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Abstract

Evolution in component systems is critical with respect to
the maintainability of these systems. Systems evolve due
to changes in the environment or due to improvements of
individual components. Even though component technol-
ogy aims at reducing the dependencies between components,
necessary replacements of components might affect the com-
position of systems. We introduce a composition and re-
placement calculus based on the w-calculus, allowing us to
specify composition and to reason about replacements and
their effects.

1. Introduction

A formal semantics for components and component compo-
sition is essential if rigorous analysis and reasoning in the
development and maintenance of component systems shall
be deployed. Our objectives are a formalisation of basic
composition principles, similar to [1, 2, 3], and the provision
of a framework for change and evolution analysis. The mo-
tivation to use the w-calculus lies in a similarity between the
notions of mobility in the m-calculus and evolution in com-
ponent technology. Mobility is defined as the capacity to
change the connectivity of a network, i.e. to change the spa-
tial configuration. Evolution in large component system is
also about the change of connections between components.
Therefore, the w-calculus seems to be a suitable formal no-
tation to develop a framework for specification and reason-
ing about component composition and, in particular, evolu-
tion in these systems. As we will see later on, we will pro-
pose some change to basic 7-calculus semantics and develop
a type system reflecting component technology principles.
The result is a mixed calculus, based on m-calculus basics
and concepts from component technology. The type system
plays the role of the integrator. Types govern how names
can be used in process calculi [4]. They classify patterns
of behaviour, and they can also reflect connectivity and the
control mobility and evolution.

We essentially define a composition protocol with dif-
ferent phases: matching and connector establishment, in-
vocation and execution of the service, an invocation reply,
and, later on, dynamic replacements. The different phases
will be described by different transition rules. We argue
that a process-oriented look at component composition is of
major importance for the reliability and maintainability of
evolving systems. We will complement this process view on
compositions with methods to reason about replacements
of components in changing environments. The evolution of

systems is often neglected in formal approaches to software
engineering problems. Some papers have addressed dynamic
reconfiguration and replacement, see for example [5] or [6],
but most of these papers have addressed the problem from
a pragmatic or not fully rigorous point of view. We devise
a consequent approach in this direction, overcoming these
deficiencies, by formulating a formal framework of change
and reconfiguration for component composition.

Section 2 illustrates component composition. In Section
3 we introduce some basics of our composition and replace-
ment calculus. Section 4 focusses on contract-based match-
ing and connector establishment. The type system is in-
troduced in Section 5. Section 6 specifies the life cycle of
component composition, without looking at replacements.
Replacements and how to reason about their effect is the
subject of Section 7. Finally, we discuss related work and
end with some conclusions.

2. Components and Composition

Our component model is based on port-based components,
where ports represent services, with export and import in-
terfaces for provided and requested services. Two compo-
nent interfaces are presented below - Interface requesting
services and DocServer providing services - both part of a
document manipulation and storage system.

Component Interface
import services
servReqDoc (uri:URI) :Doc
servModDoc (doc:Doc,upd:Txt)
export services
openDoc (uri:URI)
saveDoc(uri:URI, upd:Txt)

The interfaces uses services from the server component to
request (load) and modify (store) documents.

Component DocServer
import services

export services
reqDoc (uri:URI) :Doc
modDoc (doc:Doc,upd: Txt)

Documents are identified by URIs — uniform resource iden-
tifiers. The request service reqDoc returns a document, but
does not change the state of the server component, whereas
the modification service modDoc updates a document on the
servicer side without returning a value.



Service ports are points of access described in compo-
nent interfaces. We assume these ports to be specified in
some kind of logic that allows to express pre- and postcon-
ditions as abstractions for ports [7, 8], enabling the design-
by-contract approach [8, 9]. Hoare logic or modal logics are
suitable frameworks [10, 11]. A requirements specification
of the service user servModDoc could look like:

servModDoc ( myDoc:Doc, myUpd:Txt )
pre valid()
post updated()

Documents shall be XML-documents here, which can be
well-formed (correct tag nesting) or valid (well-formed and
conform to a document type definition DTD). A service
provider specification could look like:

modDoc ( doc:Doc, upd:Txt )
pre wellFormed()
post updated() A acknowledged()

A contract can be formed between interface and docu-
ment server. The service modDoc of the document server
matches the requirements of servModDoc - a service that
might be called in methods provided by the interface. modDoc
has a weaker, less restricted precondition - valid() implies
wellFormed() - and a stronger postcondition - the conjunc-
tion updated() A acknowledged() implies updated(). This
means that the provided service satisfied the requirements;
it is even better than requested.

We will neglect a detailled presentation of component
semantics in this presentation; our focus is on the compo-
sition semantics. The composition of components [12, 13]
will be defined using the w-calculus [14, 15, 16]. Interaction
is the composition principle. Ports represent services of a
component. We will distinguish different roles of ports, e.g.
whether a service is provided or requested. The semantics
of service execution is reflected in the type system through
pre- and postconditions. The type system is the link be-
tween the component and the composition semantics. How-
ever, the pre- and postconditions, forming a contract, are
also important for the composition process. A conformance
condition expresses that two ports match based on whether
a provided service satisfies the needs of a requested service.
Technically, the matching process is facilitated through con-
tract ports servModDocc and modDocc. The user interface
requires a service (annotation REQ) and the document server
provides a service (annotation PRO).

