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ABSTRACT 
Global competitiveness has enforced the hefty industries 
to become more customized. To compete in the market 
they are targeting the customers who want exotic 
products, and faster and reliable deliveries.  Industries are 
exploring the option of satisfying a portion of their 
demand by converting strategically placed products, this 
helps in increasing the variability of product produced by 
them in short lead time. In this paper, authors have 
proposed a new hybrid evolutionary algorithm named 
Endosymbiotic-Psychoclonal (ESPC) algorithm to 
determine the amount and type of product to stock as a 
semi product in inventory. In the proposed work the 
ability of previously proposed Psychoclonal algorithm to 
exploit the search space has been increased by making 
antibodies and antigen more cooperative interacting 
species. The efficacy of the proposed algorithm has been 
tested on randomly generated datasets and the results 
obtained, are compared with other evolutionary 
algorithms such as Genetic Algorithm (GA) and 
Simulated Annealing (SA).  The comparison of ESPC 
with GA and SA proves the superiority of the proposed 
algorithm both in terms of quality of the solution 
obtained, and convergence time required to reach the 
optimal /near optimal value of the solution. 
 
KEY WORDS 
Lead Time, ESPC, GA, SA, Inventory 
 
 
1.  Introduction 
 
In the present scenario manufacturing enterprises are in an 
environment where markets are frequently shifting, new 
technologies are continuously emerging, and contenders 
are multiplying globally. To adopt according to this 
situations industries are building their strategies in a way 
to support global competitiveness, new product 
advancement, and rapid market responsiveness. Rapid 
advances in technology and changes in demand patterns 
to incorporate customized features in manufactured 
products, and the relatively shorter life cycle has 
reallocated the emphasis of manufacturing strategy from 
mass production to small batch manufacturing, and has 

enforced the industries to adopt Make-to-Order (MTO) 
strategy. However, in order to reduce lead times, some 
proportion of production is planned in advance in 
accordance with the forecast of orders.  
 
The changed market scenario has enforced the industries 
to enhanced competence. The technology to produce 
exotic grades and to customize finishing operations has 
positioned the modern industries to respond to more 
customized finished products. Reliable deliveries of the 
customized product are required to be synchronized with 
the customized production schedules. These aspects have 
put great pressure on industries to increase the product 
variety, and reduce the delivery lead time for a subset of 
their customers. Though, the necessity to have a large 
product variety and swift response time, places 
inconsistent demands on the production system. The 
reduction of delivery lead times has pressurized the 
industries to alter from pure Make-to-Order (MTO) 
production mode to a hybrid MTO/Make-to-Stock (MTS) 
mode. Preserving stocks of semi-finished products 
reduces the order accomplishment delay relative to the 
pure Make-to-order system. The semi-finished inventory 
is converted to finished product for the customers who 
agree to forfeit premium for it. The delivery through 
MTO mode, where production is not initiated until the 
customer order is received, continues for the other 
existing customers. As high degree of demand uncertainty 
exits in the market and the custom nature of the end 
product prevails, it is not economical to put the semi-
finished inventory into stocks for all customers. The 
additional storage space requirement by the semi-finished 
inventory puts extra burden of holding cost on the 
industry, which is economically not viable. Modern 
Industries are facing the problem of finding an effective 
way to determine the position, and amount of strategic 
inventory to hold. Inventory deployment came for rescue 
to industries in this regard. 
 
Industries are susceptible to uncertainty which is a major 
factor affecting its inventory planning. Prominent causes 
of uncertainties such as extended cycle times, volatile 
scenario of the markets, supply uncertainty, shortage or 
excessive production of orders not only affect the 
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planning but almost it damages the inventory planning. 
Due to tentative customer orders production, deviations 
from the actual orders lead to the shortage or extra 
inventory. To overcome this efficient planning strategy 
needs to be implemented. The present paper proposes an 
Endo-Symbiotic-Psychoclonal (ESPC) Algorithm to solve 
these existing complexities in efficient manner. To prove 
the efficacy of the proposed algorithm intensive runs have 
been carried out on computer simulated dataset and the 
results obtained are compared with the GA and SA 
solutions. 
 
The paper is organized as follows. Section II deals with 
the literature review. Section III deals with the model 
formulation starting with the problem description, leading 
to IDP problem formulation. Section IV focuses on the 
background and steps of the Endo-symbiotic 
Psychoclonal (ESPC) algorithm. Section V explains the 
numerical experiment and Section VI concludes this 
paper.Clearly explain the nature of the problem, previous 
work, purpose, and contribution of the paper. 
 
