Pattern-based Customisable Transformations for Style-based Service Architecture
Evolution

Aakash Ahmad
Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University
Dublin, Ireland
ahmad.aakash@computing.dcu.ie

Abstract—Service-based architecture have now become com-
monplace, creating the need to address their systematic
maintenance and evolution. We propose a layered pattern-
based transformation framework to support a stepwise and
incremental Service-Oriented Architecture (SOA) evolution.
The framework enables higher-level abstract and system-level
operational transformation of SOA elements to facilitate archi-
tectural evolution. Higher-level transformations are defined by
combining the basic transformation operators and transforma-
tion patterns. An abstraction layer encapsulates these primitive
transformations into declarative user-defined transformation
rules. SOA-specific architectural styles are applied to refine the
transformed design to complete a style-based SOA evolution.
An electronic payment system case study is used to demonstrate
the architectural evolution at different abstraction levels.

Keywords-Web Services Architecture; Modeling and Trans-
formation; Service Architecture Evolution;

I. INTRODUCTION

Service-Oriented Architecture (SOA) is considered as a
business centric, architectural approach to support the design
and development for distributed, enterprise systems [§].
The existing theory and practices on such service-based
software like [8], [2], [3] primarily focus on its initial
design or development efforts. However, as service-based
systems are developed and deployed the major concern shifts
toward their maintenance and evolution issues [15], [14] to
accommodate the changing requirements; thus prolonging
the productive life for existing software.

A taxonomy of service-oriented software research have
been detailed in [15] that prioritises the current and future
research agendas, explicitly highlighting the needs for SOA
evolution. In contrast, the current academic and leading
industrial efforts like [12], [7], [18] concentrate on legacy
modernisation towards service softwares thus lacking-on an
explicit evolution within SOA. Alternatively, the work pro-
posed in [17], [23] enables a dynamic design and evolution
for service orchestrations to facilitate a runtime adaptation
for (web services in) service-based architectures.

With a review into the state of the art (discussed in Section
VIII), we believe that rigorous processes, frameworks and
patterns etc; are lacking in the afore-mentioned (and other

Claus Pahl
Lero - The Irish Software Engineering Research Centre
School of Computing, Dublin City University
Dublin, Ireland
cpahl@computing.dcu.ie

relevant) efforts to support a coherent, stepwise evolution for
SOAs. This leads toward the contribution of the proposed
research, i.e. fo develop a coherent framework supporting
customisable transformation driven evolution for service
architectures at different abstraction levels. In contrast to
the relevant existing initiatives like [23], [12] the proposal
is technically innovative in that it supports an incremental
transformation of SOA elements at different abstraction
(structure, design, architecture) levels through:

o An operational layering with a focus on operation and
execution (what and how to change) that consists of
basic transformation operators and patterns. A pattern
notion allows to categorise the composed transforma-
tions in terms of their impact on source and target
architecture elements.

o A user-defined customisable layer focusing on design
aspects (why to evolve) allows a rule-based declarative
specification of the transformation goals to generate
service design. SOA-specific architectural styles are
applied to refine the transformed design in order to
complete a style-based service architecture evolution.

In addition, the structural and semantic properties of SOA
elements are preserved at all abstraction levels to maintain
an overall target architecture integrity. Once a transformation
framework is developed, we can systematically address the
(structural and behavioral) evolution issues for SOAs.

This paper outlines the proposed research and is structured
as follows. Section II details an electronic payment system
case study to illustrate the architecture transformation frame-
work presented in Section III. Sections IV and V outline the
operational layer (transformation operators and transforma-
tion patterns); while the user-defined layer (transformation
rules and refinements) are presented in Section VI and VII,
respectively. Finally, related work is presented in Section
VIII; following the conclusions and outlook in Section IX.

II. ELECTRONIC PAYMENT APPLICATION CASE STUDY

The case study involves an electronic bill presentment and
payment (EBPP) reference model published by NACHA [1].



. > Receive Pay Receive > @
Invoice Invoice Receipt

Customer

k

._.,' Transfer ) Send }_>©
Money Receipt )

Mediator mediator
N Colleague

CustomerService
Provider

._»{ Send M Receive }_,@
Invoice Payment

Utility Company Bank's Network

a) High-level Business Process for EBPP

Figure 1.

