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Abstract

This note studies the exponential asymptotic stability of the zero solution of the
linear Volterra equation

ẋ(t) = Ax(t) +
∫ t

0

K(t− s)x(s) ds

by extending results in the paper of Murakami “Exponential Asymptotic Stability
for scalar linear Volterra Equations”, Differential and Integral Equations, 4, 1991.
In particular, when K is integrable and has entries which do not change sign, and
the equation has a uniformly asymptotically stable solution, exponential asymptotic
stability can be identified by an exponential decay condition on the entries of K.

1. Introduction

In this note, we study the exponential asymptotic stability of the zero solution
of the linear Volterra equation

ẋ(t) = Ax(t) +
∫ t

0

K(t− s)x(s) ds, t ≥ 0 (1.1)

where the solution vector x is in Rn, A is a constant n × n matrix, and K is
an n × n matrix function with integrable entries. The question as to whether the
exponential asymptotic stability of the zero solution of (1.1) is necessarily implied
by its uniform asymptotic stability was posed in the survey of Corduneanu and
Lakshmikantham [2]. As remarked in that article, the question is a reasonable one
as the right hand side of (1.1) is time homogeneous, and in view of the fact that
uniform asymptotic stability and exponential asymptotic stability are equivalent
concepts for linear functional differential equations with bounded delay.

The paper of Murakami [6], on which our study is based, throws considerable
light on the nature of the relationship between uniform asymptotic stability and ex-
ponential asymptotic stability of the zero solution of (1.1), detailing the connection
between the two types of stability for scalar equations of type (1.1).

The first theorem of Murakami’s paper [Theorem 1] neatly characterises suffi-
cient conditions under which uniform asymptotic stability of the zero solution will
imply its exponential asymptotic stability. Specifically, he shows that when the ker-
nel satisfies an exponential decay condition, the two concepts coincide. Indeed, the
result can be readily generalised to Volterra equations in an arbitrary number of
finite dimensions.
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The second result in the paper is a very striking one. The author proves [Theo-
rem 2, [6]] that when the kernel is integrable and does not change sign on R+, and
the zero solution is exponentially asymptotically stable, then the kernel satisfies
an exponential decay condition. Thus, for scalar equations of type (1.1), exponen-
tial asymptotic stability will only arise if the kernel decays exponentially [Theorem
3, [6]].

As is mentioned at the end of Murakami’s paper, it is reasonable to conjecture
that this result can be extended to systems with an arbitrary number of finite
dimensions. The proof of this conjecture is the subject of the following note. We
mirror Theorem 3 in [6] by showing for a system in which the entries of the matrix
kernel K do not change sign that the exponential and uniform asymptotic stability
of the zero solution are equivalent if and only if all the entries of K satisfy an
exponential decay criterion.

2. Preliminary Material

In this section, we introduce some notation, give definitions and allude to some
key results employed in this article.

Let R = (−∞,∞) and R+ = [0,∞). Let Mn(R) be the space of n×n matrices
with real entries. We say that the function K : R+ → Mn(R) is in L1(R+) if
each of its entries is a scalar Lebesgue integrable function. Denote by C(J ;Rn)
the space of continuous Rn-valued functions on the compact interval J ⊂ R. For
φ ∈ C([0, t0];Rn), define |φ|t0 = sup{‖φ(t)‖1 : 0 ≤ t ≤ t0}, where ‖x‖1 is the sum
of the absolute values of the entries of the vector x ∈ Rn. For K = (kij) ∈Mn(R),
we define ‖K‖N =

∑n
i=1

∑n
j=1 |kij |. Note that this defines a norm on a finite

dimensional linear space, so that all other norms on this space are equivalent to
‖ · ‖N . We denote by C the set of complex numbers, and the real part of s ∈ C by
�s. If f : R+ →Mn(R), we can define the Laplace transform of f at s ∈ C to be

f̂(s) =
∫ ∞

0

f(t)e−st dt.

If α ∈ R and
∫ ∞
0 ‖f(t)‖Ne

−αt dt < ∞, then f̂(s) exists and is continuous in s
for �s ≥ α, and analytic on �s > −α. See for example, Churchill, p.171 [1], or
Widder [7].

Consider the linear Volterra equation

ẋ(t) = Ax(t) +
∫ t

0

K(t− s)x(s) ds, t ≥ 0 (2.1)

where A, K(t) ∈ Mn(R), K is continuous on R and K ∈ L1(R+). For any t0 ≥ 0
and φ ∈ C([0, t0],Rn), there is a unique Rn-valued function x(t), which satisfies
(2.1) on [t0,∞) and for which x(t) = φ(t) for t ∈ [0, t0]. We denote such a solution
by x(t; t0, φ). The function x(t) ≡ 0 is a solution of (2.1) and is called the zero
solution of (2.1).
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Consider now the matrical equation

X ′(t) = AX(t) +
∫ t

0

K(t− s)X(s) ds, t ≥ 0 (2.2)

with X(0) = In, where In is the identity matrix in Mn(R). The unique X(t) ∈
Mn(R) which satisfies (2.2) is called the resolvent, or principal matrix solution for
(2.1).