 
2.  Literature Review 
 
In this proposed work the problem of our interest is 
correlated to various dissimilar areas of research including 
the field of random yield, multi product substitutable 
inventory, and stochastic fixed charge network flow 
problems. Multi-product inventory problem with 
downward substitution and random demand was first 
studied by [1], in which the main emphasis was given on 
the conditions of the myopic ordering policy in a multi-
period setting. [2] presented a mixed model for U-line 
balancing problem. The solution methodology for the 
downward substitution of a two-stage stochastic linear 
programming formulation (2S-SLP) of large-scale multi-
product problems was considered by [3]. The model 
proposed in this paper incorporates various characteristics 
of replacement models but also oversimplifies to cases 
other than downward substitution. The paper takes 
account of the uncertainties such as due to Bullwhip effect 
in which the variability of the estimates or the forecasts of 
customer demand seems to amplify as the orders move up 
the supply chain from the customer, through retailers and 
wholesalers to the producer of the product or service [4]. 
The uncertainties affecting the inventory planning has 
been well established in the proposed article.  One 
frequently suggested strategy for reducing the magnitude 
of the bullwhip effect is to centralize demand information, 
i.e., to make customer demand information available to 
every stage of the supply chain. Our model assumes 
stochastically proportional yield losses i.e. the number of 
good items in a lot is the product of a random yield rate 
with arbitrary distribution and the lot size and it is 

applicable to large-scale problems involving multiple 
products with substitution. 
The multi-location inventory problem with transshipment 
between locations has been studied by [5], [6], and others. 
The work on Make-to-Stock (MTS) queues has been done 
by [7]. The Genetic Algorithm optimization of inventory 
control system by has been studied by [8]. The problems 
of two-stage stochastic linear programming have been 
solved by specialized computational procedures 
developed by [9]. The studies related to the modeling of 
the problem that determine the optimal point of 
differentiation, subject to a service-level constraint ([10], 
[11], [12], [13], [14], [15] etc.) have been incorporated in 
our model. The aims of the authors are to confine the 
advantages of inventory pooling when order-up-to-level 
inventory models are used to elicit replenishment. The 
model considered can be classified as a stochastic fixed-
charge-network flow problem [16]. A dual-based 
procedure for the stochastic un-capacitated facility 
location problem has been studied [17]. [18] studied exact 
solution procedures for a location problem with stochastic 
demands in which facility capacities (inventory levels) are 
chosen a priori. [19] studied a multi-product inventory 
model with downward substitution and fixed setup costs. 
The considered model can be clearly distinguished from 
their work, as they assume perfect yield, no shortage 
constraints (rather, fixed setup costs), and take advantage 
of the downward substitution structure to propose 
simulation-based heuristics. 
 
These shortcomings of previously applied algorithms on 
inventory deployment problem motivated the authors to 
develop a Meta heuristic, which is capable of escaping 
local optima. To enable this, the authors have extended 
previous approach of Psychoclonal ([20], [21]) by 
incorporating feature of reciprocal changes between the 
antibodies and antigens. The proposed algorithm termed 
as Endosymbiotic-Psychoclonal (ESPC) Algorithm, 
enjoys its flavor from Endosymbiotic algorithm [22] and 
Psychoclonal algorithm. The Endosymbiotic algorithm is 
based on the evolution process of eukaryotes from 
prokaryotes. An endosymbiont is an individual formed by 
the integration of two types of symbionts, in ESPC 
algorithm antigens (Ag’s) an antibodies (Ab’s) are 
modeled as symbionts, and the toroid matrix formed by 
the series of reciprocal changes refer as endosymbiont.  
Psychoclonal algorithm in ESPC algorithm inherits its 
attributes from Maslow’s need hierarchy theory and the 
Artificial Immune System (AIS) approach. There are 
different levels of needs arranged in a hierarchy, namely 
physiological needs, safety needs, growth needs, esteem 
needs, and self-actualization needs. Clonal selection 
explains the response of immune systems when a non-self 
antigenic pattern is recognized by antibodies. 
Characteristic features of immune systems are immune 



memory, hypermutation and receptor editing. The next 
section discusses the problem formulation in detailed. 
 