It represents a typical electronic transaction scenario
where the customers and businesses interact illustrated in
Figure la, as a high level business process for EBPP. Three
participants (roles) are exhibited at this level, customer,
banks network and utility company. Periodically, a utility
company bills their customers with an amount of money
corresponding to the consumption of the delivered services.
Customers receive their bills and decide the payment. A
payment on the date due will eliminate the debt of the
customer, otherwise the debt is accumulated. After the
payment transaction is completed, the bank’s network sends
the remittance information to the customer and the biller.

Based on EBPP, it has been realised that a process
participant is playing the role of a mediator. Specifically, we
identify that a customer service provider (Bank Network)
is mediating between customers and the utility company
for electronic payment. This relation is analogous to the
mediator pattern, illustrated in Figure 1b.

We strive to enable a development based evolution for
SOA elements at different abstraction levels. The evolution
activities mainly consist of 1) transforming the architectural
elements to generate a service-oriented design and ii) refin-
ing the design by applying the SOA specific architectural
styles to evolve the target service architecture. It is vital to
preserve the structural and semantic properties of the archi-
tectural elements during evolution to maintain a consistent
architectural representation at all abstraction levels, detailed
in the next section.

III. SERVICE ARCHITECTURE TRANSFORMATION
FRAMEWORK

The proposed service architecture transformation frame-
work is illustrated in Figure 2. We use two organisational
perspectives to clarify the transformation layers and archi-
tectural views.

e The architectural view (in Figure 2b) explains the

aspects of an architecture (SOA elements) that can be
the concerns of transformation at different abstraction

billPresentment() —4 Ci ‘ Biller ‘

b) Mediator Pattern in the Business Process.

The High-level Business Process and Mediator Pattern for EBPP Case Study.

levels. These views are developed using the EBPP ap-
plication transformation at different abstraction levels.

o Different transactional abstractions (in Figure 2a) al-
low operational, management and design aspects to be
separated during architecture evolution.

A. Structural Level

It describes the operational aspects of the SOA elements
(atomic, composite services) in terms of their fundamental
structure and relationships in a given service-based architec-
ture. Due to space reasons a minimal structure is presented
in Figure 2b based on an extension of the UML 2.0 Profile
for Software Services [13], complying to the UML 2.0 meta
model.

B. Design Level

It utilises the structural descriptions to instantiate a
service-oriented design in terms of a comprehensive ar-
chitecture of individual services, service functionality and
service-level communications. For example in Figure 2b,
the BillCreation service is communicating with the Tariff
service through (a mediator) CustomerServiceProvider to get
the customer billing information, guided by the EBPP case
study.

C. Architectural Style Level

It abstracts the design-level details to present a high-
level system architecture that comprises of design elements,
externally visible properties and high-level relationships in
the form of architectural styles and patterns. In Figure 2b, the
architecture-style view shows that CustomerServiceProvider
is refined by applying the Enterprise Service Bus (ESB)
style architecture [9] that mediates among the services in
the evolved EBPP systems. The motivation behind the style
application is to minimise the counter productive transfor-
mations to enable a robust style-based target architecture.
Note that we use the term ‘architectural style’ here, but the
aim is to encompass what is also commonly referred to as
‘architecture/design pattern’ detailed in [9].



Layer 4 - Style Application

7 Process Abstractions
Entity Abstractions

Architectural
Styles

efinements

Design Patterns

apply SOA Styles

Tranzf.zr.nla.tial

Target Service Architecture™:

Services = I g1 Biller_App = | N
Srv_BillCreation |—o—|| Biller::ESB ) Meter_Application %

N, ’

B refiné';d to
Architectural Style Level

Layer 3 - Transformation Rules

Rule Specification

<<customisation>>

Service Architecture
CustomerService™ | Elements

Provider

Rule C

Structure
Semantics

..................... -

String +par ing
A\ |+toName:String +wholeName:String 7

i
< H billPresentment:
= §

. C 17} Services 4
specify Rule Actions ° C s T Services [ | SN_TariffE >
5 Srv_BillCreation
" getCustomerBilling
E] ’
) S, ¢
EI 0y h - i
01 H i Design Level i
EI ; Layer 2 - Transformation Patterns gengrates
Pattern Te t

< c Ei attern Template e Minimal Structure s,

2 S 8l |operator 4 B Ay

g o B @ |Composition Impact Free Impact Oriented ! - <<Operation>> | !

