A Formal Composition and Interaction Model
for a Web Component Platform

Claus Pahl!

School of Computer Applications
Dublin City University
Dublin, Ireland

Abstract

A framework for components on the Web needs a formal model that captures essen-
tial concepts such as contractual information and service matching. We propose a
typed m-calculus-based model for Web components that formalises an extension of
the currently discussed Web Services framework. We address in particular activities
in the stages of a component life cycle — such as matching, commitment, connection
and interaction — that are part of the process that a component is involved in.

1 Introduction

The Web is evolving from a document-centred environment to a service-
centred environment. The purpose of the Web Services framework? is to
establish a distributed computing model for services on the Web. Web tech-
nologies including languages and protocols are used to provide a remote pro-
cedure call mechanism. The protocol shall be based on XML-messaging in
order to achieve maximal interoperability.

We propose to extend Web Services to a formally defined Web components
framework. Several framework and models exist that suggest an extension of
the proposed Web services framework [4,5,11,12,14], but so far the formal as-
pects have been neglected. Service requests and service provision and their
matching are integral aspects of component technology. Semantic description
of services through contractual information is a necessity. A formal model
for Web components based on a typed m-calculus [13] shall be discussed that
provides clear semantics and that allows to support analysis and design tools.

! Email:cpahl@computing.dcu.ie
2 We base our discussion of Web services on the WSDL definition (W3C note, 2001), SOAP
version 1.2, and UDDI version 2.0.

©2002

This work is based on two previous papers. In [10] we have presented ba-
sics of our formal framework. In [11] we have discussed requirements for a
formally defined Web component framework. This work applies and extends
results from both sources. The main novelty of our work is the consideration
of Web component life cycles — important to describe business processes, inter-
actions and workflow aspects. So far, this is a major limitation in component
frameworks. Only a few papers have addressed this problem theoretically [9].
We outline a Web component architecture in Section 2. The description
of services and aspects of a type system formalising them is dealt with in
Section 3. Matching and interaction are key activities — their semantics in
form of operational process descriptions is investigated in Section 4. Another
key element in a Web component framework is a protocol capturing the various
activities, see Section 5. We end with related work and some conclusions.

2 Web Component Architecture

An architecture for Web components should consist of a description language
for semantic component descriptions, a matching and interaction protocol im-
plementing 2-phase (or 2-layered) composition, and a set of services includ-
ing discovery, matching, configuration, and interaction. Such an architecture
would describe a Web-based component middleware platform. Description
languages and protocols omit details about how components are discovered,
how they are stored and made available. This can be supported by special
services, such as a broker service. A number of services will depend on the
semantic formalism made available through the description language.

The composition architecture shall be layered. We distinguish a matching
layer and an interaction layer. Connections for interactions are established
after successful matching. These connections are needed for service activation
and service reply. This architecture is a reflection of the component life cycle.
The component life cycle —matching before interaction — needs to be formalised
by a composition protocol. This affects each component in isolation, but also
the composition of components. Protocol constraints can be expressed by
appropriate transition rules.

The type system and in particular subtypes can play a major role. Subtypes
can determine what a suitable match for a service request might be. The
classical definition of a subtype [16] — an instance of a subtype can always be
used in any context in which an instance of a supertype was expected — can
formulate the essence of consistent matching between component services.

Ports are abstract access points to component services. Port descriptions
are part of component interfaces. Port types can reflect various properties,
e.g. the port orientation (input or output), the role (is the port involved in
matching components or in the interaction of components), or the transport
capacity. Port types can be used to express structural and behavioural con-
straints. A protocol endpoint is actually a family of ports with different roles.

2

3 Description of Services

3.1 Description Languages

Web services without semantical information can be described by the Web
Services Description Language WSDL. A Web service description consists of
five sections in two parts.

e An abstract protocol-independent part consists of type, data and operation
descriptions. The operation part, called ‘portType’, describes operations
that implement the service functionality in terms of its typed input and
output parameters. These parameters are described in a data part, called
‘message’. Types for the messages can be defined in a ‘types’ section.

e The ‘binding’ to a specific protocol is one of the two sections of the concrete
part of the service description. It describes how a service is activated using
the protocol under consideration. The final section is called ‘service’; it
links the service to a particular location where the service can be found.
The protocol determines the format to be used to activate a Web service.