3.  Problem Formulation 
 
A. Problem Description 
The model considered has been taken from [15]. The 
model considered in this paper deals with the Inventory 
Deployment Problem (IDP). It considers basically two 
types of planning decisions: (i) strategic planning 
decisions made on an infrequent basis (e.g. quarterly or 
biannually); and (ii) operational planning decisions made 
more frequently (e.g., weekly or monthly). IDP refers to 
the problem of determining the demand volume, 
customer’s priorities and type of orders to be served in the 
Make-To-Stock (MTS) production mode on the basis of 
the given historical information. IDP also refers to the 
determination of the designs to be produced in the MTS 
mode to support the selected customer orders subject to a 
constraint on the total number of inventory designs that 
can be chosen based on known potentially large set of 
inventory. The orders that are not included in the MTS 
mode are served by Make-To-Order (MTO) production 
mode by default. The orders having insufficient planned 
production being planned to be served in the MTS mode 
are assumed to be satisfied by an alternate longer-cycle-
time sourcing method (e.g., MTO production, 
outsourcing) and incur a shortage penalty. The 
fluctuations in demand leading to the surplus production 
volume, which  remains unutilized is supposed to incur a 
penalty cost i.e. the opportunity cost  of reserving 
production capacity. The planning decisions of MTS 
orders are designed for the optimized production, in order 
to accomplish the aimed inventory levels on a monthly or 
weekly basis, if the variety of designs and their respective 
orders served by them are known. In the MTS mode the 
operational scheduling period can be convincingly 
assumed to be independent for the couple of reasons. 
Primarily, due to extended cycle times for slab 
production, and high reliability of production efficiency 
on sequencing and scheduling of the bottleneck resource, 
deficiency in one period cannot be regained in the 
subsequent period without considerable cost. 
Subsequently, rescheduling to back till a missed order, 
results in domino effect, which may cause numerous 
delayed subsequent customer orders. Therefore, in order 
to overcome this, either rescheduling of the order within 
the MTO mode is carried out or the order is completed 
from external sources i.e. by purchasing of on-hand 
slabs/coils at relatively higher cost. In addition, modern 
industries are equipped with sufficient capacity for 
finishing operations, leading to the shorter processing 
time for the customized finishing. In the proposed work 
we put forward a model that allocates a predetermined 
time-independent charge for each deficiency, and shortage 

of MTS items remaining within the same period. As per 
the proposed stochastic linear programming model, once 
the inventory-level decisions i.e. selection of the kind of 
order, design, and production-level designs are made, the 
supply and demand uncertainty is resolved, and optimal 
allocation of inventory is made realizing the customer 
orders in a second-stage linear program. 
 
 IDP Problem Formulation 
The proposed IDP problem has a set of potential supply 
nodes, J={1,2,......,m}, representing the set of design 
choices, and a set of potential demand nodes, 
K={1,2,........,l}, representing the different order choices. 
As per the application rules the allowable allocations of 
supply and demand are represented by the edges between 
the supply and demand nodes. The notations used are 
shown below: 

=e
jC  per unit cost of having surplus inventory of design j; 

=s
kC per unit cost of scarcity for order-type k; 

=jkG supplementary revenue from cycle time reduction if 
design j is applied to order-type k; 

=p
jC additional per unit cost of producing design j in the 

Make to Stock mode; 
=jd  binary decision variable representing the decision to 

stock design j; 
=kν  binary decision variable;  if order-type k is 

supplied from inventory, and 0 otherwise; 
1=kν

 c   = maximum number of permitted design choices; 
=jW production /procurement planned for design j; 
=jkO quantity of order-type k supplied by design j; 
=jku incidence parameter; if design j can be 

applied to order k and 0 otherwise; 
1=jku

=ks shortage for order-type k; 
=je surplus production of design j; 
=jY random yield rate for design j; 
=kX  random demand for order-type k; 
=ε random vector with yields, Y j and demands, X k, as 

components. 
ξ  and ψ represents the set of positive integers and 
positive real numbers respectively. Similarly ψ represents 
the set of all real numbers, and A = {0, 1} is the binary set 
of variables. The domains of the problem parameter are: 

AdandeSuWCGCCc kjjkjk
p
kjkkj ∈∈∈∈ )(,),,,,,,(, νψψζ ββ  

 the random vector ε has support , probability 
distribution P, and finite first moments, Ж. 

ml+⊆Θ ψ

Since IDP is formulated as two-stage stochastic integer 
program, the first stage corresponds to design and order 
choices, and , and the planned production 
vector, . The production cost incurred during the 

mAd∈ lA∈ν
mW ψ∈



first period is denoted as, ∑ . The production cost 

in the second stage is ∑ for excess production and 

for production scarcities a cost  is incurred. 

