges incurred a

normal level of packet loss and network delay due to existing network tra�c.

The experiments conducted deal with two scenarios. In the �rst scenario, devices
1http://www. isi. edu/nsnam/ns ns-2
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Figure 3.2: The Path of a Direct Message (IEEE802.3)

behave honestly when engaged in a distance bounding exchange. In the second, they

behave dishonestly and conduct a proxy attack on the system ("cheating"). Ethernet

frames are sent back and forth for distance bounding. These were chosen to minimise the

e�ect of computational delay on the results, as they are the most basic networking building

blocks available and are at the lowest point in the networking stack. This decreases the

delay between when the frame is received by the device and when it is analysed by the

emulation program. UDP has been selected (User Datagram Protocol, from the Internet

Protocol suite) [73] as the packet type for use when transmitting between the proxy device

and the �nal device. This was done as unlike TCP (Transmission Control Protocol) [69],

UDP gives the option of performing no error checking on the packet for the sake of speed,

giving as fast a result as possible while still using a routed protocol.

3.4.1 IEEE 802.3 Emulation Outlines

To emulate distance bounding in a vehicular network, we conducted experiments within an

IEEE 802.3 wired CAT5 Ethernet network. Though the transmission protocol employed

within vehicular networks is based on this (IEEE 802.11 is based on IEEE 802.3), it is

inherently di�erent due to the medium over which it transmits. Wireless transmissions are

lossy by nature, with a higher level of transmissions lost than over wired networks due to

a high level of interference from objects in the environment. However, vehicular networks

have the advantage of being ad-hoc in nature. This allows for direct transmission between

devices, thus cutting out extraneous devices such as switches which add further hops to the

journey. Mobile networks cannot achieve such high transmission speeds as an IEEE 802.3

network due to the limitations imposed on the bandwidth by the radio spectrum, as there

is only a small segment available for wireless transmissions. With a wired network there

is a dedicated transmission medium with no other objects interfering and less competition

for slots in which to send data.
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Figure 3.3: The Path of a Proxied Message (IEEE802.3)

However, though there are di�erences between the theoretical mobile network setting

of IEEE 802.11 and the IEEE 802.3 network in which these emulations are set, the results

remain useful as they represent the optimal possible round trip time for an attack. The

minimum round trip time produced by our emulations for a proxy attack scenario is still

nowhere near a reasonable response time for an honest exchange. This is despite higher

transmission speeds and fewer packet losses than in the theoretical mobile network, thus

proving that there is no possibility of a proxy attack deceiving the system and receving a

positive result from distance bounding.

The direct exchange of a message between two honest agents in a network is emulated

by the transmission of a single ethernet frame to the ethernet address of the receiving agent

(modelling the Claimant). The receiving agent then creates a new frame and transmits

this frame back to the ethernet address of the initial agent (modelling the Proof Provider).

These frames are forwarded through a switch device, causing each frame to be transmitted

twice, once from the sender to the switch and a second time from the switch to the intended

recipient. This path is shown in Figure 3.2.

The emulation of a proxy attack is structured in a similar manner to that of the direct

exchange emulation. However, due to the increase in participating agents, the number of

agents and the type of message container are altered. The emulation models a simple form

of proxy attack - the message is only proxied through a single extra agent, but there is

additional infrastructure involvement also. As the message must be proxied outside of the

local area, its contents are copied from an ethernet frame to a UDP packet, to allow for

IP (Internet Protocol) routing.

The path a message must travel during a proxy attack is depicted in Figure 3.3. The
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Figure 3.4: Emulation Results of Proxied and Direct Exchanges Performed Over an IEEE
802.3 Network

message begins as an ethernet frame, which is transmitted from the sending agent (mod-

elling the Proof Provider) to the proxy agent's ethernet address via a switch device. The

contents of this frame are then copied into a new UDP packet and sent to the IP address

of the true recipient (the agent modelling the malicious Claimant). As the packet is being

routed, it travels from the proxy agent to a switch and from there is forwarded to a router.

The router forwards the packet to the correct switch and this switch transmits it to the

true recipient. The true recipient copies the received contents to a new UDP packet and

returns the new packet back over the same route it arrived on.

The network equipment employed for these emulations was comprised of three pcs,

each with a 100 mb/s (megabit per second) network card connected by 10/100 ethernet

to a Cisco 2498G switch. The switch was connected to a Cisco 6509 router using a �bre

backbone, with a speed of 1 gigabit/s. The switch employed a "store and forward" approach

to frame forwarding, to allow for complete error checking. A "store and forward" approach

involves the switch storing all message data until the entire frame has been received, rather

than starting the forwarding process prior to receiving the complete message.

3.4.2 IEEE 802.3 Emulation Results

The graph seen in Figure 3.4 displays the result times of both the direct round trip and

proxy attack emulations for 5000 message exchanges. The lower line (solid black with grey
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peaks) represents the direct exchange emulation results, while the upper line (in white)

represents the proxy exchange emulation times. The graph shows that the average round

trip time of an honest exchange is roughly half that of the average round trip time for a

proxy exchange, with a clear break between the time required for direct exchanges and

that required for proxied. This break between average round trip times provides a large

window within which to establish a acceptance limit. This concept is discussed further in

Sections 3.5.2 and 3.6.

The average time required by a direct exchange emulation run to complete a message

exchange was discovered to be 710 microseconds. This is less than half the average time

of 1560 microseconds required by a proxied exchange. This di�erence in round trip times

is clear evidence that there is enough of a distinction between a direct exchange and a

proxied exchange to allow for detection of attacks on distance bounding and the binary

visibility metric. Aalthough there were a small number of overlaps between the results

returned for direct exchanges and proxy results, these can be attributed to network issues

and are an expected occurrence within our �gures. The addition of multiple iterations

of distance bounding removes this issue from question, as the odds of network problems

repeating over a series of distance bounding exchanges are very low.

3.5 Distance Bounding Emulations in an IEEE 802.11 Wire-

less Network

While the employment of a time-based metric to distinguish honest from proxied exchanges

initially seems like an ideal solution to the collusion detection problem, if the window for

a reasonable exchange is extended, proxy attacks again become an issue. The IEEE 802.3

practical emulations of distance bounding provided a positive result on the impossibility

of a proxy attack going undetected. However, the issue remains as to whether or not

employing the binary metric to distance bounding set in an IEEE 802.11 wireless network

will work in practice. The practical reality of data transmission in wireless networks is

that due to only one device in a certain range having transmission capability at any one

time, data collision algorithms are heavily relied upon. These algorithms slow the sending

of frames through the employment of techniques to avoid collisions. Collision detection

algorithms also employ delay windows in retransmission approaches, again slowing down
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Figure 3.5: The Path of an Emulated Proxied Exchange in an IEEE 802.11 Environment

sending speeds. Finally, in addition to interference from non-computing devices, even with

algorithms to detect and avoid collisions, at times packets simply get lost. These issues

mean that employing the binary metric to distance bounding in a wireless setting may

simply not be feasible, due to the high time windows which would be required to allow

for a successful exchange. Therefore, in order to con�rm the practicality and suitability of

employing the metric in this environment, emulations similar to those described within an

IEEE 802.3 setting have been carried out. These emulations indicate whether the variation

in time required for a direct round trip will mask the extra time required to carry out a

proxy attack on the devices. If this was the case, the binary metric would be ine�ectual in

this situation as it cannot di�erenciate between a direct exchange between honest devices

and a proxy attack involving malicious devices. However, unlike in the case of the IEEE

802.3 emulations, the IEEE 802.11 emulations were not carried out on a live network,

due to a lack of available equipment. Instead, the emulations were performed on a small

test network, featuring only the devices involved in the emulations. Although this does

decrease the accuracy of the results, it also allows the results to be analysed to detect

the di�erent between direct and proxied communications without any interference. While

the emulation results do include reasonable computational delay, the network load and

tra�c levels were signi�cantly lower than those expected in practice. This issue is further

discussed in Section 3.5.2.

3.5.1 IEEE 802.11 Emulation Outlines

The network equipment employed for the IEEE 802.11 emulations was comprised of three

laptop computers, each running ubuntu with a minimum of one gigabyte of memory and

an IEEE 802.11b network card. The units were connected to an ad-hoc network with

a maximum connection speed of 11mb/s. As in the case of our wired emulations, the

direct exchange of a message between two honest neighbouring agents is emulated through
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the transmission of a single ethernet frame by the initialising agent (modelling the Proof

Provider) to the ethernet address of the receiving agent (modelling the Claimant). The

receiving agent copies the contents of the received frame into a new message and transmits

this frame back to the initialising agent's ethernet address.

Unlike the case of an honest message exchange, a proxy attack on distance bounding

may be executed in a number of ways. However, at its most basic level, every proxy attack

involves at least one extra device forwarding messages in order to enable communications

between a two devices, in this case a Claimant and its Proof Provider. The functionality

of this interim device may be repeated over multiple other devices, allowing a Claimant's

communication capability to be extended enormously. In extreme cases, an attack may

even involve the routing of messages over the internet to a Claimant located many miles

from its claimed location. As discussed in Section 3.2.2, the proxy attack scenario consid-

ered within this work involves both the Claimant and the Proof Provider communicating

via a single proxy device, using a wireless communications medium. For this reason, the

proxy scenario employed as a test of the binary metric within this work is composed of only

three devices: the Claimant, a Proof Provider and a single additional device functioning

as a proxy (Figure 3.5).

In this emulation, the Proof Provider transmits a frame to the address it believes

belongs to the Claimant. In reality, the frame is transmitted to an interim proxying

device. The proxy device then forwards the received frame on to the true Claimant. As in

the honest emulation, the Claimant copies the contents of the received frame into a new

frame. The new frame is transmitted back to the Proof Provider via the proxying device,

thus allowing the Claimant to trick the Proof Provider into believing it to be located closer

than it is in reality.

3.5.2 IEEE 802.11 Emulation Results

Graph (a) seen in Figure 3.6 displays the results recorded for 5000 message exchanges

within direct and proxied round trip attack emulations. The lower line (black) represents

the results recorded for direct exchanges, while the upper line (grey) displays the proxied

exchange results. The graph shows that the average round trip time of an honest exchange

is signi�cantly lower than that required for a proxied exchange. It was discovered that
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Figure 3.6: Emulation Results for Direct vs Proxied Exchanges

the time required for a message to complete a round trip between two devices �uctuated

over several thousand microseconds. However, a fraction of the results of direct exchanges

overlapped with those received for proxied exchanges. This overlap poses a problem for

the practicality of the binary metric, as without a clear division between the expected

time for the completion of a direct exchange and that required for a proxied exchange, the

metric cannot reliably function. However, upon further analysis of these �gures, a window

of acceptance (WoA) emerged (Section 3.6), within which 92.04% or 4602 of the 5000

direct exchanges graphed were received. This WoA was discovered to extend to within

2000 microseconds of the fastest round trip time achieved within that emulation's run.

The WoA provides an upper bound on the acceptable amount of time taken to complete

a direct round trip. Graph (B) shown in Figure 3.6 depicts the �ltered result set, where

any exchanges with a round trip time of greater than 2000 microseconds above the fastest

exchange are removed from the original result-set from which graph (a) is generated. By

removing any results beyond the upper limit on the window of acceptance, the issue of

overlapping timings is resolved, as demonstrated by graph (B). Note that there is now

a clear distinction between direct and proxied exchange results. We applied the window

of acceptance �lter to a extended set of 27 direct emulation runs, each containing 10000

exchanges. When applied to the results of each emulation run, an average of 93.67% were

deemed acceptable as direct exchanges.

The average fastest time achieved for a round trip over the 27 emulation runs was found

to be 3256 microseconds, with an average of 9362 frames per emulation received within

2000 microseconds of this time (5256 microseconds). Therefore if this �gure were enacted

as an upper limit on the time in which a frame could acceptably be received in during direct
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distance bounding, 93.62% of the frames transmitted during these experiments would be

accepted by a Proof Provider. The inclusion of multiple iterations of distance bounding in

the interaction aims to reduce the risk that a single frame's slow round trip would remove

the ability of the Claimant to prove itself visible.

The results gathered from the outlined emulations support the hypothesis that the

binary metric can function within an IEEE 802.11 environment. However, further study

is required to evaluate the e�ect of a densely populated network on the performance of

the metric. While the emulations outlined have been conducted within an environment

comparable to a real world wireless ad hoc network, the population of the network vastly

di�ers from that of an ad hoc network. The environment in which the emulations were

conducted contained only the devices playing a role in the emulation itself. This was done

to gain a clear picture of whether or not the binary metric would function in an IEEE 802.11

environment and to discover what the minimum possible exchange time achieveable was.

A more populated environment would interfere with the gathering of this information, as

participating devices would be required to compete for slots in which to transmit messages.

In addition to the level of collisions and required retransmissions, this will cause a slower

response rate, masking any information regarding minimum exchange times. In the future,

it is advised that the metric be tested in a larger network to discover its viability.

Whilst carrying out these emulations, it was discovered that employing devices with

vastly varied speci�cations and capabilities led to inaccurate and inconclusive distance

bounding results. This is due to the need for predictability in the resulting round trip

times. If Claimant A) can complete an exchange in 3564 microseconds, but Claimant

B) has slower equipment and can only complete the exchange in 12834 microseconds, it

will appear to the Proof Provider as though Claimant B) is attempting to carry out a

proxy attack even if Claimant B) is behaving honestly. For this reason, equipment used to

carry out distance bounding employing the binary metric must be standardised to achieve

roughly the same speed of exchange. An alternative approach to standardisation could

be employed whereby the Proof Provider is informed of the speed to be expected from a

Claimant prior to completing distance bounding. However, this is vulnerable to attack, as

the Claimant could lie about its minimum possible exchange speed, thus allowing enough

time to carry out a proxy attack without detection.
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3.6 De�ning the Window of Acceptance

In the previous section, it was shown that a window of acceptance can be de�ned to provide

an upper bound on the time taken for a round trip in order to distinguish between a direct

and a proxied exchange. Those exchanges with round trip times within the window are

deemed acceptable and considered to be direct exchanges, while those with round trip times

of greater than the maximum time in the window are rejected. Therefore, the window of

acceptance forms the basis of the binary metric, through providing it with a method of

distinguishing direct from proxied exchanges.

In the examples shown in the previous section, the window was computed retroac-

tively, based on the results gathered. However, this is not a practical approach and so

some method of computing a window of acceptance based on the current state of the

surrounding network is required. We propose a scheme in which the network speed is

periodically assessed, thus providing devices with a relatively up to date estimate of the

network's performance and the probable performance to be expected for an exchange. This

assessment is achieved using a two stage process, with the �rst stage estimating a reason-

able time frame for direct exchanges and the second estimating the same for a proxied

exchange.

1. A→ B : Rdir

2. B → A : NB

3. A→ B : NB, NA

4. B → A : NA

In the �rst stage, basic distance bounding is performed with multiple devices in the area

to gauge the local network's current performance capability. This is illustrated above,

using abstract protocol notation. For the sake of clarity, an index of this notation has been

provided at the beginning of this work. Device A initiates the process through transmitting

a direct estimation request (Rdir) to a local device of its choice, B. In practice, this may

be done using broadcasting over the local network, advertising that A wishes to gauge the

speed of the network. B starts its timer and responds with a nonce (NB) indicating that it

has begun the estimation process. A starts its own timer and replies to this with a message
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containing both B's nonce and a new nonce of its own (NA). Finally, upon receipt of the

nonce pair, B stops its timer and responds to A with A's nonce. A then stops its own

timer, ending the process. Both B and A can then compute the time required for a direct

exchange. This process is repeated multiple times in order to better gauge the network's

current level of performance.

In the second stage, distance bounding including intentional proxying is performed to

estimate the time required to complete a proxy exchange with a single additional device. A

selects an interim device, B, through which it can proxy messages. B then selects a device

to forward these messages on to (using the same approach as A), thus creating a proxy

exchange �circuit�. In addition to providing both the initiating (A) and �nal destination

(C) devices with proxied exchange timings, this approach also provides the device acting

as a proxy (B) with direct exchange timings from two devices, A and C.

1. A→ B : Rpx

2. B → C : Rpx, Ackpx

3. C → B : NC

4. B → A : NC , NB1

5. A→ B : NA, NB1 , NC

6. B → C : NA, NB2 , NC

7. C → B : NA, NB2

8. B → A : NA

The design for second-stage performance estimation is shown above, described using basic

protocol notation. In this exchange, device A initiates the estimation through transmitting

a proxied estimation request (Rpx) to a random local device, B. B, noting that there is

no acknowledgement included in this message, forwards the request on to a third random

local device, C, along with an acknowledgement of the presence of a proxy in the chain

(Ackpx). C, upon receiving the request to estimate proxied timings and knowing that

a chain is already in place due to the inclusion of Ackpx in the request message, starts

its timer and transmits its nonce (NC), beginning the exchange. B, having received C's
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message, starts its own timer and sends both C's nonce and the �rst of its own nonces

(NB1) to A. A receives this message and starts its own timer, then attaches its nonce (NA)

to the message and sends it back to B. B stops its timer, records the time (which will be

used to compute the time required to complete a direct exchange between itself and A)

and starts the timer again, transmitting both C and A's nonces back to C along with the

second of its nonces (NB2). C receives this message and stops its timer, then sends back

both NB2 and NA to B. B receives the pair of nonces from C and stops its timer for the

second time before forwarding the nonce NA to A. Finally, A stops its timer and computes

the time required to complete proxied distance bounding between itself and C, while B

computes the time required to complete direct distance bounding between both itself and

C and itself and A. As in the case of direct performance estimation, this multi-hop process

is repeated with multiple devices to better gauge the local network's current performance

level.

With both �rst and second stage measurements taken, a device can then compare the

fastest proxied results with the slowest direct exchange results and set an upper bound

to create that device's acceptance window. This boundary should be selected such that

a clear distinction is created between the two sets of results. It should be less than the

fastest proxied result acheived, but should also accept a reasonable percentage of direct

round trip times. Additionally, by each device computing its own window of acceptance,

there is a greater degree of �exibility within the system. However, there are two main

drawbacks to this approach to gauging acceptance windows - device windows may vary

greatly and it relies upon honest behaviour on the part of the participating devices.

While the process described in this section does allow information to be gathered re-

garding the current performance level of the local network, it relies upon honest behaviour

among neighbours. If a device wished to skew the windows of acceptance for other devices

in its vicinity, it could cause arti�cially high measurements for those entering into the es-

timation protocols with it through holding messages rather than responding immediately.

This attack would be undetectable, except in an area where device behaviour is predomi-

nently honest. In this situation, the results provided or caused by a malicious device would

be overridden by those generated using honest devices.

The second issue with gauging acceptance windows in this manner is the permittance
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of devices to set their own windows. While this may provide the system with a greater level

of �exibility, the results re�ected by these windows may not be equally reliable. Under

the system's current design, each device's acceptance window is unknown to all but that

device, including the Veri�er. Therefore even if one device's window is excessively small

or large, the results it determines carry equal weight to those based on more reasonably

sized windows. This issue can be addressed without the standardization of window sizes,

through the provision of information on each device's individual window size along with

any verdict information. However, this approach is vulnerable to abuse due to its reliance

upon honest behaviour on the part of the participants, repeating the secondary �aw in the

original design.

Finally, it should also be noted that the size of a device's window does not guarantee

that that device will behave accordingly, i.e. a device with a very small window of ac-

ceptance will not necessarily mean that the device will always report its results honestly.

For example, a device may employ a very strong window, composed of only a small accep-

tance range, within which any messages received are sure to be honest responses, but then

lie about the number of responses it received within the window. This aspect of device

trustworthiness is dealt with in Chapter 6.

3.7 Authenticating the Exchange

In order for distance bounding to function as a method of detecting a terrorist fraud at-

tack, the Claimant must be required to actively participate in the exchange. Ful�lling

this requirement ensures that the challenge reaches the location of the Claimant and not

just an interim proxy device. A common approach to ful�lling this requirement employs

pre-commitment to tie the Claimant to exchange. In this scheme, distance bounding is

comprised of a series of single bit exchanges, rather than complete nonces. Prior to the

timed portion of the exchange, the Claimant commits to a sequence of bits for use in

generating its responses. The Claimant XOR's a received challenge bit with the corre-

sponding bit from its pre-committed sequence before returning it to the Proof Provider.

As the generation of this commitment employs a secret key shared between the prover and

a Proof Provider, the Claimant is tied to the sequence. This approach was �rst proposed

in Brands & Chaum's initial discussion of distance bounding [13], and has inspired many
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others. However, it does not truly ensure that the Claimant is involved in the challenge-

response portion of the exchange. Agents wishing to deceive a Proof Provider regarding

the location of a Claimant can circumvent this approach through supplying an interme-

diate device with the sequence and having them reply in place of the Claimant. Some

schemes, such as [13] and [96], also require that the process terminate with the Claimant

signing some message generated from the bits received and supplying this message to the

Proof Provider for veri�cation. However, this stage is not timed and therefore a dishonest

Claimant could compute this message himself and supply it either directly to the Proof

Provider or to the proxy for forwarding without detection.

This �aw is also found in another common approach, employing tables of values calcu-

lated based on two nonces, one supplied by each party in the exchange. The response to

each challenge can be found in the table, saving time usually required for calculation during

the time-critical section of the exchange. As in the case of XOR-ing with pre-commitment,

a malicious Claimant could supply a colluding device with this information prior to the

timed phase of the exchange, thereby successfully deceiving the Proof Provider. An exam-

ple of this approach can be found in Hancke & Kuhn's RFID distance bounding protocol

[43].

In order to achieve this condition within the system, an online form of authentication

has been employed, where authentication is done during the timed phase of the exchange.

A digital signature has been included on the return leg of the challenge-response exchange,

forcing the Claimant to receive the message and compose the corresponding reply, rather

than a proxy device doing so in its stead. This also almost erases the possibility of the

Claimant guessing the appropriate response and transmitting it prior to receiving the

message.

When dealing with authentication during distance bounding, the concept of employing

any form of encryption is usually dismissed. This is due to the belief that when using

distance bounding to gauge physical distance, the time required to encrypt something will

overpower the time required to send a message on a round trip. In particular, Clulow

et al [19] argue that this approach introduces inaccuracy into the calculation of distances

based on response times, in addition to allowing an advantage to those with more powerful

hardware. However, the impact of authentication using encryption techniques upon the
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time required for a distance bounding exchange may be removed. In order for a distance

bounding exchange to be completed, the return message must be authenticated by some

device. Therefore, authentication must be performed at some point within the exchange.

Through employing tamper-resistant devices to complete the required calculations

within a known amount of time, the process can be standardised and the impact of authen-

tication upon the time required for an exchange is removed. Therefore, in order for the

binary metric to function accurately, it requires the use of standardised tamper-resistant

hardware. As the time needed for authentication is known due to the use of standardised

hardware, it can then be subtracted from the overall time, leaving only the time taken to

complete an exchange. As this approach to distance bounding is not intended as a method

of gauging distance itself, the issue of introducing inaccuracy into the distance calculated

from these �gures is removed, thereby negating both aspects of the argument.

3.8 Summary

In this chapter, we discussed the technique of distance bounding, as put forth by Brands and

Chaum. We have proposed the concept of the binary metric, a metric which di�erenciates

between an honest distance bounding exchange and an exchange in which a proxy attack

is being perpetrated. Under this metric, the results of a distance bounding exchange no

longer indicate an upper bound upon the distance between two devices. Instead, distance

bounding determines whether the time required for the exchange to take place is reasonable

for a direct exchange. We have acknowledged the limitations on the applicability of the

metric, put in place by the assumption that Claimants do not have access to ampli�cation

equipment allowing them to extend reception and transmission range. We have de�ned

both the positive and negative meanings of the metric, as only a positive is intuitively

understood. In the case of a positive result, there can be no misunderstanding or mistake,

as the exchange includes authentication. However in the case of a negative outcome, a

direct exchange may have been in progress but due to issues beyond the detection of

the metric, the delay in receiving responses causes the time required for an exchange

to fall outside the window of acceptance. We have presented a method of calculating

the window of acceptance in practice, using neighbouring devices to estimate the time

required for both a direct exchange and an exchange proxied via one additional device. We
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have demonstrated the applicability of this metric over both IEEE 802.3 and IEEE 802.11

networks through emulations of both direct and proxied distance bounding exchanges. Our

analysis of the IEEE 802.11 network applicability is limited to networks containing only

the devices participating in an exchange, therefore it is recommended to pursue further

trials in more densely populated networks to investigate the e�ect of increased network

tra�c upon the time required for both proxied and direct distance bounding exchanges.

In addition to dealing with the detection of a proxy attack, we have outlined the need

for some form of tie between a participating Claimant and the distance bounding exchange,

in order to ensure that the device itself participates. We have discussed the concept of

committing to values for use within the distance bounding process prior to entering into the

timed phase of the process, but dismissed this approach as it can easily be circumvented

by colluding devices wishing to deceive the system. We have proposed the use of digital

signatures on the response leg of the distance bounding exchange, in order to tie the

Claimant to the exchange during its timed phase. We address the issue of impractibility

through proposing the use of tamper-resistent hardware to standardise the time required

for a signature to be generated. The standardisation of this requirement allows for its

removal from the time taken for an exchange, allowing for an accurate round trip time to

be established whilst including online authentication of the participating Claimant.
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Chapter 4

The SLVPGP - A Security Protocol

for the Protection of the Location

Veri�cation Process

4.1 Introduction

As wireless networks become increasingly ubiquitous and location becomes a highly sought-

after piece of context information, the demand for a method of securely locating a device

has increased dramatically. When dealing with VANETs in particular, this ability has many

novel applications for users, including the possibility of vehicular insurance directly related

to the area in which the vehicle commonly travels. In general, LBS [87] are commonplace,

however traditionally they rely upon self-location, with no guarantee of the location being

accurate (Chapter 2). As we discussed in Chapter 2, researchers have proposed a variety

of positioning and location veri�cation algorithms for use in sensor and ad-hoc networks.

However, many of these algorithms rely on a pre-existing infrastructure in order to function,

an extremely limiting requirement. In addition to this, many do not include a method of

verifying a speci�c device's participation in the distance estimation process, leaving them

vulnerable to collusion attacks.

In this chapter we outline our approach to the gathering of evidence for use by a device

to prove its location - the Secure Location Veri�cation Proof Gathering Protocol (SLVPGP)

[37]. Our protocol design aims to satisfy three security properties, authentication of origin,
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con�dentiality of location and anonymity of identity, in order to provide a complete level

of security for the protection of the proofs gathered and the privacy of those involved. We

make use of the binary metric, also dicussed in Chapter 3, to provide a method of detecting

the execution of a proxy attack, allowing a Proof Provider to come to a verdict regarding

the presence of a Claimant within its transmission range. It is assumed that the binary

metric is an accurate method of gauging a Claimant's presence within range of a Proof

Provider. Once this is the case, the SLVPGP will function as intended, i.e. the accuracy

of the binary metric is a required property for the accurate functionality of the SLVPGP.

If the binary metric is unable to correctly infer whether a Claimant is within range of

its Proof Providers, the resulting verdicts supplied within the SLVPGP cannot be relied

upon. In order to provide �exibility in the level of overheads incurred when attempting

the veri�cation of a location, we have developed three versions of the protocol, each with

a di�erent level of security and consequentially a di�erent level of overhead costs incurred.

The structure of this chapter is as follows: In Section 4.2 we describe the system model

and its assumptions. We outline possible attacks on the system and discuss the reasons

for the selection of our three security properties. In Section 4.3 we outline the protocol's

basic design, devoid of any security. We discuss the security concerns and vulnerabilities

which the complete protocol should address. In Section 4.4 we repeatedly extend the basic

protocol to create three versions with increasing levels of security. In Section 4.5 we analyse

and compare the costs incurred by each extension. Finally, in Section 4.6 we summarize

the chapter.

4.2 The Secure Location Veri�cation Proof Gathering Pro-

tocol

In this section we discuss the technical information pertaining to the Secure Location Ver-

i�cation Proof Gathering Protocol (SLVPGP). We outline the system model, terminology

employed and assumptions made regarding those nodes involved, the powers of an intruder

and the system itself. We discuss the relevent threats which the SLVPGP must protect

against and the security properties required in order to meet our de�nition of a complete

and secure protocol. Finally, we brie�y outline the role of the Veri�er within the protocol,

a topic further elaborated on in Chapter 6.
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Figure 4.1: The Structure of the Location Veri�cation System

4.2.1 System Model, Assumptions and Terminology

Our system consists of a set of untrusted mobile nodes and a central trusted entity knows

as the Veri�er (V). An untrusted device known as a Claimant (C) wishes to prove its

location to the Veri�er within an untrusted IEEE 802.11 based environment [5]. The

Claimant sends a message to the Veri�er stating its identity and claimed location. This

message is known as a location claim. The Veri�er provides a list of devices in the vicinity

of the location included within the location claim for use as Proof Providers (PPs). The

Claimant engages in distance bounding (see Chapter 3) with each of the Proof Providers

to ascertain that it is within transmission range of that device, thus proving itself to that

particular Proof Provider. It is assumed that the distance bounding process employed will

provide an accurate reading of the proximity of the Claimant to a Proof Provider. The

ability of distance bounding to accurately place a device in an area is an underlying security

property of the SLVPGP and is required for its correct functionality. It is also assumed that

proxy/terrorist fraud attacks will be detected through the use of the distance bounding

employed. The results of the distance bounding exchanges are supplied to the Veri�er via

the Claimant. The Veri�er then makes its decision based on this proof information. This

situation is illustrated in Figure 4.1.

The system was initially designed with the intention of deployment within Vehicular

Ad-Hoc Networks [79], and as such employs the standard technological assumptions for

that setting (outlined below). However, during development it was realised that the high

levels of mobility reached by vehicular networks could impact the accuracy and usefulness

of the system in this environment. With devices moving at speeds of 50 kilometers per hour
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and up, and with the potential to reach upwards of 120 kilometers per hour, the duration

of connectivity between devices is unknown. Therefore the ability of a vehicular device to

gather evidence from others in its vicinity is questionable. For this reason, VANETs are

one of the hardest environments in which to prove a device's location using proof gathered

from local devices. As there was no access to a physical VANET for testing purposes, there

is currently no evidence to gauge the system's practicality in this environment.

However, networks composed of less powerful devices with lower levels of mobility are

highly suited to the system. The communications medium employed by this approach to

location veri�cation is standard IEEE802.11 wireless transmission, the same employed by

all internet-ready mobile devices. The rate of advancement in power and technology in

hand-held mobile devices is high, with Moore's law of increasing power and decreasing size

holding true. Therefore, smaller devices have become powerful enough to successfully deal

with complex calcuations and encryption/decryption at high speeds. Additionally they

can now support high levels of communication without worries over battery consumption.

For these reasons, assuming they meet the requirements outlined below, this location

veri�cation system is employable on smaller devices.

Communications within the system are secured using public key cryptography, employ-

ing a su�ciently secure keysize. Possible examples of suitable asymmetric cryptosystems

include RSA [82] and Elliptic Curve Cryptography (ECC) [53, 64]. In order to provide a

suitably strong resistance to attacks, the keysize required by RSA is quite large, with keys

as large as 512 bits factorised and their cryptographic strength broken [18]. In comparison,

the same level of security can be provided by ECC using keys of a much smaller size. For

example, a 1024 bit RSA key provides equivalent security as a 160 bit ECC key. However,

while the data transmitted within the system is only useful for a short period of time after

its transmission, using a lower key-strength would leave the key vulnerable to attack and

discovery. This is a particular danger if a key-owner is malicious, as they have control

over the data being encrypted and could attempt a chosen-plaintext attack to compute

their private key. Therefore, all keys employed within the system should be of signi�cant

cryptographic strength.

We assume that all nodes are capable of encrypting and decrypting messages and

generating and verifying digital signatures, employing the relevant cryptographic keys. As
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the Claimant and Proof Providers are untrusted devices, we do not trust them to retain

direct control of their key pairs. Instead, it is assumed that they contain tamper-resistant

modules in which all cryptographic keys are stored, along with a reasonably accurate clock

to provide loose time synchronization for timestamps. The storing of a device's keys in

such a module prevents the sharing of keys and other private information with others in

an attempt to sabotage the system's security. This tamper-resistance is central to the

functionality of the location veri�cation system. If a device can gain control of their own

keys or the keys of others, they can share them with other malicious entities. If this occurs,

the authentication aspect provided by cryptography would be lost, and a malicious device

could pass itself o� as another without fear of detection.

Within this location veri�cation system, a device's public key functions as their identity.

This allows any device the ability to communicate with another in ciphertext once it

possesses that device's �identity�, rather than requiring consultation of a table to access

the correct public key. In order to provide an additional layer of security and privacy

to all participants in the system, each device's tamper-resistant unit contains a list of

multiple cryptographic key pairs. This provides multiple �identities� for use within the

system. However, the use of public keys as identities creates a limitation on the system,

as where a device's identity is required to be kept secret (to ensure anonymity), it cannot

receive encrypted communications. This key pair list can be reloaded with new values,

maintaining their freshness and reducing the probability of a device being traceable or

linked to a previous �identity�. The Veri�er has knowledge of all public keys for each

device within the system, allowing it to match participation using a particular �identity�

to the correct device and preventing devices from successfully performing a sybil attack

(Chapter 2).

4.2.2 Threat Model

Honest nodes behave exactly as their roles within the system dictate. They can communi-

cate with any device within transmission range of their location. In addition to this, they

can communicate with the Veri�er. They can receive all messages broadcast within their

range, but do not act on messages not intended for them. Malicious nodes fall into three

categories: malicious Claimants, malicious Proof Providers and intruders, i.e. malicious
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nodes external to the exchange. Malicious nodes cannot occupy the role of the Veri�er

as this is a trusted, un-compromisable entity. All malicious nodes share the capabilities

of honest nodes, in that they can communicate with any device within their transmission

range, and can communicate with the Veri�er. They can receive any message transmitted

within their range, but unlike honest nodes, they can act on messages not intended for

them. If a message transmitted within their range is sent in cleartext, they have complete

knowledge of its contents. However, if an overheard message is transmitted in ciphertext,

the eavesdropper can only gain access to its contents either through procuring the cor-

rect decryption key from its owner or through breaking through the message's encryption.

Malicious nodes can also manipulate and retransmit received messages in an attempt to

circumvent the system's security or damage the chances of participants.

A malicious Claimant is a malicious node participating in the protocol in the role of

Claimant. The aim of a malicious Claimant is to manipulate the location veri�cation

system to provide it with a veri�ed false location claim. As it is a genuine participant in

the claim, it may have access to information that an intruder would not have, such as the

identities and locations of all other participants. It possesses its own public and private

key pair, along with being provided the public keys of other participants. It can make both

false and genuine location claims, and can select which pieces of proof are forwarded on to

the Veri�er in support of its claim.

A malicious Proof Provider is a malicious node participating in the protocol as a Proof

Provider. A malicious Proof Provider may wish to cause a Claimant's claim to fail or it

may wish to lie in order to support the claim of a friendly device. While it has access to

more information than an intruder, it cannot manipulate the process in the same ways as

a Claimant. It can decide whether or not to provide a proof for a location claim and can

control the proof's contents, but cannot ensure that it will be included in the Claimant's

�nal list of proofs. Additionally, it has access to information on the Claimant involved in

a claim, but not on other Proof Providers.

When analysing the vulnerabilities of the SLVPGP, multiple attacks are considered.

The majority of these attacks are attempted by malicious Claimants attempting to in�u-

ence the result of their location veri�cation. The �rst considered is the guessing attack. In

this scenario, a malicious Claimant attempts to guess the correct response to a challenge
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and transmit it prior to even receiving the challenge itself. If this process was successful, the

malicious Claimant would successfully prove itself to be within range of the Proof Provider.

However, this attack is only a realistic threat to schemes employing single bit challenges.

As the SLVPGP employs long random numbers (nonces) as challenges, the odds of a mali-

cious Claimant successfully guessing the correct response even once are prohibitively high.

Therefore, the SLVPGP is not considered vulnerable to guessing attacks.

The second attack considered is a form of collusion attack known as the terrorist fraud

(Chapter 2). This attack was �rst described in [22] and involves a malicious Claimant col-

laborating with another device willing to act as a man-in-the-middle between the Claimanat

and the verifying device. It allows the malicious Claimant to convince the Proof Provider

that he is closer than he truly is. This attack in particular is of great concern when dealing

with a location veri�cation system, as the system must verify that a speci�c device is at

a speci�ed location, not just some device is at that location. The terrorist fraud or proxy

attack is addressed within the SLVPGP through the employment of the binary metric (see

Chapter 3) in conjunction with distance bounding.