Interface = REQ servModDocc (servModDocs).Interface’
def

DocServer = PRO modDocc (modDoc;).DocServer’

The names are not relevant for components to match - only
the pre- and postconditions represented through types are.
Successful matching results in the establishment of a connec-
tor - a private channel between the components that allows
one component to use services provided by the other.

Interface’ & INV servModDoc;(doc,upd).Interface”

def —_—
DocServer’ = EXE modDocy(x1,x2).DocServer”

The user interface can invoke the service (INV) through the
interaction port servModDocy, which will trigger the execu-
tion (EXE) of modDoc; by the server. The composition, i.e.
establishment of a connector, is one of the key activities; the
other is replacement. Systems evolve over time, components

are replaced by improved or modified versions. Methods to
answer whether for example the user interface or the docu-
ment server can be replaced shall be introduced.

3. Calculus - Syntax and Type Basics

This section shall introduce basics of our calculus, such as
syntax of the notation and some type issues, before we look
at rules for component composition.

3.1 Syntax of Component Composition

The basic element describing activity in the w-calculus are
actions. Actions are combined to process expressions. Ac-
tions are expressed as prefixes to these process expressions:

m := PTYPE Z(y) | PTYPE z(y) | T

Actions can be divided into output actions Z(y) - the name
y is sent along channel (or port) = -, input z(y) - y is re-
ceived along z, and a silent non-observable action 7. We
have annotated these action prefixes by port types, which
will explain the role of the port with respect to life cycle ac-
tivities such as service request or service invocation. Here is
the full list of action prefixes, their port types and polarities
(types and polarities will be explained soon):

m u= REQ m¢(my) + Request
PRrRO n¢(ng) — Provide
INnv mr{a1,...a;,mr) + Invoke
EXE n;(z1,... ,Zk,NR) — Execute
REP Tr(b) + Reply
REs mg(y) — Result

The syntax of composition expressions involving the action
prefixes is the following:

P := vmP Restriction
P | P Parallel composition
\P Iteration
Yier .P; Summation
0 Inaction

Restriction means that m is only visible in P. Summation
m;.P; means that one m; is chosen and the process tranfers
to state P;. Iteration !P means that the process is executed
an arbitray number of times. This follows the presentation
of the m-calculus in [15]. We also need abstractions, i.e.
defining equations of the form A(a) = P4. Even though the
polyadic w-calculus is intended to be used, we often use the
monadic variant here in order to keep the notation simple.
The substitution {p/a}P means that b replaces a in P.

3.2 Ports and their Types

The entities in our composition system are values, ports and
components. Values are characterised by the usual value
domains as types. The list of basic types t1,t2,... shall
be assumed, but not explicitly specified. Components are
syntactically characterised by an interface with service sig-
natures, separated into import and export elements.

The most important entities are the ports. Each port p
is essentially a family of ports p = (pc,pr,pr). The first
port pc is the contract port, essentially an abstract interface
described by a signature, a precondition and a postcondi-
tion. ps is the connector activation (or interaction) port.
This port is used to invoke a service. The port pr carried



mg : CTR(SIG(Th,...,Th, +CRE(T)),
PRD(PRE), PRD(POST))

nc¢ : CTrR(S1G(TY,..., T, CRE(T")),
PRD(PRE’), PRD(POST’))

mr : CAc(Ti,...,Tn,CRE(T))

ny : CAc(Th,...,T,,CRE(T))

mr : CRE(T)

ng : CRE(T)

Figure 1: Ports and their channel types.

the reply from the service invocation. We distinguish a port
type and a channel type for each port.

Port types describe the functionality of the port within
the component (e.g. contract or connector ports) and its ori-
entation (in- and out-ports). Port types Tp(p) or p :p t for
port p are denoted by 3-letter lower case abbreveations. The
annotations in the action prefix syntax (see Section 3.1) de-
note port types, e.g. ¢ is a request port; nc is the dual
provide-port: T,(mc) = REQ and Tp(nc) = Pro. Each
port has also an orientation - called the polarity; all ports
of one port family follow always the same orientation pat-
tern: +,+, — for requested (imported) services, saying that
contract and connector ports are output ports (+’) and the
reply port is an input port (—’), and —, —, + for provided
(exported) services. Each '+’ stands for an output capability
(the port can only send); ’—’ stands for an input capability
(the port can only receive).

Channel types describe what kind of entities can be trans-
ported: a contract port pc :c CTR(SIG, PRE, POST), a con-
nector activation or interaction port pr :¢ CAc(Th,..., Ty,
CRE(T)), and a connector reply port pr :c CRE(T). This
characterises the channel by specifying the expected capac-
ity - what data can be transported. It will constrain the
composition and interaction between components. Contract
ports can transport connectors, which are characterised by a
contract type. Connectors provide the connection between
components to invoke a service. Channel types Tc(p) or
p :c t for port p are denoted by 3-letter abbreveations start-
ing with an upper case character, see Figure 1.

A contract consists of a service signature, a pre- and
a postcondition. Connectors when transfered on channels
have to satisfy a contract type. On connector activation
ports, data values and a reply channel can be transfered;
on connector reply ports, data can be transfered. The key
criterion for matching, i.e. the succesful connection of two
components through a connector, are are contracts (this will
be explained in the next subsection). Opposite orientations
also have to match in a successful composition of compo-
nent ports. The signature for a remote method execution
is: S1G(Th,... ,T,,CRE(T)). This is an adequate represen-
tation, reflecting the fact that parameters are passed, and
possibly a result has to be transfered back on a channel with
a different capacity (type). For local method executions, the
usual notation Ty x ...x T, — T apply. Pre- and postcondi-
tions are formed using the predicate type constructor PRD.