=
m
j j

p
j uC1

=
m
j j

e
jeC1

∑ =
m
j k

s
k sC1

 
The reduction in the cycle time due to matching designs 
with demand results in the total additional revenue equal 

to . The complete problem, assuming a risk-

neutral firm can be expressed as: 

∑ ∑=
=

m
j

l

k
jkjk OG1

1

)},,({ WdRWCFMax p ν+−=     
    … (1) 
Subject to  
∑ = ≤m

j j cd1    … (2) 

0,, ≥∈∈ WAAd lm ν   … (3) 
Where, ),,,( εν WdR is known as the recourse function. It is 
the expected additional revenue earned, net of any 
shortage/overage costs, acquiring from the inventory 
allocation decisions. In reality  
where 

)],,,([),,( ενν ε WdREWdR =

),,,( εν WdR  is defined by: 
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),,(, kjdXO jkjk ∀≤     … (7) 
),(,0,0 kjEO jjk ∀≥≥       … (8) 

 Equation (1)-(3) representing the complete problem is 
feasible for any (d, W), due to positive linear basis 
provided by (e, s) in constraints (5)-(6), and the fact 
that . In addition, randomness takes 
place only in the R.H.S. of constraints (5)-(8) and the 
coefficients of second stage are deterministic. The 
inventory is measured in tons and is treated as 
continuous variable. The total production in MTS mode 
accounts for less than the half of the plants capacity and 
as there are substantial production efficiencies associated 
with the high volume MTS mode, due to this reason, there 
is no upper bound on the variables W

),(,0,0 kjXY kj ∀≥≥

kjk SO

j. 
 
Some assumptions are assumed regarding the objective 
function coefficients such as non-negativity of the 
shortage costs. The insignificant revenues are such that if 
for some  (j, k), then  as well. In addition, 

i.e., it is never beneficial to 
select not to allocate accessible supply of design j to order 
k if for some j. The first stage procurement cost is 

assumed as , since otherwise it is 
insignificantly optimal to produce an infinite quantity of 
design j, and that for each design j, there is an order-type 
k such that since otherwise it is optimal to 
bring to a halt producing designs j completely. 

0=jku 0=jkG

),,(},0,max{ kjCCG e
j
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s
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Equation (2) representing the storage cell constraint plays 
a role analogous to fixed costs, through the implied 
opportunity cost, linked with not selecting one of the 
other potential designs. Equation (5) and (7) implies that 
optimal production level Wj

* = 0, if dj = 0 since otherwise, 
Ej > 0 and needless surplus costs are incurred with no 
superfluous rewards. Constraints (6) and (7) implies that 
vk

* = 0, if all dj for which ujk = 1 are zero. 
 
 
4.  Overview of ESPC Algorithm 
 
A. Endosymbiotic Algorithm 
Endosymbiotic Evolutionary Algorithm (EEA) was 
proposed by [23]. A symbiotic evolutionary algorithm is 
inspired by the biological co-evolution that is a series of 
reciprocal changes in two or more cooperative interacting 
species. The EEA constructs, and maintains a balancing 
population (Pop-B), and sequencing population (Pop-S) 
like the existing symbiotic algorithm. Pop-B and Pop-S 
consists of symbionts that are the individuals representing 
work assignment to stations, and model sequences 
respectively. Each of the individuals becomes a partial 
solution to the problem being solved. EEA maintains 
another population Pop-BS that consists of 
endosymbionts. An endosymbiont is an individual formed 
by the integration of the two types of symbionts, so that it 
becomes an entire solution representing a combination of 
work assignment and model sequence. Indeed, Pop-BS 
represents the process of forming eukaryotes from 
prokaryotes. 
 
The Endosymbiotic algorithm intends to replicate the 
natural process of Endosymbiotic evolution. The theory of 
Endosymbiotic algorithm was first proposed by [22]. The 
author provides an explanation for the evolution process 
of eukaryotes from prokaryotes in which the simple 
structured prokaryotes enter into a larger host prokaryote, 
and start living together in symbiosis and evolve to a 
eukaryote. EEA incorporates an evolutionary strategy 
replicating the Endosymbiotic process embedded in an 
existing symbiotic evolutionary algorithm.  
 
B. Psychoclonal Algorithm 
The Psychoclonal algorithm enjoys the flavour of 
Maslow’s need hierarchy theory [24] and Theory of 
clonal selection [25]. Maslow’s need hierarchy theory 
helps in constraints satisfaction by assessing the 



antibodies formed at each step. The clonal part helps in 
the somatic maturation of antibodies. Need Hierarchy 
Theory [24] hypothesize that all people posses a set of 
five needs arranged in hierarchy, from most fundamental 
or basic survival need to the most sophisticated needs of 
self-actualization. According to this theory, one can move 
to upper strata of hierarchy if the lower levels of needs are 
satisfied. 
 
