
Security in the Web Services Framework 
 

Chen Li and Claus Pahl 

Dublin City University 
School of Computing 

Dublin 9 
Ireland 

 
Abstract 
 
The Web Services Framework provides techniques to enable the application-to-
application use of the Web. It has the potential of becoming the core of a new Web-based 
middleware platform, providing interoperability between computational services using 
Web- and Internet-technologies. Security is of course of major importance in this context. 
We introduce here extensions to two major building blocks of the Web Services 
Framework – the Web Services Description Language WSDL and the Universal 
Description, Discovery, and Integration Service UDDI. We add description mechanisms 
and matching techniques that support the retrieval of Web Services from repositories. 
 
 
1 Introduction 
 
Researchers and practitioners have started work on a Web-based middleware platform 
with the Web Services Framework (WSF) at its centre [6]. The WSF provides a services 
description notation (Web Services Description Language WSDL), a repository facility 
(Universal Description, Discovery, and Integration Service UDDI), and a 
communications protocol for service invocations (Simple Object Access Protocol SOAP).  
All components are based on the eXtensible Markup Language XML.   
 
Even though security on the Internet is paramount and must, consequently, be a major 
aspect for a Web-based middleware architecture, this has not been sufficiently addressed 
in the WSF context. Three security aspects in relation to the WSF can be identified: 
• Describing security requirements and constraints for the application of Web services. 
• Retrieving Web services from repositories that match client security requirements. 
• Implementing security requirements when services are invoked across the Web. 
We will focus on the first two aspects [3]. With respect to the third aspect more work on 
architectural issues is needed, which goes beyond the scope here. 
 
Our starting point will be a security object notion, which will lead to a simple extension 
of the WSDL. This introduces our key concepts for representing various security issues in 
form of security objects. In a second step, we will introduce an ontological framework for 
Web services security description and matching. This can either replace the extended 
WSDL or support UDDI-based matching and retrieval features. This aspect will draw 
heavily on another central Web technology for the future, the Semantic Web [7].  
   

481Copyright held by the author 



2 Description of Web Services Security 
 
A Web service is essentially a Web interface to a coherent set of operations. WSDL is an 
interface definition language (IDL) that addresses the structural and functional 
description of Web services. The design objective is the application-to-application use of 
the Web platform, providing interoperability for distributed heterogeneous software 
systems. Port types are the central abstraction concept to capture the connection points of 
the Web communications infrastructure. 
 
The starting point for this investigation into Web services security is the description of 
security requirements for Web services applications. Our objectives are to find a coherent 
representation of security requirements in a WSDL-style and to integrate the security 
aspects into WSDL as a simple language extension. 
 
2.1 Permission and Obligation Rules 
 
Security is about protecting assets. In the Web services context data and computational 
services are assets under consideration [5]. Security aspects that apply to the assets are: 
• Confidentiality – the prevention of unauthorised disclosure of data. 
• Integrity – the prevention of unauthorised modification of data. 
• Availability – the prevention of withholding of data or services from authorised users. 
• Authentication – the proven identification of users in a computer system. 
• Accountability – the provision of activity logs recording all user activity. 
Security policies for computer security are usually formulated in terms of access control 
policies [2]. These are usually expressed in terms of triples (S,A,O) consisting of a 
subject S, an activity A, and an object O. We shall called these triples security rules. We 
can use these rules to express the relevant security aspects in this context. A closer look 
at the security aspects shows their relationship to the elements of the security rules, 
(subjects, activities, objects): confidentiality: O; integrity: O; authenticity: S; availability 
O,A; accountability: S,A,O.  
 
We define a Web services security language based on security rules which addresses two 
different types of security: computer security and communications security. Computer 
security is essentially access control within a computer system. Communications security 
is about providing a secure logical connection between two agents. The security aspects 
such as confidentiality, integrity, or authentication are relevant for both contexts. Security 
rules – in form of triples – are the central notational concept to express security 
requirements in our approach. We distinguish two forms for networked environments. 
• Communications security is a connection-oriented security focus. A requirements 

rule expresses obligations of the client and of the server. Such a rule expresses the 
necessary security-relevant preparations for the use of a service, or security measures 
needed after the service execution (securing return data). Sample rules are (Server, 
authenticates, Client) or (Client, encrypts, Data). The activities authenticates and 
encrypts are associated with authentication and confidentiality, respectively. 

• Computer security is a node-oriented security focus. A permission rule expresses 
capabilities of the client at the server side. Such a rule expresses restrictions on the 

482



actual service usage, e.g. which operations at which service object are allowed to be 
executed. An example is (Client, operation, Service) which means that a Client is 
allowed to use operation at Service. 