We further recall the various standard notions of stability of the zero solution re-
quired for our analysis. The zero solution of (2.1) is said to be uniformly stable (US),
if, for every ε > 0, there exists δ(ε) > 0 such that t0 ∈ R+ and φ ∈ C([0, t0],Rn)
with |φ|t0 < δ(ε) implies ‖x(t; t0, φ)‖1 < ε for all t ≥ t0. The zero solution is said
to be uniformly asymptotically stable (UAS) if is US and there exists δ > 0 with
the following property: for each ε > 0 there exists a T (ε) > 0 such that t0 ∈ R+

and φ ∈ C([0, t0],Rn) with |φ|t0 < δ implies ‖x(t, t0, φ)‖1 < ε for all t ≥ t0 + T (ε).
The zero solution of (2.1) is said to be exponentially asymptotically stable (Ex AS),
if there exists C,α > 0 such that

‖x(t; t0, φ)‖1 ≤ Ce−α(t−t0)|φ|t0 , t ≥ t0 ≥ 0

for any φ ∈ C([0, t0],Rn).
These definitions are standard: the reader may refer to Miller [5]. Existence and

uniqueness are covered in [3].
The properties of the resolvent X are deeply linked to the stability of the zero

solution of (2.1). It is shown in [5] that the zero solution of (2.1) is UAS if and
only if X ∈ L1(R+). Moreover, in [4], it is shown that X ∈ L1(R+) if and only if

H(s) = sIn −A− K̂(s) (2.3)

satisfies detH(s) �= 0 for �s ≥ 0.

3. Results

If the zero solution of (2.1) is UAS, X ∈ L1(R+), so X̂(s) exists and is con-
tinuous in s for �s ≥ 0. Taking Laplace transforms both sides of (2.2), we get
H(s)X̂(s) = In for �s > 0. By the continuity of X̂, H , we have

H(s)X̂(s) = In �s ≥ 0. (3.1)

Thus X̂(s) = H−1(s), for �s ≥ 0, as detH(s) �= 0 for �s ≥ 0.
Theorem 1 in [6] says that if∫ ∞

0

|K(t)|eγt dt <∞, for some γ > 0 (3.2)

and the zero solution of the scalar equation (2.1) is uniformly asymptotic stable,
then the zero solution is also Ex AS.

It is mentioned in [6] that the proof can be generalised, with minor modifications,
to establish a corresponding result for systems.
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Theorem 3.1 (Murakami). If the zero solution of (2.1) is UAS, and the kernel K
satisfies ∫ ∞

0

‖K(t)‖Ne
γt dt <∞ for some γ > 0

then the zero solution is Ex AS.

We now turn to a partial converse of Theorem 3.1, which is strongly motivated
by Theorem 2 in [6], and whose proof it follows very closely. The hypotheses of that
theorem can be extracted from the following by setting the dimension n = 1 and
considering the scalar case. Indeed, the proof of our Proposition 3.2 is exactly that
of Theorem 2 in [6] with n = 1. However, Murakami did not succeed in obtaining the
extension to finite dimensions. In view of this gap, the nuances involved in passing
from the scalar to the general finite dimensional case, and to achieve a coherent
exposition, we show the details here.

Theorem 3.2. Let K ∈ L1(R+) and suppose that none of the entries of K(t) ∈
Mn(R) change sign on R+. If ‖X(t)‖N ≤ Ce−βt, for some C, β > 0, then there
exists γ > 0 such that ∫ ∞

0

‖K(t)‖Ne
γt dt <∞. (3.3)

Proof. Let 0 < α < β. Clearly, by hypothesis, X̂(s) exists and is analytic in s for
�s > −α and continuous for �s ≥ −α. Patently, (3.1) holds. Since the zero solution
is UAS, detH(0) �= 0, so det X̂(0) �= 0. Since X̂(s) is continuous at s = 0, and the
determinant of a matrix is a continuous function of its entries, s �→ det X̂(s) is
continuous at s = 0. Therefore, there exists an open neighbourhood of 0 (U ′, say)
such that det X̂(s) �= 0 for s ∈ U ′: thus X̂−1(s) exists on U ′. Since the entries of
X̂(s) are analytic on U := U ′ ∩ {s : �s > −α}, so must be the entries of X̂−1(s).
Thus

F (s) = sIn −A− X̂−1(s)

is analytic on U , and satisfies

K̂(s) = F (s), �s ≥ 0. (3.4)

The proof of the result now follows by a sequence of contradictions: we posit that
tnK(t) �∈ L1(R+) for n = 1, 2, . . . in turn, and show that each of these hypotheses
introduces a contradiction. The existence of the “moments” of K, together with
the analyticity of F and (3.4) enables us to prove (3.3).