Clone selection explains the response of the immune 
system, when a non-self antigenic pattern is recognized by 
a B-cell. Antigen (Ag) stimulates the B-cell to proliferate 
and mature into terminal Antibody (Ab) (non-dividing) 
secreting cells, known as plasma cells. The cells divide 
themselves (no crossover) to generate clones. During 
reproduction, the B-cells progenies undergo a 
hypermutation process that together with the strong 
selective pressure, results in B-cells with an antigenic 
receptor presenting higher affinities than with the 
selective antigen.   B-cells, in addition differentiate into 
long-lived B memory cells with a long-life span. These 
memory cells are pre-eminent in future responses to the 
same antigenic pattern, or a similar one. The 
aforementioned, process of clonal, proliferation, and 
affinity maturation is schematically shown in Figure 1 
([20], and [26]).  
 
Nomenclature 
Ab : Set of Antibodies available. 
Ag : Set of Antigens available. 
Abd :  Set of the new Ab’s that will replace Rc amount 
of the  lower affinity Ab’s from Ab. 
Abk, n: Ab’s from Ab with highest affinities. 
Agm : Population of m Ag’s. 
Rk : Population of Nc clones generated from Abk, n. 
Rk

* : The population after hypermutation. 
BR* : Best repertoire. 
Â      : Vector containing values of objective function 
g (.) as the affinity of all Ab’s   
Â * : Vector containing values of antigenic affinity 
for  matured clones.  In relation to the antigen, Agj
N :  The total number of antibodies 
Nc : The total number of clones generated for each 

of the Ag’s =  (β. N),   i=1,2,..n. ∑
=

n

i
R

1

R (.) :  Operator that rounds its argument toward the 
closest integer. 
β  :  Multiplying factor   
POPij :  Population set of constrained satisfied Ab’s.  
PABij :  Population of randomly generated Ab’s.  
PAGij :  Population of randomly generated Ag’s. 
S : Number of bits in eukaryote.  
The flow of the ESPC algorithm has been shown in the 
Figure 2. The detailed steps of the algorithm have been 
discussed in the next sub-section. 

Steps of the ESPC Algorithm  
 
Need Level I:   
Physiological needs: In optimization, this corresponds to 
the generation of possible sequences based upon the 
problem environment.  
For each cell; PABij and PAGij has been generated 
randomly, PABij is a 2D structure of toroid grid 
containing the generated set of Ab’s. PAGij is also a 3x3 
matrix of randomly generated constraints is Ag’s. A set of 
eukaryotes with satisfied constraints are generated 
randomly or based on certain rules are stored in POPij 
matrix.   
 
Need Level II:   
Safety needs: The safety needs has to do with physical 
and physiological safety from external threats to our well-
beings. An external threat in the engineering perspective 
corresponds to constraints imposed on the problem. This 
is where evolution of a particular entity or candidate 
solution is carried out. 
 
 Here, new Ab is produced by cooperation between PABij 
and PAGij. Calculate the affinity vector (Â) of the 
generated Ab. Randomly select a population from POPij 
and compare it with newly generated Ab. If the Selected 
eukaryote from POPij has Â greater than that of generated 
Ab then it will update POPij toroidal matrix else algorithm  
will move to improve the quality of Ab by cloning and 
that of eukaryote by carrying out reciprocal changes in it. 
 
Need level III: 
Social needs: In engineering this refers to the selection of 
the candidate solution and the term social reflects the 
interaction between candidate solutions. 
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Figure 2: Flow diagram of Endosymbiotic-Psychoclonal Algorithm 

 
Growth needs: Here, candidate solutions diversify to 
extend the search-space. This movement towards local 
optima is the basic mechanism of every evolutionary 
technique e.g. crossover and mutation in GA.  
 
Set Rk is submitted for hypermutation, inversely 
proportional to the vector affinity (Â), generating a 
population Rk

* of matured clones (the higher the affinity, 
the smaller the mutation rate). If the solution of Rk

* don’t 
improve after fixed number of iteration (Reject is taken 2 
in this paper) then selected Ab is edited using receptor 
editing.   
 
After satisfaction of need level IV, vector affinity (Â) of 
the matured clones Rk

* is evaluated and the best repertoire 
(BR*) is passed through Need level III. 
Need level V:   
 
Self-actualisation needs: Self-actualization needs are 
unique and they can never be fully satisfied or fulfilled. 
This is very true for any optimization problem as we 
always concentrate on finding near optimal solution rather 
than the global-optima. According to theory, the more 
self-actualization needs are fulfilled, the stronger they 
become. 
 
With the number of generation the solution quality of 
POPij goes on improving, when the solution quality stops 
improving, the algorithm is supposed to achieve self-
actualisation needs. In ideal condition self-actualization is 
achieved at optimal solution. As mentioned above, this 
level becomes stronger and stronger after a number of 
generations. Thus, the process repeats till N=Ngen 
(maximum number of generation). 
 
