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Abstract
Pairing-Based Cryptography is receiving steadily more attention from industry, mainly

because of the increasing interest in Identity-Based protocols. Although there are plenty of

applications, efficiently implementing the pairing functions is often difficult as it requires

more knowledge than previous cryptographic primitives. The author presents a tool for

automatically generating optimized code for the pairing functions which can be used in the

construction of such cryptographic protocols.

In the following pages I present my work done on the construction of pairing function

code, its optimizations and how their construction can be automated to ease the work of the

protocol implementer.

Based on the user requirements and the security level, the created cryptographic com-

piler chooses and constructs the appropriate elliptic curve. It identifies the supported pairing

function: the Tate, ate, R-ate or pairing lattice/optimal pairing, and its optimized parame-

ters. Using artificial intelligence algorithms, it generates optimized code for the final ex-

ponentiation and for hashing a point to the required group using the parametrisation of the

chosen family of curves.

Support for several multi-precision libraries has been incorporated: Magma, MIRACL

and RELIC are already included, but more are possible.
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1 INTRODUCTION

”If it were ammunition, you would not be here.” – Gral. Pedro

Maria Anaya after being asked to surrender the weapons and ammunition at the defense of

the ’Convento de Churubusco’, August 20th, 1847.

INTEREST in pairing-based cryptography has been growing since the arrival of the

new millennium, thanks to the development of many constructive protocols; for

example, those given in [Jou00] and [BLS01]. The usefulness of these protocols

has caught the attention of industry.

Traditional cryptographic protocols, such as RSA, are well established and seen as “se-

cure enough” for the immediate future, but have limited functionality. Pairing-based cryp-

tography is slowly being seen as a viable option.

The main disadvantage of implementing pairing-based protocols instead of these well-

established solutions is the deeper mathematical background required to produce an effi-

cient implementation. Every year, new improvements on pairing computation methods ap-

pear. A pairing-based protocol designer may prefer to focus on the proof and formalization

of the protocol itself rather than on the physical construction of the primitives upon which

it relies. Given the many improvements, it is easy to lose track of the most “up-to-date”

optimizations and use a less efficient implementation.

This research in pairing-based cryptography started in a joint work of the author with

Kachisa and Scott. This was an exploratory research, aiming to “get to know pairings” and

to find possible areas for development.

During that exploration, we were working with the recently discovered KSS:k = 18

family of curves looking for new properties of the curves.

On the completion of a bilinear and non-degenerate pairing implementation, we noticed

how slow it was; however, we were able to detect the cause, it was the infamous final ex-
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Introduction

ponentiation. In an attempt to speed-up this step, we tried the [DSD07] implementation

method for the BN curves. However, the implementation was not suitable for our purposes,

as we failed to reproduce their results using our target curve. We commenced a joint work

with Scott, Benger, Charlemagne and Kachisa [SBC+09b] to speed-up the Final Exponen-

tiation operation for general pairing-friendly elliptic curves. It was our idea to use a base-p

representation of the exponent as much as possible to find a pattern in the final exponen-

tiation of the pairing. We tried simple exponentiation by factorization, as was suggested

by the other authors, but we preferred a method making use of addition-chain theory. We

developed a fast final exponentiation implementation that can be constructed for any family

of pairing-friendly elliptic curves. This work resulted in a publication which was presented

at the conference Pairing 2009.

Switching focus to some operations necessary in pairing-based protocols, we noted yet

another expensive operation: the scalar-point multiplication by a large cofactor.

We applied the Galbraith and Scott [GS08] ideas for exponentiation inG2 groups to our

problem for the family of curves we were originally working on. We developed a formal

and faster method to hash a random point into a group G2 of order r. We were able to

extend this method to other elliptic curves. This research was published in [SBC+09a].

Again, making use of the base-p representation of the curve parameters, and the Frobenius

exponentiation, we added the map from Galbraith and Scott [Ibidem.] and obtained some

promising results. We presented this work at Pairing 2009. This research is detailed in

Chapter 5.

Once these two issues had been solved, we decided to go back to explore implemen-

tation issues. This paper contained nothing new as we had already published the results

separately. We simply compiled the results in one article and released it in the IACR eprint

archive [DKS], where it has received much attention and has been referenced. The examples

in the paper guide the reader through a tutorial which uses Magma software. We realized

that not everybody has access to this software so, in order to reach a larger audience, I de-

veloped a webpage, where a user without a Magma license can follow the examples. The

2
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details of this online tutorial are explained in Appendix C.

What seemed an unnecessarily complex algorithm, developed into a very useful method

for finding addition sequences; we used the computer paradigm of Artificial Immune Sys-

tems to find the necessary sequences. In the work already described, we needed addition

chains for the exponentiation in finite fields and for scalar-point multiplication in a group

of points. As the embedding degree k, and the degree and complexity of the polynomials

p and r defining the parameters of the curve grows, finding an addition sequence becomes

unmanageable by pen-and-paper. I adapted the Cruz-Cortez et al. method [CCRHC08] to

our addition sequences. A peer-reviewed paper which contains this modified method and

some work from Scott was presented at the SPEED-CC 2009 Workshop [DS09].

As part of the publication [DS09], I started the design of a code generator for pairing

functions. The afore mentioned publications and the new popularity of pairings functions

requiring a construction method, needed be automatised. The aim of the code generator

for cryptographic pairing functions is the following: to decide (or suggest) which family

of pairing-friendly elliptic curves to choose (for example curves we refer to Freeman et al.

[FST10, Table 1.1 and 8.3]); to find a low Hamming-weight x-parameter for the definition

of the system parameters; to generate the elliptic curve with a subgroup size corresponding

to the desired security level; to choose the pairing function that best suits the family of

curves to which the chosen curve belongs, and its representation; to include supportive

functions; and, optionally, to generate a sample “playground” for testing the code.

In order for a code generator to be flexible, support for several multi-precision libraries

should be included. Some characteristics of the code rely on the programming language

itself; others rely on the library. Some operations use an in-fixed operator, depending on

the library. For some, this may only be possible with the use of a map and with explicit

intermediate storage, where for others, the compiler can handle it.

Some recent speed records on the pairing computation are not based on a particular

multi-precision library, but on a hand-crafted set of finite field arithmetic functions, such as:

[NNS10, BGM+10, LMN10]. When referring to a multi-precision library in this research,
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we would like to include in the definition any set of specialised finite field arithmetic. We

have a description of the code generator in Chapter 6.

Our implementation paper is still alive and is highlighting interesting research areas.

After the improvements given by the mentioned optimizations, in practical implementation

of a pairing-based protocol [Sco02], the slowest part of the pairing function is now the

exponentiation in the G2 and GT groups.

As a side project, I have a contribution in an attempt to break a security system detailed

in Appendix B, with the aim of developing an understanding of the real security of the

detailed cryptosystems.

The rest of this thesis is as follows: Chapter 2 gives a background on pairings, and

metaprogramming for the techniques used in the code generator, Chapter 3 details the auto-

matic construction of addition chains and the required computer science background. The

conclusions and final remarks are presented in Chapter 7. Chapter 6 presents selected gen-

erated code; we stress that more sample code will be hosted on my personal webpage.

Appendix A gives selected parameters for the pairing implementation.
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2 BACKGROUND

”I am proud to be humble.” – Moises Castillo criticizing a spiritual leader.

THE public release of the public key cryptosystem by Diffie and Hellman in

1976 [DH76] not only created modern cryptography, but also concentrated

the Computational Number Theory efforts in this direction.

The first usable public key system was the RSA scheme introduced by Rivest, Shamir

and Adleman in [RSA78]; it is based on the problem of factoring large integers.

Later, in 1985 Miller [Mil86], and independently Koblitz in [Kob87] pointed out a

discrete logarithm problem (DLP) in the group of points of an elliptic curve defined over a

finite field.

A Public-Key Cryptosystem relies on the infeasibility of finding a decryption process

given an encryption key.

Elliptic Curve Cryptography (ECC), is a public-key cryptography system that uses the

structure of the elliptic curves defined over finite fields [Sti95].

The main advantage of ECC is that it requires significantly smaller keys to encryp-

t/decrypt data, compared to other public-key cryptosystems, for similar security levels. It

also scales better at higher security levels. The higher the security level, the better ECC

compares with other public-key systems. This is particularly true when compared to cryp-

tosystems based on RSA, which is the most widely used.

2.1 Elliptic Curves

Let p be a prime number, and Fp a field of integers modulo p.

An elliptic curveE over the finite field Fp, denoted asE(Fp), has its arithmetic in terms
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of the underlying finite field and is defined by the following equation:

y2 = x3 + ax+ b (2.1)

where a, b are defined in Fp and satisfy 4a3 + 27b2 6≡ 0 mod p. The set of solutions (x, y)

with x, y ∈ Fp satisfies equation 2.1. Additionally, the point-at-infinity, denoted as O or∞

is also on the curve.

Let P be a point in E(Fp) with prime order r; then a cyclic subgroup of E(Fp) gener-

ated by P is denoted as

< P >= {∞, P, 2P, 3P, . . . , (r − 1)P}

where r is the number of elements in the subgroup.

Definition 1. The discriminant ∆(E) of an elliptic curve E is defined as [CF06]:

∆(E) = −16(4a3 + 27b2)

where a,b are the parameters of the short Weierstrass formula of E.

Definition 2. The absolute invariant, also known as the j-invariant of E, is defined as

[CF06]:

j(E) = 123 −4a3

∆(E)
.

Definition 3. Let E be an elliptic curve defined over Fp, then

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p

is called the Hasse interval. The number of points on E(Fp) is in the Hasse interval. The

number t = p + 1 − #E(Fp) is called the trace of Frobenius of E over Fp and satisfies

|t| ≤ 2
√
p [HMV04].
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Definition 4. The embedding degree of a curve is the smallest integer k where r|(pk − 1)

and sometimes it is also referred as the security multiplier of the curve.

Definition 5. An elliptic curve E defined over Fp is supersingular if p divides t, the trace

of the Frobenius, otherwise the curve is ordinary [HMV04].

A supersingular curve with p > 3 has #E(Fp) = p+ 1.

Definition 6. Let Fpk be an extension field of Fp of degree k. F∗
pk is a field composed by

the non-zero elements of Fpk under the multiplicative law.

Definition 7. The Complex Multiplication method or simply CM method constructs an

elliptic curve with a group of points with selected order r.

The CM method is also referred to as the Atkin-Morain method for curves over prime

fields; and the Lay-Zimmer method for curves over binary fields. This method is efficient

if the finite field order p and the elliptic curve order r = p + 1 − t are selected so that the

complex multiplication field Q(
√
t2 − 4p) has a small enough class number ([HMV04],

pp. 179).

2.1.1 Arithmetic of elliptic curves

An elliptic curve E can be represented in several coordinate systems for instance, in [CF06,

§13.2], a few of these systems are presented. Some of these systems reuse intermediate

values in the arithmetic to gain a speed-up. Lauter, Montgomery and Naehrig in [LMN10]

made an analysis of the affine coordinate system against some other projective coordinate

systems which were thought in the literature to be faster. Their analysis covered the same

type of computations as this thesis. Their findings suggest that, due to the simplicity of the

affine coordinate formulae, it may be preferred.

The following are the formulae for the group law for arithmetic on elliptic curves de-

fined over Fp, using affine coordinates [CF06, 13.2.1.a].

Negation. Let P = (x1, y1), then −P = (x1,−y1).
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Figure 2.1: Addition Operation

Figure 2.2: Doubling Operation

Addition. Let P = (x1, y1), and Q = (x2, y2) such that P 6= ±Q, then P +Q = (x3, y3).

For an addition operation, set λ =
y2−y1
x2−x1

.

Doubling. Let [2]P = (x3, y3). For a doubling operation, set λ =
3x2

1+a

2y1

Then, we have x3 = λ2 − x1 − x2, and y3 = λ(x1 − x3)− y1.

In the case of operations with the point-at-infinity: P +O = O + P = P .

Suppose we defined the elliptic curve over C instead of a finite field. Then the curve oper-

ations would be given geometrically as in Figures 2.1, 2.2 and 2.3, where λ is the slope of

the line joining P and Q.
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Figure 2.3: Point-at-Infinity

2.1.2 Tower extensions of finite fields

An element α ∈ Fpk can be represented as a polynomial up to degree k−1 with coefficients

in Fp modulo an irreducible polynomial ∈ Fp[X]. For efficiency purposes, this irreducible

polynomial should be simple.

One method to construct the Fpk is using towers of extensions. Baktir and Sunar in

[BS04] introduced the concept of tower field representation, which facilitates the finite field

operations, in particular the inversion. They defined a tower field as a field obtained by

extending its ground field with several irreducible polynomials.

Benger and Scott in [BS09] presented a method to construct a tower, using towering-

friendly fields.

Definition 8. A towering-friendly field is a field of the form Fqm , where q is a prime power,

where q − 1 is divisible by all of the prime divisors of m.[BS09]

These fields are constructed using a tower of sub-extensions using binomials as irre-

ducible polynomials. Each sub-extension is a layer constructed by adjoining the roots of

the previous level, this is, every other sub-extension is represented with elements of the

previous sub-extension.

The tower can be constructed using quadratic and cubic extensions of the previous base

field until we reach the desired extension field (Fpk ). The table 2.1 presents the recom-

mended choice of sub-extensions for selected embedding degrees [BS09]. The first column
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k Construction Tower
8 KSS 1-2-4-8
12 6.8 1-2-4-12
18 6.12 1-3-6-18
24 6.6 1-2-4-8-24
36 6.14 1-2-6-12-36

Table 2.1: Tower extension construction

is the k embedding degree, the second column is the name or the construction number of

the family of elliptic curves from the Taxonomy paper [FST10]. The last column shows the

degree of the extension fields to be constructed to get the final extension degree.

For example, the first row in table 2.1 correspond to the KSS curves with k = 8. For

this family, we construct a finite field Fp, on top of that, we construct a tower of extension

fields in the following order: Fp2 , then Fp4 , and finally Fp8 .

In [BN06] Barreto and Naehrig proposed the use of a polynomial X6 − ξ, where

1/ξ = λ2µ3 with λ ∈ Fp a non-cube, and µ ∈ Fp2 a non-square. Corollary 5 from the

Benger and Scott method [BS09] says that a polynomial xm − (a ± b
√
−1) is irreducible

over Fp2 if a2 + b2 is neither a square nor a cube in Fp. We can trivially find either a small

(a, b) or (λ, µ) pair with a linear search.

Some of the values for (a, b) in the Benger and Scott paper are already calculated and

are based on some values of p, the parameter defining the base field. See table 2.2 for a

selection of the pairs.

Column 4 from table 2.2 shows the (a, b) pair that can be used in the tower construction.

Column 3 show the values for which column 4 is valid. Column 2 sets the degree of the

irreducible polynomial. Column 1 lists the degree of the first tower, or the construction

number on which the (a, b) pair applies.1

1In the case of construction 6.12, since x ≡ 14 mod 42, x = 42.x0 + 14.
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Fpn Xm Test (a, b)
2 2i3j p ≡ 3 mod 8 (1,1)
2 2i3j p ≡ 2, 3 mod 5 (2,1)

Construction Xm Test (a, b)
6.8 6 x ≡ 7, 11 mod 12 (1,1)
6.8 6 x ≡ 1, 3, 7, 11, 12, 13 mod 15 (1,2)
6.8 12 x ≡ 1, 3, 7, 11, 12, 13 mod 15 (5,0)

6.12 18 x0 ≡ 1, 4, 5, 8 mod 12 (2,0)
6.12 18 x0 ≡ 7, 9, 12, 14 mod 15 (5,0)
6.12 18 x0 6≡ 2, 3, 4 mod 9 (3,0)

Table 2.2: Irreducible polynomials for the tower extension construction

2.1.3 Twist of a curve over an extension field

A twist curve E′ defined over Fpe , with e = k
d , is another elliptic curve isomorphic to E

defined over Fpk .

We define d as the degree of the twist of the curve E. The values of d, with a CM field

defined as Q(
√
D) are as follows [HSV06]:

• d = 6 if the curve E has CM discriminant D = −3, and j(E) = 0.

• d = 4 if the discriminant is D = −1, and j(E) = 1728.

• d = 2 for any other value of D, and j(E) 6= 0, 1728.

When d = 2, the curves is said to have or support a quadratic twist, when d = 3: cubic

twist, when d = 4: quartic twist, and when d = 6: sextic twist.

The formulae for an elliptic curve E is y2 = x3 +a.x+ b, defined over Fp, whereas the

formulae for the twisted curve E′ depends on the degree of the twist, and are as follows:

E′ : y2 = x3 + 1/D2ax+ 1/D3b for d = 2 :

E′ : y2 = x3 + 1/Dax for d = 4

E′ : y2 = x3 + 1/Db for d = 6

where D ∈ Fpe such that W d −D is irreducible over Fpe [W ].
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Furthermore, if δ ∈ Fpk is a root of W d−D , then there exists a homomorphism which

maps points on the twist E′ to the points of the curve E as follows:

ψ : E′(Fpk/d)→ E(Fpk) defined by: (x′, y′)→ (x′.δ1/3, y′.δ1/2),

with an isomorphism given by:

φ : µd → Aut(E) : δ 7→ [δ] with [δ](x, y) = (x.δ2, y.δ3) [HSV06].

One way to compute this map is by pre-computing δ2, δ3.

2.1.4 ECDLP

The Elliptic Curve Discrete Logarithm Problem (ECDLP) may be described as follows:

Given an elliptic curveE defined over a finite field Fp, a point P ∈ E(Fp)[r], and a pointQ

in the group of points generated by P , find the integer n ∈ [0 . . . r − 1] such that Q = nP .

The integer n is called the discrete logarithm of Q with respect to P .

The hardness of the ECDLP is essential for the security of all elliptic curve crypto-

graphic schemes [HMV04]. Computing nP should be easier than finding n (solving the

discrete log), otherwise the system can be easily comprised. On the another hand, the cost

of finding n should be significantly greater than the value of n.

One way to find n is by a linear search: R = P , for n = 0 to r − 1: R+ = P until

R = Q. For sufficiently large values of r there is no feasible algorithm to find n. Appendix

B gives details of an attack to finding n for a “sufficiently large” value of r.

2.1.4.1 Security level

The main concern about the security of a system, is how long does an attacker need to break

it, and how many resources are needed. The cost of breaking a system, measured both in

time and in money invested in computational resources, should be greater than the value

of the protected information. For example, if an attacker would need the equivalent of one

million Euro to get access to an asset worth a hundred Euro, we presume that the attacker

would cease on his attempt.
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Equivalent symmetric key size 80 112 128 192 256

NIST
Log2(Fpk) 1024 2048 3072 7680 15360
Log2(r) 160 224 256 384 512

ECRYPT
Log2(Fpk) 1248 2432 3248 7936 15424
Log2(r) 160 224 256 384 512

Table 2.3: NIST and ECRYPT security level recommendations

When we say that an attacker would need 100 years to break the security of a system, it

is usually calculated with the computational resources available at the start of the attack. As

the time passes, newer, faster and cheaper computational resources appear; an attacker can

be upgrading its computational resources during the attack, reducing the initial 100 years

attack into a smaller number of years.

On symmetric cryptographic schemes, the lifetime of the protection of the data can be

calculated straight-forward by the time it would take to break the security by brute force,

guessing or other attack, and including the improvements on computational power during

the time of the attack.

The traditional RSA cryptosystems has its hardness based on the integer factoring prob-

lem. In the case of elliptic curve cryptography, the hardness is based on the discrete log of

elliptic curve groups defined over finite fields.

It is traditionally suggested than elliptic curve in a subgroup of size m-bit is equivalent

to a m/2-bit symmetric key.

In [NIS] NIST states that an 80-bit symmetric key is equivalent to a 160-bit one using

discrete logs subgroups and elliptic curve groups. This is defined as a 80-bit security level,

and it is not recommended for use after 2012. An 128-bit security level is recommended

therefore after that year. The ECRYPT network also publishes its own recommendations

[ECR].

Table 2.3 shows the NIST and the ECRYPT recommendations of the pairing-friendly

subgroup and the size of the finite field extension for several security levels.
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2.1.5 Elliptic Curve Isomorphisms

Definition 9. The ring of endomorphisms of E, defined over Fp is denoted by EndFpE. For

any integer n, the multiplication-by-n map P 7→ [n]P is an endomorphism of E.

Definition 10. The Frobenius endomorphism, denoted πp, is the mapping given by [Men93]:

πp : E 7−→ E : (x, y) 7−→ (xp, yp)

satisfying πkp(Q) = Q for any Q ∈ E(Fpk).

Definition 11. An efficiently computable homomorphism: ψi = φ−1πipφ, where

φ : E′(Fpk/d) → E(Fpk) is the isomorphism which takes a point from the twisted curve

E′(Fpk/d) to the isomorphic group on E(Fpk), and π is called the p-power Frobenius map

on E. Then ψ : φ−1πφ is an endomorphism ψ : G′2(E′) → G2(E), where G′2 and G2 are

the group of points on the twisted curve and on the elliptic curve over the extension field

respectively.

2.2 Divisors

We recall the following definitions from [Sil86]:

Definition 12. The divisor group of a curve C, denoted Div(C), is the free Abelian group

generated by the points of C. Thus a divisor D ∈ Div(C) is the formal sum:

D =
∑
Pi∈C

nPi(P ).

with nPi ∈ Z and nPi = 0 for all but finitely many P ∈ C.

Definition 13. The degree of D is defined by

degD =
∑
Pi∈C

nPi .
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Definition 14. The divisors of degree 0 form a subgroup of Div(C), denoted as:

Div0(C) = {D ∈ Div(C) : degD = 0}.

Definition 15. If C/K, then GK̄/K acts on Div(C) and Div0(C) as

Dσ =
∑
Pi∈C

nPi(P
σ).

It follows that D is defined over K if Dσ = D for all σ ∈ GK̄/K .

Definition 16. Let C be a smooth curve and f ∈ K̄(C)∗. The divisor div(f) of f is given

by

div(f) =
∑
Pi∈C

ordPi(f)(P ).

Definition 17. A divisor associated to a function is called the principal divisor. The set of

principal divisors forms a group PrincC .

The div(f) can be represented as the difference of the following divisors:

div(f) = div(f)0 − div(f)∞.

the points in div(f)0 with non-zero coefficients are called zeroes. Similarly, the points in

div(f)∞ with non-zero coefficients are called the poles.

2.3 Cyclotomic Polynomial

The nth cyclotomic polynomial Φn(x) is defined to be Π(x − ζ), where ζ ranges over the

primitive nth roots of unity in C.

Definition 18. The Euler totient function, represented as ϕ is:

ϕ(N) = |{x|1 ≤ x ≤ N, gcd(x,N) = 1}|.
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The Φn(x) is an irreducible polynomial in Z[x]. The deg Φn(x) = ϕ(n) [LL96].

The irreducible factorization of xt − 1 in Z[x] is given by xt − 1 =
∑

d|t φd(x), where

φd(x) is the dth cyclotomic polynomial. The factor φt(x) is the only irreducible factor xt−1

that does not appear in the factorization of xs − 1 for divisors s of t with s < t [Len97].

2.4 Pairings

Originally there were two pairings used in cryptography, the Weil and Tate-Lichtenbaum

pairings, both evaluated using the Miller Algorithm. The Weil pairing requires two Miller

loops to generate the rth roots of unity [Sil86, III.§8], while the Tate pairing requires an

exponentiation of a single application of the Miller loop [Hes08], making it more efficient

than the Weil pairing [GPS06].

The Miller Algorithm uses lg(r − 1) iterations. It uses a double-and-add, and a line-

and-tangent approach. The basic Miller loop is presented in Algorithm 1, and explained in

the following.

Algorithm 1 Basic Miller loop
Input: P,Q ∈ E(Fp)[r], P 6= Q and l ∈ N
Output: f ∈ E(Fp)
T ← P
f ← 1
i← blg2(l)− 1c
for i = 0 to l − 1 do
f ← f2 · lT,T (Q)/v[2]P (Q)
T ← [2]P
if li = 1 then
f ← f · lT,P (Q)/vT+P (Q)
T ← T + P

end if
end for
return f
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2.4.1 The Tate Pairing

The Tate pairing was introduced by Tate as a rather general pairing on Abelian varieties

over local fields. Lichtenbaum gave an application of this pairing to the Jacobians of curves

over local fields. The Tate-Lichtenbaum pairing is hereafter referred to as the Tate pairing.

[CF06]

Let P ∈ E(Fp)[r] and Q ∈ E(Fpk), and consider the divisor D = (Q+ S)− (S) with

S a random point in E(Fpk). Let fa,P be a function with a divisor

(fa,P ) = a(P )− (aP )− (a− 1)(0)

for a ∈ Z. A non degenerate, bilinear Tate pairing is the map:

er : E(Fp)[r]× E(Fpk)/rE(Fpk)→ F∗pk/(F∗pk)r

(P,Q) 7→ fr,P (Q)

The value of the pairing is in an equivalence class, F∗
pk/(F∗pk)r. For practical purposes

it is preferred to raise the value of the pairing to the power of (pk − 1)/r ∈ F∗
pk to obtain

a unique representative of the class, and to make it bilinear [Hes08]. This exponentiation is

known as the final exponentiation, and the pairing is referred to as the Reduced Tate Pairing.

The Tate pairing becomes:

er(P,Q) : (P,Q) 7→ fr, P (Q)(pk−1)/r. (2.2)

The focus of Chapter 4 will be on how to speed-up this operation.

We define the G1 ∈ E(Fp)[r] as the group of points of order r on E over the base field

Fp, and G2 as the group on E(Fpk)/rE(Fpk . Let P be a point in G1 and Q a point in G2.
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2.4.1.1 The Miller Loop for the Tate Pairing

Implementing the Tate Pairing is almost as easy as implementing the Miller loop. A

straightforward method for implementing the Miller’s algorithm is explained in [BLKS02,

Theorem 2] and [Sco07].

For each pair A,B ∈ E(Fp), we define gA,B : E(Fpk) → Fpk as the equation of the

line through the points A,B to the curve E(Fpk)[BLKS02].

The code in Listing 2.1 computes the line function lA,B(Q), where A,B are two points

on the curve E(Fp), and a point Q on the curve E defined over the extension. This func-

tion is required to evaluate the contribution to the pairing value of the elliptic curve point

addition, A + B. In essence these are distances calculated between the fixed point Q and

the lines that arise when adding points A and B. In this code there are three cases to be

considered.

Listing 2.1: Line function code in Magma

//Input <- A,B in G_1, Q in E(\F_{pˆk})
//Output -> return in G_T
L:= function(A,B,Q)

if A eq -B then
return Q[1]-A[1];

end if;
if A eq B then

lambda:=(3*A[1]ˆ2+a) / (2*A[2]);
else // A ne B

lambda:=(B[2]-A[2])/(B[1]-A[1]);
end if;
return (lambda*(Q[1]-A[1]) + A[2]-Q[2]);

end function;

The first case is where A = B, the line passing through this point is the tangent to

the curve at point A the second case is when A 6= B. These two cases use the following

operation: (lambda * (Q[1] - A[1]) + A[2] - Q[2]), where lambda is the

slope of the line. The last case is when the point A is a negative of point B. In this case

we have a vertical line and we compute Q[1] - A[1]. Refer to [Sil86] or [BLKS02] for

more details.

In practice, the equation of the curve, defined with a tuple (a, b) ∈ {(−3, b), (0, b 6=
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0), (a 6= 0, 0)} is preferred as it simplifies the line function operations.

The full Tate Pairing algorithm is presented in Listing 2.2. In this code the double-and-

add stages can be identified by a 2 ∗ T (double) and a T + P (add), where the addition is

required when a 1 (a pole) is present in the binary expansion of r. Additionally, there is the

“vanilla” implementation of the final exponentiation step, using direct exponentiation.

Listing 2.2: Basic Tate pairing with single Miller Loop

// Input <- P \in G_1, Q \in E(\F_{pˆk})
// Output -> f \in G_T
pairing:= function(P,Q)
f:=1;
T:=P;
i:=Floor(Log(2,r))-1;
si:=Intseq(r,2);
while i ge 0 do

f:=fˆ2*L(T,T,Q);
T:=2*T;
if si[i+1] eq 1 then

f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
f:=fˆ(((pˆk)-1) div r);
return f;
end function;

2.4.2 The ate Pairing

The ate pairing [HSV06] is a variant of the Tate pairing and it is a generalization of the Eta

pairing, a pairing that can be used with supersingular elliptic curves [BGHS07]. The ate

pairing is particularly suitable for pairing-friendly curves with small values of t.

We takeG1 = E[r]∩Ker(πp− [1]) andG2 = E[r]∩Ker(πp− [p]), and let T = t−1.

Let N = gcd(T k − 1, pk − 1) and T k − 1 = LN . For Q ∈ G2 and P ∈ G1, the ate pairing

is defined as [HSV06]:

eT : (Q,P ) 7−→ fT,Q(P )cT (pk−1)/N ,

where cT =
∑k−1−i

i=0 pi ≡ kpk−1 mod r. The ate pairing is a bilinear, non-degenerate
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pairing if r - L. There is a switch in the arguments with respect of the Tate pairing; the first

parameter Q is defined over the extension field and P is defined over the base field.

We can always use the traditional final exponentiation (pk − 1)/r if T k 6≡ 1 mod

r2, since r|N and r - c the function is always bilinear, and non-degenerate as a result of

Theorem 2 of [Hes08].

2.4.2.1 The Miller Loop for the ate Pairing

The number of iterations in the ate pairing in the Miller loop depends on the size of the

trace of the Frobenius t rather than on the size of the subgroup r. As a result, if (ω = log r/

log |t|) > 1 for a particular family then it is possible to compute the ate pairing faster than

the Tate pairing for that family of curves [Sco07]. The larger the value of the ω the faster

the ate pairing computation is compared to the Tate pairing computation.

For example, the KSS curves with embedding degree k = 18 have ω = 3/2, and

so, this curve is suitable for an implementation of the ate pairing. The code in Magma for

computing the ate pairing is given in Listing 2.3, whereG1 ∈ E(Fp)[r]) andG2 ∈ E′(Fp3).

Note that here we define G2 on the sextic twist.

Listing 2.3: ate pairing with single Miller Loop

//Input <- P \in $G_2$, Q \in $G_1$
//Output -> f \in $G_T$
pairing:= function(P,Q)
f:=1;
T:=P;
s:= t-1;
i:=Floor(Log(2,s))-1;
si:=Intseq(s,2);
while i ge 0 do
f:=fˆ2*L(T,T,Q);
T:=2*T;
if si[i+1] eq 1 then
f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
f:=fˆ(((pˆk)-1) div r);
return f;
end function;
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In the Miller loop, however, some operations on the curve over the extension field are

required; in the case of the ate pairing it is the line function. Since one is using a point

Q ∈ E′(Fpk/d) instead of E(Fpk), it is therefore required to apply the map ψ, discussed in

§2.1.5, in the line function.

Figure 2.4: ψ map for KSS:k = 18 curves

Each of the x and y coordinates of a point Q ∈ E′(Fp3) has three components defined

over the base field Fp. A point in a curve E(Fp18) has six components of Fp3 , or eighteen

of Fp. Instead of applying the map function ψ, one can move the x and y-coordinates of

Q to their corresponding positions in a point in a curve E(Fp18), and apply the Frobenius

exponentiation part there.

A similar approach can be taken for the BN curves:

Figure 2.5: ψ map for BN curves

Unfortunately, this cannot be done in Magma, and we don’t have this transformation for

other families of curves. Instead we apply the “full” ψ map operation (x, y) 7→ (x.δ2, y.δ3).

Since δ is a constant for the generated curve, we can pre-compute these values and the cost

of the mapping will be just one multiplication by a coordinate component (each time the

line function in Listing 2.1 is called.)

Listing 2.4 shows the corresponding code for the Line function.

Listing 2.4: Line Function with ψ map

//Input <- A,B \in G_2, Q \in G_1
//Output -> return in G_T
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L:= function(A,B,Q)
Ax:=A[1]*deltas[1];
Ay:=A[2]*deltas[2];
Bx:=B[1]*deltas[1];
By:=B[2]*deltas[2];
if (Ax eq Bx) then
if (Ay eq -By) then
return Q[1]-Ax;

else
if (Ax eq Bx) and (Ay eq By) then
lambda:=(3*Axˆ2+a) / (2*Ay);

end if;
end if;

else // A ne B
lambda:=(By-Ay)/(Bx-Ax);

end if;
return (lambda*(Q[1]-Ax) + Ay-Q[2]);

end function;

Alternatively, if δ ∈ E(Fpk/d) already, then we do not need to lift the element from the

twisted curve to the curve over the extension field to apply the map.

2.4.3 The R-ate Pairing

The R-ate pairing introduced by Lee, Lee and Park [LLP08], is a generalization of the ate

[HSV06] and atei [ZZH07] pairing, improving the computation efficiency. It takes three

short Miller loops to calculate the pairing, that together require a shorter loop than a single

typical application of the Tate or the ate pairing. The R-ate pairing can be regarded as a

ratio of two pairings, hence the name.

Corollary 3.3 from [LLP08] defines four combinations of the R-ate pairing. Combina-

tion 1 matches the Miller loop length of the atei pairing. Combination 2 requires a Miller

loop length of the field size, which is not optimal. Combination 4 matches the Miller loop

length of the Tate pairing.