We claim tK(t) ∈ L1(R+). If this is false, there exists T > 1 such that

∫ T

0

‖K(t)‖N(t− 1) dt > M

where M = ‖F ′(0)‖N . Next, it is possible to construct δT = min(1, e−T ), so that if
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0 < h < δT then

1− e−ht

h
≥ t− 1, t ∈ [0, T ]. (3.5)

Thus for 0 < h < δT , we have

∥∥∥∥F (h)− F (0)
h

∥∥∥∥
N

=

∥∥∥∥∥K̂(h)− K̂(0)
h

∥∥∥∥∥
N

=
∥∥∥∥
∫ ∞

0

K(t)
1− e−ht

h
dt

∥∥∥∥
N

=
n∑

i=1

n∑
j=1

∣∣∣∣
∫ ∞

0

kij(t)
1 − e−ht

h
dt

∣∣∣∣
=

n∑
i=1

n∑
j=1

∫ ∞

0

|kij(t)|1− e
−ht

h
dt,

using the fact that kij(t) has the same sign on R+ at the last step. From (3.5), for
0 < h < δT , we thus have∥∥∥∥F (h) − F (0)

h

∥∥∥∥
N

≥
n∑

i=1

n∑
j=1

∫ T

0

|kij(t)|(t− 1) dt =
∫ T

0

‖K(t)‖N(t− 1) dt.

Using the continuity of the norm ‖ · ‖N , we obtain

M = ‖F ′(0)‖N = lim
h→0+

∥∥∥∥F (h) − F (0)
h

∥∥∥∥
N

≥
∫ T

0

‖K(t)‖N(t− 1) dt > M,

a contradiction. Thus tK(t) ∈ L1(R+).
Next, since 1− x ≤ e−x for x ≥ 0, for h > 0, s ≥ 0 and t ∈ R+, we have∣∣∣∣1− e−ht

h
e−stkij(t)

∣∣∣∣ = t
∣∣∣∣1− e−ht

ht

∣∣∣∣ |e−st||kij(t)| ≤ t|kij(t)|. (3.6)

Thus, using the Dominated Convergence Theorem, in conjunction with (3.4) and
(3.6), we get

lim
h→0+

Fij(s+ h)− Fij(s)
h

= lim
h→0+

k̂ij(s+ h) − k̂ij(s)
h

= lim
h→0+

∫ ∞

0

e−ht − 1
h

e−stkij(t) dt

=
∫ ∞

0

−te−stkij(t) dt,

so Fij(s) = − ∫ ∞
0 te−stkij(t) dt for s ≥ 0. Therefore F ′(s) = − ∫ ∞

0 te−stK(t) dt.
By applying the argument for K(t) in the foregoing paragraphs to tK(t), we
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obtain

t2K(t) ∈ L1(R+), F ′′(s) =
∫ ∞

0

t2e−stK(t) dt, s ≥ 0,

and repeating this procedure gives

tnK(t) ∈ L1(R+), F (n)(s) = (−1)n
∫ ∞

0

tne−stK(t) dt, s ≥ 0 (3.7)

for n = 1, 2, . . .. Since F is analytic on U , we have that

∞∑
m=0

F
(m)
ij (0)
m!

sm

is absolutely convergent on the disc D = {z ∈ C : |z| < γ}, for some γ > 0 and all
i, j = 1, . . . n. Thus, by (3.7), we have

∞ >

∞∑
m=0

|F (m)
ij (0)|
m!

γm =
∞∑

m=0

γm

m!

∫ ∞

0

tm|kij(t)| dt, (3.8)

and so, using Fatou’s Lemma

∫ ∞

0

eγt‖K(t)‖N dt =
∫ ∞

0

eγt
n∑

i=1

n∑
j=1

|kij(t)| dt =
n∑

i=1

n∑
j=1

∫ ∞

0

eγt|kij(t)| dt

=
n∑

i=1

n∑
j=1

∫ ∞

0

∞∑
m=0

(γt)m

m!
|kij(t)| dt

=
n∑

i=1

n∑
j=1

[ ∞∑
m=0

γm

m!

∫ ∞

0

tm|kij(t)| dt
]
<∞,

by (3.8), and the proof is complete.

We now have all the ingredients to prove Theorem 3.3.

Theorem 3.3. Suppose that K ∈ L1(R+) and that the entries of K do not change
sign on R+. If the zero solution of (1.1) is uniformly asymptotically stable, then
the following are equivalent:

(i) The zero solution of (1.1) is exponentially asymptotically stable,
(ii) The principal matrix solution of (1.1), X(t), satisfies ‖X(t)‖ ≤ Ce−αt

for some C,α > 0,
(iii) There exists γ > 0 such that∫ ∞

0

‖K(t)‖eγt dt <∞,

where ‖ · ‖ is any matrix norm.



Appleby—Exponential Asymptotic Stability for Linear Volterra Equations 7

Proof. Since Mn(R) is a finite dimensional linear space, norm equivalence in this
space means that the result need only be established for the special choice of norm
‖ · ‖N .

Clearly, (i) implies (ii) trivially. That (ii) implies (iii) is the subject of Theorem
3.2. (iii) implies (i) is simply Theorem 3.1. Hence (i)-(iii) are equivalent.

The proof of Theorem 3.3 shows how Theorem 3 in [6] can be extended to the
non-scalar case, a problem which was proposed in [6].
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