H (' ] £ c! Battery [ ][ Enforced } a " Y <<Service>> |1 0.

o nforce ustere Associate Ko—| + rtionN: :Stril

% \,Jg =1 5 ¢ +serviceName:String iretumType:String.

- c § c T +parameters[]:String

5 © E: ,f_: 1.N

-]
a u%: g f j <<Dependency>>
EI on- Layer 1 - Transformation Operators +type: bool

1 [Architectural g H

I Somens : ‘

i SOA Elements D : H < iation>> <<C ition>>
1

[

1

[

1

[

1

H

Structural Level

a) Transformation Layers

Figure 2.

We briefly discussed the architectural perspective above,
while the transformation layers are detailed in the following
sections.

IV. TRANSFORMATION OPERATORS

The transformation operators perform the structural
changes to the architectural elements. We believe that the
role of transformation/evolution operator(s) is of central
importance to the successful design or architecture level
evolution as demonstrated in [6], [20]. We go beyond these
existing solutions to develop an operator calculus contain-
ing the fundamental change operators like: Add, Remove,
Rename and Move with defined structural constraints. By
composing the atomic change operators into our identified
service architecture transformation patterns (defining the
operational layer) we propose to preserve the structural
properties of architectural elements during transformation at
different levels. Three fundamental transformation operators
are defined as:

o Add: The format of adding an architectural element
is AAdd(ae(pl)) for an architectural element ae and a
parameter list p/. For example, adding a service Srv-
BillCreation (as in Figure 2b) can be specified as:
AAdd(Srv(Srv-BillCreation)).

e Remove: Removing an architectural element is specified
as ARem(ae(pl)).

e Modify: Two structural modification operators are
Move (AMov) and Rename (ARen). The mod-

b) Architectural Views

The Layered Transformation Framework for SOA Evolution.

ification of an architectural element with AMod
first removes the architectural eclement and then
adds the new architectural elements: AMod =
ARem(ael(pll)); AAdd(ae2(pl2)). The modification
transformations in this case are operationally commu-
tative.

Note, that *;’ is the sequence operator — the only composition
operator we introduce here. The aim of this operational layer
is to support change representation (through change logs)
and analysis (change impact determination). The transfor-
mation operators along with the architectural elements are
composed into the transformation patterns.

Structural Constraints: During transformations these
operators preserve the structural properties of the elements.
We have semantically defined the structural constraints that
ensure the transformational integrity for SOA elements,
summarised as e.g. a service must contain one or more
operations to provide or request the required functionality:

Vsrv; € SRV . Jopr, € OPR with |n| > 1. (1)

for services SRV and operations OPR. Provider or re-
quester services can communicate through association or
composition type dependencies DE P, expressed as follows
where the implication indicates a direction of dependency:

Vdep(srv;, srvj) € DEP . stvj — srv;, Asrv;, stv; € SRV
()



The semantic properties for service operation(s) state that
the addition or removal (7") of operations is semantically
dependent on the service in which the operation is contained
(expressed through implication).

ATsrv; — ATopr, with |n| > 1. 3)

When in a service dependency either of the services involved
are removed, the corresponding dependency must be explic-
itly removed:

AT (srv;, stvj) — AT (dep(srv;, sTv;)) 4)

A service violating these properties is an orphaned service
and denoted as srvy (service with no operations and no
dependencies), representing inconsistent transformations.

V. TRANSFORMATION PATTERNS

At the architectural level of abstraction many system
evolutions follow certain common patterns detailed for an
ad-hoc peer-to-peer architecture in [10] or component based
architectures as [22], [21]. Due to an inherent distributed
nature of SOAs it is still an open challenge to consider
the change impact on source and target architecture. By
taking advantage of regularity in the space of common
service architecture transformation we have identified four
architectural transformation patterns in terms of how a trans-
formation impacts its context (source and target architecture
elements).