Single services could be grouped into components. We suggest a Web Com-
ponents Specification Language (WCSL). We will motivate this language by
a schematic example following the structure of the WSDL. The purpose of
WCSL is similar to WSDL, except that we expect automation to play an im-
portant role in the processing of WCSL descriptions. Formal semantics will
be given based on a typed m-calculus variant. Components are syntactically
characterised by an interface with service signatures, separated into import
and export elements. The type system will capture the semantical properties
of Web services and components.

3.2 Data Elements and their Types

The entities in a Web composition system are data elements, ports and com-
ponents. Data elements are characterised by the usual value domains as types.
WSDL suggests the following notation for these elements, allowing basic and
structured types to be defined:

<element name="dataType">
<complexType>
<all> <element name="aNumber" type="int"/> </all>
</complexType>
</element>

Basic and complex data types shall be assumed, but not explicitly specified.
We also assume a connector type representing connections between ports.

Data elements and connectors can be assembled into messages. Two sam-
ple messages shall be defined — containing a data item and a connection:

<message name="InData">

T ::= Basic type

| L Link type

| S1G(T x...xT x L) Signature

| PrD(T) Predicate
L:=PC Port and channel type
P =+ (REQ | PrO | INV | EXE | REC | REP) Port type
C:=CTtrR(TXT xT) Contract

| CAc(T x...xT x L) Connector activation

| CRE(T) Connector reply

Fig. 1. Type Language Syntax.

<part name="body" element="dataType"/> </message>
<message name='"serv_I">
<part name="body" element='"connectorType"/> </message>

3.8 Type Language Syntaz

The type system plays a key role in our composition and interaction model.
A typing context I is a finite set of bindings — mappings from names to types.
Three types of judgments shall be used:

['Fxz:T name x has type T
'S <T type S is subtype of T

r=pP expression P is well-typed

The type language syntax is defined in Figure 1. The constructors CTr, CAc,
and CRE are the link-type constructors. Their purpose is to classify chan-
nels based on the data that is transferred along them. We leave the set of
basic value types unspecified. We assume that there is at least one basic type
B. The XML Schema framework [3] provides the setting to define basic and
structured types for Web services and Web components. SiG and PRD are
standard constructors for service signatures and predicates; the other type
constructors are specific to the component context.

3.4 Ports and their Types

The most important entities are the ports, which represent services. Port
types define the services based on input and output messages. We extend the

4

WSDL port type specification by contractual information:

<portType name="serv">
<operationContract name="serv_C'" precon="pre'" postcon="post'">
<input message="serv_I" /> </operationContract>
<operationConnector name="serv_I">
<input message="InData" />
<output message="OutData" />
<reply message="serv_R" /> </operationConnector>
</portType>

Each port serv is essentially a family of ports serv = (serve, servy, servg).
The first port serve is the contract port, representing an abstract interface de-
scribed by a signature, a precondition and a postcondition. serv; and servg
are connector ports — servy handles the service invocation and input and servg
handles the service output. serwv; is the connector activation (or interaction)
port. The port servg carries the reply from the service invocation. We dis-
tinguish a port type and a channel type for each port:

o Port types describe the functionality of a port within the component (e.g.
contract or connector port) and its orientation (in- or out-port). Port types
are referred to by 7,(serv) or serv :, t for port serv, e.g. T,(5€rvc) = REQ
and 7,(serv () = PRO are requestor and provider ports. Each port has also
an orientation, called the polarity. Contract and connector activation ports
are output ports ("+’ : the port can only send) and the reply port is an
input port ("=’ : the port can only receive) for the service client.

o Channel types for a port serv = (servg,servy, servg) describe the ex-
pected capacity, i.e. what kind of entities can be transported: serve :¢
Ctr(S1G(TY,...,T,,,+CRE(T)), PRD(PRE), PRD(POST)) for contract ports,
servr ¢ CAc(Ty,...,T,,+CRE(T)) for connector ports, and servg :c
CRE(T) for reply ports. Channel types constrain the composition and
interaction between components. Contract ports can transport connectors,
which are characterised by a contract type. Connectors provide the connec-
tion between components to invoke a service. Channel types t are denoted
by T.(serv) or serv :. t for port serv.