In this research, we prefer the R-ate pairing option 3 since we can achieve the smallest

number of Miller loops, and from now on, we refer to it simply as the R-ate pairing, unless

specified. The R-ate pairing, like the atei [ZZH07], requires the calculation of Ti ≡ pi mod

r, with 0 ≤ i < k, where k is the embedding degree. This pairing is constructed from the

parameters (p, r), which are also used to define the ate and Tate pairing, and a combination
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of the Tis.

The definition of the R-ate pairing with A = aB + b where A = Ti, B = Tj , and a, b,

∈ Z is as follows:

eA,B(P,Q) : (P,Q) 7→ fa,BP (Q)× fb,P (Q)×GaBP,bP (Q)

Generally this equation does not automatically give a bilinear and non-degenerate pair-

ing. However, with a careful choice of pairs A and B, this is possible. For efficiency, we

look for a working and non-trivial combination of A and B that gives the shortest Miller

loop.

In [LLP08, Algorithm 2] there are three Miller loops to compute and the final exponen-

tiation is calculated at the end of the computation. The code for the Miller loop denoted as

M in Listing 2.5 can be used to compute the R-ate pairing. It makes function calls to Listing

2.1, the line function.

Listing 2.5: Miller loop as to be used by the R-ate pairing

// Input <- P \in G_2, Q \in G_1, l \in \Z
// Output -> f \in G_T, T \in \Z
M:= function (P,Q,l)
T:=P;
f:=1;
i:=Floor(Log(2,l))-1;
li:=Intseq(l,2);
while i ge 0 do
f:=fˆ2*L(T,T,Q);
T:=2*T;
if li[i+1] eq 1 then
f:=f*L(T,P,Q);
T:=T+P;

end if;
i:=i-1;

end while;
return f,T;
end function;

Listing 2.7 shows an implementation of the R-ate pairing function. As described in

[LLP08, Algorithm 2], we denote fa, fb, aQ and bQ as {a, b} = {m1,m2}, where m1 and

m2 are as follows: m1 = max{a, b} and m2 = min{a, b}.

The R-ate pairing is also denoted as RA,B(P,Q). For the KSS k = 18 curve the linear
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combination: T13 = 3x
7 .T6 + 2x

7 , where a = 3x
7 , j = 6 and b = 2x

7 gives the shortest

bilinear and non-trivial R-ate pairing.

We know from [LLP08, Algorithm 2] that c ← [m1
m2

] and d ← m1 − c × m2. For

the a and b values proposed, we set d = a
2 . With these values, the first and third Miller

function call can be integrated into one as shown in Listing 2.6. This is a good choice since

A and B have almost the same number of bits with both values less than the x-parameter,

the parameter of the curve, and as such, it provides a short Miller length of which one can

use an intermediate value of f and T from Listing 2.5 to reuse computation. Listing 2.6

presents the optimised Miller’s loop for the R-ate pairing reusing partial results.

Listing 2.6: Modifications to the Miller loop for the R-ate pairing

// Input <- P \in G_2, Q \in G_1, l \in \Z
// Output -> f \in G_T, T \in \Z
M:= function (P,Q,l)
T:=P;
f:=1;
i:=Floor(Log(2,l))-1;
li:=Intseq(l,2);
while i ge 0 do
f:=fˆ2*L(T,T,Q);
T:=2*T;
if li[i+1] eq 1 then
f:=f*L(T,P,Q);
T:=T+P;

end if;
if i eq 1 then
f2:=f; T2:=T;

end if;
i:=i-1;

end while;
return f,T,f2,T2;
end function;

Since the parameters of the first and the third Miller loop are the same exempt the loop

length, we only need to verify that d is equal to the most significant bits of m2. Unless this

condition is met, we use either twice the function at Listing 2.5 or a single execution of the

function at Listing 2.6.

Another interesting characteristic of the selected combination is that if c = 1, we also

avoid some computations. Furthermore, one can omit unnecessary use of memory since by
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definition; a, b, j, m1, m2, c, d, fcm2 and cm2Q are known in advance.

Listing 2.7: R-ate pairing function

// Input <- P \in G_1, Q \in G_2, l \in \Z
// Output -> f \in G_T, T \in \Z
pairing:= function(P,Q)
dd:=(xx) div 7;
m1:=(3*dd);
m2:=(2*dd);
jj:=6;

//Compute
fm2,m2Q,fd,dQ:=M(Q,P,m2);

f1:=fm2*fd;
fm1:=f1*L(m2Q,dQ,P);
m1Q:=m2Q+dQ;

//Exponentiation
f2:=Frobenius(fm1,Fp,jj)*fm2;
Q1:=[Frobenius(m1Q[1]*V2,Fp,jj),Frobenius(m1Q[2]*V3,Fp,jj)];
Q1:=ExtT![Q1[1]*V1_2,Q1[2]*V1_3];
f3:=f2*L(Q1,m2Q,P);

//Final Exponentiation
f3:=f3ˆ(((pˆk)-1) div r);

return f3;
end function;

The code, “fm2,m2Q,fd,dQ:= M(Q,P,m2)”, in the Compute section of Listing

2.7 returns fm2 as f and m2Q as T in Listings 2.5 or 2.6. Clearly Q and m2 are the parameters

of the M function, where m2 is the Miller loop length. Hence m2Q is the actual state of T.

Additionally, since there is only one M function call, one would be able to insert the Miller

loop inside a modified version of the Listing 2.7 to avoid overhead at runtime. Finally,

Q1 ∈ E(Fp18) and the line function requires it to be in the twisted curve E′(Fp3); hence,

we apply the inverse ψ map from §2.1.5 before the line function.

2.4.3.1 Shorter R-ate pairing

Recalling notation from [LLP08], to evaluate the R-ate pairing, the generic algorithm can

be used. Then, the overall shortest Miller loop can be constructed as follows:
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The three Miller loop calls are:

M(Q,P,m2) (2.3)

M(m2Q,P, c) (2.4)

M(Q,P, d) (2.5)

where the parameters for these Miller function calls are as follows:

m1 ← max{a, b}; (2.6)

m2 ← min{a, b}; (2.7)

c←
[
m1

m2

]
; (2.8)

d← m1 − c ·m2. (2.9)

and M is the Miller function.

If an (A,B) pair is chosen such that the parameters are close to each other, then the

ratio can be 1 (or close to 1), leaving one Miller loop that does not require execution as the

result can be known in advance2. The other two function calls can be embedded inside each

other to use a partial result from the computation [DKS, Listing 15].

On the another hand, if the chosen parameters have a high ratio, some speed improve-

ment is still possible. For example, some of the intermediate values of the R-ate pairing

can be computed in parallel. This is not always possible for all of the families of pairing-

friendly curves and still a smaller ratio on the parameters should be faster than distributed

loops. Additionally, in our best effort, there are no family of curves for which the Ti,Tj

combinations suggest that it is possible to compute two parallel Miller loops instead of one

short loop, and gain speed 3.

For example, we examine the case of the KSS curves with embedding degree k = 18
2we can at least simplify the code
3If the third Miller loop needs to be embedded into the first one, it means that we need the second Miller

loop, otherwise the first loop is not needed
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Miller-length in iterations
# a b Tj loops Ham m2 c d
1 3 x 1 64 30 1 62 1
2 5x/7 x2/7 1 187 85 63 61 63
3 3x/7 2x2/7 1 186 90 62 63 61
4 5x2/49 3x2/49 3 246 119 123 0 123
5 5x2/49 8x2/49 6 247 125 124 0 123
6 5x/14 3x2/14 16 186 88 62 63 61
7 8x2/49 3x2/49 6 247 119 123 1 123
8 3x/7 2x/7 6 62 22 62 0 61
9 2x/7 3x/7 12 62 22 62 0 61
10 3x/14 x2/14 7 184 89 61 62 61
11 8x2/49 5x2/49 12 247 125 124 0 123
12 3x2/49 8x2/49 12 247 119 123 1 123
13 3x2/49 5x2/49 15 246 119 123 0 123

Table 2.4: KSS: k = 18 Curves A,B Parameters

[KSS08] in Table 2.4 with a subgroups size of approximately 192-bits. The first and second

columns give the a and b parameters from Ti = a.Tj + b. The ‘loops’ column presents the

total number of loops necessary for the R-ate pairing computation. The columns ‘m2’ and

‘c’ represent the parameters of the Miller loop in bits (as given in formulæ 2.3 and 2.4). The

column ‘Ham’ shows the Hamming-weight of the length of the Miller loops.

We see in Table 2.4 that for the example illustrated above, there are several (A,B)

pairs which already have the shortest Miller loop length: row 8 and 9. These are our

recommended parameters for the R-ate pairing.

As mentioned before, other families of pairing-friendly elliptic curves may present

favourable ratios and this feature (parallel execution) can be exploited. Generating code

for parallel computation is left as a future option.

2.4.3.2 Choosing the R-ate pairing parameters

Choosing the length parameters of the R-ate pairings is an easy task that requires the p(x)

and r(x) parameters of the desired curve. See Algorithm 2.

Once the Ti polynomials are generated, it is necessary to verify the bilinearity and non-
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Algorithm 2 Generate the Ti − Tj combinations
for i = 0 to k − 1 do

Polyi ← pi mod r
� Discard Polyi ∈ [1,-1]
for j = i+ 1 to k − 1 do
� Discard Polyj ∈ [1,-1]
� Discard negative A,B components
� Discard trivial combinations
Ai ← [ Polyi

Polyj
]

Bi ← Polyi mod Polyj
Ti ← i
Tj ← j

end for
end for

degeneracy properties of the R-ate pairing with the given parameters.

We stress that the R-ate pairing requires an exponentiation to the parameter c from

Equation 2.8; hence, when constructing the pairing, we may prefer to have a smaller foot-

print in favour of a slightly longer Miller loop. For example, the first row of table 2.4

is almost as short as row 8 and 9 but this selection would require an exponentiation of a

number of approximately 62 bits.

2.4.4 Pairing Lattices

The family of ate pairings [HSV06, GHO+07, ZZH07, MKHO07] are optimized versions

of the Tate pairing restricted to the eigenspaces of the Frobenius.

Let s ∈ Z, h =
∑d

i=0 hixi ∈ Z[x] with h(s) ≡ 0 mod r and d = ϕ(k), with k the

embedding degree, and Q ∈ E(Fpk)[r], then:

(fs,h,Q) =
d∑
i=0

hi((siQ)− (O)).

Defining ||h||1 =
∑d

i=0 |hi| we have that if s is a primitive kth root of unity modulo r2,
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and if h(s) ≡ 0 mod r but h(s) 6≡ 0 mod r2, then,

es,h : (Q,P ) 7→ fs,h,Q(P )(pk−1)/r

defines a bilinear and non-degenerate pairing [Hes08].

Choosing s

For the choice of s, following the ate pairing definition, we can take s = r, the subgroup

size, but we prefer to take s = T = t− 1, which is already an improvement with respect to

the Tate pairing.

Constructing h

For the case of h, we construct a matrix m×m, with m = ϕ(k):

M =



r 0 · · · 0

−T 1 0 · · · 0

−T 2 0 1 · · · 0
...

. . .
...

−Tm−1 0 · · · 1


Let w = (w0, w1, . . . , wm−1) be the shortest Z-linear combination of the rows of M ,

then we can construct h =
∑m−1

i=0 wix
i.

In [Hes08], the author suggest to LLL-reduce the matrix M to get the shortest vector.

To find the expansion with short coefficients, in [Ver10] Vercauteren uses the “ShortestVec-

tors()” Magma function. A method to get vectors of lower degree is by transforming the

matrix to have the Weak Popov Form using Algorithm 3.

The explicit pairing lattice is defined as:

(Q,P ) 7→

(
l∏

i=0

fp
i

ci,Q
(P ) ·

l∏
i=0

G[si+1]Q,[ciqi]Q(P )

)(pk−1)/r
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where si =
∑l

j=i cjp
j , G is the line function, and k is even.

For the construction, note that: f1,Q = 1, f−1,Q = 1/f1,Q (for k odd), and [1/2]Q =

[1/2 mod r]Q = [(r + 1)/2]Q. [Ver10]

BN Curves

For the BN curves [BN06], described in 2.13, we construct the matrix M from 2.4.4 as:

MBN =



−2x −x+ 1 x −x

5x− 1 3x− 2 −x 0

−6x+ 1 −6x+ 3 1 0

−6x+ 2 1 −1 1


The pairing lattice can be constructed with s = t− 1, and h(s) = (−6x+ 2, 1,−1, 1)

as follows:

es,h(·, ·) : (Q,P ) 7→ 1
f6x−2,Q(P )

·G−[6x−2]Q,Q1−Q2+Q3
(P ) ·GQ1,−Q2+Q3(P )

where Qi is computed as ψi(Q). At the end of the computation, we also need the final

exponentiation.

KSS Curves

For the KSS curves with k = 18 [KSS08], described in 2.5.4.2

Mk=18 =



10/7 0 6x/7 6/7 0 −2x/7

0 1/7 0 x/7 2/7 0

0 2x/7 1 0 x/7 0

1/2 0 x/2 1 0 0

−x −3 0 0 1 0

0 −x −3 0 0 1


(2.10)
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The pairing lattice can be constructed with s = t − 1, and h(s) = (−x,−3, 0, 0, 1, 0)

as follows:

es,h(·, ·) : (Q,P ) 7→ 1
fx,Q(P )

·π
(

1
f3,Q(P )

)
·Gψ4(Q),−3ψ(Q)(P ) ·Gψ4(Q)−3ψ(Q),−x.Q(P )

At the end of the computation, we also need the final exponentiation.

The pairing lattice construction reduces the number of iterations of the Miller loop by

exploiting powers of the Frobenius endomorphism πip for 0 ≤ i < k by decomposing a

multiple of r4 as a sum of this endomorphism.

2.4.5 Optimal Pairing

Let λi ≡ pi mod r and r|Φk/d(λi) with d =gcd(i, k), an ate pairing can be defined as

eλi
: (Q,P ) 7→ fλi,Q(P )(pk−1)/r

which implies that the minimum value of λi is r1/ϕ(k/d).

Definition 19. A pairing function e(·, ·) is called an Optimal Pairing if it can be computed

in log2r/ϕ(k) + ε(k) basic Miller iterations, with ε(k) ≤ log2k. [Ver10]

2.4.6 Comparison of the Miller-loop length

In this section we compare the Miller length of the pairings implemented in sections §2.4.1,

§2.4.2 and §2.4.3. This is the common comparison system for pairing functions using the

same elliptic curve.

For the Tate pairing, presented in section §2.4.1, one can see how the number of Miller

loops iterations is related to r. In Listing 2.2, we take the length to be blog2(r)c − 1.

In section §2.4.2, the ate pairing is described. Listing 2.3 shows the number of Miller

loops iterations is related to t; its length is blog2(t− 1)c − 1.

4t− 1 in this case
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Miller-length in iterations
Tate er(·, ·) 376
ate eT (·, ·) 253
R-ate eA,B(·, ·) 61
Lattice es,h(·, ·) 63

Table 2.5: Comparison of Miller-loop length for a KSS:k = 18 curve, with Log2x ≈ 63

The R-ate pairing, described in §2.4.3, requires three Miller loops with lengths depend-

ing on theA andB parameters. Its length is blog2(m2)c+blog2(c)c+blog2(d)c−3, where

m1, m2, c and d are as given in §2.4.3.1. Simplifying for the chosen parameters, the length

is blog2(m2)c − 1 + blog2(c)c − 1.

The optimal pairing, described in the previous section, requires up to ϕ(k) Miller loops

and up to ϕ(k)−1 line functions, which requires up to ϕ(k) scalar-point multiplications and

up to ϕ(k)− 2 point additions, depending on the vector used for constructing the pairing.

For a security level approximately of the strength of AES-192 using the KSS:k = 18

curves, the Miller loop length for these pairings is shown in Table 2.5. Clearly, the Miller

loop length of the R-ate pairing is one sixth of the Tate pairing Miller loop length. The

R-ate pairing requires fewer iterations of the Miller loop than the pairing lattice, but may

require more point additions. However, the pairing lattice for this particular case requires a

scalar-point multiplication of x and a point in G2.

The cost of the Rate pairing for this family of curves is quite close to that of the pairing

lattice, which is the optimal pairing. Certain values of the parameter of the curve would

make one pairing function or the other the fastest, but only by a marginal number of opera-

tions. This varies a bit on the chosen x-parameter of the curve.

2.5 Pairing-Friendly Elliptic Curves

Let t(x) be the trace of Frobenius, p(x) the field size and r(x) the pairing-friendly subgroup

size. As is well known, the number of points on the elliptic curveE(Fp) is #E = p+1− t.

Definition 20. The ρ-value is the ratio of the size of the field to the size of the subgroup
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ρ = deg(p(x))
deg(r(x)) .

For example, an elliptic curve with a 256-bit subgroup5 and ρ = 1 is defined over a

256-bit field, while a curve with a ρ = 2 is defined over a 512-bit field. In practice, since

the ρ-value is an approximate number, we may prefer to round the field size to a number of

bits which is easier to implement.

Definition 21. A family of pairing-friendly elliptic curves is a set of elliptic curves, each of

which is given by a function or parametrisation of the field and subgroup size, the trace of

Frobenius, and sometimes other values characterizing the elliptic curve. The term pairing-

friendly refers to its small embedding degree and large subgroup order [FST10].

There are many constructions for pairing-friendly elliptic curves. We refer to Freeman,

Scott and Teske [FST10] for more information about these type of curves. In the following

sections, we present a few particular pairing-friendly elliptic curves used in this thesis.

Freeman, Scott and Teske in [Ibidem] suggest that for choosing the adequate security

level for a family of pairing friendly elliptic curves, we have to match log2(pk)/log2(r) =

ρ.k. Look up the corresponding values in Table 2.3 on page 13.

2.5.1 MNT Curves

The MNT curves were reported by Miyaji, Nakabayashi and Takano in [MNT01]. For the

k = 6 case, the curve has ρ = 1, and the parameters of the curve are defined as follows:

p(x) = x2 + 1;

r(x) = x2 − x+ 1;

t(x) = x+ 1. (2.11)

This curve needs the CM method to construct the elliptic curve equation.
5which is adequate for a security level of 128-bits, see §2.1.4.1
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2.5.2 Freeman Curves

Freeman in [Fre06] discovered a family of curves with embedding degree k = 10 and

ρ = 1. The construction uses the factorization of Φ10(10x2 + 5x + 2), discovered by

Galbraith, McKee and Valença [GMV07]. This is a sparse family of curves and it again

requires the CM construction method. The parameters of the curve are defined as follows:

p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3;

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1;

t(x) = 10x2 + 5x+ 3. (2.12)

2.5.3 Barreto-Naehrig (BN) Curves

Barreto and Naehrig in [BN06] presented a family of curves with embedding degree k = 12

and ρ = 1, with small discriminant D = −3 and plenty of curves. The family present the

following parametrisation:

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1;

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1;

t(x) = 6x2 + 1. (2.13)

These curves support a sextic twist.

2.5.4 Kachisa-Schaefer-Scott Curves

Kachisa, Schaefer and Scott in [KSS08] proposed families of pairing-friendly elliptic curves

of embedding degrees k = 16, 18, 32, 36, and 40. The main idea in the construction is to

use minimal polynomials of the elements of the cyclotomic field other than the cyclotomic

polynomial Φl(x) to define the cyclotomic field Q(ζl). Interestingly, all these families of

curves admit high order twists.
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2.5.4.1 KSS curves with k = 8

The family of curves for k = 8, with CM discriminant −1, is parametrised by the authors

as follows:

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)/180;

r(x) = (x4 − 8x2 + 25)/450;

t(x) = (2x3 − 11x+ 15)/15;

x ≡ 5 mod 30 (2.14)

These curves support a quartic twist.

2.5.4.2 KSS curves with k = 18

The family of curves for k = 18, with CM discriminant −3, is parametrised by the authors

as follows:

p(x) = (x8 + 5x7 + 7x6 + 37x5 + 188x4 + 259x3 + 343x2 + 1763x+ 2401)/21;

r(x) = (x6 + 37x3 + 343)/343;

t(x) = (x4 + 16x+ 7)/7;

x ≡ 14 mod 42. (2.15)

These curves support a sextic twist.
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2.5.4.3 KSS curves with k = 36

The family of curves for k = 36, with CM discriminant −3, is parametrised by the authors

as follows:

p(x) = (x14 − 4x13 + 7x12 + 683x8 − 2510x7 + 4781x6 + 117649x2

− 386569x+ 823543)/28749

r(x) = (x12 + 683x6 + 117649)/161061481

t(x) = (2x7 + 757x+ 259)/259

x ≡ 287 mod 777 (2.16)

These curves support a sextic twist.

2.6 Matrices

2.6.1 Greatest Common Divisor

A greatest common right divisor (gcrd) of two matrices {N(S), D(s)} with the same num-

ber of columns is any matrix R(s) with the following properties [Kai80, pp. 376]:

1. R(s) is a right divisor of N(s) and D(s); i.e., there exist polynomial matrices N̄(s),

D̄(s) such that:

N(s) = N̄(s)R(s), D(s) = D̄(s).

2. If R1(s) is any other right divisor of N(s) and D(s), then R1(s) is a right divisor of

R(s); i.e., there exists a polynomial matrix W (s) such that R(s) = W (s)R1(s).

2.6.2 Echelon Form

An Echelon in this context, is the military formation that resembles the migration paths of

birds, which is used as an analogy in the notation of matrices [Wil02].
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An m× n- matrix A = (aij) is said to be in echelon form if there exist integers r ≤ 0,

q ≤ j1 < j2 < · · · < jr ≤ n such that aij = 0 for i > r or (i ≤ r and j < ji) and aij 6= 0

for i ≤ r, where the rank of A is r [BCS97, pp. 431].

In other words, a matrix is in row echelon form if:

1. All non-zero rows are above any all-zero rows;

2. The leading coefficient of a non-zero row is 1 and is strictly one column to the right

of the previous row. This coefficient is called the pivot.

A matrix is in reduced row echelon form if additionally, the pivot is 1 and is the only

non-zero element in the column.

Similarly, a matrix A is in column echelon form if its transpose AT is in row echelon

form [KMM04]. See example 3.21 from [KMM04, p.108].

2.7 Programming Languages

For the purposes of this research, the programming language used will be Magma, unless

stated. All of the mathematical tests were run using Magma. When generating code, the

output code is the MIRACL library. In some cases, code for RELIC is also generated.

Some external libraries were used, but are referenced. In any case, when the code is not in

Magma, is written in C/C++. The only exemption is in the Appendix C.

The compiler described in Chapter 6 is written entirely in Magma. As it will be shown

later in the cited chapter, it will use some templates written in other programming languages

than Magma, the programming languages used depend on the multi-precision library used

to generate the code.

2.7.1 Magma

Magma is a computer algebra system designed to provide a software environment for com-

puting with the structures which arise in areas such as algebra, number theory, algebraic
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geometry and (algebraic) combinatorics [BCP97]. Magma is also the programming lan-

guage to use such structures.

At the start of this research, there were other similar systems. Magma was suitable for

the purposes of this research as it was able to handle finite field arithmetic of cryptographic

size. In other words, Magma was able to handle operations with very large numbers, large

enough for a real application.

Magma has state-of-the-art implementation of arithmetic operations, making it faster

than other similar systems. Magma is quite big for a real applications, also it is slower than

an implementation using a professional C/C++ implementation of the required arithmetic,

however, Magma has the flexibility of fast development and tests. Additionally, since the

learning curve was smooth, it was a suitable option for this research.

2.7.2 MIRACL

MIRACL is a multi-precision arithmetic library written in C/C++, with support for large

integers, and several routines. It is portable, and also includes support for assembler arith-

metic. It is a well established library used for research [Sco].

This library currently supports finite field and elliptic curve arithmetic for several fam-

ilies of elliptic curves, which can be used for some of the security levels.

The implementations of pairing functions are highly optimised and are used not only as

a model to follow in this research, but also for benchmarking purposes.

Additionally, the implemented functions in this library are also implemented on current

research in the area, making a suitable option for comparison.

2.7.3 RELIC

RELIC is another multi-precision arithmetic library, it is written in C, also with support for

large integers and several routines. It does not have assembler routines, and it is at early

stages of development, but it has a growing user base and it is a promising library, it is also

suitable for small devices [AP].
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This library currently supports the BN curves [BN06]; i.e., the finite field and elliptic

curve arithmetic for this family is present. This is the only curve supported at the start of

this research, but work for others is on the way.

2.8 Metaprogramming

Metaprogramming is a programming paradigm which manipulates computer programs.

These programs can be either external or the program itself. The program data can be

treated as code and vice versa. This concept is old and can be traced back as to the classical

modus operandi of a system compromise using a buffer overflow.

A buffer overflow attack is an example of program data being used as code. This tech-

nique can be used to change the behavior of a computer system either locally or remotely.

In an attack, the program is forced to overflow its data stack (where the program’s data

is stored) typically overwriting some carefully chosen sections of the stack. Modifying

the data stack with a buffer overflow will give mixed results depending on the operating

environment; a careful construction will lead to interesting behaviour, such as data code

execution. In the end, the program can either crash or end up as a breach of the system

security. To avoid this, many techniques have been developed, including the following:

Monitoring the program, setting up limits on the program code size, and attribute-based

protection. This can be achieved via hardware or software and it is always a relevant topic

in computer science.

In contrast to a simple buffer overflow, Metaprogramming is a method to produce code

for constructive purposes by modifying program code (regardless of the intention of the

code). In this research we are focusing on a constructive approach.

The expectations on a code generator are usually high [ASU86], it must produce valid

code, it should make use of very few resources, and the output should require little or no

modifications by the end user. From a mathematical point of view, it is undecidable if the

generated code is optimal [AF96]. Hence, we rely on heuristic techniques. It is this choice

of techniques which should determine the quality of the code, rather than the construction
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techniques for building it up.

Traditionally, a code generator outputs machine code or assembly code from interme-

diate code [Muc97]. Sometimes, the code generators output to several programming lan-

guages and a single computer architecture. Sometimes they target a single programming

language and several architectures.

2.8.1 Automatic Code Generation

Automatic code generation is a very simple mode of code generation. There are two meth-

ods of code generation: One is to generate the code straight away; the other is to create

an intermediate code sequence where one can choose segments depending on which is best

suited for our purposes. In practice, code generators use a mix of these approaches [PP82].

Traditionally, the main focus in code generation is the Turing Machine capability. We

need to know if the output code is suitable for a Turing Machine6 (Von Neumann architec-

ture). This conceptual machine, of course, is only used as a reference. In a more contempo-

rary context, the main feature for a code generator is satisfying the customer’s requirements,

for speed, code size, memory footprint and others.

The optimal sequence of code for a particular algorithm may not be the obvious one.

There are instances where the definition of optimal is not speed, but code size. This is

difficult to achieve by hand for long code sequences, and an automatic code generator would

be a better option. For example, generated code may have a big footprint and may not fit

within the space requirements. If so, another branch in the code sequence, perhaps slower,

can be generated instead.

2.8.1.1 L- and R-value

To handle the instruction construction, we recall notation from Barron et al. [BBH+63]:
6A Turing Machine is an abstract model of a computational device. This model was devised by Alan Turing

in 1937. The Turing Machine basically consists of a read and write device over a tape that can be randomly
positioned. Reading one single character by position is actually used as a conceptual machine to understand
the physical limits of mechanical computers.
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Definition 22. The Left Hand (LH) operator, also referred as an L-value, is an expression

that when evaluated as an LH, produces a memory address.

Definition 23. The Right Hand (RH) operator, also referred as an R-value, is an expression

that when evaluated as an RH produces a value.

An LH operator is used to set the location (memory address) where the result of the

defined operation is going to be stored. An RH operator is used to obtain the location of the

data to be transformed (the value).

Definition 24. The number of operands an operator can take is called its arity.

We classify an operator in terms of its arity:

• Nullary: An operator that does not take parameters; e.g.: functions with global pa-

rameters, such as initialization code.

• Unary: An operator that takes one single operand; e.g.: −Q, Q.normalize().

• Binary: An operator that takes two operands; e.g.: a+ b, x3.

• Ternary: An operator that takes three operands; e.g.: (a > b)?c : d. (operand 1:

(a > b), operand 2: c, operand 3: d)

• N-ary: This type is usually referred to as a function with one composed parameter,

e.g. an N-tuple: M(a, · · · , f).

2.8.1.2 Suffix Notation

The next issue to address in the instruction construction is the position of the operands.

There are several types of notation and the multi-precision libraries may be influenced by

the programming language of the library.

Types of notation:

• Polish notation [Chu96], also known as Prefix notation. This is a parentheses-free

notation. Examples:
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◦MOV ah,09, which translates into: ah= 09,

◦ C C p A q r N p, which translates into: ((p ⊃ (q ∨ r)) ⊃∼ p. There is no need for

parenthesis.

• Reverse Polish notation, also known as Sufix notation. This is a parentheses-free

notation.7 Example:

◦ a b ADD, which translates into: a+ b.

• Infix notation. Example:

◦ 3 + 4.

• Circum-fix notation. Example:

◦ pow(x,3), which translates into: x3.

Extremely rare cases will require special notation or ordering of parameters. An exam-

ple of a special case would be defining a scalar-point multiplication on an elliptic curve with

the reversed parameters: point then scalar. This, however, is on a case-by-case situation.

In [DD01] Deitel and Deitel mentioned that humans generally use infix notation whereas

computers prefer postfix notation. This is not necessary the case for a high-level computer

programming language, however.

2.8.1.3 Operator Overloading

In C++ and other languages, there is a type of polymorphism: Operator overloading. The

arithmetic operands are defined over simple data-types, such as the integers, float, or bytes;

however, there are no definitions for user-defined data objects (datatypes). It is possible

to define the operation associated with an operator with non-standard parameters. This is

particularly useful in ECC, as one can associate the “+” operator with the point addition

operation, where the operands are points in an elliptic curve. In the particular case of C++

one can only work with the standard operators.
7Used mainly with LIFO (Last In, First Out) structures.
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Operator overloading is a computer language feature that is not present in multi-precision

libraries based on C, as the computer language does not support it. Hence, a more elabo-

rate approach is needed. In some circumstances, the use of explicit temporary storage is

required for every operator, but this is a specific circumstance.

This is important as affects the code construction. When there is no support for over-

loading operators, every non-standard arithmetic operation must be computed as a function

call8. That is, instead of using the ∗ symbol for a multiplication, we have to use a function

such as multiply(). Also, unless the so-called multiply function supports several

operands, each multiplication must be explicitly accumulated.

For example, if we need to compute f1 ← f cm2.fd using operation overload, we can

generate code as: f1=fm2ˆc*fd;, whereas without operator overload, we need to split

this into two operations: exponentiate(f1,fm2,c); multiply(f1,f1,fd);.

2.8.2 Attribute-Oriented Programming

Direct output of text strings for code generation works adequately for simple syntax di-

rected code, as needed for some cryptographic functions, such as arithmetic and “mapping

operators”. Another method for code generation is Attribute-Oriented Programming, also

known as Attribute Code Generation. This method use “tags”, labels around the code,

which are instructions in a meta language for the compiler. It is then necessary to define a

meta language to instruct the compiler.

For this method to be implemented, we need a partially finished program or a program

with pseudo-code chunks. This has the potential to make program debugging difficult until

all the parts are finished and it is successfully rebuilt with the compiler.

The parts of the code that need to be constructed will be tagged within the code and they

will be replaced. This way, one can define the variable and place a tag for a future assign-

ment. For example, we can define a program to test the bilinearity of a pairing function, but

at coding time we do not know the value of the x parameter 9. The compiler may generate
8See circum-fix in section 2.8.1.2
9Actually, we may not even know the elliptic curve.
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its value and replace it with an assignment.

This method is commonly used in languages with capabilities for preprocessors direc-

tives, such as C/C++. This technique is also known as “macros” in other environments. This

code generation method is an offline technique, but can be used online as will be shown in

the next section.

Consider the following example:

X.set((BIG)ALPHA, (BIG)(BETA)); (2.17)

This is a piece of code generated for the MIRACL library [Sco]. Here, X is an element

of a field. ALPHA represents the real part of an element, and BETA represents the imaginary

part. BIG represents the data type of a multi-precision number. Here, however, we are using

the assign function “set” and because we know this is for the MIRACL library, we do not

actually need to place the “BIG” tag, as we already know the code is for MIRACL.

For example purposes, we present the following piece of code:

Listing 2.8: Code in Magma for the ψ function via lifting

// Lift ECnD -> ECnK
// Apply the Frobenius
X=Frobenius(X,F,i);
Y=Frobenius(Y,F,i);

// Unlift ECnK -> ECnD

In Listing 2.8 we left a couple of tags, Lift, and Unlift, where the compiler should

overwrite and place the corresponding generated code. In this example, the compiler will

generate code for moving a point from the twist of an elliptic curve, to the curve over an

extension field, or vice versa.

2.8.3 Reflective Programming

Producing machine code has the obvious advantage that we can place it directly into the

computer memory for immediate use. In the case of interpreted languages, it is possible to

load a file into the memory for interpretation.
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Integrating recently generated code into a running program is one of the main attrac-

tions of reflective programming. A program that can embed code resulting from its own

production into itself is a reflective program. Not all programming languages provide tools

to integrate code at execution time. Some languages provide tools to load external libraries

at run time.

Reflection in computer science means that a program can observe and modify its own

structure and behaviour. Introduced by Smith in [Smi82] as a method for a program to “rea-

son” its internal functions, Reflection, has been extended to the object-oriented paradigm

as reflective-oriented programming to implement polymorphism. Polymorphism is a capa-

bility in the object-oriented programming paradigm that enables the writing of programs in

a more general approach, setting up interfaces not yet defined. This is a key technique for

handling complex software programs [DD01].