 
We have introduced a language that expresses security policies in terms of activities that 
prevent the violation of security properties. This more operational specification of 
security is in contrast to declarative security specifications in terms of the security aspect 
to be guaranteed. Here, where an agreement between client and provider has to be 
achieved in terms of the actual security techniques to be used, an operational form is 
more adequate. However, a mapping of these activities to the abstract properties they aim 
to guarantee shall be assumed. The abstract activities still need to be mapped to concrete 
techniques, e.g. authentication through either usernames/passwords or digital certificates. 
 
Even though this is not our objective here, a declarative specification of security aspects 
could be facilitated in terms of abstract security predicates, which directly encode one of 
the security aspects. This approach is more appropriate if general reasoning about 
security properties is envisaged. 
 
2.2 sWSSL 
 
Our approach to expressing security for WSDL is to introduce security objects. Security 
objects are security specifications associated with subjects. A security object consists of 
several (S,A,O)-security rules for communication and computer security for one 
particular subject S. We integrate security object into WSDL descriptions, creating an 
extension called the simple Web Services Security Language sWSSL.  
 
   <secObj    name=”..”  subject=”..”  > 
       <rule  name=”..”  

   type=”permission”   activity=”..” object=”..” /> 
       ...  
       <rule  name=”..”   

   type=”requirement”  activity=”..”  object=”..” /> 
       ... 
   </secObj> 
 
This is a security object template in XML-format. Several permission or requirements 
rules can be specified for one subject in a security object. 
 
Ports are the connection points of Web services. Security specifications have to relate to 
the port type specifications. In order to allow specific security requirements to be 
attached to for example individual message elements, but also to apply a policy for an 
entire service, we allow security objects to be associated with different elements such as 
port types, operations and messages. We combine this with a notion of scope. A security 
object is valid for all XML elements subordinated to the element under question, except 
when it is superseded by a local one. 
 
 

483



   <portType     name="BankingService     security="tns:BankSec”> 
      <operation name="AccBalance"        security=”tns:BalSec” > 
          <input  message="tns:User"/> 
          <output message="tns:AccBalResp"/> 
      </operation> 
      <operation name="FundsTransfer"> 
          <input  message="tns:User"      security=”tns:MsgSec”/> 
          <input  message="tns:TransfReq" security=”tns:MsgSec”/> 
      </operation> 
   </portType> 
 
This excerpt from an online banking service refers to different security objects (referred 
to by name) used on different levels. BankSec is the security object for operation 
FundsTransfer, except when it is superseded by MsgSec for the input elements. 
 
Similar to WSDL service bindings that specify the location and communications protocol 
to be used in the actual service invocation, security bindings have to be provided that 
implement the required security policy. This needs to address communication and access 
control. The focus of this paper is description and matching of security specifications. 
However, we will address security bindings later on briefly.  
 
 
3 Web Services Security Description and Reasoning 
 
The language sWSSL is a simple extension of WSDL. This approach would allow 
existing tools and infrastructures to be used and would make it easy to understand for the 
WSF community. However, a more advanced alternative to sWSSL shall be introduced. 
If reasoning about security properties is envisaged, the Web-based representation of 
security knowledge is the starting point. We propose an ontological approach to Web 
services security description and reasoning. 
 
RDF – the Resource Description Framework [7] – is the basic Web technology for 
knowledge representation. RDF enables the specification of knowledge in form of triples 
– similar to our representation of security rules. RDF, however, is a general framework, 
allowing us to describe any concept in terms of its relationships to other (more basic) 
concepts. We talk about subjects, properties, and objects in the RDF. There is a richer 
framework building up upon RDF, which is more suitable for ontology definitions. 
DAML+OIL is a Web-based ontology language [1]. Besides a richer set of primitives it 
also has a strong grounding in logics, which provides reasoning support. 
 
3.1 Security Knowledge Description 
 
Since we have already used a triples-format for security specifications, these can easily 
be rewritten in terms of RDF- or DAML+OIL-triples. Triples are basic descriptional 
entities in RDF. A class of subject elements is described in terms of properties in relation 
to another class of object elements. The essential extension that we need here is to 
express combinations of security rules. Ontology languages provide concept combinators 

484



corresponding to set-theoretic operators such as intersection or union (or alternatively 
their logical counterparts conjunction and disjunction). The concept definitions in terms 
of triples can be seen as forms of quantified logical expressions. 
 