A contract consists of a service signature, a pre- and a postcondition.
Connectors when transferred on channels have to satisfy a contract type. On
connector activation ports, data values and a reply channel can be transferred;
on connector reply ports only data can be transferred. The key criteria for
matching, i.e. the successful connection of two components through a connec-
tor, are contracts (this will be explained in Section 4). Opposite orientations
also have to match in a successful composition of component ports. The signa-
ture for a remote method execution is: S1G(7},...,T,, CRE(T)). This reflects
the fact that parameters are passed, and possibly a result has to be transferred
back on a channel with a different capacity 7. Pre- and postconditions are
formed using the predicate type constructor PRD.

5

4 Semantics of Matching and Interaction

The concrete part of WSDL concerns the protocol binding and association
of the location for Web services, preparing for service activation. The infras-
tructure for Web service activation and reply can be provided by the SOAP
protocol ®. SOAP — the Simple Object Access Protocol — is an XML-based pro-
tocol for service invocations and replies designed to support remote activations
of services specified in WSDL. The discovery of services is supported by a di-
rectory framework UDDI — Universal Description, Discovery and Integration.
UDDI acts as a marketplace for services or components.

Matching of services and the interaction between services and components
are the key activities. The introduction of semantic service descriptions re-
quires to pay more attention to the problem of matching required and pro-
vided services before a connections is established and components interact.
The binding part of our suggested WCSL needs to separate matching binding
and interaction binding. The latter needs to address activation and reply.

4.1 Subtypes and Matching

Subtyping S < T shall be used to define matching of services and components.
A subtype concept goes beyond the basic and structured types provided by the
WSDL types section. A subtype relation between ports determines whether
two ports that represent services match. Channel types of contract ports are
contracts consisting of a service signature, a precondition and a postcondi-
tion. For a service request m¢ :. CTR(Sig,Pre,Post) and a provided service
ne e CTR(Sig’,Pre’,Post’), we say that nc matches me, or ng < mg, if
Sig = Sig’ A Pre — Pre’ A Post’ — Post*. This is the combination of two
classical refinement relations (weaken the precondition and strengthen the
postcondition) from the Refinement Calculus [1,8].

The semantics of the type system can be defined by typing rules for ba-
sic types, type constructors, subtypes and process expressions — see Figure 2.
Typing rules for the type constructors (contract, connector, signature, pred-
icate) are omitted, except for the one for contracts, I-Ctr. If s, p; and py
are of type signature, predicate, and predicate, respectively, then the contract
CTR(S,p1,p2) is of type CTR(S1G(TY,...,T,, CRE(T)), PRD(F}), PRD(F3)).
Two structural rules contribute to the definition of the subtype relation < as
a preorder: the reflexivity rule S-RerL and the transitivity rule S-Trans:

S=4T
TFS<T

r=S<T T'EFT<SU

[S-REFL] TrS<U

[S-TRANS|

The subtyping rules for signatures and predicates are S-Si¢ and S-Prp. The
names Cond, Pre, Post, Sig and their primed variants are type variables. A

3 SOAP might influence the standardisation of the XML Protocol [3] currently in progress.
* Variants providing more flexibility, e.g. signature inclusion, can certainly be considered.