A more general attack which the SLVPGP is vulnerable to is the denial of service

(DoS) attack (Chapter 2). In this attack, a malicious device in the area of the Claimant

attempts to prevent the participation of other devices through �ooding the network with

useless packets (congestion-based DoS). The transmission of these packets prevents any

other devices from also transmitting, e�ectively cutting o� communication. An extension

of this attack is the distributed denial of service attack (DDoS), where multiple devices

participate in the denial of service attack. DoS attacks can also occur accidentally, where

other devices in the area are all attempting to transmit at once. This reduces the speed

at which messages can be transmitted to a crawl. Proposed solutions to the DoS attack

lie at the MAC layer of the network and are discussed in [41] and [11]. Also of concern

is a protocol-speci�c form of DoS attack, whereby malicious devices transmit false proof

messages to the Claimant in the hope of deceiving him into forwarding them back to

the Veri�er as part of his �nal proof collection. This attack and its solution are further

explained in Section 4.4.3.

Finally, in a snooping attack, an intruder attempts to gain access to location or identi-

�cation information through eavesdropping on protocol runs. As any device within trans-
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mission range can receive all transmitted messages, this method of attack is both easily

achieved and potentially highly destructive to the security of the participants. This attack

is thwarted through the employment of encryption on messages containing private infor-

mation. If messages are no longer transmitted in plaintext, only devices possessing the

correct decryption key are capable of learning their contents upon receipt.

However, although cryptography is used on messages transmitted within protocol ex-

tensions two and three, the absence of encryption during the distance bounding portion

of the protocol constitutes a security issue and leaves the SLVPGP vulnerable to a more

subtle form of eavesdropping attack, relying on identi�ers. When an observer eavesdrops

on tra�c being transmitted in its vicinity, it can see the contents of the message headers,

along with the data contained within the message's payload. If the data is encrypted and

the observer is not in possession of the appropriate key, it cannot identify whether it is a

stage within SLVPGP or a completely unrelated message. As the nonce messages are not

encrypted, the contents and structure of the message are visible, meaning that the observer

knows that the devices exchanging these messages are involved in a run of the protocol.

Though the values of Hi,k and H
′
i,k are not connectable by an observer, N ′′

i is present in

both distance bounding messages. By matching the N ′′
i values being transmitted between

the Claimant and various Proof Providers and analysing the structure of the messages,

the observer would be able to infer which sender is the Claimant and which are Proof

Providers. The observer could then check the message headers to discover the MAC ad-

dresses of these devices, allowing them to be identi�ed again at a later date. Without this,

only the Claimant's messages would be connectable to the device transmitting them. This

is because the Proof Provider messages do not employ their digital signature or contain

any information pertaining to their identity, unlike those sent by the Claimant.

With identi�ers known for each of the participants in the distance bounding exchanges,

the observer is left with two similar possible approaches to attempt a location extraction.

If the observer is also a participant in the location veri�cation system and has very recently

completed a veri�cation of its own, it may be in possession of the locations of some of the

devices employed as Proof Providers for the Claimant's current claim. It can then check

the IP or MAC addresses within the headers for these devices to see if any of the identi�ers

matches those of a device employed in the current claim. Alternatively, if the observer
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requests a veri�cation of its own, it can check the IP or MAC information of the Proof

Providers supplied and use this to identify any devices that were involved in the original

Claimant's veri�cation. Once it receives the proof messages from those Proof Providers, it

is also in possession of their current location. Using this information and the knowledge

that the Claimant is distance bounding with them, the observer can then attempt to

extrapolate an area of intersection. If the location information of the Proof Providers is

still accurate relative to when they interacted with the Claimant, meaning that the devices

involved have not been highly mobile and the observer's claim was very recent, then the

Claimant's location should be within this area of intersection, thus compromising location

con�dentiality.

However, as stated previously, this attack is reliant upon an observer's ability to label

the devices involved in the claim. If the observer cannot assign identi�ers to the partic-

ipating Proof Providers, it cannot distinguish between devices and cannot complete the

�nal stage of the attack, where identi�ers and locations are combined to provide an area

of intersection. Due to the fact that all messages have source and destination information

embedded in their structure, in addition to permanent unique identi�ers (MAC addresses)

the issue of providing anonymity is a major issue in the area of IEEE 802.11 networks.

Research is being carried out in the area of disposable identi�ers and preventing the tying

of one pseudonymous identity to the next to prevent the labelling and tracking of devices

as they move through a network [48, 39, 32, 89]. By employing some of these techniques to

prevent the labelling of Proof Providers when participating in claims, an observer would

no longer be able to extract location information regarding a Claimant, thereby protecting

con�dentiality of location.

Finally, due to a Claimant relying upon neighbouring devices in order to prove himself

at a particular location, the SLVPGP is also vulnerable to another protocol-speci�c form

of attack. In this attack, the Proof Providers involved in a claim behave maliciously and

attempt to prevent an honest Claimant from proving his claim, through the provision

of false proofs. This form of attack is addressed using device behaviour histories and

reputation values in order to detect devices with a pattern of perceived dishonest behaviour.

The concept of reputation and its uses by the Veri�er within the location veri�cation system

are discussed in Chapter 6.
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4.2.3 Securing the Exchange

Before designing the SLVPGP, we �rst analysed the security properties required from such

a protocol. After considering both the needs of the users involved in an exchange and

those expected to accept �nal proofs from the system, we identi�ed three key properties

required in order to meet their demands. These properties are authentication of origin,

con�dentiality of location information and anonymity of identity. Therefore, we de�ne a

secure and complete protocol for employment within this situation as one which satis�es

these three properties.

Authentication of Origin

This location veri�cation system is based upon the idea of a Claimant proving itself

to be at a speci�c location. However, the distributed nature of the system prevents the

Veri�er from gaining any �rst hand information regarding the veracity of a location claim.

Instead, the Veri�er employs other devices in the supposed location of the Claimant to act

as Proof Providers. These devices provide the Veri�er with a verdict regarding the claim's

veracity. As the Veri�er is not present at the location, it cannot access these verdicts

directly. Instead, it must have them transmitted to it from a remote location. In order

for the Veri�er to have any con�dence in the verdicts being received, it must have some

method of verifying their origin. Therefore, we de�ne a secure and complete protocol in

this situation to support the property of authentication of origin. This property requires

that the origin of any given message must be known and veri�able, and guarantees that

any proofs supplied to the Veri�er can be traced back to the Proof Provider that created it.

The inclusion of this property prevents the Claimant from providing false proofs without

detection, as the origins of all messages are known. We further extend this property to

also guarantee the detectability of tampering or alterations to any message. This prevents

a Claimant or any other device with malicious intent from altering a valid proof message

to support its desired outcome.

Con�dentiality and Anonymity

In order for a user to trust any location veri�cation system, they must be sure that private

data, such as identity and location information, pertaining to their devices is protected.

Without this trust, the system would have little value as many users would be unwilling to
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participate in claims, either of their own or as Proof Providers. Therefore, we require that

for a protocol to be considered secure and complete within this system, it must uphold the

security properties of anonymity of identity and con�dentiality of location information.

We formally de�ne anonymity of identity to mean that a device's identity may not be

discoverable by any party other than the Veri�er, other than where expressly given. In

addition to the use of encryption within the protocol to protect identity information, each

device possesses a list of multiple �identities�, thus reducing the probability of a device

being traceable even if an identity is learned.

Con�dentiality of location information is formally de�ned as the promise that the loca-

tion of a device with a speci�c identity may not be discovereable by any party other than

where expressly given to it. As distance bounding in a wireless network leaks information

regarding locations to those in the vicinity of the exchange [78], protecting the transmission

of location information does not guarantee that a device's location will remain unknown

at a local level. Therefore, protecting location information at this level does not truly

protect the location of a device. However, it is simpler to protect location information

throughout the protocol than it is to protect only messages sent beyond the local area.

Additionally, should the issue of location leakage through distance bounding be addressed

in future research, the protocol itself does not leak any location information.

The formal de�nitions of anonymity and con�dentiality lend themselves to a graduated

approach, where each incremental increase in the security of the protocol provides a more

rigorous version of protection. As some applications require a lesser amount of security

when dealing with this information, we have developed a two-tier de�nition for both se-

curity properties. Where there is a greater need for protection on the part of the users,

complete anonymity and con�dentiality are employed. Complete anonymity and con�den-

tiality guarantee that no device can learn any identity or location information regarding

another device. However, where users do not require such stringent security, external con-

�dentiality and anonymity are employed. When this property is upheld, it guarantees that

only those devices participating in a particular exchange are granted access to identity and

location information regarding other participants. Neither intruders on the exchange nor

devices participating in other exchanges can learn this information, whether or not they

are in range of the pertinent transmissions. This partial form of the desired properties
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allows the protocol to provide a medium level of security without incurring high secrecy

costs (see Section 4.5).

4.2.4 The Role of the Veri�er

Unlike the Claimant and its Proof Providers, the Veri�er is a special trusted device located

outside of the participating devices' mobile networks. It possesses the identities and public

keys of all devices within the entire Location Veri�cation system and is trusted to behave

honestly with this information. It is charged with deciding on the possibility of a location

claim and is given the location information of all devices involved in a location claim. The

exact functionality of the Veri�er is dealt with fully in Chapter 6. However, in order to

understand the protocol's part in our approach to solving the location veri�cation problem,

the Veri�er's basic processes involved in the protocol are outlined here.

The SLVPGP relies upon the Veri�er for two tasks; A) supplying suitable Proof

Providers for use during a run of the protocol, and B) determining the �nal verdict on

a claim using the proofs gathered from these Proof Providers. The selection of neigh-

bouring devices for use as Proof Providers is a di�cult task. Without a secure process

for selecting Proof Providers, the SLVPGP is vulnerable to undetectable collusion attacks

which render the entire protocol insecure prior to any distance bounding step occurring. If

the Claimant is involved in the selection of Proof Providers, it has the ability to manipulate

the process. This allows it to select devices which will participate in a collusion attack,

giving it complete control over the claim's �nal verdict. Therefore, even if the Claimant

is many miles from the claimed location, its location claim will always be successful. For

this reason, the Claimant is not involved in the Proof Provider selection process. This is

discussed more fully in Chapter 6.

The principle task of the Veri�er is to assess the possibility of a location claim, based

on pertinent information gathered by the Claimant from its Proof Providers. This is

acheived using one of two veri�cation approaches, summation-based or trust-based. These

approaches are discussed further in Chapter 6.
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Figure 4.2: The Proof Gathering Process

4.3 Designing the Protocol - the Basic Outline

The basic premise of the location veri�cation is the gathering of proof from neighbouring

devices by a Claimant in order to prove itself in that area. This proof either supports

or refutes the possibility that a Claimant is indeed within transmission range. The basic

process by which this is achieved is shown in Figure 4.2. However, in order for the proofs

gathered by the Claimant to be credible, the process must be protected. In this section we

outline the steps taken in developing a protocol for the securing of this process.

4.3.1 Protocol Outline

In order to understand what security risks are present in the proof gathering process, we

�rst model a protocol devoid of any security, written in abstract protocol notation (de�ned

at the beginning of this work). This model depicts the framework within which devices

participating in a claim provide evidence of a Claimant's presence in their vicinity for

the Veri�er. We outline the protocol as a sequence of steps taken by the parties involved

in the exchange: the Veri�er (V), the Claimant (C) and N Proof Providers (Bi where i
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∈{1...N}). Up to M iterations of distance bounding are completed, with k used to index

through them (k ∈{1...M}).

1. C→V: C, XC

The Claimant sends a message to the Veri�er containing its identity (C) and location

(XC), requesting that its location claim be veri�ed.

2. V→C: B1, B2, ...BN

The Veri�er sends a list of devices in the claimed area to the Claimant for use as

Proof Providers.

3. C→ Bi: C,Bi,N i ,N
′
i

The Claimant broadcasts a message for each Proof Provider containing their iden-

tity and two nonces (long random integers), N i (the initiating nonce) and N ′
i (the

replying nonce).

4. The Claimant and Proof Providers create two chains of M hashes, one for each of

the received nonces. This is explained in detail in Section 4.3.2. The hashes are

noted as Hi,k (the initiating chain) and H
′
i,k (the replying chain) respectively, where

i ∈ {1...N} and k ∈ {1...M}.

5. Distance Bounding

This stage is performed multiple times to lessen the e�ect of any network issues which

may arise.

(a) Bi starts its timer.

(b) Bi →C: k, Hi,k, N
′′
i

Bi sends a message to the Claimant containing a new random nonce N ′′
i , a

randomly selected value from the initiating hash chain, Hi,k, and its position

in the chain, k. k decreases with each iteration of distance bounding. The

Claimant checks whether the kth value in the N i hash chain matches Hi,k and

if so, continues to the next step.

(c) C→ Bi: H
′
i,k, N

′′
i

The Claimant sends a message to Bi containing N
′′
i and the kth value in the

replying hash chain. Bi compares this with the kth value in its replying hash
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chain. If the two values match and the received value of N ′′
i matches its own

sent value, Bi stops its timer and calculates the round trip latency (subtracting

out its own internal processing time).

6. Bi →C: Bi, Ti, Xi, Li

Bi sends the Claimant its proof, comprised of its identity, its current location (Xi)

and overall decision regarding the presence of the Claimant in its vicinity (Li). Bi

also includes a timestamp in the proof to tie the location to this speci�c point in

time.

7. C→V: C, TC , XC ,

B1, T1, X1, L1,

...,

BN , TN , XN , LN

The Claimant compiles all the proofs gathered from its Proof Providers and for-

wards them to the Veri�er, along with its identity C, the current location XC and a

timestamp TC , tying the proofs to that point in time.

8. The Veri�er combines the evidence gathered by the Claimant and extracts a �nal

verdict (DV ) on the validity of the location claim.

9. V→C: DV , XC , TV

The Veri�er sends its �nal verdict to the Claimant for use as proof of its presence in

the claimed location (XC). Additionally, V includes a timestamp to tie the location

proof to this speci�c point in time. This proof can be supplied to other entities

and systems as veri�ed evidence of the Claimant's presence in the stated area at the

stated time.

4.3.2 Protocol Discussion

The simplistic protocol depicted above represents the basic design for a proof gathering

protection protocol. It de�nes a method to allow a Claimant to submit a location claim to

the Veri�er, indicating its interest in having its location veri�ed in a provable fashion. The

protocol goes on to de�ne a framework for the gathering of proof from a pre-approved list of

neighbouring devices and speci�es the components required within a valid proof message.
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Additionally, the protocol de�nes distance bounding as the method by which a Claimant

proves itself to be within contact range of a Proof Provider and speci�es a framework for

the exchange.

Due to the possibility of network issues such as delays and lost packets, the result of

a location claim could be a�ected through the true results of a single distance bounding

exchange being distorted. To compensate for this possibility, multiple distance bounding

exchanges have been included within the protocol's design. In order to avoid increases in

data overheads, a hash chain [42] has been employed to calculate multiple nonces from a

single initial nonce. This chain is constructed as follows: The initial nonce is hashed using

the hash function H(N ), producing the value H1. This value is then hashed using the same

function (H(H1)) to produce H2. Therefore, the kth value Hk in a hash chain is calculated

from N using the formula Hk = Hk(N ). New values are created with this formula until

a su�cient number of entries have been created within the chain. However, one danger of

creating chains in this manner is that if given the value Hk an intruder could then calculate

all values above Hk in the chain. In order to address this, the value of k should decrease

with each iteration of distance bounding, moving downwards through the chain. Although

this reduces the number of useable values within the hash chain, it removes the risk of a

security leak.

Two chains are employed in the protocol, one initialised using Ni and the other using

N ′
i . These are used within the distance bounding exchange as a method of ensuring that

both devices involved, i.e. the Claimant and Proof Provider Bi can con�rm that they are

interacting with their expected exchange partner. The hash chain values generated from

the initiating nonce, Ni, prove to the Claimant that the message originated from a Proof

Provider engaged in the current location claim. The values from the hash chain derived

from the replying nonce, N ′
i , are used by the Proof Provider to verify that the message

received originated from the Claimant involved in that speci�c location claim.

In order to reduce the probability of a Claimant successfully guessing the approprite

response from the chain and transmitting its response before receiving the Proof Provider's

challenge, an echoing nonce N ′′
i is included. As the Claimant's reply message contains both

a nonce from its reply chain and the echoing nonce, it is forced to wait until it receives

the value of N ′′
i . This dramatically reduces the possibility of an early transmission attack
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successfully being accepted as a valid response, as the probability of successfully guessing

the value of N ′′
i is very low. The use of a randomly selected value from the hash chain

(Hi,k, the kth value in the hash chain created from Ni) adds to the unpredictability of the

Proof Provider's distance bounding challenge message for the Claimant.

While the simpler and more intuitively correct approach to communicating the evidence

regarding the claim from the Proof Providers to the Veri�er is to have the Proof Providers

transmit their proofs directly to the Veri�er, we have chosen to employ a di�erent tack. In

our approach, the Claimant gathers the �nal proofs from its Proof Providers and forwards

them to the Veri�er along with its �nal message indicating the completion of the evidence

gathering process. Although this approach to the supplying of proofs does add complexity

to the protocol, it also protects the Claimant from a scenario where the Proof Providers

participate in distance bounding, but do not transmit their proof messages to the Veri�er.

In this situation, if the Claimant was to supply its �nal message to the Veri�er, who

had received no supporting proof messages, it would assume that the claim was false and

decrement the Claimant's honesty value as punishment for submitting a false location

claim. By transmitting the proof messages via the Claimant, the Claimant is not deceived

into believing the Veri�er has received evidence regarding its claim, only for that evidence

never to materialise.

In order to ensure that the proofs supplied by the Proof Providers and the message

containing the Veri�er's �nal verdict are unique and cannot be employed in a replay attack,

we have included timestamps within these messages. These timestamps can be generated

based on the reasonably accurate clock within the tamper resistant unit, thus providing

a loose level of syncronization. Upon initialisation of the claim, an acceptable window is

de�ned by the Veri�er, and any messages timestamped within this window are deemed

applicable to this claim. As the Veri�er registers the time of initialisation, any messages

with a timestamp preceeding initiation of the claim can be detected and discarded, thus

preventing reuse of older proofs. However, as any proofs timestamped within the window

may be accepted, a highly mobile device (such as a vehicle within a VANET) may signif-

icantly change its location over the course of the window. This means that a device may

no longer be in the vicinity of the location being claimed by the time the claim is veri�ed.

If a Claimant was to initiate two claims, one a short period of time after the other, it
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may be provided with a similar list of Proof Providers and could, in theory, provide proofs

gathered based on the �rst claim's list. This is partially protected against through the

ability of the Veri�er to discard proofs dated prior to the initiation time of a claim, though

an overlap is possible. An alternative approach to this issue is to employ an identifying

nonce, which identi�es the claim a proof corresponds to. However, if nonces were employed

without timestamps, a device could gather proofs from its Proof Providers at one time. It

could then hold these proofs for a period of time and then supply them to the Veri�er,

thus generating a location veri�cation containing its earlier location, timestamped with a

current time. Therefore, even where nonces are employed, an acceptance window must

also be used.

As the protocol is currently presented, the security of both the �nal proofs and the

Veri�er's verdict is compromised. Both the distance bounding exchange and the trans-

mitted proof messages are susceptible to tampering, either by an intruder or a malicious

Claimant which wishes to alter the verdict given by a Proof Provider or the Veri�er's

overall verdict. In addition to this, fraudulent proofs can be fabricated by a malicious

Claimant without making contact with a Proof Provider. Finally, the overall protocol is

vulnerable to the ma�a and terrorist frauds as there is no method of tying the messages

sent during the distance bounding portion of the protocol to the Claimant. In order to

address these vulnerabilities, we have repeatedly extended this basic protocol design, in-

creasing security with each extension. In the following section we discuss these extensions,

their improvements to security and the costs incurred in enacting these.

4.4 Extending the Protocol

In the previous section we de�ned a basic approach for the protection of the proof gath-

ering process. We designed a simplistic protocol to enact this protection and discussed

its functionality and �aws. However, this simplistic approach is undeniably insecure and

upholds none of the security properties outlined in Section 4.2.3 which de�ne a secure and

complete protocol in this situation. For this reason, we extend the basic protocol using

security techniques such as the employment of encryption and digital signatures to produce

a secure and complete protocol which ful�lls the requirements of the system.

The extension of the protocol has been split into three distinct iterations. In exten-
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sion one, we amend the basic protocol to support authentication of origin, thus preventing

false and amended proofs from being accepted. In extension two, we increase the level of

security provided by extension one to include external con�dentiality and anonymity, thus

protecting the private data of devices involved from intruders. The addition of these prop-

erties satis�es the de�nition of a secure and complete protocol within this system, creating

the �rst complete version of the SLVPGP. Finally in the third extension, we increase the

level of con�dentiality and anonymity provided from external to complete. As with the

second extension, extension three satis�es the de�nition of a secure and complete protocol

within this system, creating a second secure and complete proof gathering protocol. Each

of the extensions outlined are discussed in depth in this section.

As before, we outline a protocol as a series of steps taken by the Claimant (C), Proof

Providers (Bi where i ∈ {1...N}) and Veri�er (V). We assume that all parties involved have

asymmetric key pairs associated with them. These key pairs are noted as K−
A and K+

A for

the private and public keys respectively, where A is the owning party's identity. We also

assume that the identity each party is referred to by is its public key. This means that if

a device has knowledge of another's identity, it can encrypt messages for their decryption.

4.4.1 The SLVPGP: Extension One

In this extension, we introduce the �rst of our desired security properties: authentication of

origin. This property ensures that the Veri�er can trace the origin of any message received

back to its source, thus removing the danger of false proofs. However, this extension

does not provide a secure and complete protocol as the properties of con�dentiality and

anonymity are not supported. This extension has been designed as a lightweight version of

the protocol, to function in situations where con�dentiality and anonymity are not required

or highly desired security properties for a system.

1. C→V: {|C,XC |}K−
C

2. V→C: {|B1, B2, ..., BN |}K−
V

3. C→ Bi:

{
|Bi, C,

{
N i ,N

′
i

}
K+

Bi

|

}
K−

C

4. The Claimant and Proof Providers create two chains of M hashes, one for each of

the received nonces.
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5. Distance Bounding (executed multiple times)

(a) Bi starts its timer.

(b) Bi →C: k, Hi,k,N
′′
i

(c) C→ Bi: H
′
i,k,

{
|N ′′

i |
}

K−
C

6. Bi→C: {|Bi, Ti, Xi, Li, C|}K−
Bi

7. C→V: {|C, TC , XC |}K−
C

{| {|B1, T1, X1, L1, C|}K−
B1

,

...,

{|BN , TN , XN , LN , C|}K−
BN

|}K−
C

8. V→C: {|DV , XC , C, TV |}K−
V

This extension to the protocol removes many of the vulnerabilities identi�ed within the

basic design. The addition of encryption to the initiating and replying nonces, N i and N
′
i ,

prevents intruding devices from gaining knowledge of these values without the collusion

of malicious involved parties. Previously, these values were sent in cleartext, negating the

reasoning behind their inclusion. With these values sent in an encrypted message, only

legitimate participants and devices colluding with malicious participants have access to

them for use within the distance bounding process, thus providing authentication. How-

ever, even if a colluding device was granted access to these values, the danger of a terrorist

fraud attack going undetected is negated through the addition of a digital signature on the

echoing nonce. By tying the Claimant device directly to the distance bounding process,

the protocol's vulnerability to proxying attempts is removed (see Chapter 3).

An alternative approach to authentication during distance bounding was also consid-

ered, in which a symmetric key is established between the Claimant and that Proof Provider

for use on the return leg of the exchange. Employing a shared key would reduce the com-

plexity of the protocol in further extensions and decrease the time required to complete

distance bounding. However, this option is only viable if such a key is held within the

tamper-resistant unit. Without this protection, a malicious Claimant would be free to

distribute this key to any colluding devices, thus removing the element of authentication

and reinstating the threat of undetectable collusion attacks. This issue can be negated
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through the use of a key-exchange protocol such as the Di�e-Hellman key exchange [23],

which runs through the tamper resistant module, preventing the resulting key from being

supplied to other devices. If this approach is taken, the time requirements for distance

bounding would be signi�cantly reduced, due to the vast di�erence in computation time

required for symmetric key cryptography in comparison to asymmetric schemes, particu-

larly RSA. Additionally, the amount of data to be transmitted would decrease, as the key

size required for symmetric cryptography schemes is signi�cantly less than that required

for comparable security when using asymmetric schemes.

The use of digital signatures to provide authentication of origin also addresses other

security concerns within the protocol. A malicious Claimant can no longer fabricate proof

for the Veri�er, as it cannot generate the Proof Provider's signature to match the proof.

Nor can it undetectably alter the content of an existing proof from a Proof Provider, as

the signed hash of the message would no longer match the message being transmitted.

Similarly, neither the Claimant nor a malicious intruder can alter the Veri�er's overall

verdict in the �nal veri�cation message. Additionally, the inclusion of the Claimant's

identity within the signed proof messages from the Proof Providers and the �nal veri�cation

message prevents a malicious Claimant from using messages pertaining to another Claimant

as evidence of its own claim. Finally, an intruder cannot participate in the exchange as its

signature key would not produce a valid message signature, nor can it intercept the �nal

message and undetectably insert false proofs.

4.4.2 The SLVPGP: Extension Two

In the previous section, we extended the protocol to provide authentication of origin and

prevent attacks such as the ma�a and terrorist frauds. However, during the execution of

an SLVPGP extension one exchange, an intruder to the system can read all transmissions

in the exchange. Therefore, the properties of con�dentiality and anonymity are still not

upheld. In this section we further extend the protocol to provide a form of anonymity and

con�dentiality. We achieve this through the addition of encryption.

The functionality of the extension two protocol remains as in extension one, with

the Claimant requesting that the Veri�er allow it to prove its location using proof from

neighbouring devices (Step 1). The Veri�er again provides a list of devices it believes to
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be in the vicinity of the Claimant for use as Proof Providers (Step 2), and the Claimant

contacts each of these, using distance bounding to establish that it is within that device's

range (Steps 3-5). When the Proof Providers employed have decided on the veracity of

the Claimant's claim that it is within their range, they supply the Claimant with proof

messages (Step 6). The Claimant then provides these to the Veri�er for use in the �nal

decision (Step 7) and �nally, the Veri�er supplies the Claimant with its judgement on the

veracity of its location claim (Step 8). However, in this version of the protocol, the contents

of all messages (excluding those sent during the distance bounding stage) are encrypted for

the eyes of their recipient. This prevents those without the appropriate key from gaining

access to the private values contained within, more speci�cally the identities and locations

of the participants in the protocol.
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While the �rst extension to the protocol added authentication through the use of digital

signatures, the addition of encryption in this extension builds upon the existing framework

to include external anonymity and con�dentiality. Upholding these properties protects

the transmitted identity and location information of all parties involved from any device

external to the exchange. While the Claimant and any Proof Providers involved have

access to the location and identity information being sent over the run of the protocol, no

other devices can discover it, whether they are within range of the transmissions or not.

However, as discussed previously, location information is leaked when a device partic-

ipates in distance bounding. Therefore, though the transmitted location information is

protected, local observers within the network can still extract the location of devices in

their vicinity. Despite this leakage, the location information transmitted in steps �ve and

six has also been protected through encryption, as doing so provides a simpler message

structure. Additionally, the protocol structure remains �t for employment should the issue

of location leakage be resolved.

As mentioned in the previous section, an alternative protocol structure may be built

in which a symmetric key is agreed upon between the Claimant and each Proof Provider.

This key may be agreed upon during the fourth step of the protocol. It could then be

employed during the distance bounding process to decrease speed and data transmission

costs, as well as to encrypt the Proof Provier's �nal proof message. However, even if this

approach is employed, the Proof Provider's digital signature must remain present on the

proof message in order to provide authentication of origin to the Veri�er.

4.4.3 The SLVPGP: Extension Three

The previous extension to the SLVPGP increased the level of security surrounding the

proof gathering process. However although a form of anonymity and con�dentiality exist,

complete anonymity and con�dentiality have not yet been achieved. Devices participating

within the proof gathering exchange could record information on the parties involved while

they have access and then use this information maliciously at some point in the future. For

example, if a malicious observer is also a participant within the system and is provided with

information on other devices, including their identities, it can retain this information for

use at a later date. With the Claimant in an exchange identi�ed through the observational
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analysis of tra�c and message structure during the distance bounding stage, the observer

can then attempt to solve the equation:

N ′′
i =

{{
|N ′′

i |
}

K−
C

}
x

by substituting x with each of the identities it has acquired over its time within the

system. Assuming the observer is in possession of the correct identity within its list of

previously encountered devices, both the identity and location of the Claimant would be

compromised. Although the identities of devices are frequently changing pseudonyms, it

should be noted that there is a possibility that the identity in use by the Claimant is

already known by the observer. For this reason, we extend the protocol once more to

provide complete anonymity and con�dentiality from all devices, even if they are involved

in the exchange. This security increase causes the protocol's complexity to increase greatly,

which is discussed in Section 4.5.

1. C→V:
{
{|C,XC |}K−

C

}
K+

V

2. V→C:|
{{
|B1,N 1 ,N ′

1 ,KCB1 |
}

K−
V

}
K+

B1

, ...,

{{
|BN ,NN ,N ′

N ,KCBN
|
}

K−
V

}
K+

BN

|


K−

V

,

{{
|N 1 ,N ′

1 ,KCB1 , ...,NN ,N ′
N ,KCBN

|
}

K−
V

}
K+

C

3. The Claimant decrypts and stores each of the nonces received from the Veri�er.
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7. Bi →C: H (KCBi),
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With the extension of the protocol to provide complete anonymity and con�dentiality, a

new security issue emerges. Due to the presence of encryption, the Claimant is unable to

di�erentiate between valid and fraudulent proof messages. In this situation an intruder

could launch a denial of service attack, supplying the Claimant with fraudulent proofs for

inclusion as evidence for the Veri�er. The Veri�er would fail the claim for including proofs

from illegitimate sources, as it cannot distinguish whether or not the fraudulent proofs

were intentionally included by the Claimant in an attempt to deceive the system. This

dismissal renders the e�orts of those involved devices wasted. Therefore, the Claimant

requires a method of matching a received proof to one of its unknown Proof Provider.

For this reason, the Veri�er generates a symmetric key, KCBi , for each Proof Provider

involved in the claim. The Proof Provider creates a message containing its proof and the

original nonce N i (supplied by the Veri�er and known only by the Claimant, Veri�er and

that Proof Provider). It encrypts this message with the symmetric key and transmits

it to the Claimant, accompanied by a hash of the key. The hashed value allows the

Claimant to identify which key should be used to decrypt the message. If the Claimant can

successfully decrypt the message, that proof is con�rmed as being created by a legitimate

Proof Provider. This removes an intruder's ability to undetectably insert illegitimate proofs

into the exchange. However, the message being decrypted is a piece of ciphertext. Without

the presence of a known value in the message, the Claimant would be unable to di�erenciate

between a message sent by a legitimate Proof Provider and one supplied by a malicious

intruder. For this reason, the initiating nonce N i is included in the encryption. Upon

decryption using its symmetric key, the Claimant can immediately identify that nonce and
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con�rm that it matches the key employed to decrypt the message. This re-con�rms the

veracity of the received proof.

The functionality of KCBi , much like that of Ni and N
′
i , is tied to the fact that no

devices other than the Claimant and a Proof Provider have knowledge of its value. In order

to prevent intruding devices from learning the value of any of these nonces, the messages

containing them must be encrypted for each recipient. As a device's identity is its public

key, the Claimant is no longer capable of encrypting messages for its Proof Providers.

If the Claimant was capable of this, complete anonymity and con�dentiality would not

hold, rendering the protocol no longer complete. Therefore, a new approach is required

to maintain complete anonymity and con�dentiality whilst still enabling the encryption of

these values to protect them from eavesdropping attackers.

In order to ful�ll these requirements, we have expanded the role of the Veri�er within

the protocol. In earlier extensions, the Veri�er's role consisted merely of transmitting a

list of the Proof Providers for use in the exchange. However, in this extension the Veri�er

assumes much of the initialisation role of the Claimant, generating the nonces for use within

the exchange and encrypting them for the participating Proof Providers. As the Claimant

also requires a copy of these values, the Veri�er is forced to create and encrypt two messages

per Proof Provider, one encrypted with the Claimant's public key and one encrypted with

that of the Proof Provider's. With these messages pre-encrypted, the Claimant need

then only broadcast them to all devices in its vicinity. It is through the implementation

of this approach, where the Claimant is forced to broadcast messages without knowing

the identity of their intended recipient, that complete anonymity and con�dentiality is

achieved. However, the satisfaction of these properties also precludes the participating

Proof Providers from successfully verifying the Claimant's digital signatures during the

distance bounding exchange. If unaddressed, this inability would render the protocol

vulnerable to collusion attacks, as the signature employed on the return leg of the exchange

could be undetectably falsi�ed by any device. This negates any protection o�ered by its

inclusion. In order to address this potential vulnerability, a randomly selected digitally

signed nonce from the distance bounding exchange is included by the Proof Provider in

its �nal proof message. This signed nonce is forwarded to the Veri�er as part of the proof

message, where the Veri�er can con�rm the signature's authenticity as it possesses the
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appropriate public key. As the nonce is selected from the array sent during the exchange

at random, the Claimant cannot predict which run should be participated in correctly. If

it wishes to attempt a collusion attack and participate honestly in only a single run, it has

at best a one in x chance of successfully cheating the system (where x = the number of

distance bounding exchanges performed).

With the satisfaction of external con�dentiality and anonymity, the inclusion of a re-

newed protection against collusion attacks and the continued satisfaction of authentication

of origin, we believe that we have designed a second secure and complete protocol which

satis�es the three security properties outlined in Section 4.2.3 to the fullest degree. Un-

fortunately, the creation and transmission of two initialisation messages for each Proof

Provider involved, the inclusion of a signed nonce in the proof messages and the heavy use

of encryption causes this protocol extention to come at a high overhead cost. This cost ex-

plosion is discussed in detail in Section 4.5.3. However, the cost explosion may be lessened

through the further use of symmetric keys. As in the case of extensions one and two of

the SLVPGP, the use of symmetric keys between the Claimant and Proof Providers when

doing distance bounding would decrease both the transmission and time costs required

to complete the stage, as symmetric cryptographic operations are far faster and result in

smaller pieces of cipher text than asymmetric cryptography. This has the additional ben-

e�t of removing the need for a randomly selected signed nonce to be included in the proof

message sent to the Veri�er, as the Proof Providers would again be able to con�rm that

the value was encrypted correctly. The removal of this section of the proof message also

decreases the amount of data to be sent and time required for sending, thereby reducing

the cost explosion further.

However, though employing symmetric cryptography on this stage would decrease both

the time and data costs on the part of the Claimant, the costs incurred by the Proof

Provider would actually increase. In the current approach, the Proof Provider does not

incur any veri�cation costs, it does not possess the appropriate key. Therefore, there

is a trade o� between the Claimant's savings and the increased costs incurred by the

Proof Provider. Future work on this protocol should investigate the bene�ts vs costs of

switching to this approach. Additionally, the optimization possibilities of redesigning the

extension overall and completely incorporating symmetric keys into the structure should
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be addressed, as this may lessen the complexity of the protocol in addition to decreasing

the costs incurred.

4.5 Analysing the Protocol

In this section we discuss the various extensions to the SLVPGP and their associated

overhead costs. Each extension to the SLVPGP increases the security provided to those

participating, however in order to provide the increased security, the extensions require

additional data to be transmitted and computing time to generate encryptions or digital

signatures. We de�ne the term costs to mean this additional data and/or time required in

order to increase the level of security provided. In this section we discuss the costs incurred

within each extension, in order to provide that extension's level of security (Sections 4.5.1-

4.5.3). We then discuss the practical costs incurred by each extension, broken down by

cost type (Section 4.5.4).

4.5.1 Extension One

In the �rst extension of the protocol, support is added for authentication of origin. This

property is supplied through the application of digital signatures to messages within the

protocol. However, the employment of digital signatures causes an increase in the costs

associated with the protocol. As the digital signature for each message must be computed

and veri�ed during the protocol's run, the length of time taken to complete each step

increases. In addition to this, the digital signature for each message must be transmitted

with that message, increasing the amount of data required to be transmitted. These

increased overhead costs apply to all messages including a digital signature.

In addition to the overhead costs associated with providing authentication, the �rst

extension to the SLVPGP increases the level of security within the protocol through the

prevention of collusion attacks such as the terrorist fraud. This is achieved by tying the dis-

tance bounding stage of the protocol to the Claimant through employing a digital signature

on the echoing nonce. An improvement in costs may be made here, through the employ-

ment of symmetric cryptography instead of the currently employed asymmetric approach.

This would reduce both the time required for encryption and the size of the resulting

message. However, if the protocol's design is amended to incorporate this approach, an
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additional step must be included within the protocol, during which a key agreement scheme

(such as Di�e-Hellman [23]) is run. Though this does increase the costs incurred, the extra

amount of data being transmitted and time required is negated by the cost savings per

distance bounding iteration.