Another example of reflective programming is the work of Van den Bussche et al.

[VVV93], where the authors data-typed some algebraic structures into a database and opti-

mized them at runtime.

2.8.4 Template-based Metaprogramming

Another metaprogramming technique we would like to cover is template-based metapro-

gramming. With this method, one creates generic interfaces for the functional part of the

code.

An object will have a set of methods or actions it can take. At some stage, the name

of the method that an object is capable of executing is unknown to the programmer. To

illustrate, consider the following example: A penguin cannot fly, a parrot can talk, and a

roadrunner prefers to run10; however, all are birds. A programmer, can create a common

interface for a general description of a bird. Using class/object inheritance, the programmer,

can add specific behaviour to the birds: speak, run, don’t fly, etc. A proxy class is used

where generic names of the methods are set up to access the main features of the final
10The roadrunner can actually fly to escape from predators, but it prefers to sprint.
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object, as in the previous example. This would be an online template-based metaprogram.

An offline template-based metaprogram would be something similar to the classical C++

templates, the one used to define the operations, without defining the data type. At compile

time, the compiler fills in the blanks and one runs the code with the desired data-types.

We are not using online template-based metaprogramming methods in the current re-

search; however, we use labels around the code to setup an undefined data type to be used

in the code as a way to implement offline templates. For example, some parts of the pairing

function behave the same way regardless of the finite field used. Depending on the elliptic

curve, the finite fields are chosen, but some parts of the code are basically the same.

2.9 Exponentiation in G2,T

In [GLV01], Gallant, Lambert and Vanstone introduced a method to speed up general point

multiplication nP ∈ E(Fp)[r] when there is an efficient computable endomorphism ψ on

E defined over Fp such that ψ(P ) = λP

The idea is to compute nP efficiently by writing n ≡ n0+n1λ (mod r) with |ni| <
√
r

and performing a double exponentiation n0P + n1ψ(P ). In this case, the number of bits in

n0 and n1 is half the bit-length of n. One can save a significant number of point doublings

at the expense of a few point additions and the application of a map. If the map ψ is also

cheaper than a point addition then, it is possible to get computational savings.

Gallant et al. [GLV01] pointed out that their method can be generalized to use higher

powers of the endomorphism. We applied their method to the KSS curves with embedding

degree k = 18 with positive results.

Galbraith and Scott [GS08] recently showed a technique for generalizing the GLV

method for higher powers of the endomorphism for the groups G2 and GT . To get an

m-dimensional expansion n ≡ n0 + n1λ + · · · + nm−1λ
m−1 (mod r) of nP , one must

compose n with powers of λ sufficiently different and modulo r. This can be done by solv-

ing a closest vector problem in a lattice as done in Babai’s rounding method [Bab86]. An

LLL-reduced lattice basis, however, must be precomputed [GS08].
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KSS k = 18 Curves

For KSS k = 18 curves [KSS08], it is possible to get a “natural” 6-dimensional expansion

since the ϕ(k) = 6.

The modular lattice basis is defined as, by:

L =

{
x ∈ Zm :

m−1∑
i=0

xiλ
i ≡ 0 (mod r)

}

where λ = T = t− 1 as in [GS08, Example 5]. This 6-dimensional modular lattice L will

be used to construct a 6 × 6 matrix. Then, one can fill the matrix with any combination

with λ that gives Li,j ≡ 0 (mod r). One can use a predefined sequence of values for the

L-matrix to be LLL-reduced, however it is possible to use random values. The Magma

program at Listing 2.9 gives both a random and an ordered construction of the matrix L.

The function “LLL()” at the end of the program computes the LLL-reduced lattice bases

B, as in [GS08, Example 5].

Listing 2.9: Initial Lattice and LLL-reduction

x:=0x164458D77281230F6;
m:=6;
r:=(xˆ6 + 37*xˆ3 + 343) div 343;
t:=(xˆ4+16*x)/7+1;
lambda:=t-1;

// Option 1, randomly
L:= Matrix(Rationals(), m, [
lambda,-1,0,0,lambda,-1,
0,0,lambda,-1,0,0,
0,0,0,lambda,-1,0,
0,lambda,-1,0,lambda,-1,
lambda,-1,0,lambda,-1,0,
r,lambda,-1,lambda,-1,0

]);

// Option 2, ordered
L:= Matrix(Rationals(), m, [
r,0,0,0,0,0,
lambda,-1,0,0,0,0,
lambdaˆ2,0,-1,0,0,0,
lambdaˆ3,0,0,-1,0,0,
lambdaˆ4,0,0,0,-1,0,
lambdaˆ5,0,0,0,0,-1
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]);

B:=LLL(L);

Note that one can automate the creation of L in the second matrix using the code in

Listing 2.9.

One can verify the lattice consistency mod r using the code in Listing 2.10

Listing 2.10: Validate matrix B

checklattice:=procedure(L)
sum:=0;
for i:=1 to m do
for j:= 1 to m do
sum:=sum+L[i][j]*lambdaˆ(j-1);

end for;
sum:= Integers()!sum mod r;
if sum eq 0 then print "OK"; else print "BAD",i; end if;
sum:=0;

end for;
end procedure;

At this point, there is a valid LLL-reduced B matrix.

B =



−2x
7 −1 0 −x

7 0 0

0 −2x
7 −1 0 −x

7 0

0 0 2x
7 1 0 x

7

x
7 0 0 −3x

7 −1 0

0 x
7 0 0 −3x

7 −1

−1 0 −x
7 1 0 3x

7


Choose a random exponent n and compose a vector (n,0,0,0,0,0) with respect to the

basis formed by B. With the λ-value generating the matrix B from Listing 2.9, one obtains

a vector v ≈ wB−1 as follows:

v ≈ (−3x5+56x2

343 , 8x4+147x
343 , 19x3+343

343 , x
5+3x2

343 ,−5x4+98x
343 ,−18x3+343

343 ) · nr

Since all the elements of v are divided by r and /∈ Z, one just needs to round each

element [Bab86],[GS08] of v before getting the vector u = w− vB, as is done by the code
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in Listing 2.11.

Listing 2.11: Rounding and generating vector u

n:= Random(r);
w:= Matrix(RationalField(), 1, m, [n,0,0,0,0,0]);

// Rounding
v0:= w*Bˆ-1;
v:= Matrix(RationalField(), 1, m, [0,0,0,0,0,0]);
for i:= 1 to m do
v[1][i]:= Round(v0[1][i]);

end for;

// Main vector
u:= w-v*B;

In the code of Listing 2.11 the vector u contains the coefficients ni with the decompo-

sition of n mentioned at the beginning of this section. Finally, one can verify

n ≡ n0 + n1λ+ · · ·+ nm−1λ
m−1 (mod r)

for this vector in Listing 2.12

Listing 2.12: Verification of the ni components

sum:=0;
for i:= 1 to m do
sum:= sum + u[1][i]*lambdaˆ(i-1);

end for;
if (Integers()!sum mod r) eq n then print "OK" else print "BAD";

2.9.1 Weak Popov Representation

Galbraith and Scott in [GS08] presented a reduced v matrix for the BN curves case. Dominguez

Perez, Kachisa and Scott in [DKS], presented the same matrix but for the KSS k = 18

curves. They did not present a method to generate this matrix in reduced form, which can

be easily stored and generated by our code generator.

The polynomial representation of the elements of the vector v can be constructed as

follows: Let u be a vector of degree m, where m = deg(r(x)). For every 0 ≤ j < m in
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vj we remove the n random integer and the r components: v′ = v · r/n. We can easily

construct a vector [km,i · ui + · · · + km,0, . . . , k0,i · ui + · · · + k0,0] (by decreasing i and

increasing its coefficients until we have a polynomial representation of vj .)

In addition to the vector v, the Galbraith and Scott method needs a matrix B containing

a reduced basis of m random vectors congruent to zero mod r. For the reduction of this

matrix into a polynomial form one can use simple factorization.

In [GS08], the B matrix for the BN curves is as follows:

B =



x+ 1 x x −2x

2x+ 1 −x −(x+ 1) −x

2x 2x+ 1 2x+ 1 2x+ 1

x− 1 4x+ 2 −(2x− 1) x− 1


(2.18)

Another construction method, as pointed out by Barreto [Bar] involves the use of the

Weak Popov form of the matrix.

2.9.1.1 Popov Form

A polynomial matrix A(x) = (aij) is in Popov form or in polynomial-echelon form if it has

the following characteristics: [Kai80, p. 481]

1. It is column reduced, with its column degrees arranged in ascending order, say

k0 ≤ k1 ≤ · · · ≤ km−1 (2.3.1)

2. For column j, 0 ≤ j ≤ m− 1, there is a so-called pivot index pj such that: (2.3.2)

(a) apj ,j(x) has degree kj

(b) apj ,j(x) is monic

(c) apj ,j(x) is the last (or lowest) entry of degree kj in the j-th column; that is, deg

apj ,j(x) < kj if i > pj

(d) if ki = kj and i < j, then pi < pj ; i.e., the pivot indices are arranged to be

increasing
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(e) the polynomial apj ,j(x) has degree less than kj if i 6= j.

The following is a matrix in polynomial-echelon form [Kai80, Example 6.7-3, pp.483]:

Ae(x) =


5x+ 1 x2 + 3x+ 2 4x+ 5

3x+ 4 2x+ 1 x3 + x2 + 2

x+ 7 3 2


We write Ae(x) = A3 +A2x+A1x

2 +A0x
3, and we form the coefficient matrix:

A′eM[ A′3 A′2 A′1 A′0 ]

=


1 4 7 5 3 1© 0 0 0 0 0 0

2 1 3 3 2 0 1© 0 0 0 0 0

5 2 2 4 0 0 0 1 0 0 1© 0

 (2.19)

There is an additional constraint on these pivots (the circled elements in Equation 2.19):

the number of elements in each row before the pivots is different; in other words, no pivot

shares a column with another pivot. Also, every pivot is the only non-zero element in its

respective column.

2.9.1.2 Quasi-Echelon Form

Quasi-Echelon Form, also known as Quasi-Canonical Polynomial-Echelon Form, is a re-

laxed construction of the polynomial echelon form.

For this form, we introduce the requirement that all the pivot indexes are distinct. Con-

dition 2.3.2.e did not require this.

Consider the following matrix [Kai80, Example 6.7-4, p.484]:

Ãe(x) =


5x+ 1 x2 + 3x+ 2 2x3 + 3x2 + 4x+ 5

3x+ 4 2x+ 1 x3 + x2 + 2

x+ 7 3 + 4x 3x2 + 5x+ 2
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This matrix has the following coefficient matrix construction:

Ã′e =


1 4 7 5 3 1© 0 0 0 0 0 0

2 1 3 3 2 4 1© 0 0 0 0 0

5 2 2 4 0 5 3 1 3 2 1© 0

 (2.20)

We have lost the characteristic that every pivot is the only non-zero element of its re-

spective column. However, if we restrict them to the unique pivot of the column, the rest of

the conditions remain.

2.9.1.3 Weak Popov Form

In [MS03], Mulders and Stojohann proposed a new matrix construction: the Weak Popov

Form. This construction presents more relaxed conditions than the Quasi-echelon form:

The pivot is any non-zero element at the end of the vector, and a pivot is unique in the

column.

The following is the coefficient matrix of matrix 2.18:

B̃′e =



1 1 0 −1 1 2 2 1© 0 · · ·

1 −1 1 2 1 −1 2 4© 0 · · ·

0 −1 1 1 1 −1 2 -2© 0 · · ·

0 0 1 −1 −2 −1 2 1© 0 · · ·


(2.21)

We can see that the coefficient matrix 2.21 is not in echelon form, as all its pivots are in

the same column.

Mulders and Stojohann presented a few algorithms to transform a matrix into Weak

Popov form. The implementation requires the Lemmas 2.1-2.5 from [MS03].

The algorithm to transform a matrix into Weak Popov form is given in Algorithm 3:

With this algorithm, we get an awkward denominator of 2. We can follow the same

approach as in Chapters 4 and 5, or we can modify this algorithm to force the reduction
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Algorithm 3 Transformation into Weak Popov form
Input: A ∈ Z[x]n×m

Output: A in Weak Popov form
while A not in Weak Popov form do
p← the pivot indices.
for all 0 ≤ i ≤ n− 1 do
D ← degAi,pi

d← leading coefficient of Ai,pi

for all 0 ≤ j ≤ n− 1, excluding i do
� Ensure the pivot is the greatest element in the column
if degAj,pi ≥ D then
� Reduce the row
{c the leading coefficient and e the degree difference}
Aj ← Aj − c.xe.Mi

break k
end if

end for
end for

end while

step to be in Z, and achieve the following reduced B matrix for the BN curves case:

BN =



2x x+ 1 −x x

x+ 1 −(3x+ 1) x− 1 1

−1 6x+ 2 2 −1

6x+ 2 1 −1 1


(2.22)

which has the following coefficient matrix:

˜BN ′e =



0 1 −1 2 2 1 0 6© 0 · · ·

1 −1 2 1 1 −3 6© 0 0 · · ·

0 −1 2 −1 −1 1© 0 0 0 · · ·

0 1 −1 1 1© 0 0 0 0 · · ·


which evidently is in Weak Popov form.

For the KSS:k = 18 curves case, we found previously in Matrix 2.10 on page 30 the
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following:

Mk=18 =



10/7 0 6x/7 6/7 0 −2x/7

0 1/7 0 x/7 2/7 0

0 2x/7 1 0 x/7 0

1/2 0 x/2 1 0 0

−x −3 0 0 1 0

0 −x −3 0 0 1


which was used to achieve the optimal pairing. This matrix, however, contains coeffi-

cients of degree zero in the rationals, which are not useful for this operation.

Algorithm 4 Transformation into a safe coefficient form
Input: Matrix BB with some coefficients of degree zero in the rationals
Output: Corrected matrix with no coefficicents of degree zero in the rationals

Let P be the lattice matrix BB of dimension ϕ(k)× ϕ(k)
Let N be a zero matrix of the same dimentsion as P .
Let Ni,j ← 1 if Pi,j is a polynomial of degree zero with coefficients in the rationals for
all 1 ≤ i, j < ϕ(k).

� A) Get 2 elements of P in the same column to be fixed (degree zero, w/coeff. in
rationals, use matrix N )
- Multiply and divide the whole row with the smallest denominator.

� B) cw← Pa,i − Pb,i. where a is the row with the greater denominator, b the other, and
i is the column where the “bad” coefficient is present.
- Increment the row with the smallest coefficient by cw∗Pa.

Set Na,i, Nb,i ← 0

For an odd number of “bad” coefficients, pickup a polynomial of degree zero of the same
column and proceed as in (B).
Repeat until N contains only zeroes.

54



Background Exponentiation in G2,T

The following is the reduced matrix in Weak Popov form:

K18 =



1 0 5x/7 1 0 −x/7

−5x/7 −2 0 x/7 1 0

0 2x/7 1 0 x/7 0

1 0 x 2 0 0

−x −3 0 0 1 0

0 −x −3 0 0 1


(2.23)

In this family of curves, since x ≡ 14 mod 42, we know that 7|x, so we do not need to

force the coefficients to be in Z.

2.9.2 The Galbraith-Scott Method using the Weak Popov Form

We can use the Weak Popov Form with the Galbraith-Scott method.

For the BN curves, the vector v generated from Matrix 2.22, which can be used for

pre-computing is as follows:

v ≈ (−(6x2 + 6x+ 2),−1, x, 6x3 + 6x2 + 3x+ 1) · nr .

The KSS curves with k = 18 has the following vector v from matrix 2.23:

v ≈ (2 + 5.x3

49 ,−
x2

49 ,
3.x
7 + x4

49 ,−(1 + 17.x3

343 ),−(2.x2

49 + x5

343), 2.x
7 + 5.x4

343 ·
n
r

This vectors v can be trivially converted into polynomial form by selecting any vi, and

comparing it with a decreasing ajvbj until we have a polynomial representation. Algorithm

5 is presented for this conversion. This algorithm requires a “magical” number ex to setup

a limit in the search of divisors of the polynomials. This number can be set from either the

common denominator of r(x) of the curve, when present; and the last element of any of the

addition chains11.

11In the case of some curves, this number can be very high, such as in the case of the KSS curves with
k = 36.
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Algorithm 5 Transformation of vector v into polynomial form
Input: Vector v, the parameter x of the curve, ex maximum coefficient to test
Output: Vector v represented in base-x

For every element in v:
t vector of dimension ϕ(k), w = |vi|
for j ← deg(r(x)) + 1 downto 1 do
tj ← 1, T ←

∑#t
l=1 tl.2

l−1

if w > T then
for l← 2 to ex do
tj ← l, T ←

∑#t
l=1 tl.2

l−1

if w < T then
tj −−
We found an inflection, next degree (j)

end if
if w = T then
� Adjust sign accordingly
Construct polynomial vi from vector t.
Done, next v

end if
if l =ex then
tj ← 0, s← t
for a←ex downto 1 do

for b←ex downto 1 do
T ←

∑#t
l=1 sl.2

l−1

T+ = b.(xj)/a
if T 6∈ Z then

Non dividable, try next value
end if
if w ≥ T then

Tdif← w − T
if Tdif < xj−1 then
sj+ = b/a; tj+1+ = s;
We found an inflection, next l

end if
end if

end for
end for

end if
end for

end if
end for
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3 ADDITION CHAINS

”When [s]he woke up, the dinosaur was still there.” – The dinosaur, by Augusto

Monterroso. In ”Obras completas (y otros cuentos)”, 1959.

ONE of the hard parts of the pairing calculation that requires specific opti-

misation for the Tate and similar pairing functions is the so-called “final

exponentiation”, performed after the Miller loop operation. This exponen-

tiation is to the power of (pk − 1)/r in F∗
pk . It is clear that a short addition chain for an

integer e gives a faster method for computing fe ∈ F∗
pk than direct exponentiation. The

operation can be simplified with the use of multiplication and squaring operations using

addition chains. This multi-scalar multiplication makes the calculation faster by reusing

intermediate values of the computation.

Definition 25. An Addition Chain for a given integer e is a sequenceU = (u0, u1, u2, . . . , ul)

such that u0 = 1, ul = e and uk = ui + uj for k ≤ l and some i, j with 0 ≤ i ≤ j.

Consider the following Fibonacci sequence: { 1, 2, 3, 5, 8, 13, 21 }. This is a addition

chain for e = 21 which contains 7 elements. Each element is obtained from the addition of

the previous two elements.

An alternative chain is: { 1, 2, 4, 8, 16, 20, 21 }. In this case, the element e = 21 can be

constructed using 4 doubling operations and 2 addition operations, but has the same length.

Now, consider e = 34, the Fibonacci sequence grows by one element: { 1, 2, 3, 5, 8,

13, 21, 34 }. We can also construct the following addition chain to reach 34: { 1, 2, 4, 8, 16,

32, 34 }. This is a shorter chain and makes use of addition and doubling operations instead

of only addition operations.

From the previous example, we can see that for small values of e it is trivial to find

a short addition chain using an exhaustive search. As e grows, however, the difficulty of

determining the length of the shortest possible addition chain grows considerably.
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In this chapter, we introduce some of the relevant algorithms for finding a short addition

chain. The user should be able to construct a short addition chain for a random exponent e

either by implementing the methods given here in a computer program or manually.

This chapter is organized as follows: §3.1 contains definitions on addition chains. In

§3.2 is presented the basic method for finding an addition chain. In §3.3 is presented the

Bernstein method. In §3.4 the concept of Artificial Immune System is introduced. In §3.5

is presented our construction, which is based on Artificial Immune Systems. In §3.6 is pre-

sented a comparison between the Binary and the AIS methods for solving a long sequence.

Finally, in §3.7 we present conclusions and final thoughts on this part of the research.

3.1 Introduction

Determining if we have found the shortest addition chain for a given positive integer is an

NP-complete problem [DLS81]. It is clear the shorter the addition chain, the lesser the

number of operations required. There are special cases where the shortest addition chain

does not necessarily give the most speed up. For example, this might be the case where one

can exchange slower operations for a few extra faster ones (i.e. exchange an addition for a

few doubling operations, if they are faster). This idea will be explored in Chapter 4.

The previous definition of an addition chain is useful mainly for cryptography based on

the RSA method. To extend the use of addition chains to the present work, we introduce

the following definitions.

Definition 26. A Vector Addition Chain is the shortest possible list of vectors where each

vector is the addition of two previous vectors. The last vector contains the final exponent e.

Let V be a vector chain, and m be the dimension of every vector. The vector addition

chain starts with Vi,i = 1 for i = 0 . . .m−1: [1, 0, 0, . . . , 0],[0, 1, 0, . . . , 0],. . .,[0, . . . , 0, 1];

we then proceed adding any two previous vectors to form a new vector in the chain, and

continue until Vj,1 = e with j typically > m.

Definition 27. Given a list of integers Γ = {v1, .., vl} where vl ≥ vi for all i = 1, .., l − 1,
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an Addition Sequence for Γ is an addition chain for vl containing all elements of Γ. The

last element of the sequence is the exponent e = vl.

Addition sequences, otherwise known as multi-addition-chains, are used to speed up

the final exponentiation and for fast hashing to a point in G2. To use these implementation

improvements it is necessary to have code to generate the multi-addition chains for a given

list of integers.

Different methods exist to construct addition chains. Bos and Coster [BC89] presented

a set of algorithms to construct addition chains. Bernstein presented in [Ber09] a method

for multi-scalar multiplication which constructs short addition sequences without the use

of the Bos and Coster heuristic methods. Cruz-Cortez et al. [CCRHC08] presented a new

approach to find short addition chains using Artificial Immune Systems which Dominguez

Perez and Scott [DS09] extended to addition sequences. The following sections present the

above mentioned methods.

We refer to the set of integers which we wish to incorporate into an addition sequence

as a “proto-sequence”. Some of its elements cannot be constructed by the addition of any

other member of the set.

For example, the set containing the elements we need to include in the addition se-

quence, but only them, is a proto-sequence.

3.2 Bos and Coster Method

Bos and Coster, in [BC89], suggested that an addition chain computation for an RSA expo-

nent has to be fast to be useful, as one needs a different chain every time. In Pairing-Based

Cryptography, this is not always true; as we will see in Chapters 4 and 5, we can generate

an addition chain for certain purposes and reuse it several times.

In their paper, Bos and Coster propose a “Makesequence” algorithm. This algorithm

starts with a proto-sequence 1, 2 and e, which we complete with at least one of the follow-

ing methods:
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• Approximation

• Division

• Halving

• Lucas.

Approximation: This method computes the difference between the target element and

any two smaller elements already in the chain, adding the difference to the greatest of the

smaller elements to include it in the chain.

Division: inserts into the addition chain the set formed by be/Sic for all of the elements

in S, where S is a set of arbitrary length l containing the first l prime numbers.

Halving: inserts into the chain the set formed by {bLi/ac} for every element in L,

where a = e− s, e is the target element, s is a random small element in the chain, and L is

a set of arbitrary length containing small even integers.

Lucas: include a Lucas sequence containing the target element e as the last element in

the series.

Once the target e is reached, we must proceed with every other single element in the

chain.

3.3 Binary Method

Another similar approach to the Bos and Coster method is to subtract elements from e. At

SPEED-CC 2009, Bernstein [Ber09] presented a method for optimizing linear maps modulo

2, which incidentally, can be used to find a short addition chain. This is an example of the

binary method.

Instead of using subtractions it uses XORs on the binary representation of the elements

in the chain. The algorithm applies an in-place XOR with the two largest values in the
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chain, and repeating the operation until all of the elements are zero. The addition chain is

all of the values from the original chain plus the results of the XORs.

If the position of the most significant bit is not the same in both of the two largest

elements, then we cannot reduce the element with an XOR. In this case, we have to use

integer subtraction.

3.3.1 Construction of the Binary Method

In the Magma language there are no implementation of the binary XOR operation. How-

ever, one is able to obtain the binary representation of the coefficients in the addition chain

with the use of the Seqint and Intseq functions for converting a sequence of “0”s and

“1”s into its integer representation and vice-versa.

Listing 3.1: Addition chain construction with the Binary Method

// Input <- Ochain: proto-sequence to accomplish.
// Output -> Fchain: completed chain.
Reduce:=procedure(˜Bchain,˜a,˜b,˜Fchain)
a,b:=GetHighest(Bchain); //a,b;
if IsXORable(Bchain,a,b) then
Bchain[a]:=BitXOR(Bchain,a,b);

else
tInteger:=Seqint(Bchain[a],2);
tInteger-:=Seqint(Bchain[b],2);
Bchain[a]:=Intseq(tInteger,2);

end if;
Include(˜Fchain,Seqint(Bchain[a],2));

end procedure;

Bchain:=ToBitSeq(Ochain);
Fchain:=Ochain;
a:=0; b:=0;

while IsAllZero(Bchain) eq false do
Reduce(˜Bchain,˜a,˜b,˜Fchain);

end while;
Exclude(˜Fchain,0);
Sort(˜Fchain);
Fchain;

Listing 3.1 takes a proto-sequence and reduces it until all of the elements are 0. The

functions IsXORable and GetHighest, can be trivially coded by the interested reader.
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0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 1 1
0 0 0 0 1 0 1 0
0 0 0 0 1 1 1 1
0 0 0 1 1 0 1 0
0 0 0 1 1 1 0 0
0 0 0 1 1 1 1 0
0 0 1 1 0 1 1 1
0 1 0 0 1 0 1 1
0 1 0 1 0 0 0 0
0 1 1 0 0 1 0 0
1 0 0 1 0 0 0 0

Table 3.1: Input Matrix for the Binary Method.

The IsXORable function determines whether we can proceed with an XOR or with an

integer subtraction in the current state of the algorithm.

The GetHighest function returns the index position in the chain of the two greatest

elements. The highest is the first parameter returned.

3.3.2 Example using the Binary Method

Consider the following proto-sequence, which will also be used in Chapter 4:

{1, 2, 4, 5, 7, 10, 15, 26, 28, 30, 55, 75, 80, 100, 108, 144}.

A toy example using an implementation in Magma of the algorithm described in [Ber09]

was compared against the source code provided by the author to test its validity. The al-

gorithm requires the matrix in Table 3.11. Each row represents an element of the addition

chain in binary.

Since the last row in 3.1 is equal to 144 and the second last is 108, the most significant

bits are not both 1. We need to apply an integer subtraction, which in this case, replaces the
1The most significant bit is on the left.
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last line with 36 (0, 0, 1, 0, 0, 1). Now, we focus our attention in 108 and 100 (second and

third last rows respectively), which are the new highest values. An XOR results in 8, which

replaces the second to last line; then we continue with the rest. We can sort the table after

every XOR as suggested by the author.

The addition chain generated using this algorithm is:

{1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 15, 26, 27, 28, 30, 36, 55, 63, 75, 80, 100, 108, 144},

which is of length 24 and requires 5 doubling and 19 addition operations.

The addition chain presented at Scott et al. [SBC+09b] is:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}.

This chain is of length 19 and requires 6 doubling and 13 addition operations.

The downside is that the construction used to construct the Scott et al. chain required

hours of manual labour, whereas the implementation of the Bernstein algorithm was very

quick.

3.4 Artificial Intelligence method

To automate the multi-addition chain code generation, we suggested in Dominguez Perez

and Scott [DS09] to generalise the Cruz-Cortez et al. [CCRHC08] and Bos and Coster

[BC89] methods for generating addition-chains. We construct the code using vectorial ad-

dition chains as in [Oli81]. Selecting which integers must remain in the sequence, and

which can be discarded, will continuously improve the sequence.

This method, is optimal for families of pairing-friendly curves with small ρ-value or

embedding degree k as the time needed to find good chains increases with ρ and k. Also,

the largest coefficients may, at some point, require more storage than a word-size, with the

obvious performance hit and search space implications.
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A type of Artificial Intelligence method is the Artificial Immune System (AIS). The

aim of this method is to mimic the elements and behaviour of the immune system to find

solutions to a problem.

3.4.1 Artificial Immune System

The immune system is a complex system of cells, molecules and organs which has proven

to be capable of performing several tasks, such as recognizing patterns, learning, acquiring

memory, and optimization, amongst others. The Immune System is a complex system,

whose mechanics are still not fully understood [NV99].

An artificial Immune system is modelled on some of its features. To have a better

understanding of the Immune system, we introduce the following definitions.

3.4.1.1 Types of Cells on the Immune System

Definition 28. Leukocytes, also known as “white blood cells” are cells of the immune

system which defend the organism against infections or foreign materials.

The Lymphocytes, are a type of leukocytes. They interact with the system during the

maturing process or at the initial immune response. There are three types of lymphocytes

in the system: B-cells, T-cells, and the Natural Killer cells.

Definition 29. The B-cells are specifically programmed to produce and segregate antibod-

ies. They coordinate themselves to launch an attack on a recognized threat, but they need

to be activated.

Definition 30. The T-cells not only regulate the actions of the other cells, but are also able

to launch a direct attack to the infected cells.

The CD4, a sub-type of the T-Cells, determine the antibody to be generated. The Regu-

latory T-cells inhibit the action of other cells from the immune system, they are an analogy

of the “Military Police” in the context of the immune system.
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Definition 31. The Natural Killer-cells are a type of lymphocytes which need no stimula-

tion to start destroying foreign cells, they just read chemical signatures on the cells to kill

accordingly.

3.4.1.2 Immune Engineering

In [NV99], Nunes de Castro and Von Zuben devised an Artificial Immune System (AIS) as

a way to get a better understanding of the biological Immune Systems by modelling specific

mechanisms, such as generation of diversity, distributed detection and pattern recognition

among others.

Immune Engineering (IE) is any engineering or computational tool whose design was

inspired by the same immune system tasks. Garret [Gar05b] extends this to any method

based on immune abstractions.

There are many biologically inspired computer paradigms, for instance: genetic and

evolutionary computation, artificial neural networks and artificial life methods. The choice

of AIS metaphors, instead of other computer paradigms in [CCRHC08], may seem to be

useful only in a sense of “distinct” in Garret’s notation. However, Cruz-Cortez et al. [Ibi-

dem.] noted that combining these heuristics with other well-known approaches, such as

sliding-windows may also be an “effective” method. This is because a plain AIS would

only be effective for small values of the exponent e, in other words, it becomes inefficient

as the search space grows.

3.4.1.3 Immune System Metaphors

Before explaining the Cruz-Cortez et al. method [CCRHC08], we will introduce the fol-

lowing commonly used AIS metaphors.

Immune Network Theory. An immune system maintains a network of interconnected

B-cells. These cells search for antigens and eliminate each other to bring balance to the

system.

It was suggested [NV99] that the immune system is composed of a self regulated net-
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work of elements that can recognize each other and that can detect the absence of antigens.

An Immune Network has three characteristics: its structure (which describes the inter-

action of its elements, but not the components itself), the dynamics of the immune elements,

and the metadynamics of the network (renewal of death elements, by lack of stimulation or

self-reactivation, with the inclusion of new cells.)

A Negative Selection Mechanism is a protection mechanism to avoid the destruction

of immune system’s cells. Is a mechanism to avoid the self-destruction. Tolerance to the

immune system’s cells is warranted by the system, no cell that can potentially destroy non-

recognized antigens are allowed to enter the system, they are destroyed before they are

born.

The Clonal Selection Principle dictates that only the cells that respond to the antigens

must proliferate.

Clonal selection works on both B- and T-cells. When an antigen enters the system,

certain B-cells will secrete the appropriate antibody (leaving a chemical signature on the

corresponding antigens). These types of cells will be stimulated by the signals left by the

CD4 T-cells and they will be cloned by cellular division. These cloned cells, however, will

mature into terminal antibody secreting cells, proliferating into the system.

As mentioned by Coelho and Von Zuben in [CV06], once the cloning phase has started,

the newly generated cells will enter into a hypermutation state. The hypermutation state

forces the cells with the highest affinity to the antigens into a low mutation substate. Sim-

ilarly, the cloned cells with the lowest affinity to the antigen enter into a high mutation

substate.

3.5 Addition Chain Construction

For the addition sequence construction, we preferred to use an Artificial Intelligence ap-

proach, more specifically, Artificial Immune Systems. This choice seemed optimal in the

initial tests. Also, these types of techniques (AIS) can feedback their output as input, poten-

tially generating shorter sequences. The algorithm presented in section 3.4 tries to shorten a

66



Addition Chains Addition Chain Construction

sequence, trying to reduce an already shortened sequence may produce a shorter sequence.

The time required is, however, not predictable; if the user would like to spend more time,

he may get a better solution. Using one of the other methods presented, once they found a

solution, they cannot feedback their result to get an improvement.

Finding an addition-chain is easy, deciding if it is optimal or not is hard, that is an NP-

complete problem. We therefore propose to limit the search to a number of improvements

of the original sequence, after which the user can decide if he wants to continue searching

for improved sequences.

As the intention of the compiler is to generate fast code but not necessarily generate it

quickly, we can either start from the proto-sequence and take a while to generate the code,

or specify a starting addition chain and improve it. In the compiler, two addition sequences

are needed: one for the final exponentiation (Chapter 4), and one for hashing a point in G2

(Chapter 5).

3.5.1 Initial Sequence Generation

For the immune system to be successful it requires one of the B-cells to produce an antibody

which matches the antigen. Once a useful antibody is generated, we can work on improving

it.

The first step in the immune system is to get an antibody, the analogy for computer sci-

ence is to get an addition sequence. When a human is sick, he can take a pill or his immune

system can develop a cure by itself; in computer science, an initial addition sequence can

be supplied, or the compiler can construct one.