6

I'Fs: Swa(Ty,...,T,, CRE(T)) T'Fp;:. PRD(F}) T'F py:. PRD(F)

I-C
O G TR (5. v, pa) -2 CTR(SIG(Th. . T, CRE(T)), PRO(FL), PRD(F))
s DETST . DRI ST, T CRe(T) < CRe(T)
) It Siw6(Ty, ..., T;, CRE(T")) < S16(Th, . .., T,, CRE(T))
Cond’ — Cond
S-P
[S-Pro] [' - PrRD(Cond’) < PrRD(Cond)
S-CR] ' Pre < Pre’ '+ Post’ < Post ' Sig’ < Sig
I' = CTR(Sig’, Pre’, Post’) < CTR(Sig, Pre, Post)
ScAq) LFHET . TET T TFCRe(T) < CRE(T)

I'F CAc(T},...,T,,CRE(T")) < CAC(Ty,.. ., T, CRE(T))

r=17<T
I' F CRE(T") < CRE(T)

[S-CRE]

Fig. 2. Typing rules.

condition is subtype of another if it implies it: Cond < Cond’ if Cond —
Cond’. A contract forms a subtype of another if its precondition is weakened
and its postcondition is strengthened, see S-Ctr. The port orientation also has
to be considered. We assume that ports do not change their orientation. For
connector activations we expect subtype relations for the value types to hold,
see S-CAc. This definition is, similar to the signature subtypes, contravariant
on the reply channel. A connector reply channel is a subtype of another if the
value types that can be carried form a subtype, see S-CRE. Subtypes for the
value kind shall be neglected for the rest of the paper.

4.2 Component Composition

The development of a notation describing the process of component compo-

sition based on matching and interaction is the next step. We use a typed

m-calculus to define Web component matching and interaction behaviour.
The syntax of composition expressions P involving action prefixes 7; is:

P:VmP|P1|P2|'P|ZZ€[7TZPZ|O

Restriction vm P means that m is only visible in P. Summation m;.P; means
that one action prefix 7; is chosen and the process transfers to state P;. Itera-
tion !P means that the process is executed an arbitrary number of times. We
also need abstractions, i.e. defining equations of the form A(a) = P,°. This

5 Even though the polyadic m-calculus is intended to be used, we often use the monadic
variant here in order to keep the notation simple.

7

follows the presentation of the m-calculus in [7].

The basic element describing activity in the m-calculus are actions [13].
Actions are combined to process expressions. Actions are expressed as prefixes
7 to the process expressions: 7 = PTYPE Z(y) | PTYPE z(y) | 7. Actions
can be divided into output actions T(y) (the name y is sent along channel/port
x), input z(y) (i.e. y is received along x), and a silent non-observable action .
We have annotated the action prefixes m by port types PTYPE, which explain
the role of the port with respect to component life cycle activities such as
service request or service invocation:

7 = REQ mc(my) + Request
PRO ne(ng) — Provide

INv mi{ay,...aq,mg) + Invoke

EXE nr(zy,...,z,,ng) — Execute
REP Tig(b) + Reply
RES mz(y) — Result

The operational semantics of the notation, in particular the two main forms
of composition matching and interaction, shall now be discussed.

4.8 Matching and Connection

Matching and connector establishment are two different activities in the Web
services framework. We can distinguish

(i) a commitment phase where both components try to form a contract; or,
more technically, try to work out and agree on the necessary channel
capacity for interaction. UDDI provides the basic infrastructure.

(ii) a connector establishment phase, or connection phase, where an interac-
tion channel (a connector) is established for later interaction, i.e. activa-
tion of remote services. SOAP is the communication infrastructure.

We will formalise these activities in form of transition rules.

A key feature in a Web component framework is an agent or broker to
match and to prepare the connection of services. UDDI is a service that allows
providers to publish their services and requestors to enquire about suitable
services. UDDI provides two APIs, the Inquiry API and the Publisher’s API,
in order to automate the process of matching required and provided services.
Services can be grouped into a UDDI business-service structure, a container
for services resembling a component. We suggest to extend this feature to
components including contractual descriptions. Two services match if their
contract types form a subtype relationship. A subtype relationship can result
in a commitment, which is a prerequisite for the establishment of a connection.