Connector ports represent services. Connectors are chan-
nels that can carry data elements - for the connector activa-
tion additionally a reply channel. Connector ports and con-
nector reply ports are only used as restricted (private) chan-
nels between components that match based on contracts.

This means that these channels are only available to these
two components.

3.3 Subtypes

In principle, the definition of a subtype relation is possible
for all kinds of entities in our notation. However, we will
focus on ports here. The subtype relation will help us to
determine whether two ports, representing services, match
and whether they can be composed. Later on, this con-
cept will also be used to determine consistent (effect-free)
replacements.

We have already seen that the channel types of con-
tract ports are contracts consisting of a service signature,
a precondition and a postcondition. For a required ser-
vice m¢ :c CTR(SIG,PRE,POST) and a provided service n¢ :c
CTR(SIG’,PRE’,POST’), we say that nc matches mc if

SIG = SIG’ A PRE — PRE’ A POST’ — POST

This is the combination of two classical refinement relations
(weaken the precondition and strengthen the postcondition)
from the Refinement Calculus [17, 18], see also [19] for other
matching approaches.

4. Contract Matching and Connectors

We define the operational semantics of component compo-
sition in this section. mc,nc are contract ports, mp,n;s
are connector activation or interaction ports, and mg,ngr
are connector reply ports. (mc¢, mr, mg) is an output port,
i.e. actively requests services from other components, and
(nc,nr,ng) is an input port, providing services to other
components. Ports are typed. The connector ports (ac-
tivation and reply) are restricted to components matched
based on contracts. We will introduce a number of transi-
tion rules describing state changes, including activities such
as contract matching, connector establishment, interaction
and interaction reply. The rules will define the transition
semantics. They will replace some of the transition rules for
the classical w-calculus, in particular the reaction rules - see
e.g. [16] Table 1.5. Other rules are still valid.

4.1 Contracts

Two components can react, i.e. can be connected, if their
contract types (end points of possible channels) form a sub-
type relationship. This changes the original w-calculus re-
action rule which requires channel names to be the same.
Here we only require a subtype relationship between the
ports. The receiver can accept an input based on the type,
not the name. We assume the following channel types t;n, =
CTR(SIG, PRE, POST) and t,, = CTR(SIG’, PRE’, POST’) for
contract ports m¢ and nc, respectively. The contract type
tno is a subtype of ¢, if the precondition is weakened and
the postcondition is strengthened. Signatures are assumed
to be equal. The following transition rule — the contract
rule [T-CTR] — describes matching of services:

REQ mig(ms).C "5 ¢ Pro ne(ng).P S0 P
REQ mc{m1).C|PrO nc(n;).P - C~P

(@

where side condition is ® = t,, < tm,. The connection
def

C~P = vc({gm1)C|{c/ni}P) introduces a fresh variable ¢
- free in C and P - creating a private (restricted) channel
¢ called the connector. This rule expresses the connector



establishment. Ultimately, we will chain together several
components that will import services from others.

A second typing constraint is hidden. REQ and PRO de-
note port types, i.e. m¢ :p REQ and n¢ :p PRO. These are
type annotations to the ports. Here, the port types match:
REQ is the complement of PRO, and the polarities are op-
posite. We write 7 (mc) ~ 7 (n¢) in this case.

Type systems for the mw-calculus usually constrain data
that is sent, here we constraint reaction (the interaction be-
tween agents). The contract rule cannot be translated to the
match-rule found in some w-calculus variants. Our contract
rule is similar to transition rules describing reaction that are
based on bounded output Z(z) where z is introduced as a
bound variable forming a restricted channel [16]. We have
chosen to introduce a fresh variable ¢ instead.

4.2 Connectors

We assume that a private channel ¢ - the connector - has
been established between client and provider. This channel
is used by the client to invoke a service nr at the server side.
Parameter data a : t, with ¢, < ¢, and a reply channel mp :
tmp are send to the provider. The connector activation
rule [T-CAc] is defined as follows:

Inv m_j(a,mR).Cm_Im—’TR)C ExEe nz(x,nR).PnI(w—’gR)P

INV mr{a, mg).C|EXE n;(z,ngr).P — C~{a/x}P

where ® = t,; < tym;,a : pre. The types tn,; and t,, are
the connector activation types CAc(t1,... ,tm, CRE(t)) and
CAc(ty, ... ,t,, CRE(t)), respectively. The reply channel is
again a private channel between the two components that
replaces mg and ngr. Type equality (or a subtype relation)
for m; and n; is not required if we can guarantee that the
connector types satisfy the contract types and that the con-
tract matching has successfully been executed. A protocol -
specified in form of a component life cycle - can guarantee
this. We will discuss the side condition a : pre shortly.
The last rules is the connector reply rule [T-CRE]:

REs mr(y).C "2YC  Rep nr(b).P EY P
RES mg(y).C|REP ng(b).P — {py)C~P

(®

where ® =t,, <tmpy,b: post. We assume t, <t,. b is the
result of the internal computation, i.e. b is a function of .
The contract with pre- and postconditions can be re-
flected at the connector level. We associate pre- and post-
conditions with the in- and out-ports. Input a is required
to satisfy the precondition pre and output b is required to
satisfy the postcondition post. These assertions are obli-
gations, formalised by contracts, to be satisfied by client
(pre) and provider (post) at runtime. This attachment of
obligations to the connectors results in more symmetry and
links contracts and connectors. Pre- and postconditions are
formulas, but here they are evaluted at runtime when the
corresponding method is invoked and executed.