The security of the protocol is also improved upon by including the Claimant's identity

within the proof message. This incurs only a slight increase in data overheads, to tie the

proof to the Claimant involve and ensures that the protocol is not vulnerable to attack

from a dishonest Claimant wishing to use proofs concerning other Claimants within its

own veri�cation. As this message is digitally signed by the Proof Provider supplying it,

the Claimant is unable to undetectably remove this piece of evidence. This approach is

also employed in the �nal message from the Veri�er to the Claimant, tying the veri�cation

to that Claimant. Again, as the message is digitally signed by the entity providing it,

the Claimant is unable to undetectably alter the identity included. This prevents it from

altering veri�cation messages pertaining to other devices to suit its own needs.

However, although the �rst extension does protect the integrity of the information

transmitted, the lack of encryption and its associated overhead increases means that this

extension does not a�ord the devices involved either con�dentiality or anonymity. These

properties are supplied in varying degrees within the second and third extensions.

4.5.2 Extension Two

The second extension to the SLVPGP increases the security properties supported to in-

clude external anonymity and external con�dentiality. In addition to authentication of

origin, these properties are achieved through the application of encryption to communi-

cations between the various parties. Encrypting these messages ensures the contents are

known only to those with the appropriate decryption keys and those with whom the key

owners share the contents. This newfound protection provides external anonymity and ex-

ternal con�dentiality - i.e. no device outside the exchange can learn identities or location

information without aid from a dishonest party participating in the exchange.

However, encryption greatly increases the transmission costs associated with the pro-

tocol. Whilst digital signatures require only the digest of a message to be encrypted,

encrypting an entire message increases the amount of data required to be transmitted im-
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mensely. This increase not only increases the data transmission costs incurred, but also

causes the amount of time required to transmit the message to increase. These increases in

costs are incurred many times over. In addition to this, the cost in time overheads also in-

creases as the encryption of each message must be computed, along with its corresponding

decryption. Overall, the application of encryption to the protocol is very costly, with large

increases incurred in both computation time and data to be transmitted. However, the

security purchased at this cost ensures a greatly increased level of all devices participating,

providing a degree of protection to both identity and location information.

Finally, the amendment of the protocol's design suggested in Section 4.5.1, where sym-

metric cryptography replaces digital signatures during distance bounding, would signi�-

cantly decrease the costs incurred by that particular stage of the protocol. Additionally, the

savings can be increased by the employment of their symmetric key by each Proof Provider

to encrypt their proof message, although (as mentioned in Section 4.4.2) the proof must

remain digitally signed in order to retain the property of authentication of origin.

4.5.3 Extension Three

The �nal extension to the SLVPGP incurs the greatest increase in transmission overheads

in an e�ort to provide both complete anonymity and con�dentiality. The provision of these

security properties provides an increased level of protection and prevents a wolf in sheep's

clothing attack. In this scenario, a device participates (either honestly or dishonestly) in a

veri�cation exchange as either a Claimant or Proof Provider, but stores the information it

receives for use at a later date. As the device is participating within the veri�cation process,

it is granted access to the location information and identities of the devices involved.

Extension three of the SLVPGP prevents this through the protection of all information

from even those devices participating in the exchange, excluding the Veri�er.

However, increasing the protection provided by the protocol in this manner introduces

new complications, as the Claimant requires the ability to share secrets with each of the

involved Proof Providers during its claim. This is done to enable identi�cation during

the distance bounding portion of the protocol and to ensure that false proofs cannot be

inserted into the exchange by malicious devices. As the Claimant does not know the

identities or public keys of its Proof Providers, it can no longer securely provide them with
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these secrets. However the Veri�er, as a trusted entity, has knowledge of all public keys

within the system. It is employed to create the secrets shared by a Claimant and its Proof

Providers, encrypting them to secure them from intruders. This process increases the costs

associated with this extension, as for each Proof Provider involved, the Veri�er is required

to create, encrypt and transmit multiple nonces and a shared AES key for both that Proof

Provider and the Claimant.

In addition to this overhead increase, the proof message created by the Proof Providers

and forwarded by the Claimant increases in size. Each Proof Provider includes a randomly

selected digitally signed echoing nonce from its distance bounding exchange. As the Proof

Providers can no longer verify the validity of the received digital signatures, they enclose

a sample from the process, allowing the Veri�er to validate the proofs. This increases

the costs involved not only in the proof message received by the Claimant from each of

its Proof Providers, but also in the �nal proof sent from the Claimant to the Veri�er.

However, the inability of the Proof Providers to verify the digital signatures including

during distance bounding causes a substantial decrease in costs, as shown in Figure 4.5.

Section 4.4.3 discusses the possibility of employing symmetric encryption on the distance

bounding stage of the protocol as a cost-reduction mechanism, but the issue of whether

this will decrease or increase the costs incurred remains open for future investigation.

It should be noted that while Figure 4.5 and Tables 4.8, 4.9 & 4.10 re�ect the veri�cation

costs for extension three of the SLVPGP, these are the de�nite costs incurred. They do

not include any additional possible costs, such as the number of extra veri�cations to be

completed due to the employment of broadcasting and the inability of a device to be sure it

is not the intended recipient of a message. This aspect is not included in the computations

as it is impossible to know how many additional veri�cation operations are required for a

single run, even when operating in a vacuum. This is due to the unpredictability of the

network and its topology, as the location of devices continuously changes and not all Proof

Providers will necessarily be in range of each other. Therefore, while the veri�cation costs

incurred for extension three appear lower than those for extension two (Figure 4.5), these

are a minimum and this relationship cannot be guaranteed.
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Unit size Speed of cryptographic operation

SHA-256 1 byte 0.000008584 milliseconds
AES 1 128 bit block 0.00014 milliseconds

RSA encryption 1 1024 bit block 0.08 milliseconds
RSA decryption 1 1024 bit block 1.46 milliseconds

Table 4.1: Benchmark Speeds Used in Practical Cost Computation

Component Size (in bits)

Nonce (N ) 64
Timestamp (T ) 32
Location (X) 64

Proof/Verdict (L/DV ) 1
Identity 1024
Hash (h) 256

k 16

Table 4.2: Message Component Sizes

4.5.4 Extension Comparison

In order to fully analyse each extension within the SLVPGP and to illustrate the compara-

tive costs vs. the level of security provided, we have computed the practical costs incurred

for a single run of each protocol, using 1024 bit RSA [82] keys. These costs have been

divided into three categories; transmission (Figure 4.3), generation (Figure 4.4) and veri-

�cation (Figure 4.5). In the case of veri�cation, we focus on the de�nite costs incurred, i.e.

those that will de�nitely be incurred by the participants. The additional costs incurred by

the use of broadcasting in extension three (mentioned earlier in Section 4.5.3) are discussed

at the end of the section, but are not included in the point by point comparison due to

their unpredictability. Also not included in this section are cost comparisons for alternative

protocol designs using symmetric cryptography instead of asymmetric approaches, though

these may be addressed in future work.

For each cost category, a graph is included depicting the incurred cost increases for

each extension. The breakdown of costs in each graph can be found in Tables 4.3, 4.4, 4.6

and 4.8, based on the component �gures shown in Table 4.2.

For the purpose of comparing the cost of each extension, the protocol is run with the

Claimant, Veri�er and �ve Proof Providers. Each Proof Provider completes ten distance

bounding iterations with the Claimant. We employ benchmark speeds from Crypto++'s
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Figure 4.3: Transmission Cost Comparison - Data and Time Costs

benchmarking page1 to calculate the time required to complete an encryption, decryption

or SHA-256 operation. These speeds were generated while running on an Intel Core 2

1.86 GHz processor, with only one CPU core employed during the benchmarking process.

The system ran Windows Vista (in 32-bit mode), with the code generating the benchmarks

written in C++. Where RSA is employed, the public exponent is set as 17. The benchmark

speeds employed are shown in Table 4.1 (�Speed of cryptographic operation�), along with

the size of the data being operated on in that time (�Unit size�). We acknowledge that these

device speci�cations are not representative of standard mobile devices, possessing greater

processing power than that of a mobile device. However, they do allow a comparison to

be made of the relative costs for each extension.

The speed employed in the calculation of transmission costs is based on a IEEE 802.11b

wireless network, employing 11mb/s transmission speeds. Based on this setting, the time

required to transmit a single bit over this connection is 1
11534336 seconds. Delays are not

factored into the calculation of time costs and the same transmission speeds are applied

to those messages sent between the Claimant and Veri�er as between the Claimant and

Proof Providers. This is done for clarity, as there is no way of gauging the number of hops

through which a message from the Claimant to the Veri�er would have to travel, though

in practice it is assumed that at least part of the journey would be done via an IEEE 802.3

network.

Transmission costs

Graphs (a) and (b) in Figure 4.3 depict the comparison of data and time transmission
1Crypto++ http://www.cryptopp.com/benchmarks.html
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Extension One Extension Two Extension Three

1) C→V: 2112 3072 3072
2) V→C: 6144 7168 19456
3) C→Bi: 20480 20480 25600
4a) Bi→C: 16800 16800 16800
4b) C→Bi: 67200 67200 67200
5) Bi→C: 15845 20480 32640
6) C→V: 19013 20480 34816
7) V→C: 2145 3072 3072
Total 149739 158752 202016

Table 4.3: Transmission Cost Comparison for Claim Involving Five Proof Providers, Each
Doing Ten Distance Bounding Exchanges (Quantity of Data Transmitted, in Bits)

Extension One Extension Two Extension Three

1) C→V: 0.183105469 0.266335227 0.266335227
2) V→C: 0.532670455 0.621448864 1.686789773
3) C→Bi: 1.775568182 1.775568182 2.219460227
4a) Bi→C: 1.456520774 1.456520774 1.456520774
4b) C→Bi: 5.826083097 5.826083097 5.826083097
5) Bi→C: 1.373724504 1.775568182 2.82981179
6) C→V: 1.648382707 1.775568182 3.018465909
7) V→C: 0.185966492 0.266335227 0.266335227
Total 12.98202168 13.76342773 17.51431552

Table 4.4: Transmission Cost Comparison for Claim Involving Five Proof Providers, Each
Doing Ten Distance Bounding Exchanges (Time Required to Transmit Messages, in ms)

Extension One Extension Two Extension Three

Step 1 X + 2x 3x 3x

Step 2 xn + x x ∗ (n + 2) 3xn + 4x

Step 3 4xn 4xn 5xn

Step 4a n ∗ (y ∗ (k + h +N )) n ∗ (y ∗ (k + h +N )) n ∗ (y ∗ (k + h +N ))
Step 4b n ∗ (y ∗ (h +N + x)) n ∗ (y ∗ (h +N + x)) n ∗ (y ∗ (h +N + x))
Step 5 n ∗ (3x + T + X + L) 4xn n ∗ (h + 2N + 6X)
Step 6 3x + T + X + n ∗ (3x + T + X + L) 5x + 3xn 4x + 6xn

Step 7 2x + DV + X + T 3x 3x

Table 4.5: Transmission Cost Comparison Formulae
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Extension 1 Extension 2 Extension 3

SHA-256 0.057490267 0.052683227 0.088215622
RSA Encryption 5.6 10.64 10.64
AES Encryption 0 0 0.00686

Total 5.657490267 10.69268323 10.73493562

Table 4.6: Generation Cost Comparison (in Milliseconds)

costs incurred by each of the three extensions, i.e. the amount of data transmitted over

the course of a single protocol run and the time required to transmit that data. The

trend lines shown here behave exactly as expected, with the cost of increasing the level of

provided security from authentication to authentication, external anonymity and external

con�dentiality being relatively minor in comparison to that incurred by the addition of

complete anonymity and con�dentiality. These �gures are computed based on the Claimant

exchanging messages with �ve Proof Providers. The �gures shown against steps 4a) and

4b) in Tables 4.3 and 4.4 depict the data and time costs for transmitting ten distance

bounding exchanges with these �ve Proof Providers. The formulae for the calculation of

the �gures shown in Table 4.3 are shown in Table 4.5, with x = the size of the RSA key

employed (1024), y = the number of distance bounding exchanges undertaken (10) and

n = the number of Proof Providers employed (5). The remaining notation employed is

drawn from Table 4.2. Table 4.4 is computed by multiplying the time required to transmit

one bit by the number of bits per step (found in Table 4.3).

As shown in Table 4.3, the increase in transmission costs incurred by moving from

extension one to extension two is relatively low, at 9013 bits. or a little over one kilobyte.

Similarly, Table 4.4 shows the time required to complete a run of extension two to be less

than a millisecond more than that required to complete a run of extension one. However,

the data and time costs incurred by extension three are a signi�cant increase on those

incurred by extension two, with an increase of over 3.5 milliseconds in time costs and

43264 bits in data costs. This makes the third extension of the SLVPGP clearly the most

expensive in terms of all transmission costs.

Generation costs

The �gures shown in Table 4.6 compare the generation costs (in milliseconds) for each

extension, i.e. the data processing time incurred by creating digital signatures and encrypt-

ing messages. Digital signature costs are computed based on the time required to hash
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Figure 4.4: Generation Cost Comparison - Practical Costs

Extension # # Digital signatures # Encryptions
Extension 1 5 + 2n + ny n

Extension 2 5 + 2n + ny 5 + 2n
Extension 3 6 + 2n + ny 4 + 4n

Table 4.7: Generation Cost Comparison (Number of Cryptographic Generation Operations
per Extension)
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Figure 4.5: Veri�cation Cost Comparison - Practical Costs

a message using SHA-256 and encrypt the hashed data with the applicable public key.

Contrary to the situation seen when comparing the transmission costs incurred by each

extension, the di�erence between extensions two and three in generation costs incurred is

minimal, with a di�erence of less than a millisecond. However, there is a drastic decrease

in cost when moving from extension two to extension one, illustrated in Figure 4.4, with

the cost incurred by extension one equalling just over half that incurred by extension two.

This decrease is primarily due to the low level of RSA encryption employed in the �rst

extension, as RSA encryption is the most expensive generation operation in terms of time

costs. As seen in Table 4.7, RSA encryption is used in n messages (where n = 5, the

number of Proof Providers involved in the claim, and y = 10, the number of distance

bounding exchanges completed) in extension one, less than half the RSA cost of extension

2. However, Table 4.7 does not factor the number of components of the message being

operated on into its formulae. It merely indicates the number of cryptographic operations

generated within each extension, i.e. the number of digital signatures generated and mes-

sages encrypted. This accounts for the apparent extensive di�erence in encryption costs

between extensions two and three, despite having similar time costs in Table 4.6.

Veri�cation costs

Table 4.8 shows the breakdown of de�nite veri�cation costs incurred by each extension
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Extension 1 Extension 2 Extension 3

SHA-256 0.068998192 0.069684912 0.085125382
RSA encrypt 5.6 5.6 1.68
RSA decrypt 7.3 106.58 97.82

AES decryption 0 0 0.00686
Total 12.96899819 112.2496849 99.59184538

Table 4.8: Veri�cation Cost Comparison (in Milliseconds)

of the SLVPGP, illustrated by the graph in Figure 4.5. It should be noted that the cost

of verifying a digital signature is split into the cost of hashing the message using SHA-256

plus the cost of encrypting the hash, using RSA. The trend lines for AES decryption and

SHA-256 operations are almost identical across the three extensions, with AES masking

SHA's line entirely within the graph. Similarly, the time cost for RSA encryption (in order

to verify digital signatures) remains level between extensions one and two, with extension

three's RSA encryption costs coming in slightly below these. However, the total cost of

veri�cation for extensions two and three is very high, leaving extension one with the only

veri�cation cost total below 15 milliseconds. This increase is cost is due to the explosion

in RSA decryption costs, a fact shown by the mirroring of the RSA decryption trend line

in the overall costs trend.

Within the benchmarks employed (Table 4.1), RSA decryption requires 1.46 millisec-

onds per key-sized block of data (1024 bits in this example), 18.25 times the time required

to encrypt the same quantity. While the method employed for RSA decryption matches

that of RSA encryption, the speed at which it is achieved di�ers greatly, due to the dif-

ference in composition between the encryption and decryption exponents employed. The

speed at which RSA's modular exponentiation process is completed depends upon the

number of bits set to 1 within the exponent. The encryption exponent employed with

RSA is traditionally selected from a small pool of options and contains only two bits set,

chosen to ensure a speedy encryption process. However, the decryption exponent contains

a much larger number of set bits, thus increasing the time required to complete the mod-

ular exponentiation process decrypting a message. This spike in costs pushes the overall

cost of veri�cation to an extremely high level.

Although extension three possesses the largest quantity of cryptographic content, it

does not incur the highest de�nite veri�cation costs. The reason for this is twofold. The

�rst is that the Proof Providers are unable to verify all digital signatures transmitted during
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the distance bounding phase of the protocol. As the Proof Providers no longer possess the

Claimant's public key, they can no longer verify the Claimant's digital signature. Instead,

only a single veri�cation from this phase is veri�ed per Proof Provider, with the y factor

(the number of distance bounding iterations) removed entirely from the cost calculation

equation. This is illustrated in Table 4.9, which shows the number of veri�cation operations

required for each extension. As in Table 4.7, n = the number of Proof Providers involved

in the claim, and y = the number of distance bounding iterations.

The second reason for the decrease in de�nite veri�cation costs is that the Claimant is

unable to decrypt and re-encrypt the �nal proof messages. This is because the Claimant no

longer possesses the identities (and consequentially their public keys) of its Proof Providers.

Therefore, it is reduced to forwarding without con�rmation of the proof messages' content,

thus reducing the number of veri�cations completed. In addition, this decreases the number

of messages to be re-encrypted (thereby also decreasing the generation costs).

A similar contradiction exists in both extensions one and two, between the number

of digital signatures generated and the number veri�ed. As seen in Table 4.7, there are

5 + 2n + ny signatures generated in both extensions. However, Table 4.9 lists the number

of signature veri�cations as 5 + 3n + ny, an increase of n signatures. This di�erence is

caused by the veri�cation of the signature of each Proof Provider's proof message twice,

once by the Claimant and once by the Veri�er. This is not done in extension three, for the

reasons discussed above.

Unlike extension three's blind forwarding approach, extension two's design is based

around external anonymity, which grants the Claimant knowledge of the contents in each

message being forwarded to the Veri�er. However, a by-product of this design is the

explosion of extension two's costs due to the regular use of RSA encryption and decryption,

in addition to the use of the Claimant as a central message hub in the area (a situation

which also incurs additional encryption and decryption operations). However, while the

di�erence between extensions two and three is marked, the di�erence between extension

one and the SLVPGP's subsequent extensions is drastic. Extension two costs just over

8.65 times the veri�cations costs incurred by the �rst extension. This is due to the low

level of RSA operations within extension one, whereas in both extensions two and three,

encryption and decryption are used with great frequency.
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Extension # # Digital signature veri�cations # Decryptions

Extension 1 5 + 3n + ny n

Extension 2 5 + 3n + ny 5+ 2n
Extension 3 6 + 3n 4 + 4n

Table 4.9: Veri�cation Cost Comparison (Number of Cryptographic Veri�cation Opera-
tions Per Extension)

Extension 1 Extension 2 Extension 3

Transmission time 12.98202168 13.76342773 17.51431552
Generation time 5.657490267 10.69268323 10.73493562
Veri�cation time 12.96899819 112.2496849 99.59184538

Total 31.60851014 136.7057959 127.8410965

Table 4.10: Overall Comparison of Time Costs (in Milliseconds)

However, as mentioned above, the cost comparisons discussed here only factor in the

de�nite veri�cation costs incurred by extension three. They do not include the additional

costs caused by the employment of broadcasting and the lack of knowledge on the part of

the participants. While it is impossible to establish the impact of these additional costs on

the overall veri�cation costs for extension three, it can be de�nitively stated that they will

certainly increase them. As increase is relative to the number of Proof Providers active

in the area, both on this claim and on others, the veri�cation costs for extension three

become unpredictable, with only a minimum value available.

4.5.5 Comparison Summary

Each of the three extensions to the SLVPGP are fully secure against collusion attacks,

in addition to maintaining the integrity of the proof messages supplied to the Veri�er by

the Claimant. While extension one provides only authentication and protection against

tampering, extension two introduces anonymity and con�dentiality on an external level

(protecting private data from those not participating in that particular claim). Extension

three then increases these properties from external to complete. Though the complexity of

extension three appears vastly greater than that of extensions one and two, it is comprised

primarily of forwarding and, as such, is structurally quite simple.

Table 4.10 shows the overall time costs (in milliseconds) for each protocol extension,

broken down by category. The data shown here indicates that extensions two and three of

the protocol are quite costly, particularly in terms of the veri�cation time required. The
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employment of RSA cryptography within the protocol increases the quantity of data to be

transmitted (Table 4.3), both due to the size of the identities employed and due to the block

size messages are padded to in order for encryption to occur. However, if an alternative

form of public key cryptography was employed, these costs could be dramatically reduced,

as schemes such as Elliptic Curve Cryptography (ECC) require less time for encryption

and decryption, in addition to employing smaller keys, thus reducing the quantity of data

to be transmitted.

If the situation in which location veri�cation is to be employed requires a lightweight

protocol, due to the employment of smaller devices with lower power and slower transmis-

sion speeds, extension one is the most appropriate selection. It incurs the fewest overheads,

costing 31.6 milliseconds to complete and requiring the transmission of 149739 bits of data.

However, if device privacy is required, then extension one is unsuitable for use and exten-

sions two or three must be employed. Extension two incurs the highest de�nite overall

time costs, due to the high cost of RSA decryption coupled with the quantity of data to

be decrypted, though extension three may exceed these if executed in a high-tra�c area.

However, extension three incurs the highest data transmission cost, requiring the transmis-

sion of 43264 bits more than extension two. Therefore, if the deployment scenario places

a higher premium on speed, extension three would be most suitable (assuming the area in

which it is run does not have high levels of network tra�c), while if data transmission is

required to be lower, extension two should be employed (assuming full anonymity is not

also a requirement).

4.6 Summary

In this chapter, we outlined our design for a secure proof gathering protocol. We discussed

the approach taken in creating this design and the security properties required in order

to provide a secure and complete proof gathering protocol. These properties have been

selected based on the requirements of the system's users and those which protect the

integrity of the proofs gathered within the protocol. In order to analyse the basic approach

designed, we have outlined the bare-bones protocol, devoid of security measures. From

here, we created three variations of the protocol, each with an increased level of security.

This was done to provide �exibility in the amount of security relative to its costs. Each
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extension has been de�ned and its security and vulnerabilities discussed. We have designed

a single secure lightweight extension which can be used in situations where anonymity and

con�dentiality are not an issue. This extension protects the integrity of the proofs gathered,

but does not protect the private data of the participants. The second and third extensions

to the protocol represent two variants of a secure and complete protocol, in which all

three security properties are supported in di�ering degrees. In order to gauge the level

of cost incurred relative to each increase in security, we have analysed each extension's

generation, veri�cation and transmission costs. This analysis demonstrates the marked

increase in costs required to provide complete anonymity and con�dentiality, proving the

second and third extensions quite similar in costs, despite the appearance of additional

complexity and cost in extension three.

94



Chapter 5

Proving the Security of the Secure

Location Veri�cation Proof

Gathering Protocol

5.1 Introduction

In Chapter 4, we discussed the need for the process of gathering location proof to be secured

in some way. We outlined the design of the Secure Location Veri�cation Proof Gathering

Protocol (SLVPGP) and discussed its intended security properties and the reason for their

inclusion. In this chapter, we outline the process of converting these protocols from security

notation to mathematical models, before formally verifying them using model checking.

The SLVPGP is a complex protocol, designed to protect the distance bounding ex-

changes between a Claimant and its corresponding Proof Providers in order to ensure that

the proofs received at the end of the exchanges are not tampered with in any way. In

order to ensure that the proofs received are not vulnerable to tampering or any form of

malicious interference, we wish to validate the protocol's correctness through formal ver-

i�cation. While validation of the protocol in this manner does not prove its ability to

accurately verify a location claim, it does constitute a valid security investigation and is

done to ensure that the protocol does not contain any hidden �aws or vulnerabilities that

may leak information or lead to �awed functionality, despite its secure appearance. Even

the simplest of protocols may contain some hidden security issue which leaves it vulnerable
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to attack. For example, at the time of its publication the Needham-Schroeder Public-Key

protocol [67] was considered to be secure. However, in [57] Gavin Lowe proved the protocol

vulnerable to a man-in-the-middle replay attack using interleaving when employed outside

of its originally intended environment. This attack remained undetected for many years,

but with formal veri�cation the attack is discovered immediately. After the publication of

Lowe's paper, the formal veri�cation of protocols experienced a surge in research, particu-

larly the veri�cation of authentiation and electronic commerce protocols. The practice of

formal veri�cation has become increasingly common as a method of con�rming the secu-

rity of released protocols. Examples of protocols formally veri�ed after their publication

include the Secure Electronic Transaction (SET) protocol suite [10, 12], the Generalized

Pre-Shared Key method of the Extensible Authentication Protocol (EAP-GPSK) [65] and

Kerberos [17, 28].

The formal veri�cation process involves the analysis of the protocol's security in order to

ensure that the protocol's intended security properties are achieved and that the protocol is

secure from attacks. There are two main approaches to formal veri�cation, model checking

and theorem proving. Formal veri�cation through theorem proving and induction is used

to verify systems in which there may be an in�nite number of possible states. This is due to

the fact that states are not enumerated and therefore the number of agents and intruders

can be considered to be unbounded. The various possible event sequences that could be

done by an agent are de�ned based on inductive reasoning using a set of rules. These rules

correspond to all possible actions that could be taken by agents involved, including hostile

agents. Security properties are de�ned as predicates which must hold over all the traces.

Model checking is used in the veri�cation of systems with a �nite number of possible

states. It consists of an exploration of all possible states and transitions between states

contained within the model, based on the powers and knowledge of the agents involved.

This gives a complete check of the system and exposes any potential �aws. The model

checking approach to formal veri�cation has previously been used to verify the security

of schemes such as SSL 3.0 [66] and NetBill [45]. We have chosen to employ this method

for the formal veri�cation of the SLVPGP, as the protocol's mathematical model is �nite

and can therefore be fully explored. Additionally, during a model checking veri�cation,

the model checking tool investigates whether the speci�cations of the system are upheld
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throughout. This aspect makes model checking an especially apt tool for the veri�cation of

our claimed security properties, as they can be expressed as speci�cations on the system.

We employ Casper [58] and the Failures-Divergences Re�nement (FDR) [83] tool to

accomplish model checking, using the Casper software to generate a Communicating Se-

quential Processes (CSP) [14] description of the protocol. The CSP description is then

model checked by FDR, where the security speci�cations used to model the properties

being checked are con�rmed to either be true or false for this system. However, the CSP

model generated can be complex, producing a state space which is intractable to many

computer systems. Therefore, we require some method of simplifying the protocol's model

without losing the correctness of the model. If this is lost, attacks on the protocol could be

missed by FDR while carrying out a model check, nullifying the check's results. The issue

of transforming the protocol to simplify the state space whilst retaining the correctness of

the system is discussed further in section 5.4.

In this chapter, we �rst outline the process through which the protocol is formally

veri�ed (Section 5.3). In Section 5.4, we discuss the simpli�cations performed on the

protocol models. Sections 5.5.3 - 5.5.5 detail the original design for each extension of

the protocol, translated into Casper, before applying and explaning the transformations

employed. In Section 5.7, we outline our investigation into the security of employing

broadcasting as a method of transmitting secure messages. Finally, we summarize the

chapter's contents in Section 5.8.

5.2 The Limits of Formal Analysis

Before outlining the formal analysis process employed to verify the security of the SLVPGP,

we �rst outline the limitations of formal analysis in general. As mentioned in the previous

section, formal veri�cation of the location veri�cation protocols presented in this work

does not prove that the protocols will accurately verify location claims. The purpose of

formally verifying a protocol is to con�rm that at no point during the run of a protocol

will the security speci�cations laid down within the system's design be violated. This

provides supporting evidence of the hypothesis that that particular protocol is secure from

any attacks. However, although formal veri�cation is a useful tool for probing the security

of a protocol's design, a system can never be proven to be 100% secure [103]. As systems
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do not run within a vacuum, the verdict received on a protocol re�ects only that within

the system described, there does not seem to be any insecurity related to the included

security speci�cations. If formal analysis indicates that the system being veri�ed is secure,

it indicates that, within the environment described for analysis, this system is secure from

the attacks speci�ed and investigated, based on all speci�ed assumptions.

However, if even one of the assumptions the described system is based upon is inaccu-

rate, an assumption is not included in the model or the protocol is used in an environment

di�erent to the one modelled, the results of the veri�cation are no longer valid (c.f. Lowe's

discovery regarding the Needham-Schroeder Public-Key protocol [57]). For example, when

model checking our protocols, we assume the strength of the cryptography employed to be

complete, i.e. that an intruder cannot crack the code. If the encryption employed on the

protocol was insu�cient, the model would not accurately re�ect the real world deployment

of the protocol and therefore the veri�cation results could no longer be applied to the

protocol.

This weakness also extends to the security speci�cations employed to model the security

properties being checked for a protocol. If the speci�cation is designed poorly and does

not accurately re�ect the real-world security property, its success or failure in a veri�cation

gives no indication of whether that property is upheld by the protocol. Finally, without a

su�ciently rich threat model describing the knowledge and powers of the intruder process,

the veri�cation verdicts received regarding a protocol could not be applied to the real

world protocol, as the intruder was not fully described. We discuss the approach taken to

modelling the intruder and its importance in Section 5.3.3.

5.3 The Model Checking Process

A security protocol is de�ned as a high level description of the steps taken by those devices

participating, written using abstract protocol notation. In order for this description to be

formally veri�ed, a model must be created which describes the sequence of steps involved

in the protocol and the environment in which it operates. This formal representation of

the system can then be analysed for vulnerabilities and the intended security properties

of the system veri�ed. However, as discussed in Section 5.2, this veri�cation is contingent

upon the protocol being used within the speci�ed environment.
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As mentioned in Section 5.1, several languages and tools are employed to formally

verify the protocols. In Section 5.3.1 we introduce the tools employed in model checking -

CSP (Communicating Sequential Processes) and FDR (Failures-Divergences Re�nement).

Although CSP can be handcrafted, we have opted to employ an automatic generation

tool (Casper) to translate a high level description of the system into the low-level CSP

description required by FDR. The reasoning behind this approach is discussed in Section

5.3.2. Finally, we discuss the role of the intruder within our model in Section 5.3.3, outlining

the assumptions made regarding the capability of this attacker.

5.3.1 What is Model Checking?

As mentioned in Section 5.1, model checking is a method of formally verifying systems

with a �nite number of possible states. When applied to security protocols, it formally

validates the design of a protocol, indicating that the protocol conforms to the speci�ed

security properties included in its description. We employ CSP and FDR to accomplish

model checking. CSP is a complex notation for describing systems in which messages are

passed between agents (processes) operating in parallel [84], thus making it ideal for the

veri�cation of this system. It allows the security of concurrent systems to be examined

fully, and provides the ability to describe all the possible states in which a system may be.

As CSP is such a complex language, we employ a high level modelling language (Casper

[58], discussed in Section 5.3.2) to generate a CSP description of the protocol. The resulting

CSP description is model checked by FDR. In FDR, the included speci�cations used to

model the protocol's security properties to be checked are con�rmed as either true or false

for this system. In this section, we outline the basic functionality of CSP and how FDR

veri�es a supplied CSP model.

CSP

CSP is a mathematical language used to describe the interaction of processes operating

in parallel. These interactions occur in the form of communications between processes,

referred to as events or actions. CSP describes each process in terms of states and events,

with each process beginning in a speci�c state with a corresponding set of possible actions.

When a process runs, it selects an event from its set of all possible performable events

for that state, performs it and moves to the next logical state. The continued running of
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a process in this manner produces a trace or speci�c sequence of visible communications

that can be performed. For each process there exist multiple traces, as due to the process's

ability to choose an event to perform, there are multiple possible event combinations. By

computing all possible traces produced by a process, a traces model can be built. This

model details all possible ways in which a process can behave, allowing that process's

behaviour to be thoroughly examined for �aws by tools such as FDR.

Where the traces model concept is extended to include the traces of multiple processes

within a system, it creates a model of all possible ways in which an entire system can

behave. However, this type of model is far larger than that of a single process, as where

only a single process is modelled, only a single state must be considered between each

event. When modelling an entire system rather than a single process, the concept of a

state is altered slightly. Unlike a process's state, a system's state is composed of one state

for each component process. Therefore, as with traces, there are many di�erent possible

states within the system, as there are multiple possible state combinations. This causes a

dramatic increase in the number of states to be explored (the state-space) when checking

the system.

In order to investigate a protocol's security properties, additional processes are created,

known as speci�cation processes. These processes are added to the CSP model of the

protocol. Each speci�cation process models one or more security properties (multiple

secrecy properties may modelled in a single secrecy speci�cation process). These processes

model what the system is expected to be capable of at speci�c points. In order to de�ne

what the system is capable of, signals (speci�cation events) are introduced. A signal

event is a speci�cation/control event in CSP, used in the checking of security property

speci�cation assertions [88]. Signals are sent on a special channel outside the protocol, and

indicate a particular claim regarding a security property. For example, if the nonce n was

to be kept secret between agents a and b, the signal:

signal.Claim_Secret.a.b.n

would be sent on the signal channel, indicating that at that point, a and b are claiming

that n is a secret shared by them. As it is sent outside the protocol communications

channel, the intruder cannot overhear it and learn any new information. If this claim is

made on the signal channel, the intruder should not be able to leak the value of n, i.e. it
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should not know n's value.

FDR

FDR's functionality is based on the concept of comparing processes and seeking re�ne-

ment. If one process is a re�nement of another, anything permissable to occur in the �rst

process is also allowable in the second process. For example, when given two processes,

Implementation and Speci�cation, FDR checks whether Implementation is a re�nement of

Speci�cation, i.e. whether all the traces in Implementation's traces model are contained

within Speci�cation's traces model. If so, Implementation is said to re�ne Speci�cation.

[84]. FDR is also capable of investigating systems regarding vulnerability to deadlock

(known as failures, in which processes refuse to perform some event and cannot progress)

and livelock (known as divergences, in which processes continually perform internal actions

rather than progressing), however these aspects are not employed in our work.

When re�nement checking a complete system, FDR employs the concept of re�nement

to con�rm that the model is a re�nement of the CSP speci�cation process supplied. It

achieves this through systematically comparing the traces model generated by the system

being checked, based on the processes described, with those of the speci�cation process

provided. In the case of modelling security protocols, this speci�cation is a process encoding

the security property or properties being investigated, e.g. anonymity. If the security

properties investigated are not upheld over every trace in the traces model of a system,

the model is not a re�nement of the speci�cation. In this situation, FDR fails the check

and returns an example trace that violates the re�nement.

FDR also employs re�nement to investigate the security properties of a protocol. When

investigating a protocol's security properties, the CSP model of the protocol is re�ne

checked against a set of security speci�cations (discussed in the previous section) rep-

resenting each property. If the CSP model re�nes the security speci�cations, the security

properties represented are upheld. This is proven by the fact FDR cannot �nd any traces

in which the intruder is able to violate the rules of the speci�cation. However, if FDR re-

turns a counter-example, the security properties are not upheld. An example of this would

be where a secrecy property is being investigated and FDR returned a counter example in

which the intruder could leak the message component being claimed as secret.

FDR's method of re�nement checking requires enumerating vast numbers of states and
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comparing all possible traces within a model. Therefore, the e�ort required to check a

model depends upon the complexity of the process or processes involved. Due to the

possibility that there are a vast number of states to be explored (the state-space) when

checking a system, verifying a model can be extremely complex and resource-consuming.

In the case of model checking the SLVPGP's extensions to con�rm the security properties

speci�ed in their design, the models generated are extremely complex. For this reason, a

selection of simpli�cation techniques have been performed on the systems checked in this

work, in order to reduce the size of the resulting models. These simpli�cation techniques

are discussed in Section 5.4.

5.3.2 Modelling a Protocol Using Casper

In order to generate CSP models to be checked by the FDR model checker, we �rst trans-

late each of the protocols from abstract protocol notation into Casper. Casper provides

automatic generation of CSP models based on a high-level Casper description. In this

section, we outline the reasons for employing Casper in this process. We then describe the

way in which a protocol is translated from abstract notation to Casper. Finally, we outline

the modelling of security properties in Casper and how they translate to CSP.

Why Use Casper?

In order to model check a security protocol, it must be translated from its security

notation design to a script representing this design in some modelling language. Casper

has been designed to emulate the form of a high level programming language, simplifying

the process of describing a protocol. Using Casper allows us to automate the production of

the protocol's mathematical model (its CSP description), reducing the liklihood of errors

occuring. When writing in a language such as CSP, the density and complexity of the

code often results in overlooked errors and logic �aws. This leaves the system vulnerable

to undetected security issues, as the model being checked does not accurately represent

the original protocol and the environment in which it operates. Employing a higher level

language such as Casper to generate CSP code allows a clear picture of the system being

modelled to be visualised.
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Modelling in Casper

When modelling a protocol in Casper, both the protocol and the environment in which

it is being formally modelled are described. Details on the environment in which the

protocol is to be run are included because all protocols operate based on some set of as-

sumptions. This information is required in order for the model to be accurate. Within

a Casper script, the model's description is broken into two parts, each dealing with mul-

tiple aspects. The �rst part of the Casper script contains information on the theoretical

system's design - the �agents� (participants) in the protocol (e.g. the Veri�er, Claimant,

etc) and their initial knowledge (#Processes); the sequence of steps to be taken within

the protocol (#Protocol description); the types of any protocol participants de�ned in

#Processes and message components employed in the protocol (#Free variables); and a

set of speci�cations detailing the security properties being investigated (#Speci�cation).