8

For a composition expression mg(m).C|nc(n;).P we can say that both
processes commit themselves to a communication along the channel between
ports m¢ and ne, if their contracts match. The contract rule [T-CTR]
formalising the process of matching and commitment is defined as follows:

mcve(myr)

REQ mcve(my).C ve(mr).C PRO ne(ngr).P nﬂ)(m).P
REQ mcve(m;).C+M,|PRO na(ng).P+My, — (n;).PQuc(m;).C

(tne <tme

The annotations REQ and PRO denote port types, i.e. m¢ 1, REQ and n¢ 1)
PRro. Here, the port types match: REQ is the complement of PRO and the
polarities are opposite. We write 7 (i¢) =~ T (n¢) in this case. The matching
is also guarded by the channel type constraint 7.(n¢) < Te(me).

The contract rule differs from the original w-calculus reaction rule which
requires channel names to be the same [7,13]. We only require a subtype rela-
tionship between ports. Type systems for the m-calculus usually constrain data
that is sent; here we constrain reaction, i.e. the interaction between agents.
The receiver can accept an input based on the type, not the name. The con-
tract rule cannot be translated into the match-rule found in some 7-calculus
variants. The contract rule is, however, similar to transition rules describing
reaction that are based on bounded output Z(z) where z is introduced as a
bound variable forming a restricted channel [13]. We have chosen to introduce
a fresh variable ¢ instead.

Service descriptions that have been matched using UDDI features can re-
sult in connected and interacting components. Each service description de-
scribes the interface of the service and how to connect to it. A binding tem-
plate contains the information to actually invoke the service. In order to sup-
port connector establishment after commitment, UDDI specifications include
an XML schema for SOAP messages.

The commitment of two matching services m¢ and n¢ leaves two residues:
(myp).C is called concretion and (n;).P is called abstraction, see [13] 4.3. A
restricted concretion ve(m).C' can be introduced. Concretion and abstraction
together result in a reaction, expressed by a construct that we call connector
establishment 5: (n;).PQuvc(m;).C = ve({gmCl{gn}P)™ which shall be
abbreviated by a binding C'~ P. The connection yields a proper process
describing the establishment of a connector ¢. The binding C'~P introduces
the connector ¢, a fresh variable free in C' and P. The connector c is a private
(restricted) channel. The concrete part of a WSDL specification describes
bindings — information necessary for connector establishments:

<binding name="portSO0APbinding" type='"port'">
<soap:binding style="document" transport="..."/>
<operation name='"port">

6 Usually called application in the literature, see [7] Chapter 12.1.
" The substitution {b/a}P means that b replaces a in P.

9

<soap:operation soapAction="http://www. .. .com/../serv"/>

<input> <soap:body use="literal" /> </input>
<output> <soap:body use="literal" /> </output>
</operation>

</binding>

Our connector establishment implements the UDDI invocation model where
a binding template is cached by the service user and used at a later stage to
invoke the remote service.

4.4 Interaction

UDDI- and WSDL-bindings provide basic connector descriptions. The actual
implementation of binding and interaction (connector activation and reply) is
realised using e.g. SOAP. Here is the SOAP connector activiation — part of a
SOAP envelope — for service serv with input data and reply channel:

<soap:operation soapAction="http://www. .. .com/../serv"/>
<soap-env:body>
<port service="http://www. .. .com/../serv">
<InData> a </InData>
<Reply> m_R </Reply>
</port>

</soap-env:body>

We assume that a private channel — the connector representing the SOAP
connection serv — has been established between client and provider. Such a
channel is used if a client requesting my is to invoke a service ny at the server
side. Parameter data a : ¢, with ¢, < ¢, and a reply channel mp, : ¢,,,, are sent
to the provider in form of messages.