This layer formulates the primitive transformations by ap-
plying some recurring architectural transformation scenarios
by a sequential composition of the layer 1 operators in a
transformation pattern template. The transformation opera-
tions are the operational units of change management; the
pattern categorisation here aims at change impact determina-
tion. Together with the structural constraints defined earlier
(using transformation operators) the transformation patterns
ensure the individual pattern’s integrity during operator com-
position. A high-level structural view for the transformation
patterns is presented in Fig. 3. In Fig. 3, affected (added
or removed) services and operations are highlighted in grey,
while affected dependencies are presented as dotted directed
lines.

o Autonomous Transformations: applies if the addition
or removal of SOA elements has no transformational
impact on the existing system, see Fig. 3a.

e Clustered Transformations: the addition of new archi-
tectural elements (services) triggers the addition or re-
moval of the corresponding operations or dependencies
in a cluster of other services, see Fig. 3b.

o Associated Transformations: applies for addition or
removal of a group of functionally associated archi-
tectural elements, see Fig. 3c.

o Enforced Transformations: applies if addition or re-
moval (refactoring) of SOA elements is required to
maintain transformational consistency, Fig. 3d.

affected service/operation

-5 affected dependency

o,
iy m &
o, [opr] o, ]

Lot

a) Autonomous Transformations  b) Clustered

| S —

d) Enforced Transformations

Figure 3.  Architectural transformation patterns and their impact on the
source and target architecture elements.

Example: We only illustrate the autonomous transfor-
mation based on a composition of layer 1 operators, see
Fig. 3a. This pattern-based operator composes primitive
transformations to define a pattern-associated higher-level
transformations of SOA elements. The primitive transforma-
tions develop the foundation for user-defined design trans-
formation rules at layer 3. The sequence is an autonomous
transformation that adds a service, an operation and a corre-
sponding dependency by preserving the structural constraints
presented in Fig. 2b, can be specified as;

AAdd(SRV (srv;)) ; AAdd(OPR(opri, srv;)) 5 by (1)

AAdd(DEP (srv;, srvj)) by (2), (4)

VI. TRANSFORMATION RULES

Based on the core operational transformation calculus
and the categorisation through the transformation patterns,
the next layer addresses customisable, i.e. user-definable
transformations. A declarative, rule-based transformation
specification — consisting of goals, constraints and a defini-
tion can encapsulate the complex primitive transformations
and enable a high-level design transformations addressing
the purpose of evolution in terms of architectural concerns.
The rule is specified in terms of the SOA elements to be
transformed as:

o Goal: we propose four core transformation goals: In-
tegrate (connects a provider and requester service),
Compose (creates an abstraction for composing a num-
ber of SOA elements), Decompose (separates one
SOA element into individual, connected elements), and
Transform (replaces a SOA element without structural
changes) on which users can build up. In Fig. 2b at
the design level, the Srv-BillCreation is integrated with
Srv-Tariff to getCustomerBilling information, through a
mediator (customerServiceProvider). The designer can
specify this as Integrate(Srv-BillCreation, Srv-Tariff).

« Constraint: application-specific integrity constraints can
be specified to ensure that the structure and semantic
properties of SOA elements are preserved. The prop-
erties enhance operator composition for selected SOA
elements. For Srv-BillCreation, Srv-Tariff € SRV we
require 3 ASC(Srv-BillCreation, Srv-Tariff) € DEP.

o Definition: can be done by formulating primitive trans-
formations (operator composition guided by transfor-



mation patterns) to execute (design-level) transforma-
tion rules on SOA elements, illustrated in Fig. 2b at
design level

A Add(SRV(Srv-BillCreation)) ;
A Add(OPR (customerConsumption,nil,nil))
A Add(ASC(Srv-BillCreation,Srv-Tariff))

The list of four core rule goals presented are examples of
commonly used transformation rules in the context of SOA.
The user can combine these rules to specify new rules for
SOA element transformation.

VII. ARCHITECTURAL STYLES AND REFINEMENT

As a last step, we apply SOA-specific architectural styles
to refine the transformed design in order to complete the
style-based service architecture evolution. Currently, these
architectural patterns are confined to the common service
inventory models detailed in [9]. These models are generic,
which not only makes them common, but also customisable.

The aim of the architectural refinement using architec-
tural styles is to enable a common organisation of service
logic and establish a separation of business-centric and
non business-centric service logic in the target architecture.
Applying the architectural styles to transformed designs
minimises the counter-productive transformational effects
possibly caused by the pattern based transformations.