In essence, this part of the script describes an abstract model of the system being analysed,

how it should perform and the speci�cations regarding its behaviour that it should meet.

It results in a CSP description of the messages to be sent (based on the protocol steps)

and CSP descriptions of the agents involved, describing the order in which they send and

receive those messages.

The second part of the Casper �le deals with the system being investigated in this

analysis, i.e. it de�nes a speci�c instance of the model described in the �rst part of the

�le, instanciating it with speci�c parameters. It contains details on the variables employed

in this instance (#Actual variables) and the agents taking part in this speci�c exchange

(#System). Each agent detailed in the second section of the script is modelled in CSP as

a process, parameterised with the variables supplied under the #Active variables heading.

In addition to dealing with the honest participants within the system, this section of the

Casper �le also includes information regarding the intruder and its knowledge (#Intruder

Information). This process represents any intruder within the system being checked. The

speci�cation of a system are deemed to be upheld if this process is unable to violate them at

any point during the check, therefore the intruder's design must be very thorough. When

building a CSP model by hand, modelling the intruder process is a very di�cult task, as

many di�erent possibilities must be included. When translated into CSP by Casper, the

intruder is provided with a deduction system which processes any information it overhears
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based on its own knowledge, in an attempt to learn new data. This system allows the

intruder to deduce all possible information, without requiring a large quantity of complex

code to be written by an investigator. This reinforces the argument for employing a higher

level language to generate the CSP. Higher level languages are simpler to process and work

with, allowing for errors and complexity issues to be discovered and dealt with easily. The

powers of the intruder and its impact on the model's accuracy are discussed further in

Section 5.3.3.

Modelling Security Speci�cations

As discussed in Section 5.3.1, the modelling of security properties in CSP is accomplished

through the use of security speci�cation processes, built to represent the events allowable

by those properties. These speci�cations are represented in Casper by simple speci�cations

listed in the #Speci�cations section. Casper translates these security speci�cations into

speci�cation processes during the CSP generation process. When modelling the extensions

of the SLVPGP, we employ two Casper speci�cation types: StrongSecret and Agreement.

The de�nitions of these speci�cation types is sourced from [84].

The Agreement speci�cation models authentication in the form of an agreement on

the value of a message component, by a speci�ed list of participants in the protocol. It is

presented in the form:

• Agreement(A, B, [nA])

where A and B are participants in the protocol and nA is the value being agreed upon.

A successful veri�cation of this Agreement speci�cation indicates that if B believes it has

successfully completed a protocol run with A, then A has been running the protocol with

B. It also indicates that there is a one to one relationship between the number of runs of

A and the number of runs of B. Finally, it indicates that A and B agree on the value of

nA, i.e. that the value of nA does not change between when it is sent by A and when it is

received by B.

The StrongSecret speci�cation is a variant of the Secret speci�cation, which models

a requirement of secrecy regarding a speci�ed value. However, in the Secret speci�cation

the Claim_secret signal event (discussed previously in Section 5.3.1) is performed at the

end of the protocol. This leaves the case where a protocol run is started and aborted
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prior to the end of the run unchecked, as the signal event is never performed. Where the

information being classed as secret has signi�cance outside of the protocol exchange, this

level of security is insu�cient. As this is the case for the protected information in the

SLVPGP extensions, the StrongSecret speci�cation is employed to investigate the secrecy

security property.

The StrongSecret speci�cation addresses this shortfall through moving the signal event

from the end of the protocol's run to the earliest possible moment, i.e. at the initialisation

point of the protocol for the sender and at the point of receiving the value for the receiver.

This causes the security speci�cation generated to con�rm that the value remains secret

throughout the protocol, thus con�rming the security of the value even for aborted protocol

runs. The StrongSecret speci�cation is presented in the form:

• StrongSecret(A, nA, [B])

where A and B are participants in the protocol and nA is the value being kept secret.

A successful veri�cation of this StrongSecret speci�cation indicates that A is correct in

believing that nA is a secret known only to itself and B. However, if B is an intruder,

the value could be passed to any other device and the protection of the value lost. For

this reason, Casper generates a condition within the CSP speci�cation process indicating

that this speci�cation is investigating only the case where B is not an intruder. If this

speci�cation is upheld, it indicates that if B is not the intruder, the intruder will never

learn the value of nA.

5.3.3 The Role of the Intruder

A crucial aspect of model checking is the inclusion of a speci�c process designed to behave

maliciously in order to test the strength of the model's security. This intruder process

represents any malicious entity, either a member of the system or an outsider, which

may attempt to attack the system in any way. When modelling a system in Casper, the

intruder process is automatically generated based on a speci�ed set of known facts, such

as the identities of the devices it has knowledge of, any public or private keys (or key

access functions), etc. Casper employs the Dolev-Yao [24] intruder approach, a worst-

case scenario in which the intruder is given complete power to tamper with messages sent

within the system, bounded only by the limitations of its own knowledge (both learned and
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previously known) and its cryptographic ability. It can obtain any message transmitted

within the system and has the ability to replay, fake, redirect and alter messages in an

e�ort to learn protected information and break the security of the system.

However, as the intruder's knowledge is composed only of what it is granted initially and

the information it has learned over the course of an exchange, it cannot use a value without

having �rst overheard it in a communication or already being in possession of it. If the

intruder overhears said value within a message, it can logically make use of it at a later date.

Additionally, the intruder can only decrypt those messages for which it possesses the correct

cryptographic decryption key, and vice versa with regard to encryption. This approach

is superior to employing an intruder process designed only with speci�c malicious attacks

and devient approaches, as it is less limited. The intruder process is capable of performing

any action which falls within the stated limitations at any time and can therefore discover

any vulnerability within the described system.

When modelling the SLVPGP in Casper, the intruder process is modelled with the

ability to function as each of the players within the system (excluding the process used to

model the network, introduced in Section 5.5.5.1). Prior to beginning a run of the protocol,

the intruder's knowledge set includes the identity of the Veri�er, its own private keys as

well as the public key functions for all involved types. These functions allow the possessor

to retrieve the public key of a device, if they are in possession of its identity, an aspect

of the form of cryptography employed in the real world system. In order to further test

the system's security, multiple other checks were conducted, granting the intruder process

various pieces of additional information. These checks are further discussed in Sections

5.6.1 - 5.6.3.

5.4 Safely Simplifying the CSP Model

As mentioned in Section 5.1, the CSP model based on the SLVPGP is highly complex. Due

to the number of variables included in each message and the large quantity of encryption

employed over the course of a run of the protocol, the state space generated is vast. This

is particularly true in the case of the second and third extensions of the protocol, where

encryption is employed heavily and the number of variables increases drastically. Some

method of reducing the model's complexity is required in order to ascertain the correctness
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of the protocol, as FDR cannot comfortably handle such a complex model. In order to avoid

interfering with the accuracy of the model while reducing its complexity, we have employed

several safe simplifying transformations, found in the work of Schneider & Ryan in [84].

The authors prove that if certain aspects of a protocol's complexity are not needed for the

security of that protocol, the protocol can be analysed with said complexity removed.

The transformations de�ned by this work posses the property of preserving attacks

on the original protocol, as they satisfy a pair of safe transformation conditions. These

conditions state that for a particular simpli�cation f, for every message sequence (trace) tr

that can be generated by P, f(tr) is a trace of P's simpli�ed version. If tr constitutes an

attack on P, then f(tr) constitutes an attack on the simpli�ed version. Any information an

intruder could gather or deduce based on the original protocol could also be gathered or

deduced from the transformed protocol. Therefore, transformations meeting the conditions

set out above allow the model's complexity to be decreased without a�ecting the model's

correctness. Three such transformations are employed in this work to reduce the complexity

of the SLVPGP. These are message splitting, message redirection and coalescing atoms.

5.4.1 Coalescing Atoms

The simplest transformation applied to the protocol is the coalesing of a pair of atoms into

a single atom. In this transformation, a pair of atoms in the protocol is substituted with a

single atom representing both, usually a member of the pair. Consider the following simple

Casper protocol description:

1. A->B: nA

2. B->A: nA, B, nB, nB1

3. A->B: B, nA1

This basic structure shows an entity A sending a nonce to entity B. It then receives back

its own nonce from B, along with two of B's nonces and B's identity. Finally, A replies

with B's identity and its own second nonce. When we apply the coalescing simpli�cation

to this protocol, we coalesce nB and nB1 into a single value. This results in the protocol

description being transformed to this:

1. A->B: nA
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2. B->A: nA, B, nB

3. A->B: B, nA1

with nB and nB1 represented solely by nB in the second step.

The transformation process also transforms all traces of the protocol using the same

function (in this case the coalescing of a pair of atoms into a single atom) applied to the

protocol. Therefore any trace found in the original protocol's traces model will also be

produced (in a transformed state, i.e. with the pair of atoms replaced by a single atom)

by the transformed model. This connection between the original and transformed designs

preserves any possible attacks present in the original model.

As the security speci�cations employed to model the system's security protocols deal

with the protocol in its original state, the coalescing of these atoms into a single atom

also has a direct e�ect on any speci�cations involving them. In order to investigate the

transformed model's security properties, we amend any speci�cations involving a coalesced

pair of atoms to cover only the atom with which the pair is substituted. If the security

of this atom is compromised, either through the leaking of the value or an inability to

authenticate the value, this �aw also applies to the original pair of atoms. Therefore, the

results of the security properties checks on the transformed model can be projected onto

the original model.

5.4.2 Message Splitting

In the second safe simplifying transformation, a single message is split into two separate

messages. This is done to reduce the size of the message space, i.e. the number of di�er-

ent possible messages in the model. For every message in the model, there are x possible

di�erent combinations of atoms which could make up this message. If a message is com-

posed of a large number of atoms, there is a corresponding very large number of possible

atom combinations. Splitting the message into two separate smaller messages reduces the

number of possible combinations for each of the message halves. However, the resulting

drawback is that the state space size is increased, as the number of messages within the

model increases. For this reason, message splitting is only applied if a) the number of com-

binations signi�cantly decreases and b) the decrease is not overpowered by the inclusion

of the second message half and all its possible combinations. We illustrate the message
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splitting transformation using the same simple Casper protocol description used in the

previous section. Initially, the Casper description is as follows:

1. A->B: nA

2. B->A: nA, B, nB, nB1

3. A->B: B, nA1

However, by applying the message splitting transformation to step two of the protocol, the

protocol description is transformed to this:

1. A->B: nA

2. B->A: nA, B

2a. B->A: nB, nB1

3. A->B: B, nA1

thus decreasing the number of possible combinations within step two's message and sim-

plifying the state-space to be checked. Note that when applied, the resulting transformed

protocol contains all elements from the original protocol.

Similar to the coalescing transformation, performing the message splitting transforma-

tion on the protocol does not a�ect its correctness. Both message splitting and message

redirection (discussed below) are examples of structural transformations - transformations

in which the structure of a message is altered but not the contents of the message itself.

The composition of any message being split within the protocol is unchanged. Therefore, if

a trace tr exists within the original traces model that violates any of the included security

speci�cations, there exists a corresponding trace tr′ in the transformed traces model that

also violates that speci�cation. If encryption was present in the original message, the same

level of encryption is employed on both message parts. However, unlike in the case of the

coalescing atoms transformation, the employment of message splitting within the protocol

does not require any of the security property checks to be altered. All atoms within the

split messages remain unchanged.
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5.4.3 Message Redirection

The �nal safe simpli�cation employed to reduce the protocol's complexity is message redi-

rection. This transformation replaces two messages with a single message, redirecting a

message which was originally sent via a third party so that it is sent direct. This removes a

third party from the proxy role, as well as decreasing the number of messages in the model's

state space. As no part of the message is renamed or amended by the simpli�ction, the

signal events produced within the transformed protocol are unchanged from those of the

original. If a transformed model produces the same signal events as the original, it must

still be performing the same critical steps and therefore any possible attacks are preserved.

Consider the following simple Casper protocol description:

1. A->B: A

2. B->C: A

3. C->B: C, nC

4. B->A: C, nC

5. A->B: nA

6. B->C: nA

In this protocol, entity B acts as a proxy, forwarding messages between entities A and C.

This process increases the size of the model greatly. However, if the message redirection

transformation is applied, the model shrinks noticeably, eliminating half the protocol steps:

1. A->C: A

2. C->A: C, nC

3. A->C: nA

As with message splitting, the application of this transformation to the example protocol

does not impact the contents of the messages being transmitted. The only di�erence is

that the steps including B are removed. However, B can learn as much about the contents

of the messages as it could while it was involved in the protocol, as the same messages are

sent over the network.
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As mentioned in the previous section, message redirection is an example of a structural

transformation. The alterations are not done through renaming of atoms within a message

but through changing the structure of the message itself. Although this appears to alter

the model to no longer re�ect the protocol being checked, any attacks or vulnerabilities

present on the protocol's original structure are preserved in a structural transformation as

no signal events are altered. If a trace tr exists in the original which violates any included

security speci�cation, there exists a corresponding trace tr' in the transformed model which

violates that same speci�cation. Therefore, an intruder can mount the same attack on the

transformed model as the original, as if he can obtain the contents of the original message,

he can also obtain the contents of the redirected message.

It is important to note that structural transformations re�ect their original model only

if the signal events in the transformed model are in the same place as in the original model,

even if this is not the natural position for them in the transformed model. This ensures

that even in the transformed model, events a�ecting the security properties being modelled

occur in an order re�ecting that of the original model.

5.5 Modelling the SLVPGP in Casper

5.5.1 System Assumptions

When designing the Casper models that represent the SLVPGP in the model checking

process, a number of assumptions were made, based on both the original protocol and

its environment. In this section we clearly outline those assumptions, broken into four

categories. They are Encryption, Message Sending, Simpli�cations and the Intruder.

Encryption

As with other models of real world protocols, assumptions must be made regarding the

encryption methods employed. We employ the standard assumption regarding encryption,

in that all participants employ a universally known encryption/decryption algorithm. It

is also assumed that both the algorithm and the strength of the keys employed are of

su�cient strength that devices that do not possess the correct key cannot correctly encrypt

or decrypt a message. This means that if an entity within the model receives an encrypted

message and does not possess the correct decryption key, it cannot gain access to the
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message contents.

Message Sending

When modelling protocols employing message sending, the security of the medium over

which a message is sent must be considered. In this case, it is assumed that the transmission

medium is open, in that any message sent can be received by any entity within the system

and therefore is not secure without the use of reasonable encryption. It is also assumed

that once a message is transmitted, it cannot be prevented from reaching its destination,

i.e. message jamming, either selective or general, is not taken into consideration.

Simpli�cations

As discussed previously, the Casper-generated CSP models of the SLVPGP extensions

are highly vast and complex. As such they are beyond the limitations imposed by hardware

capability at this time. For that reason, the models have been simpli�ed using the simpli-

�cation approaches discussed in Section 5.4. We assume that the simpli�cations employed

are attack preserving, as shown in [49], and that the resulting simpli�ed models remain

true to the original protocol design.

The Intruder

The modelling of the intruder is a key aspect of any formal veri�cation process. If the

intruder does not accurately re�ect the threats posed by attackers in the real world, the

results of that veri�cation are nulli�ed as they do not capture the reality of the system. As

discussed in Section 5.3.3, the Dolev-Yao intruder model [24] is employed in the SLVPGP

veri�cations. We assume that this model accurately represents the real-world malicious

device threats, with all the powers and abilities of the same.

5.5.2 Proof Provider Representation

Before outlining the Casper models of the SLVPGP extensions and the processes employed

in their simpli�cation, we �rst discuss the representation of Proof Providers within them.

Within the various models discussed in Sections 5.5.3, 5.5.4 and 5.5.5, the role of the

Proof Provider is represented using only two processes. This limitation essentially reduces

the number of Proof Providers participating in a claim to only two per Claimant. While
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including a larger number of Proof Providers in the Casper model would more accurately

represent the real world situation that will be faced, this is not currently feasible. The

size and complexity of a model employing only two Proof Providers is too unwieldly for

immediate model checking, and requires the use of simpli�cation techniques before it can be

successfully checked. Increasing the number of Proof Providers represented would explode

the CSP model's size beyond the limits of the equipment available at the time of writing.

Therefore, the models described in this chapter model only a limited version of the system

and do not rule out the possibility of collusion attack where more than two Proof Providers

are used. Though the fact that the model checks discussed in Section 5.6 succeed provides

a positive indication that the system will remain secure with the addition of more Proof

Providers to the model, it has not yet been proven.

5.5.3 Formally Modelling Extension One

In this section, we outline the process of translating the �rst extension to the SLVPGP

from security notation to a model for use by FDR. This process is accomplished in two

stages: The original design of the protocol is �rst translated into Casper from abstract

protocol notation, with the extension's desired security property modelled as two Casper

authentication speci�cations (Section 5.5.3.1). It is then simpli�ed to reduce its complexity

(Section 5.5.3.2).

5.5.3.1 Modelling Extension One - From Abstract Notation to Casper

Before applying the safe simpli�cations outlined in Section 5.4, we �rst translate extension

one's abstract protocol description into Casper. This process requires not only information

regarding the protocol's steps but also details of the environment in which it will run and

the knowledge granted to the various participants. The full Casper script is included in

Appendix A, with the translated protocol description shown below.

0. -> C: xC

1. C -> V: {C, xC}{SKAgent(C)}

2. V -> C: {P, Pb}{SKVeri�er(V)}

3. C -> P: {P, C, {nP, n1P}{PKProver(P)}}{SKAgent(C)}

4. C -> Pb: {Pb, C, {nPb, n1Pb}{PKProver(Pb)}}{SKAgent(C)}
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5. P -> C: kP, hP, n2P

6. Pb -> C: kPb, hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {P, tP, xP, lP, C}{SKProver(P)} % mP

10. Pb -> C: {Pb, tPb, xPb, lPb, C}{SKProver(Pb)} % mPb

11. C -> V: {C, tC, xC}{SKAgent(C)}, {mP % {P, tP, xP, lP, C}{SKProver(P)},

mPb % {Pb, tPb, xPb, lPb, C}{SKProver(Pb)}}{SKAgent(C)}

12. V -> C: {dV, xC, C, tV}{SKVeri�er(V)}

The role of the Proof Provider has been represented using two processes (P and Pb),

behaving identically, in order to model the inclusion of multiple Proof Providers in a single

exchange (Section 5.5.2). The role of the Claimant is represented by the process C, with the

process V representing the Veri�er. Encryption of a message using public key cryptography

is done using a particular function to retrieve the key to be employed. The function is

supplied with a particular identity and returns that process's key. The encryption function

is paired with a second function, which provides the inverse, i.e. signing, key. There

is a function pair for each process type, as each requires a di�erent identity parameter.

The encryption functions are noted PKAgent() (resp. SKAgent() to retrieve the signature

key), PKProver() (resp. SKProver()) and PKVeri�er() (resp. SKVeri�er()), where Agent,

Prover and Veri�er are the process types of the key owners. Finally, the % notation

allows participants to accept a message without having knowledge of its composition, thus

allowing the forwarding of an encrypted message without possession of the appropriate key

to decrypt or recreate it. The intruder process is given the ability to participate within

the system as any of these process types, thus allowing it to behave as any of the above

processes.

In order to verify the security properties believed to be upheld by the protocol, out-

lined in Section 4.4.1 of Chapter 4, a set of Casper security speci�cations are employed.

These speci�cations provide FDR with a set of conditions which must remain true for

every possible state in the generated state space, i.e. the model being checked must be

a re�nement of these speci�cations. If this is not the case, the check fails and the model
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is deemed �awed. Details regarding Casper's interpretation of the speci�cations employed

are outlined in Section 5.3.2.

The aim of the �rst SLVPGP extension is to provide authentication between users, i.e.

that a value given by a device cannot be manipulated between its initial transmission and

its arrival at its �nal destination. This is modelled in Casper as a set of agreements; those

between the Veri�er and each Proof Provider regarding the value of their proof atom and

a single agreement between the Claimant and the Veri�er regarding the value of its �nal

verdict. These agreements con�rm that the value transmitted during an exchange cannot

change between its transmission from the source device (either a Proof Provider or the

Veri�er) and its receipt by the destination device (either the Veri�er or the Claimant). If

the value could be undetectably tampered with between its initial sending and �nal receipt,

this speci�cation will not receive a pass in a model check.

• Agreement(P, V, [xP])

• Agreement(P, V, [lP])

• Agreement(Pb, V, [xPb])

• Agreement(P, V, [lPb])

• Agreement(V, C, [dV])

More general authentication is provided by the use of digital signatures on messages being

exchanged between participants. The presence of a digital signature on a message prevents

any intruder from successfully replacing it with a false message or tampering with its con-

tents, without the appropriate key. Authentication is implicitly modelled in this manner,

rather than explicitly as a Casper speci�cation. We assume that the cryptographic scheme

and key sizes being employed are of reasonable strength, and therefore a key cannot be

discovered without the aid of that key's owner. As one of the basic assumptions of this

work is the use of tamper-resistant units for the protection of cryptographic material, the

owner of a key is prevented from directly divulging his keys to other participants. The use

of alternative approaches by the key's owner, e.g. chosen plaintext analysis, may lead to

the breaking of its keys, but this is a common issue in the area of cryptography.
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5.5.3.2 Simplifying the SLVPGP's First Extension

With the protocol translated from abstract protocol notation into Casper, the complexity

of the model may now be reduced using some basic simpli�cations. These simpli�cations

merely remove some of the more complex aspects which have no bearing on the security

properties being checked. Each of the simpli�cations carried out are outlined below, with

the resulting alterations illustrated by updated Casper model descriptions.

The coalescing transformation

The �rst simpli�cation applied to extension one of the SLVPGP is the coalescing of

atoms into a single atom. In this case, three transformations are performed - the location

variable xP (resp. xPb) and the latency variable lP (resp. lPb) are combined into a single

proof value, proof (resp. proofB). The nonces nP (resp. nPb) and n1P (resp. n1Pb) are

combined into nP. Finally, the values kP (resp. kPb) and hP (resp. hPb) are combined

into hP. This reduces the complexity of the protocol steps through decreasing the number

of variables, while retaining the correctness of the model.

0. -> C: xC

1. C -> V: {C, xC}{SKAgent(C)}

2. V -> C: {P, Pb}{SKVeri�er(V)}

3. C -> P: {P, C, {nP}{PKProver(P)}}{SKAgent(C)}

4. C -> Pb: {Pb, C, {nPb}{PKProver(Pb)}}{SKAgent(C)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {P, tP, proof, C}{SKProver(P)} % mP

10. Pb -> C: {Pb, tPb, proofB, C}{SKProver(Pb)} % mPb

11. C -> V: {C, tC, xC}{SKAgent(C)}, {mP % {P, tP, proof, C}{SKProver(P)},

mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}}{SKAgent(C)}

12. V -> C: {dV, xC, C, tV}{SKVeri�er(V)}
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Unlike the transformation outlined by Ryan and Schneider, when transforming the location

and latency atoms, the pair is not replaced with the �rst atom within the pair. Instead, it

is replaced with a single combination atom. This combination atom is merely a renaming

of the atom employed in Ryan and Schneider's simpli�cation and is used for clarity. The

security of the transformation holds as it meets the condition that the removed atom can

be deduced based upon the replacement and the intruder's initial knowledge. The security

speci�cations are altered to use the combination atom as a representation of the pair. If

the intruder discovers the value of proof (resp. proofB), it has knowledge of both elements

within that pair. This statement is also true for the coalesced nonce pairs, which follow

the method outlined by Ryan and Schneider and are replaced with an element of the pair.

Message splitting

Although extension one's design has been greatly simpli�ed, the �nal step remains an

issue. Due to the Claimant forwarding on complete messages from its Proof Providers,

the number of possible variable combinations causes the model to retain an unacceptable

level of complexity. Therefore, message splitting is employed in an e�ort to reduce the

complexity of the step.

0. -> C: xC

1. C -> V: {C, xC}{SKAgent(C)}

2. V -> C: {P, Pb}{SKVeri�er(V)}

3. C -> P: {P, C, {nP}{PKProver(P)}}{SKAgent(C)}

4. C -> Pb: {Pb, C, {nPb}{PKProver(Pb)}}{SKAgent(C)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {P, tP, proof, C}{SKProver(P)} % mP

10. Pb -> C: {Pb, tPb, proofB, C}{SKProver(Pb)} % mPb

11. C -> V: {C, tC, xC}{SKAgent(C)}

11(a). C -> V: {mP % {P, tP, proof, C}{SKProver(P)}}{SKAgent(C)}

11(b). C -> V: {mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}}{SKAgent(C)}
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12. V -> C: {dV, xC, C, tV}{SKVeri�er(V)}

Rather than the Claimant transmitting all proof messages received by its Proof Providers

in a single message, the design is restructured to allow each message to be forwarded

individually. Although this increases the total number of messages produced within the

model, the combined complexity of each individual message is vastly less than that of a

single message composed of the concatenation of all proofs.

5.5.4 Formally Modelling Extension Two

In this section, we outline the process of translating the second extension to the SLVPGP

from security notation to a model for use by FDR. This process is accomplished in two

stages: The original design of the protocol is �rst translated from abstract protocol notation

into Casper, with the extension's desired security properties modelled as Casper security

speci�cations (Section 5.5.4.1). The Casper translation is then simpli�ed to reduce its

complexity (Section 5.5.4.2).

5.5.4.1 Modelling Extension Two - From Abstract Notation to Casper

As with the conversion of extension one from abstract protocol notation to a format suitable

for model checking, the protocol description is translated into Casper prior to simpli�cation.

The Casper description of the second extension is more complex than that of the �rst

extension, due to the inclusion of encryption in this version. The full Casper model of this

extension is shown in Appendix A, with the protocol description shown below.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{P, Pb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> P: {{P, C, nP, n1P}{SKAgent(C)}}{PKProver(P)}

4. C -> Pb: {{Pb, C, nPb, n1Pb}{SKAgent(C)}}{PKProver(Pb)}

5. P -> C: kP, hP, n2P

6. Pb -> C: kPb, hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}
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9. P -> C: {{P, tP, xP, lP, C}{SKProver(P)} % mP}{PKAgent(C)}

10. Pb -> C: {{Pb, tPb, xPb, lPb, C}{SKProver(Pb)} % mPb}{PKAgent(C)}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {{mP % {P, tP, xP, lP, C}

{SKProver(P)}, mPb % {Pb, tPb, xPb, lPb, C}{SKProver(Pb)}}

{SKAgent(C)}}{PKVeri�er(V)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

Due to the increased number of security properties claimed by this extension, outlined

in Section 4.4.2 of Chapter 4, the number of included speci�cations increases from those

employed in extension one's script. A second security speci�cation type is employed -

StrongSecret - which allows Casper to verify the support for anonymity and con�dentiality

within the protocol. The failure of this security speci�cation indicates that the supposedly

secured value is leaked to the intruder at some point during a protocol run. We employ

the StrongSecret speci�cation rather than the Secret speci�cation as the level of security

being tested by the condition is much higher. If an intruder learns a value prior to the end

of the protocol's run and interrupts the run, the �aw will be detected. This is particularly

useful in the case of the properties modelled here as the values being protected are not

only generated for use in a speci�c run and then discarded, but are pieces of long term

information regarding the protocol's participants. Details regarding Casper's interpretation

of the speci�cations employed in this model are outlined in Section 5.3.2.

The aim of the second extension to the protocol is to provide authentication, external

anonymity and external con�dentiality to the participants within the exchange being pro-

tected. These conditions build upon the authentication provided within the �rst protocol

extension.

• Agreement(P, V, [proof])

• Agreement(Pb, V, [proofB])

• Agreement(V, C, [dV])

External anonymity is de�ned as a guarantee that the identities of all devices participating

in the exchange are unknown to any external entities, i.e. those not participating in the

exchange. This condition is modelled through specifying that these identities are secrets

known only to devices participating in the exchange.
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However, upon modelling these conditions, it was found that this is too general a

guarantee. Although both the Claimant and the Veri�er have knowledge of the identities

of all devices participating in the exchange, the Proof Providers involved have no knowledge

of any identities other than those of the Claimant and Veri�er. Therefore the conditions

modelled are as follows:

• StrongSecret(C, C, [V, P, Pb])

• StrongSecret(P, P, [V, C])

• StrongSecret(Pb, Pb, [V, C])

External con�dentiality is de�ned as a guarantee that the location information regard-

ing a device must remain secret from any devices external to the exchange. Similar to

the modelling of external anonymity, this condition is modelled in Casper as a secret in

which the location information is known only to the listed device within the exchange. As

discovered with modelling external anonymity, this is too general a guarantee. The use

of encryption on protocol messages prevents any devices other than those to whom the

message is encrypted for from learning the contents. Therefore, the Claimant and Veri�er

know all location information passed within the system. However, the Proof Providers

involved have knowledge only of their own location information and not those of any other

Proof Providers involved. This is modelled as follows:

• StrongSecret(C, xC, [V])

• StrongSecret(P, proof, [V, C])

• StrongSecret(Pb, proofB, [V, C])

5.5.4.2 Simplifying the SLVPGP's Second Extension

In order to reduce the complexity of the second extension's model and therefore decrease the

size of the resulting state space, two basic simpli�cations are applied. These simpli�cations

do not infringe on the completeness of the protocol. They merely remove some of the more

complex aspects which have no bearing on the security properties being checked. The

simpli�cations carried out on this extension are outlined below, with alterations to the

protocol illustrated by updated Casper descriptions.
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The coalescing transformation

The �rst simpli�cation applied to extension two of the SLVPGP is the coalescing of

atoms into a single atom. Three transformations are performed: The location variable xP

(resp. xPb) and the latency variable lP (resp. lPb) are combined into a single proof value,

proof (resp. proofB). The nonces nP (resp. nPb) and n1P (resp. n1Pb) are combined into

nP. Finally, the values kP (resp. kPb) and hP (resp. hPb) are combined into hP.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{P, Pb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> P: {{P, C, nP}{SKAgent(C)}}{PKProver(P)}

4. C -> Pb: {{Pb, C, nPb}{SKAgent(C)}}{PKProver(Pb)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {{P, tP, proof , C}{SKProver(P)} % mP}{PKAgent(C)}

10. Pb -> C: {{Pb, tPb, proofB, C}{SKProver(Pb)} % mPb}{PKAgent(C)}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {{mP % {P, tP, proof, C}

{SKProver(P)}, mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}}

{SKAgent(C)}}{PKVeri�er(V)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

Message splitting

With the application of the coalescing transformation, the complexity of extension two's

design is slightly reduced. However, as discussed previously in relation to extension one,

the complexity of the Claimant's message forwarding the gathered proofs to the Veri�er

is a crucial issue. In order to address this issue, we employ a structural transformation to

the problematic step, dissecting it into multiple individual messages and sending these in

place of a single concatenated message.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}
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2. V -> C: {{P, Pb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> P: {{P, C, nP}{SKAgent(C)}}{PKProver(P)}

4. C -> Pb: {{Pb, C, nPb}{SKAgent(C)}}{PKProver(Pb)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {{P, tP, proof, C}{SKProver(P)} % mP}{PKAgent(C)}

10. Pb -> C: {{Pb, tPb, proofB, C}{SKProver(Pb)} % mPb}{PKAgent(C)}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}

11(a). C -> V: {{mP % {P, tP, proof, C}{SKProver(P)}}{SKAgent(C)}}

{PKVeri�er(V)}

11(b). C -> V: {{mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}}{SKAgent(C)}}

{PKVeri�er(V)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

As in the case of extension one, the Claimant sends a message containing its own in-

formation before proceeding to send each of the proof messages gathered to the Veri�er

seperately. Although this message splitting does alter the structure of the protocol, it does

not alter its functionality. As the order of the messages being sent is preserved, the signals

generated by the model remain in their original order and no values within the messages

are altered in any way. Therefore, the traces produced remain faithful to those of the

original model and the simpli�cation does not remove any possible attacks.

5.5.5 Formally Modelling Extension Three

In this section, we outline the process of translating the third extension to the SLVPGP

from security notation to a model for use by FDR. This process is accomplished in two

stages; the original design of the protocol is �rst translated from abstract protocol notation

into Casper, with the extension's desired security properties modelled as Casper security

speci�cations (Section 5.5.5.1). It is then simpli�ed to reduce its complexity (Section

5.5.5.2). However, where the earlier protocol extensions could be directly translated into
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Casper, the third extension to the protocol requires an additional alteration, due to its

reliance on broadcasting to support anonymity.

5.5.5.1 Modelling Extension Three - From Abstract Notation to Casper

As with the conversion of the previous extensions, the protocol description is translated

into Casper prior to simpli�cation. The Casper description of the third extension is the

most complex of the three, due to the inability of the participants to see the contents of the

encrypted messages they receive. This inability is a by-product of retaining anonymity and

con�dentiality, as encryption is heavily employed to protect the private data of all devices

involved. In this section, we model the third extension in Casper and detail the security

speci�cations included in this description, used to model the extension's claimed security

properties. We then discuss the need for an additional adaptation to the protocol's design

in order to create a fully functional Casper model - the addition of an Oracle.

Modelling extension three in Casper

The full Casper model of this extension is shown in Appendix A, with the protocol

description shown below.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP,

{{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)} % mPb}{SKVeri�er(V)},

{{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> P: mP % {{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)},

{C}{PKVeri�er(V)} % mCP

4. C -> Pb: mPb % {{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)},

{C}{PKVeri�er(V)} % mCPb

5. P -> C: kP, hP, n2P

6. Pb -> C: kPb, hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)} % mCPN

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

9. P -> C: h(kCP), {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP, xP, lP,

mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}{PKVeri�er(V)} % mPV}{kCP}
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10. Pb -> C: h(kCPb), {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1), tPb, xPb,

lPb, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}

{PKVeri�er(V)} % mPbV}{kCPb}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {mPV % ({{P, mCPN1 % {n2P}

{SKAgent(C)}, tP, xP, lP, mCP1 % {C}{PKVeri�er(V)}}{SKProver(P)}}

{PKVeri�er(V)}), mPbV %, ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb, xPb, lPb,

mCPb1 % {C}{PKVeri�er(V)}}{SKProver(Pb)}}{PKVeri�er(V)})}{SKAgent(C)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

However, while the previous extensions to the protocol could be directly translated fol-

lowing the simpli�cation process, the increased level of anonymity provided by the third

extension requires that the design undergo a special adaptation prior to its translation into

Casper notation. This is due to Casper's requirement that a device know the identity of

any message's recipient. Therefore, the Casper description shown above will not function.

In order to address this issue, we must include an additional device to model the underly-

ing network over which the system communicates. The addition of this �Oracle� process is

discussed in the next section.

Addressing the issue of broadcasting - the introduction of an Oracle

In practice, the Claimant is capable of broadcasting messages to the area surrounding it,

removing the need for knowledge of the identities of the devices receiving them. However,

this functionality is not modelled directly in Casper. An agent must have knowledge of the

identity of its intended message recipient in order to communicate with them. In order to

address this issue, a new device is added to the exchange, which models an Oracle or all-

knowing entity. This Oracle process receives the message to be sent to be speci�c devices

in the area and has knowledge of the identities of these devices.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP, {{Pb, nPb, n1Pb, kCPb}

{SKVeri�er(V)}}{PKProver(Pb)} % mPb}{SKVeri�er(V)}, {{nP, n1P, kCP, nPb, n1Pb,

kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> O: mP % ({{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP1),

{C}{PKVeri�er(V)} % mCP

124



3(a). O -> P: mP1 % {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)},

mCP % ({C}{PKVeri�er(V)} % mCP1)

4. C -> O: mPb % ({Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)} % mPb1),

{C}{PKVeri�er(V)} % mCPb

4(a). O -> Pb: mPb1 % {{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)},

mCPb % ({C}{PKVeri�er(V)} % mCPb1)

5. P -> O: kP, hP, n2P

5(a). O -> C: kP, hP, n2P

6. Pb -> O: kPb, hPb, n2Pb

6(a). O -> C: kPb, hPb, n2Pb

7. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

7(a). O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

8. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

8(a). O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)

9 P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP,

xP, lP, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV}{kCP} % mCPk

9(a). O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, xP, lP, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV1)}{kCP}

10. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1),

tPb, xPb, lPb, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}

{PKVeri�er(V)} % mPbV}{kCPb} % mCPbk

10(a). O -> C: mCPbh % h(kCP), mCPbk % {nPb, mPbV % {{Pb, mCPbN % ({n2P}

{SKAgent(C)} % mCPbN1), tPb, xPb, lPb, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}

{SKProver(Pb)}}{PKVeri�er(V)} % mPbV1}{kCPb}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {mPV1 % ({{P, mCPN1 %

{n2P}{SKAgent(C)}, tP, xP, lP, mCP1 % {C}{PKVeri�er(V)}{SKProver(P)}}

{PKVeri�er(V)}), mPbV1 % ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb, xPb,

lPb, mCPb1 % {C}{PKVeri�er(V)}}{SKProver(Pb)}}{PKVeri�er(V)})}{SKAgent(C)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}
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However, although a new process has been introduced to the model, the underlying system

being modelled remains the same. The Oracle process is an artefact of employing the

Casper language, but does not impact the security of the system being modelled. This is

because the Oracle process does not alter or create messages within the system, but merely

acts as a forwarder. In essence, the Oracle process represents the real world technology to

which a device sends its message for broadcasting. It receives a message and transmits it

to a �nal destination, without performing any action upon the message.