5. Types and Subtypes

We use the type system to control the correct establishment,
use and replacement of connections between components.
Especially subtypes are important for this purpose.

We use typing rules to describe our type system. Syntac-
tial aspects of our notation have been dealt with in previous

(®

T == B Basic type

| L Link type

| SiG(T'x...xT xL) Signature

| PrD(T) Predicate
L == PC Port and channel type
P := + (REQ|PrO|INV |

EXE | REc | REP)  Port type
CTrR(T'xT xT) Contract
CAc(T x ... x T x L) Connector activation
CRE(T) Connector reply

Figure 2: The syntax of the type language.

sections. We will address the relation between the type sys-
tem and the transition semantics. The type safety property
guarantees that well-typed expressions (expressions whose
types can be infered using the type system) do not fail under
transition. We show that the well-typedness is preserved.

5.1 Typing Rules

A typing context I' is a finite set of bindings - mappings
from names to types. Three types of judgments are used:

Tka:T name z has type T'
'S T typeS is subtype of T
I'+P expression P is well-typed

The type language syntax is defined in Figure 2. The con-
structors CTR, CAc, CRE are the link-type constructors.
Their purpose is to classify channels based on the data that
is transfered along them. We leave the set of value types un-
specified. We assume that there is at least one basic type.
S1G and PRD are standard constructors for service signatures
and predicates, the other type constructors are application-
specific to the component context.

The semantics of the type system will be defined by typ-
ing rules for basic types, type constructors, subtypes and
process expressions. We will now address these different
kinds of rules, see Figure 5.1. Transition rules based on
these typing rules have been given in the previous section.

Typing rules for the type constructors (contract, connec-
tor, signature, predicate) shall be omitted, except for the
one for contracts, I-CTR. If the three names s, p1 and p-
are of type signature, predicate, and predicate, respectively,
then the contract CTR(s,p1,p2) is of contract type:

CTR(SIG(T1, ... ,Th, CRE(T), PRD(F1), PRD(F3))

Subtype relations are in principle possible between types
constructed with the same constructor. Two structural rules
contribute to the definition of the subtype relation <: the
reflexivity rule S-REFL and the transitivity rule S-TRANS:

S=5T
[S—REFL] m
'eES<T TH+HTLU
TFS<U

They show that < is a preorder. The subtyping rules for
signatures and predicates are S-S1G and S-PRD - see Figure
5.1. The names COND, PRE, POST, SIGN and their primed
variants are type variables. A condition is subtype of an-
other if it implies it: cOND < CcOND’ if COND — COND’. A

[S-TRANS]



I'ks:. SIG(T1,..

.,T,,CRE(T)) T'Fp1: PRD(T) T F p3: PRD(T)

[I-CTR]

U
[S—SIG] r |_ T1 S Tl

'+ CtR(s,p1,p2) :c CTR(SIG(TY,..

., T, CRE(T)), PrRD(T'), PRD(T'))

T'+T,<T, T+ CRE(T) < CRe(T")

I+ Sia(Ty, ...

,Th, CRE(T")) < S1G(T1, ..

., T», CRE(T))

COND’' — COND

[S-PRD]

[S-CTR]

I' - PRD(COND') < PRD(COND)

' PRE < PRE’ T'F PosT’ < POST T'I siG’ < sig

THT <T

I' - CTr(S1G’, PRE’, POST’) < CTR(SIG, PRE, POST)

I'+T, <Ty T+ CRE(T) < CRE(T)

[5-CA] T Gao,

., T4, CRE(T")) < CAc(Th, ..., Tk, CRE(T))

TFT' <T

[S-CRE]

T F CRE(T") < CRE(T)

Figure 3: Typing rules.

contract forms a subtype of another if its precondition is
weakened and its postcondition is strengthened - see S-CTR
- where SIG, PRE, POST, SIG’, PRE’, and POST’ denote signa-
ture and predicate types. The port orientation also has to
be considered. We assume that ports do not change their
orientation. For connector activations we expect subtype
relations for the value types to hold - see S-CAc. This def-
inition is - similar to the signature subtypes - contravariant
on the reply channel. A connector reply channel is a sub-
type of another if the value types that can be carried form
a subtype - see S-CRE. Subtypes for the value kind shall be
neglected for the rest of the paper - which has as a conse-
quence that there are no proper subtypes between signatures
and connector activations and replies.

5.2 Type Safety

Type safety concerns the relation between the type system
and the operational semantics. The operational semantics
are defined as transition semantics, specified by rules such
as contract matching and connector establishment. Type
safety comprises two issues. Firstly, evaluation should not
fail in well-typed programs - we will introduce a notion of
well-typedness shortly. Secondly, transitions should preserve
typing. The judgment I' - C' denotes the well-typedness of
composition expression C. This will be the construct to
investigate type preservation under transition.

We need to define a notion of satisfaction before we can
define well-typedness. A connector type satisfies a contract
type if the signatures correspond and, if the precondition
holds, the execution of the service attached to the connector
port establishes the postcondition.