Example: Referring back to the Fig. 2b (viewed at
the design level) a drawback of the transformed design is
that it focuses on service-to-service level communication
and directly connected services also known as point-to-point
service communication in [5]. This violates the principle of
a loosely coupled service design and therefore, should be
refined (refactored) to obtain a robust and extensible target
architecture. In order to improve the transformed design
and moving towards a pattern-based evolved architecture for
EBPP application, the technical services on the biller side
have been implemented as an Enterprise Service Bus (ESB)
pattern [9], as in Fig. 2b (viewed at the architectural level).
In the evolved architecture, ESB facilitates the exposition
of services using a centralized bus and handles an efficient
messaging mechanism among services.

VIII. RELATED WORK

With an increased adaptation of service-oriented software,
the ultimate challenge lies in developing the processes,
patterns, tools and environments to support a systematic
evolution to prolong its productive life span. These claims
are explicitly highlighted as the future research agendas in
SOA research taxonomy [15] that is followed by a series
of workshops focusing on the Maintenance and Evolution
of Service-Oriented Systems (MESOA) [14]. Our work is
an attempt in realising these potentials; by enabling an
incremental transformation of SOA elements (atomic and
composite services) at different abstraction level to facilitate
a style-based evolution for service architecture.

Our work is partially guided by the Software Architec-
ture EVolution Model [20] that enables a structural evolu-
tion of software architecture at different abstraction (meta,
architecture, application) levels. However, the scope and
applicability for SAEV is generally limited to traditional
(component and connector kind of) architectures that operate
in a controlled environment compared to distributed, loosely
coupled (web services) architecture. We propose to extend
the basic idea behind SAEV and tailor it to develop a
coherent service architecture transformation framework. The
proposed framework supports an incremental transformation
of SOA eclements (at, structure, design, architecture-style
levels) to enable a refined and systematic service architecture
evolution. In addition, we enforce structural constraints on
SOA elements (service, operation, service dependency, etc.)
to ensure transformation integrity for provider and requester
services in the target SOA.

Based on a meta-model for both source and target archi-
tecture, the work proposed in [4] supports the automation
of the architectural migration towards SOA using graph
transformation rules over a model of the annotated source
code. It mainly assumes that service-oriented systems are
developed and deployed for internal integration and usage
where there is some control over the deployed services.
However, the recent emergence of a market for third-party
services and cross organisational SOAs formulate a different
set of challenges from an engineering perspective as detailed
in [11]. In contrast, we plan to provide the customisation
of transformation rules that is lacking in the discussed
approaches for legacy migration towards SOA. In doing so,
we aim at enabling an incremental transformation of service-
oriented systems at different abstraction while taking into
consideration the change impact analysis (for provider and
requester) of SOA element (distributed services).

In the context of style-based SOA, [16] propose to
obtain a service based architecture model that satisfies
the requirements of the concrete architecture and complies
with the constraints and vocabulary defined for a specific
architectural style. In order to achieve this, the authors
encode style templates within model transformations and
then utilise model weaving that merges the architectural
model with a model of the architectural style of choice. We
specifically concentrate on developing a layered framework
that is guided by operational and user-defined architectural
transformations to facilitate SOA evolution, rather than a
model transformation solution. Finally, we reviewed the
UMLA4SOA [17] that defines a high-level domain specific
language for modelling and transforming web service or-
chestrations to support the dynamic service composition.
Our approach however is limited to a declarative compo-
sition of atomic services (at layer 3) to include composed
services in service architecture model as detailed in [19].



IX. CONCLUSIONS AND OUTLOOK

With an increasing maturity of service-orientation,
service-based architectures will evolve. This creates prob-
lems specific to the services platform where -cross-
organisational architectures are common. In this context,
architectural transformation techniques are required that; 1)
take the impact of change into account as we do with
our transformation patterns and ii) allow recurring change
needs to be addressed through a customised transformation
framework as we do with our user-defined declarative rules.
We enable a transformation driven service architecture evo-
lution at different abstraction levels in a unified, high-level
framework independent of specific implementation details.

Preliminary Validations for the framework layers 1 and
2 (operational transformations) have been performed using
XSLT based transformations that require further refinements.
In the future, we plan to enable a declarative rule-based
composition of atomic web services guided by [19] to
included composite services in service design. An interesting
task is the identification of some transformation anti-patterns
that emerge as a result of some counter-productive transfor-
mations. The identification and resolution (refactoring) of
the transformation anti-patterns can significantly contribute
towards achieving dependable and cost-effective design and
architectural transformations. In an overall context, we plan
to proceed towards fully automating and validating these
transformations in a formal way. Graph-based formalisms
will provide the underlying rigour of the framework.