In the Casper model of this extension, the Oracle receives a message from one device

and transmits the message to the correct recipient. Whilst this does increase the com-

plexity of the model to be checked, due to the creation of a new agent and the addition

of another process, it allows the condition of anonymity to be met. Additionally, as no

alteration is performed to the message, no extra security is added to the content and no

new information is made available to the intruder or any other device, the model's integrity

remains intact. Therefore, as with extensions one and two, the veri�cation results for this

model are representative of the underlying protocol extension upon which it is based.

Modelling the security speci�cations for extension three

The aim of the �nal SLVPGP extension is to extend the security properties of con�den-

tiality and anonymity to a complete level, while retaining the property of authentication.

The security properties of extension three are discussed in Section 4.4.3 of Chapter 4, with

details regarding Casper's interpretation of the speci�cations employed in this model out-

lined in Section 5.3.2. As in the �rst extension of the protocol, authentication of proof

content is achieved through the need for the Veri�er and each Proof Provider to agree

on the values for the corresponding proof, while authentication of the Veri�er's verdict is

con�rmed through a similar agreement between the Veri�er and the Claimant.

• Agreement(P, V, [proof])

• Agreement(Pb, V, [proofB])

• Agreement(V, C, [dV])

The third extension introduces another process into the protocol, the Oracle, in order to

model the functionality of broadcasting a message to an unknown recipient. This allows
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devices to pass messages without knowing the intended recipient's identity, thus preserving

anonymity. While the previous extension provided external anonymity, this �nal extension

provides an even greater level of security. The level of anonymity provided is now complete,

rather than external. The StrongSecret speci�cation is again employed to model this

condition. However, this time the only devices with knowledge regarding the data being

kept secret are the Oracle, the Veri�er and the device to which the data pertains. This

di�ers from the anonymity speci�cations employed in extension two of the protocol, where

the Claimant also had knowledge of the identities of all devices involved.

• StrongSecret(C, C, [O, V])

• StrongSecret(P, P, [O, V])

• StrongSecret(Pb, Pb, [O, V])

Similar to the increase in security regarding anonymity, the third SLVPGP extension in-

creases the security property regarding location information from external con�dentiality

to complete con�dentiality. This is also modelled using the StrongSecret speci�cation.

• StrongSecret(C, xC, [V])

• StrongSecret(P, proof, [V])

• StrongSecret(Pb, proofB, [V])

In this case, the only devices allowed to be in possession of information regarding location

are the Veri�er (the all-knowing entity within the system) and the device to whom the

location information pertains.

5.5.5.2 Simplifying the SLVPGP's Third Extension

The SLVPGP is at its most complex after the application of the third security extension,

particularly with the inclusion of an Oracle to facilitate the modelling of broadcasting. The

model representing this version of the protocol generates an extensive state space to be

checked by FDR. In order to reduce this state space to a more manageable size, a number

of simpli�cations are applied. As with those mentioned previously, these simpli�cations
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do not infringe on the correctness of the protocol. We outline below each of the simpli-

�cations carried out on the protocol, illustrating the alterations to the protocol with the

corresponding Casper descriptions.

The coalescing transformation

The �rst simpli�cation applied to �nal extension of the SLVPGP is the coalescing of

atoms into a single atom. The location variable xP (resp. xPb) and the latency variable lP

(resp. lPb) are combined into a single proof value, proof (resp. proofB). Finally, the values

kP (resp. kPb) and hP (resp. hPb) are combined into hP. Notably, we do not combine

the nonces nP (resp. nPb) and n1P (resp. n1Pb) into nP, as nP (resp. nPb) also appears

alone within the protocol.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP,

{{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)} % mPb}{SKVeri�er(V)},

{{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. C -> O: mP % ({{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP1),

{C}{PKVeri�er(V)} % mCP

3a. O -> P: mP1 % {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)},

mCP % ({C}{PKVeri�er(V)} % mCP1)

4. C -> Pb: mPb % ({Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)} % mPb1),

{C}{PKVeri�er(V)} % mCPb

4a. O -> Pb: mPb1 % {{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)},

mCPb % ({C}{PKVeri�er(V)} % mCPb1)

5. P -> O: hP, n2P

5a. O -> C: hP, n2P

6. Pb -> O: hPb, n2Pb

6a. O -> C: hPb, n2Pb

7. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

7a. O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

8. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

8a. O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)
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9. P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP, proof ,

mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}{PKVeri�er(V)} % mPV}

{kCP} % mCPk

9a. O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, proof , mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV1)}{kCP}

10. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1),

tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}

{PKVeri�er(V)} % mPbV}{kCPb} % mCPbk

10a. O -> C: mCPbh % h(kCP), mCPbk % {nPb, mPbV % {{Pb, mCPbN % ({n2P}

{SKAgent(C)} % mCPbN1), tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}

{SKProver(Pb)}}{PKVeri�er(V)} % mPbV1}{kCPb}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {mPV1 % ({{P, mCPN1 %

{n2P}{SKAgent(C)}, tP, proof , mCP1 % {C}{PKVeri�er(V)}{SKProver(P)}}

{PKVeri�er(V)}), mPbV1 % ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb,

proofB, mCPb1 %{C}{PKVeri�er(V)}}{SKProver(Pb)}}{PKVeri�er(V)})}{SKAgent(C)}

12. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

Message splitting (A)

In order to facilitate the employment of the redirection transformation on the structure

of the modelled protocol, the messages being redirected must �rst be broken into their

individual components. These include the initialisation messages sent to the Claimant for

the Proof Providers and the additional information sent by the Claimant to each Proof

Provider when forwarding these messages.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. V -> C: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP}

{SKVeri�er(V)}

4. V -> C: {{{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)}

% mPb}{SKVeri�er(V)}

5. C -> O: mP % ({{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)} % mP1),
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5a. O -> P: mP1 % {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)}

6. C -> O: {C}{PKVeri�er(V)} % mCP

6a. O -> P: mCP % ({C}{PKVeri�er(V)} % mCP1)

7. C -> Pb: mPb % ({Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)} % mPb1)

7a. O -> Pb: mPb1 % {{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)}

8. C -> O: {C}{PKVeri�er(V)} % mCPb

8a. O -> Pb: mCPb % ({C}{PKVeri�er(V)} % mCPb1)

9. P -> O: hP, n2P

9a. O -> C: hP, n2P

10. Pb -> O: hPb, n2Pb

10a. O -> C: hPb, n2Pb

11. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

11a. O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

12. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

12a. O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)

13. P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP, proof,

mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}{PKVeri�er(V)} % mPV}

{kCP} % mCPk

13a. O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, proof, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV1)}{kCP}

14. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1),

tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}

{PKVeri�er(V)} % mPbV}{kCPb} % mCPbk

14a. O -> C: mCPbh % h(kCP), mCPbk % {nPb, mPbV % {{Pb, mCPbN % ({n2P}

{SKAgent(C)} % mCPbN1), tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}

{SKProver(Pb)}}{PKVeri�er(V)} % mPbV1}{kCPb}

15. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {mPV1 % ({{P, mCPN1 %

{n2P}{SKAgent(C)}, tP, proof, mCP1 % {C}{PKVeri�er(V)}{SKProver(P)}}

{PKVeri�er(V)}), mPbV1 % ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb,

proofB, mCPb1 %{C}{PKVeri�er(V)}}{SKProver(Pb)}}{PKVeri�er(V)})}{SKAgent(C)}
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16. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

Message splitting in this manner clearly distinguishes the di�erent message components

and their end destinations, allowing for an easier understanding of the process behind the

protocol's simpli�cation. As with all other message splitting transformations described

within this work, the order of the messages is preserved and the values within the messages

are not altered. This ensures the traces of the transformed protocol remain faithful to the

protocol's original model and any possible attacks on said model are also applicable to the

transformed version.

Redirection of the Proof Provider identity messages

The next simpli�cation applied is the redirection of the proof messages from the Proof

Providers. In the original design, the initialisation message for each Proof Provider is

conveyed to that Proof Provider via the Claimant. This is seen more clearly after the

application of message splitting, shown above. The Claimant acts as a transparent relay,

passing on the message without altering it in any way. It does not provide any additional

security, nor does its removal impact the security being checked. For this reason, employing

a redirection simpli�cation does not alter the security of the protocol, but merely reduces

the model's complexity. In addition to this, message redirection is an attack-preserving

simpli�cation, as outlined in Section 5.4.3.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. V -> P: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)}}{SKVeri�er(V)}

4. V -> Pb: {{{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)}}

{SKVeri�er(V)}

5. C -> O: {C}{PKVeri�er(V)} % mCP

5a. O -> P: mCP % ({C}{PKVeri�er(V)} % mCP1)

6. C -> Pb: {C}{PKVeri�er(V)} % mCPb

6a. O -> Pb: mCPb % ({C}{PKVeri�er(V)} % mCPb1)

7. P -> O: hP, n2P
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7a. O -> C: hP, n2P

8. Pb -> O: hPb, n2Pb

8a. O -> C: hPb, n2Pb

9. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

9a. O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

10. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

10a. O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)

11. P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP, proof,

mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}{PKVeri�er(V)}

% mPV}{kCP} % mCPk

11a. O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, proof, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV1)}{kCP}

12. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1),

tPb,

proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}{PKVeri�er(V)}

% mPbV}{kCPb} % mCPbk

12a. O -> C: mCPbh % h(kCP), mCPbk % {nPb, mPbV % {{Pb, mCPbN % ({n2P}

{SKAgent(C)} % mCPbN1), tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}

{SKProver(Pb)}}{PKVeri�er(V)} % mPbV1}{kCPb}

13. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}, {mPV1 % ({{P, mCPN1 % {n2P}

{SKAgent(C)},tP, proof, mCP1 % {C}{PKVeri�er(V)}{SKProver(P)}}{PKVeri�er(V)}),

mPbV1 % ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb,

proofB, mCPb1 % {C}{PKVeri�er(V)}}{SKProver(Pb)}}

{PKVeri�er(V)})}{SKAgent(C)}

14. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

The signals produced by the transformed model shown above remain in the same order as

those produced by the original model's design The values contained within the messages

are committed to at the same point during the exchange, therefore the transformed model

meets the requirements for a valid redirection transformation as de�ned by Ryan and

Schneider. Any attacks present on the original design will be preserved in the transformed

model and the results of any speci�cation check completed on the transformed model can

be projected onto the original.
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Message splitting (B)

Although the application of the above simpli�cations does greatly reduce the complexity

of the protocol to be modelled, the message in which the Claimant's gathered proofs are

forwarded to the Veri�er remains an issue. In order to address the level of complexity within

this message, we again employ the message splitting transformation. In this instance, the

the Claimant's proof forwarding message is dissected into several individual messages and

these are sent in place of a single concatenated message.

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVeri�er(V)}

2. V -> C: {{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKAgent(C)}

3. V -> P: {{{P, nP, n1P, kCP}{SKVeri�er(V)}}{PKProver(P)}}{SKVeri�er(V)}

4. V -> Pb: {{{Pb, nPb, n1Pb, kCPb}{SKVeri�er(V)}}{PKProver(Pb)}}{SKVeri�er(V)}

5. C -> O: {C}{PKVeri�er(V)} % mCP

5a. O -> P: mCP % ({C}{PKVeri�er(V)} % mCP1)

6. C -> Pb: {C}{PKVeri�er(V)} % mCPb

6a. O -> Pb: mCPb % ({C}{PKVeri�er(V)} % mCPb1)

7. P -> O: hP, n2P

7a. O -> C: hP, n2P

8. Pb -> O: hPb, n2Pb

8a. O -> C: hPb, n2Pb

9. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

9a. O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

10. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

10a. O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)

11. P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP,

proof, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}{PKVeri�er(V)}

% mPV}{kCP} % mCPk

11a. O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, proof, mCP % ({C}{PKVeri�er(V)} % mCP1)}{SKProver(P)}}

{PKVeri�er(V)} % mPV1)}{kCP}

12. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2P}{SKAgent(C)} % mCPbN1),

tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}{SKProver(Pb)}}{PKVeri�er(V)}

% mPbV}{kCPb} % mCPbk
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12a. O -> C: mCPbh % h(kCP), mCPbk % {nPb, mPbV % {{Pb, mCPbN % ({n2P}

{SKAgent(C)} % mCPbN1), tPb, proofB, mCPb % ({C}{PKVeri�er(V)} % mCPb1)}

{SKProver(Pb)}}{PKVeri�er(V)} % mPbV1}{kCPb}

13. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVeri�er(V)}

13a. C -> V: {mPV1 % ({{P, mCPN1 % {n2P}{SKAgent(C)}, tP, proof,

mCP1 % {C}{PKVeri�er(V)}{SKProver(P)}}

{PKVeri�er(V)})}{SKAgent(C)}

13b. C -> V: {mPbV1 % ({{Pb, mCPbN1 % {n2P}{SKAgent(C)}, tPb, proofB,

mCPb1 % {C}{PKVeri�er(V)}}{SKProver(Pb)}}

{PKVeri�er(V)})}{SKAgent(C)}

14. V -> C: {{dV, xC, C, tV}{SKVeri�er(V)}}{PKAgent(C)}

This transformation could be taken a step further by also splitting out the Claimant's

encrypted identity, contained within each proof. However, it was discovered that rather

than simplifying the design, employing this level of splitting increases the protocol's com-

plexity, resulting in an overly complex design and a state space explosion. This is because

the complexity cost in creating an extra message with that level of encryption and digital

signing is far greater than including it within the original message. Upon removing this

additional split in the message, the generated state space becomes tractable and the model

check can be completed.

5.6 Results of Model Checking

After the protocol designs have been simpli�ed to a reduced level of complexity and trans-

lated into Casper notation, the resulting descriptions are compiled and CSP scripts de-

scribing each design are generated. These CSP scripts can then be fed to the FDR model

checker and their security speci�cations validated or failed. We have also created seven

alternate models for each extension which, in addition to the knowledge already possessed,

grant the intruder knowledge of at least one participating device's private cryptographic

key. These models allow us to investigate the impact of the compromising of keys on the

protocol's security. The models created include: Known C, where the Claimant's keys are

compromised; Known P/Pb, where a Proof Provider's keys are compromised; Known

CP/CPB/CPPB, where both the Claimant's keys and either one or both of the Proof

Providers keys are compromised; and �nally Known PPb, where the keys of all Proof
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Known Agreement(Proof) Agreement(ProofB) Agreement(DV )

None
√ √ √

C
√ √ √

CP Fail
√ √

CPb
√

Fail
√

CPPb Fail Fail
√

P Fail
√ √

Pb
√

Fail
√

PPb Fail Fail
√

Table 5.1: Veri�cation Results for Extension One of the SLVPGP

Providers involved are compromised. While we do not envision that these cryptographic

keys can be compromised in this manner, due to the system's requirement that all keys be

stored within a tamper-resistant unit, we wished to investigate the impact of such an event

occurring on the security of the system. We do not model a scenario where the Veri�er's

keys are compromised, as the Veri�er is a trusted device, and should that set of keys be

compromised, the system would cease to be viable.

It should be stated that each of the uncompromised extension models received success-

ful verdicts, indicating that the protocols do not contain security vulnerabilities in their

described environments. The only model checking failures were those models in which keys

were compromised, with not all of these failing and no check failing on all speci�cations.

5.6.1 Results for Extension One

As mentioned previously, the SLVPGP's �rst extension is the least secure, providing

only the minimum security: a single security property (authentication), which is split into

three security speci�cations; one investigating the security of the Veri�er's verdict and

one for each Proof Provider modelled. These Agreement speci�cations check that the

transmitted value of proof, proofB and DV cannot be manipulated during the course of the

protocol exchange. As shown in Table 5.1, the veri�cation results received on the verdict

speci�cation is successful for all compromised keys. This is due to the value being digitally

signed using the Veri�er's private key, a key unknown to all devices other than the Veri�er.

As discussed previously, we do not model the compromising of the Veri�er's keys, as the

Veri�er is a trusted entity.
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Known A(proof) A(proofB) A(DV ) SS(C) SS(P) SS(Pb) SS(XC) SS(proof) SS(proofB)

None
√ √ √ √ √ √ √ √ √

C
√ √ √

Fail Fail Fail Fail Fail Fail

CP Fail
√ √

Fail Fail Fail Fail Fail Fail

CPb
√

Fail
√

Fail Fail Fail Fail Fail Fail

CPPb Fail Fail
√

Fail Fail Fail Fail Fail Fail

P
√ √ √

Fail Fail
√ √ √ √

Pb
√ √ √

Fail
√

Fail
√ √ √

PPb
√ √ √

Fail Fail Fail
√ √ √

Table 5.2: Veri�cation Results for Extension Two of the SLVPGP

The veri�cation results received on both Proof Provider speci�cations by the uncom-

promised and Known C models are successful. This indicates that the compromising of a

Claimant's keys does not impact the extension's support of the authentication property.

These results are expected, as within this extension, the Claimant is not involved in pro-

tecting the proofs gathered. However, the results received by the remaining six models

re�ect an obvious insecurity within the extension. These results illustrate that any com-

promise of a Proof Provider's key leads to that Proof Provider's proof being left vulnerable

to tampering. This is because the only protection applied to this value is the digital sig-

nature of the Proof Provider. This vulnerability is addressed in extensions two and three

through the inclusion of encryption.

5.6.2 Results for Extension Two

Building on the �rst extension's security property of authentication, extension two increases

the number of security properties supported to include anonymity and con�dentiality of

location. These properties are modelled using the StrongSecret (SS) security speci�cation.

The number of speci�cations is increased to include a StrongSecret speci�cation for each

of the values being protected, i.e. the identities of each of the participants, the Claimant's

location and the proof values of both Proof Providers modelled. These speci�cations check

that the values being protected are not leaked at any point during the exchange, which

would allow an intruder to gain knowledge of them.

As shown in Table 5.2, the veri�cation results for the uncompromised model of the

extension are all successful. Additionally, as in the veri�cation results for extension one,

authentication on the value of the Veri�er's �nal verdict is supported in all situations.

However, when investigating the security of all other speci�cations, the compromising of
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Known A(proof) A(proofB) A(DV ) SS(C) SS(P) SS(Pb) SS(XC) SS(proof) SS(proofB)

None
√ √ √ √ √ √ √ √ √

C
√ √ √

Fail
√ √

Fail
√ √

CP
√ √ √

Fail Fail
√

Fail
√ √

CPb
√ √ √

Fail
√

Fail Fail
√ √

CPPb
√ √ √

Fail Fail Fail Fail
√ √

P
√ √ √ √

Fail
√ √ √ √

Pb
√ √ √ √ √

Fail
√ √ √

PPb
√ √ √ √

Fail Fail
√ √ √

Table 5.3: Veri�cation Results for Extension Three of the SLVPGP

the Claimant's keys has an enormous impact. Where the Claimant's keys alone are compro-

mised, all anonymity speci�cations fail, along with all con�dentiality speci�cations. This is

an expected outcome, as the Claimant is used within this extension of the protocol as a hub,

through which all messages pass and with all messages encrypted for the Claimant. This

provides any device in possession of the Claimant's keys with the values all supposedly pro-

tected information. Authentication, unlike anonymity and con�dentiality, is still believed

to be supported, with the authentication results for both Proof Provider values receiving

positive results in addition to those received by the Veri�er's verdict speci�cations.

However, due to the presence of digital signatures on the proof values from each Proof

Provider, though an intruder may gain knowledge of their values, but it cannot amend

them. This is because it does not possess the Proof Provider's keys to forge a new signature.

Where a Proof Provider's key is compromised, either alone or in conjunction with the

Claimant's, the compromised Proof Provider's agreement speci�cation no longer passes

the check. Similarly, the anonymity property is no longer supported, as the identities of

the Claimant and any compromised Proof Provider are leaked. However, unlike where the

Claimant's key is compromised, the compromising of only a Proof Provider's key does not

cause support for the con�dentiality property to be lost, as the values protected to give

con�dentiality are never encrypted for those keys.

5.6.3 Results for Extension Three

The third extension to the protocol upgrades the level of anonymity and con�dentiality

being tested from external to complete through amending the security speci�cations em-

ployed in extension two's veri�cation. In the amended StrongSecret (SS) speci�cations, the

number of devices allowed knowledge of the values being protected is greatly reduced to
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include only the participant the value concerns, the Veri�er and in the case of anonymity

StrongSecret speci�cations, the Oracle. However, similar to the previous two extensions,

authentication is modelled as three Agreement speci�cations, one concerning the Verdict

supplied by the Veri�er and one for each of the proofs transmitted within the model.

The improvement in veri�cation results for this extension compared to those of the

previous extensions demonstrates the increased level of security employed. As shown in

Table 5.3, the veri�cation results for the uncompromised model are again all successful.

There is a vast decrease in the number of fails received where the keys of the Claimant

are compromised in comparison to the veri�cation results for the second extension, with

only the Claimant's identity and location consistantly vulnerable in this situation. This

leakage occurs when the Veri�er sends its veri�cation message to the Claimant. The only

other vulnerable information within the protocol is the identity of a compromised Proof

Provider. This vulnerability is due to the identity's presence within the only message

containing sensitive information encrypted using a key other than the Veri�er's.

5.7 Verifying the Security of Broadcasting Messages

In practice, the third extension to the SLVPGP makes use of broadcasting to protect

the anonymity of the participants. However, one concern when using this approach is

the possibility that supplying devices other than the intended recipient with a message

inadvertantly causes a security breach within a protocol. In order to con�rm that this is

not the case, we designed a trivial system in which broadcasting is used. The system was

then model checked to verify its secrecy and authentication properties. The results of this

process support the hypothesis that when messages are encrypted using uncompromised

keys, their integrity is una�ected by broadcasting

5.7.1 System Description

1. S →A: {MB}K+
B

, {MC}K+
C

2. A →B {MB}K+
B

3. A →C: {MC}K+
C
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The basic design of the example system is composed of a Server device (S), which wishes

to send a message to two devices, Bob and Celine. However, the Server has no method of

sending the message directly to these devices. Bob and Celine are in the vicinity of a third

device (Alice), which is in contact with the Server. In order to transmit the messages to Bob

and Celine, the Server employs Alice as a proxy. However, Alice cannot know the identity

of the devices she forwards the messages to. Therefore she must broadcast the messages

to all devices in the vicinity. Broadcasting in a wireless network is de�ned as transmitting

a single message to all devices within transmission range of the source device, without

requiring knowledge of the addresses or identities of the recipients. It is accomplished

through the use of the standard MAC broadcast address, FF:FF:FF:FF:FF:FF.

5.7.2 Casper Notation

In Casper, the act of broadcasting cannot be directly modelled, as each message must

have a speci�c recipient and this recipient must be known to the sending agent (removing

the ability to retain anonymity). Therefore another process known as the Oracle (O) is

introduced. This alters the system's description to:

1. S →A: {MB}K+
B

, {MC}K+
C

2. A →O: {MB}K+
B

3. O→B: {MB}K+
B

4. A →O: {MC}K+
C

5. O→C: {MC}K+
C

The primary function of the Oracle is to act as third party proxy, allowing Alice to transmit

S's messages to Bob and Celine. The Oracle is modelled as a special type within the

system, outside the control of any adversary and without impact on the system as a whole.

Therefore, this adjustment does not impact the model checking results on the system. The

casper translation of the protocol's security notation is shown below, with the complete

script shown in Section A.2 of Appendix A.

1. -> S: mB, mC
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2. S -> A: {mB}{PK(B)} % nMb, {mC}{PK(C)} % nMc

3. A -> O: nMb % ({mB}{PK(B)} % nMb1)

4. O -> B: nMb1 % {mB}{PK(B)}

5. A -> O: nMc % ({mC}{PK(C)} % nMc1)

6. O -> C: nMc1 % {mC}{PK(C)}

In the Casper model, the proxied messages are sent only to the intended destinations, with

the intruder also receiving a copy of all messages. The intruder can therefore represent

any device within range of Alice when she broadcasts the message being forwarded. If

the intruder can successfully break any of the security conditions being checked, then

broadcasting can be regarded as an insecure approach in this situation.

Security speci�cations

In order to con�rm that a message cannot be undetectably interfered with by any intruder

once sent by the Server device, an agreement speci�cation is employed. This speci�cation

checks that the message committed to by the Server is the same message received by the

intended recipient (either B or C) at the end of the protocol's run. If an intruder can

undetectably insert their own value for this message, the system's security is �awed.

• Agreement(S, B, [mB])

• Agreement(S, C, [mC])

The system described above conforms to the agreement speci�cations. Therefore, broad-

casting messages over an open network does not a�ect the authentication aspect of the

messages assuming the messages are properly secured, i.e. that a message is digitally

signed by its creator.

The second aspect of a message's security is that its contents remain secret. Broadcast-

ing messages allows for all devices within range of the sender to receive a copy. Therefore

it is vital that this secrecy is maintained even when the message is received by many de-

vices and not just the intended recipient. In order to con�rm that a message's secrecy is

not a�ected by the act of broadcasting, secrecy speci�cations are employed for each of the

messages investigated.
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• Secret(S, mB, [B])

• Secret(S, mC, [C])

These speci�cations check that the value of the message in question is not leaked at any

point during the protocol's run. If an intruder can obtain the value of the message, the

property of secrecy does not hold and the protocol is �awed.

This system conforms to these speci�cations, as messages are encrypted to protect their

contents. Therefore, the veri�cation results suggest that broadcasting messages over an

open network does not a�ect the secrecy of their contents. This is based on the assumption

that the messages are properly secured.

5.7.3 Modelling Colluding and Compromised Agents

In the previous section, the implications of employing broadcasting within a system were

outlined and its limitations discovered. However, those limitations are only proven to apply

where an intruder has knowledge only of its own keys - i.e. no devices are compromised - and

where no devices involved are colluding. In order to investigate the e�ects of compromised

and colluding devices, multiple versions of the system described in Section 5.7.1 have been

modelled. In each version, the intruder process' knowledge is amended. Each amendment

represents either the compromising of a device or the collusion of a number of devices.

The intruder's knowledge de�ned within the Casper script is altered to include information

regarding the keys of one or more devices. The altered intruder knowledge de�nitions are

shown in Section A.2.2 of Appendix A.

In the case of modelling a single compromised device, the intruder process is given

knowledge of the public and private keys of this device. In addition to this, if the compro-

mised device being modelled is a message end-recipient, i.e. a device receiving one of the

messages being transmitted (e.g. devices B or C), the security speci�cation regarding the

secrecy of that device's message is removed. This is to allow the system to be fully checked

for security �aws, rather than failing its model check on a speci�cation that is intuitively

known to fail. With this speci�cation removed, the model check is successful, proving that

the system's integrity remains intact for messages secured with unknown keys. However,

if the speci�cation is re-inserted, the check fails as the secrecy of this message is no longer

provided through encryption.
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This approach is also employed in the modelling of colluding devices. We consider

two collusion scenarios for modelling, where device A colludes with end-recipient device B

(collusion AB) and where device A colludes with end-recipient device C (collusion AC). We

do not investigate the impact of devices B and C colluding as the secrecy of both messages

being transmitted would immediately be compromised in this scenario. Therefore, any

checks on the secrecy of those messages would fail.

Similar to the checks performed on the compromise of a single device, the various checks

on the colluding device combinations are all successful where the model does not include

a speci�cation regarding the message intended for the end-recipient involved. When a

speci�cation of this nature is included, the check fails due to an obvious �aw in the security

of the system, i.e. that the intruder can gain access to messages encrypted for access using

the end-recipient's secret key. As this situation is designed to model the collusion of an end-

recipient and the intruder, an unsuccessful check is the expected outcome. FDR's returning

of positive verdicts on the remaining checks supports the hypothesis that broadcasting a

message does not impair the security of the message or the system. However, the receipt

of negative verdicts on those checks where keys have been compromised shows that this

hypothesis only holds assuming that the message being transmitted is secured with un-

compromised encryption.

5.8 Summary

In this chapter, we discussed the approach used to formally verify the Secure Location

Veri�cation Proof Gathering Protocol through model checking. We have outlined the

steps involved in readying the protocol for veri�cation, from reducing the complexity of

the protocol using safe simplifying transformations to translating the simpli�ed design into

Casper notation. The veri�cation of the CSP models generated from these Casper notations

indicates the absence of �aws with the security properties claimed for each extension within

the systems described. This supports our conclusion that the SLVPGP is secure and

provides these security properties.

In order to further analyse the system's security, we have carried out additional veri�-

cations where the integrity of various keys has been compromised. This analysis indicates

that the impact of compromising a key's integrity is at a minimum in the �nal extension,
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due to the layering of encryption and digital signatures. This extension was also the only

version of the SLVPGP not to receive a fail on either agreement during the compromised-

key analysis, indicating that the described system is not vulnerable to proof tampering.

The analysis also indicates the vulnerability of the middle extension to manipulation if

the integrity of the Claimant's key pair is compromised, due to the use of the Claimant

as a central entity in that extension's design. However, as discussed in Chapters 3 and 4,

the storing of cryptographic keys in tamper-resistant modules prevents their sharing and

compromise. Additionally, we have analysed the security of broadcasting sensitive mes-

sages over a network, designing a trivial system employing broadcasting and investigating

its weaknesses through model checking. Our analysis supports the hypothesis that broad-

casting as a technique does not impact the security of a sensitive message, assuming the

message is adequately encrypted.
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Chapter 6

The Veri�cation System

6.1 Introduction

In the previous chapters, we have discussed the technology upon which this system is based,

from the method by which a verdict is determined (Chapter 3) to the protocol employed

to protect the determination and gathering processes and their security (Chapters 4 and

5). In this chapter, we discuss the method by which these verdicts are employed in order

to arrive at a �nal decision on the possibility of a Claimant's location claim.

In order for a veri�cation system to function without implicit trust in those devices

providing proof, a method of extracting a verdict must be found which relies purely on

evidence from random devices. Through this approach, the Veri�er may reach an overall

verdict regarding a claim through placing its trust in the voice of the majority within a

randomly selected group of devices. While individual devices may lie, the probability that

the majority of a group would all make the decision to lie about a speci�c claim is low,

and decreases as the size of the group employed increases.

In addition to the veri�cation of claims, the Veri�er has the additional task of computing

up to date trustworthiness values regarding each of the devices registered within the system.

We have designed an approach that employs existing reputation techniques to calculate

the trustworthiness or believability of a device based on its prior actions within the system.

This is done through recording of each device's behaviour when involved with a claim, using

binary notation to indicate positive or negative behaviour. Armed with this information,

the Veri�er can calculate the probability of a device behaving honestly during the current

claim, thus providing the system with an idea of the relative trustworthiness of a device
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at any time.

The Veri�er has three main areas of responsibility; the reputation system, the provision

of Proof Providers and �nally the veri�cation of claims. The reputation system deals with

the calculation of a device's trustworthiness, based on previous events within the system.

This trustworthiness may be employed as a factor when dealing with the provision of Proof

Providers, a process that begins with gathering a pool of volunteers. These volunteers are

examined and the most suitable are selected for use in the proof gathering protocol. The

protocol's resulting proofs are then employed by the Veri�er in the veri�cation of claims.

In this chapter, we discuss related work in the area of reputation computation (Section

6.2) and outline the reputation system and its facets (Section 6.3). We then discuss two

approaches to the gathering of volunteers for use as Proof Proviers (Section 6.4) before

comparing several di�erent criteria considered for use when selecting which volunteers to

use as Proof Providers (Section 6.5). In Section 6.6 we outline the process of verifying a

location claim based on the evidence provided. We then discuss the possibility of extracting

a more speci�c location for inclusion in the Veri�er's verdict message if a positive verdict

is awarded, based on the evidence available regarding the claim (Section 6.8). Finally, we

summarize the chapter's contents and discuss open questions in Section 6.9.

6.2 Related Work

Many reputation computation engines have been proposed to solve the problem of di�er-

enciating between those devices that usually behave honestly and those that tend towards

dishonest behaviour. A number of detailed surveys, such as [51] and [60] have been pub-

lished, discussing these engines and the methods by which trustworthiness and reputation

are calculated. The reputation system employed in this work is based on Josang and Is-

mail's beta reputation system [50], in which a form of probability density function (PDF)

is employed to calculate the probability of a device behaving honestly based on its past be-

haviour. The strength of this approach lies in its employment of statistics and probabilities

based upon prior actions, grounding the end result in factual events.

In [15], the authors upgrade their CONFIDANT [16] protocol to include a Bayesian-

based reputation system, thus removing its exclusive reliance upon negative ratings. The

Buchegger-LeBoudec reputation system contains the concepts of both trust and reputation,
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with reputation evaluating how well a node participates in the CONFIDENT system and

trust evaluating how honest the information published by that node is. The approach

taken to reputation is particularly advantageous as greater weight is allocated to �rst-

hand experience than that of published reputation records. Similar to the case of the beta

reputation system, this reputation system also includes a method of fading, allowing less

weight to be given to those events observed further into the past, a technique which we

have also employed (see Section 6.3.4).

In CORE [63], the system employs reputation values regarding nodes to detect and

prevent sel�sh behaviour, thus ensuring cooperation within the mobile ad-hoc network

(MANET). In this system, reputation is derived through summations of observed be-

haviour, combined with reported reputation values, in a weighted calculation. The con-

cept of reputation is split into several variants; subjective, calculated based on �rst-hand

observations; indirect, where the positive observations of others are reported (thus pre-

venting negative attacks on other nodes); and �nally functional, which is a combination

of subjective and indirect reputations based on a node's performance of a speci�c func-

tion. Within this system, the concept of fading is �ipped, with greater weight given to

those events further in the past and less weight to those that have recently occurred. The

authors reason that this reduces the in�uence of sudden strange behaviour. However, we

believe this to be an indication of the current trustworthiness of the device. Also, while

this system does prevent negative attacks on a node, it does not rule out the possibility of

a positive attack, where nodes are talked up. This form of attack increases the di�culty

of detecting malicious nodes.

Conversely to CORE, Aberer and Despotovic [3] have proposed a distributed reputation-

based trust management scheme employing P-Grids [2], in which only negative information

is spread. In their approach, the information shared regarding a participant (p) takes the

form of a complaint, which is used to calculate the probability that p will cheat again in

the future. Unlike previously mentioned systems, this approach takes into account both

the complaints made against p and the complaints made by p to extract a reputation value.

The �nal reputation is derived as the product of the number of complaints made about p

and the number of complaints p makes about other devices.
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6.3 The Reputation System

Within the scope of the Veri�er's processes, we employ a reputation system composed

of pre-existing techniques to represent the concept of trustworthiness in a device based

on past actions. These past actions are recorded to form an event history, tracking a

device's behaviour over time. By recording the sequence of events in this manner, a

history for each device in the system is produced, giving the Veri�er an indication of

how it is likely to behave during a veri�cation. These event histories form the basis of

trust calculation and are discussed in Section 6.3.2. The reputation system employed in

this work is based on statistical theory, utilising an existing form of probability calculation

to extract trustworthiness levels for a device from its recorded past behaviour. We discuss

this further in Section 6.3.3. In order to ensure the weighting system awards greater weight

to recent activity, a fading factor has been included in the system. In addition to this, the

ability to fade during quieter periods of activity has also been included, to allow device

trustworthiness to decay not only with interactions between a device and the system, but

also over time, independant of activity. This process is discussed in Section 6.3.4.

6.3.1 What is Trust?

The notion of trust has been well explored in many academic arenas, including economics

[62, 8], sociology [34, 21] and, more recently, computing. This move within computing

circles stems from the development of decentralised and Peer to Peer (P2P) systems [71,

68, 91, 9], in which nodes require a method of distinguishing other participants which are

more reliable, in order to facilitate their own needs. Numerous trust management and

reputation schemes have been developed to solve this problem, such as [40, 15, 100, 3, 52].

In these schemes, the concepts of trust and reputation have been discussed in depth,

resulting in several slight variations on their de�nitions within the �eld. In this section,

we de�ne what trust and reputation mean within this work and how it is employed to

facilitate the system's needs.