Definition 5.1. A connector type Tr = CAc(Th,... , Ty,
CRE(T)) satisfies a contract type Tc = CTR(SIG, PRE, POST),
or Tt |E Te, if for a service port p the connector port pr sat-
isfies the following constraints: S1G(T1,...,Tn,CRE(T)) =
SIG and, if PRE holds, then the execution of pr, if it termi-
nates, establishes POST.

We assume an analogous definition of satisfaction between

data types and connector reply types and their connector
activation type.

Definition 5.2. We define well-typedness for simple ac-
tions as follows:

e I' F REQ mc(m1) if Te(mr) E Te(me) — otherwise
REQ mc(mr) fails.

o I' F PRO nc(n1) if Te(nr) |= Te(nc) - otherwise PRO
nc(nr) fails.

o T F TN mr{a, ma) if type(a), To(me) = To(mi) -
otherwise INV mr{a, mr) fails.

o I' - EXE ni(y,nr) if type(y), Te(nr) | Te(nr) - oth-
erwise EXE ny(y,nr) fails.

The execution of an action fails, if the data sent along the
channel does not satisfy the channel constraint. A reaction
fails if both participating actions are well-typed, but the
type constraint is not satisfied.

Definition 5.3. The well-typedness of parallel composi-
tions is defined by rule [W-PARCOMP]:

'+ REQ mc{m;) I'FPrO ncg(nr) T'F Te(ne) < Te(me)
I' - REQ mc(m1)|PRO nc(nr)

If I' v REQ mg(mi) and T' + PRO nc¢(n1), but not T'
Te(ne) < Te(me), then REQ mc{mr)|PRO nc(nr) fails.

Well-typedness guarantees correct composition and in-
teraction behaviour according to the specifications given
through the type system (pre- and postconditions) constrain-
ing behaviour and matching. The objective later on will
be to show whether replacements preserve well-typedness;
for example to show that if I' F REQ mc(ms)|PRO nc(nr)
and if port m is replaced by m', then to show whether
I' - REQ m{m}}|PRO nc(ns) holds, i.e. whether correct
behaviour is preserved by replacements.

We shall note type safety properties as conjectures only,
without a formal proof.




Conjecture 5.1.

1. Substitution lemma: if T H C and T Fx : T,v: T,
then I' F {u/x}C.

2. Ewvaluation cannot fail in well-typed programs: if '+ C
then the execution of C does not fail.

8. Transition preserves typing: if I' F C1 and C1 — C»
then T' + Cs.

5.3 Types as Formulas

There is a relationship between the contracts and connector
types. Contract types can be see as Hoare logic or dynamic
(modal) logic formulas consisting of a precondition and a
postcondition, complemented by a signature. We have a
two-layered type system with a layer of contract types and
a layer of connector types with a notion of satisfaction be-
tween them. These types correspond to the distinction of
specification and implementation for a component. The con-
tract type CTR(SIG, PRE, POST) corresponds to the formula
PRE — [n(a1,...ax)] POST in dynamic logic where n : SIG.
This refers to the specification of services of a component.
The lower type layer corresponds to the implementation.
Types for parameters are value types.

6. Client and Provider Life Cycles

In the previous sections, we have seen several stages in the
life cycle of a component such as service matching and con-
nector establishment, or service invocation. The full life
cycle of clients, providers and systems consisting of both
clients and providers shall now be specified in a standard
form. The client, parameterised by a list of required ser-
vices, can be specified as follows:

C’i(ml, e ,ml) dZEf

REQ m&(m}).[(INv mI(a', mb).RES mk(y").0)

REQ mb(m})./(INV mb(a!, mk).RES mk(y').0)

Requests have to be satisfied before any interaction can hap-
pen. Once a connection is established, a service can be used
several times. In order to function properly all service re-
quests need to be satisfied - expressed by the parallel com-
position of all individual ports.

Service providers need to be replicated !P in order to
deal with several clients at the same time. Otherwise their
behaviour is the dual to that of the clients.

def

P(ni,...,n;) = o
!( Pro ng(n).(EXE nj(y', nk).REP nk(b).0)
+

+
PRO nf (n¥).!(EXE nk(y*,n%).REP nk (b).0) )

A provider does not need to engage in interactions with all
its ports, which is modelled by using the choice operator

instead of the parallel composition.
Clients and a server are composed in parallel CompSys <«
P(na, i) | Cr(mig e ymiag,) | oo | Ci(miy, .. i)

to form a composed system. Another case which also needs

to be considered is that a component can be both client and
provider, i.e. can both import and export services.

Comp £ (REQ mb(@m ...|REQ mllc(mlf).ﬂ).
[N Inv mi(...).REC mF (...).0
+

+
INv mi(...)REC mf (...).0 )
_+_
P(nl,... ,nl) )

The requirements have to be satisfied, i.e. connectors have to
be established, before any service can be provided. A service
which is provided and actually invoked can then trigger the
invocation of imported services. The specification of com-
posed systems does not involve the possibility for evolution
- through the replacement of components - so far. This will
be looked at in the next section.

7. Replacements and Evolution

In evolving systems, components might change in their spec-
ification or implementation, or are replaced by other compo-
nents with different specification and implementation. Two
questions arise. Firstly, can a component be replaced by
another component without affecting the behaviour and the
overall consistency of the system? This can be answered
using a static analysis based on the component contracts.
Secondly, what are the consequences if a replacement fails?
This can affect a running system. The analysis has to be
carried out based on the actual connectors between compo-
nents in a running system. We assume that only a single
component is replaced by another at a time. Components
are the unit of change.