INV Wl(a,mRyCmiI(a—’ﬁnmC EXE nl(x,nR).Pn’ﬂR)P

INV T {a, mg).C + M, |EXE n;(x,ng).P + My — C~{a/x}P

nr S tm]

is the connector activation rule [T-CAc]. Types t,,, and t,, represent con-
nector activation types CAC(ty, .. ., t,, CRE(t)) and CAc(#, ..., !, CRE(t')),
respectively. The reply channel is a private channel between the two compo-
nents that replaces mp and ng. Type equality (or a subtype relation) for m;
and n; is not required if we can guarantee that the connector types satisfy the
contract types and that the contract matching has been successfully executed.
A protocol, specified in form of a component life cycle, can guarantee this.
Finally, the connector reply rule [T-CRE] gives semantics to a SOAP

reply:

nR(b)

REs mg(y).C "o Rep ng(b).P — P
RES mg(y).C + M;|REP ng(h).P + My — {by}C~P
10

< ng = tmR

We assume t, < t,. Here, b is the result of the internal computation triggered
by the activation of P. We have decided to formulate the reply in a separate
rule, and not to address the creation of a private reply channel replacing mpg
and ng within the connector activiation rule. The typing constraint that REs-
and REP-ports have to match is more explicit in this form.

4.5 Type Safety

Type safety concerns the relation between the type system and the operational
semantics. The operational semantics is defined in a transitional form, spec-
ified by rules such as contract matching and connector establishment. Type
safety comprises two issues. Firstly, evaluation should not fail in well-typed
programs — we will introduce a notion of well-typedness shortly. Secondly,
transitions should preserve typing. The judgment [' = C' denotes the well-
typedness of composition expression C'.

We need to define a notion of satisfaction before we can define well-
typedness. A connector type satisfies a contract type if the signatures cor-
respond and, if the precondition holds, the execution of the service attached
to the connector port establishes the postcondition. Connector type 177 =
CAc(Ty,...,T,, CRE(T)) satisfies contract type T = CTR(Sig, Pre, Post),
or Tr = T¢, if for a service port p the connector port p satisfies the follow-
ing constraints: S1G(73,...,7T,, CRE(T)) = Sig and, if Pre holds, then the
execution of py, if it terminates, establishes Post. We assume an analogous
definition of satisfaction between data types and connector reply types and
their connector activation types.

We can now define well-typedness of simple actions [W-Act]:

I' F REQ mg(my) if T.(m;) = To(me), otherwise REQ T (my) fails.

[' = PrO ne(ng) if To(ng) E Te(ne), otherwise PRO ne(ng) fails.

['HINv mr{a, mg)if type(a),T.(mg)E=T.(my), otherwise INV T (a, mg) fails.
I'-EXE nr(y, ng) if type(y), To.(nr) ETe(nr), otherwise EXE n;(y, ng) fails.

The execution of an action fails, if data sent along the channel does not sat-
isfy the channel constraint. A reaction fails if both participating actions
are well-typed, but the type constraint is not satisfied. If REQ mg(m;)
and PRO nc(n;) are well-typed, but do not satisfy the subtype constraint
T.(nc) < T.(me), then REQ mic(m;)|PRO ne(ny) fails. The well-typedness
of parallel compositions is defined by rule [W-PARCOMP]:

' REQ mc(mr) T'FPRrRO ne(ng) Tk To(ne) < To(me)
I' F REQ Mg (m;)|PRO ne(ng)

Well-typedness guarantees correct composition and interaction behaviour ac-
cording to the specifications given through the type system.

Based on these constructions, we can obtain the following safety properties,
presented here without proof:

11

(i) Substitution lemma: if '+ C and 'z : T, v : T, then I - {v/x}C.

(ii) Evaluation cannot fail in well-typed programs: if ' = C' then the execu-
tion of C' does not fail.

(iii) Transition preserves typing: if ' = C} and C; — Cy then T' - Cs.

5 A Component Composition and Interaction Protocol

In the previous sections, we have seen several stages in the life cycle of a com-
ponent such as service matching, connector establishment, or service invoca-
tion. The full life cycle of clients, providers, and systems consisting of both
clients and providers can be specified in a standard form. This standard form
formalises a component composition and interaction protocol. The behaviour
of components is a key element in the description of Web services. However,
a corresponding construct does not exist for the Web services platform.