Within this work, we refer to the procedure through which we calculate a device's

trustworthiness as the �reputation� system. Traditionally, reputation and trustworthiness

are considered distinct concepts, with one stemming from the public perception of an

agent/entity based on second-hand experiences and the other based upon direct interac-
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tion [51]. However, this work mixes both of these concepts when calculating a device's

trustworthiness. A device's trustworthiness is calculated based on direct interaction be-

tween that device and the Veri�er, but the outcome of this interaction is based upon

calculating a concensus from the second-hand evidence provided. For this reason, we have

merged the two concepts, rendering the terms interchangeable. However, for continuity's

sake, we use �trustworthiness/trust value� to refer to the trustworthiness of a device, and

use �reputation� only when referring to the calculation system. The concept of trust is also

extended to apply to relations between malicious devices. We assume that if one device

is willing to collude with another, they are �friendly� devices and share a mutual level of

trust. This allows them to cooperate in their attempts to deceive the Veri�er and location

veri�cation system.

When the Veri�er selects Proof Providers, it may wish to employ only those that

are likely to behave in an honest fashion. In order to facilitate this, we designate each

participating device with a measure of trustworthiness, based upon its prior actions within

the system. The notion of trustworthiness here represents the level of credibility a device

has earned, given its behaviour in the past. It is a measure of how much the system trusts

a device to perform its role honestly. This follows Gambetta's de�nition of trust, which

states trust to be: �a particular level of the subjective probability with which an agent

assesses that another agent ... will perform a particular action� [34]. The more a device

shows itself as an entity to be believed in, the greater its trustworthiness value grows. We

have designed the reputation system to calculate the appropriate level of trustworthiness

to allocate to a device, based on these past actions. The �shadow of the future� [7] provided

by each device's history allows the Veri�er to calculate its trust value, a procedure which

is discussed further in Section 6.3.3.

However, a device's behaviour may di�er depending upon the role played in an interac-

tion. When acting as a Claimant, a device may behave perfectly, as it wishes to pro�t from

the situation. However, when the same device acts as a Proof Provider, it may behave

maliciously as it receives no bene�ts from the interaction and therefore has no obvious

incentive not to. The reverse is also possible, where a device behaves honestly as a Proof

Provider and only acts maliciously when it requires a false location proved by the sys-

tem. Therefore, we have designed our system to include the concept of multi-faceted trust,
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Algorithm 1 Building Event Histories
Device D joins location veri�cation system, EC ←<>and EPP ←<>

while D_in_System do

if D_makes_claim then

if verdict == positive then

EC ←< 1 > ∧EC

elseif verdict == negative then

EC ←< 0 > ∧EC

elseif verdict == unsure then

EC ← EC

if D_is_ProofProvider then

if verdict == unsure then

EPP ← EPP

elseif evidence_given == positive then

if verdict == positive then

EPP ←< 1 > ∧EPP

elseif verdict == negative then

EPP ←< 0 > ∧EPP

elseif evidence_given == negative then

if verdict == positive then

EPP ←< 0 > ∧EPP

elseif verdict == negative then

EPP ←< 1 > ∧EPP

where each device in the system possesses two trustworthiness values, one representing its

behaviour as a Claimant and the other its behaviour as a Proof Provider. This concept of

multi-faceted trust is seen in many other works, including [40] and [100].

The division of trustworthiness values in this manner allows the di�erent trust facets

to be employed at di�erent points within the location veri�cation engine. A device's Proof

Provider trustworthiness may be taken into account during the Proof Provider selection

process, in order to select only the most trustworthy volunteers from the volunteer pool.

It may also be employed during the veri�cation process, depending on the method of

veri�cation utilised. This calculation process is dealt with in Section 6.6.3. Currently a

device's Claimant trustworthiness is not employed in the veri�cation process. However, by

recording the trust values for both aspects, a device's Claimant behaviour may be factored

into other areas at a later date.
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6.3.2 Tracking Behaviour - Event Histories

As discussed in Section 6.3.1, a device's trustworthiness is split into two facets within this

system; trust based on behaviour as a Proof Provider and trust based on behaviour as a

Claimant. Therefore, each device involved in the system has associated with it a pair of

event histories, one re�ecting prior Claimant behaviour and one for its behaviour as a Proof

Provider. These event histories are each composed of a sequence of 0s and 1s, re�ecting

the actions of a device over time. They are used to calculate the trustworthiness of the

device when playing a speci�c role.

When the Veri�er reaches a verdict on the possibility of a location claim, it records

the outcome in the appropriate event history of each device involved. If the device is

determined to have behaved honestly, i.e if a Proof Provider's vote mirrors the verdict

issued by the Veri�er or if a Claimant's claim is veri�ed, then the event history entry is

set as 1, otherwise it is set as 0. The Veri�er will update the event history of the device

with this entry if the result is deemed to be in the �sure� portion of the possibility scale.

However, where the overall result of the claim falls in the unsure portion of the scale, the

Veri�er refrains from updating the event history, as the outcome of the process is not clear.

(See Section 6.6.4 for an explanation of the �unsure� portion of the possibility scale.) The

process of building event histories is described formally in algorithm 1.

An example of the event history building algorithm is as follows: Device D joins the

system with a pair of empty event histories (as it has not yet behaved either positively or

negatively in any role within the system). D makes a location claim, for which it receives

a �possible� verdict. This verdict impacts D's Claimant event history, causing it to be

updated with a 1, representing a recorded event of honest behaviour. D then plays the

role of Proof Provider in another device's location claim, giving that device a negative

piece of evidence. However, the Veri�er provides that Claimant with a �possible� verdict,

thus causing D's Proof Provider event history to be updated with a 0, indicating an event

of dishonest behaviour. D again makes a location claim to prove its own location, but

this time incurs an �unsure� verdict. In this situation, the Claimant event history is not

updated, as the verdict is neither a 0 or a 1. D proceeds to behave as a Proof Provider

for two more claims. In the �rst, D provides positive evidence for the Claimant, who

receives a �possible� verdict from the Veri�er. This causes D's Proof Provider history to
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be updated with a 1, representing its honest behaviour. In the second, D again provides

positive evidence, but this time the Claimant in question receives an �unsure� verdict. Due

to the overall verdict in this claim being neither 1 nor 0, D's Proof Provider history is

not updated. D then takes the role of a Proof Provider and provides negative evidence

regarding the presence of the Claimant. The Claimant receives a negative verdict from

the Veri�er and D's Proof Provider event history is updated with a 1. Finally, D makes a

location claim of its own and receives a �not possible� verdict, causing its Claimant event

history to be updated with a 0. At this end of this period within the system, D's event

histories stand as:

• Claimant event history (EC): <0, 1>

• Proof Provider event history (EPP ): <1, 1, 0>

Note that although D participated in a total of seven claims, three as a Claimant and

four as a Proof Provider, only �ve entries are found in its event histories. This is because

�unsure� verdicts do not impact the event histories of devices participating in claims where

they are awarded.

As all devices have an empty pair of event histories associated with them when they

join the system due to their lack of past behaviour, it is initially di�cult to distinguish

which devices can be trusted and which have a tendancy to behave badly. For this reason,

one area of possible interest for future work is that of �bootstrapping�, or building up, a

device's event histories, without needing to participate in location claims. This issue is

under consideration and is discussed in further detail in Section 6.3.5.

6.3.3 Trust Calculation

The core of any reputation system is its approach to trust calculation. There are a great

many of these approaches to choose from. They range from summations/averaging, a

principle employed by eBay [81], to discrete trust models in which the trustworthiness of

a device is given in verbal statements, rather than on a numeric scale [51]. An example of

this is found in the Abdul-Rahman and Hailes model [1], where a device's trustworthiness

can be ranked from Very Trustworthy to Very Untrustworthy. We have chosen a reputation

system employing a Bayesian approach to trust calculation. This approach has been chosen
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based on its statistical nature, as the Bayesian method works on the basis of computing the

trustworthiness of a device through the updating of a beta Probability Density Function

(PDF) [29], an approach which also forms the basis of Josang and Ismail's reputation

system [50]. As mentioned earlier, we believe the basis of trust lies in the actions which

occurred previously, with these actions indicating how a device is likely to behave - a belief

which is �rmly based in statistical theory. The beta PDF calculates the probability density

of events with a binary outcome, making it a perfect candidate for use within this system.

Trust can be represented in two ways, either by the result of a probability expecta-

tion value of the beta PDF [51] or by a pair of numbers, (α, β), representing the beta

PDF parameter tuple. Within this system, α represents the number of honest behaviour

observations for a speci�c device, while β represents the number of dishonest behaviour

observations. The parameter tuple is used to calculate the beta PDF, f(p|α, β), which can

be expressed using the gamma function Γ as :

f(p|α, β) = Γ(α+β)
Γ(α)Γ(β)p

α−1(1− p)β−1, where 0 ≤ p ≤ 1, α > 0, β > 0,

with the restriction that the probability variable p 6= 0 if α < 1 and p 6= 1 if β < 1.

However, the beta PDF merely represents distributions of binary events (i.e. a positive or

negative event). Instead, we employ the probability expectation calculation to calculate

the probability of a device behaving honestly during the next encounter, as a value lying

in the range of 0 and 1. Where h is the number of observed honest behaviours and d is

the number of dishonest, the probability expectation formula is as follows:

E(P ) = α
α+β where α = h + 1 and β = d + 1, where h, d ≥ 0.

Consider a situation where a Proof Provider has behaved honestly once, and has no

dishonest behaviour, the trustworthiness value for the next encounter will be

E(P ) = 2
2+1 = 0.666667, as α = 1 + 1 and β = 0 + 1

while if it behaves dishonestly once, with no honest behaviour, the trustworthiness

value will be

E(P ) = 1
1+2 = 0.333334, as α = 0 + 1 and β = 1 + 1
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Within the reputation system, h and d are calculated using a device's event histories,

with h equalling the number of positive entries and d equalling the number of negative.

Using the example event histories generated for device D in algorithm 1, the probability

expectation value for D acting as a Claimant is calculated as follows: D's Claimant event

history is {0, 1}, with 0 representing a negative event and 1 a positive. As D's Claimant

event history contains one positive event, α equals 1 + 1, the number of positive events

in the event history plus the possibility of the next event being positive. As D's Claimant

history also contains one negative event, β is also equal to 1 + 1. Therefore:

E(P ) = 1+1
(1+1)+((1+1)) = 2

4 = 1
2

giving D a Claimant probability expectation, or trustworthiness, value of 0.5.

6.3.4 Reputation Fading

The principle of reputation fading is based on the theory that as events recede further into

the past, their importance to the calculation of trustworthiness levels of a device decreases.

This theory stems from the assumption that older events may no longer accurately represent

how a device is likely to behave in the next exchange. The most recent events in a device's

event history give the best idea of how it is likely to behave during its next encounter.

Therefore, more weight is given to these events than to those further in the past. This

approach also allows a device to redeem itself over time, as its bad behaviour, intentional

or accidental, decays in importance in the calculation of its trustworthiness.

In a standard Bayesian system, this notion of device fading is not present. Bayesian

systems give equal weight to all entries in a device's history, thereby removing the need to

retain the order in which those entries occurred. In order to achieve fading within our own

system while utilitising this method, we employ the approach used by Buchegger and Le

Boudec [15] and Josang and Ismail [50]. In this approach, each entry in the computation

of h and d is multiplied by a weight, or fading factor (u), based on its position in the

computation sequence, thus discounting older entries in a device's event history. Using

this approach, where 0 ≤ u ≤ 1 and Sn, Sn−1, ...S1 is the event history of a device, the

calculation of h and d becomes

h = (Sn) + (Sn−1)u + (Sn−2)u2 + ... + (S1)un−1
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d = (1 - Sn) + (1 - Sn−1)u + (1 - Sn−2)u2 + ... + (1 - S1)un−1

Note the use of (1 - Sn) in d's calculation sequence. As the values to be included in the

d sequence are �0�s, the event history values cannot be inserted in the same way as for �1�s.

1 - Sn removes the �1� events and retains the �0�s, allowing for the accurate calculation of

d. As evidenced above, the addition of a new event to the event history fades those already

within the sequence. Also, in this approach, when calculating a value, the occurence of

events of the opposite kind (i.e. where a negative event occured within the timeline during

the calculation of h) is accounted for, allowing events to be faded in the order of their

occurence.

However, when computing the values of h and d in this manner, the complete event

histories of every device must be retained forever. This is impractical, both in terms of

storage and when computing the trustworthiness of a device. These issues can be avoided

through re-de�ning the computation formula for h and d to:

h = h ∗ u + Sn

d = d ∗ u + (1 - Sn)

where 0 ≤ u ≤ 1 and Sn is the entry being added to the sequence. This approach

removes the need to retain the complete sequence of events, as each event is now multiplied

by u the appropriate number of times without being explicitly recomputed at each iteration.

The new values of h and d can then be used to calculate the trustworthiness of a device

using the probability expectation formula shown in Section 6.3.3.

Rather than employing the fading factor suggested in [15] (u = 1
m , where m = the order

of magnitude of the number of entries in the sequence), we have followed the example set

by Josang and Ismail and leave u as a customisable variable to be set at implementation.

This allows the level of fading implemented to be set based on the requirements of the

system in which it is being employed, increasing its �exability. However, when selecting a

fading factor, it should be noted that where u = 1, the fading factor has no impact, as it

multiplies every value by 1, while where u = 0, only the newest entry to the sequence is

valued, with the rest set to 0.

In addition to the fading approach discussed above, we also include a simple method

to fade events over time. Two methods have been considered to address this issue - time-
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dependent fading and the employment of a cut o� value. Where a cut o� value is employed,

if the �nal value in the h or d calculation falls below a certain threshold, (for example -

the �nal value becomes so small that it does not have much impact on the end result of

the calculation) then it is removed from the event history completely. However, fading in

this manner is �awed in two ways - the value of the �nal entry in the sequence must fall

below a speci�ed threshold and the method described above does not provide for fading

without system interaction. Both of these �aws stem from the same requirement: a device

must achieve above a certain level of activity before its behaviour is subject to fading.

In order for a device's event history to be eligible for fading, the �nal entry in the

sequence must fall below a set threshold. This is achieved through the sequence �lling

with a certain number of additional entries, pushing the �nal entry back far enough to

reduce its value to less than the threshold. However, in order for this to occur, a device

must participate in enough claims and receive enough behaviour entries in their history to

cause the �nal entry to fall below the threshold. If a device seldom participates in claims,

its event history would not �ll with enough entries to cause any fading to occur, allowing for

its behaviour to remain untouched. Conversely, devices with a high level of participation

within the system would incur heavy fading as their event history would �ll to the required

level repeatedly. This imbalance reduces the accuracy of the �nal value generated from

the event history, fading active devices too harshly while ignoring the behaviour of those

more passive devices.

In addition to a lack of fading of the behaviour of less active devices, the above approach

also allows no provision for the fading of behaviour without any system interaction. A

device may interact with the system many times over a short time frame, building up its

event history, before withdrawing from active involvement. Using the above method of

fading, during this idle period of time a device's event history would remain untouched,

despite the passage of time, as no new entries would be added to the history to cause the

value of the �nal entry to decrease. Therefore, though a device's nature may have altered

over time, the history accrued previously remains intact and una�ected.

Rather than compromising between participation levels and fading impact, we have

chosen to employ a time-dependent fading mechanism suggested in [15], in which we let

d = u ∗ d and h = u ∗ h at the end of every y period of time. This mimics the decay of h
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and d's old values where a new entry is added, without the addition of a new entry to the

sequence. Through fading based on the passing of time, rather than on history entries or

falling below a certain value, fading can occur without devices entering into exchanges, a

situation which may easily occur. Also, fading is guaranteed to be equally enacted over all

devices involved with the system, whether they play an active role or are mostly dormant.

6.3.5 Initialisation of the Reputation System

An outstanding issue when discussing the reputation system is that of the its initialisation

and the initialisation of any new devices when they join the system. As mentioned in

Section 6.3.2, all devices join the system with a blank pair of event histories. This causes

a problem, as all devices appear equal and distinguishing trustworthy devices from those

which have a malicious tendancy is impossible. When performing our own veri�cation

simulations (discussed fully in Section 6.7), it was discovered that attempting any ap-

proach employing a device's trustworthiness does not provide accurate results without �rst

evolving the trustworthiness of that device to a reasonable level. For this reason, it would

be preferrable to provide some method of �bootstrapping� trustworthiness to increase the

speed at which a device's trustworthiness values become de�ned. This bootstrapping con-

cept was also used by Srinivasan, Teitelbaum andWu in their Distributed Reputation-based

Beason Trust System (DRBTS) [90]. At present, no bootstrapping approach is employed

within our location veri�cation system. However, future work in this area may provide a

solution to the bootstrapping problem without resorting to infrastructure reliance.

As the system currently stands, there exists no trusted infrastructure. This environment

makes bootstrapping trustworthness values di�cult, as there are no reliable units available

to judge the trustworthiness of the participating devices. However, if some completely

trusted known entities, such as roadside units (RSUs), were to be introduced to the system,

some methods of bootstrapping both Claimant and Proof Provider trust values would

become feasible. One such possible method of bootstrapping Claimant trust values is for

a Claimant, who is unknowingly in the vicinity of an RSU, to make a location claim.

The Veri�er, noting that the Claimant is in the area of an RSU, includes the RSU in the

claim's pool of Proof Providers. If the Claimant receives a positive verdict from the RSU,

it, along with all Proof Providers which agreed with the RSU, receives a positive mark
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in the relevant behaviour history, no matter what the outcome of the veri�cation process.

This approach to bootstrapping is also suggested in [1].

In order to prevent abuse, any method of bootstrapping employed within the system

should not be advertised as such to participating devices. An approach such as the one

described in the paragraph above meets this requirement, as the Claimant is unaware of its

possible trust gain through the inclusion of a roadside unit in the pool of Proof Providers.

If a device was aware that the exchange it was participating in was not a regular claim,

its behaviour for that exchange would not be representative of its true nature, making the

results possibly deceptive. A malicious device could not only undo any damage to its trust

value but could earn a high trust value through repeatedly engaging in bootstrapping. An

example of an unsuitable approach would be the broadcasting of bootstrapping �beacons�

by RSUs, calling for devices in the area to distance bound with them and receive a positive

mark in their behaviour history upon successful completion of the exchange.

However, bootstrapping in this form requires additional equipment and removes one

of the system's main advantages: its non-reliance upon infrastructure. Therefore, while

it would allow the reputation system's calibration process to become faster and more

accurate, it would be preferable to employ an alternative initialisation approach.

6.4 Gathering Proof Provider Volunteers

The main concern when selecting devices is to ensure protection against tampering with

the location veri�cation process, as if devices are chosen poorly, the system is left vulner-

able to collusion attacks. If collusion is possble, then the proofs supplied could easily be

fabricated and not accurately represent the real world situation. The Claimant could be in

a completely di�erent location to where it has claimed, yet based on the proofs gathered

from collaborating �friendly� Proof Providers, the Veri�er would be unable to detect the

deception.

The information the system receives during a device's active participation is not suf-

�cient for tracking devices. This is because the last known sighting of a device is not

necessarily where it is currently located, nor does it indicate where the device is likely

to currently be located. Additionally, storing non-essential information after the system's

functionality has been completed leaves the privacy and security of those devices involved
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vulnerable if the central database was to be compromised. Therefore, as the system does

not have access to information of this nature, we require devices in the area to �volunteer�

to act as Proof Providers, based on the receipt of a request message. In order to prevent

tampering and collaboration, we have devised two di�erent approaches to locating volun-

teers, detailed below. Once volunteers have been located, the Veri�er then selects the most

suitable from the candidate pool based on a set of speci�c criteria. This selection process

and the criteria employed are further discussed in Section 6.5.

6.4.1 Claimant-based Volunteer Gathering

In order for a Veri�er to pass judgement on the possibility of a location claim, it �rst

requires volunteer devices from which it can select the Proof Providers to be employed.

In the Claimant-based volunteer gathering approach, these volunteers are provided to

the Veri�er by the Claimant at the time of initiating the claim. The Claimant gathers

volunteers from its pool of neighbouring devices through issuing a volunteer request and

forwarding the responses to the Veri�er. This process is shown below, using abstract

protocol notation de�ned at the beginning of this work, with X's digital signature key

noted as K−
X and its public key noted as K+

X .

1. C→ D : FV ol,NC

2. Di →C : NC ,

{
|Di, TDi , LocDi

, RDi
|
}

K−Di


K+

V

3. C→V : mesg1, {|

{{
|D1, TD1 , LocD1

, RD1 |
}

K−D1

}
K+

V

, ..,{
|DN, TDN

, LocDN
, RDN

|
}

K−D
N


K+

V

|}K−C

The Claimant broadcasts a message to all devices D within its range, containing a request

�ag (FV ol) and an identifying nonce (NC , a random integer). The request �ag informs the

recipient that a device in the area (whose identity remains unknown) is seeking volunteers

to function as Proof Providers in its location claim, while the nonce allows the Claimant to

match any messages it receives to the request. Those devices which wish to participate as a

Proof Provider (Di) then respond to the Claimant's request with a message containing the

identifying nonce received in the Claimant's message and a second message to be forwarded
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on to the Veri�er. This second message is digitally signed with the volunteer's private key

and encrypted with the Veri�er's public key, thus protecting the message's contents from

eavesdropping devices and preserving the anonymity and con�dentiality of the volunteer.

The message contains the device's identity (Di), transmission range (RDi), a timestamp

(TDi) and the device's current location (LocDi).

Once the Claimant has received response messages from the N volunteering devices,

it initiates its location claim with the Veri�er using an amended version of mesg1 of the

SLVPGP extension being employed. The Claimant digitally signs the volunteer responses

to prevent undetectable alteration in transit and appends this to mesg1 of the SLVPGP.

The nonce portion of the response message is not included in this forwarding process, as

this is not required by the Veri�er, and the inclusion of a timestamp prevents the Claimant

from including older response messages in the volunteer pool without detection.

6.4.2 Veri�er-based Volunteer Gathering

An alternative approach to Claimant-based gathering is shown below, where the Veri�er

is employed in the role of volunteer gatherer. Unlike in Claimant-based gathering, when a

Claimant wishes to make a location claim, it is not required to secure a pool of volunteers

before initiating the process. Instead, the Claimant initialises the location veri�cation

process with an unaltered mesg1 from the SLVPGP, as shown in Chapter 4. When the

Veri�er receives the Claimant's initialisation message, it creates a volunteer request message

composed of a request �ag and an identifying nonce (the same volunteer request message

sent by the Claimant in Section 6.4.1) and sends it to the area of the location claimed

by the Claimant using geographical routing [61]. This approach to routing ensures that

the message can be routed to a speci�c area, rather than a speci�c recipient, allowing the

Veri�er to reach multiple devices in a speci�c area with the same message.

1. V→ D : FV ol,NV

2. Di →V:

{
|NV ,Di, TDi , LocDi

, RDi
|
}

K−Di


K+

V

When a device in the vicinity of the claimed location receives the volunteer request message

and wishes to volunteer, it creates and digitally signs a reply, encrypted using the Veri�er's

public key, containing the identifying nonce, a timestamp and its identity and current
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location. It transmits this message back to the Veri�er, who then selects Proof Providers

from the pool of volunteers and continues with mesg2 of the SLVPGP as normal.

6.4.3 Claimant vs Veri�er - Which Method is Best?

The process of location veri�cation is a sensitive one. As devices are not trusted, the

process must prevent as much abuse as possible through its design, denying the ability

to tamper with information once it has been sent and preventing deception by malicious

devices. This prevention through design must begin with the selection of Proof Providers,

otherwise however secure the location proving protocol may be, colluding devices may

circumnavigate the security measures and deceive the system. Therefore, the selection of

Proof Providers must not be left open to abuse.

Claimant-based volunteer gathering is far more timely than Veri�er-based, as it is

performed locally, rather than a request being routed over some distance before volunteers

can begin responding. It is also performed prior to the initialisation of the claim, reducing

the amount of time required to complete the claim. This is of signi�cant advantage when

dealing with mobile nodes as depending on their nature, devices can move location with

great speed (e.g. devices in VANETs). However, this is a double-edged issue, as if a

Claimant recruits volunteers in advance of the claim's initiation, those volunteers may not

still be in the area when the proof gathering process begins.

Although Claimant-based volunteer gathering is faster than Veri�er-based, it is ex-

tremely vunerable to Claimant abuse, as it cannot be guaranteed that the Claimant has

followed the volunteer gathering protocol and broadcast a request message to all devices

in the surrounding area. This vulnerability leaves the Claimant free to do several things to

in�uence the request's outcome: it can behave honestly and broadcast the request; it can

send the request message only to devices in its area that it knows will collaborate with it;

and �nally, it can send the request message only to devices in a di�erent area (in which

it claims to be) which it knows will collaborate with it. This �nal choice of action would

render the location proving system powerless to detect cheating, and would result in false

positive verdicts on location claims. A cheating Proof Provider could ignore the distance

bounding aspect of the protocol and fabricate proof to be sent to the Veri�er. This would

result in the Veri�er being deceived into returning a falsely positive verdict, with no way
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of detecting the fraud due to a lack of dissenting devices. Therefore, the Claimant-based

approach to volunteer gathering is not considered suitable for use. Although the Veri�er-

based approach is slower due to the distance the request message and its responses must

travel, in addition to being vulnerable to lying volunteers claiming to be located in the

correct area (as in theory, any device that receives the request at some point along the

request's route to the location could claim to be located in the correct area and fraudu-

lently volunteer), it is outside the control of the Claimant and is therefore a more secure

and suitable solution.

6.5 Selecting the Proof Providers

There can be many devices in the area of the Claimant at the time of a location veri�cation,

and so many devices volunteering to act as Proof Providers. Once a pool of volunteers

has been established for each claim, Proof Providers can then be selected. However, this

process must be designed to minimise the e�ect of manipulation on a claim's eventual

outcome. A malicious Claimant will attempt to manipulate the process in any way it

can, including the selection of locations near which only friendly devices lie. It may also

attempt to select a location in which the surrounding key locations for minimal range

overlap are occupied by friendly devices, or even one near only friendly devices with high

levels of trust (in the event that trust levels are leaked from the Veri�er's system). In

addition to this, a minimum level of Proof Provider participation must be known. This

is done to prevent situations where the word of malicious devices can overwhelm that of

honest participants with ease. In this section we �rst discuss the minimum number of

Proof Providers that should be required for a claim to occur. We then outline a variety of

possible Proof Provider selection criteria considered and the possible vulnerabilities they

possess. Each of these approaches have been employed within the veri�cation simulations

discussed in Section 6.7 and their e�ectiveness is compared there.

6.5.1 Minimum Proof Provider Requirements

As this location veri�cation system is designed for use with mobile nodes rather than an

infrastructure with �xed deployment levels, the environment in which a Claimant makes

a claim can vary extensively in population level. It may be within the vicinity of many
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# Proof
Providers

Honest
positive

Honest
negative

Honest
incon-
clusive

Lying
positive

Lying
negative

Lying
incon-
clusive

4 86.77% 3.04% 10.19% 4.23% 85.71% 10.06%
5 95.55% 0.19% 4.26% 4.08% 87.30% 8.62%
6 96.54% 0.15% 3.31% 3.21% 83.97% 12.83%
7 97.89% 0.15% 1.96% 2.48% 90.99% 6.52%
8 99.56% 0% 0.34% 1.78% 89.91% 8.31%

Table 6.1: Comparing Minimum Proof Provider Requirements

other devices or only a handful of devices scattered over a wide area. The aim of this

system is to verify location claims based upon evidence gathered from neighbouring devices.

However, this process relies on a majority ruling to provide a �nal verdict. If the Claimant

is operating within a sparsely populated area, it may have only a small group of Proof

Providers available for use. This reduces the number of positive verdicts required to reach

a majority, raising the issue of minimum Proof Provider requirements - at what point does

the system deem there to be too few within a group to extract a reliable verdict from the

majority?

With the threat of malicious devices ever-present, a limit is required to distinguish

between acceptable and unacceptable levels of participation, in order to prevent malicious

colluders from in�uencing the overall verdict with only a minimal number. While the odds

of gaining a single willing colluder in a random area are reasonable, the odds of gathering

several willing colluders decrease as the number of colluders needed increases. By including

a requirement detailing the minimum number of Proof Providers allowed for a claim to

proceed, the system forces a Claimant to have colluders numbering at least 60% of that

value (rounded to the nearest whole number) in order to successfully manipulate a claim

through to a positive veri�cation. For example, where a minimum of two Proof Providers

are required for a claim, a single piece of positive evidence may be all that is required in

order to achieve positive veri�cation. Where a minimum of three are required, that number

increases to two pieces. Both of these values are extremely low, and therefore neither

minimum is considered su�cient for use. Using simulations similar to those described in

Section 6.7, we investigated the accuracy of minimum Proof Provider requirements from

four up to eight in the veri�cation of honest claims and the detection of false claims.

The results of these simulations are shown in Table 6.1. Based on these simulations,
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it is recommended that a minimum of �ve Proof Providers or higher be employed. This

value has shown to be su�cient to provide an acceptable rate of veri�cation of honest

claims (95.55%) and detection of false claims (87.30%), with only 4.08% veri�cation of

false claims. Requiring higher than �ve Proof Providers as a minimum may remove the

ability of many devices to verify their location due to a low number of available volunteers

in their area.

However, while �ve Proof Providers is recommended for a high level of performance,

employing a minimum of four Proof Providers has also proven to have reasonable rates

of veri�cation and detection. If the system is employed using a minimum of four Proof

Providers, then it should be noted that the actual value computed using the upper threshold

(Sections 6.6.3 and 6.6.4) is equal to that computed using the lower threshold. This means

that the same value is required to achieve both an �unsure� and a �possible� verdict. In

order to address this, the upper threshold employed for values of four or lower is increased

to 70%, thus requiring an additional piece of positive evidence to prove a claim's validity.

6.5.2 All Available Volunteers

The simplest approach to selecting Proof Providers is to employ every device within the

volunteer pool for that claim. This approach does not limit the number of Proof Providers

involved in the claim, thus increasing the amount of possible evidence to be employed

in the claim's eventual calculation. This bene�ts the Veri�er as it provides redundancy

in numbers, reducing the risk of a claim failing due to the non-participation of selected

Proof Providers. The greater the number of Proof Providers employed within a claim,

the less impact the non-participation of one. In addition to this, if all volunteers are

employed in a claim there is no real method that a malicious Claimant can attempt to

manipulate. The only real manipulation that it can attempt is to select a location in

which a large number of friendly devices are located. This approach would be employed

by most malicious Claimants, no matter what the situation (unless attempting to prove

a speci�c location and not any location other than its own). If the malicious Claimant

possesses the location of all devices within the system, the manipulation may be extended

as it can then attempt to select a location near only those devices which are friendly to

it. However, the possibility of this occurring is extremely unlikely. A Claimant is likely to
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possess the locations of those devices it is friendly with, but it would be infeasible for a

Claimant to possess the location of all devices within the system.

One potentially problematic disadvantage to employing an �all-volunteers� approach

to Proof Provider selection is the risk that the number of volunteers which respond to a

claim's volunteer request is unreasonable, due to the Claimant being in a densely pop-

ulated area. The larger the list of Proof Providers employed within a claim, the more

the SLVPGP overhead costs are adversely a�ected. With transmission and computation

overheads related to the number of Proof Providers participating, an overly large number

of Proof Providers would increase the load on both the Claimant's equipment and its local

network to an unreasonable level. As yet, no work has been done to calculate the maxi-

mum viable number of Proof Providers to be employed for any one claim. This issue is not

pressing at this time, with the number of volunteers for a claim not envisioned to be overly

high. However with the increased adoption of mobile technology in devices, the number

of volunteers is expected to grow. A study of the impact of Proof Provider participation

levels on SLVPGP overhead costs would allow a reasonable limit to be calculated.

6.5.3 Most Trustworthy Volunteers

Where the number of Proof Providers employed must be limited, we have considered a

number of possible selection criteria for use to decide which volunteers are to be included.

The �rst of these is to select based on a volunteer's trustworthiness level. If the selection of

Proof Providers is based upon how trustworthy they are, then intuitively the evidence sup-

plied for use will be the most trustworthy evidence possible. This increases the likelihood

of the Veri�er accurately assessing the claim and producing a correct verdict.

However, this intuitive belief is incorrect on a number of levels. A device may generally

behave in a trustworthy manner, supplying accurate evidence to the best of its knowledge.

However this does not rule out the possibility of said device being �friendly� with the

Claimant and willing to behave maliciously in this instance. Nor does it rule out the

possibility of the opposite situation occurring, where the device in question has some form

of grudge against the Claimant (assuming in this case that the device has knowledge of

the Claimant's identity). Finally, if it gains access to the device trust values, a malicious

Claimant may attempt to manipulate the selection process through claiming a location

164



where the group of most trusted local devices is primarily composed of friendly devices.

While the possibility of any device gaining access to the Veri�er's list of trust values is

slim, as this requires the Veri�er to be compromised, we believe that the possibility of this

attack should be noted.

6.5.4 Most Geographically Suited Volunteers

A second form of criteria considered factors the location of the volunteers into the Proof

Provider selection process. Location-based selection allows the Veri�er to select those

volunteers located such that the intersection of their transmission areas is the smallest area

possible, maximising the information extracted through triangulation and thus providing a

much more accurate end location for the Claimant. This concept was previously discussed

in Chapter 3.

However, this approach is also vulnerable to attack by a malicious Claimant. Similar

to the trust-based approach, location-based selection is done based on targeting a speci�c

attribute and is therefore predictable. This leaves the process vulnerable to manipulation.

A malicious Claimant could target a speci�c location for a claim, knowing the location of its

friends in the area and the size of their resulting area of intersection. The Claimant could

further include its friends in the deception of the Veri�er through having them falsify their

locations within the volunteer response, adjusting them slightly to increase the likelihood of

selection. Although this attack does capitalise on a vulnerability in the selection approach,

it does not guarantee that the Claimant's friends will be selected. Unless the Claimant

possesses knowledge of the location of all devices, it cannot defend against the possibility

that other, non-friendly, devices may be in more suitable positions, which would render

the Claimant's attempted manipulations ine�ectual.

6.5.5 Randomly Selected Volunteers

The �nal approach to Proof Providers selection considered in this work is the random se-

lection of volunteers from the pool, rather than attempting to employ a targeted approach.

This approach has one main disadvantage in that it loses any possible advantages gained

through targeting certain attributes and strengths of the volunteers. However, the advan-

tage of employing this selection method over targeted methods is clear. Random selection
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has a similar advantage to that of employing all volunteers - a malicious Claimant cannot

manipulate the selection process any further than the selection of a location in proximity

to a number of friendly devices.

6.6 Veri�cation of Location Claims

The Veri�er's principle task is to assess the possibility of a device's location claim, based

on information gathered from Proof Providers. However, a single proof merely contain that

device's location and a verdict regarding the visibility of the Claimant (a binary result).

This does not provide the Veri�er with much detail to base its assessment upon. For

this reason, the Veri�er requires some method of extracting a �nal verdict based on the

combined value of the proofs supplied. We outline two extraction approaches for use here.

The �rst employs a simple summation, extracting a �nal verdict based on the majority view

of the claim. The second employs the trustworthiness of those Proof Providers providing

supporting (positive) evidence regarding the claim.

The veri�cation process runs as follows: the Veri�er receives the proofs and checks

them to con�rm their applicability to the claim in question (Section 6.6.1). After this,

it evaluates each verdict provided (Section 6.6.2) and calculates the overall value of the

claim, before comparing this value to the already computed possibility scale (Section 6.6.3).

Finally, having made its decision on the possibility of the claim, the Veri�er then updates

the event sequences of all devices involved in the computation to re�ect the events of the

veri�cation.

In order to minimise the amount of information retained on devices, particularly re-

garding their interactions with others, the veri�cation process does not employ details from

previous claims, other than those �ltered into the reputation system. Though the knowl-

edge that a device may previously have participated in multiple false claims with another

device may aid in the identifying of colluding partnerships, possessing this knowledge would

require the retention of large quantities of information on every device. This situation may

cause privacy concerns with participants and would represent a danger to the privacy of

every device within the system should the information's security be compromised.
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6.6.1 Pre-Veri�cation - Validating the Proofs

Before the Veri�er attempts to determine a claim's verdict, the proofs supplied must �rst

be validated. This process ensures that the Claimant cannot pass o� invalid proofs, such

as those referring to other devices or those from an older exchange, without detection. If

the Claimant is discovered to have attempted this, the claim is rejected and a negative

entry is added to the Claimant's event history.

To check a proof's validity, the Veri�er �rst decrypts the message and checks its in-

tegrity, to ensure that no tampering has occurred, by checking the digital signature. It then

checks that the Claimant identity contained within the proof matches that of the Claimant

in question. Once this has been con�rmed, it then checks the timestamp, to ensure that it

does refer to this exchange and has not been reused from an older veri�cation attempt.

Finally, the Veri�er checks the identity of the Proof Provider that created the proof to

con�rm that the Proof Provider is a member of the group selected by the Veri�er during

the device selection stage. Without this check, a Claimant could again cheat the system,

through ignoring the supplied list of Proof Providers and simply gathering proofs from

colluding devices.