 
 
 
 

 
5.  Numerical Experiment 
 
In this study, the authors have proposed an ESPC 
algorithm to solve an inventory deployment problem.  The 
dataset for different type of scenarios have been randomly 
generated using the information provided in Denton and 
Gupta (2004). The coefficients for additional revenues, 
shortage costs, and excess costs are all uniformly 
distributed as (1, 4). Additional procurement costs CP are 
assumed to be the same for all supply nodes and are fixed 
at one. The detail information regarding, demand for 
different order-type, yield rate for different design, 
Normal probability plot, and Histogram showing the 
deviation from the normality of the dataset can be obtain 
from www.geocities.com/gurukul007/inventorydata.pdf. 
The ESPC algorithm has been applied on the generated 

data. To initiate the working of the proposed algorithm, 
initial toroid matrix i.e. POPij matrix consisting of 
eukerates have been generated. The eukerates of toroid 
matrix can be generated randomly or based on some rules. 
The toroid matrix is generated i.e. POPij matrix containing 
feasible solution with all constraints satisfied. PAGij 
matrix consists Ag’s, in our case these are the constraints 
represented by Equation (2)-(8) in section 3. Then PABij 
matrix is generated consisting of Ab’s viz. candidate 
solution. The Ag’s are attacked on Ab’s randomly i.e. 
constraints are selected randomly and infeasible solutions 
are traced back into the feasible solution space based on 
the constraint represented by the A. An example of an 
antibody has been shown in Figure 3 formed after the 
attack of Ag’s. On the basis of Ab generation, the order-
type has been secreted as shown in Figure 4. The Vector 
affinities of the generated Ab’s have been calculated 
using equation (1). The randomly selected Ab from PAB 
matrix has been  

1 0 1 0 0 0 1 1 0 1 
Figure 3: An example of Antibody 
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Where, 
 
σ = Rate of hypermutation 
δ = Control factor of decay 
After hypermutation, maturation is carried out, by 
attacking the Ag’s on the reproitires formed from cloning. 
Best matured reproitire has been compared with the 
eukerates, if the solution doesn’t improve for a fixed 
number of iteration (In this research, Reject is set to 2) the 
antibody is edited using receptor editing. The solution 
quality in the toroid matrix i.e. POPij improves with the 
number of iterations satisfying the self actualization needs 
of Ab’s and eukerates.  
 
The proposed algorithm has been coded in MATLAB 5.5 
and tested on PIV 1.9 GHz processor. In this paper, the 
authors have incorporated the merits of Endosymbiotic 
algorithm into the Psychoclonal algorithm and proposed a 
new Endosymbiotic Psychoclonal algorithm (ESPC). The 
ESPC algorithm has faster convergence than the GA 
(Genetic Algorithm) or SA (Simulated Annealing) based 
approaches. A prominent feature of the proposed 
algorithm is its ability to explore different areas of the 
solution space simultaneously, by breaking initial 
chromosomes into several populations, which enables it to 
take cut above the traditional GA’s, where genes are 
blindly divided into two chromosomes. The diversity in 
the proposed algorithm is ensured by incorporating 
cooperation and co-evolution among the symbionts. 
 
Endosymbiotic evolution, which is an extension of 
cooperative or symbiotic evolution, is yet another novel 
genetic approach that emulates the natural evolution of 
endosymbionts. An assay of the search strategy adopted 
by symbiotic evolution reveals that even though different 
populations cooperate, the distributed search over all the 
populations might hinder the convergence to good 
solutions. The proliferation of Endosymbiotic 
evolutionary algorithm has endowed the search strategy 
with an effective passage to get by the aforementioned 
situation. The subsistence of endosymbionts facilitates the 
exploitation along with the embedded parallel search that 
able 1: Numerical Results for Randomly Generated 
Dataset  

K=25, Uj ~(0.8,1), j and D∀ k ~N(10,2) 

ESPC GA SA  
a) 

 

(c, n, m) AV σ AV σ AV σ 

 

0.3) 

(5, 10, 20) 14.676 0.41 12.256 0.81 9.125 0.31 

 (5, 10, 30) 0.929 1.88 0.9156 0.95 0.756 1.63 

 (5, 20, 30) 7.234 0.59 6.584 0.48 6.452 0.62 

 (5, 20, 40) 3.068 0.24 3.124 0.75 1.251 0.34 

 (10, 20, 30) 0.864 0.35 0.758 0.25 0.565 0.76 

 (10, 20, 40) 3.514 0.57 2.947 0.20 3.125 0.45 

 (10, 30, 50) 4.505 2.14 3.210 1.23 2.265 0.65 

 

.4) 