We will address replacements based on the type system
— statically and dynamically — and the determination of ef-
fects if such a replacement results in inconsistencies. Types
are explicit in our notation. That will allow us to change the
type (and implementation) of a component, see Section 7.1.
This can even be done dynamically for a running system,
see Section 7.2. In case the types cannot be preserved, the
effects of a change need to be determined, see Section 7.3.
We shall look at replacements firstly as a meta-construct,
then we will introduce it into the notation. We assume that
replacing a component means replacing existing ports, pos-
sibly adding new ones. We discuss the replacement of a sin-
gle port only in order to illustrate the issue. The following
definitions formalise a consistent (effect-free) replacement.

Definition 7.1. A context X is obtained when a hole
[] replaces an occurrence of 0 in a process expression. We
write X[P] for the replacement of [.] by P in X.

Definition 7.2. Given an arbitrary context X, a com-
ponent (a process expression) C can be consistently re-
placed by a component C', if T + X[C] implies T + X[C"].

This describes the preservation of well-typedness under re-
placement. It guarantees that replacements do not affect
the composition behaviour.

Proposition 7.1. If T - C implies T + C', then T +
X|[C] implies T + X[C"] for all contexts X.

ProOF. Obvious. [



The dynamic replacement analysis based on types gives more
flexibility. However, the result might be an effect on other
components in form of a change of connections (mobility).

7.1 Replacement and Subtypes

Changes in structure - reflected by changes in connector
types - are usually difficult to deal with, but changes in
behaviour - here reflected by changes in contract types -, do
not always affect the overall consistency of a composition
(the comnsistency is affected if the specified behaviour is not
preserved). Preservation of well-typedness is the technical
criterion for this kind of analysis.

Since our aim is to determine whether one component
can replace another, we can consider the type system and
its subtypes. We will look at bound names in providers
and free names in clients in particular. We do not consider
type equivalence here; our concern is the replacement of one
component by another relying on the subtype relation.

Clients, or service requestors, shall be addressed first. A
port m = (m¢ : t¢,mr : t;,mpg : tr) shall be replaced by
m' = (mg : tg, my : th,mgr’ : tr'). Later on, we will assume
that names do not change, only their types will.

In some situations, replacement preserves well-typedness:
for I' - X[C] and C' replaces C, we get I' - X[C'] for any
context X. This shall now be investigated - firstly for a
single component.

Proposition 7.2. A requested service port mc :p REQ
can be consistently replaced by a port mg 1 REQ if

Tp(me) = Tp(me) A Te(meo) < Te(me)

PROOF. m is a refinement of m’. m’ has consequently a
stronger (more restrictive) precondition and a weaker (less
specific) postcondition. T' F ml,(m;) if T' F mg(m;) and
Te(mg) < Te(me) and we assume that To(m}) < Te(mr)
for connectors. Therefore, well-typedness is preserved. [

We shall look at this issue considering one particular con-
text: that of a parallel composition where a client and a
provider match. In this particular context, we can loosen
the constraint for well-typedness.

Proposition 7.3. A component C' can replace a client
component C in a composition C|P preserving well-typedness,
i.e. TFC|P =T F C'|P, if Te(nc) < Te(mg) for a service
n provided by P, a service m requested by C and replacement
m' for m.

PROOF. Suppose a composition C|P exists where n of P
is connected to m of C, i.e. Te(nc) < Te(me). As long as
Te(nc) < Te(mp) the provider satisfies the requirements.
This means that C’ can replace C without affecting the be-
haviour of the composition. Well-typedness as formulated
in the well-typedness rule for compositions (Definition 5.3)
in Section 5.2 is preserved. [

Strengthening the client specification might be accept-
able. A refinement mg of mc¢ is acceptable as long as
Te(ne) < Te(me) is guaranteed. The condition Tc(mc¢) <
Te(mg) does not need to be satisfied, but would, if true,
guarantee the well-typedness of the replacement. Proposi-
tion 7.3 is more flexible than Proposition 7.2, but Propo-
sition 7.3 can only be checked dynamically for a composed
system. This condition would have to be checked for all
connections in a running system.

We have a similar situation for the service provider.

Proposition 7.4. A provided service port nc :c PRO can
be consistently replaced by a port ng :c PRO if

To(nc) = Tp(ne) A Te(ne) < Te(no)
PROOF. Analogously to Proposition 7.2. [l

Here, refinements are always permitted as replacements.
Analogously to clients, replacements are consistent (effect-
free) as long as the connector remains intact.

Proposition 7.5. A component P' can replace a server
component P in a composition C|P preserving well-typedness
if Te(ng) < Te(me) for a provided service n connected to m
and the replacement n’.

PROOF. Analogously to Proposition 7.3. [l

For this form of analysis we have looked at contract ports
and their types only. Firstly, because the contract matching
is the crucial activity; we essentially consider only contract
port related activities as observable. Secondly, their chan-
nel types involve the contracts - which the connectors are
expected to oblige to. The client is expected to guarantee
the precondition and the provider is expected to guarantee
the postcondition if the precondition is satisfied. The types
of the connector and connector reply ports have therefore
been neglected.

7.2 Dynamic Replacement

In order to allow dynamic compositions and replacements,
we introduce a new feature into our notation. We introduce
an explicit configuration CFG s(p : tp) for a port that allows
components to change their specification dynamically:

Client; < (CFG s(m : tn).Ci{m))
Provider = (CFG s(n:t,).P(n))

where C; and P are defined as in Section 6. The port spec-
ification and implementation, i.e. contract and connectors,
are provided by some external process.