ACKNOWLEDGMENTS

This work is supported, in part by Science Foundation
Ireland through grant 03/CE2/1303_1 to Lero - The Irish
Software Engineering Research Centre.

REFERENCES

[1] NACHA - The Electronic Payments Association. Electronic
Bill Presentment and Payment. http://www.nacha.org/.

[2] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy,
and K. Holley. SOMA: A Method for Developing Service-
Oriented Solutions. IBM, 2008.

[3] M. Bell. Service-Oriented Modeling: Service Analysis, De-
sign, and Architecture. John Wiley & Sons, 2008.

[4] R. Correia, C. Matos, R. Heckel, and M. El-Ramly. Architec-
ture Migration Driven by Code Categorization. In European
Conference on Software Architecture, 2007.

[5] C. de la Torre Llorente. Model-Driven SOA with Oslo. The
Architecture Journal, 21:10-15, 2009.

XSLT-based Evolutions
Sofiware: Practice &

[6] J. Dong, Y. Zhao, and Y. Sun.
and Analyses of Design Patterns.
Experience, 39:773-805, 2009.

[7] The Eclipse Foundation. Web Tools Platform (WTP) Project.
http://www.eclipse.org/webtools/.

[8] T. Erl. Service-Oriented Architecture (SOA): Concepts, Tech-
nology, and Design. Prentice Hall, 2009.

[9] T. Erl. SOA Design Patterns. Prentice Hall, 2009.

[10] D. Garlan, J. Barnes, B. Schmerl, and O. Celiku. Evo-
lution Styles: Foundations and Tool Support for Software
Architecture Evolution. In Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture, 2009.

[11] Brian Hayes. Cloud computing. Communications of the ACM,
51(7):9-11, 2008.

[12] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G.Koutsoukos,
and L.F. Andrade. Architectural Transformations: From
Legacy to Three-Tier and Services. In Software Evolution,
pages 139-170. 2008.

[13] S. Johnston. UML 2.0 Profile for Software Services, IBM de-
veloperWorks, http://www.ibm.com/developerworks/rational/,
2005.

[14] G.A. Lewis, D.B. Smith, N. Chapin, and K. Kontogiannis.
MESOA 2009: 3rd International Workshop on Maintenance
and Evolution of Service-Oriented Systems. [EEE Interna-
tional Conference on Software Maintenance, 2009.

[15] G.A. Lewis, D.B. Smith, and K. Kontogiannis. A Research
Agenda for Service-Oriented Architecture (SOA): Mainte-
nance and Evolution of Service-Oriented Systems. 2010.

[16] M. Lopez-Sanz, J.M. Vara, E. Marcos, and C.E. Cuesta.
A Model-Driven Approach to Weave Architectural Styles
into Service-Oriented Architectures. In Ist International
Workshop on Model Driven Service Engineering and Data
Quality and Security, 2009.

[17] P. Mayer, A. Schroeder, and N. Koch. MDD4SOA: Model-
Driven Service Orchestration. In /2th IEEE International
Conference on Enterprise Distributed Object Computing
2008.

[18] Microsoft Corporation.  Microsoft Visual Studio 2010.
http://www.microsoft.com/visualstudio/.

[19] S.R. Ponnekanti and A. Fox . Sword: A Developer Toolkit
for Web Service Composition. In 11th International World
Wide Web Conference, 2002.

[20] N. Sadou, D. Tamzalit, and M. Oussalah. How to Manage
Uniformly Software Architecture at Different Abstraction
Levels. In 24th International Conference on Conceptual
Modeling, 2005.

[21] D. Tamzalit, M. Oussalah, O. Le Goaer, and A.D. Seriai.
Updating Software Architectures: A Style-based Approach. In
International Conference on Software Engineering Research
and Practice, 2006.

[22] D. Tamzalit, N. Sadou, and M. Oussalah. Evolution Problem
Within Component-Based Software Architecture. In Eigh-
teenth International Conference on Software Engineering &
Knowledge Engineering, pages 296-301, 2006.

[23] H. Verjus and F. Pourraz. A Formal Framework For Building,
Checking And Evolving Service Oriented Architectures. In
Fifth European Conference on Web Services, 2007.