(5, 10, 20) 10.266 0.35 10.256 0.23 9.303 0.53 

 (5, 10, 30) 2.051 0.023 2.131 0.35 2.015 0.32 

 (5, 20, 30) 10.567 2.54 9.154 3.15 9.532 0.14 

 (5, 20, 40) 1.080 0.025 0.926 0.023 0.712 0.21 

 (10, 20, 30) 4.135 0.11 3.589 0.15 4.021 1.05 

 (10, 20, 40) 6.034 0.54 5.121 0.63 0.593 0.92 

 (10, 30, 50) 4.838 0.47 4.568 0.83 3.978 0.35 

 

.25) 

(5, 10, 20) 9.035 0.515 9.142 0.61 8.691 0.61 

 (5, 10, 30) 2.851 0.41 2.816 0.56 2.563 0.26 

 (5, 20, 30) 2.237 0.64 1.915 0.34 1.654 0.25 

 (5, 20, 40) 1.909 0.15 1.896 0.11 1.726 0.21 

 (10, 20, 30) 7.420 0.24 7.670 0.68 6.840 1.27 

 (10, 20, 40) 11.10 0.86 10.26 1.67 10.641 1.25 

 (10, 30, 50) 0.135 0.002 0.054 0.004 0.03 0.002 

 = Average;   K = No. of scenarios; D = demand;   c= Max. no. of 
mpared with the eukerates selected from the toroid 
atrix represented by POPij matrix. If the vector affinity 
 selected antibody is greater then the solution selected 
m the toroid matrix then it will replace the solution else 

lected Ab is send for cloning carryout at need level III. 
e hypermutation is carried out on cloned Ab.  

e proposed algorithm has deterministic procedures for 
ding the rate of hypermutation, which is given as: 

itted design;   n = No. of design choices; m = No. of order choices  
results in speedy convergence to better quality solutions.  
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Figure 4: Represents Order-type Assignment on Design Based on Ab Generation 

 
The result obtained by ESPC algorithm has been 
compared with Genetic Algorithm (GA) and Simulated 
Annealing (SA).The detailed result has been given in 
Table I. While comparing the proposed ESPC algorithm 
with that of the GA and SA the crossover probability was 
set to be 0.6 and the mutation probability was set to 0.1. 
In SA the initial temperature was set to 200 and the final 
temperature was 7.    From the table it can be seen that the 
tendency of SA to get entrap in local optima is very high 
and therefore the average solution quality of SA in most 
of the cases is less in comparison with ESPC and GA.   
 
The GA in most of the cases gives result near to that of 
ESPC but when the experimentation on convergence rate 
of both algorithms is done, it is found that GA got very 
slow convergence rate. The average number of 
generations required by GA to reach optimal / near 
optimal solution is 761 with standard deviation of 67 
generations whereas, in ESPC the average number of 
generation required by algorithm to reach the optimal/near 
optimal solution is 264 with standard deviation of 32 
generations.  Thus, ESPC algorithm is around 288 times 
faster in converging toward the optimal / near optimal 
solution then GA. 
 
 
6.  Conclusion 
 
In this proposed work a problem pertaining to inventory 
deployment problem has been addressed using a new 
optimization approach named Endosymbiotic-
Psychoclonal Algorithm. The performance of proposed 
Endosymbiotic-Psychoclonal algorithm has been tested on 
computer simulated dataset, the results obtained are found 
exemplary when the same has been compared with 
Genetic Algorithm (GA) and Simulated Annealing (SA). 
Tuning of various parameters of Endosymbiotic-
Psychoclonal algorithm has been rigorously carried out 
and appropriate values have been selected after large 
number of trial runs. 
 
For future work a robust methodology need to be devised 
to tackle the large experimentation time required to tune 
the different parameters of Endosymbiotic Psychoclonal 
Algorithm. The ESPC algorithm can be applied to solve 
multi-objective real time problems involving number of 
constraints. The proposed algorithm also requires to be 
tested for solving problems from diverse field of 
manufacturing environment. 
 