Clients are parameterised by a list of required services. Requests have to be
satisfied before any interaction can happen. Once a connection is established,
a service can be used several times. All service requests need to be satisfied —
expressed by the parallel composition of the individual ports:

Ci(my,...,m;) = REQ mL(mb)./(INV mE(a!, mbk).RES mh(y").0) | ... |

REQ mL (m})./(INV mb(a!, mb).RES mk(y').0)

Service providers need to be replicated in order to deal with several clients at
the same time. Otherwise their behaviour is the dual to that of clients:

P(ny,...,np) 1 PRO n(n}).(EXE ni(y', nk).REP nk(b).0) + ... +
PRO nk,(n}).N(EXE nk(y*, nk).REP nk(b).0))
A provider does not need to engage in interactions with all its ports, which is

modelled by using the choice operator instead of the parallel composition.
Clients and a server are composed in parallel to form a composed system:

C'Sd:dC’l(mh,...,mlml) | |C'j(mj1,...mjmj) | P(nl,...,nk)

A component can be both client and provider, i.e. can import and export
services:

CS = (REQ mL(mb).0|...|REQ mkL(m}).0).
(CICINV mE(L).REC mh(1).0 + ...+ INV mb (). REC mk(..).0)
+ P(ny,...,ny))

The requirements have to be satisfied, i.e. connectors have to be established,

12

before any service can be provided. A service that is provided and actually
invoked can then trigger the invocation of imported services.

The usage of the operations could be expressed in our WCSL in form of
a component life cycle — here a client requesting a service and subsequently
interacting with the service repeatedly:

<sequence>
<request name="serv_C" precon="pre" postcon="post" />
<repeat>
<sequence>
<invoke name="serv_I"> ... </invoke>
<receive name="serv_R"> ... </receive>
</sequence>
</repeat>
</sequence>

The semantics of this protocol client expression is
C(serv) = REQ Servg(servr). |(INV Servr{a, servg).RES servg(y).0)

which satisfies the client standard form C; that has been presented above.

6 Related Work

A formally defined computing model for Web components is essential if anal-
ysis and reasoning services based on semantic descriptions shall be provided.
Suitable frameworks for the formulation of this model are process calculi with
typing, mobility, security, etc., e.g. the m-calculus [13] or the Ambient calculus
[2]. In [10], we have presented a formal framework for component composi-
tion based on a typed w-calculus, which satisfies the requirements outlined
above. Typed process models to formalise interaction between components,
or objects, have also been used elsewhere. Nierstrasz [9] develops a formal
type-theoretic framework for objects. Objects are characerised as regular pro-
cesses that interact with each other. A two-layered type system distinguishes
services types (contracts) and regular types (protocols). Two subtype notions
— based on services types and regular types — define a notion of satisfiability
between client and provider. Nierstrasz emphasises the orthogonality of the
two different forms of types.

Some frameworks for advanced services architectures on the Web are al-
ready proposed. In [4], a component model underlying the Web services [15]
platform is identified. It is admitted that strenghtening the component aspects
will greatly improve the platform. Fensel and Bussler [5] present a platform
for Web-based service, called Web Services Modelling Framework (WSMF).
The development of the framework focussing on the integration of semantic
Web technology is in progress — a formal semantics does currently not exist.
The issue of composed Web services is addressed in [6]. Business processes

13

and interactions are the two types of processes that result in the composition
of services. Service provider and requester are considered as in our approach.
However, these approaches have not included proper components.

Some groups have addressed Web component broker systems. Among those
are the Cell-project [12] and the ComponentXchange [14]. The former imple-
ments a two-layered system for component composition. The latter focusses
on matching activities — there called trading. In [11] we have briefly described
our own attempts to implement a component broker.

7 Conclusions

Web Services, which provide a remote procedure call (RPC) environment,
should be seen as a first step towards a component middleware platform for
the Web. Component technology for the Web, however, requires a rigorous
underlying model. Our typed m-calculus-based operational semantics provides
the foundation for various necessary features of Web component middleware
— we have, for instance, discussed replacement issues in [11].