Ignoring name changes - they can always be introduced
easily via renamings - this construct essentially allows us to
change the type of a port dynamically. Changes in contract
types can be dealt with. The type system shall therefore be
revisited. Ports are associated with types, e.g. the typing
context I' can contain a binding m¢c — CTR(SIG,PRE,POST).
These associations in the typing context can change through
the execution of for example

CraG s(m¢ : CTR(SIG’,PRE’,POST’))

where SIG,PRE,POST and SIG’,PRE’,POST’ denote signature
and predicate types. We assume that the connector types
do not change. The configuration has an effect on the type
context. The semantics of CFG s(p : tp) is that of a dy-
namic declaration on I'; we write I[CFG s(p : tp)]. We need
an initial configuration for a port, but a replacement can



essentially happen at any time:

C = ICFG s(me : tmy).C'{mc)
C' = ( CFG s(mc : tmg)-C'{mc)
+
REQ mc{mr).(

CFG s(mc : tmg )-C'{mc)

+

I(INv Wz . . )-(
CFG s(mc : tmg )-C'{mc)
+

REC mg(...).0) ) )

This describes that a replacement will always result in a re-
establishment of the connector, i.e. the request for a service
will be made again. If we want to make use of the results of
well-typedness preserving replacements (a re-establishment
of connectors is not necessary in that case), we need to make
this explicit in the notation. We introduce a type-based
guard, remotely similar to the match-operator found in some
m-calculus variants: [T'J] w.P where T'J is a boolean expres-
sion based on a type judgment. The type judgment acts as
a simple condition making the typing context explicit in the
notation. In our situation, we could specify

oo .CFG 8(mc : tme ) [~(T F O)]C(mc). ...

expressing that only if typing is not preserved, the re-estab-
lishment of a connection is necessary after a replacement.
The substitution of the type context can be formulated
in two dynamic typing rules based on results from Section
7.1. Proposition 7.2 proves the soundness of the following
client replacement rule [R-CRPL] for the type system:

T'Fme:icte F"Tnc:pREQ
L[CFG s(my : tp)] F mg p th

(tc <te

where we replace mc : tc by mc : t'C. We assume that the
signature of the port m does not change. We also assume
that ¢ is a contract type. The rule expresses a substitution
in the type context.

Corresponding to the replacement rule for clients, we can
formulate a provider replacement rule [R-PRPL] - based
on Proposition 7.4.

I'kFnc:wcte T Fnc:pREQ

(te <tc
T[CFG s(nl, : t,)] F niy 1p t,

Note that only the type requirement for the contract has
changed. The execution of the CrG-action does neither
affect the composition nor the component state. It only
changes the type context dynamically.

Proposition 7.6. Replacement based on the rules client
replacement [R-CRPL] and provider replacement [R-PRPL]
preserves well-typedness. For T'F C and C' replaces C by
one of the rules, we get T' - C".

PRrOOF. Follows from Propositions 7.2 and 7.4. [

Similar rules for dynamic replacements can be defined
based on Propositions 7.3 and 7.5. Methods to analyse and
reason about replacements will be addressed next.

7.3 Non-preserving Replacements

The first step in replacing components is always an analy-
sis of types. Based on these criteria a component might be

replaced consistently. In case the replacement has to take
place - for example due to changes in the execution environ-
ment (technical, legal, etc.) - but does not result in a consis-
tent replacement, then the effect of the replacement on other
connected components has to be determined. This could
again be done statically by looking at all potential compo-
sitions based on the overall system specification (all clients
and providers composed in parallel), but should rather be
limited to those components actually connected to a com-
ponent in form of connectors (and components connected to
those) in a composed system.

Starting point for this dynamic analysis is the network of
connected components at a certain moment of time. This is
the flowgraph of the system, which describes the structure
of the system in terms of its linkages between components -
the concept of lowgraphs to describe the spatial structure of
connected processes is introduced in [15] Chapters 4.1 and
9.3. Flowgraphs and dependency analysis based on contract
types shall now be looked at. A component export depends
on the component’s import; the import depends on another
component’s export. This dependency relation is transitive
and allows us to determine which other components are po-
tentially affected if one component has to be changed. The
simple dependency relation needs to be refined. The reason
is that a change in the export interface of one component (to
the worse) might still satisfy the requirements of a service
request. In this case there is no further effect. In case a
second component is affected, then it can be tried to replace
this component as well (using static analysis).

Definition 7.3. Two kinds of graphs shall be introduced.
A flowgraph is a graph where nodes are ports mc, my, mg,
ne, nr, NR, ... and edges are connections (mc,nc), (mr,nr),
(mgr,nR),... The edges are directed and express depen-
dencies. (my,ny) expresses that a request my depends on a
provided service ny. A dependency graph is a flowgraph
extended by component internal dependencies, e.g. (ny, my)
saying that export nr depends on import my. Thus, a de-
pendency graph has two kinds of edges: edges (my,nr) are
connectors between components and edges (nr,mr) are in-
ternal dependencies. If (p1,p2) and (p2,ps) then (p1,ps).
Types (port type and channel type) shall be associated with
each port node.

