Perspectives for a Model-driven Service Engineering Discipline

Claus Pahl, Ronan Barrett, Mark Melia

Dublin City University School of Computing

Status Quo and Solution Outline

Services:

Research Direction – Rigour and Formality

- Motivation for formal foundations:
 - modelling for collaboration and exchange of information
 - automation of analyses and code generation
- Modelling activities:
 - semantic service description
 - service matching and composition
- Proposal: ontology-based modelling foundations:
 - concepts representing entities of a domain and relationships between these concepts that explain the properties of concepts,
 - an extended relationship subexpression language using process combinators realises process expressions that characterise accessibility relations between states of a system,
 - Additional extensions can cover data aspects by introducing names to represent for instance parameters.

with subsumption-based reasoning

 Existing approaches: OWL-S and WSMO (service ontologies) and WSPO (service process ontology)

Research Direction - Methods and Techniques

- Central development activities: description, reasoning, and transformation
- Description and visual modelling:
 - layered modelling: business services, architecture, process execution and description
 - UML extensions: service and process semantics
- Formal Reasoning:
 - process analysis: abstract composition of individual services to processes
 - process implementation: matching of abstract service requirements and provided services
- Transformations:
 - horizontal: UML to ontology representation (and vice versa)
 - vertical: between the layers ideally automated in a process-centric context

Discussion and Outlook

- The objectives of model-driven service engineering:
 - industry aims of cost reduction through automation and improved maintenance

plus

- semantic integration and process-orientation focusing on composition and transformation activities
- A discipline of ontology-based model-driven service engineering needs to go further. Other relevant perspectives:
 - Standards and Interoperability:
 - deployment: SOAP, WSDL, UDDI as core platform [W3C]
 - development: MOF-compliant, ODM-based UML extensions [OMG]
 - Cooperation and Trust:
 - models as the basis of contracts
 - certification as the central trust mechanism