6.6.2 Evaluating a Verdict

After the proof gathering process has been concluded and pre-veri�cation has been com-

pleted, the overall possibility of the claim is calculated by summing up the values of the

verdicts received. The value of a verdict depends upon the veri�cation approach in use.

If the Veri�er is employing the �Summation� approach, the verdicts are valued as 1 for a

positive and 0 for a negative. If the Veri�er is employing the �Trustworthiness� approach,

the verdicts are valued at 0 for a negative and the trustworthiness of the proof's provider

for a positive. If a Proof Provider with a trustworthiness of 0.85 supplies a positive verdict,

that verdict is worth 0.85. However, if the same Proof Provider supplies a negative verdict,

it is worth 0.

Both approaches to veri�cation value negative verdicts at 0. Employing this form of

valuation places emphasis on positive verdicts, while removing the negative values from

the computation. This approach is taken due to the fact that a negative verdict may be

one of three types: (i) a true negative situation, (ii) an accidental false negative or (iii) a
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malicious negative. These situations are also discussed in Chapter 3.

(i) Where a negative verdict represents a true negative situation, it is caused by the

Claimant not being present in the area, or not within distance bounding range of that Proof

Provider. It is an accurate re�ection of the situation, indicating that either the Claimant is

lying or mistaken in its location. If a true negative was the only possible negative verdict,

they would not need to be removed from the calculation of a claim's possibility. However,

this is not the case, with two additional types of negative existing.

(ii) In an accidental negative situation, the Proof Provider supplies a negative verdict

despite the fact that the Claimant is in the area of the Proof Provider and within rea-

sonable distance bounding range. This is due to either malfunctioning/underperforming

equipment, or performance issues on the local network. If negative verdicts were included

in the calculation of a claim's possibility, a Claimant could be unfairly punished for the

failure of equipment or network issues, as accidental negatives are not distinguishable from

true or malicious negatives.

(iii) The �nal possible type of negative verdict, a malicious negative, is caused by

a Proof Provider knowingly supplying false evidence against a Claimant. In this case,

the Proof Provider is attempting to reduce the chances of the Claimant's location claim

being veri�ed. It performs distance bounding and participates in the Claimant's exchange

honestly so as not to arouse suspicion. However, despite calculating that the Claimant is

in the vicinity, it supplies evidence to the contrary of this. As with accidental negatives,

there is no method of distinguishing malicious from true negatives. As its inclusion would

again unfairly punish the Claimant, this reinforces the case for the removal of all negative

verdicts.

The reasoning behind the removal of negative verdicts from the possibility calculation

may seem as though it also applies to positive verdicts, thus rendering the entire approach

moot. This is not the case, as mistaken or accidental positive verdicts are not possible.

Therefore, a Claimant cannot accidentally bene�t due to �awed equipment or issues with

the communication medium. This is also the case for malicious (or colluding) false positives,

giving the system a slight skew towards the cause of the Claimant. The trustworthiness

approach to veri�cation seeks to address this this bias, reducing the value of evidence

supplied by those that are known to provide false information to reduce the gain received
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by a Claimant by its inclusion.

6.6.3 The Possibility Scale

In order to reach a �nal verdict regarding the overall possibility of a claim within the

veri�cation system, we employ a measuring standard known as the possibility scale. This

scale allows for all claims to be compared to an equal scale, despite di�erences between

the number of Proof Providers participating. The scale has a minimum of 0, with the

maximum re-computed for each claim at the Proof Provider selection stage, based on the

number of devices involved in the claim. The scale is split into three bands based on set

percentage thresholds (discussed further in Section 6.6.4), each of which re�ects a di�erent

level of trust in the claim and earns an equivalent overall verdict (possible/unsure/not

possible).

After the evidence-containing verdicts have received valuation, the overall value of the

claim is extracted. This is done by summing together the verdicts. The overall value

is then compared to the claim's possibility scale in order to reach a �nal verdict. The

maximum value on the scale can be calculated in one of two ways, (i) based on the number

of devices participating (summation approach) or (ii) based on the trustworthiness values

of the Proof Providers (trustworthiness approach).

(i) Where the calculation of the possibility scale is done based solely on the number of

devices involved in the claim, the scale is calculated as follows: when the Veri�er selects

the devices for use as Proof Providers from the volunteer pool, it computes the maximum

possible value of the claim through summing the number of devices involved (as each piece

of evidence has a maximum possible value of 1 for a positive verdict and a minimum value

of 0 for a negative). This is done as follows:

Maximum value = #ProofProviders_Employed

(ii) Where the possibility scale is based on the trustworthiness values of those Proof

Providers that have provided supporting evidence, the maximum value on the scale is

calculated after the evidence-containing verdicts have been received. The calculation adds

the number of positive verdicts received and employs this as the maximum value on the

scale, as follows:

Maximum value = #Positive_Proofs
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Algorithm 2 Setting the Thresholds
set lower threshold:

lower_threshold = (maximum_possible_value * 0.4)

set upper threshold:

if minimum_Proof_Providers > 4 then

upper_threshold = (maximum_possible_value * 0.6)

else

upper_threshold = (maximum_possible_value * 0.7)

if using summation approach then

lower_threshold = lower_threshold rounded to nearest whole number

upper_threshold = upper_threshold rounded to nearest whole number

By including the trustworthiness of the Proof Providers involved in the claim within

the scale's calculation, the credibility of the devices involved has a direct impact on the

outcome of the claim. If the positive proofs are provided by very trustworthy devices, they

will be of higher value than those provided by less trustworthy devices. Therefore, even

if a large group of untrustworthy devices attempts to collude to provide proof of a claim,

their trustworthiness will prevent the claim from receiving a positive verdict.

6.6.4 Verdict Calculation Thresholds

Just as there are degrees of trustworthiness in a device, there are also degrees of trust-

worthiness, or possibility, in a claim. A claim may be possible, not have enough proof to

be convincingly possible, or it may be inconclusive. These inconclusive claims lie in the

grey area of not outrightly convincingly possible but also not quite at the other end of

the possibility scale. Therefore, rather than using only a single threshold distinguishing

between a possible and not convincing verdict, we employ two thresholds. This divides

the possibility scale into three distinct bands. The thresholds have been set at 40% and

60% of the initially possible trustworthiness respectively. If the summation approach to is

employed, the resulting threshold values are rounded to the nearest whole number.

The threshold percentages were arrived at through completing an initial series of veri�-

cation simulations, using a minimum of �ve Proof Providers. In these simulations, various

percentage values were employed as thresholds to examine their suitability and accuracy.

It was discovered that this combination of values (40% & 60%) was the most suitable for

distinguishing between lying and honest claims, with the smallest amount of false posi-
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Algorithm 3 Computing a Verdict - Summation Approach
claim_value = Σ (positive_evidence)
if claim_value ≥ upper_threshold then

overall_verdict = possible

elseif claim_value ≥ lower_threshold then

overall_verdict = unsure

else

overall_verdict = not possible

tives/negatives. These thresholds have been employed within the veri�cation simulations

discussed in Section 6.7, and have shown to be reasonable limits for claims with more

than four Proof Providers, based upon empirical data collected from simulations. In cases

where four or fewer Proof Providers have been employed for a claim, the upper threshold is

increased to 70%. This prevents a situation where the same number of positive verdicts are

required to meet both thresholds, an issue observed in early simulations. The computation

of these thresholds is described in algorithm 2.

A separate calculation is undertaken to validate each claim, as the number of Proof

Providers included may di�er between claims. If this was not the case, the required value

to achieve a possible verdict for one set of Proof Providers may be unattainable for another

due to an insu�cient number of Proof Providers, thus leaving the claim unveri�able. How-

ever, the approaches described here recompute the scale for each claim and operate using

�xed percentages as thresholds, rather than �xed values. Therefore they are completely

adaptable to any device combination which may occur, while remaining consistant with

previous evaluations.

6.6.5 Computing the Verdict

Once the maximum value on the possibility scale has been computed and the verdict

thresholds have been set, the Veri�er completes the veri�cation process by extracting a

�nal verdict on the possibility of the claim being examined. This extraction is done in one

of two ways, depending upon the veri�cation approach in use.

The extraction process for summation-based veri�cation is described in algorithm 3.

If a value lies within the �rst band, between the starting value and �rst threshold, it is

deemed not to be possible based on the proof supplied. In this case, a �not possible�
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Algorithm 4 Computing a verdict - Trustworthiness Approach
claim_value = Σ (positive_evidence_values)
if #Positive_Proofs >= 3 then

if claim_value ≥ upper_threshold then

overall_verdict = possible

elseif claim_value ≥ lower_threshold then

overall_verdict = unsure

else

overall_verdict = not possible

else

overall _verdict = unsure

verdict is returned. If a value is within the second band, lying between the �rst and second

thresholds, the claim is deemed to be inconclusive based on the proof supplied and a verdict

of �unsure� is returned. Finally, if a claim's overall value is found to be between the second

threshold and the maximum value, then the claim is deemed to be possible and a verdict

of �possible� is returned.

The extraction process for trust-based veri�cation is described in algorithm 4. This

process is similar to that of summation based, with two basic di�erences. The �rst is the

method by which the claim's value is computed. In this approach the value of the claim

is the sum of all evidence values for that claim. As discussed in Section , when employing

trustworthiness-based veri�cation the value of a verdict is calculated:

trust_of_supplier ∗ x

where x is either 0 or 1. If the verdict is positive, x = 1 and if the verdict is negative,

x = 0. Therefore, the summation of all evidence values for a claim becomes

Σ (positive_evidence_values)

The second di�erence between summation-based and trust-based verdict computation

is the introduction of a condition requiring a minimum number of positive proofs to have

been received for a claim. This prevents a claim from being veri�ed on the strength of a

single proof, even if that proof is from an extremely trustworthy Proof Provider. If this

requirement is not met, the claim receives an �unsure� verdict, thus preventing the parties

involved from being punished without cause.
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With the claim's value calculated and the minimum number of positive proofs met,

trust-based verdict computation continues in the same manner as summation based. The

claim's value is compared to the upper threshold and if it is found to be greater than or

equal to this value, it receives a �possible� verdict. If it is less than the upper threshold, it

is compared to the lower threshold. If the claim's value falls between the two thresholds,

it receives a verdict of �unsure�. However, if the claim's value is below that of the lower

threshold, a verdict of �not possible� is returned.

After the �nal possibility verdict has been reached, the event histories of the devices

involved in the claim are updated, based upon the claim's received verdict. If the �nal

result is either �possible� or �not possible�, the event histories of the Claimant and those

Proof Providers which responded are updated. An update of �0� indicates that they did not

agree with the calculated verdict, with �1� indicating that they were in accord. However, in

the case of an �unsure� verdict, the event histories of the devices involved are not updated

as the results of the claim were inconclusive and are neither positive nor negative, therefore

cannot be represented by either of the two possible options. This process is described in

algorithm 1.

The nature of the veri�cation process and its connection to the reputation system in

this manner leaves the system open to abuse, whereby colluding devices can attempt to

reduce the trust in others through consciously returning the opposite verdict. The simplest

example of this is where a group of Proof Providers seeks to harm the trustworthiness of

their Claimant through all providing a negative verdict, even if the Claimant has proven

itself to be within range. If the majority of the Proof Providers participating in the claim

provide a negative verdict, the claim will result in an unsure verdict at best, rendering the

e�orts of the Claimant wasted. This attack can be guarded against through cautious and

unpredictable Proof Provider selection processes (Section 6.5) but cannot be completely

prevented, particularly in the case of Proof Providers attacking a Claimant. This is because

the Proof Providers are all focused on a single device, and are aware that the Claimant

is (usually) seeking a positive response from them. However, without knowing that the

other Proof Providers involved are also acting maliciously in this manner, a malicious

Proof Provider risks its own trustworthiness rating. If Proof Providers remain unaware of

their counterparts within the protocol (such as in extensions two (Section 4.4.2) and three
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(Section 4.4.3) of the SLVPGP), they cannot guarantee that their malicious attempt will

be supported by others and may not want to risk their own trust level.

6.7 Veri�cation Simulations

In order to con�rm the e�ectiveness of the described veri�cation system and the di�erent

approaches that may be employed, we have performed multiple system simulations. These

simulations test the performance of the di�erent approaches in increasingly hostile environ-

ments, in addition to testing the e�ectiveness and resistance to manipulation of the four

considered criteria for Proof Provider selection, outlined in Section 6.5. In this section, we

describe the system (Section 6.7.1) before outlining the simulations themselves (Section

6.7.2) and analysing their results (Section 6.7.3).

6.7.1 Veri�cation Simulation System Outline

The simulations outlined here have been implemented in Java and employ no existing

simulation software. Devices are created from an XML �le and modelled as threads, with

each device spawning a single Claimant thread and creating Proof Providers as required

by the Veri�er. An algorithmic description of the Veri�er's functionality is provided in

algorithm 5, with descriptions of the Claimant and Proof Provider agents provided in

algorithms 6 and 7. The Claimant threads live for the duration of the simulation run and

randomly attempt to have a location veri�ed. A single Veri�er thread also runs for the

duration of the simulation, dealing with veri�cation requests and keeping a count of the

number of claims initiated. Once the required number of claims have been completed, the

Veri�er sends a terminate command to each device and waits for their con�rmation. It

then writes the updated device information to the XML �le and completes its run. It is

assumed that connectivity is bi-directional, i.e that if device A can see device B, then B

can also see device A. It is also assumed that if a device is in the area of the location being

claimed, then that device will automatically volunteer to act as a Proof Provider.

In order to ensure that the devices are representative of real world entities and do

not follow a pre-programmed pattern, an element of choice has been included in their

design. Claimants have the ability to decide to lie regarding a location claim, while Proof

Providers have a choice of three options in their approach to providing evidence regarding
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Algorithm 5 Description of Simulated Veri�er Behaviour
while veri�cation_count <= total_to_be_performed

if contacted_by_Claimant then

check ProofProvider_availability

count devices in region of location provided by Claimant

if(num_devices < minimum_ProofProviders_Required) then

reject claim request

else

select ProofProviders [selection algorithms available in Appendix M] and set thresholds

if veri�cation_approach is summation-based then

maximum_value = number of ProofProviders

else

maximum_value = number of positive proofs

lowerThreshold = maximum_value * 40%

if number of ProofProviders > 4 then

upperThreshold = maximum_value * 60%

else

upperThreshold = maximum_value * 70%

if veri�cation_approach is summation-based then

upperThreshold = upperThreshold rounded to nearest whole number

lowerThreshold = lowerThreshold rounded to nearest whole number

supply ProofProvider list to Claimant

receive Proofs and calculate verdict

if veri�cation_approach is summation-based then

claim_value = total_evidence_values

else

for evidence in Proofs

claim_value = claim_value + (evidence_value*trust_of_supplier)

if veri�cation_approach is trust-based and maximum_value < 3 then

verdict = �unsure�

elseif claim_value >= upperThreshold then

verdict = �possible�

elseif claim_value >= lowerThreshold then

verdict = �unsure�

else

verdict = �not possible�

return verdict and update event histories of devices involved

if verdict == possible then

claimant_history_value == 1

elseif verdict == �not possible� then

claimant_history_value == 0

for all ProofProviders in claim

if verdict == ProofProvider_verdict then

ProofProvider_history_value == 1

elseif verdict != ProofProvider_verdict and verdict != �unsure� then

ProofProvider_history_value == 0

increment veri�cation_count

for all devices in world

issue terminate command
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Algorithm 6 Description of Simulated Claimant Behaviour
while not terminated by Veri�er

initiate claim

if trusted_selection employed then

recompute in�uence map

set location to be provided

generate random behaviour_decision value

if behaviour_decision > internal_honesty then

set location to optimal location computed by in�uence map

else

set location to current location

provide location to Veri�er

if location is within range of su�cient Proof Providers then

for all supplied Proof Providers in list

request proof

supply proofs to Veri�er

receive verdict from Veri�er

else if not enough Proof Providers then

decrement value for location in in�uence map

sleep for randomly generated quantity of time

a claim. Once queried for a verdict, a Proof Provider can choose to either answer honestly,

lie or remain unresponsive (i.e. give no verdict). This ability is modelled using random

number generation. Each device possesses two internal_honesty measures, one for use as

a Claimant and one for use as a Proof Provider. These values, set between 0 and 100, are

not related to the trustworthiness values computed by the Veri�er within the system. They

represent a device's innate nature and not its pattern of previous behaviour. They dictate

the odds that a device will behave trustworthily in a particular role, although a device may

defy the odds and produce a pattern of behaviour in opposition to its internal_honesty

value.

Before a device acts, either by making a location claim as a Claimant or by providing

a verdict as a Proof Provider, it generates a random number between 0 and 100, known

as its behaviour_decision. If this number is less than or equal to its internal_honesty

for that role, the device proceeds honestly. However, if the behaviour_decision is greater

than the device's internal_honesty, the device proceeds dishonestly. In the case of the

Claimant role, the device in question makes a fraudulent location claim. In the case of the

Proof Provider role, the device will lie about its verdict. Lying in this situation does not

automatically guarantee a favourable response for the Claimant. This approach is also em-
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ployed to dictate a device's responsiveness. A device possesses an internal_responsiveness

value for use in the Proof Provider role. If a Proof Provider generates a random number

(its responsiveness_decision value) greater than the internal_responsiveness value, it will

refuse to provide a verdict for that Claimant, subject to some exceptions caused by the

existance of friendships.

All devices with an internal_honesty value below a spec�ed �dishonest� threshold (i.e.

those that are considered to possess a truly malicious nature and are not simply opportunis-

tic) possess a list of �friends�. This list is comprised of those devices that have previously

been lied in favour of or have lied to bene�t that device. It is assumed that friendship is bi-

directional, if device A considers device B a friend, then device B also considers device A a

friend. These friendships are used to dictate exceptions to normal behaviour. If a Claimant

is considered a friend of a Proof Provider, it will receive a positive verdict, regardless of a

Proof Provider's behaviour and responsiveness decisions. It is assumed that devices have

access to all information regarding their friends, including personal information such as

their identity and current location.

As discussed in Section 6.5, four di�erent criteria have been considered within this

work for use to select Proof Providers from the pool of available volunteers. These are: all

available volunteers, the most trustworthy of volunteers, the most geographically suited of

volunteers and �nally, random selection. The algorithms employed by the Veri�er to �lter

Proof Provider selection based on each of these can be found in Section B.1 of Appendix B.

Upon initiation of the simulation system, the Veri�er thread is given a parameter indicating

which of these criteria is to be employed in its selection of Proof Providers. This parameter

is also passed to all devices, modelling the worst case scenario in which malicious agents

within the system possess privileged information regarding the functionality of the Veri�er

and exploit this information to their advantage. The Claimant employs this information

within an in�uence map [92], which is designed to calculate the optimal location for use

within the world when lying regarding its location. For each algorithm employed by the

Veri�er to select Proof Providers from the available volunteers, the Claimant's in�uence

map possesses a counter-approach which attempts to calculate the location within range

of the fewest number of non-friend devices, based on that selection criteria. These counter-

algorithms are shown in Section B.2 of Appendix B. As there is no real method of defending
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Algorithm 7 Description of Simulated Proof Provider Behaviour
when ProofProvider requested by Veri�er

if verdict requested by Claimant then

generates random behaviour_decision value

generates random responsiveness_decision value

if internal_honesty <= dishonest_threshold and Claimant == friend then

verdict = positive

elseif responsiveness_decision <= internal_responsiveness then

set verdict = negative

if Claimant_x_coordinate == within range and Claimant_y_coordinate == within range then

verdict = positive

if behaviour_decision > internal_honesty then

invert verdict

if internal_honesty <= dishonest_threshold and Claimant is dishonest and verdict ==

positive then

save Claimant as friend

else

set as unresponsive, give no verdict

provide verdict

against the Veri�er's random selection approach, the in�uence map employs the same

counter-algorithm to defend against random selection as it does to defend against the

employment of all available volunteers.

The Veri�er thread has been equipped to simulate both trust-based and summation-

based veri�cation approaches. Upon initiation of the simulation system, the Veri�er thread

is given a parameter indicating which approach is to be employed in the veri�cation process.

The algorithm outlining the Veri�er's functionality (algorithm 5) shows the way in which

this parameter is employed to di�erenciate between veri�cation approaches.

6.7.2 Veri�cation Simulation Outlines

In this section, we outline the speci�cations employed within the simulations. The XML

�les employed within the simulations each contain a total of 200 devices, made up of x

�trustworthy� devices and y �untrustworthy� devices. These 200 devices exist within a

100x100 grid. Where a device is classed as trustworthy, its internal_honesty values are

set between 95 and 100. Where a device is classed as untrustworthy, its internal_honesty

values are set between 0 and 20. For simplicity's sake, the same value was used as the

Claimant internal_honesty and Proof Provider internal_honesty. All devices are allocated

an internal_responsiveness value of between 90 and 100. A naming scheme based on the

number of honest and dishonest devices within the XML �le has been employed. The
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200_0 190_10 180_20 160_40 150_50 140_60 120_80 100_100

Honest veri�ed 100.00 99.35 98.41 89.37 85.63 77.97 69.66 49.61
Honest failed 0.00 0.00 0.23 0.00 0.28 3.19 1.38 13.18

Honest inconclusive 0.00 0.65 1.36 10.63 14.08 18.84 28.97 37.21
Lying veri�ed 0.00 1.47 1.67 1.68 4.79 8.97 9.48 30.86
Lying failed 100.00 96.95 96.67 82.35 69.86 52.56 45.97 25.93

Lying inconclusive 0.00 1.58 1.67 15.97 25.34 38.46 44.55 43.21

Table 6.2: Performance Comparison of Summation-based Veri�cation Across Increasingly
Hostile Environments Using a Minimum of Five Proof Providers

number of honest devices appears �rst, followed by an underscore and �nally the number

of dishonest devices, e.g. 180_20, indicating 180 trustworthy devices and 20 untrustworthy

devices.

We have employed eight di�erent XML �les in these simulations, each of which is com-

posed of a di�erent percentage of trustworthy devices. These range from 50% trustworthy

to 100% trustworthy. The devices within these �les have been pre-trained in order to

�bootstrap� their reputations, thus providing the Veri�er with an indication of their trust-

worthiness. For each XML �le, we have carried out eight simulation runs, the total number

of di�erent parameter combinations. A run's parameters are composed of the minimum

number of Proof Providers required to have a claim veri�ed (set at �ve), the veri�cation

approach to be employed by the Veri�er and the selection method to be employed by the

Veri�er and Claimants. Where applicable, the maximum number of Proof Providers em-

ployed has been set at seven. Each simulation run terminates after 500 veri�cations have

been completed.

6.7.3 Veri�cation Simulation Results

In order to analyse the simulation results using di�erent criteria, this section has been

broken into two subsections; the overall functionality of the veri�cation approaches outlined

and the method of Proof Provider selection employed.

Overall system functionality

The graph shown in Figure 6.1 depicts the percentage of honest claims made that

received a possible result (shown by the graph's top line) within each of the XML environ-
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Figure 6.1: Performance Comparison of Summation-based Veri�cation Across Increasingly
Hostile Environments, Using a Minimum of Five Proof Providers

200_0 190_10 180_20 160_40 150_50 140_60 120_80 100_100

Honest veri�ed 100.00 99.35 98.41 89.37 85.63 77.97 69.66 49.61
Lying veri�ed 0.00 1.47 1.67 1.68 4.79 8.97 9.48 30.86

Table 6.3: Comparison of Veri�cation Rates Across Increasingly Hostile Environments

ments, when employing summation-based veri�cation using a minimum of �ve Proof

Providers. The remaining lines within the graphs indicate the percentage of false (lying)

claims that received a possible (veri�ed), unsure (inconclusive) or not possible (failed)

result. The numbers used to generate Figure 6.1 are shown in Table 6.2. As expected,

the number of honest veri�cations trends downwards as the number of honest devices (i.e.

those with a trustworthiness level of greater than 95) within the environment decreases,

as does the number of failed false claims. However, despite this downward trend in the

number of failed false claims, the number of veri�cations received for false claims does not

greatly increase as the level of dishonest devices increases within the environment, with

the exception of the most dishonest environment, 100_100. Instead, there is a marked in-

crease in the number of inconclusive verdicts given. This indicates that the upper threshold

employed to con�rm the veracity of a claim is set at a su�cient level to protect against

inaccurate positive verdicts in marginally to moderately hostile environments. The �gures

shown in Table 6.2 further demonstrate this trait. The number of lying claims veri�ed

remains below 10% in every environment bar the most hostile, 100_100.

When examining the numbers generated by the most hostile environment, 100_100, the
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200_0 190_10 180_20 160_40 150_50 140_60 120_80 100_100

Honest veri�ed 98.38 96.65 94.25 93.27 81.09 72.28 70.14 30.48
Honest failed 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.37

Honest inconclusive 1.62 3.35 5.75 6.73 18.91 27.72 29.86 68.15
Lying veri�ed 0.00 1.17 2.82 0.00 0.87 6.02 5.00 28.23
Lying failed 0.00 0.00 0.00 0.00 0.00 3.76 9.38 0.96

Lying inconclusive 100.00 98.83 97.18 100.00 99.13 90.23 85.63 70.81

Table 6.4: Performance Comparison of Trust-based Veri�cation Across Increasingly Hostile
Environments Using a Minimum of Five Proof Providers

results for veri�cation of honest claims are unsurprisingly low at 49.61%. This indicates the

need for a higher percentage of honest devices to be present in the environment in order for

veri�cation to correctly function. Additionally, the percentage of false claims that received

a positive verdict is 30.86%, giving a high possibility that a false claim would be undetected.

This �gure is dramatically reduced when the environment's ratio of honest to dishonest

devices moves from 100:100 to 120:80. The results generated by simulations employing

this environment show a false positive percentage of 9.48%. Similarly, the percentage of

honest claims veri�ed increases from 49.61% to 69.66%. This improvement is charted in

Table 6.3, which compare the percentage of total honest and false claims veri�ed. The

�gures shown in this table indicate that once the level of honest devices present within

an environment rises to 75%, the system's performance reaches a reasonable level, with

85.63% of all honest claims veri�ed and 4.79% of all false claims veri�ed.

Overall, the results generated from simulation of a summation-based approach to ver-

i�cation demonstrate a high level of system performance, even in situations with high

percentages of dishonest devices. This proves that the designed approach can both verify

an honest claim and detect a false claim. The system successfully veri�es honest claims

up to 100% of the time, depending on the percentage of honest devices within the envi-

ronment. In the case of false claims, the system provides either a rejection or inconclusive

result between 69.14% (in an environment where 50% of the devices are highly malicious)

and 100% of the time.

The graph shown in Figure 6.2 depicts the percentage of honest claims veri�ed when

assessed using trust-based veri�cation. As with the investigation of summation-based

veri�cation, the claims employ a minimum of �ve Proof Providers. The remaining lines

within the graphs indicate the percentage of false (lying) claims that received a possi-
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Figure 6.2: Performance Comparison of Trust-based Veri�cation Across Increasingly Hos-
tile Environments, Using a Minimum of Five Proof Providers

Approach 200_0 190_10 180_20 160_40 150_50 140_60 120_80 100_100

Summation-based 100 96.95 96.67 82.35 69.86 52.56 45.97 25.93

Trust-based 0.00 0.00 0.00 0.00 0.00 3.76 9.38 0.96

Table 6.5: Comparing Failure Rates of Lying Clams Between Veri�cation Approaches

ble (veri�ed), unsure (inconclusive) or not possible (failed) result. The numbers used to

generate this graph are shown in Table 6.4.

As with summation-based veri�cation, the number of honest veri�cations trends down-

wards as the number of honest devices within the environment decreases. Figure 6.1 shows

a relatively smooth descent, but the trend seen in Figure 6.2 is more dramatic. The initial

�gures for trust-based veri�cation are relatively similar. However, the number of honest

claims veri�ed quickly drops below those of summation-based, dropping as low as 30.48%

for the 100_100 environment (almost 20% below summation-based's minimum). Mean-

while, the number of failed false claims remains below 10% in all environments, with an

average of 1.76%. Table 6.5 provides further illustration of this, comparing the failure

detection rate within each environment. This table clearly demonstrates that summation-

based veri�cation is more suited to the detection of false claims, with an average detection

rate of 71.29%. Trust-based veri�cation achieves only a fraction of this, with an average

of 1.76% claims outrightly rejected.

However, despite the low number of detected false claims, trust-based veri�cation is

more adept at preventing the veri�cation of false claims. While summation-based veri�ca-
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200_0 190_10 180_20 160_40 150_50 140_60 120_80 100_100

Honest veri�ed 98.38 96.65 94.25 93.27 81.09 72.28 70.14 30.48
Lying veri�ed 0.00 1.17 2.82 0.00 0.87 6.02 5.00 28.23

Table 6.6: Comparison of Veri�cation Rates Using Trust-based Veri�cation, Across In-
creasingly Hostile Environments

tion incurred a average false veri�cation rate of 7.37% across all environments, trust-based

veri�cation incurred an average of only 5.51%. The �gures shown in Table 6.6 compare the

number of honest veri�cations against the number of lying claims veri�ed for trust-based

veri�cation. The number of lying claims veri�ed remains below 6.5% in every environment

bar the most hostile, 100_100.

When examining the numbers generated by the most hostile environment, 100_100,

the results for veri�cation of honest claims are again low at 30.48%. This supports the

hypothesis that a higher percentage of honest devices is needed within the environment

in order for veri�cation to correctly function. As with summation-based veri�cation, the

percentage of false claims that received a positive verdict is high, at 28.23%. However,

the reduction when moving from 100_100 to 120_80 is far more dramatic than that of

summation-based, with a false positive percentage of only 5%. Similarly, the percentage of

honest veri�cations increases from 30.48% to 70.14%, a far greater increase than that seen

in the summation-based results. This improvement is charted in Table 6.6, which indicates

that once the level of honest devices present rises to 75%, veri�cation performance reaches

a reasonable level, with 81.09% of all honest claims veri�ed and 0.87% of all false claims

veri�ed.

The results of these simulations assessing the performance of trust-based veri�cation

indicate that while the approach performs admirably when verifying honest claims (veri-

fying an average of 79.57% of all honest claims), it does not possess the ability to clearly

identify a false claim. While the number of false claims veri�ed is lower then that achieved

by summation-based veri�cation, there is an extremely high number of inconclusive results,

reaching 100% of the attempted false claims (within the 200_0 environment). However,

the accuracy of the system is designed to increase over time, with more information be-

coming available regarding the trustworthiness of the Proof Providers involved. Therefore,

further simulation time would be bene�cial in order to study the e�ectiveness of trust-based

veri�cation on a more long term scale.
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Figure 6.3: Selection Method Comparison Within the 160_40 Environment

All Available Most Trustworthy Most Suitable Location Randomly Selected

Lying veri�ed 1% 4.05% 19.82% 4.78%
Lying failed 73% 86.49% 67.57% 72.11%

Lying inconclusive 26% 9.46% 12.61% 23.11%

Table 6.7: Selection Method Comparison Within the 160_40 Environment - Lying Claims

Method of Proof Provider selection

As mentioned in Section 6.5, the issue of Proof Provider selection is a delicate matter,

as it is at this point in the veri�cation process that the Claimant has the most potential

for in�uence. We introduced four possible Proof Provider selection methods in Section

6.5; all available options, most trustworthy devices, most suitable location and randomly

selected. For each of these methods, we discussed the possible exploitations a malicious

Claimant could possibly employ in order to manipulate them into selecting Proof Providers

of their choosing. In this section, we analyse the di�erences in performance demonstrated

in simulation results. We discuss these di�erences within the scope of a single environment:

160_40, the 100x100 world containing 160 trustworthy devices and 40 untrustworthy de-

vices. For the sake of clarity, we discuss only results computed using the summation-based

veri�cation approach, as this has demonstrated a higher level of accuracy.

The graph shown in Figure 6.3 display the results of all lying (false) claims, broken into

the number of positive, negative and inconclusive results received using each method of

selection, as a percentage of the overall number of lying claims. The �gures corresponding
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All Trustworthiness Geographic Random

Honest veri�ed 91.52% 95.32% 92.29% 91.00%
Honest failed 0.50% 0.23% 0.51% 1.22%

Honest inconclusive 7.98% 4.45% 7.20% 7.79%

Table 6.8: Selection Method Comparison Within the 160_40 Environment - Honest Claims

to this graph are shown in Table 6.7. In this set of simulations, a minimum of �ve Proof

Providers was required in order for veri�cation to occur. While it was expected that the

two uncontrollable methods, random and all, would be the most successful at detecting

false claims, this is not the case. Instead, it was discovered that trustworthiness performs

the most accurately, at a rate of 86.49%. Though a malicious Claimant may attempt

to in�uence the selection process through selecting a location near devices with a lower

trustworthiness than the friendly devices also in that area, it would require the majority of

the devices selected to be friendly. Otherwise, the reliability of the honest devices selected

will outweigh the impact of any malicious friendly devices. As the devices involved in this

situation have been bootstrapped to a point where a reliable trustworthiness level has been

established, selection based on this factor appears highly accurate, even in a 20% hostile

environment. It should also be noted that using trustworthiness as the selection method

for Proof Providers results in the highest veri�cation rate and lowest inconclusive rate for

honest claims (Table 6.8), making it the most accurate approach within this environment.

Though selection based on trustworthiness proved to be far more reliable than �rst

believed, this is not the case for geographic selection. As expected, the selection method

most vulnerable to manipulation is selection based on this criterion. The results gathered

within the 160_40 environment show that geographic selection has the highest rate of

false claims veri�ed (19.82%). Geographic selection also resulted in the second lowest

number of inconclusive verdicts (12.61%) for lying claims, less than half the number where

all volunteers were employed (26%). The majority of geographically selected false claims

were rejected, at 67.57%. However, this is the lowest number of failures received any of

the selection methods, reinforcing the hypothesis that geographic selection is the most

vulnerable to manipulation.
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6.8 From Veri�cation to Localization

Though a device's general location claim can be veri�ed, the accuracy of the claim is

unknown. If a Claimant proves itself to be at a claimed location, it Claimant may be

located anywhere in the vicinity of that location. Without including a re�nement process

after a positive veri�cation, the location contained within the Veri�er's �nal message to

the Claimant ties that Claimant only to the last location provided (XC). The location

at which the Claimant must have been while completing the evidence gathering process

is never calculated. In order to address this issue and improve the functionality of the

system, it is important to investigate the actual location of the Claimant and provide this

location within the Veri�er's proof message, rather than that dictated by the Claimant.

This is done through multilateration, using those Proof Providers that provided supporting

evidence as starting points.

6.8.1 Finding the Location

Multilateration is the overlapping of device transmission ranges in order to extract a small

area of intersection. The process of multilateration employs parameter pairs, comprised

of the location of each device being used in the process and that device's transmission

range. The information contained within these parameter pairs is collected during the

normal progression of the SLVPGP and volunteer gathering process. The device location

information is provided within the �nal proof messages of the Proof Providers and the

range information is included within the volunteer response messages.

The information contained within the parameter pairs is employed as follows: the

location provided for a device becomes the centre of a circle, with the transmission range

providing the circle's radius. With these two pieces of information, an area corresponding

to the transmission capability of each included device is found. Through overlapping these

areas, the area of intersection is discovered. In order to be within range of all included

devices to earn the received positive evidence, the Claimant must have been located within

this area of intersection during the evidence gathering stage. Therefore, by discovering the

area of intersection of the supporting Proof Providers, a more accurate location for the

Claimant is found.

However, while this approach is appropriate for devices with a low level of motion in a
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short space of time, such as devices carried by pedestrians, it does not extend to those that

travel large distances in a short time. For example, within a VANET, a device may travel

over 30 metres in a single second. This means that the location at which it distance bounded

with one Proof Provider may be quite di�erent from that at which it distance bounded

with a second. While the transmission range of an IEEE 802.11 device may theoretically

reach 180 metres (IEEE 802.11n), this does not guarantee an overlap between locations.

As mentioned in Chapters 1 and 4, no �eld work has been done to con�rm the ability

of this location veri�cation system to function in VANET environments, with mobility

remaining a critical question mark over its applicability in the area. Therefore, further

work is required to investigate the system's suitability for highly mobile devices and to

adequately address the issue of overlapping locations.

6.8.2 Improving Location Accuracy

Although the area in which the Claimant may be located is improved through the multi-

lateration process, some steps exist which can further increase the accuracy of this area. In

situations where only a limited number of Proof Providers may be used, the e�ectiveness of

the multilateration process may be improved through employing the geographic criterion

when selecting Proof Providers for use in a claim (Section 6.5.4). By selecting devices

with a very small area of intersection, a more precise location may be found. Where an

over-abundance of Proof Providers is not a danger, selecting all volunteers for use (Section

6.5.2) provides the best level of accuracy, as it gives the largest number of locations and

transmission areas possible for that claim, and thus, the smallest possible region of overlap

in which the Claimant could be located.