To construct the initial sequence, Cruz-Cortez et al. [CCRHC08] insert into the se-

quence the difference (∆) of the greatest two elements in the set.

The output of this algorithm is a sequence that is not optimal, but it is an antibody in

the immune system analogy, and a starting point for the main algorithm.
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3.5.2 Auto-Immune Disease

For the addition sequence construction, I followed the Cruz-Cortez et al. [CCRHC08]

algorithm [CCRHC08]. Their algorithm was designed to solve an addition chain and not an

addition sequence2.

We can use their algorithm in the context of finding an addition sequence, however,

in terms of an Immune System metaphor, the algorithm needs a mechanism to inhibit the

destruction of certain cells to be used to construct addition sequences.

For this compiler, we start with a set of elements which always have to be part of the

sequence. For example, the elements of a multi-scalar multiplication operation that we

would like to speed up, cannot be removed3. The elements in the original sequence are

analogous to the normal tissue of the body and a destruction of any of these elements is

what we will call an “auto-immune disease”.

To prevent the elimination of normal tissue, the immune system has the Regulatory T-

cells, which inhibit the action of the killing of these type of cells. By analogy, a computer

system can add a mechanism to prevent the deletion of the original members in the addition

sequence being constructed.

3.5.3 Hypermutation

The B-cells in the Immune system produce the antibodies. They produce different types of

antibodies but not all of them are a match to the antigens. The B-cells that do not produce

the corresponding antibodies to the current threat eventually die by lack of stimulation4,

whereas the others get cloned. In the AIS implementation, we will limit the number of

clones to a reduced set to avoid heavy memory use.

By definition, any complete sequence produces antibodies matching the antigens, e.g.:

the multi-scalar multiplication. We may not have an optimal sequence for a proto-sequence
2At the beginning of the algorithm they do construct a sequence, but they look forward for an addition chain.
3Perhaps, we could separate them into several sequences, this however is out of the scope of the present

work.
4unless another threat is presented and their antibodies matches it
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and so we change elements to get a better one, but as no antibody is a perfect match for an

antigen, we replace the B-cells in the immune system to get better protection.

If the antibody of a B-cell has a high affinity with the antigen, we prefer this cell to have

small variations in its structure when improving it. Conversely, a B-cell whose antibodies,

despite matching the antigen, present a low affinity with them will need a higher level of

variation in its structure to achieve a high level of affinity.

Cruz-Cortez et al. [CCRHC08] suggested that a change in the lower part of the sequence

will cause a chain reaction in the sequence reconstruction, whereas a change in the upper

part will only affect a few elements in the sequence. The sequences that have a shorter

length than the average will be considered to have high affinity to the optimal sequence,

whereas a longer sequence will be considered to have a low affinity. We change elements

in the sequence accordingly.

In the Immune System, a B-cell enters a high hypermutation sub-state when its anti-

bodies present a low affinity; hence, our sequence in the AIS will suffer modifications in its

lower part. The opposite reaction will happen with modifications in its upper part .

Our hypermutation function is basically a modification of the Cruz-Cortez et al. method

[CCRHC08]. The elements of the proto-sequence need to be included, and the only modi-

fication is to ensure they are not removed them during the mutation process. This process

is described in Algorithm 6.

We have set m as the maximum number of tries in the search of an element to remove

in the sequence. This is because in some cases we have a limited number of options, such

as when the sequence to solve is small.

3.5.4 Core Function

In the previous section, the hypermutation function is atomic and only replaces an element

if the one to be added is “easy” to include in the sequence. An element that requires several

elements in the addition sequence is not a candidate for inclusion (“difficult” to include), as

it will make the antibody have less affinity to the antigen.
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Algorithm 6 Hypermutation algorithm
Input: Current sequence S, Original sequence O, region r to hypermutate, Max tries m
Output: New sequence S

Example Input: 1,2,3,5,8,10,12,1,5,12,r = 0,m = 100
Example Output: 1,2,4,5,8,10,12 for i = 3, j = 1, e = 4
l← #S
repeat

if r = 1 then
repeat
m−−
i← Random(l/2, l)

until m = 0 or Si /∈ O
else

repeat
m−−
i← Random(1, l/2)

until m = 0 or Si /∈ O
end if
j ← Random(1, i)
e← Si + Sj

until m = 0 or e < S#S

if e ∈ S then
S ← S \ Si

else
if DirectSolvable then
S ← (S \ Si) ∪ {e}

else
Expensive! Skip.

end if
end if
Return S
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For longer or more complex sequences, that is, sequences with very sparse components,

there may not be another choice. This is not necessarily bad, but should be treated with

caution as the chain may grow substantially.

Algorithm 7 finds several candidates for the final addition sequence. Each candidate is

shorter than the previous one. After a user defined number of generations in the algorithm

the smallest chain is presented. All the previous best candidates are stored.

Algorithm 7 Construct the multi-addition chain
Input: O the original sequence, S a start sequence,M the number of generations to mutate

and G clones per generation.
Output:
W ← G clones of S
for i← 1 to M do

for j ← 1 to G do
if #W [j] ≥ avg then

hypermutation(W [j],1,O)
else

hypermutation(W [j],0,O)
end if
� Eliminate unused elements
� Create elements that are not solved

end for
� Get the new avg
� Detect the smallest of this generation
if smallest-here < smallest-ever then

smallest-ever← smallest-here
end if
if #S −#smallest-here = stop then

return smallest
end if

end for

The algorithm executes for M generations of improvements, and it will try to reduce

elements from S, the first sequence created from the proto-sequence C containing the co-

efficients of the polynomial representation of the final exponentiation (pk − 1)/r ∈ F∗
pk .
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3.5.5 Results

For this algorithm, we use the same proto-sequence as in section 3.3.2 on page 62:

{1, 2, 4, 5, 7, 10, 15, 26, 28, 30, 55, 75, 80, 100, 108, 144}.

After a few generations the following addition chain results:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 55, 60, 75, 80, 100, 108, 134, 144}

which is 2 elements shorter than the initial sequence and identical in size to the Scott et al.

[SBC+09b] sequence.

This method can not only be applied to the final exponentiation problem detailed in

Chapter 4, but can also be used to improve the fast hashing to G2 problem detailed in

Chapter 5.

3.6 Comparison of the Methods

Consider the sequence: [62, 87, 112, 248, 348, 385, 434, 448, 609, 784, 882, 931, 1029, 1540, 2401,

2695, 2744, 3528, 3724, 4116, 4802, 6174, 6517, 7203, 9604, 10976, 16807, 19208, 25539, 25807, 26075,

33614, 67228, 79436, 83914, 88392, 117649, 128499, 151959, 178773, 180649, 182525, 283073, 333347,

428526, 433895, 597849, 621859, 899493, 936488, 949767, 1126706, 1478520, 1507142, 1817557, 1858374,

1981511, 2333429, 2487436, 3037265, 3189900, 4184943, 4353013, 5428661, 6204184, 6648369, 12722899,

17983490, 38000627] which is our proto-sequence to solve. This is a particularly long se-

quence that comes from the final exponentiation of a KSS k = 36 curve, which will be

explained in detail in Chapter 4.

Using the Binary Method we obtained the following result: [ 1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15, 18, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 41, 42, 43, 46, 49, 52, 53, 54, 55, 57,

59, 60, 62, 63, 84, 87, 99, 109, 112, 113, 115, 117, 121, 122, 123, 124, 126, 127, 132, 134, 142, 143,

156, 158, 171, 191, 196, 207, 214, 222, 230, 232, 239, 248, 251, 252, 254, 287, 291, 297, 315, 319, 343,
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348, 353, 355, 375, 377, 379, 383, 385, 399, 414, 434, 448, 451, 459, 478, 489, 493, 495, 501, 503, 507,

511, 523, 538, 566, 572, 575, 609, 631, 632, 652, 680, 701, 708, 736, 765, 784, 825, 882, 885, 891, 921,

931, 979, 981, 989, 991, 1001, 1015, 1019, 1021, 1022, 1029, 1179, 1194, 1339, 1343, 1346, 1395, 1407,

1439, 1479,1483, 1517, 1525, 1534, 1540, 1640, 1694, 1758, 1782, 1934, 1998, 2014, 2015, 2027, 2030,

2065, 2329, 2345, 2401, 2429, 2593, 2695, 2744, 2756, 2783, 2784, 2941, 3031, 3519, 3528, 3557, 3588,

3716, 3724, 3762, 3780, 3782, 4029, 4046, 4065, 4087, 4095, 4116, 4418, 4802, 4941, 5471, 6047, 6174,

6517, 6779, 6798, 6845, 6911, 6964, 7202, 7203, 7942, 7996, 8071, 8125, 9604, 10239, 10360, 10976,

11967, 12029, 12795, 13823, 13954, 14071, 14318, 14319, 15400, 15462, 15471, 15532, 15559, 15870,

15894, 16063, 16092, 16127, 16807, 17267, 17367, 18423, 18760, 19208, 19973, 20388, 20738, 21475,

22856, 24085, 25539, 25807, 26075, 27974, 28787, 28985, 28987, 29051, 30207, 30523, 31262, 32435,

33614, 35277, 36550, 36780, 36812, 40646, 45047, 46775, 49143, 50665, 51711, 52605, 55313, 60594,

60851, 67228, 63677, 64883, 67228, 70639, 72541, 79436, 79779, 80542, 81750, 83914, 86073, 88392,

94203, 94521, 94523, 95795, 98302, 108527, 111098, 112127, 112731, 113804, 114094, 114280, 117649,

119740, 126841, 128499, 130348, 130651, 141011, 148471, 151959, 168070, 178773, 180649, 182525,

192350, 195600, 219895, 241663, 245501, 250811, 256989, 260063, 261598, 283073, 283690, 333347,

418741, 428526, 430044, 433895, 438238, 454630, 517307, 597849, 618687, 621859, 872633, 899493,

936488, 949767, 970461, 1012595, 1013975, 1126706, 1161134, 1478520, 1507142, 1814527, 1817557,

1858374, 1893642, 1945596, 1981511, 1994619, 2085875, 2281475, 2318335, 2333429, 2487436, 3037265,

3108703, 3189900, 3923439, 4046410, 4062508, 4184943, 4353013, 5428661, 6074530, 6204184, 6648369,

12722899, 15702015, 17983490, 20017137, 38000627 ]

The previous sequence, obtained from the Binary Method, has 363 elements and was

generated in a few milliseconds. This sequence is 526% longer than the initial sequence5.

The underlined elements in the sequence were not part of the proto-sequence.

Using the AIS method we obtained the following result: [ 1, 2, 4, 5, 7, 8, 10, 11, 14,

19, 20, 21, 29, 37, 48, 49, 60, 62, 67, 87, 98, 112, 124, 125, 127, 146, 147, 157, 196, 245, 248, 268,

288, 294, 348, 385, 394, 434, 448, 460, 560, 561, 609, 676, 686, 784, 882, 931, 1029, 1078, 1372,

1519, 1529, 1540, 1617, 1862, 1876, 1989, 2009, 2401, 2547, 2695, 2724, 2744, 3528, 3724, 3871, 4018,

5The initial sequence is the first sequence generated by the algorithm, see section 3.5.1.

73



Addition Chains Final Thoughts on Addition Chains

4116, 4478, 4578, 4802, 5362, 5369, 5488, 5613, 6174, 6517, 7203, 9604, 9761, 9998, 10290, 10976,

13034, 13279, 13377, 14063, 15092, 16709, 16807, 19208, 22932, 24010, 25539, 25807, 26075, 27048,

28622, 28910, 29449, 33614, 40817, 48020, 52136, 58898, 63476, 67228, 71099, 76712, 79436, 83914,

88392, 104272, 105644, 106673, 117649, 123137, 128499, 129654, 142198, 151959, 152635, 154007,

168070, 176784, 178773, 180649, 182525, 186782, 253624, 283073, 285719, 299782, 308014, 310415,

333347, 365050, 428526, 433895, 444185, 549829, 597849, 621859, 645869, 899493, 907578, 936488,

949767, 1099658, 1126706, 1291738, 1478520, 1507142, 1817557, 1858374, 1981511, 2033647, 2333429,

2487436, 3037265, 3189900, 4067294, 4184943, 4353013, 5260591, 5428661, 6074530, 6204184, 6648369,

12722899, 17983490, 35966980, 38000627 ]

Again, the underlined elements in the sequence were not part of the proto-sequence.

This sequence, generated using the AIS method, has 174 elements but was improved by

6000 generations with the use of 5 clones. As we increase the number of generations in the

algorithm, the shorter the sequence gets. It is expected that shorter addition sequences can

be found if the program runs for more generations. The addition chain constructed by the

approximation method from Cruz-Cortez et al., has a length of 189, so using this method

we were able to find a shorter sequence.

3.7 Final Thoughts on Addition Chains

I have implemented a couple of algorithms for finding addition sequences. These algo-

rithms have proven to be an effective solution for long sequences. Currently, the sequence

presented in the previous section is the shortest for such a proto-sequence; however, we can

always feed it back to get a shorter sequence. These algorithms help on the implementation

of multi-scalar multiplications of large magnitude. This will help in the implementation of

pairings functions with a high security level.

Our code can generate shorter addition chains than the binary method [Ber09]. The

binary method is really fast in finding a multi-addition chain, but for some proto-sequences

the sequence can be substantially longer.

On the another hand, the binary method tends to prefer doubling to addition operations.
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This can be very useful in some scenarios, such as when a doubling takes less than a half

the time to compute an addition, or the equivalent operation. A formula to convert the

equivalent cost of a doubling to an addition may be required. Unless we have a certain

conversion rate, the shortest possible sequence should be selected.

For small to medium sized addition chains, our code is the best option, as it creates the

shortest sequences in a minimal amount of time. It is also easy to decide which sequence

to choose for further shrinking, this is, which sequence is the best and which one has more

possibilities of success in finding a shorter solution.

The situation is different for longer sequences. The longer, sparser and the larger the

elements in the sequence, the longer it will take to find a shorter solution. A shorter solution

will be desired for these type of sequences as the number of operations can be very large. At

higher security levels, small variations on the chosen addition sequence will be reflected in

an order of magnitude of several milliseconds, which is a big amount of time for a pairing

computation, even for higher security levels. The time to solve these sequences can be

large, but the wait should be worth it. When using the code for finding an addition chain of

these type of sequences, one must be prepared for the wait.
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4 THE FINAL EXPONENTIATION

“Natural disasters does not exist, there are disasters built and provoked by the human

kind” – Juan Carlos Mora Chaparro

AFTER the execution of the Miller loop in the Tate pairing we need an expo-

nentiation to (pk−1)/r in F∗
pk to get the r-th roots of unity. This is because

the Tate pairing is defined with one group over a curve in the extension

field and other group over a curve in the base field (Miller lite), and we obtain a group

F?
pk/(F?pk)r. With the final exponentiation, we obtain the desired group GT ⊂ F?

pk [Gal05].

Unfortunately, this exponentiation is potentially very time consuming. Hu, Dong and

Pei [HDP05] made initial efforts on improving the final exponentiation without considering

the families of curves. Devegili, Scott and Dahab in [DSD07] exploited the structure of the

BN family of curves and found a method to compute a very fast final exponentiation. They

only showed the results but no construction method. There is no algorithm to reproduce

their results to other families of curves.

In [SBC+09b] we generalized the Devegili et al. final exponentiation method to any

family of pairing-friendly curves. Our method consisted in exploiting the parametrisation

of the curve and the use of addition sequences as a multi-scalar exponentiation method. To

find an addition chain, we relied on a manual exhaustive search. Later, we constructed the

final exponentiation using the Olivos method [Oli81].

In a later work with Scott §3.5 and [DS09], we found a method to get rid of the manual

part of the algorithm.

The rest of this chapter is organized as follows: §4.1 gives details of initial work on

improving the final exponentiation computation. We present the Devegili, Scott and Da-

hab method in §4.2 to compute the final exponentiation for a specific family of curves.

Our method is presented in §4.3 which can be applied to several families of curves. Final
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thoughts and future work is discussed in §4.4.

4.1 The Du, Hong and Pei Method

One approach to improving the cryptographic pairings functions is to find ways to reduce

the number of Miller loop iterations. Another approach is to reduce the complexity of the

operation and the time used for the final exponentiation after the Miller loop in the pairing

function. This section shows how one can speed-up this expensive computation.

As shown previously in Chapter 2, this function requires 2 finite cyclic additively-

written groups denoted as G1 and G2. From each group a single element is taken, and they

are mapped to an element in a third group: GT . This group is a finite cyclic multiplicati-

vely-written group of order r.

One is required to raise the output of the Miller loop to (pk − 1)/r in order to have a

single representative of the class. This exponentiation is known to be very time consuming

as shown in [HDP05]. Hu, Dong and Pei estimated that this final powering takes more than

one half of the total computation if a direct exponentiation method is used. We have found

using the Magma language in our experiments, that this operation can take most of the time

of the pairing computation as we use families with larger embedding degrees.

For a MNT curve with k = 6, let

(p2 − p+ 1)/r = k1.p+ k0

where 0 ≤ k0, k1 < p. Then,

(p6 − 1)/r = (k1.p+ k0)(p+ 1)(p3 − 1).

We can efficiently compute the final exponentiation step with Algorithm 8. Here,

fp ∈ Fp6
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can easily computed with the use of the Frobenius operator. In this way they claimed to

reduce the computation time by a factor of 4 to 5.

Algorithm 8 Hu, Dong and Pei final exponentiation algorithm
Input: f ∈ Fp6 , k1, k0 ∈ Fp
Output: f (p6−1)/r

g ← fk1

f ← fk0

g ← gp

f ← gf
g ← fp

f ← gf
g ← ((fp)p)p

f ← f−1

f ← gf
return f

The authors did not show any way to get the k0 and k1 values; however, these can be

easily computed by dividing by p and finding a quotient and a remainder.

4.2 Devegili, Scott and Dahab Method

The easy exponentiation is that part of the final exponentiation that can be performed with

the use of the Frobenius map [GPS06]. The hard part of the exponentiation is the exponen-

tiation to the power of φk(p)/r ∈ F∗
pk , where φk is the k-th cyclotomic polynomial, p is

the field size and r is the subgroup size. This method is also referred as the truncated final

exponentiation [Sco07] (or hard part).

Devegili , Scott and Dahab in [DSD07] simplified the hard part of the final exponenti-

ation for the BN curves [BN06], which is a family of elliptic curves with the polynomial

representation of the parameters of the curve shown in Equation 2.13.

The hard part of the final exponentiation can be expanded to:

46656x12 − 139968x11 + 241056x10 − 272160x9 + 225504x8 − 138672x7 (4.1)

+ 65448x6 − 23112x5 + 6264x4 − 1188x3 + 174x2 − 6x+ 1.
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However, Devegili et al. suggested a better representation in base-p of equation 4.1.

p3 + (6x2 + 1)p2 + (36x3 − 18x2 + 12x+ 1)p+ (36x3 − 30x2 + 18x− 2). (4.2)

Then, they constructed Algorithm 9, which can be used for the hard part of the final

exponentiation.

Algorithm 9 Devegili, Scott and Dahab final exponentiation algorithm
Input: f , x and p
Output: f (p4−p2+1)/r

g ← f6x−5

h← fp {Frobenius map}
h← gh
Precompute fp, fp

2
and fp

3 {Frobenius map}
f ← f3 · [h · (fp)2 · fp2 ]6x

2+1 · h · (fp · f)9 · g · f4

return f

This algorithm is fast and does not use as much memory as a multi-exponentiation

method.

4.3 A new method

Families of pairing-friendly elliptic curves use fixed polynomials to describe their parame-

ters. One way to exploit this fact is with π, the Frobenius exponentiation.

To speed up the final exponentiation, firstly, the exponent must be appropriately fac-

tored. In the KSS: k = 18 curves [KSS08], we factor (p18 − 1) into (p9 − 1) and (p9 + 1).

We can factor (p9 + 1) into (p3 + 1) and Φ18(p), since r|Φ18(p). One can apply the Frobe-

nius map on (p9 − 1) and (p3 + 1), and then remains the hard exponent Φ18(p)/r, where

Φ18(p) = (p6 − p3 + 1).

Let λ = (p6 − p3 + 1)/r be the “hard part” of the final exponent. To simplify the

exponent λ, for example, it can be represented in base-p as λ0 +λ1.p+λ2.p
2 + · · ·+λ5.p

5,
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such that fλ, where f is the element to exponentiate, can be written as:

fλ = fλ0+λ1.p+λ2.p2+···+λ5.p5 = (f)λ0 · (fp)λ1 · (fp2)λ2 · · · (fp5)λ5

Hence, we can apply the Frobenius map over λ to obtain a speed-up. The values of λi

for the KSS: k = 18 are as follows:

λ5 = 49/3x2 + 245/3x+ 343/3.

λ4 = 7/3x6 + 35/3x5 + 49/3x4 + 112/3x3 + 581/3x2 + 784/3x.

λ3 = −5/3x7 − 25/3x6 − 35/3x5 − 29x4 − 150x3 − 203x2 + 18.

λ2 = −49/3x5 − 245/3x4 − 343/3x3 − 931/3x2 − 4802/3x− 6517/3.

λ1 = 14/3x6 + 70/3x5 + 98/3x4 + 91x3 + 469x2 + 637x.

λ0 = −x7 − 5x6 − 7x5 − 62/3x4 − 319/3x3 − 434/3x2 + 1. (4.3)

A minor difficulty arises due to the common denominator of 3 which occurs here. We

suggest a simple solution. Since 3 is co-prime to r, evaluate instead the third power of the

pairing. This does not affect the important properties of the pairing when r is of crypto-

graphic size, and now we can simply ignore this denominator, which we call the awkward

denominator.

After the multiplication by 3, the λ0 becomes: −3x7− 15x6− 21x5− 62x4− 319x3−
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434x2 + 3. The rest of the λi are shown in equation 4.4.

3.λ5 = 49x2 + 245x+ 343.

3.λ4 = 7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x.

3.λ3 = −5x7 − 25x6 − 35x5 − 87x4 − 450x3 − 609x2 + 54.

3.λ2 = −49x5 − 245x4 − 343x3 − 931x2 − 4802x− 6517.

3.λ1 = 14x6 + 70x5 + 98x4 + 273x3 + 1407x2 + 1911x.

3.λ0 = −3x7 − 15x6 − 21x5 − 62x4 − 319x3 − 434x2 + 3. (4.4)

The proto-sequence for equation 4.4, which consist of its coefficients, is the following:

{3, 5, 7, 14, 15, 21, 25, 35, 49, 54, 62, 70, 87, 98, 112, 245, 273, 319, 343, 434, 450, 581,

609, 784, 931, 1407, 1911, 4802, 6517}.

Now, to compute fλ0 , we use the following equation:

f (−x7)3 · f (−x6)15 · f (−x4)62 · f (−x3)319 · f (−x2)434 · f3

from equation 4.4. We associate each element in the proto-sequence with the corresponding

elements in the λi. For example, the first element in the proto-sequence is 3. Hence,

x0 = f · 1

f (x7)
as the coefficient 3 is present in λ0 as exponent in f (−x7)3 and f3.

In the case of 5, x1 = π3( 1

fx7 ) since the elements have implicit a pi exponent, but we

can use the Frobenius exponentiation instead.

Following this construction, the xi elements are formed as in the following listing:

x0 ← f. 1

fx7

x1 ← π3( 1

fx7 )

x2 ← π4(fx6
)

x3 ← π(fx6
)

x4 ← π(fx6
)

x5 ← π(fx5
)

x6 ← π3( 1

fx6 )

x7 ← π3( 1

fx5 ).π4(fx5
)

x8 ← π2( 1

fx5 ).π4(fx4
).π5(fx2

)

x9 ← π3(f)

x10 ← π4(fx4
)

x11 ← π(fx5
)

x12 ← π3( 1

fx4 )

x13 ← π(fx4
)

x14 ← π4(fx3
)

x15 ← π2( 1

fx4 ).π5(fx)

x16 ← π(fx3
)

x17 ← 1

fx3

x18 ← π2( 1

fx3 ).π5(f)

x19 ← 1

fx2

x20 ← π3( 1

fx3 )
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x21 ← π4(fx2
)

x22 ← π3( 1

fx2 )

x23 ← π4(fx)

x24 ← π2( 1

fx2 )

x25 ← π(fx2)

x26 ← π(fx)

x27 ← π2( 1
fx )

x28 ← π2( 1
f
)

We need to perform a lot of exponentiations, and we will use an addition chain to

optimize these operations. For this example, the computation can be done with the use of

the following addition sequence: {1, 2, 3, 4, 5, 7, 8, 10, 14, 15, 16, 21, 25, 28, 35, 42, 49,

54, 62, 70, 87, 98, 112, 147, 245, 273, 294, 319, 343, 392, 434, 450, 581, 609, 784, 931,

1162, 1407, 1862, 1911, 3724, 4655, 4802, 6517}1.

To construct the operations required for the final exponentiation, we use the Olivos

method [Oli81] (also see [CF06, §9.2]), which uses vectorial chains as follows:

Given an addition chain Γ = {1, 2, 6, 12, 18, 30} and its corresponding addition se-

quence s = {1, 2, 3, 6, 12, 18, 30, 36}, we construct a vector chain: v = {[1, 0], [0, 1],

[1, 1], [2, 2], [3, 2], [6, 4], [12, 8], [18, 12], [30, 20], [36, 24]}.

To construct the vector chain matrix shown in Table 4.1, we start with [1, 0] and [2, 2].

To compute row t2 = [3, 2], we set (t0, c0) = 1 and (t1, c1) = 1 by induction (prioritizing

a doubling over an addition). This means that t2 = t0 + t1, which, translated into vector

operations is equivalent to [3, 2] = [1, 0] + [2, 2]. The type of operation is expressed in

(t2, c2), (t2, c3) 1 denotes an addition, 2 denotes a doubling.

The remaining cells of the column, if any, are the summation the corresponding cells

in the column. For example, in (t5, c6−to−c7) = [3, 2] since t5 = t4 + t3, hence [3, 2] =

[1, 0] + [2, 2]. The arrows at the right of the Table 4.1 denote the rows containing the

elements in Γ.

The Table 4.2 presents the typical output of the method for a KSS curve with k = 18.

The ti’s represent temporary variables.

A straight-forward implementation of the vectorial addition chains method requires an

increasing number of temporary variables. To reduce the number of temporary variables, we

use Algorithm 10. This algorithm uses a matrix u with the same dimension as the addition
1the underlined elements in the sequence were not part of the proto-sequence.
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c0 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13
t0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 ←
t1 2 2 0 1 0 0 0 0 0 0 0 0 0 0 ←
t2 3 2 1 1 1 0 0 0 0 0 0 0 0 0

t3 6 4 2 2 2 2 1 0 1 0 0 0 0 0 ←
t4 12 8 4 4 4 4 2 2 0 1 1 0 0 0 ←
t5 18 12 6 6 6 6 3 2 1 1 0 1 1 0 ←
t6 30 20 10 10 10 10 5 4 1 2 1 1 0 0 ←
t7 36 24 12 12 12 12 6 4 2 2 0 2 2 2 ←

Table 4.1: Constructing the vector chain

t0 ← x27.x28

t1 ← t0.x24

t2 ← t0.t0
t3 ← t2.x28

t4 ← t3.x26

t5 ← x8.x26

t6 ← t4.t4
t7 ← t6.t1
t8 ← x15.x25

t9 ← x25.x25

· · ·

Table 4.2: Partial final exponentia-
tion code from the Olivos and Scott
et al. method. KSS Curve:k = 18

t0 ← x27.x28

t1 ← t0.x24

t0 ← t0.t0
t0 ← t0.x28

t0 ← t0.x26

t5 ← x8.x26

t0 ← t0.t0
t3 ← t0.t1
t1 ← x15.x25

t0 ← x25.x25

· · ·

Table 4.3: Partial final exponentia-
tion code for the same curve, with a
reduced number of ti elements.

and doubling operations generated from the Olivos method, to keep track of the processed

elements. It flags every position (let’s say, with a “1”) that corresponds to a precomputed

value from the original matrix (i.e.: the t0 from t1 = t0 · x24).

From bottom-to-top, the first ti element which will act as an R2-value in the code gen-

eration is replaced with a another temporary tj , with j = 0 initially. It continues looking to

the top for all of the ti’s occurrences until the current ti is presented as an L-value, placing

a flag on the corresponding position in u for every replacement. We will use the same tj

and continue to the top of the matrix recycling memory space. Once the scan reaches the

top, we choose the next ti, and we repeat the flag-and-replace procedure with a new tj from

the bottom. At the end, every element of u will have a flag. See Table 4.3 for the sample
2Consult §2.8 for an extended discussion on RH- and LH- values.
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Algorithm 10 Reducing terms from the Olivos method.
Input: f final exponentiation code as a Matrix, i.e.: fi = [t0][t0][x1] (t0 ← t0 + x1)
Output: f with a reduced number of ti’s

1: Let u be a matrix of the same dimensions as f
2: For all 1 ≤ i ≤ #f and 1 ≤ j ≤ 3: set ui,j to 1 if (fi,j 6= tk)
3: Set prev← f#f,1 and i← #f
4: while (ui,j has elements not = 1) or (i > 0) do
5: if ui,j = 0 and fi,1 = prev then
6: fi,1 ← current tk; ui,1 ← 1
7: Scan bottom-top for fi,1 on f∀,[2−3]

8: if i = 1 then
9: Increase tk

10: Scan bottom-top for u[#f..1],[2|3] = 0
11: if i = 1 then
12: Done
13: else
14: Rewrite tk
15: Tag element to 1 in u
16: Decrease i
17: end if
18: end if
19: end if
20: end while
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output of this Algorithm.

Finally, we can also recycle the xi variables and compute them, either in-place or by

an assignment just-in-time before the operation. The computation for a KSS curve with

k = 18 becomes as follows:

xA ← π2( 1
fx )

xB ← π2( 1
f
)

t0 ← xA.xB

xB ← π2( 1

fx2 )

t1 ← t0.xB

t0 ← t0.t0

xB ← π2( 1
f
)

t0 ← t0.xB

xB ← π(fx)

t0 ← t0.xB

xA ← π2( 1

fx5 ).π4(fx4
).π5(fx2

)

xB ← π(fx)

t5 ← xA.xB

t0 ← t0.t0

t3 ← t0.t1

xA ← π2( 1

fx4 ).π5(fx)

xB ← π(fx2)

t1 ← xA.xB

xA ← π(fx2)

xB ← π(fx2)

t0 ← xA.xB

xB ← π4(fx2
)

t0 ← t0.xB

xB ← π4(fx)

t2 ← t3.xB

xB ← π2( 1
fx )

t4 ← t3.xB

t2 ← t2.t2

xB ← π3( 1

fx2 )

t3 ← t0.xB

xB ← 1

fx2

t0 ← t3.xB

t4 ← t3.t4

xB ← π3( 1

fx3 )

t0 ← t0.xB

t3 ← t0.t2

xB ← π2( 1

fx3 ).π5(f)

t2 ← t3.xB

t3 ← t3.t5

t5 ← t3.t2

xB ← 1

fx3

t2 ← t2.xB

xA ← π3( 1

fx6 )

xB ← 1

fx3

t3 ← xA.xB

t2 ← t2.t2

t4 ← t2.t4

xB ← π(fx3
)

t2 ← t1.xB

xA ← π(fx3
)

xB ← π3( 1

fx2 )

t1 ← xA.xB

t6 ← t2.t4

xB ← π(fx4
)

t4 ← t2.xB

xB ← π4(fx3
)

t2 ← t6.xB

xB ← π3( 1

fx5 ).π4(fx5
)

t7 ← t6.xB

t4 ← t2.t4

xB ← π(fx6
)

t2 ← t2.xB

t4 ← t4.t4

t4 ← t4.t5

xA ← π4(fx4
)

xB ← π3( 1

fx4 )

t5 ← xA, xB

xB ← π3( 1

fx4 )

t3 ← t3.xB

xA ← π(fx5
)

xB ← π(fx5
)

t6 ← xA.xB

t7 ← t6.t7

xB ← π3(f)

t6 ← t5.xB

t4 ← t6.t4

xB ← π3( 1

fx7 )

t6 ← t6.xB

t0 ← t4.t0

xB ← π4(fx6
)

t4 ← t4.xB

t0 ← t0.t0

xB ← π(fx5
)

t0 ← t0.xB

t1 ← t7.t1

t4 ← t4.t7

t1 ← t1.t1
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t2 ← t1.t2

t1 ← t0.t3

xB ← π3( 1

fx3 )

t0 ← t1.xB

t1 ← t1.t6

t0 ← t0.t0

t0 ← t0.t5

xB ← π(fx6
)

t2 ← t2.xB

t2 ← t2.t2

t2 ← t2.t4

t0 ← t0.t0

t0 ← t0.t3

t1 ← t2.t1

t0 ← t1.t0

xB ← π(fx6
)

t1 ← t1.xB

t0 ← t0.t0

t0 ← t0.t2

xB ← f. 1

fx7

t0 ← t0.xB

xB ← f. 1

fx7

t1 ← t1.xB

t0 ← t0.t0

t0 ← t0.t1

return t0

The code sequence should be read top-to-bottom, then left-to-right. The final result of

the exponentiation is stored in t0. We can use this sequence and instruct a code generator

to construct the final exponentiation code.

We tested this computation on the Magma On-line Calculator [lC] with the use of our

online tutorial [Dom09] with a security level equivalent to AES-192 and the pairing com-

putation takes approximately 73% less time than direct exponentiation for the hard part.

4.3.1 More Examples

In this section, we are applying the algorithm to other families of pairing-friendly elliptic

curves, such as the curves mentioned in §2.5.