  <daml:Class> 
     <daml:Restriction> 
        <daml:onProperty  rdf:resource="#Client"/>       
        <daml:toClass> 
           <daml:intersectionOf rdf:parseType="daml:collection"> 
              <daml:Restriction> 
                 <daml:onProperty rdf:resource="#authenticates"/> 
                 <daml:hasClass   rdf:resource="#Server"/> 
              </daml:Restriction> 
              <daml:Restriction> 
                 <daml:onProperty rdf:resource="#operation"/> 
                 <daml:hasClass   rdf:resource="#Service"/> 
              </daml:Restriction> 
           </daml:unionOf> 
        </daml:toClass> 
     </daml:Restriction> 
  </daml:Class> 
 
This DAML+OIL example describes a composite rule consisting of two abstract rules, 
(Client, authenticates, Server) and (Client, operation, Service), for a 
given subject. The two rules are combined using conjunction (intersection). 
 
The idea of reformulating security objects in terms of RDF/DAML+OIL can even be 
applied to WSDL as a whole, describing a full WSDL specification in terms of RDF [4]. 
An example of WSDL in RDF is to express the structural constraints, e.g. (portType, 
consistsOf, message). Another example is to capture extensions of WSDL by syntactical 
and semantical (functional) specifications, such as pre- and postconditions, e.g. (service, 
preCond, Cond) or (service, hasSyntax, signature). 
 
3.2 Security Requirements Matching 
 
Subsumption is the central reasoning construct for ontologies. Concepts in ontologies 
represent classes of elements. Subsumption is the subclass or inclusion relationship on 
concept classes. We will base our matching approach for security specifications on 
subsumption. Note, that this is a symbolic representation of security properties and 
matching. The validation or verification of those properties against the communications 
and the actual service implementations, or an intruder analysis, is here not aimed at. 
 
Matching of possibly composite security rules shall be defined based on subsumption.  
• Requirements rule. The client must at least satisfy the provider security specification, 

i.e. must be better. Usually, server requirements are expressed using conjunctions. A 
provider might require confidentiality(data) and a client might guarantee 
confidentiality(data) and integrity(data) – we have expressed this as predicates P 
applied to objects O, i.e. P(O), for some given subject. This is the case if the client 

485



specification is stronger, i.e. confidentiality(data) and integrity(data) is included or 
subsumed in confidentiality(data). 

• Permission rule. The client must not exceed the provider specification, i.e. must not 
access more than allowed. Usually, server permissions are expressed in a disjunctive 
form. A provider might allow operation1 or operation2 at service and a client might 
require operation1 at service, i.e. the client request is included in the permissions. 

For both rules, the subsumption (inclusion) relationship is the key criterion. However, 
server specifications are usually either conjunctive or disjunctive. 
 
 
4 Conclusions 
 
Securing the Web Services platform is crucial for its success as a middleware platform 
for distributed software applications.  The major contributions of this paper are, firstly, a 
uniform format to describe communications and computer security through security 
objects, and, secondly, coherent integrations of this format into WSDL as a proper 
extension and also into an ontology framework for security knowledge representation and 
reasoning. A straightforward extension of WSDL is possible through security objects, but 
in order to exploit the full potential of the Web, using RDF and the Semantic Web 
technologies provides additional benefits for description, matching and reasoning.  
  
A Web services description includes a bindings section, which associates an abstract 
IDL-style description with a concrete service location and an interaction protocol. This 
form of binding and execution support for service implementations – i.e. remote 
procedure call (RPC) support – is a mature mechanism. Similar binding support for 
security mechanisms to implement the security requirements is less mature. Since service 
port types are connection points between the network and the service, firewall 
capabilities are required here. For permission rules, a security manager or security proxy 
needs to implement access control aspects. For requirements rules, a Web server needs to 
secure the communication (e.g. SSL-based). This aspect requires further work and shall 
be addressed in the future. 
 
 
References 
 
[1] DAML Initiative. DAML+OIL Ontology Markup. http://www.daml.org. 2001. 
[2] D. Gollmann. Computer Security. John Wiley and Sons. 1999. 
[3] Chen Li. A Framework for Web Services Security. M.Sc. Dissertation. Dublin City 

University. 2003. (forthcoming). 
[4] C. Pahl. An Ontology for Software Component Matching. Proc. FASE’03 

Fundamental Approaches to Software Engineering. Springer-Verlag, LNCS-Series. 
2003. 

[5] C.P. Pfleeger. Security in Computing (2nd Ed). Prentice Hall. 1997. 
[6] World Wide Web Consortium. Web Services Framework. 

http://www.w3.org/2002/ws. 2002. 
[7] World Wide Web Consortium. Semantic Web Activity. http://www.w3.org/sw. 2002. 

486