6.9 Summary

In this chapter, we presented the location veri�cation engine, which takes the Proof

Provider verdicts supplied by the SLVPGP and extracts a possibility value for the lo-

cation claim being veri�ed. We have presented two methods of veri�cation, neither of

which require trusted infrastructure to instill trust in the evidence gathered for use in a

claim. Instead, the evidence is judged based upon either the number of concurring devices

or the trust placed in those devices.
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In order to provide a method of gauging the trustworthiness of a device, we outlined

a combination of existing techniques employed to create a reputation system. With the

functionality of the reputation system established, we proceeded to discuss the remaining

responsibilities of the location veri�cation engine, namely the provision of Proof Providers

and the calculation of a claim's possibility. We put forth two basic approaches to the

gathering of volunteers for use as Proof Providers, Claimant-based and Veri�er-based, but

concluded that a Veri�er-based approach should be employed to reduce the likelihood of

collusion attacks. We then discussed a number of possible selection criteria to select Proof

Providers from the volunteer pool.

We proceeded to outline the two processes by which the Veri�er can extract a possibility

value for a given location claim, based on its supplied evidence. We discussed the concept

of the possibility scale, along with the use of �exible thresholds instead of �xed grading

values. We demonstrated the performance and accuracy of both veri�cation approaches

through performing java simulations. These simulations show that trust-based veri�cation

has potential but may require a high level of training to be truly e�ective, while summation-

based veri�cation performs at reasonably high levels of detection with up to 25% of the

devices within the environment internally malicious (i.e. biased to behave maliciously in

at least 80% of their interactions). We also investigated a number of di�erent criteria

for use in Proof Provider selection. We discovered that although selection based on the

trustworthiness of a device is predictable, it is also the most adept at detecting false location

claims. We then closed the chapter with a brief proposal of how location accuracy can be

improved within the system.
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Chapter 7

Conclusion and Future Work

7.1 Review

With the growth of mobile technology into an a�ordable and accessible market, localization

has become increasingly important to extract the maximum information about a user's

situation. Within this area, location veri�cation is increasingly appealing, in order to

ensure an accurate re�ection of the user's situation. However, a common weakness in both

localization and location veri�cation systems is reliance upon the presence of infrastructure

in order to locate a device.

In this thesis we have presented the design for a novel location veri�cation system that

does not require the use of infrastructure or implicitly trusted devices. This work extends

previously existing location veri�cation approaches and incorporates work from previously

unincluded research �elds into the area of location veri�cation to remove this reliance.

We have addressed this weakness through employing an ad-hoc approach to the problem,

enlisting neighbouring devices to provide supporting evidence of a speci�c device's presence

in a claimed area. The research in this thesis has:

• established that the time required to complete a direct (unampli�ed) message ex-

change over an IEE802.11 network greatly di�ers from that required to complete a

proxied exchange.

• proposed a new metric to take advantage of this distinction, allowing for the detection

of proxy attacks in distance bounding.

• developed a pair of algorithms to compute the bounds for this metric on the �y,
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allowing the bounds to re�ect the state of the network at the current time.

• developed a set of secure protocols (the SLVPGP hierarchy) for use to protect the

process of gathering evidence supporting a device's location claim.

• compared the incurred costs of these protocols against the gain in security when

moving from one level to another.

• veri�ed the security claims of the SLVPGP hierarchy through model checking using

a combination of Casper and the FDR model checker.

• established a method of gathering neighbouring devices to act as Proof Providers for

a speci�c claim.

• discussed the bene�ts and drawbacks of a number of selection criteria for use when

choosing Proof Providers from a pool of gathered volunteer devices.

• developed a method of verifying location claims using one of two weighting systems,

one of which includes the concept of a device's behaviour within the system creating

a reputation for that device.

• established the accuracy of the veri�cation method through multiple system simula-

tions.

We have enhanced the reliability of the evidence provided by a device through the devel-

opment of a novel metric for use with distance bounding. This metric allows a device to

distinguish between (unampli�ed) direct and proxied communication in an IEEE 802.11

network, an advance that is made use of in the evidence gathering stage of location ver-

i�cation within this work. The ability of the metric to distinguish between direct and

proxied exchanges limits the possible distance between the evidence gathering device and

claiming device to a single (unampli�ed) network hop range. We investigated the concept

of a window of acceptance in time, within which a direct communcation could be completed

while excluding any proxied communications. This was extended through the proposal of

a pair of protocols to compute the window of acceptance for a particular area in real time,

allowing the window to remain relevant despite network issues or heavy population.

Distance bounding using the binary metric has been employed to establish a verdict

regarding the presence of a device in a particular area, according to a neighbouring de-
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vice. As mentioned previously, by using the binary metric in this step, the proximity of

a Claimant to its evidence (proof) provider is limited to only a single hop range, where

the range is not ampli�ed by specialist equipment. Anything above this is detected by

the metric and �agged as a proxied exchange, essentially preventing undetectable proxy

attacks. We have presented an approach to gathers this proximity evidence from multi-

ple pre-selected devices in a Claimant's area. In order to protect the evidence gathering

process, we have developed the Secure Location Veri�cation Proof Gathering Protocol

(SLVPGP). This protocol has been designed to protect the evidence supplied and any par-

ticipants in the location veri�cation process, i.e. the claiming device and any neighbouring

devices supplying evidence. We developed this protocol in three layers, each with an in-

creased level of security. Through designing the protocol in this manner, we have provided

an increased level of �exibility regarding security properties and overhead costs. To our

knowledge, this is the �rst location veri�cation protocol designed in such a manner.

By developing such a protocol to protect the evidence gathering process, the integrity

of the evidence provided is protected, as tampering can be detected and the compromised

evidence discarded. Additionally, by protecting the con�dential information pertaining to

participants in the protocol, it is more di�cult to identify who is participanting. Malicious

participants are prevented from tying the identity of other participants to their unique

hardware identi�ers (MAC addresses) through the use of changing pseudonyms, while the

SLVPGP protects against external observers. Though local observers could deduce that

a device is making a location claim based on tra�c and message content analysis, they

are not privy to the o�cial identity of the participants. Similarly, non-local devices that

receive forwarded protocol messages are unable to distinguish who the sender and receiver

are, or where they are located. Unless they are capable of tying a device's unique hardware

identi�er (MAC address) to a system identity, they cannot employ the information gathered

without being present to analyse the situation adequately. For example, if a remote device

(i.e. a device not local to the Claimant) was to discover that devices A and B were

functioning as Proof Providers, it could not extract the area in which the Claimant is

located as they cannot tie identities A and B to speci�c devices.

Using formal analysis techniques, we then investigated the security of each of the

SLVPGP extensions. This analysis allowed us to investigate the possibility of vulnera-
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bilities in the design of the protocols and remedy them before they could be discovered

and exploited. The results of this formal analysis indicate that the security properties

stated for each protocol layer are upheld, where the protocol is employed within the speci-

�ed environment. Additionally, we formally analysed the security of broadcasting messages

over an open network. This analysis supports the assumption that broadcasting a message

is secure, provided the message contents are adequately protected.

The protection a�orded to the evidence gathering process by the protocol presented

in this work is based upon a fundamental assumption that a claiming device is unable

to select the devices from which it gathers evidence. If this were possible, the Claimant

would be capable of completely circumventing the security measures built into the protocol

by controlling the evidence being supplied at the source, rather than through detectable

tampering. Additionally, honest volunteers would be vulnerable to targeting for an attack

on their reputation. If a malicious device wished to decrease the reputation of a speci�c

device it knew to be willing to act as a Proof Provider, it could manipulate the selection

process in some manner to ensure said device was selected as a Proof Provider for a

claim. The malicious device could then work with a group of friendly devices (also selected

as Proof Providers) to intentionally decrease the honest participant's reputation, thus

damaging its credibility within the system. The assumption that it is not possible for a

device to select those devices from which it collects evidence protects against manipulation

through denying the Claimant the ability to employ only devices willing to collude against

the system as Proof Providers. We have discussed a number of vulnerabilities to this form

of manipulation in the SLVPGP's initialisation process. These include the gathering of

volunteers for a claim and the selection criterion employed in the Proof Provider selection

process. Though the possibility of Proof Providers knowingly supplying false evidence

cannot be fully prevented, by addressing these vulnerabilities, the integrity of the evidence

provided within the SLVPGP is further protected, as are the reputations of those devices

participating in a claim.

We have presented a pair of protocols describing two approaches to volunteer gather-

ing: Claimant-based and Veri�er-based. We discussed the vulnerabilities inherent in the

inclusion of the Claimant in this process. Based on this discussion, we have advocated

the use of Veri�er-based gathering to limit the ability of the Claimant to manipute the
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process. By opting to employ this approach to volunteer gathering, the underlying system

assumption regarding the Claimant's inability to select Proof Providers is reinforced.

We discussed four possible approaches to the selection of Proof Providers from a pool of

volunteer devices: employing all available, selecting the most trustworthy, selecting those

with the smallest overlap of overlap and �nally, selecting Proof Providers at random. The

selection criterion employed when choosing Proof Providers from a list of available volun-

teers has a great impact on the vulnerability of the veri�cation process to manipulation.

We demonstrated through simulation that due to the Claimant's inability to manipulate

the selection process, the employment of all devices is most advantageous, followed by the

use of random selection.

Finally, we have developed two verdict extraction methods based on the combining of

evidence gathered from the selected Proof Providers using the SLVPGP. These methods,

summation-based and trust-based, allow the location veri�cation system to extract a �nal

verdict regarding the veracity of a device's location claim. Percentage-based thresholds

and a three-part scale have been employed to allow for the provision of three di�erent

verdict classi�cations: �possible�, �unsure� and �not possible�. We utilized these verdicts as

inputs into a reputation system, allowing for the computation of a device's trustworthiness

based on previous behaviour within the system. The accuracy of both judgement ap-

proaches presented has been demonstrated through simulations within increasingly hostile

environments.

7.2 Future Work and Open Issues

The main goal of this research has been to produce a novel approach to location veri�cation

that does not rely on a pre-existing infrastructure of devices. This goal has become of

signi�cant interest in the area of location veri�cation, with recent research turning towards

ad-hoc systems in an e�ort to move away from infrastructure dependance. While the work

presented in this dissertation is comprehensive, there remain a number of avenues for future

research.

As we outlined brie�y in Chapter 6, there is a possibility that the number of volunteers

available for a claim may prove to be too large to utilize the �employ all available� selection

approach. With the ever-increasing popularity of mobile networking devices, there may

193



simply be too many devices in a single area to allow for distance bounding at a reasonable

speed. We intend to investigate the impact the number of Proof Providers has on the

accuracy of a verdict, in order to ascertain a reasonable limit on the number to be employed

on any one claim. This investigation will be an extension of the experiments described in

Section 6.5.1 of Chapter 6. While those experiments established the minimum number of

Proof Providers required to produce a reliable veri�cation, continuing these experiments

will investigate the point at which increasing the number of Proof Providers involved in a

claim does not increase the accuracy of the veri�cation.

This issue also ties into the impact of a heavily populated network on the accuracy

of distance bounding, an issue mentioned in Chapter 3. We intend to emulate distance

bounding in a more densely populated network, to investigate the accuracy of the binary

metric in this situation. This will be achieved initially through the deployment of multiple

other active devices within the testing network when conducting emulations, and extended

to include emulations of multiple devices attempting location veri�cation simultaneously

on the same network. Additionally, we intend to establish the accuracy of the binary

metric where a more aggressive proxy attack is launched. At present, the applicability

of the binary metric has been proven where a proxy attack is comprised of an additional

IEEE 802.11 network hop in each direction. In a more aggressive proxy attack, however,

these additional hops may not incur such high time costs due to the equipment employed.

While this form of proxy attack is not currently as common as the simpler proxy we have

discussed, we believe that its existance should be addressed, ideally through emulations

including higher speed equipment using high-speed connections. We also intend to establish

the ability of the binary metric to detect the di�erence between direct exchanges and

ampli�ed direct exchanges, as this has not yet been addressed. This will ideally be done

through emulations similar to those presented in Chapter 3. Should these investigations

lead to the discovery that the binary metric is not as accurate when ampli�cation equipment

is involved, the existance of a cut o� point will be investigated. By establishing a cut o�

point, the �acceptable� area outside the normal transmission range is limited and a new,

larger acceptance area is established. This issue was not previously investigated due to a

lack of equipment, a problem which also prevented the investigation of other issues over

the course of this project.
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A lack of available equipment has also prevented the system from being �eld tested

on a functional VANET, in order to establish its ability to accurately verify claims in this

environment. Though the system was initially designed for VANETs, the high mobility

rate of nodes within these networks means that connectivity between devices may not be

sustained long enough to complete evidence gathering. Therefore it is unknown whether

VANETs are a suitable environment in which to deploy the system. Future investigations

will deploy the system in a working VANET at various speeds and node densities to

investigate its functionality.

The approach to veri�cation described in this work relies on a central entity in order

to verify a location claim. While this design does provide a high level of security and

functionality, it is also structurally problematic. The Veri�er represents a single point of

failure within the design. If the Veri�er is unavailable or overloaded, no veri�cations can

occur. This issue can be addressed through the implementation of a hierarchy of Veri�ers,

each managing a speci�c catchment area. However, reliance upon a device not local to

the claim is not ideal. Future work on this issue would seek an alternative approach to

this design, allowing for an untrusted local device to provide appropriate veri�cation of a

claim.

As discussed in Chapter 6, the initialisation of the veri�cation system's reputation

engine remains an open issue. Currently there exists no method of distinguishing honest

devices from dishonest devices at the point of initialisation. When a reputation engine is

initialised, all participants appear equal, providing any dishonest devices with an advantage

over the system. While �bootstrapping� approaches have been proposed in order to address

this, they are less than ideal where trusted devices are not desired or available as part of

the system. Research is ongoing in the area and while no solution has been discovered yet,

work is continuing in an attempt to address the issue.

One �nal open issue is the extraction of a Claimant's speci�c location at the time of

proving its claim, where the Claimant has a high level of mobility, e.g. within a VANET.

The method we have discussed in Chapter 6 is suited to a low mobility situation, such

as a pedestrian's handheld device. However, where a device can travel large distances in

short spaces of time, the location at which it contacts one Proof Provider for distance

bounding may di�er greatly from its location when it contacts a second. This means
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that simple multilateration cannot be relied upon to extract an accurate location. Fu-

ture work to remedy this issue would result in an increased level of accuracy within the

location veri�cation system, enabling the veri�cation and provision of a device's speci�c

location and not merely the area within which it is currently located. The most logical

adaptation of this work to achieve a solution to this issue would be the employment of

simultaneous multilateration, such as that employed in the work of Capkun et al [95, 94].

The SLVPGP's current approach to proximity establishment would need to be altered in

order to allow the same response to answer the distance bounding request of all Proof

Providers involved, rather than each Proof Provider individually distance bounding with

the Claimant. Through employing an adaptaton of this approach, proximity to all Proof

Providers would be established simultaneously, removing the issue of movement between

interactions.
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Appendix A

Model Checking Casper Scripts

A.1 SLVPGP Casper scripts

A.1.1 Extension one casper script

#Free variables

C : Agent

V : Verifier

P, Pb : Prover

SKAgent : Agent -> SecretKey

PKAgent : Agent -> PublicKey

SKProver : Prover -> ProverSecretKey

PKProver : Prover -> ProverPublicKey

SKVerifier : Verifier -> VerifierSecretKey

PKVerifier : Verifier -> VerifierPublicKey

nP, nPb, n2P, n2Pb : Nonce

hP, hPb, h1P, h1Pb : Hashed

xC : Location

tC, tP, tPb, tV : TimeStamp

proof, proofB : Proofs

dV : Verdict

InverseKeys = (PKAgent, SKAgent), (SKProver, PKProver),

(PKVerifier, SKVerifier)

#Processes

I



Verifier(V, P, Pb, dV) knows PKAgent, PKProver, PKVerifier, SKVerifier(V)

Claimant(C, V, nP, nPb, h1P, h1Pb) knows PKAgent, PKProver,

PKVerifier, SKAgent(C)

ProofProvider(P, V, hP, n2P, proof) knows PKProver, PKAgent,

PKVerifier, SKProver(P)

ProofProviderB(Pb, V, hPb, n2Pb, proofB) knows PKProver, PKAgent,

PKVerifier, SKProver(Pb)

#Protocol description

0. -> C: xC

1. C -> V: {C, xC}{SKAgent(C)}

2. V -> C: {P, Pb}{SKVerifier(V)}

3. C -> P: {P, C, {nP}{PKProver(P)}}{SKAgent(C)}

4. C -> Pb: {Pb, C, {nPb}{PKProver(Pb)}}{SKAgent(C)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {P, tP, proof, C}{SKProver(P)} % mP

10. Pb -> C: {Pb, tPb, proofB, C}{SKProver(Pb)} % mPb

11. C -> V: {C, xC, tC}{SKAgent(C)}

11a. C -> V: mP % {P, tP, proof, C}{SKProver(P)}

11b. C -> V: mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}

12. V -> C: {dV, C, xC, tV}{SKVerifier(V)}

#Functions

symbolic PKAgent, SKAgent

symbolic PKVerifier, SKVerifier

symbolic SKProver, PKProver

#Specification

Agreement(P, V, [proof])

Agreement(Pb, V, [proofB]) -- V and PP must agree on the proof value

Agreement(V, C, [dV]) -- V & C must agree on the final value of V's verdict

II



#Actual variables

Claim, Eve : Agent

Verif, Eve : Verifier

ProofP, ProofPb, Eve : Prover

NP, NPb, N2P, N2Pb: Nonce

HP, HPb, H1P, H1Pb : Hashed

XC : Location

DV : Verdict

Proof, ProofB : Proofs

TimeStamp = 0 .. 0

MaxRunTime = 0

#System

Verifier(Verif, ProofP, ProofPb, DV)

Claimant(Claim, Verif, NP, NPb, H1P, H1Pb)

ProofProvider(ProofP, Verif, HP, N2P, Proof)

ProofProviderB(ProofPb, Verif, HPb, N2Pb, ProofB)

#Intruder Information

Intruder = Eve

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, PKAgent(Claim),

PKProver(ProofP), PKProver(ProofPb), PKVerifier(Verif), SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve)}

A.1.2 Extension Two Casper Script

#Free variables

C : Agent

V : Verifier

P, Pb : Prover

SKAgent : Agent -> SecretKey

PKAgent : Agent -> PublicKey

SKProver : Prover -> ProverSecretKey

PKProver : Prover -> ProverPublicKey

SKVerifier : Verifier -> VerifierSecretKey

PKVerifier : Verifier -> VerifierPublicKey

III



nP, nPb, n2P, n2Pb : Nonce

hP, hPb, h1P, h1Pb : Hashed

xC : Location

tC, tP, tPb, tV : TimeStamp

proof, proofB : Proofs

dV : Verdict

InverseKeys = (PKAgent, SKAgent), (SKProver, PKProver),

(PKVerifier, SKVerifier)

#Processes

Verifier(V, P, Pb, dV) knows PKAgent, PKProver, PKVerifier, SKVerifier(V)

Claimant(C, V, nP, nPb, h1P, h1Pb) knows PKAgent, PKProver,

PKVerifier, SKAgent(C)

ProofProvider(P, V, hP, n2P, proof) knows PKProver, PKAgent,

PKVerifier, SKProver(P)

ProofProviderB(Pb, V, hPb, n2Pb, proofB) knows PKProver, PKAgent,

PKVerifier, SKProver(Pb)

#Protocol description

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVerifier(V)}

2. V -> C: {{P, Pb}{SKVerifier(V)}}{PKAgent(C)}

3. C -> P: {{P, C, nP}{SKAgent(C)}}{PKProver(P)}

4. C -> Pb: {{Pb, C, nPb}{SKAgent(C)}}{PKProver(Pb)}

5. P -> C: hP, n2P

6. Pb -> C: hPb, n2Pb

7. C -> P: h1P, {n2P}{SKAgent(C)}

8. C -> Pb: h1Pb, {n2Pb}{SKAgent(C)}

9. P -> C: {{P, tP, proof, C}{SKProver(P)} % mP}{PKAgent(C)}

10. Pb -> C: {{Pb, tPb, proofB, C}{SKProver(Pb)} % mPb}{PKAgent(C)}

11. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVerifier(V)}

11a. C -> V: {{mP % {P, tP, proof, C}{SKProver(P)}}{SKAgent(C)}}

{PKVerifier(V)}

11b. C -> V: {{mPb % {Pb, tPb, proofB, C}{SKProver(Pb)}}{SKAgent(C)}}

{PKVerifier(V)}

IV



12. V -> C: {{dV, xC, C, tV}{SKVerifier(V)}}{PKAgent(C)}

#Functions

symbolic PKAgent, SKAgent

symbolic SKProver, PKProver

symbolic SKVerifier, PKVerifier

#Specification

Agreement(P, V, [proof])

Agreement(Pb, V, [proofB])

Agreement(V, C, [dV])

Secret(C, C, [V, P, Pb])

Secret(P, P, [V, C])

Secret(Pb, Pb, [V, C])

Secret(C, xC, [V])

Secret(P, proof, [V, C])

Secret(Pb, proofB, [V, C])

#Actual variables

Claim, Eve : Agent

Verif, Eve : Verifier

ProofP, ProofPb, Eve : Prover

NP, NPb, N2P, N2Pb: Nonce

HP, HPb, H1P, H1Pb : Hashed

XC : Location

DV : Verdict

Proof, ProofB : Proofs

TimeStamp = 0 .. 0

MaxRunTime = 0

#System

Verifier(Verif, ProofP, ProofPb, DV)

Claimant(Claim, Verif, NP, NPb, H1P, H1Pb)

ProofProvider(ProofP, Verif, HP, N2P, Proof)
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ProofProviderB(ProofPb, Verif, HPb, N2Pb, ProofB)

#Intruder Information

Intruder = Eve

IntruderKnowledge = {Verif, PKAgent, PKVerifier, PKProver, PKAgent(Claim),

PKVerifier(Verif), PKProver(ProofP), PKProver(ProofPb), SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve)}

A.1.3 Extension Three Casper Script

#Free variables

O : OracleType

C : Agent

V : Verifier

P, Pb : Prover

SKAgent : Agent -> SecretKey

PKAgent : Agent -> PublicKey

SKProver : Prover -> ProverSecretKey

PKProver : Prover -> ProverPublicKey

SKVerifier : Verifier -> VerifierSecretKey

PKVerifier : Verifier -> VerifierPublicKey

nP, nPb, n2P, n2Pb : Nonce

hP, hPb, h1P, h1Pb : Hashed

xC : Location

tC, tP, tPb, tV : TimeStamp

proof, proofB : Proofs

dV : Verdict

InverseKeys = (PKAgent, SKAgent), (SKProver, PKProver),

(PKVerifier, SKVerifier)

#Processes

Verifier(V, P, Pb, kCP, kCPb, dV, nP, n1P, nPb, n1Pb) knows PKAgent,

PKProver, PKVerifier, SKVerifier(V)

Claimant(C, V, O, h1P, h1Pb) knows PKAgent, PKProver, PKVerifier, SKAgent(C)

Oracle(O, C, V, P, Pb) knows PKAgent, PKProver, PKVerifier

ProofProvider(P, V, proof, hP, n2P) knows PKProver, PKAgent,
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PKVerifier, SKProver(P)

ProofProviderB(Pb, V, proofB, hPb, n2Pb) knows PKProver, PKAgent,

PKVerifier, SKProver(Pb)

#Protocol description

0. -> C: xC

1. C -> V: {{C, xC}{SKAgent(C)}}{PKVerifier(V)}

2. V -> C: {{nP, n1P, kCP, nPb, n1Pb, kCPb}{SKVerifier(V)}}{PKAgent(C)}

3. V -> P: {{{P, nP, n1P, kCP}{SKVerifier(V)}}{PKProver(P)}}{SKVerifier(V)}

4. V -> Pb: {{{Pb, nPb, n1Pb, kCPb}{SKVerifier(V)}}{PKProver(Pb)}}

{SKVerifier(V)}

5. C -> O: {C}{PKVerifier(V)} % mCP

5a. O -> P: {C}{PKVerifier(V)} % mCP

6. C -> O: {C}{PKVerifier(V)} % mCPb

6a. O -> Pb: {C}{PKVerifier(V)} % mCPb

7. P -> O: hP, n2P

7a. O -> C: hP, n2P

8. Pb -> O: hPb, n2Pb

8a. O -> C: hPb, n2Pb

9. C -> O: h1P, {n2P}{SKAgent(C)} % mCPN

9a. O -> P: h1P, mCPN % ({n2P}{SKAgent(C)} % mCPN1)

10. C -> O: h1Pb, {n2Pb}{SKAgent(C)} % mCPbN

10a. O -> Pb: h1Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1)

11. P -> O: h(kCP) % mCPh, {nP, {{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1),

tP, proof, mCP % ({C}{PKVerifier(V)} % mCP1)}{SKProver(P)}}

{PKVerifier(V)} % mPV}{kCP} % mCPk

11a. O -> C: mCPh % h(kCP), mCPk % {nP, mPV % ({{P, mCPN % ({n2P}{SKAgent(C)}

% mCPN1), tP, proof, mCP % ({C}{PKVerifier(V)} % mCP1)}{SKProver(P)}}

{PKVerifier(V)} % mPV1)}{kCP}

12. Pb -> O: h(kCPb) % mCPbh, {nPb, {{Pb, mCPbN % ({n2Pb}{SKAgent(C)} %

mCPbN1), tPb, proofB, mCPb % ({C}{PKVerifier(V)} % mCPb1)}{SKProver(Pb)}}

{PKVerifier(V)} % mPbV}{kCPb} % mCPbk

12a. O -> C: mCPbh % h(kCPb), mCPbk % {nPb, mPbV % ({{Pb, mCPbN % ({n2Pb}

{SKAgent(C)} % mCPbN1), tPb, proofB, mCPb % ({C}{PKVerifier(V)} % mCPb1)}

{SKProver(Pb)}}{PKVerifier(V)} % mPbV1)}{kCPb}
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13. C -> V: {{C, tC, xC}{SKAgent(C)}}{PKVerifier(V)}

13a. C -> V: {mPV1 % ({{P, mCPN % ({n2P}{SKAgent(C)} % mCPN1), tP, proof,

mCP1 % {C}{PKVerifier(V)}}{SKProver(P)}}{PKVerifier(V)})}{SKAgent(C)}

13b. C -> V: {mPbV1 % ({{Pb, mCPbN % ({n2Pb}{SKAgent(C)} % mCPbN1), tPb,

proofB, mCPb1 % {C}{PKVerifier(V)}}{SKProver(Pb)}}

{PKVerifier(V)})}{SKAgent(C)}

14. V -> C: {{dV, xC, C, tV}{SKVerifier(V)}}{PKAgent(C)}

#Functions

symbolic PKAgent, SKAgent

symbolic SKProver, PKProver

symbolic SKVerifier, PKVerifier

#Specification

Agreement(P, V, [proof])

Agreement(Pb, V, [proofB])

StrongSecret(C, C, [O, V])

StrongSecret(P, P, [O, V])

StrongSecret(Pb, Pb, [O, V])

StrongSecret(C, xC, [V])

StrongSecret(P, proof, [V])

StrongSecret(Pb, proofB, [V])

#Actual variables

TheOracle : OracleType

Claim, Eve : Agent

Verif, Eve : Verifier

ProofP, ProofPb, Eve : Prover

NP, NPb, N1P, N1Pb, N2P, N2Pb: Nonce

HP, HPb, H1P, H1Pb : Hashed

XC : Location

DV : Verdict

Proof, ProofB : Proofs

TimeStamp = 0 .. 0
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MaxRunTime = 0

#System

Verifier(Verif, ProofP, ProofPb, KCP, KCPb, DV, NP, N1P, NPb, N1Pb)

Claimant(Claim, Verif, TheOracle, H1P, H1Pb)

Oracle(TheOracle, Claim, Verif, ProofP, ProofPb)

ProofProvider(ProofP, Verif, Proof, N2P, HP)

ProofProviderB(ProofPb, Verif, ProofB, N2Pb, HPb)

#Intruder Information

Intruder = Eve

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKAgent(Claim), PKProver,

PKProver(ProofP), PKProver(ProofPb), PKVerifier, PKVerifier(Verif),

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve)}

A.1.4 Alternative Intruder Information

A.1.4.1 Alternative intruder information for extensions one and two

Known C

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKAgent(Claim)}

Known C/P

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKAgent(Claim), SKProver(ProofP)}

Known C/Pb

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKAgent(Claim), SKProver(ProofPb)}

Known C/P/Pb

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),
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SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKAgent(Claim), SKProver(ProofP), SKProver(ProofPb)}

Known P

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofP)}

Known Pb

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofPb)}

Known P/Pb

IntruderKnowledge = {Verif, PKAgent, PKProver, PKVerifier, SKAgent(Eve),

SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofP), SKProver(ProofPb)}

A.1.4.2 Alternative intruder information for extension three

Known C

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim),

PKProver(ProofP), PKProver(ProofPb), SKAgent(Claim)}

Known C/P

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim),

PKProver(ProofP), PKProver(ProofPb), SKAgent(Claim), SKProver(ProofP)}

Known C/Pb

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim),

PKProver(ProofP), PKProver(ProofPb), SKAgent(Claim), SKProver(ProofPb)}

Known C/P/Pb

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim),
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PKProver(ProofP), PKProver(ProofPb), SKAgent(Claim), SKProver(ProofP),

SKProver(ProofPb)}

Known P

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofP)}

Known Pb

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofPb)}

Known P/Pb

IntruderKnowledge = {Verif, TheOracle, PKAgent, PKProver, PKVerifier,

SKAgent(Eve), SKProver(Eve), SKVerifier(Eve), PKAgent(Claim), PKProver(ProofP),

PKProver(ProofPb), SKProver(ProofP), SKProver(ProofPb)}

A.2 Broadcasting Casper scripts

A.2.1 Basic Casper Script

#Free variables

S : ServerType

A, B, C : Agent

O : OracleType

SK : Agent -> SecretKey

PK : Agent -> PublicKey

mB : MessageBob

mC : MessageCeline

InverseKeys = (PK, SK)

#Processes

ServerProc(S, A, B, C, O) knows PK

Initiator(A, O, S) knows PK, SK(A)

RecipientB(B, O, S) knows PK, SK(B)

RecipientC(C, O, S) knows PK, SK(C)
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OracleProc(O, A, B, C, S) knows PK

#Protocol description (i)

0. -> S: mB, mC

1. S -> A: {mB}{PK(B)} % nMb, {mC}{PK(C)} % nMc

2. A -> O: nMb % ({mB}{PK(B)} % nMb1)

#Protocol description (ii)

3. O -> B: nMb1 % {mB}{PK(B)}

4. A -> O: nMc % ({mC}{PK(C)} % nMc1)

5. O -> C: nMc1 % {mC}{PK(C)}

#Functions

symbolic PK, SK

#Specification

Agreement(S, B, [mB])

Agreement(S, C, [mC])

Secret(A, A, [O])

Secret(B, B, [O])

Secret(C, C, [O])

Secret(S, mB, [B])

Secret(S, mC, [C])

#Actual variables

Alice, Bob, Celine, Eve : Agent

Oracle : OracleType

Server : ServerType

MB : MessageBob

MC : MessageCeline

#System

ServerProc(Server, Alice, Bob, Celine, Oracle)

Initiator(Alice, Oracle, Server)

RecipientB(Bob, Oracle, Server)

RecipientC(Celine, Oracle, Server)
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OracleProc(Oracle, Alice, Bob, Celine, Server)

#Intruder Information

Intruder = Eve

IntruderKnowledge = {Server, Oracle, PK, SK(Eve)}

A.2.2 Additional Intruder Information

Known A

IntruderKnowledge = {Server, Oracle, PK, SK(Eve), PK(Alice), SK(Alice)}

Known B

IntruderKnowledge = {Server, Oracle, PK, SK(Eve), PK(Bob), SK(Bob)}

Known C

IntruderKnowledge = {Server, Oracle, PK, SK(Eve), PK(Celine), SK(Celine)}

Known A/B

IntruderKnowledge = {Server, Oracle, PK, SK(Eve), PK(Bob), SK(Bob), PK(Alice),

SK(Alice)}

Known A/C

IntruderKnowledge = {Server, Oracle, PK, SK(Eve), PK(Celine), SK(Celine),

PK(Alice), SK(Alice)}
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Appendix B

Veri�cation Simulations

B.1 Proof Provider Selection Algorithms

The algorithms outlined in this section (algorithms 8 - 11) describe the di�erent approaches

taken by the Veri�er when selecting Proof Providers based on a speci�c criterion. These

approaches are employed within the veri�cation simulations discussed in Section 6.7.

Algorithm 8 Selection Method 1 - All Available Volunteers
set current_volunteer to �rst in volunteer_pool

for all volunteers in volunteer_pool

add current_volunteer to selected

set current_volunteer to next in volunteer_pool

Algorithm 9 Selection Method 2 - Most Trustworthy Volunteers
for all volunteers in volunteer_pool

get ProofProvider trustworthiness of current_volunteer

sort volunteers by trustworthiness

if number of volunteers <= maximum allowable Proof Providers then

add all volunteers to selected_volunteers

else

set most trusted in pool as current_volunteer

while number_selected < maximum allowable Proof Providers

add current_volunteer to selected_volunteers

remove current_volunteer from pool

set next most trusted volunteer in pool as current_volunteer
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Algorithm 10 Selection Method 3 - Most Suitably Located Volunteers
if number of volunteers <= maximum allowable Proof Providers then

add all volunteers to selected_volunteers

else

while number in selected_volunteers < maximum allowable Proof Providers

sort volunteers by location furthest west relative to claimed location

set volunteer furthest west as current_volunteer

if number in selected_volunteers < maximum allowable Proof Providers then

while current_volunteer not added

if current_volunteer not in selected_volunteers then

add current_volunteer to selected_volunteers

else

set next furthest volunteer west as current_volunteer

sort volunteers by location furthest east relative to claimed location

set volunteer furthest east as current_volunteer

if number in selected_volunteers < maximum allowable Proof Providers then

while current_volunteer not added

if current_volunteer not in selected_volunteers then

add current_volunteer to selected_volunteers

else

set next furthest volunteer east as current_volunteer

sort volunteers by location furthest north relative to claimed location

set volunteer furthest north as current_volunteer

if number in selected_volunteers < maximum allowable Proof Providers then

while current_volunteer not added

if current_volunteer not in selected_volunteers then

add current_volunteer to selected_volunteers

else

set next furthest volunteer north as current_volunteer

sort volunteers by location furthest south relative to claimed location

set volunteer furthest south as current_volunteer

if number in selected_volunteers < maximum allowable Proof Providers then

while current_volunteer not added

if current_volunteer not in selected_volunteers then

add current_volunteer to selected_volunteers

else

set next furthest volunteer south as current_volunteer

Algorithm 11 Selection Method 4 - Random Subset of Volunteers
if number in volunteer pool <= maximum allowable Proof Providers then

add all volunteers to selected_volunteers

else

while number in selected_volunteers < maximum allowable Proof Providers then

generate random number X

if volunteer_X not in selected_volunteers then

add volunteer_X to selected_volunteers
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Algorithm 12 Counter-Algorithm for Selection Methods 1 & 4 - All Available & Randomly
Selected Volunteers
for all locations in range of added_device

increase location_value by 1

if added_device is friend then

increase location_value by 1

else

compute distance between x coordinates

compute distance between y coordinates

decrease location_value by
(

1
x_distance∗0.75 + 1

y_distance∗0.75

)

B.2 Malicious Counter-Algorithms

The algorithms outlined in this section describe the di�erent approaches taken by a mali-

cious device to compute the optimum false location to be claimed within its environment.

These approaches are performed by the in�uence map of a device at initialisation, or when

another device updates its location. They are designed to counter the approaches employed

by the Veri�er when selecting Proof Providers in that manner, and are employed within

the veri�cation simulations discussed in Section 6.7.

When a device is initialised, it loads all information it possesses regarding other devices

in the world into its in�uence map. The in�uence map attempts to compute the optimal

false location to be claimed using this information. For each device added to the world, the

in�uence map employs one of the counter-algorithms described here to gauge the impact of

that device on its surrounding area. Each location within the map is assigned a value, and

the values of those locations within range of the device being added are updated using a

speci�c counter algorithm. The in�uence map can then compare each of the stored values

to provide the optimal location for use in a false claim.

Algorithm 13 Counter-Algorithm for Selection Method 2 - Most Trustworthy Volunteers
for all locations in range of added_device

increase location_value by 1

if added_device is friend then

increase location_value by added_device_trustworthiness

else

decrease location_value by added_device_trustworthiness
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Algorithm 14 Counter-Algorithm for Selection Method 3 - Most Suitably Located Vol-

unteers
for all locations in range of added_device

increase location_value by 1

if device is farthest known device from location then

if added_device is friend then

increase location_value by farthest_weight

else

decrease location_value by farthest_weight

elseif added_device is friend then

increase location_value by 1

else

compute distance between x coordinates

compute distance between y coordinates

if distance to location_value is not equal to device_range then

decrease location_value by
(

1
(range−x_distance)∗0.5 + 1

(range−y_distance)∗0.5

)
else

decrease location_value by 1
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