4.3.1.1 The MNT curves

The MNT pairing-friendly elliptic curves were reported by Miyaji, Nakabayashi and Takano

in [MNT01]. For the k = 6 case, the prime p and the group order r parameters are:

p(x) = x2 + 1;

r(x) = x2 − x+ 1;

t(x) = x+ 1.

In this case, the hard part of the final exponentiation is to the power of (p2 − p+ 1)/r.
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Substituting from Equation 2.11, the exponentiation is to the power of (x4 +x2 + 1)/(x2−

x+1) which is equal to x2 +x+1. Expressing this to the base-p, it becomes simply (p+x).

The hard part of the final exponentiation can be reduced to: fp.fx, which is an application

of the Frobenius operator and a simple exponentiation. This is faster than Algorithm 8, as

it requires three Frobenius operations, an inversion, and a multiplication by the remaining

part of the final exponentiation.

4.3.1.2 The BN Curves

The BN family of pairing-friendly curves from Barreto and Naehrig [BN06] has an embed-

ding degree of 12, and is parametrised as follows:

p(x) = 36x4 + 36x3 + 24x2 + 6x+ 1;

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1;

t(x) = 6x2 + 1.

In this case, the hard part of the final exponentiation is raising to the power of (p4−p2 +

1)/r. After substituting the polynomials for p and r, this can be expressed to the base-p as

was already shown in Equation 4.2.

The BN family of curves are very plentiful, and to improve the speed of the Miller loop

and the final exponentiation, we may prefer to choose x to have a low Hamming weight. We

present a selection of low Hamming weight x-parameters in Table A.1 for different curves

and subgroup sizes.

Next, we compute fx, fx
2

= (fx)x, and fx
3

= (fx
2
)x. These are simple expo-

nentiations, and the low Hamming weight of x ensures that each requires a minimum of

multiplications when using a simple square-and-multiply algorithm. We next calculate fp,

fp
2
, fp

3
, (fx)p, (fx

2
)p, (fx

3
)p and (fx

2
)p

2
using the Frobenius map.

Grouping the elements of the exponentiation together, the expression becomes:

[fp · fp2
· fp3

] · [1/f ]2 · [(fx2
)p2

]6 · [(fx)p]12 · [fx/((fx2
)p)]18 · [1/fx2

]30 · [fx3
· (fx3

)p]36.
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Note: An element α is called “unitary” if it has a normNF
pk/Fpk/d

(α) = 1 [Sco07]. Af-

ter the easy part of the final exponentiation, the field element is unitary. An unitary element

can be inverted by a simple conjugation, retaining this property subsequently [SB04].

The individual components between the square brackets are then calculated with just

four multiplications (recalling that division costs the same as a multiplication), and we end

up with a calculation of the form:

A ·B2 · C6 ·D12 · E18 · F 30 ·G36.

Note that the exponents here are simply the coefficients that arise in the λi equations

above. Again, we use the Dominguez Perez and Scott method to find an addition sequence3:

{1, 2, 3, 6, 12, 18, 30, 36}.

Note that 3 is the only member of the addition sequence which is not a member of the

set of the original proto-sequence. This is an unexpected situation but it means less extra

work for the computation.

This part of the calculation requires only nine multiplications and four squarings. We

find this approach to the hard part of the final exponentiation for the BN curves to be about

4% faster than the rather ad-hoc method proposed by Devegili, Scott and Dahab [DSD07]

(7156 modular multiplications/squarings over Fp are required, compared to 7426 using the

Nogami et al. recommendation of x = 262 + 255 + 1 [NAS+08].)
3Although, this can be trivially constructed.
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4.3.1.3 Freeman Curves

In [Fre06] a construction is suggested for pairing-friendly elliptic curves of embedding

degree 10. The parameters for this family are as follows:

p(x) = 25x4 + 25x3 + 25x2 + 10x+ 3;

r(x) = 25x4 + 25x3 + 15x2 + 5x+ 1;

t(x) = 10x2 + 5x+ 3.

These curves are much rarer than the BN curves, and it is not feasible to choose x to

have a particularly small Hamming weight. Nevertheless proceeding as above we find:

λ3(x) = 1,

λ2(x) = 10x2 + 5x+ 5,

λ1(x) = −5x2 − 5x− 3,

λ0(x) = −25x3 − 15x2 − 15x− 2.

In this case the coefficients form a perfect addition sequence4:

{1, 2, 3, 5, 10, 15, 25}.

The vectorial addition sequence in this case requires 10 multiplications and 2 squarings.
4An addition sequence is perfect when its proto-sequence and optimal sequence contain the same elements.
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4.3.1.4 The KSS:k = 8 Family of Curves

The parameters for the family of k = 8 KSS curves are as follows:

p(x) = (x6 + 2x5 − 3x4 + 8x3 − 15x2 − 82x+ 125)/180;

r(x) = (x4 − 8x2 + 25)/450;

t(x) = (2x3 − 11x+ 15)/15;

x ≡ 5 mod 30.

For these curves ρ = 3/2. As in the case of the BN curves, x can be chosen to have a

low Hamming weight. Proceeding as above we find:

λ3(x) = (15x2 + 30x+ 75)/6,

λ2(x) = (2x5 + 4x4 − x3 + 26x2 − 55x− 144)/6,

λ1(x) = (−5x4 − 10x3 − 5x2 − 80x+ 100)/6,

λ0(x) = (x5 + 2x4 + 7x3 + 28x2 + 10x+ 108)/6.

Again, a minor difficulty arises due to the common denominator of 6, we evaluate the

sixth power of the pairing. An addition sequence for this curve is the following:

{1, 2, 4, 5, 7, 10, 15, 25, 26, 28, 30, 36, 50, 55, 75, 80, 100, 108, 144}.

4.4 A Note on the Final Exponentiation

In this chapter, we have presented the initial work of Hu, Dong and Pei which makes use of

the Frobenius operator. Also, the work of Devegili, Scott and Dahab was presented, which

exploits the polynomial structure of the BN family of curves, and the Frobenius map.

Our joint work with Scott et al. not only exploited the polynomial representation of
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the curve and the Frobenius map, but also uses addition chains to speed up the multi-scalar

exponentiation of the hard part of the computation.

This last work can be combined with our work from Chapter 3 to easily generate the

operations needed for the final exponentiation.

The only competitive final exponentiation is the one from Devegili et al. for the BN

family of curves, used to compare our method (Scott et al.). Since that implementation only

works for that family of curves, we cannot compare against other methods, excluding the

Du, Hong and Pei method.

Unless a bad choice of an addition sequence is used, our method is faster. In our tests,

our final exponentiation method is approximately 70% faster than direct exponentiation, and

approximately 4-5% faster than the Devegili et al. final exponentiation method. The key

difference, is that our method can be generalized to any family of pairing-friendly curves.

Future work on the final exponentiation should be build from the Devegili et al. method

to avoid the use of excessive temporary space in the computation. For families of curves

with larger addition sequences, such as the KSS curves with embedding degree k = 36

which are suitable for very high security levels, an addition sequence would require a lot

of temporary space. At the end of §3.6 we show a short sequence for this curve using the

AIS method, the number of required ti being reduced from 213 to 35 (plus 13 for pre-

computation and two xj for the λ’s in both cases) which is a good reduction. This is the

first implementation at a very high security level.

One important thing to note is that as we go to higher security levels, the final exponen-

tiation starts to take over the Miller loop in terms of computational costs. At lower security

levels, the final exponentiation takes less time than the Miller loop, but over high security

levels, the final exponentiation takes longer time. This also applies for exponentiation in

the final GT group.

Traditionally, the pairing-based protocols are designed with the assumption that one

pairing computation takes as much time as 3 exponentiation on the final extension field.

This ratio has to be revisited for high security levels, as the assumption is not valid there.
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”The Irish do not want anyone to wish them well; they want everyone to wish their

enemies ill.” – Harold Nicolson

IMPLEMENTING identity-based protocols using ordinary pairing-friendly elliptic curves

requires two groups, at least one of which is to be of order r. After hashing an iden-

tity to a general point, a scalar multiplication of this point by the cofactor of the

particular curve is required. If G1 is required to be of order r, the operation is quite simple,

and is trivial for families of curves with ρ-value equal to 1 (or close enough).

If G2 is required to be of order r [SK03], the operation becomes much more complex.

Thanks to the use of a twisted curve, the operation cost is not exorbitant, but still need to

be addressed. In [SBC+09a] Scott et al. we suggest an algorithm which make use of some

identities for enabling the implementer to use the cheap Frobenius endomorphism and the

addition chain method.

As our method (Scott et al.) requires only the parameters of the curve it is possible to

use the same approach as in Chapter 3. For this case, the addition sequence generated will

be used to obtain addition and doubling operations on points. This can be done since the

operation is to accelerate a scalar-point multiplication, similarly to an exponentiation, as

described in Chapter 4. Once the addition chain has been obtained, it is easy to generate the

code sequence for the cofactor operation.

The rest of this chapter is as follows: We introduce the traditional method for hashing

to G2 in §5.1. §5.2 presents the formulae for the number of points in the twist curves. Our

new method is presented at §5.3. Final thoughts on our method are presented in §5.4
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5.1 Introduction

The traditional method to hash into a curve is the Try-and-Increment in which an element of

Fp is used as a parameter in the Weierstrass equation to test if a solution exists, increasing

by one unit until we succeed. Heuristically, we have a probability of getting a point every

2−k inputs, with k the embedding degree [Ica09]. Icart [Ibidem.] presented a method that

given any elliptic curve E defined over Fpn , maps elements of Fpn into E in deterministic

polynomial time (if pn ≡ 2 mod 3.)

Some protocols based in the Weil and Tate family of pairings, may require a hash to this

point to a prime order point in G2. To achieve this, an additional multiplication by a large

cofactor may be necessary.

This cofactor c = #E′(Fpd)/r, is the number of points on the curve where the group is

defined and divided by r. In §5.2 we present a fast way to compute this cofactor.

5.2 Point Counting

Let E be an elliptic curve defined over Fp. The number of points on the curve is defined as

#E(Fp) = p+ 1− t, where t is the trace of the Frobenius.

Now, let’s consider a curve over an extension field Fpk . Let L1(T ) = pT 2 − tT + 1

with t = α1 + α2 the trace of the p-th power Frobenius. Let τk = αk1 + αk2 be the trace of

the pk-th power Frobenius, then the τk are given by the recursion τ1 = t, τ2 = t2 − 2p and

τk = t.τk−1 − p.τk−2

It follows that #E(Fpk) = pk+1−τk. In Scott et al. [SBC+09a, Algorithm 1], we describe

a simple algorithm to compute this value.

Let E be an elliptic curve defined over Fp. Let #E(Fp) = p+1− t. Let the polynomial

X2 − tX + p factor as (X − α)(X − ᾱ) we have αᾱ = p and α+ ᾱ = t.

The number of point for a curve defined over Fp2 is #E(Fp2) = p2 + 1− (α2 + ᾱ2) =
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p2 + 1− (t2 − 2p) since:

t2 = (α+ ᾱ)2 = α2 + 2αᾱ+ ᾱ2

α2 + ᾱ2 = t2 − 2αᾱ

= t2 − 2p. (5.1)

Similarly,

#E(Fp3) = p3 + 1− (α3 + ᾱ3) = p3 + 1− (t3 − 3pt), (5.2)

#E(Fp4) = p4 + 1− (α4 + ᾱ4) = p4 + 1− (t4 − (4pt2 + 2p2)), (5.3)

#E(Fp6) = p6 + 1− (α6 + ᾱ6) = p6 + 1− (6pt4 − 9p2t2 + 2p3). (5.4)

The selection of these curves is based on the fact that curves of even embedding degree

are preferred as they have twist of high degree, and that simplify the Miller loop as shown

in Chapter 2.

We prefer to define G2 over the twist of a curve. Let E be an elliptic curve over Fq with

q = pk/d and #E(Fq) = q + 1 − τ . Let τ = αk/d + ᾱk/d as in equations 5.1–5.4. If this

curve admits a twist E′ of degree d, then the group order of the twist curves are as follows:

[HSV06]

d = 2 : #E′ = q + 1 + τ

d = 3 : #E′ = q + 1− (±3F − τ)/2 with τ2 − 4q = −3F 2

d = 4 : #E′ = q + 1± F with τ2 − 4q = −F 2

d = 6 : #E′ = q + 1− (±3F + τ)/2 with τ2 − 4q = −3F 2

For example, let q = p3 and τ = t3 − 3pt then, #E′(Fq) = q + 1 − (3F + τ)/2,

with τ2 − 4q = −3F 2. Solving for F , one can easily calculate the number of points on the

94



Fast Hashing to G2 Point Counting

twisted curve.

Cofactor for the BN curves

As shown by Barreto and Naehrig in [BN06], the BN curves have a k = 12 embedding

degree and it supports a sextic twist. For this case, #E′(Fp2) = (p + 1 − t)(p − 1 + t),

hence the cofactor is c = (p − 1 + t). This present a very nice form, which seems to be a

coincidence.

Recalling Equations 2.13, let τ = t2 − 2p and d = 6, we have:

F = 36x4 + 24x3 + 12x2 + 4x+ 1

#E′(Fp2) = p2 + 1− (−3F + τ)/2

= 1296x8 + 2592x7 + 3024x6 + 2160x5 + 1152x4

+ 432x3 + 120x2 + 24x+ 4

c = 36x4 + 36x3 + 30x2 + 6x+ 1 (5.5)

which is equal to (p− 1 + t).

Cofactor for the KSS:k = 18 curves

For the KSS curves with k = 18, the cofactor is:

c = (40301641 + 88845918x+ 82554234x2 + 50075833x3 + 30860595x4

+ 19465362x5 + 9658007x6 + 4055484x7 + 1803684x8 + 757927x9

+ 256908x10 + 81660x11 + 27539x12 + 7929x13 + 1791 ∗ x14 + 409x15

+ 96x16 + 15x17 + x18)/27 (5.6)

We could continue to present the cofactors for other useful families of elliptic curves.

However, we prefer to leave this as an exercise to the reader. Please note that since we

need to get the square root of F , we will get two different co-factors, one from the positive
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solution of the square root, and one from the negative one.

5.3 A new method

When calculating cryptographic pairings, at least one of the parameters has to be of order

r. In general, the Tate pairing family takes a point from G2 ⊆ E′(Fpd)[r].

Traditionally, for hashing a point G2 of order r, the standard method is to find a general

random point in G2 and then multiply by the co-factor c = #E′/r, when using a twist of

a curve (which can be easily calculated from the previous section). Hashing to G2 instead

of G1 is more expensive since we have a larger co-factor of the curve, even on a twist of a

curve.

For hashing a point into G2[r] one can use the efficiently computable homomorphism:

ψi = φ−1πipφ from §2.1.5, and the addition-chain method to speed-up the multi-scalar-

point operation.

The isomorphism φ is defined in §2.1.5. One way to compute this map is by pre-

computing δ2, δ3 and their inverses (φ−1).

The homomorphism to be exploited is ψ from [GS08, Lemma 1]. The points in G2

obey the identity [GS08, Section 8]:

ψ2(P )− [t]ψ(P ) + [p]P = 0.

The main idea is to first express the co-factor c to the base p as:

c = c0 + c1.p+ c2.p
2 . . .

and then use the identity

[p]P = [t]ψ(P )− ψ2(P ), (5.7)
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repeatedly if necessary, to reduce the co-factor multiplication to a form

[c0 + c1.p+ c2.p
2 + . . .]P = [g0]P + [g1]ψ(P ) + [g2]ψ2(P ) + . . . (5.8)

where all of the gi < p.

One must be aware that a useful equivalence in some scenarios is: ψ
k
2 (P ) = −P . Since

ψ is an endomorphism on E′, for every i ∈ Z we have ψi(P ) = [λi]P , for some integer λi.

As ψi = φ−1πiφ, we know that ψk(P ) = P , since the k-th power of the Frobenius is

the identity on Fpk . If ψ
k
2 (P ) = λ k

2
P , we have P = ψk(P ) = ψ

k
2 (ψ

k
2 (P )) = λ2

k
2

P , so

λ2
k
2

= 1.

It is not true that λ k
2

= 1, as this would imply that P = ψ
k
2 (P ) and ψ

k
2 (P ) =

φ−1π
k
2φ(P ), or equivalently φ(P ) = π

k
2 (P )φ(P ), i.e., that the k/2-th power of Frobe-

nius is the identity on Fpk , which it is not.

Example For the KSS: k = 18 curves, a sextic twist applies. The co-factor in this case is

shown in Equation 5.6.

To exploit formula (5.8), we express the co-factor c = #E′(Fp3)/r in base p as:

c = (49/3x2 + 245/3x+ 343/3).p2

+ (7/3x6 + 35/3x5 + 49/3x4 + 112/3x3 + 581/3x2 + 784/3x).p

+ (−5/3x7 − 26/3x6 − 98/3x5 − 127x4 − 289x3 − 637x2 − 1715x− 5774/3) (5.9)

One may prefer to get rid the denominator 3, and instead complete the hashing as
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[3.c(x)]P . Let’s define 1:

a(x) = 49x2 + 245x+ 343

b(x) = 7x6 + 35x5 + 49x4 + 112x3 + 581x2 + 784x

c(x) = −5x7 − 26x6 − 98x5 − 381x4 − 867x3 − 1911x2

− 5145x− 5774

We know from (5.7) that:

[b(x).p(x)]P = b(x).t(x)ψ(P )− b(x)ψ2(P )

Again, from (5.7), we have:

[p2]P = [t2]ψ2(P )− [2t]ψ3(P ) + ψ4(P )

1after the multiplication by 3 in formula (5.9)
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Let’s define:

d(x) = c(x)

e(x) = b(x).t(x)

f(x) = a(x).t(x)2 − b(x)

g(x) = (−2.a(x).t(x))

h(x) = a(x)

i(x) = e(x) mod p(x)

j(x) =
[
e(x)
p(x)

]
k(x) = f(x) mod p(x)

l(x) =
[
f(x)
p(x)

]

and,

n(x) = a(x).p2 + b(x).p+ c(x)

After a few substitutions, from Scott et al. [SBC+09a, algorithm 2] one gets the follow-

ing formula:

[n(x)]P = d(x).P + i(x).ψ(P ) + (j(x).t(x) + k(x)).ψ2(P )

+ (l(x).t(x)− j(x) + g(x)).ψ3(P ) + (h(x)− l(x)).ψ4(P ) (5.10)

Let’s apply (5.10) with [3.c(x)]P , where P ∈ G2 and c(x) = #E′(Fp3)/r(x). This
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yields:

[3.c(x)]P = (−5x7 − 26x6 − 98x5 − 381x4 − 867x3 − 1911x2 − 5145x− 5774).P

+ (−5x7 − 18x6 − 38x4 − 323x3 − 28x2 + 784x).ψ(P )

+ (−5x7 − 18x6 − 38x4 − 323x3 + 1029x+ 343).ψ2(P )

+ (−11x6 − 70x5 − 98x4 − 176x3 − 1218x2 − 2058x− 686).ψ3(P )

+ (28x2 + 245x+ 343).ψ4(P )

For the above computation, we can use the following addition-chain:{1, 2, 3, 5, 7, 8,

11, 18, 26, 28, 31, 38, 45, 69, 70, 78, 98, 176, 245, 253, 323, 343, 381, 389, 686, 784, 829,

867, 1029, 1218, 1658, 1911, 2058, 4116, 5145, 5774} [SBC+09a]. The computations now

becomes as follows2:

xA ← −P · x.

xB ← −P .

t1 ← xA + xB .

t0 ← ψ2(P · x) + xA.

t1 ← 2 · t1.

t1 ← t1 + ψ3(−P · x).

t1 ← 2 · t1.

t1 ← t1 + t0.

t0 ← −P · x2 + xB .

t0 ← 2 · t0.

xB ← ψ3(−P · x2).

t0 ← t0 + xB .

t2 ← t1 + ψ(P · x).

t1 ← t1 + ψ4(P · x).

t0 ← t0 − P · x3.

t3 ← ψ(−P · x4) +

ψ2(−P · x4)− P · x3.

t2 ← t0 + t2.

t4 ← t2 + ψ3(−P ).

t2 ← t2 − P · x5 + ψ3(−P · x4).

t4 ← 2 · t4.

t4 ← t4 + ψ2(P ) + ψ4(P ).

t6 ← −P · x4 + xB .

t4 ← t6 + t4.

t6 ← t6 + t3.

t1 ← t4 + t1.

t4 ← t4 + t2.

xC ← ψ(−P · x3) +

ψ2(−P · x3).

t2 ← xC − P · x2.

t3 ← ψ3(−P · x5) + xC .

t1 ← t2 + t1.

t2 ← t2 + xB .

t7 ← t1 + ψ3(−P · x3).

t4 ← t7 + t4.

t3 ← t4 + t3.

t4 ← t4 + ψ4(P · x2) +

ψ(−P · x2).

t3 ← t3 + t7.

t7 ← t7 + t2.

t1 ← t3 + t1.

t6 ← t1 + t6.

t6 ← t6 + t0.

t1 ← t6 + t1.

t6 ← t6 + t0.

t0 ← t1 − P · x6.

t1 ← t1 − P · x7 +

ψ(−P · x7) +

ψ2(−P · x7).

t0 ← t0 + t4.

t2 ← t0 + ψ(−P · x6) +

2read bottom-to-top, then left-to-right, separate pages are read independently, but are a continuation.
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ψ2(−P · x6).

t0 ← t0 + t7.

t5 ← t2 + ψ3(−P · x6).

t2 ← t2 + t6.

t2 ← t2 + t5.

t0 ← 2 · t0.

t0 ← t0 + t5.

t1 ← t2 + t1.

t2 ← t2 + t4.

t0 ← t1 + t0.

t1 ← t1 + t3.

t0 ← 2 · t0.

t0 ← t0 + t2.

t0 ← 2 · t0.

t0 ← t0 + t1.

return t0.

where t0 is [3.c(x)]P .

We tested this computation in the Magma On-line Calculator [lC] using our online

tutorial [Dom09]3 with a security level equivalent to AES-192, and it takes approximately

35% less time than the traditional method described in §5.1.

5.4 Final Thoughts

Before our algorithm was devised, there were only generic methods to hash a point to G2

which did not exploit any property of the curves at all, such as: sliding windows, NAF

or the binary method (double-and-add). For some cryptographic protocols at high security

levels (larger embedding degree) this was a problem.

The larger the embedding degree, the larger the G2, perhaps this also depends on the

supported twist of the curve. In any case, the larger the G2, the larger the co-factor, the

coefficient used to make the point of the desired order. The larger the co-factor, the more

expensive it is to hash a point.

Our method is a solution that reduces the cost of hashing a random point to a specific

group exploiting the structure of the co-factor. In our method, we exchange a expensive

scalar-point multiplication by some smaller scalar-point multiplications and some map ap-

plications, making this operation cheaper.

With the use of an addition sequence, our method defines a sequence of operations.

This sequence, is particularly long for the KSS family of curves with embedding degree

k = 36. Using our addition chain solver, we were able to get a sequence s with #s ≈ 780
3For details of our tutorial, please refer to Chapter C.
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elements. The search space is quite large for this particular case; however, it is possible to

get a shorter chain with more computing resources.

The KSS: k = 36 family of curves supports a sextic twist, hence E′ is defined over Fp6 .

This curve is suitable for a security level of 256-bit. The co-factor for such curve is quite

large, and hashing will be very expensive, taking several milliseconds. Using our method,

we can reduce the cost of this operation, however we are still in the search of a shorter

sequence.

Hashing to G2 is an operation required at the initialization of the pairing function. This

operation is not used during the pairing computation, but required to get a bilinear pairing.

Its use depends on the pairing-based protocol.
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6 CODE GENERATOR

”I am a drinker with a writing problem.” – Brendan Behan

ACryptographic compiler is meant to generate program code that performs cer-

tain cryptographic functions [BMP09, PSM06]. In the case of hardware it

depends on the requirements, but there are already compilers which trans-

late programs into the machine code specific to the hardware [Com94]. In this research, the

target is a computer program and, indirectly, a multi-precision library. There is therefore a

last step that it is usually conferred to the ordinary compiler, which includes the traditional

code generator part.

A cryptographic compiler is needed because there are many issues in the implementa-

tion of either a protocol or a function, which are added during the process of translating the

mathematical background to the implementation itself.

The compiler makes use of several metaprogramming methods, which are covered in

§2.8, for instance:

• Attribute-Oriented Programming [PP82, §6.5].

• Reflective Programming [Smi82].

• Automatic code generation [ASU86, 9].

• Template-based Metaprogramming. [DD01, 3.2.1]

There are already some build tools in the market: e.g., make, gnumake, nmake, jam,

etc. These tools are inherently shell-based. One can extend these tools by using or writing

any program for the specific operating system they are currently lying on. Other tools such

as Ants do a better job on writing programs by using XML files. All these tools are very

useful, but it is preferred to have all the testing code and code sequence generators in the
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same line. The compiler uses the techniques listed above, plus a few shell scripts. Instead

of using XML files, the compiler uses associative arrays, as the complexity of the options

available can be properly handled this way.

6.1 Instruction Construction

Any serious computer language has support for the basic arithmetic functions. Every se-

rious multi-precision library designed for ECC has support for the basic set of functions

for elliptic curve and finite field arithmetic. The interfaces of these operations in every

multi-precision library are multifarious as they depend on the taste of the developer, or on

previous decisions in the design of the library. It is necessary to devise specific methods to

handle all of the Elliptic Curve (EC) operators.

To support a multi-precision library, a set of parameters which are loaded as separate

files were defined. Depending on the multi-precision library, some parameters may not

be needed; for example: an inverse operation may be done by prefixing a minus symbol,

whereas in other, a function call may be required.

To define the position of the affix operators in the library, not only the operation is

defined in a variable, but also the position of the operators and operands are defined as

another variable. For example, for a named operation, it is needed to define an additional

operationPOS variable, where “POS” stands for position, and its values ranges as:

• 0 for prefix: i.e., -P

• 1 for suffix: i.e., P∧(-1)

• 2 for inffix: i.e., P+=Q

• 3 for circumfix: i.e., inverse(P)

• 4,5 and 6 are special cases

• 7 for transfix: i.e., psi(A,d2,d3,6) (here, A and 6 are the operands)
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following by the required variables: operationMAP, operationMAP2, etc., which contains

the sequence of characters of the corresponding operation in the library.

To handle the different operators and notations from different languages, a set of “Generic”

functions that requires, as part of the regular parameters (the LH and RH operands), the op-

erators to be used and their notation were defined. For example, Listing 6.1 defines an

assignment operation between 2 operands, the LH- and RH- operand, and their operators.

The operatorPOS parameter has the following values: “0” for Polish notation, “1” for Re-

versed Polish notation, “2” for infix notation, “3” for circum-flix notation, and “4” is a

special notation to be used when one needs to convert a number in string format. Cases “5”

and “6” are the special cases when the RH operand has to be placed on the left (and the LH

correspondingly), i.e. in the use of C++ data objects.

Listing 6.1: Code in Magma for a Generic Assignment

// Input <- LH, RH, notation, operator(s), library definitions
// Output -> Corresponding output code to assign Left <- Right
// Example Input: GenericAssign("fm1","c",lang[tgtRATE]["powerPOS"],"

powerMAP","powerMAP2","RATEmiracl",lang)
// Example Output: pow(fm1,c)
GenericAssign:=function(Left,Right,operatorPOS,operator1,operator2,

target,language)
Code:="";
case operatorPOS:
when 0:
Code:=Sprintf("%o %o %o",language[target][operator1],Left,Right

);
when 2:
Code:=Sprintf("%o%o%o",Left,language[target][operator1],Right);

when 3:
Code:=Sprintf("%o%o,%o%o",language[target][operator1],Left,

Right,language[target][operator2]);
when 4:
Code:=Sprintf("%o%o%o%o",Left,language[target][operator1],Right

,language[target][operator2]);
when 5:
Code:=Sprintf("%o%o%o",Left,language[target][operator1],Right);

when 6:
Code:=Sprintf("%o%o%o%o",Right,language[target][operator1],Left

,language[target][operator2]);
end case;
return Code;

end function;
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Similarly, Listing 6.2 presents the Magma code for defining a generic operation.

Listing 6.2: Code in Magma for a Generic Operation

// Input <- LH, RH operands, notation, operator(s), library
definitions

// Output -> Corresponding output code for Left <- Right (.) Right2
// Example Input: GenericOperation(tk,Uno,Dos,lang["SUPmiracl"]["

MultiplyPOS"],"MultiplyOP","MultiplyOP2","*"),"SUPmiracl",lang),
lang["FEmiracl"]["delimiter"])

// Example Output: t1=slope*X;
GenericOperation:=function(Left,Right,Right2,operatorPOS,operator1,

operator2,target,language)
Code:="";
case operatorPOS:
when 0:
Code:=Sprintf("%o %o %o %o",language[target][operator1],Left,

Right,Right2);
when 3:
Code:=Sprintf("%o%o,%o,%o%o",language[target][operator1],Left,

Right,Right2,language[target][operator2]);
when 4:
Code:=Sprintf("%o%o%o%o%o",Left,language[target][operator1],

Right,language[target][operator2],Right2);
when 5:
Code:=Sprintf("%o%o%o%o%o",Left,language[target][operator1],

Right,Right2,language[target][operator2]);
when 6:
Code:=Sprintf("%o%o,%o,%o%o",language[target][operator1],Left,

Right,Right2,language[target][operator2]);
end case;
return Code;

end function;

For example, to generate w1=(char *)"60300000000000E30" one can use the

following instruction:

GenericAssign(Sprintf("w\%o",i), w2i, lang[tgtRATE]

["assignBPOS"], "assignBMap", "assignBMap2", tgtRATE, lang);

which is a call from Listing 6.1. Suppose w2i= 0x60300000000000E30. Here, the

”Sprintf” part selects which wi to assign, the lang[tgtRATE][“assignBPOS”] contains the

instructions on how to store a value into a “Big” number (a multi-precision integer storage

location), the “assignBMap” and “assignBMap2” denotes the cast operation “(char *)” and

the apostrophes respectively, which are required by the given “assignBPOS” information.
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The tgtRATE and language are the context environment: the multiprecision library and the

code section.

In the case of Listing 6.2, to produce m1P=c*m2P, which is a scalar-point multiplica-

tion of a scalar c (from the R-ate pairing) and m2P a point in E′(Fpd), one can use the

following instruction:

GenericOperation("m1P","c","m2P",lang[tgtRATE]["scalar-point

POS"],"scalar-pointMAP","scalar-pointMAP2",tgtRATE,lang)

A more complex example is the following:

GenericOperation(tk,Uno,Dos,lang[tgtSUP][POS],Sprintf("%oOP"

,Operators[j][2]),Sprintf("%oOP2",Operators[j][2]),tgtSUP,

lang)

where tk← Uno ◦ Dos, and ◦ is a parametrized operator.

There is an evident similarity between the previous listings: the difference lies in

the number of RH-operators. Internally, they behave similarly, it is just the order of the

operands and the operators.

As explained by Muchnick [Muc97], when there is a necessity to target several architec-

tures, one may prefer to automatically generate the code generator. In this case, at runtime

we know which multiprecision library we would like to generate the code for. It should be

easy to generate a more compact and faster version of the GenericAssign and GenericOp-

eration functions listed above for the specific notation of the target library, but this would

be unnecessarily complex.

In both Listings 6.1 and 6.2 a string containing a variable number of operands and oper-

ators is constructed based on the number and order of the parameters. We can parametrise

the parameters of the code construction but it is expected that the speed gain at runtime

would be marginal. Additionally, the cost of constructing such an automatic generator of

code generator, as Muchnick calls it, would not give the expected gain in terms of the speed

of the output code.
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Other functions that work with this approach are Normal and GenericTransformation,

which are unary functions to Normalize a point on a curve, and to define a generic unary

operator.

6.2 Attribute-based construction

Another method for code generation used in the compiler is Attribute Code Generation. For

this method, the compiler uses “tags”, labels around the code, which are instructions in a

meta language for the compiler.

The instructions can be freely chosen. For this research I defined tags for the following

operations:

• Assignment.

• Constructing a tuple of variable size in a function call.

• Constructing the Line function of the Miller loop.

• Removing (unnecessary) parts of code.

There are two stages at which the compiler is looking for tags. One stage is the exten-

sion field construction dependent code. For this, a function constructs the code depending

on how the tower of extension fields was constructed, and searches for the corresponding

tags in the code.

The second stage is in the so-called re-writer facility. The re-writer is invoked when

we need to substitute basic assignment tags in a specific source code file, as noted in the

example 2.17 on page 44. The re-writer facility is also used to rename a template file with

the corresponding notation. The notation for the generated output files are in Table 6.1.

The files in Row 1 and Row 2 from Table 6.1 are generated by an automatic code

generator. The code sequences for these rows are explained in Chapters 4 and 5 respectively.

In the case where the family of curves supports a bilinear and non-degenerate R-ate

pairing, the compiler will make use of the filename in Row 3 from Table 6.1. This file re-
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# File name Description

1 FE c CURVE l LIBRARY .extension Used for the final exponentiation of the Miller loop

2 G2 c CURVE l LIBRARY . extension Used to hash a point into a group G2 of order r

3 RATE c CURVE l LIBRARY . extension Used for the R-ate pairing, if available

4 TestPairing c CURVE l LIBRARY . extension Test bed for the pairing code

5 LIBRARY x CURVE . extension Constructions that depends on the Elliptic Curve

6 LIBRARY t D.MT.K . extension Constructions that depends on the towering method

Table 6.1: Filename Notation

quires a different method of construction using a hand-crafted sequence and the instruction

constructor of the automatic code generator. This relies on the system setup consisting of

the curve family, extension field construction and the x-parameter. If the selected pairing

function is the pairing lattice, the ate or the Tate pairing, then the name of the file is changed

accordingly.