Semantically the dependency graph is a bipartite graph de-
fined on two different relations: the subtype relation between
components and component-internal dependencies between
service exports and services imports. A component needs to
satisfy its imports in order to provide services to other com-
ponents. By default, all combinations between input and
output services are included in the dependency graph. A
more precise account of internal dependencies can be derived
from a component life cycle specification (see specification
of Comp on page 6), which describes the extenally visible
interaction behaviour of a component. Requests that occur
before a service provision indicate a potential dependency.
This could be refined explicitly by the component developer,
but this would require to consider the actual service imple-
mentations.

The well-typedness of a composition shall be expressed
by a consistency notion for dependency graphs.

Definition 7.4. A dependency graph (or a flowgraph) is
consistent if for all edges (m,n) of the connector kind:

Te(n) < Te(m) A Tp(m) = Tp(n)



A graph update is an update of type associations for
nodes (ports). This corresponds to the replacement of type
bindings I'[CFG s(p : tp)] in type context I'.

Definition 7.5. If a dependency graph is not consistent
for a connector edge (p2,p1), then the effect of the incon-
sistency is the collection of all (pi,p;) withi > 2,5 > 1 such
that p; depends on pi.

The effect of an inconsistency can be calculated based on
the closure of the dependency relation. Classical algorithms
can be used here. Therefore, this shall be neglected.

8. Related Work

A composition language for components which is also based
on the 7-calculus is presented in [20, 21]. A variation of the
m-calculus is used to realise a composition language, called
P1ccoLA, which supports various forms of components, and,
thus, various composition mechanisms. The basis is a for-
malisation of interacting objects as processes. Key concepts
are glue code for component compositions and adaptation,
and a scripting language to express this glue code.

Catalysis is a development approach building up on the
UML incorporating formal aspects such as the pre- and post-
condition technique [22]. Catalysis uses ideas from formal
languages such as OBJ, CLEAR or EML. The concept of the
connector that we have used here is motivated by the Catal-
ysis approach. There, connectors allow the communication
between ports of two objects. A connector defines a proto-
col between the ports. Several other authors also address
contracts based on pre- and postconditions for the UML,
see e.g. [9]. The combination of the pre- and postcondition
technique and refinement calculi is explored in e.g. [23].

KobrA [24] is another approach which combines the UML
with the component paradigm. The basic structuring mech-
anism is the ¢s-component-of hierarchy, forming a tree-struc-
tured hierarchy of components, i.e. sub-components. Each
component is described by a suite of UML diagrams. A
component consists of a specification (an abstract export
interface) and a realisation.

An early version of this paper has appeared in [25]. There
we also looked at the connection between the mw-calculus for
component composition semantics and modal logics. In [25],
we addressed the application of the framework to the Uni-
fied Modelling Language UML [26]. The connector idea is
taken from [22]. In another paper [27], we have used a vari-
ant of the A-calculus to define service requests and provisions
using reduction as the mechanism for matching between ser-
vices. The variant is called Ar-calculus [28] adding a flexible
parameter (matching) concept to the A-calculus. This An-
calculus can be interpreted in object structures. We have
used a m-calculus variant here, because it offers multiple
(concurrent) connections and it allows to model two layers:
contracts and connectors.

Walker [29] introduces object intercommunication into
the m-calculus. In our approach the user (the client) is the
active entity which initiates the establishment of the connec-
tions. In Walker’s formalisation, the service provider also
provides the communication channels. The service user ac-
quires the contract channel, then acquires the interaction
channels via the appropriate contract channels and finally
uses the interaction channels to invoke methods of the ser-
vice providers.

9. Conclusions

The suitability of the 7-calculus for the definition of a com-
ponent composition framework has recently been demon-
strated, see for example the PhD-theses [30] and [31]. The
idea of using a process calculus to model component com-
position has here been carried further by exploiting the sim-
ilarity of mobility and evolution. We have developed a sim-
ple framework for the determination of effects of changes in
composed systems. Our framework addresses in particular
the problem of replacing single components in a system.

Mobility - the change of connection between components
- is the key feature in the m-calculus. We have introduced
evolution through replacement into our variant. This con-
cept is somewhat different from mobility. Replacement is
more fundamental since it is a meta-operation affecting the
definition of the system (in particular the type system) un-
der consideration. Replacement can cause mobility - the
change of connections - as the result of the change in types.
Replacement - as we have seen - can be introduced into the
calculus, resulting in a dynamically typed calculus.

Transitions in the system based on the establishment of
new connections occur in several variants. Reaction between
two components is constrained by port types and channel
types. Ports of different types match under different circum-
stances, formalised by a subtype relation. The reactions are
transitions in a transition system, whose states reflect the
state of composition that ports are in. Each port can pass
through different composition stages - expressed by the life
cycle for clients and providers.

Bisimulations and similar relations of equivalence between
processes are essential concepts in the w-calculus for com-
paring processes. This theory could be applied in our con-
text, if we would consider the replacement of systems of
composed components. In that case, we would only be in-
terested in the externally observable behaviour of these sys-
tems. Then, weak bisimilarity could be the tool to define
and analyse replacements of compositions. However, our as-
sumption here has been that single components are the unit
of change. Consequently, we have based our replacement
analysis mainly on the type system.

Some component technologies provide features for the
discovery of services. This is an implicit process here, de-
scribed by the contract rule. The overall model does not
involve an intermediary. The CORBA framework for the
interaction of remote objects is based on an object request
broker. Here, this functionality is implicit. In an exten-
sion of the approach, an explicit broker could be considered.
Another element of future work includes the exploration of
the relationship of modal logics and the type system for our
composition and replacement calculus.
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