 
References 
 
[1] E. Ignall, and A. Veinott, Optimality of myopic 
inventory policies for several  substitute products, 
Management Science, 15, 1969, pp. 284-304. 
[2] D. Sparling, J. Miltenburg, The mixed-model U-line 
balancing problem, International Journal of Production 
Research, 36 (2), 1998, pp. 485-501. 
[3] Y. Bassok, R. Anupindi, and R. Akella, Single period 
multi-product inventory models with substitution. 
Operation Research, Vol. 47, 2000, pp. 632-642. 
[4] F. Chen, D.  Zvi, J. K. Ryan, and D. S. Levi, 
Quantifying the Bullwhip Effect in a Simple Supply 
Chain: The Impact of  Forecasting, Lead Times, and 
Information. Management Science, Vol. 46, No. 3, 2000, 
pp. 436-444. 
[5] U. S. Karmarkar, Convex/stochastic programming and 
multi location inventory problems. Naval research 
Logistics Quarterly, 26, 1979, pp. 1-19. 
[6] L.W. Robinson, Optimal approximate policies in 
multi-period, multi-location inventory models with 
transhipments.  Operations Research, Vol. 38, 1990. pp. 
278-295. 
[7] J. A. Buzacott, and J.G. Shanthikumar, Stochastic 
Models of Manufacturing Systems, Prentice Hall, 
Englewood Cliffs, 1993, NJ. 
[8] S. M. Disney, M. Naim, and D. R. Towill, “Genetic 
Algorithm Optimization of a class of Inventory Control 
Systems, International Journal of Production Economics, 
Vol. 68, No. 3, 2000, pp. 259-278. 
[9] S.W. Wallace, Solving stochastic programs with 
network recourse. Networks, Vol. 16, 1986, pp. 295-317. 
[10] A. Garg, and C.S. Tang, On postponement strategies 
for product families with multiple points of 
differentiation. IIE Transactions, Vol. 29, 1997, pp. 641–
650. 
[11] H. L. Lee, and C.S. Tang, Modeling the costs and 
benefits of delayed product differentiation. Management 
Science, Vol. 43, 1997, pp. 40–53. 
[12] G.A. Graman, and M. J. Magazine, An analysis of 
packaging postponement, in Proceedings of the 1998 
MSOM conference, University of Washington School of 
Business, Seattle, WA, 1998, pp. 67-72. 
[13] D. Gupta, and S. Benjaafar, Make-to-order, Make-to-
stock, or delay product differentiation? - A common 
framework for modeling and analysis. IIE Transactions, 
Vol. 36, 2004, pp. 529-546. 
[14] J. M. Swaminathan, and S. R. Tayur, Managing 
design of assembly sequences for product lines that delay 
product differentiation. IIE Transactions, Vol. 33, 1999, 
pp. 1015-1027.  



[15] B. Denton, and D. Gupta, Strategic inventory 
deployment in the steel industry, IIE Transactions, Vol. 
36, 2004, pp. 1083-1097. 
[16] G.L. Nemhauser, and L. A. Wolsey, Integer and 
combinatorial Optimization, J Wiley, New York, 1999, 
NY. 
[17] F. V. Louveaux, and D. Peeters, A dual-based 
procedure for stochastic facility location. Operations 
Research, Vol. 40, 1992, pp. 564-573.    
[18] G. Laporte, F.V. Louveaux, and L. Van Hamme, 
Exact solution of a stochastic location problem by an 
integer L-shaped algorithm. Transportation Science, Vol. 
28, 1994, pp. 95-103.  
[19] U. S. Rao, M.S. Jayashankar, and J. Zhang, A multi-
product inventory problem with setup costs and 
downward substitution, working paper, Carnegie mellon 
University, Pittsburgh, PA, 2000. 
[20] M. K. Tiwari, Prakash, Kumar, and A. R. Mileham, 
Determination of an optimal sequence using the 
Psychoclonal algorithm. IMechE, Part-B: Journal of 
Engineering Manufacture, Vol. 219, 2005, pp. 137-149.     
[21] R. K. Singh, P. Kumar, and M. K. Tiwari, 
Psychoclonal based approach to solve TOC product mix 
decision problem. International Journal of Advanced 
Manufacturing Technology, 2005, (ISSN: 0268-3768 
(Paper) 1433-3015 (Online)).     
[22] L. Margulis, Symbiosis in Cell Evolution, WH 
Freeman, San Francisco, 1980. 
[23] Y. K. Kim, J. Y. Kim, and Y. Kim, An 
Endosymbiotic evolutionary algorithm for the integration 
of balancing and sequencing in mixed-model U-lines, 
European Journal of Operational Research, Vol. 168, No. 
3, 2006, pp. 838-852 
[24] N. R. F. Maier, Psychology in industry, Boston: 
Houghton-Mifflin, (Third Edition), 1965, pp. 417-419.  
[25] L. N. De Castro, and F. J. Von Zuben, Artificial 
Immune Systems: Part I – Basic Theory and Applications, 
(Tech. Rep. – RT DCA 01/99). Campinas, SP: State 
University of Campinas, Brazil. [On-Line], 1999a.                                                                     
[26] L. N. De Castro, and J. Timmis, “Artificial Immune 
Systems: A Novel Paradigm to Pattern Recognition”, In 
Artificial Neural Networks in Pattern Recognition, 
SOCO-2002, (University of Paisley, UK), 2002, pp. 67-
84. 


	ABSTRACT
	KEY WORDS