The files in Rows 4 and 5 are hand-made by the user but require the re-writer. The

code will present tags for the attribute-based code generator. Finally, the filename in Row 6

contains code that relies on the towering construction method. It follows the same approach

as for Row 3.

6.3 Reflective program construction

In the present work the reflective programming paradigm was applied in a limited way,

as a way to test the output code as part of the compiler. The Magma language, has the

Attach/Detach facility where it compiles and loads the input code into memory. When a

piece of code is not giving the desired results (for example: giving a point of the wrong

order), we “detach” selected parts of the code and regenerate them. Again, trying to obtain

either faster code, or code with smaller footprint, or even both, could be the goal of a code

generator. We can also time the code in Magma and select the best option.

Another way to implement the Attach/Detach facility in Magma is with the use of the

“load” facility. This facility cannot be used inside loops or inside external files (nested
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loads); hence it is typically not what one would need from a compiler if the size of the code

makes it unmanageable for the programmer to have it as a single file.

As mentioned before, with reflective programming one should be able to alter specific

parts of the code to improve them. The size of the generated code at each stage is small

enough to be handled by the currently available computational resources, as the crypto-

graphic compiler generates the pairing function code in segments, which are not necessar-

ily interrelated1. As a result, the computational cost to reproduce the code from scratch

is minimal compared to the complexity of a granular modification of the generated code

segment.

Listing 6.3: Code in Magma for testing the Fast Cofactor function

deltas:=[];
V:=Name(Fpk,1);
Append(˜deltas,Vˆ2);
Append(˜deltas,Vˆ3);
Append(˜deltas,1/deltas[1]);
Append(˜deltas,1/deltas[2]);
R:=Random(ExtT);
Q:=HashG2(R,z,deltas);
if (not IsZero(r*Q)) then
repeat
print "\n***Error!***\nRebuilding fast cofactor...\n";
Detach("fasthashing.magma");
FastCofactor(...);
Attach("fasthashing.magma");
Q:=HashG2(R,z,deltas);

until (IsZero(r*Q));
printf "Corrected\n";

end if;

In Listing 6.3 a loop that verifies the order of a point Q is presented. Here, we have

implemented the Scott et al. fast hashing to G2 [SBC+09a] method which takes a Random

point R, the x-parameter of the curve, and the deltas required by the ψ function2 to obtain

a point Q ∈ G2. For more details, please refer to Chapter 5. The program continues

Attaching/Detaching the code in memory until a Fast Cofactor construction is effective. In

general, there are two co-factors from the positive and negative square root in the formula to
1One can share memory between the code generated. The compiler outputs separate functions for different

logical operations, it is up to the implementer to integrate the (logical) functions to recycle the memory usage.
2see §2.1.5
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get the number of points of the curve, in theory we only run this twice at most, however, we

may be looking forward to get a different addition sequence, which would yield a different

code sequence. Internally, the FastCofactor function tries to follow a different sequence of

code to generate every time as a new addition sequence is provided.

6.4 Template-based construction

In the template-based construction, the compiler uses an offline construction, but with the

advantage that all of the data types behave similarly; all of them are designed to do elliptic

curve and finite field arithmetic.

The code generator needs to know the pattern of the naming of the finite field structures

of every multi-precision library we are supporting. In the case of the MIRACL library, the

field arithmetic is defined as, for example, ZZn2, ZZn3, ZZn4 for arithmetic in the fields

over p2, p3 and p4 respectively. For RELIC, the finite field field arithmetic is defined using

fp2, fp3, fp4 for the same fields. We therefore use ZZ and fp for the fields.

For the finite field extensions, following the Benger and Scott paper [BS09], we can

observe that in all the cases, there is only one intermediate field required between the field

for the twist and the extension field. We can safely define ZZnD, ZZnMT and ZZnK as

labels for the fields we are using in the implementation, one for the twist, one for the named

field, and one for the extension field respectively.

The field in the middle is the field extension constructed as a tower that lies between the

extension field of the twist of the curve and the extension field required by the embedding

degree, if any. This is: for the BN curves, the towering method is described as 1−2−4−12,

we set a quadratic extension on top of a quadratic extension, and we end up with a cubic.

This is the default construction. In our example, the “MidTower” is 4. Any final extension

field requiring towering uses at most one intermediate tower, we safely named this as mid-

tower. This extension field does not affects the construction of the pairing function itself,

but may affect the construction of functions around it. The details of its use are out of the

scope of this work, but detection of this value is done to facilitate the construction of code
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templates.

The compiler uses the re-writer facility after the code is finally generated, it replaces

the finite field generic variables with their corresponding variables from the multi-precision

library.

Consider the following example:

#include“zznK.h” (6.1)

This generic code (6.1) will be replaced, for the case of the MIRACL library with

#include“zzn12.h” (6.2)

in the case of the BN curves, as k = 12. The same approach is used for the variable

definitions, function calls, R-ate pairing, etc.

6.5 Adding support to a library

To add support for another library, or a set of functions of finite field arithmetic, it is neces-

sary to replicate any of the languageLANGUAGE.magma supplied files.

A language file contains 5 sections: the first section contains definitions for generat-

ing the code to hash to G2[r]; the second sections is for the final exponentiation; the third

sections is for the pairing function, with emphasis on the R-ate pairing; the fourth section

contains definitions for the construction of supportive functions, such as instructions on

how to get the individual components of a composed number in a finite field, how to per-

form a Frobenius exponentiation, or how to leave a comment in the code; the last section

contains the name of the files defining the finite field arithmetic for every supported finite

field extension in the library we are adding support.
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6.5.1 Hashing to G2[r]

The operations for the generation of hashing to G2 code are:

Table 6.2: Definitions for G2

Tag Description

”element” Variable used to identify a point in G2

”inversionID” How to negate a point

”inversionPRECOMPUTE” Do we need to pre-compute the inverses?

”DegreeOperatorPOS” xi.Q

”ElementOperator” P+Q

”assignOperator” a:=b,a=b

”delimiter” ”;”

”MapPOS”,”Map” ψi

”MapTempREQ” Do we need to store intermediate values?

”datatypeF” ZZn,fp

”datatypeC” ECn,ec

”datatypef” zzn,fp

”datatypec” ecn,ec

”datatypeB” Big,bn

”datatypeSUFFIX” t

”CodeEXT” cpp,c,cxx

”HeaderEXT” h,hxx

”include4Code” .h file

”include4Header” header libraries

”header” Function parameters

”footer” How to close the function

”begin” How to start a code block

Continued . . .
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Table 6.2: (continued)

Tag Description

”end” How to end a code block

”trinomialSUP” Do we support several operators per operation?

”binomialSUP” Do we support inline operations?

”NormalREQ” Do we need to normalize a point?

”accumulatorOperator” How to accumulate a value

”m2REQ”,”dREQ”,”xREQ” Do we need to setup the values in the code?

”B-in-HexREQ” Do we need hexadecimal representation?

”try-and-catchREQ” Do we need to enclose de code inside a try-and-catch

block?

”preInitREQ” Do we need to initialize the memory prior to use?

”extra-try-and-catchREQ” Do we need to zero the variables prior to use?

”preExitREQ” Do we need to explicitly free the memory?

”LOOPLENGTH” Tag for the loop length

”LibraryID” Name of the library

End of G2 parameters definition

6.5.2 Final exponentiation

The final exponentiation generation code share the same definitions (with different values)

and the following information in table 6.3

Table 6.3: Definitions for the final exponentiation

Tag Description

”arrayStartsat0” Self explanatory

”returnArray” Are we returning elements in array?

Continued . . .
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Table 6.3: (continued)

Tag Description

”BigDivisionOperator” Support for big number division

”arrayassignPOS” Bidimensional array assignment

”varSeparator” Self explanatory

End of final exponentiation parameters definition

6.5.3 The pairing function

The pairing function also share some definitions, but with different values. It also includes

the definitions shown in table 6.4

Table 6.4: Definitions for the pairing function

Tag Description

”scalar-pointPOS” How to do a scalar-point multiplication.

”pointAddPOS” How to add two points

”powerPOS” How to exponentiate

”GPOS” How to call the line function

”qpowFrobPOS” The p-power Frobenius map (deprecated in favor of

psi function)

”for1toMAP” How to construct a for loop from 1 to a fixed param-

eter

”testifFailedPOS” Test if the operation failed

”testifNotOKPOS” Test if an OK is not returned

”IFPOS” How to do a simple IF conditional

”IFcloseREQ” Do we need to close a one line IF conditional?

”returnFALSE” Self explanatory

Continued . . .
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Table 6.4: (continued)

Tag Description

”returnTRUE” Self explanatory

”SoftExpoPOS” How to call the easy part of the final exponentiation

”HardExpoPOS” How to call the hard part of the final exponentiation

”compiler” Code compiler and parameters

”Dependencies” Library dependencies for compile the code in the tar-

get multi-precision library

End of pairing function parameters definition

6.5.4 Others

Another set of definitions establishes the way to set and retrieve specific components of

an element of a field, exponentiate, multiply, add, subtract and negate elements in a field.

Finally, another set of definitions sets the required libraries to construct an extension field.

6.5.5 Linking the library to the project

Once the definition of the new library is ready, open autopairing.magma, add a line to

load the new language file next to the other language definition files. The compileDirec-

tory variable will need to be set during the execution of the code generator if one would

like to compile the output code.

6.6 Parameters of the program

The code generator has the following default options:

• curve=“6.8.1” See [FST10] for the example curve3. For other values consult lam-

bda.magma.
3The extra 1 in the notation refers to the “negative” version of the curve.
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• M=100. The number of iterations/generations for the repetitive code

• G=5. The number of clones for the repetitive code; it falls-back to 5 if less than 2.

• target=“miracl”. The multi-precision library. Other values are “relic”.

• level=128. The equivalent security level. Other values are 80, 192, 256.

• MAXUNROLLOOP=6. Trigger set to unroll code.

• XValueGenerator=“Random”. This generates an x-parameter of the form: 2i+2j+c,

otherwise it uses a combinatorial method.

• IrreducibleMethod=“BengerScott”. Uses the Benger and Scott towering method to

obtain the irreducible polynomial. Otherwise, use the traditional try-and-increment

method.

• compileDirectory=“$HOME/Download/miracl”. Directory containing the libraries

of the desired multiprecision library.

• nocompile=“false”. Compile by default. A test bed example will be compiled for the

multi-precision library.

6.6.1 Other user-specified options

• The x-parameter of the curve, represented as z in the program.

• The a and b parameters of the curve in the short Weierstrass representation. This is

useful for curves generated externally by the user. For example, curves generated

with the CM construction method, which is not currently implemented in this code

generator.

• UserChainFE and UserChainCF. Set the addition sequence for the final exponentia-

tion or for fast hashing to G2; e.g., “UserChainFE:=[1,2,3,6,12,18,30,36];”
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Figure 6.1: Feedback symbols

• UserChainFEcontinue and UserChainCFcontinue. This is a Boolean variable to spec-

ify if the user supplied addition sequence should be improved or not. This is useful

for addition sequences which can be improved.

• Towering. Specify the towering construction method; e.g., the default construction

for the BN curves is 1− 2− 4− 12, “Towering:=[1,2,6,12];” will force the described

alternative construction.

• ForcePairing. Specify the desired pairing construction, values ranges from: “opti-

mal”, “rate”, “ate”, “tate”.

6.7 Feedback symbols in the program

During the code generation, and for feedback, some symbols are output when long or iter-

ative sub-operations are taking place. See figure 6.1 for a screenshot.

Generation of the parameters of the curve

• “+”. A process to find a prime has started.
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• “∼”. r 6∈ Z.

• “¬”. p 6∈ Z.

• “·”. x 6≡ b mod n.

• “ 6 b”. Primality test taking place.

Finding a short addition chain

• “E!#”. The inclusion of the randomly generated element for substitution will poten-

tially make the chain substantially longer.

Irreducible tests

• “·”. Attempt to get an irreducible for the Magma implementation.

• “first”. The cofactor got a positive square root.

• “second”. The cofactor got a negative square root.

R-ate pairing construction

• “.” Testing the bilinearity and non-degeneracy of eA,B(Q,P ) for all valid (A,B)

values.

6.8 Code sequence

The code generator has the code sequence shown in Algorithm 11.

The program start by looking up previously assigned values to set the defaults. We make

use of “if-not-assigned-then” instructions complemented with “select-case” statements.

6.8.1 Default variables and functions load

The default security level for the code generator is 128. If there is no assigned curve, then

we choose:
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Algorithm 11 Automatic code generator pseudo-code
Input: Security level, curve to use (see [FST10]), x, a and b from the short Weierstrass

representation of the curve, word size of the target environment, precomputed addition
chains, x-parameter algorithm to use, method to construct the tower to construct the
finite field extensions, and the setting for the artificial immune system part of the code.
Defaults to BN curves with a security level of 128 bits.

Output: Compressed directory with the final exponentiation and hashing to G2 code, sup-
porting code functions depending on the x-parameter and on the towering construction,
the pairing function code, a test bed, and a script to compile and run the test bed.

1: Verify the default values and the user supplied parameters.
2: Get the parameters of the curve, the polynomials describing the family, degree of the

twist admitted, the towering construction, the x-parameter, among others.
3: Construct the final exponentiation and the code for hashing toG2 for the code generator

in Magma and for the requested multi-precision library.
4: Verify that the irreducible polynomial to construct the curve gives the twist of the right

order.
5: Compute the cost of the pairing lattice, construct the R-ate pairing and compute its cost.

6: Compare and decide which pairing function to construct for the desired target library:
Optimal (pairing lattice), R-ate, ate or Tate pairing. The user may have requested an
specific pairing function.

7: Generate the code, update the template files, pack the code and compress it.
8: Optionally: compile an example program.
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Level Family Construction4

80 KSS k = 8 -

128 BN Curves 6.8

192 KSS k = 18 6.12

256 KSS k = 36 6.14

After assigning the rest of the defaults values from §6.6, the program loads the following

files:

• languageMIRACL.magma,languageRELIC.magma, language.magma

Contains the language description: maps, position of the operators, the base for the

header construction and extra requirements.

• lambda.magma

Contains the definition of the families of curves.

– k the embedding degree

– D the discriminant of the curve

– px,rx,tx polynomials describing the curve

– cfx the cofactor of the curve

– qx,Tx polynomials defining the cofactor of the twist curve

– nx,bx if the x-parameter of the curve need to be of the form: x ≡ n mod b

– ax flag to indicate the short Weierstrass form of the curve.

– dx the base field of the twist curve

– ex the divisor of r, see the e parameter of the KSS curves [KSS08].

In chapters 4 and 5, a λ expansion from the hard part of the final exponentiation and

the cofactor of the twist of curve was needed as part of the algorithms to speed-up

these operations. This file also contains a function to get these λ elements.
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• awkward.magma

Looks for a divisor of the λ elements as denoted in chapters 4 and 5.

• getchain.magma, approximatechain.magma, hypermutation.magma, mutate.magma

Contains the code for the AIS method to solve an addition chain: see section 3.5

• codegenerator.magma

Contains the code to construct the instruction, as described in this chapter.

• vectorize.magma, reduceterms.magma

Generates a code sequence from a vector addition chain and the code optimization.

• WriteFEMagma.magma

Generates the code to be used by the generator itself for the final exponentiation

• getparametescurve.magma

Evaluates the x-parameter to get a, elliptic curve.

• LowHamming.magma

Contains code with the two methods to get a low Hamming-weight x-parameter:

combinatorial and fixed.

• setCF.magma, lambdaCF.magma, WriteCF.magma

Gets the λ elements for the hashing to G2 method 5.3, and evaluates the cofactor of

the twist of the curve in polynomial form. Writes the code to be used by the program

itself.

• Rewriter.magma

Looks up the code for flags to insert final code or to mutate the program.

• Pack.magma

This program creates a directory containing the generated programs and creates a

compressed archive with them.
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• getLineFunction.magma

Constructs the line function based on a fixed set of code.

To load some of the function code, we need initialize some of the variables to be used.

• getFinalExpo.magma, getFastHashing.magma

Generates the final code for the final exponentiation and for hashing to G2.

• Towering.magma

Defines the default way to construct the final extension field using towers.

• TowerDependant.magma

Generates the code that depends on the tower construction method.

• getOptimalPairing.magma, getRatePairing.magma, getatePairing.magma, getTatePair-

ing.magma

Constructs the Optimal Lattice, R-ate, ate and Tate pairings code.

• getEcap.magma

Constructs the pairing function call.

Get the parametes of the curve

The compilers uses the “GetCurveParameters” procedure function to set the values of the

curve in polynomial form. It then reviews if the coefficients can be defined over the rational

field or over the integers ring and change the definition to the integers whenever possible.

It looks up the towering construction method for the selected curve, in particular it

identifies the tower in the middle.

The x-parameter is generated accordingly to the methods chosen by the user. First, we

estimate the size of x for the corresponding security level. We also verify the values of the

field size p: p ≡ 1 mod 3,≡ {3, 5, 7} mod 8, etc.
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Generate the final exponentiation and hashing to G2 code

For both the final exponentiation and for hashing to G2, the corresponding λi values are

calculated, then the AIS method is executed, which detects the coefficients, and generates

the code sequence. An optimisation of the code takes place before generating the corre-

sponding code: the pre-computing part, the main sequence, and the ending part (freeing

memory, if required). Finally, it writes the code in the corresponding files.

There is however, an extra step on the hashing to G2 part, the need to construct the

twist of the curve. The compiler uses either the Benger and Scott method [BS09] to find the

irreducible polynomial to construct the final extension field as a tower of smaller extension

fields, or the classical try-and-increment method to find the irreducible polynomial. In

both methods an irreducibility test takes places. However, in the former, the irreducible

polynomial tends to be smaller.

There is a need to test the results before proceeding, so that if one get the wrong twist,

one can try with a different code sequence. It is always possible to get a different sequence

from the AIS method if the coefficients are sparse enough. For example, in the KSS k = 18

curves, there are plenty of possibilities. However, in the BLS curves [BLS02][FST10,

Construction 6.6] there are not many.

Pairing construction and cost estimate

For the pairing lattices, to get the optimal pairing,the Weak Popov form described in 2.9.1

is preferred. For the R-ate pairing, since the optimal pairing will reach at least the R-ate

pairing type I, one can safely stick strictly to R-ate pairing type III: the Ti−Tj construction.

Here, the following files need to be loaded:

• millerRGengood2

Contains a generic implementation of the R-ate pairing. This pairing reverse its in-

ternal behavior depending on the length parameters (Ti − Tj).
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• TiCombo

Evaluates the R-ate pairing to find bilinear and non-degenerate Ti − Tj pairs.

• ChooseTiTj

Estimates the R-ate pairing cost.

• millerate, millerTate, millerOptimal

Contains the ate, Tate and pairing lattice pairings implementations

• OptimalPairingCombo

Finds the optimal pairing lattice.

• ChooseOP

Estimates the pairing lattice cost (all vectors)

• getOptimalPairing

Constructs the optimal pairing lattice code.

To estimate the cost of the pairings, since both the pairing lattice, R-ate and ate pairings

have the same elliptic curve arithmetic complexity, one can safely rely on the loop length

and the Hamming-weight of their parameters, plus the additional overload of the “extra” op-

erations in the corresponding pairing function. In some cases, the family of curves presents

a very small trace, when the pairing lattice matches the ate pairing, we must use it as it

requires a simpler construction. The user of the compiler can always force the construction

of a particular pairing function.

At the end, the code is packaged in compressed form, ready to be compiled with a

sample test run. However, please note that since some parts of the code are generated as

separate files, the developer may prefer to take the pieces of code and embed them in their

code, rather to have it as separate programs. This way, some memory can be saved as we

need new temporary variables for every piece of generated code.
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6.8.2 Sample generated code

For more examples, please visit the mini-website: [Dom]

Listing 6.4 show the basic Miller function for the MIRACL library. Alternatively, this

function can be constructed using the Costello et al. 2n-tuple-and-add pairings [CBNW10].

However, the use of affine coordinates is preferred for this research, as recommended by

Lauter, Montgomery and Naehrig [LMN10].

Listing 6.4: Basic Miller function

void Miller(ECn3 &P, ZZn &Qx, ZZn &Qy, ZZn18 &f3, ECn3 &m2P, Big &m2)
{

int i;
int nb=bits(m2);
f3=1;
m2P=P;
for (i=nb-2;i>=0;i--) {
f3*=f3;
f3*=g(m2P,m2P,Qx,Qy);
if (bit(m2,i)) f3*=g(m2P,P,Qx,Qy);

}
}

In some cases, the Miller function can reuse temporary states for cases with the same

parameters but different loop length, as in the KSS curves with k = 18. For those cases, a

Miller function as shown in Listing 6.5 would be appropriate.

Listing 6.5: Miller function with reusing parameters

void Miller(ECn3 &P, ZZn &Qx, ZZn &Qy, ZZn18 &f3, ECn3 &m2P, Big &m2,
ZZn18 &fd, ECn3 &dP, Big &d){

int i;
int nb=bits(m2);
int nb2=bits(d);
f3=1;
m2P=P;
for (i=nb-2;i>=0;i--) {
f3*=f3;
f3*=g(m2P,m2P,Qx,Qy);
if (bit(m2,i)) f3*=g(m2P,P,Qx,Qy);
if (i==nb-nb2) {dP=m2P; fd=f3;}

}
}
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6.8.2.1 KSS k = 8

To generate the code for this family of curves, use:

level:=80;

load "autopairing.magma";

Listing 6.6, listing 6.7 and listing 6.8 show a selection of the generated code.

Listing 6.6: Optimal Pairing Lattice for curve KSS ”k=8”

#include "OPTIMALc8lMIRACL.h"

BOOL Pairing(ECn2 &P, ZZn &Qx, ZZn &Qy, ZZn8 &r, ZZn2 &X, ZZn2 &d2,
ZZn2 &d3, Big &x,Big w1,Big w2)

{
ZZn8 t0;
ZZn8 f3;
ECn2 m1P;
ECn2 T1;
ECn2 T2;
ECn2 T3;
f3=1;
Miller(P,Qx,Qy,t0,m1P,w1);
f3*=t0;
Miller(P,Qx,Qy,f3,m1P,w2);
f3*=t0;
T3=psi(P,d2,d3,0);
T3=w1*T3;
T1=T3;
T3=psi(P,d2,d3,1);
T3=w2*T3;
T2=T3;
f3*=g(T1,T2,Qx,Qy);
T3=psi(P,d2,d3,1);
T3=w2*T3;
T1+=T3;
T3=psi(P,d2,d3,2);
T2=T3;
f3*=g(T1,T2,Qx,Qy);
SoftExpo(f3,X);
HardExpo(r,f3,X,x);
if (f3.iszero()) {
return FALSE;

}
return TRUE;

}
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Listing 6.7: Hard part of the Final Exponentiation for the KSS ”k=8” curves

#include "FEc8lMIRACL.h"
void HardExpo(ZZn8 &r, ZZn8 &f3x0, ZZn2 &X, Big &x){
//vector=[ 1, 2, 4, 5, 7, 10, 15, 26, 28, 30, 55, 75, 80, 100, 108,

144 ]
ZZn8 xA;
ZZn8 xB;
ZZn8 t0;
ZZn8 t1;
ZZn8 t2;
ZZn8 t3;
ZZn8 t4;
ZZn8 t5;
ZZn8 t6;
ZZn8 f3x1;
ZZn8 f3x2;
ZZn8 f3x3;
ZZn8 f3x4;
ZZn8 f3x5;

f3x1=pow(f3x0,x);
f3x2=pow(f3x1,x);
f3x3=pow(f3x2,x);
f3x4=pow(f3x3,x);
f3x5=pow(f3x4,x);

xA=f3x0;
xB=Frobenius(inverse(f3x0),X,2);
t0=xA*xB;
xB=Frobenius(inverse(f3x1),X,1);
t1=t0*xB;
xB=f3x2;
t0=t0*xB;
xB=Frobenius(f3x0,X,1);
t2=t1*xB;
xB=Frobenius(f3x0,X,3);
t1=t2*xB;
xB=Frobenius(inverse(f3x2),X,1)*Frobenius(inverse(f3x4),X,1);
t2=t2*xB;
xB=Frobenius(inverse(f3x1),X,2);
t6=t1*xB;
xB=Frobenius(f3x0,X,1);
t1=t1*xB;
t4=t6*t0;
xA=Frobenius(f3x2,X,2);
xB=Frobenius(inverse(f3x0),X,2);
t3=xA*xB;
xA=f3x1*Frobenius(inverse(f3x3),X,1);
xB=Frobenius(inverse(f3x0),X,2);
t5=xA*xB;
xA=Frobenius(f3x1,X,3);
xB=Frobenius(f3x1,X,3);
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t0=xA*xB;
xB=Frobenius(f3x2,X,3);
t0=t0*xB;
t6=t4*t6;
xB=f3x5*Frobenius(inverse(f3x3),X,2);
t4=t4*xB;
t3=t6*t3;
t4=t4*t6;
t0=t3*t0;
t1=t1*t1;
t1=t1*t5;
t3=t0*t3;
xB=Frobenius(f3x4,X,2);
t0=t0*xB;
t1=t3*t1;
t3=t3*t4;
t1=t1*t1;
t1=t1*t2;
xB=f3x3;
t1=t1*xB;
xA=f3x4*Frobenius(f3x5,X,2);
xB=f3x3;
t2=xA*xB;
t0=t1*t0;
t1=t1*t3;
t0=t0*t0;
t0=t0*t2;
t0=t0*t0;
t0=t0*t1;

r=t0;

}

Listing 6.8: Line function for the KSS ”k=8” curves

ZZn8 line(ECn2 &A, ECn2 &C, ECn2 &B, ZZn2 &slope, ZZn2 &extra, BOOL
Doubling, ZZn &Qx, ZZn &Qy){

ZZn8 w;
ZZn4 a;
ZZn4 b;

ZZn2 X,Y;
ZZn2 t0;

ZZn2 t1;
ZZn2 t2;

#ifdef AFFINE
A.get(X,Y);
t0=slope*Qy;
t1=slope*X;
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t1=Y-t1;
a.set(t0,t1);

t0=-Qy;
b.set(t0);

w.set(a,b);
#endif

return w;
}

6.8.2.2 KSS k = 18

To generate the code for this family of curves, use:

FFE:=["zzn","zzn3","zzn6","zzn18"];

UserChainFE:=[1, 2, 3, 4, 5, 7, 8, 14, 15, 16, 21, 25, 28,

35, 42, 49, 54, 62, 70, 87, 98, 112, 147, 245, 273, 294,

319, 343, 392, 434, 450, 581, 609, 784, 931, 1162, 1407,

1862, 1911, 3724, 4655, 4802, 6517];

UserChainFEcontinue:=false;

UserChainG2:=[1, 2, 3, 5, 7, 8, 11, 18, 26, 28, 31, 38, 45,

69, 70, 78, 98, 176, 245, 253, 323, 343, 381, 389, 686, 784,

829, 867, 1029, 1218, 1658, 1911, 2058, 4116, 5145, 5774];

UserChainG2continue:=false;

curve:="6.12";

load "autopairing.magma";

Listing 6.9 and listing 6.10 show a selection of the generated code.

Listing 6.9: R-ate pairing for curve KSS ”k=18”

#include "RATEc6.12lMIRACL.h"

BOOL Pairing(ECn3 &P, ZZn &Qx, ZZn &Qy, ZZn18 &r, ZZn3 &X, ZZn3 &d2,
ZZn3 &d3, Big &x,Big &m2,Big &d)

{
ZZn18 fm2;
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ZZn18 fm1;
ECn3 m1P;
ECn3 m2P;
int nb;
int i;
ZZn18 fd;
ECn3 dP;
Miller(P,Qx,Qy,fm2,m2P,m2,fd,dP,d);
fd*=fm2;

m1P=m2P;
fd*=g(m1P,dP,Qx,Qy);
fm2*=Frobenius(fd,X,6);
m1P=psi(m1P,d2,d3,6);
fm2*=g(m1P,m2P,Qx,Qy);
if (fm2.iszero()) {
return FALSE;
}
SoftExpo(fm2,X);
HardExpo(r,fm2,X,x);
return TRUE;

}

Listing 6.10: Hard part of the Final Exponentiation for the KSS ”k=18” curves

#include "FEc6.12lMIRACL.h"
void HardExpo(ZZn18 &r, ZZn18 &f3x0, ZZn3 &X, Big &x){
//vector=[ 3, 5, 7, 14, 15, 21, 25, 35, 49, 54, 62, 70, 87, 98, 112,

245, 273, 319, 343, 434, 450, 581, 609, 784, 931, 1407, 1911,
4802, 6517 ]

ZZn18 xA;
ZZn18 xB;
ZZn18 t0;
ZZn18 t1;
ZZn18 t2;
ZZn18 t3;
ZZn18 t4;
ZZn18 t5;
ZZn18 t6;
ZZn18 t7;
ZZn18 f3x1;
ZZn18 f3x2;
ZZn18 f3x3;
ZZn18 f3x4;
ZZn18 f3x5;
ZZn18 f3x6;
ZZn18 f3x7;

f3x1=pow(f3x0,x);
f3x2=pow(f3x1,x);
f3x3=pow(f3x2,x);
f3x4=pow(f3x3,x);
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f3x5=pow(f3x4,x);
f3x6=pow(f3x5,x);
f3x7=pow(f3x6,x);

xA=Frobenius(inverse(f3x1),X,2);
xB=Frobenius(inverse(f3x0),X,2);
t0=xA*xB;
xB=Frobenius(inverse(f3x2),X,2);
t1=t0*xB;
t0=t0*t0;
xB=Frobenius(inverse(f3x0),X,2);
t0=t0*xB;
xB=Frobenius(f3x1,X,1);
t0=t0*xB;
xA=Frobenius(inverse(f3x5),X,2)*Frobenius(f3x4,X,4)*Frobenius(f3x2,
X,5);

xB=Frobenius(f3x1,X,1);
t5=xA*xB;
t0=t0*t0;
t3=t0*t1;
xA=Frobenius(inverse(f3x4),X,2)*Frobenius(f3x1,X,5);
xB=Frobenius(f3x2,X,1);
t1=xA*xB;
xA=Frobenius(f3x2,X,1);
xB=Frobenius(f3x2,X,1);
t0=xA*xB;
xB=Frobenius(f3x2,X,4);
t0=t0*xB;
xB=Frobenius(f3x1,X,4);
t2=t3*xB;
xB=Frobenius(inverse(f3x1),X,2);
t4=t3*xB;
t2=t2*t2;
xB=Frobenius(inverse(f3x2),X,3);
t3=t0*xB;
xB=inverse(f3x2);
t0=t3*xB;
t4=t3*t4;
xB=Frobenius(inverse(f3x3),X,3);
t0=t0*xB;
t3=t0*t2;
xB=Frobenius(inverse(f3x3),X,2)*Frobenius(f3x0,X,5);
t2=t3*xB;
t3=t3*t5;
t5=t3*t2;
xB=inverse(f3x3);
t2=t2*xB;
xA=Frobenius(inverse(f3x6),X,3);
xB=inverse(f3x3);
t3=xA*xB;
t2=t2*t2;
t4=t2*t4;
xB=Frobenius(f3x3,X,1);
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t2=t1*xB;
xA=Frobenius(f3x3,X,1);
xB=Frobenius(inverse(f3x2),X,3);
t1=xA*xB;
t6=t2*t4;
xB=Frobenius(f3x4,X,1);
t4=t2*xB;
xB=Frobenius(f3x3,X,4);
t2=t6*xB;
xB=Frobenius(inverse(f3x5),X,3)*Frobenius(f3x5,X,4);
t7=t6*xB;
t4=t2*t4;
xB=Frobenius(f3x6,X,1);
t2=t2*xB;
t4=t4*t4;
t4=t4*t5;
xA=inverse(f3x4);
xB=Frobenius(inverse(f3x4),X,3);
t5=xA*xB;
xB=Frobenius(inverse(f3x4),X,3);
t3=t3*xB;
xA=Frobenius(f3x5,X,1);
xB=Frobenius(f3x5,X,1);
t6=xA*xB;
t7=t6*t7;
xB=Frobenius(f3x0,X,3);
t6=t5*xB;
t4=t6*t4;
xB=Frobenius(inverse(f3x7),X,3);
t6=t6*xB;
t0=t4*t0;
xB=Frobenius(f3x6,X,4);
t4=t4*xB;
t0=t0*t0;
xB=inverse(f3x5);
t0=t0*xB;
t1=t7*t1;
t4=t4*t7;
t1=t1*t1;
t2=t1*t2;
t1=t0*t3;
xB=Frobenius(inverse(f3x3),X,3);
t0=t1*xB;
t1=t1*t6;
t0=t0*t0;
t0=t0*t5;
xB=inverse(f3x6);
t2=t2*xB;
t2=t2*t2;
t2=t2*t4;
t0=t0*t0;
t0=t0*t3;
t1=t2*t1;
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t0=t1*t0;
xB=inverse(f3x6);
t1=t1*xB;
t0=t0*t0;
t0=t0*t2;
xB=f3x0*inverse(f3x7);
t0=t0*xB;
xB=f3x0*inverse(f3x7);
t1=t1*xB;
t0=t0*t0;
t0=t0*t1;

r=t0;