We have identified and formalised matching, commitment, connection and
interaction as core services of component middleware. Their embedding into
a component life cycle framework is essential. Component technology em-
phasises reuse and maintenance in the context of change and evolution. The
m-calculus is an ideal formal framework to develop a life cycle-based approach
to describe the process a component might be involved in. We have used the
standard m-calculus. However, aspects such as internal mobility — the use of
private names in a communication — suggests to consider other calculus forms.
The private and the localised m-calculus [13] shall be investigated in search
for a more suitable foundation in the future.

This presentation motivates a component middleware platform for the
Web. Questions relating to particular services such as those offered by the
CORBA platform for object-based middleware still need to be answered. We
have addressed aspects relating to trading and life cycle services, however,
others such as security or transactions still need to be looked at.

The ultimate goal of this research is a framework for the development
and management of Web components. This would require modifications to
the current Web services model. Work on the DAML-S services descriptions
indicates the direction. In contrast to recent work on DAML-S, our work
could provide a formal foundation. An integration of contracts is an essential
element of these modifications. The notion of contracts, however, needs to be
extended from request-response type interaction to more complex interaction
patterns.

References

14

[1] R.J.R. Back and J. von Wright. The Refinement Calculus: A Systematic
Introduction. Springer-Verlag, 1998.

[2] L. Cardelli and A.D. Gordon. Mobile Ambients. In Proceedings FoSSaCS’98,
pages 140-155. Springer Verlag, 1998.

[3] W3C World Wide Web Consortium. Extensible Markup Language (XML),
2001. http://www.w3.org/XML.

[4] F. Curbera, N. Mukhi, and S. Weerawarana. On the Emergence of a Web
Services Component
Model. In Proceedings 6th Int. Workshop on Component-Oriented Programming
WCOP2001. http://research.microsoft.com/users/cszypers/events/, 2001.

[5] D. Fensel and C. Bussler. The Web Services Modeling Framework. Technical
report, Vrije Universiteit Amsterdam, 2002.

[6] F. Leymann. Web Services Flow Language (WSFL 1.0), 2001. http://www-
4.ibm.com/software/solutions/webservices/pdf/ WSFL.pdf.

[7] R. Milner. Communicating and Mobile Systems: the mw-Calculus. Cambridge
University Press, 1999.

[8] C. Morgan. Programming from Specifications 2e. Addison-Wesley, 1994.

[9] Oscar Nierstrasz. Regular types for active objects. In Proceedings OOPSLA
93, ACM SIGPLAN Notices, pages 1-15, October 1993.

[10] C. Pahl. A Pi-Calculus based Framework for the Composition and Replacement
of Components. In Proc. OOPSLA Workshop on Specification and Verification
of Component-Based Systems, 2001.

[11] C. Pahl and D. Ward. Towards a Component Composition and Interaction
Architecture for the Web. In Proc. ETAPS Workshop on Software Composition
SC2002. Elsevier, ENTCS Series, 2002.

[12] R. Rinat and S.F. Smith. The Cell Project: Component Technology for
the Internet. 1In Proceedings 6th Int. Workshop on Component-Oriented
Programming WCOP2001.
http://research.microsoft.com/users/cszypers/events/, 2001.

[13] D. Sangiorgi and D. Walker. The m-calculus - A Theory of Mobile Processes.
Cambridge University Press, 2001.

[14] V. Sriram, A. Kumar, D. Gupta, and P. Jalote. ComponentXchange: A Software
Component Marketplace on the Internet. In Proceedings 10th Int. Conference
on the World-Wide Web WW W10. International World-Wide Web Conference
Consortium TW3C2, 2001.

[15] V. Vasudevan. A Web Services Primer, 2001.
http://www.xml.com/pub/a/2001/04/04/webservices.

[16] P. Wegner. Concepts and Paradigms of Object-Oriented Programming. ACM
OOPS Messenger, pages 8-87, 1990.

15