}

To get the code for a security level equivalent to AES-128, using a BN curves with the

Nogami et al. parameter, run:

z:=0x4080000000000001;

load "autopairing.magma";

To get the pairing code for the default curve, single-try for low Hamming weight, try-

and-increment method to find an irreducible polynomial, and an optimal pairing lattice,

run:

XValueGenerator:="LowHamming";

ForcePairing:="optimal";

IrreducibleMethod:="Traditional";

load "autopairing.magma";

To get the code for a security level equivalent to AES-256, KSS:k=36 curve, with pre-

computed addition sequences, run:5

curve:="6.14";

level:=256;

UserChainFE:=[ 1, 2, 4, 5, 7, 8, 10, 11, 14, 19, 20, 21,

5WARNING! Code construction takes a while. My pentium 4, use to run out of memory, better use a 64-bit
computer, or a high memory kernel. Alternatively, use construction 6.6 with k = 24 for this security level.
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29, 37, 48, 49, 60, 62, 67, 87, 98, 112, 124, 125, 127,

146, 147, 157, 196, 245, 248, 268, 288, 294, 348, 385, 394,

434, 448, 460, 560, 561, 609, 676, 686, 784, 882, 931, 1029,

1078, 1372, 1519, 1529, 1540, 1617, 1862, 1876, 1989, 2009,

2401, 2547, 2695, 2724, 2744, 3528, 3724, 3871, 4018, 4116,

4478, 4578, 4802, 5362, 5369, 5488, 5613, 6174, 6517, 7203,

9604, 9761, 9998, 10290, 10976, 13034, 13279, 13377, 14063,

15092, 16709, 16807, 19208, 22932, 24010, 25539, 25807,

26075, 27048, 28622, 28910, 29449, 33614, 40817, 48020,

52136, 58898, 63476, 67228, 71099, 76712, 79436, 83914,

88392, 104272, 105644, 106673, 117649, 123137, 128499,

129654, 142198, 151959, 152635, 154007, 168070, 176784,

178773, 180649, 182525, 186782, 253624, 283073, 285719,

299782, 308014, 310415, 333347, 365050, 428526, 433895,

444185, 549829, 597849, 621859, 645869, 899493, 907578,

936488, 949767, 1099658, 1126706, 1291738, 1478520, 1507142,

1817557, 1858374, 1981511, 2033647, 2333429, 2487436,

3037265, 3189900, 4067294, 4184943, 4353013, 5260591,

5428661, 6074530, 6204184, 6648369, 12722899, 17983490,

35966980, 38000627 ];

UserChainFEcontinue:=false;

UserChainG2:=[ 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9,

0xA, 0xB, 0xC, 0xD, 0x10, 0x11, 0x12, 0x14, 0x15, 0x17,

0x19, 0x1B, 0x1C, 0x1E, 0x1F, 0x20, 0x21, 0x23, 0x24, 0x25,

0x26, 0x29, 0x2D, 0x2E, 0x2F, 0x31, 0x34, 0x35, 0x39, 0x3A,

0x3D, 0x3F, 0x42, 0x43, 0x4E, 0x4F, 0x56, 0x5D, 0x5F, 0x6F,

0x74, 0x77, 0x79, 0x7E, 0x82, 0x85, 0x89, 0x8D, 0x97, 0x9D,

0xAD, 0xAE, 0xB8, 0xBD, 0xC4, 0xC5, 0xC6, 0xD0, 0xDA, 0xDD,
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0x106, 0x10D, 0x116, 0x120, 0x121, 0x131, 0x138, 0x145,

0x148, 0x14D, 0x14E, 0x151, 0x154, 0x158, 0x174, 0x181,

0x19C, 0x1A0, 0x1A6, 0x1BA, 0x1C3, 0x1C5, 0x1CF, 0x1DB,

0x1DE, 0x1EA, 0x1F4, 0x200, 0x21F, 0x226, 0x232, 0x238,

0x2B6, 0x2C0, 0x2CD, 0x32C, 0x34F, 0x374, 0x394, 0x3A1,

0x3A3, 0x3CC, 0x3EC, 0x419, 0x424, 0x431, 0x443, 0x4BC,

0x4EA, 0x4F0, 0x511, 0x542, 0x57B, 0x5B5, 0x5F2, 0x610,

0x61A, 0x633, 0x634, 0x649, 0x74F, 0x766, 0x7F3, 0x850,

0x87F, 0x890, 0x896, 0x9EE, 0xA17, 0xA8B, 0xBA1, 0xBD6,

0xC4D, 0xC5E, 0xC9D, 0xCC1, 0xD46, 0xD95, 0xDC6, 0xDD6,

0xE18, 0xE4C, 0xFEC, 0x1042, 0x10CB, 0x10D1, 0x118E, 0x1225,

0x1282, 0x1403, 0x147A, 0x1587, 0x158D, 0x16AD, 0x16B6,

0x16CB, 0x1779, 0x1849, 0x190F, 0x1A57, 0x1A5B, 0x1C2A,

0x1DC6, 0x1FEC, 0x2140, 0x221D, 0x23FB, 0x24BF, 0x2853,

0x29C7, 0x2B81, 0x2CB2, 0x2F68, 0x355A, 0x3792, 0x3801,

0x3CEB, 0x3E39, 0x3EFE, 0x401E, 0x41E1, 0x428E, 0x42EB,

0x47A7, 0x48C7, 0x4964, 0x4AB1, 0x4E00, 0x5243, 0x5C5A,

0x5C80, 0x5E5B, 0x63D6, 0x648E, 0x64DC, 0x687D, 0x7113,

0x7537, 0x7A27, 0x7FDC, 0x80FD, 0x81D7, 0x857A, 0x86AB,

0x896B, 0x9541, 0x9549, 0x96EF, 0x9A63, 0x9AA6, 0xA0DA,

0xA61C, 0xAA4D, 0xAF5E, 0xB32A, 0xBA90, 0xBB12, 0xBF2B,

0xC15D, 0xCDAA, 0xDF38, 0xE122, 0xECC3, 0xF1D4, 0xFFEC,

0x10D81, 0x113CA, 0x119BC, 0x1224C, 0x12638, 0x1265C,

0x126D0, 0x128EF, 0x13E7C, 0x146CC, 0x14CE6, 0x15565,

0x156B6, 0x1647C, 0x1893B, 0x193C6, 0x1950B, 0x1A730,

0x1A930, 0x1B123, 0x1B268, 0x1C2AA, 0x1C9F9, 0x1E0C4,

0x1E6D4, 0x268AB, 0x27548, 0x29688, 0x2B44E, 0x2B71B,

0x2CDD1, 0x2FD39, 0x36E4C, 0x39069, 0x3A2EB, 0x3DA7D,
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0x3F4D4, 0x414C0, 0x489F7, 0x48A36, 0x4980C, 0x4B11B,

0x4C7C8, 0x568A2, 0x59DFC, 0x5B575, 0x5C2BB, 0x5D2A7,

0x610E0, 0x612D4, 0x61F32, 0x666D9, 0x6CB67, 0x760A8,

0x774AB, 0x80F0E, 0x83309, 0x85FBB, 0x8708C, 0x88AE7,

0x8911A, 0x8A963, 0x8F2C7, 0x93555, 0x97240, 0x986BA,

0x9A2E4, 0x9A41C, 0x9B9A3, 0xA6901, 0xA75C2, 0xAB7A3,

0xAEFA4, 0xB17F7, 0xB5AE2, 0xC288C, 0xC327A, 0xCD896,

0xDCA6A, 0xE7D94, 0xEA75B, 0xF887D, 0x101F6C, 0x10A8D7,

0x11437D, 0x1151C9, 0x117D4A, 0x11CF8D, 0x12E949, 0x1347A4,

0x13DCED, 0x14873A, 0x14C638, 0x179409, 0x180E30, 0x184E4E,

0x1A2F12, 0x1CA45A, 0x1DE2D6, 0x204B81, 0x215F4B, 0x23461F,

0x238EE6, 0x241460, 0x24F398, 0x255874, 0x26ADD9, 0x2768EB,

0x27C56B, 0x291251, 0x2CA2BA, 0x2E6564, 0x2EC93A, 0x2FEB86,

0x30AAB1, 0x325D19, 0x336A9A, 0x374517, 0x3D55F7, 0x41DFEE,

0x41E1B3, 0x41F27E, 0x437BB9, 0x43C9B9, 0x466041, 0x478679,

0x4AF4C5, 0x515B9E, 0x52A26A, 0x564555, 0x5DBA00, 0x5F6B23,

0x5FB5D4, 0x6035B0, 0x69BC6A, 0x6FCF3E, 0x7A4500, 0x7B44EC,

0x7C31AF, 0x80C9BB, 0x80CCE7, 0x823163, 0x87F41E, 0x891A7A,

0x918B06, 0x957FDA, 0x9714E5, 0x977D62, 0x99475B, 0x9A9E11,

0xA91BA5, 0xAFE70C, 0xB58508, 0xB60BB3, 0xBFC556, 0xD3A243,

0xD7B703, 0xDF17AB, 0xE0AB71, 0xE99E38, 0xEFBD6A, 0xF07EC7,

0xF9F107, 0xFB17D7, 0x10580D8, 0x10DB3E1, 0x1163EC8,

0x1227142, 0x12F49D8, 0x137DAF2, 0x1417F0E, 0x142A7FD,

0x1572F37, 0x166B7B4, 0x1849A8A, 0x18924C0, 0x1947FA2,

0x1B4CB23, 0x1C7B46C, 0x1C86EFC, 0x1FFB413, 0x2047BDB,

0x21C0FE4, 0x2254539, 0x2369702, 0x23B481D, 0x244EB01,

0x2618F5B, 0x26F59C5, 0x290B910, 0x29BA8B4, 0x29EA5ED,

0x2A95D90, 0x2AF1305, 0x2B772C0, 0x2BA29DB, 0x2BFFC82,
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0x2CC250E, 0x2CCA60B, 0x2CD0265, 0x354F683, 0x366C610,

0x37A0DB4, 0x39F014C, 0x3C29032, 0x472773E, 0x4B4572C,

0x4B70B7A, 0x4DE7465, 0x51BCA5C, 0x59DFBBF, 0x61A2D6E,

0x63E41CE, 0x63FE8FE, 0x66696D7, 0x671AECE, 0x6FAC948,

0x791DE2D, 0x7AA2C7B, 0x809979E, 0x92C08E0, 0xA0CB451,

0xAF65289, 0xB38343C, 0xB49B186, 0xBDF3160, 0xC3EE734,

0xC479097, 0xC58D414, 0xC9C9DCD, 0xCA4ACDB, 0xD9E9DE2,

0xDF1404C, 0xE429BEA, 0xE6A6155, 0xEC81B55, 0x11951DBA,

0x1254E310, 0x12858DC1, 0x14C0D5DE, 0x14C63E80, 0x150C9EC1,

0x153EFBDA, 0x156D613E, 0x1607FF4F, 0x179C7EF1, 0x17AB264C,

0x186131FF, 0x19A2B10D, 0x19A45A3D, 0x19EBE0B6, 0x1A00A6EE,

0x1B2FF0C6, 0x1BD90C6B, 0x1DD8C07E, 0x1E703DE0, 0x1EC68335,

0x1ED6A2A1, 0x1FDC2379, 0x22210E7A, 0x2363B677, 0x24193B7F,

0x24F0F282, 0x2781AB92, 0x288F5F73, 0x290AA45F, 0x29FA61C9,

0x2A292B03, 0x2A39D3DA, 0x2BC2F89A, 0x2BEF9B54, 0x2EBBC062,

0x2EE118D6, 0x2F4AD540, 0x2FCBA227, 0x343E1965, 0x3800A997,

0x3D1C73F3, 0x40716A76, 0x428D7A5A, 0x44B2BF93, 0x482CCD47,

0x4BCBCE93, 0x4D50691D, 0x500A92F8, 0x52CA8F7A, 0x535C1A80,

0x53F561DB, 0x55BDD0D7, 0x55E6E328, 0x5AC5578D, 0x5ADD65BD,

0x5BD87D94, 0x5DA03200, 0x5FA4ADDB, 0x60147D19, 0x6283D6DE,

0x6304A099, 0x645BCFD0, 0x6FA58156, 0x725CF416, 0x7EA484AD,

0x815397B2, 0x895D2F50, 0x96FBCD32, 0x9D6D7C00, 0x9ED433B4,

0xA67E602F, 0xA7520272, 0xA76C3184, 0xB34B62E4, 0xB3C5A7E4,

0xB4109CA9, 0xB5011B70, 0xCEECFC26, 0xE141DF36, 0xEDE68C11,

0xFF7BA9CB, 0x1070D87F8, 0x1084562EA, 0x108875568,

0x10E255127, 0x1148BE7FE, 0x11B86B146, 0x11BBA1BE0,

0x11E55C494, 0x14850265D, 0x166C0643D, 0x1672099ED,

0x17216EC76, 0x180598860, 0x183262E6B, 0x184DAF98E,
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0x19C77787F, 0x1A6842CD0, 0x1CF8ED12F, 0x1CFB2174E,

0x1CFF59307, 0x1E50231C8, 0x1E868F7D8, 0x1EB079DC5,

0x1ED692D20, 0x1FFEEBAE1, 0x20EB6D636, 0x232D011B5,

0x24EA91E20, 0x251527BB0, 0x25F43BBFC, 0x26DAE1D51,

0x28559439D, 0x2A332041B, 0x2C822F69D, 0x2D461DDD1,

0x2EE06380E, 0x2F2BD4388, 0x3082AA4C6, 0x3222B4BB4,

0x3458F022B, 0x3755AA452, 0x37B98E620, 0x3A4284593,

0x3A5075D3E, 0x3B9C8331C, 0x3E913085C, 0x3F56BDC70,

0x3FA20339C, 0x4055867D8, 0x411F505A5, 0x42734017F,

0x58E549B6C, 0x5946EC8DA, 0x5AF9EB9A0, 0x60269491A,

0x655C5639A, 0x6A5CFF692, 0x73CCBC3C4, 0x792B2A6EC,

0x7EE8B2480, 0x7F7B72D60, 0x857CBAA79, 0x86DD3A9C8,

0x89555555A, 0x8C4366E30, 0x9630AA1E4, 0x9A7BD6177,

0xA5B08C45B, 0xB3C4AA391, 0xC0B379FB7, 0xC2B13C330,

0xC7F09250B, 0xCFDADA9B8, 0xD3ACA1DAB, 0xDEEDABA54,

0xE2318D3B9, 0xE3CBB84C6, 0xEBE0F1C78, 0xEFE8086EE,

0xF5E2534C9, 0xFAB759DE6, 0xFD5AF71C0, 0x10019F0D14,

0x102D6205AE, 0x11FD141CFC, 0x12FC8FC6C7, 0x12FEC65DC9,

0x1361CAFE62, 0x1531C09169, 0x15D83EF198, 0x17BD412360,

0x19421C1CEE, 0x1BC775608B, 0x1C0A02DAE5, 0x1C7C5FCEFB,

0x1C9B265230, 0x1CC54F7D33, 0x1E61C6F5B2, 0x1F0918F824,

0x20D8A7C953, 0x23A0CABFF0, 0x243E383BF0, 0x2546BF9158,

0x2654E4E27F, 0x28639BB8B5, 0x2C7590BE5A, 0x2C97B1CCD4,

0x2D9FF72FBE, 0x2E8DDDBBCF, 0x2FF49E200C, 0x3253E1DC08,

0x343C4AD3E0, 0x37B1A57832, 0x3F44581F1E, 0x44F3F6D8BE,

0x4761A4F60F, 0x487FFABAA3, 0x4933C06287, 0x4B33AF1D68,

0x4B8E8C8325, 0x4CAA13346B, 0x4CC8E9D70C, 0x555E3F2C66,

0x5B60A87580, 0x6E5D383C47, 0x72846C3DC6, 0x7F037562D1,
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0x85593AC66B, 0x95869CCC19, 0x95BE9D75B0, 0x9861CF79CB,

0xAA5EE396C7, 0xAB064FC84B, 0xAE0E7A6D11, 0xB7B637CE88,

0xBB700001A4, 0xBF59130A00, 0xC5FEE30092, 0xC64AAECF25,

0xC792FEF582, 0xD7949E0296, 0xD97FA5A05B, 0xD9C7D26DA2,

0xDADC5E55A0, 0xF00E1EE709, 0xFA6927AB64, 0x116E5877A5F,

0x11FA9BDE88F, 0x12CE488063A, 0x153396CE8B9, 0x16176286D7F,

0x1916AC68D8B, 0x1AE30160ABE, 0x1C12EDC6887, 0x1EECED39845,

0x20FA77B6198, 0x25ADB2A7F00, 0x29FCF2157BE, 0x2B9113D74AC,

0x2C86F62A975, 0x2E6D1299F27, 0x3339A137633, 0x35BFDAF2EE8,

0x3618C03CA54, 0x361E1C19B2B, 0x36A398D45A4, 0x3FFC02A11BD,

0x40E7E392E35, 0x41412A7F70F, 0x4826FE03356, 0x53A261801DE,

0x5484930D597, 0x593D7BD58BC, 0x59FE2F4F873, 0x5BBAA6A58FE,

0x5DAB3835122, 0x5F08BC242BA, 0x6ABFBC2445E, 0x6B3F37971BE,

0x78DBB4BDF60, 0x8381A2F7627, 0x8542432510C, 0x8C6A89E8ED2,

0x90F28994975, 0x93BC04B1649, 0xA03534A0BCB, 0xA1FEE705DFB,

0xB7327DD46B4, 0xBC8861C731A, 0xC478991D5EB, 0xDD8F4586376,

0x113AD619FEA1, 0x1148C4F4B8F5, 0x115C26BFB757,

0x130A56D5C215, 0x132E950DFE05, 0x14EFC3EA668C,

0x1606A971E0EB, 0x1962A7210FD3, 0x1B5175F4A818,

0x1F51361EB9D5, 0x1F9DE031EE40, 0x20CAC4B9F47A,

0x29916D58834C, 0x304560D1F50A, 0x3E1E552A5880,

0x3E6788EABB07, 0x4887775B1902, 0x4B4FE6BDC277,

0x4F63F965B986, 0x5029F848BA18, 0x52E309862EC4,

0x73ADCE40233E, 0x7DB1218A2F09, 0x82EB47A230E7,

0x8C2707ED4730, 0x8CAC61280D9B, 0xABFD9746C770,

0xFC278F8F8188, 0x11779058429A0, 0x166DCFEE9E326,

0x1F3896011F0C1, 0x21D1ACD6A740D, 0x29ACBEEF4A316,

0x346C9863B6A86, 0x442F115CAEC0E, 0x4C5DC5D6D1CF5,
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Curve Log2(r) Log2(p)
Pairing CPU cycles Time
function M FE extra Tot in ms

6.8.1 ∼ 254 ∼ 254 R-ate 4.5 3.2 0 7.7 3.088
6.12 ∼ 379 ∼ 512 R-ate 16.8 38.7 0.2 55.7 22.06
6.12 ∼ 379 ∼ 512 P. Lattice 24.5 38.9 0.1 63.5 25.16

Table 6.5: Timing the generated code

0x62CB95C57001B, 0x6A0672A972359, 0xCCD2086EE2374];

UserChainG2continue:=false;

load "autopairing.magma";

6.8.3 Timings

When the multi-precision library supports the desired elliptic curve and finite field arith-

metic, the code generator can compile a test bed with the pairing functions. One can force

to skip the compiling part with a “nocompile:=true;” statement before running the

generator. This is particularly useful when the requested curve or finite field arithmetic

construction has a significantly different construction for the irreducible polynomial than

the ones from the MIRACL library 6. In that case, please skip the compilation, assign your

own polynomial, and compile it by hand with the provided script when desired.

The first row in table 6.5 presents the timings for the BN curve: that’s construction 6.8,

negative version from the [FST10]. For that curve, the R-ate pairing was generated. The

second and third row is for the KSS k = 18 curve, with the R-ate and optimal pairing lattice

function.

The CPU cycles are described as follows: column M means the Miller function and any

other operation before the final exponentiation, the column FE is for the final exponentia-

tion, and TOT is the total. The data is presented in millions of CPU cycles per operation.

The last column is the number of milliseconds. Column extra denotes the operations around
6For further details, consult the vendor’s manual, or generate a curve and examine the code.
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the Miller loop and the final exponentiation, such as a line function, Frobenius operations,

exponentiations, etc.

To estimate the number of CPU cycles, we manually added the “ebats” code [eba] as

follows:

• We compiled the “cpucycles” code just after Miracl in the target computer.

• We added #include "cpucycles.h" in the corresponding PAIRINGFUNC-

TIONcCURVElLIBRARY.cpp file

• After the variables initialization, we got a snapshot of the current processor cycles:

long long ct2,ct3;

long long ct1=cpucycles();

• Just before the final exponentiation, we set up another check-point:

ct2=cpucycles()-ct1;

• Immediately after the final exponentiation, we got the final timing with:

ct3=cpucycles()-ct2-ct1;

ct1=ct3+ct2;

cout << "<"<<ct2<<","<<ct3<<":"<<ct1<<">"<<endl;

For the estimation of the time needed to compute the pairing we used the Bernstein

timing code for his “Writing really fast code” lab session [Ber] as follows:

In the ECAPcCURVElMIRACL.cpp:

• At the start of the file:

#include<time.h>

long long nanoseconds(void){

struct timespec t;
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clock_gettime(CLOCK_MONOTONIC,&t);

return t.tv_sec * 1000000000LL + t.tv_nsec;

}

• Surrounding the pairing function call:

long long t[20],tot=0; int i;

for (i=0;i<20;i++){

OK=Pairing(P,Qx,Qy,r,X,d2,d3,x,w1,w2);

t[i]=nanoseconds();

}

for (i=1;i<20;i++) tot+=t[i]-t[i-1];

tot/=19;

cout << "Time: "<< float(tot/1000)/1000<<endl;

The processor used for timing the code was an Intel(R) Core(TM) i5 CPU M 540 @

2.53GHz quad core, with 4 GB of ram.

The code was originally generated using an Intel(R) Pentium(R) 4 CPU 2.80GHz, with

1 GB of ram. The time needed to generate the code is minimal if we supply an addition

sequence for both the final exponentiation (see Chapter 4) and for the hashing to G2 code

(see Chapter 5).

The compiler managed to generate the code for a KSS curve with k = 36 using an

Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz with 3GB of ram. However, there are

neither the elliptic curve nor the finite field arithmetic available of writing to run the code.

With the corresponding addition sequence supplied for both the final exponentiation

and for hashing to G2 code, the code generation, particularly the optimisation of the code

for the hashing to G2, took several hours. The time taken was consumed in the sorting

stage of the bi-dimensional matrix containing the code, which is used for optimizing it and

reducing the temporary variables.
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Library CPU cycles Time
PBC 160.22 53.37 ms

Our implementation 10.85 3.63 ms
MIRACL 9.24 3.17 ms

Table 6.6: Comparison of the generated code, BN curves. CPU cycles in millions.

A shorter addition sequence than the initial sequence took around 24 hours to be cal-

culated, using an Intel Core 2 Duo processor (a few hours to get modest results). This was

impossible to perform using a Pentium 4 system due to the low memory resources available.

Depending on the structure of the family of curves, the R-ate pairing code generation

can take several seconds, as two pairing operations are taken in place to verify the bilinearity

of the parameters [LLP08]. This is not necessary when constructing the Optimal Pairing

Lattice.

A comparison of the timings from the automatically generated code (for the MIRACL

library), with the general purpose PBC library [Lyn], and with the highly optimized hand-

written implementation bundled with the MIRACL library is now presented. For compar-

ison purposes a BN k = 12 curve at the 128-bit security level was chosen. Please note

that the overall operation count for the MIRACL implementation is very close to that re-

ported recently by Beuchat et al., [BGM+10] in their recent record setting implementation

(although the latter uses a significantly faster specially tailored implementation of Fp2 arith-

metic). The timings were collected on an Intel Core 2 Duo E6850 3GHz and are presented

in table 6.6.

This demonstrates the validity of our approach, and shows that automatically generated

code is nearly as fast as carefully hand-crafted code, and is significantly faster than a generic

pairing implementation.
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6.9 Final Thoughts

We have adapted and created several construction methods for automatically generate cryp-

tographic pairing functions code to ease the job of the protocol implementer.

The generated code uses a slightly larger number of variables in the overall pairing

computation compared to hand-written implementations.

Our tool shows that automatically generated code is nearly as fast as carefully hand-

crafted code, as it was shown in section 6.8.3, the generated code is competitive in terms of

speed and the number of CPU cycles. There are very few places where the generated code

can be improved, however those check-points depend on the multi-precision library, as they

use characteristics very specific to the programming language that may not be generalised.

The generation time for the addition sequence in some cases can be very long, but as it

was shown for a particular case in Chapter 3, it can be worth the wait.

This work can be extended to other multi-precision libraries or for its use over a set

of specialized hand-crafted functions. An interesting target library would be one based

on JavaME. We also recommend as a future work, the inclusion of automatic finite field

arithmetic generation.

Extra tuning by hand can be done to close the gap against the speed record of the specific

multi-precision library we are generating the code.

For example, our generated code for the MIRACL library took around 3 milliseconds

to compute a pairing, the MIRACL library also took around 3 milliseconds. If we add

support for a set of functions that takes around 1 millisecond to compute the pairing, then the

compiler will produce code that also would take approximately 1 millisecond to compute

the pairing, as the finite field and elliptic curve arithmetic will be the same.
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”Never before have so many people with so little to say, said so much to so few.” –

Despair, Inc., paraphrasing Winston Churchill in the context of blogging.

THE PhD process began with an exploratory exercise in a joint work with

Kachisa and Scott [DKS]; we were looking for missing parts or inefficient

methods occurring in the implementation of pairings. Our main idea was

to create a tutorial in Magma for those interested in the implementation of cryptographic

pairings.

With the exploration of the R-ate pairing, I discovered the possibility of computing

the pairing function in parallel. Since the R-ate pairing may require several Miller loop

functions, we may find an (A,B) pair that, in total, requires a larger number of Miller

loop iterations, but where the individual Miller loops are short; if they can be executed in

parallel, then we could produce a shorter R-ate pairing.

In addition to our Magma tutorial, I also developed an online version, to demonstrate

the implementation of a pairing function for people without access to a Magma license.

The final exponentiation is a critical part of the Tate pairing function family, whose

previous implementations were not exploiting the fact that we have a polynomial represen-

tation of the parameters of the curve. Our new method exploits this fact and with the use of

the Frobenius exponentiation we can get a fast implementation. Our method can be applied

to any family of pairing-friendly elliptic curves [SBC+09b]. This method, the result of joint

work with Scott et al., also uses addition chains to speed-up the multi-scalar exponentiation

of the hard part of the computation.

Efficiently hashing a random point to a group G2 of order r was previously achieved

with the use of sliding windows, the diverse NAF techniques or with the simple scalar-point

multiplication. Our method, published in Scott et al. [SBC+09a], uses a similar approach to
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the final exponentiation method; however, we make use of the endomorphic map suggested

by Galbraith and Scott [GS08]. This resulted in a speed-up that was significantly faster than

the traditional method.

The two operations for performing the final exponentiation and for the fast hashing to

G2 require several exponentiations in their respective groups of data, and arithmetic laws:

Finite field or elliptic curve arithmetic. I used Artificial Intelligence techniques to find an

addition sequence used to perform these exponentiations. I have implemented an Artificial

Immune System based on the Cruz-Cortez et al. method [CCRHC08] for our project, and

for comparison purposes I implemented a second algorithm based on simple but fast bit-

XOR operations. None of these algorithm are perfect. The binary method gives a single-run

solution whose output cannot be feedback to get an improved with the same method, while

the artificial immune system may take from milliseconds to several hours to get a reduced

sequence.

This method, which was presented in [DS09], produces short addition sequences with-

out requiring tedious pen-and-paper computation.

The main contribution is the creation of a cryptographic compiler, which generates the

pairing function and supportive code in either Magma, C or C++ programming language.

The compiler is competitive against hand-crafted implementations as we produce code al-

most as fast as hand-made code. It should be possible to achieve a faster implementation

with the use of finite field and elliptic curve arithmetic highly tied to a specific CPU pro-

cessor.

A mini-language defining the operations would be a good idea to make the code gen-

erator more flexible for future improvements in the pairing function. This mini-language

would translate the instructions into the target programming language and multi-precision

library. I believe this is possible to do in a future and it will lead to code constructions with

a smaller foot-print or with the inclusion of mid- or low-level optimisations.
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Open Problems

Since the R-ate pairing may require several Miller loop functions, one may find an (A,B)

pair that, in total, generates a longer number of Miller loop iterations, but that the individual

Miller loops are shorter; if they can be executed in parallel, then we can produce a shorter

R-ate pairing, but no combination with such characteristics has been discovered so far.

The online tutorial is an ongoing work. In a future version, I intend to include support

for other pairing-friendly elliptic curves; displaying the timings of the computations in sec-

onds, in addition to the relative timings; better support for the exponentiation method; and

a better comparison of the implementation, as well as presenting the full Magma code in a

downloadable version.

Future work on the final exponentiation will seek to optimise the number of exponen-

tiations, which can be expensive in some cases as it uses a lot of temporary storage. For

families of curves with a larger addition sequences, such as the KSS curves with embedding

degree k = 36 which are suitable for very high security levels, an addition sequence would

require a particularly enormous temporary space.

Currently the compiler was not able to produce a short addition sequence for the final

exponentiation of the KSS family of curves with embedding degree k = 36. Exploring other

mechanisms for the addition chain construction, particularly the addition of more elements

of the Auto Immune System and Artificial Intelligence is an interesting future work.

The work done in the compiler can be improved by refining the use of the computational

paradigms here presented.

In particular, it would be interesting to replace the hand-crafted parts of the code gener-

ator with generic instructions and a set of instructions using a designed syntax, as it would

make our compiler more flexible. This task would require not only the implementation of

more parsers, but also I believe that a neutral grammar needs to be defined and probably a

primitive language to associate the pairing operations to the corresponding multi-precision

library, which opens the possibility of further improvements specific to the library.
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The main limit of the compiler is the need of an implementation of the elliptic curve

arithmetic and the finite extension field arithmetic corresponding to several others embed-

ding degrees. In particular, I am interested in the construction of the KSS family of curves

with embedding degree k = 36, which requires elliptic curve arithmetic over Fp6 . I believe

that it is possible to extend the code generator to include an automatic finite field arithmetic

generator, which can be used in conjunction with the generated code if there is no arithmetic

defined for the target curve.

—•—
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A EXAMPLE PARAMETERS OF THE CURVE

A.1 Hamming Weight

The values presented at Table A.1 are proposed x-parameters with low-Hamming weight

for several security levels.

# k HW(x) ID p mod 8 Log2(p) Log2(r) x-parameter
Approximate 128-bit security level

1 12 4 6.8.1 3 254 254 0x4000000000820001
2 12 2 6.8.1 1 262 262 0x10000040000000000
3 12 4 6.8.1 3 254 254 0x4000000020002001
4 12 3 6.8.1 3 254 254 0x4080000000000001

Approximate 192-bit security level
5 18 6 6.12 1 508 376 0x100400000010000A4
6 18 6 6.12 1 508 376 0x100600000C0000004
7 18 7 6.12 5 508 376 0x100000048000AC000
8 18 12 6.12 5 512 379 0x16500000000209528

Approximate 256-bit security level
9 36 8 6.14 3 596 496 0xC00010D0108

10 36 8 6.14 1 588 489 0x802084002A1
11 36 9 6.14 7 588 489 0x80C0005802C

Table A.1: Useful Low Hamming-Weight Values

The x-parameter from row number 4 is the BN curve discovered by Nogami et al.

[NAS+08]. Row 8 is included as part of the Miracl library, from Scott [Sco].
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ELLIPTIC curve cryptography is becoming the standard public-key primitive

for applications. Advantages are the higher security per bit in comparison to

RSA, and the faster implementations. The National Institute of Standards and

Technology (NIST) has a signature standard specifying elliptic curves for several security

levels which are now among the best studied curves from an implementation perspective.

Their security, however, is less well understood. In particular, for each security level, three

curves are given, suggesting that all three curves have the same security level. One of the

curves, however, is a randomly chosen curve over a field of characteristic 2, while another

curve is a Koblitz curve over the same field. The Koblitz curve has an efficiently computable

endomorphism that can be used for faster implementation than a random curve, but can also

be used to speed up attacks. While it is known that these curves are somewhat weaker, the

exact loss of security is unclear and needs to be studied experimentally.

The ECDLP has received a lot of attention since the suggestion of elliptic curves for use

in cryptography by both Koblitz and Miller independently in the 1980s. In 1997, Certicom

issued several challenges [Cer] in order “to increase the cryptographic community’s under-

standing and appreciation of the difficulty of the ECDLP”. The Challenge is to compute the

ECC private keys from the given list of ECC public keys and associated system parameters.

This is the type of problem facing an adversary who wishes to completely defeat an elliptic

curve cryptosystem. This Challenge will help confirm comparisons of the security levels of

systems such as ECC, RSA and DSA that have been based primarily on theoretical consid-

erations. Our team [BBB+09b] also hope that it will provide additional information to users

of elliptic curve public-key cryptosystems in terms of selecting suitable key lengths for a

desired level of security. Breaking a specific system will give the community a realistic

estimation of the resources required for an attacker to get the EC private keys. Level I chal-
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lenges are meant to be computationally feasible with current technology and knowledge,

Level II challenges are believed to be computationally infeasible. Using the appropriate

resources and technology, a negative result may suggest that current ECC parameters are

stronger than believed, and the security parameters may be changed accordingly.

The challenges over fields of size less than 100 bits were posed as exercises and have

been solved quickly. All challenges over fields of 109 bits have also been solved, with the

last one being solved in April 2004 in a distributed effort. The next open challenges are

over fields of size of 131 bits. In particular there are two challenges over a curve defined

over F2131 and a third challenge for a curve over Fp, where p is a 131-bit prime. Of the two

curves defined over binary fields, one is a Koblitz curve [Kob91], that is, its coefficients

are drawn from F2. Koblitz curves are of interest for implementations because they have

particularly efficient scalar multiplication. The NIST has standardized elliptic curves for

several security levels; for each of these levels one Koblitz curve and one curve over a

prime field is given. It is therefore very important to have a clear understanding of the

security of these curves.

It is commonly believed that the strongest attacks against the ECDLP are generic attacks

based on the Birthday Paradox. Improvements by Wiener and Zuccherato [WZ98], van

Oorshchot and Wiener [vW99], and by Gallant, Lambert, and Vanstone [GLV00] showed

how the computation can be efficiently parallelized and how group automorphisms can

speed up the attack.

Bailey et al. [BBB+09a] improved these theoretical attacks on elliptic Koblitz curves

and have highly optimized implementations for a challenge problem posed by Certicom.

The challenge is to solve a DLP on the curve ECC2K-130, a Koblitz curve over F2131 .

There is a certain amount of prestige associated with carrying out a successful attack on this

reasonably strong standard curve. In principle, there is no difficulty predicting the average

speed of the attack, it should take
√
π2131/(2 · 4 · 131) iterations — but it is not known

how long these iterations take and how exactly they are done. In particular it is unclear

how the step function in Pollard’s rho method [Pol78] should be chosen to avoid fruitless

152



Certicom Challenge Methodology

short cycles and how to define the step function to work on orbits under the automorphisms.

Certicom’s documentation consequently states that one of the objectives of their challenge

is “to determine whether there is any significant difference in the difficulty of the ECDLP

for random elliptic curves over F2m and the ECDLP for Koblitz curves.”

B.1 Methodology

Step 1. As the Certicom challenge would require a huge amount of computational power,

the attack should be distributed among several clusters around the world. Our team has fine

tuned the field arithmetic in F2131 needed to run the attack, improved the choice and analysis

of the iteration function in the parallelized Pollard rho attack, improved the communication

infrastructure for the distributed attack, and fine-tuned the implementation of the attack on

a multitude of platforms, covering different CPUs, the Cell Broadband Engine, Graphics

Processing Units (GPUs) and Field Programmable Gate Arrays (FPGAs).

Our team have gathered access to several other clusters of CPUs, Cells, GPUs and

FPGAs and are currently attacking the ECC2K-130 challenge; we (anonymously) report

progress on the attack at www.ecc-challenge.info. Our estimate is that the attack

will be finished this year, which means that we are taking up Certicom’s claim “The 131-

bit Level I challenges are expected to be infeasible against realistic software and hard-

ware attacks, unless of course, a new algorithm for the ECDLP is discovered” (see [Cer,

p.22,p.23]).

The job of each client around the Internet is to compute pairs (s, h) and send those pairs

to the (8) central servers. Here s is a random seed, and h is the hash of the corresponding

distinguished point.

Each client sends a stream of reports to each server. The client buffers 64 reports for

the server; collects the 64 reports into a 1024-byte block; adds an 8-byte nonce identifying

the client site, the stream (for sites sending many streams in parallel), and the position of

the block within the stream (0, 1, 2, etc.); and sends the resulting packet to the server. The

server sends back an 8-byte acknowledgement identifying the client site, the stream, and
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the next block position.

Step 2. At the server side, given enough data from the clients, the servers will find the

desired discrete logarithm from the gathered data. The servers each have enough room for

237.8 (s, h)-pairs.

B.2 Technical Requirements

The code is “embarrassingly parallel” and requires very little communication and memory

between the cores. It can be run in the background and use idle time. The program generates

a small but steady stream of useful results, approximately 256 bytes per minute on a typical

CPU core, to be reported to a small group of central servers. Check-pointing the program

is fast and requires only about 256 kilobytes of storage per CPU core.

B.3 Running the Attack from Ireland

The code for the attack is written in C/C++. It is not dependent on a specific number of

CPUs but adapts to the number provided by the scheduler. There is no dependency between

nodes during execution. This limited communication between nodes limits the network and

memory loads.

Shared access were granted to the Stokes cluster at ICHEC [ICH] for a total of 500,000

cpu-hours. This cluster has 2560 cores in 320 nodes (each computer node has two Intel

(Harpertown) Xeon E5462 quad-core processors and 16GB of RAM). There is a total of

5120GB of RAM available for jobs.

The nodes are interconnected via two planes of ConnectX Infiniband (DDR) providing

high bandwidth and low latency for both computational communications and storage access.

Storage is provided to the compute nodes via a Panasas ActiveStor 5200 cluster with 84TB

(formatted) of capacity using the PanFS filesystem.

Using the ssh facility to connect to the ICHEC [ICH] inside the HEAnet network [HEA]

and submit the jobs for execution. The ICHEC cluster uses the qsub command, which are
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submitted via a PBS file.

Since the code is embarrassingly parallel, we can request any number of cores in the

cluster 1. To increase the chances of getting a job in the queue to be active, we restricted a

job to 128 cores and 24 hours of execution. The service level provided permits up to 256

cores, but, in empirical tests, a job of small size is usually moved forward in the jobs queue;

however, we prefer a job size handy enough for micro-managing the attack: this comprises

1 or two connections per day to the cluster, 1-3 jobs always in the queue, and one results

upload process per week.

There are days when there is no active job; this is a shared cluster that depend on the

demand of other users. The output data was around 90 MB of effective data every per week.

The following is the system usage of a single 128 core job running for 24 hours. The

job shown has been working for almost 17 hours working.

ldominguez@stokes1:˜> qutil -j 236304

================================================================================

Job No: 236304 Queue: ShortQ Username: ldomingu Time: 16:50 / 24:00

Node | Load 1 | Load 5 | Load 15 | Mem Used (MB)

--------------------------------------------------------------------------------

M r4i1n15 8.01 8.02 8.00 262.8

r4i1n11 8.00 8.00 8.00 191.9

r4i0n1 8.00 8.00 8.00 173.4

r3i3n13 8.00 8.00 8.00 176.1

r3i3n7 8.00 8.00 8.00 182.4

r3i1n9 8.00 8.00 8.00 173.0

r1i3n10 8.00 8.00 8.00 186.2

r1i3n8 8.00 8.01 8.00 185.5

r1i3n3 8.00 8.00 8.00 175.0

r1i2n8 8.07 8.04 8.00 179.7

r1i1n11 8.00 8.00 8.00 207.0

r1i1n10 8.00 8.01 8.00 186.7

r1i1n5 8.00 8.00 8.00 203.4

r1i0n11 8.00 8.00 8.00 180.7

r1i0n10 8.03 8.03 8.00 189.9

1We can request nodes in multiples of 8, as required by the system.
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r1i0n1 8.00 8.00 8.00 203.4

Current efficiency = 1.00

Each core requires the following cpu cycles per iteration:

157695355606446 cycles for 274877908992 iterations; 573 cycles/iteration

90542150916 cycles (0.0574159%, high level) for 12958 reads; 6987355 cycles/read

963428441822 cycles (0.610943%, high level) for 2147650530 weights; 448 cycles/weight

155751883910343 cycles (98.7676%, high level) for 2147483664 ecs; 72527 cycles/ec

Currently, we have no peer-reviewed publication other than [BBB+09b] as we are still

awaiting positive results. The team expect to publish at a major conference on the comple-

tion of the attack.
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THE cryptographic pairing functions have received a lot of attention in recent

years. Particularly, the implementation issues associated with pairings have

been of particular focus. Recent work [DSD07, GS08, SBC+09b, BS09]

has focused on implementing pairings over the BN curves [BN06].

The BN curves are a well-known family of pairing friendly elliptic curves. They are

easy to implement and are suitable for 128- and 192-bits security levels [FST10]. They

are not the only family of curves suitable for pairings; there are numerous other construc-

tions, including the new families of pairing friendly elliptic curves introduced by Kachisa,

Schaefer and Scott in [KSS08].

In [DKS], Dominguez, Kachisa and Scott analysed some issues related to the imple-

mentation of pairings over the KSS family of curves with embedding degree k = 18. We

decided to present an online tutorial to help the reader of the paper to understand the con-

cepts.

From Duhrkopf [Duh93], a tutorial should be constructed as a computerized course, an

online version of a book or article, with the same chapters. It should include links to the

source. Also, some graphic media, such as graphs or videos may be included. The most

important part is that it must include interaction: if a question is not answered correctly, a

link to the corresponding topic should be provided.

It is not practical to ask the reader to implement the pairing function to determine his

level of understanding as he may not have a copy of the Magma software, which was used

in the Dominguez, Kachisa and Scott paper. In a tutorial, we can show the reader how

the computation is being done, and provide some interaction, such as: what happens if we

choose this other polynomial? Can I have a different x-parameter of the curve? Is the Miller

loop at the R-ate function really the shortest?

157



Online Tutorial Introduction

This chapter is organized as follows: In §C.1 we explain the need for an online tutorial.

In §C.2 we introduce the Magma Online Calculator. In §C.3 the concept of Asynchronous

JavaScript and XML is introduced, and §C.4 presents the YUI library, which are a set of

technologies required to provide basic interaction and code execution for our online tutorial.

The construction of our tutorial is detailed in §C.5. A discussion on the computations that

are related to the user interaction is presented in §C.6. Finally, the closing remarks on this

tutorial are presented in §C.7.

C.1 Introduction

The result of joint work with Dominguez, Kachisa and Scott is a step-by-step tutorial where

the reader is able to take pieces of the code shown in the paper and try them directly on their

computer.

There was an issue with the tutorial, that the user required a license of use for the

Magma software, which not everybody can afford. This is a major draw-back as the code

presented is in Magma and its translation into another computer language will require some

expertise from the reader; whereas the target audience was not limited to expert computer

programmers, but more generally, for people interested in pairings [DKS]. Regardless of

this restriction, most of the code in the paper can be executed with the Magma Online Cal-

culator. The Magma Calculator is a webpage which hosts a small script which takes small

Magma programs and executes them. This service, however, is restricted to 20 seconds of

computation and has a memory limit. Unfortunately, some parts of the tutorial require more

computing time than the 20 seconds allowed in the webpage, hence, we decided to create a

small web site where all of the related computations can be executed.

To access the online tutorial, please visit the Implementing Cryptographic Pairing, the

Online Tutorial website at: [Dom09]. To retrieve a copy of the tutorial, please refer to

[DKS].
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Figure C.1: Screenshot of the welcome screen.

C.2 Magma Online Calculator

The algebraic computer system Magma is designed to provide a software environment for

computing mathematical structures. The software lets the user define his own structures

presenting a playground where one can test many types of maps and transformations, po-

tentially to discover new properties on them. Magma is also the programming language

used to interact with the computational system. The language is interpreted, and the Magma

distribution is the only implementation of the language available.

Magma is a non-commercial system. However, they are not sponsored and require a

means to recover the costs incurred through the elaboration and maintenance of the system;

Magma therefore requires the purchase of a license. For an educational institution, the cor-

responding price is attractive and should represent only a minor cost for any university. For

those who cannot afford it, there is a student version available and also a special discount to

universities located in newly industrialized and developing countries, which should suffice

for its acquisition if desired. The student version, however, has some limitations which we

are not going to discuss in the present work. Finally, there is a preview version available
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online: the Magma Calculator.

The source code for a similar system is available online. We were able to setup our own

private Magma Online Calculator server with less restrictions: this gave us more time and

memory. There were two problems with this setup: Not only did the computer used have

less computing power than the Magma server, but we also believe that this is not covered

by the Magma license.

Nonetheless, we are allowed to make use of the Magma Calculator to any extent, as

long as we conform to the memory and time limits. We decided to construct an online

tutorial using the Magma Calculator for those who cannot afford a license themselves. This

tutorial is intended for demonstration purposes only.

Our tutorial will make use of the AJAX technology and the YUI library, which are

described in the following sections. The use of AJAX is because it permits to automate the

interaction of the webpage with the Magma Online Calculator, whereas, the use of YUI is

because of its maturity by the time of this research, as it will be pointed out later.

C.3 AJAX

AJAX is an acronym which stands for Asynchronous JavaScript and XML. AJAX is not

a technology, but a set of several technologies, such as XML, XMLHttpRequest, CSS and

DOM, combined with JavaScript [Gar05a].

Here, we introduce the components of the AJAX technology [VH07]:

Definition 32. The Extensible Markup Language (XML) is a W3C recommendation for a

general purpose markup language that has no predefined tags. It is a simplified subset of

the Standard Generalized Markup Language (SGML).

Definition 33. An XMLHttpRequest is a JavaScript class with specific protocols and meth-

ods which allow HTTP requests in JavaScript code and it is available in most internet

browsers.
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Definition 34. A Webservice is an extension of the client/server paradigm to the web. The

details of a webservice are not relevant to this thesis.

Definition 35. The Cascading Style Sheets (CSS) allow the definition of styles for the ele-

ments of structured documents which may make use of XML.

Definition 36. The Document Object Model (DOM) is the description that tells the browser

how to represent HTML elements as a tree structure of objects.

We can produce applications in the client/server model using the internet browser as

the client side. Traditionally, an internet browser was used to interact in a server-side

paradigm. With the advent of the AJAX technologies it is possible to implement a clien-

t/server paradigm with an internet browser as a client. Traditionally, this was possible with

the use of external plug-ins, such as ActiveX, Adobe Flash, or Mozilla Chrome.

As mentioned in the previous section, a user without a Magma license cannot use to

the full extent the tutorial we developed; a client/server model does not seem appropriate to

this scenario.

Using the Magma Online Calculator we can execute some Magma code, but in a very

limited way, and so, following the examples in our tutorial using the online calculator would

be painful. It is, however, possible to automate the use of the Magma Online Calculator

to run the examples from our tutorial. A client/server model can be implemented, where

the client is our internet browser, and with the use of the AJAX technologies have some

interaction with the examples. We leave the interaction with the Magma Online Calculator

to the client side. This way, the reader is able to try the examples from our tutorial without

the difficulty that prevents the use of programs that do not fit the restrictions of the online

calculator.

We stress that the intention of our client is to demonstrate the pairings in Magma and

we encourage the reader to construct more complex programs, which will require a full

Magma license.
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C.4 YUI

YUI stand for Yahoo! User Interface Library. It is an open source collection of utilities and

controls. It is written mainly in JavaScript but there is also some code in CSS [Wel08].

The use of a JavaScript library can save the web developer a great amount of effort and

hides some of the tricky parts of the AJAX program implementation. Since the focus of

this research is not web programming, we decided to use an already established and mature

library.

When we started the design of our online tutorial (2008), YUI appeared to be the most

mature of the free AJAX libraries.

Our implementation of the tutorial is based on YUI 2.0. At this time YUI 3.0 (which is

the current version) was already available. However, since it was an early beta version we

took the mature option. This version of the library was already well documented.

C.4.1 YUI Structure

The core of the YUI library consists of the following three components:

• Yahoo Global Object,

• DOM collection,

• Event utility.

The Global Object establishes a namespace where all of the operations are linked as a

whole application. DOM collection permits access to the elements in their class or context,

and handles the details of the different implementations of the DOM in the different internet

browsers, which varies from vendor to vendor.

In addition to the core elements, we used the following plug-ins:

• Paginator,

• Panel container,
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• Dialog.

Paginator

The purpose of the Paginator Control is to reduce the size of a webpage by breaking large

sets of data into discrete pages. It offers a control to navigate around the mini-pages [Yah].

In the case of our tutorial, we decided to use the Paginator to separate the different

stages of the implementation. The parts we defined for our project are as follows.

1. Welcome.

2. KSS Curves.

3. Security level.

4. Curve Generation.

5. Twist of a Curve.

6. Sextic Twist.

7. Irreducible Polyno-

mial.

8. Point Generation.

9. Tate Pairing.

10. Pairing Execution.

11. The ate pairing.

12. Frobenius map.

13. Pairing Execution.

14. R-ate pairing.

15. Pairing Execution.

16. R-ate pairing con-

struction.

17. Final Exponentiation.

18. Hashing to G2.

19. Multiexponentiation

in G2.

20. Comparison.

21. Conclusion.

The purpose of the sections are either to explain or compute something in the tutorial,

and to organize the online tutorial with the same structure as the paper version of our tuto-

rial. Each page, or slide, is contained in separate HTML/PHP files. In the case of slides that

require interaction with the server, for example: the pairing execution or curve construction,

comparison, etc., some extra code is needed.

Panel and Dialog Container

The Overlay control facilitates the creation of modular content absolutely positioned above

the page. The Panel container, which is derived from the Overlay control, acts as an oper-

ating system window where we can position other elements.
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Figure C.2: Screenshot of the paginator

(a) Panel overlay (b) Dialog

Figure C.3: Screenshot of the Panel and Dialog

In the case of the tutorial, we place a panel overlay on top of the screen when the

computations are being executed by the remote server. This way we avoid queuing the

server while there are computations taking place.

The dialog lies on top of the panel and it is used in the tutorial to interact with the user

mainly reacting to illegal operations, such as: trying to generate an elliptic curve before

defining its parameters, or requesting a comparison of the three pairings supported before

they are actually constructed.

C.5 Our Construction

For the tutorial construction, we followed the requirements from [Yah] for setting up the

basic environment: inserting the links for the JavaScript code, the CSS files, the plug-ins,

and the setup of our YUI webpage environment.

We defined an “id” for each individual slide and defined the variables to store our com-

putations: the x-parameter, the field size, the subgroup, the equation of the elliptic curve

(the b parameter), the irreducible polynomial, the points and the parameters of the R-ate
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pairing. For simplicity, the variables to store are defined as plain text. Since the tutorial is

meant to be consulted using a computer or a high-end internet device, memory consumption

is not an issue here.

As mentioned before, the Magma Online Calculator has a time and memory space re-

striction. In the beginning, we find the parameters of the curve in the initial slides. The next

computations constructs the corresponding function with the already stored parameters in

the client (the internet browser, in plain text). For example, once we have obtained an x-

parameter and an irreducible polynomial, computing a pairing will require the construction

of a magma program which includes the finite fields, explicitly expressed, and a random-

ization of the points involved. For the code construction, we used a similar approach as in

2.8.4 and send the code to the server using an XMLHttpRequest.

C.5.1 The XMLHttpRequest

In Listing C.1 we present the preparations for the code execution. The virtual HTML ele-

ment with “id=entrada” contains, at that point, the code in Magma to be executed by

the server. We added, at the end of the element “(d.value+=. . .)”, the instructions of

what to do with the code, in this case we are requesting the generation of a KSS k = 18

curve and for the parameters to be stored into the Magma Calculator memory, following a

“Sprintf” command with the formatted output to retrieve them.

Listing C.1: Preparing the XMLHttpRequest

if(httpObject.readyState == 4){
document.getElementById("entrada").value = httpObject.
responseText.replace(/put/g, "");
var d=document.getElementById(’entrada’);
d.value+=’\np,r,t,c,x,h:=KSSCurves(’+old+’,’+nextbX+’);Sprintf("<
p:%o>\n<r:%o>\n<t:%o>\n<o:%o>\n<x:%o>\n<h:%o>",p,r,t,c,x,h);’;
getAnswer(setAnswer3);

}

The code delivery and interaction with the Magma Calculator is done by our webserver

and not by the client itself, this is because we are implementing a multi-layer client/server

environment. We need this computing model because it is a common well-known practice
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to hide the computer network in a company inside a proxy server, and the requests may not

go through the network restrictions of the end user. The function “getAnswer” uses the

code at Listing C.2 to send the requests and to receive the responses from the Calculator.

Listing C.2: The XMLHttpRequest and Response

ini_set(’display_errors’,1);
error_reporting(E_ALL);
require_once "../HTTP/Client.php";
$headers=’’;
$params[’proxy_host’] = ’your proxy’;
$params[’proxy_port’] = 21;
$client = &new HTTP_Client($params, $headers);
$client->enableHistory(false);
if (strcmp($_POST["commands"],’’)) {
$to_post=array(’commands’=>$_POST["commands"]);

} else {
$to_post=array(’commands’=>’x:=1;x;’);

}
$client->post( "http://magma.maths.usyd.edu.au/calc/",$to_post );
$resp = $client->currentResponse();
$body = $resp[’body’];
$found=array();
preg_match_all("/id=\"output\">(.*?)<\/textarea/smU", $body, $found

);
echo $found[1][0];

The code in Listing C.2 shows how can we have a proxy server within our internal

network. It is a common well-known practice in IT departments to stop traffic leaving the

network from web scripts. This way, in case of an infection, we prevent the malicious code

attacking external sites. In this case, the code connects from and into our local network,

which is safe. Typically, the local network is only actively monitored by the company’s

proxy server upon suspicious activities. It is safe to use the network resources from our

script as this is a constructive use.

The “proxy host” and “proxy port” varies from network to network and must

be changed prior the use. The reader who would like to implement his own online tutorial

should ask to their IT department for further details. We hand-coded the link that points to

the Magma Calculator, but it can be easily changed into something else.
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C.5.2 Reading the Output

The output code from C.1, requires the use of regular expressions. This is supported in

JavaScript and creates no major issue for the programmer. We include the Listing C.3,

which shows the typical code for extracting the response from the server. The first line

detects the error messages sent from the server and terminates the execution of the script.

Line 4 breaks the response into a matrix, each containing one output value. The next lines

assign the elements in the matrix to their corresponding variable. In the few last lines of the

code we assign a null value to the variables.

Listing C.3: Parsing the output response from the Magma calculator

if (e.match(/WARNING/g)) { terminate(); alert(’Please, try with
another x-parameter’);}

else {
e=e.match(/<\w:[0xA-F\d]+\s*[0xA-F\d]*\s*[0xA-F\d]*\s*[0xA-F\d]*>/g
);

ec_p=e[0].replace(/\D*/g,"").match(/\d+/g);
ec_r=e[1].replace(/\D*/g,"").match(/\d+/g);
ec_t=e[2].replace(/\D*/g,"").match(/\d+/g);

...

ec_b=null;
ec_chi=null;
ec_P=null;
ec_Q=null;

C.5.3 Displaying the Results

Once the computation is finished, we can later assign the corresponding values into the

DOM structure of our web page: “oCell.innerHTML=ech;”. In this example, the

JavaScript code writes the Hamming weight h into a cell in a table.

The code shown in Listing C.4 is invoked every time the user enters the Security Level

slide from Table C.4.1 if we already have computed the parameters of the curve. This

code is only for displaying purposes and makes no computation. The “wrapping2(.)”

function in the second last block of code of the listing is just to ensure that the value stays

inside the table. See Figure C.4 for a sample output.
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Listing C.4: Displaying the results from the computation

function showprtcx(){
var d=document.getElementById(’idSlide’);
d.parentNode.removeChild(d);
d=document.createElement(’p’);
d.setAttribute(’id’,’idSlide’);

var vTable = document.createElement("table");
vTable.setAttribute(’border’,’1’);
vTable.setAttribute(’cellpadding’,’1’);
vTable.setAttribute(’class’,’results’);
vTable.setAttribute(’width’,’80%’);
vTable.setAttribute(’style’,’table-layout:auto’);

...

var vTBody = document.createElement("tbody");
oRow = document.createElement("tr");
oCell = document.createElement("td");
oCell.setAttribute(’style’,’text-align:center’);
oCell.innerHTML=’p(x)’;
oRow.appendChild(oCell);
oCell = document.createElement("td");
oCell.innerHTML=wrapping2(ec_p);
oRow.appendChild(oCell);
vTBody.appendChild(oRow);

...

vTable.appendChild(vTBody);
d.appendChild(vTable);
document.getElementById(’elementpage’).appendChild(d);

}

Figure C.4: Screenshot of the displayed stored values
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C.6 Internal Comparisons

One of the purposes of the online tutorial was to benchmark the pairing construction for

the parameters of the user. The idea was to make evident how the choice of the parameters

affects the speed of the pairing computation.

In the actual version of the online tutorial, there are benchmarks for the following oper-

ations:

• Final Exponentiation,

• Hashing to G2,

• Multiexponentiation in G2,

• Comparison of pairings,

• R-ate pairing construction.

For the final exponentiation, we time our implementation, given in [SBC+09b], of the

computation of a particular pairing against a non efficient implementation of the same pair-

ing. For the hashing to G2, we timed the traditional way against our method [SBC+09a].

For the multi-exponentiation, we used the [GS08] method for the KSS k = 18 family of

curves.

The pairing comparison is done by comparing the Miller loop length of the Tate, ate and

R-ate pairings; this depends on the x-parameter chosen and the R-ate pairing construction.

Figure C.5: Screenshot of the Miller loop length computation for a random KSS:k = 8
curve.

Finally, the R-ate pairing comparison is done by calculating the different Miller loop

lengths. Figure C.5 presents a comparison of the Tate, ate and R-ate pairings.
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Figure C.6: Screenshot of the R-ate pairing comparison
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C.7 Final Thoughts about the Online Tutorial

This online version of the tutorial aims to demonstrate an actual implementation of a pairing

function. We have dealt with the problem of the end user not having a Magma license and

we have overcome the restrictions of the Magma Online Calculator.

Our online tutorial is an alive webpage. In a future version, we intend to include support

for other pairing-friendly elliptic curves, use seconds for the speed comparison, other multi-

exponentiation methods, among other ideas.

We have used a mixture of PHP and JavaScript code for the transmission of the data.

There is Magma code for the pairing function execution. The client stores the parameters of

the curve, field and pairing construction, and the user can modify the pairing construction.

Since the main page of the tutorial is based in JavaScript, anybody can view and down-

load it. The PHP code for the transmission is shown in Listing C.2. We stress that this code

can be used as a framework for constructing Online Calculators for other programming

languages.
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In this appendix there is a selection of functions, procedures and their input/output param-

eters from the code generator.
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Table D.1: List of functions with Input/Output description for the Code Generator

Filename Function name Input Output

getchain
getPos f element to find, c sequence i in f = ci

CreateVectorChain c proto-sequence, d = {1, 2} ∩ c vector e with solved elements, f = c∩{e}, sequence {e}∪f

approximatechain
max two elements elements u,d,v {u, d, v} ∩ min{u, d, v}

Approximatechain c chain w sequence

hypermutation

findPos f element to find, c chain i in ci ≤ f < ci+1

MyInclude e element, c chain c ∪ {e}

DirectSolvable e element, Cl sequence true if there exists some i, j such that e = Cli + Clj

hypermutation Cl sequence, r = low|high, c proto-

sequence

new Cl version containing upto 1 Cli not in previous Cl

AllSolvable Cl sequence Vector v containing vl = 1 if there is no such i, j that holds

Clk = Cli + Clj for 0 ≤ k < #Cl. f = #v

DetectUnused Cl sequence, c proto-sequence Vector v constructed as vi = 1 if Cli ∈ B, where A =

{Clk ∩ c} and B ∪ c for all k. If there exists n such that

Cli = An + Clj then A ∩ {Cli, Clj} and B ∪ {An, Cj}

for all n.

CountOperations Cl sequence A counter d for i = j and a counter a for i 6= j in Clk =

Cli + Clj

mutate
AtomicInclusion f element, C sequence, c proto-sequence C ∪ {Ci + Ci} if f − e = Ci + Ci and e ∈ C. If e 6∈ C,

but e = Ci + Cj then C ∪ {e, Ci, Cj}

Mutate M number of mutations to execute, G num-

ber of chains to mutate, c

proto-sequence, a #c × G matrix w with for all Wi = c &

c× n matrix s with the sortest elements.

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

vectorize
AtomicInclusion f element, C sequence, c proto-sequence C ∪ {Ci + Ci} if f − e = Ci + Ci and e ∈ C. If e 6∈ C,

but e = Ci + Cj then C ∪ {e, Ci, Cj}

Mutate M number of mutations to execute, G num-

ber of chains to mutate, c

proto-sequence, a #c × G matrix w with for all Wi = c &

c× n matrix s with the shortest elements.

getVector s sequence, c proto-sequence matrix with a generic code sequence for s

reduceterms

setpendings m× n matrix f with code sequence m×n matrix u with ui,j = 1 for every fi,j containing an xi

element.

countpendings m×nmatrix u, as output from the previous

function

#elements in u equal to 0

IsUsedBefore fe code sequence, i, target=tj , u as in the

previous function

true if the target element is used as a RH-value in fek , where

0 ≤ k < i

GetNext fe, u and i as in the previous function An element tj not used in fek , where 0 ≤ k < i

SetToCurr fe, u and i as in the previous function, tj

target, tk new element

For all fek containing tj ← tk , and corresponding uk ← 1,

where 0 ≤ k < i

getCurr Current i ti

getNewPrev m× n matrix u i if uij = 0

reduceterms fe code sequence fe with less distinct feij elements

generateCodeFE—CF *FMagma fe code sequence Corresponding Magma Code, used in the code generator

getximaxdegree λ as in Equation 4.3 max degree of xi

associateXiFEMagma *CFMagma λ as in previous function, c proto-sequence Magma code for the pre-computation, used in the codegenera-

tor

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

codegenerator

GenericAssign LH and RH operands, suffix position, opera-

tors, target library

LH← RH

GenericOperation LH, RH and RH2 operands, suffix position,

operators, target library

LH← RH ◦ RH2

Assign LH and RH operands, target library LH← RH

Accumulate LH and RH operands, target library LH + = RH code

Normal LH operand, target library Code for normalize a point

genericTransformation LH operand, suffix operator, operator, target

library

Code to Transform LH; i.e., -P

genericTransformation2 LH operand, suffix operator, operator, target

library

Code to Transform LH; i.e., psi(A,d2,d3,6)

AssociateXi λ as in AssociateXiFEMagma, c proto-

sequence

For every operand of a given λi, print a vector=[LH, degree of

the x exponent, sign of the exponent, degree of the Frobenius

operator]. For example, given: x3 = π2(−fx4
).fx7

, output

vectors:[[x3,4,-,2],[x3,7,+,0]]

getNextXiCode Partial codesequence, target library code to compute xi

getXiCodeM code sequence, element to output, target li-

brary

vector with code to compute

invertedElement xi element to invert, suffix position, operator

and target library

Inverted xi code; i.e., “negate(P)”

degreeElement same as invertedElement, plus a flag if we

need to invert the element

exponentiation code for xi

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

Precompute xi max degree, target library code to compute xi

Try-and-Catch xi max degree, total number of tj , target li-

brary

xi code with corresponding try-and-catch operators

Finalize Same as in previous function Finalize code; i.e., freeing memory, return value, etc.

getAllXiCode Code sequence, target library Magma code for the xi assignments, used by the code genera-

tor

tagXi Code sequence just-in-time macro instruction for the code sequence

getAllCode Code sequence, pre-computing code se-

quence, target library

Unified Code

WriteFEMagma xi and final exponentiation code a final exponentiation code loadable into memory

getparameterscurve

ham. Hamming Weight

getprtcx suggested x-parameter, n and b parameters

of the family of curves

p, r, t, c, x and the Hamming-weight of x

CurveGenA and B p, r, c parameters of the curve E,Fp, a, b in short Weierstrass form and a point

LowHamming
SearchLowHammingweightX M,level,p,r,t,n,b Low Hamming-weight x-parameter of the security level

GetRandomX level,p,r,t,n,b 2i + 2j + c of the desired security level

SetCF (p,k,t) defining the Elliptic Curve h, the cofactor

lambdaCF p,t,k λ

WriteCFMagma Same as WriteFEMagma but for hashing to

G2

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

Rewriter Input/Output code Filenames,k,d degree of

the twist,mt degree of the intermediate field

between the twist and the extension field, tar-

get library and elliptic curve

Code with template tags rewritten

Pack Compressed file containing the necessary code

getLineFunction

SetLineFunction Vectors containing Reversed Polish notation of the line func-

tion, and a table matching an arithmetic symbol to its operator

name

LookUpOperators o operators table, t search target i in oi = t

getLineCode Line code in reversed polish notation, Oper-

ator table, line function type, target library

vector containing line function

Towering

SetTowering Default extension field constructions

GetMidTower extension field construction, k extension degree between k and the twist

GetAlphaBeta ∆ discriminant, k, p, χ-parameter used by

Magma

Irreducible polynomial

WriteTowering Filename, Irreducible Polynomial File rewritten

GetToweringType extension field construction, k,twist quadratic then cube, cube then quadratic extension field con-

struction order of the fields

TowerDependant

RewritePSI Filename, extension fields, extension field

construction order, target library

psi function rewritten

RewriteH2 Filename, extension fields, target library H2 function rewritten

Rewrite ppowerfrobenius Filename, extension fields, target library p=power Frobenius function rewritten

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

TowerDependant Filename, extension fields, extension field

construction order, target library

See previous functions

getFinalExpo

getHex e element e in hexadecimal representation

RemoveOx e in hexadecimal representation e in implicit hexadecimal representation

WriteFinalExponentiation curve, extension fields, initialization code,

pre-compute code, code, finalization code,

target library

Final Exponentiation code

FinalExponentiation parameters of the curve, parameters of the

generator, user defined chain, Magma code

for the Final Exponentiation, target library

Final Exponentiation code

getFastHashing
WriteFastHashing Same as in the Final Exponentiation Idem

FastCofactor Same as in the Final Exponentiation Idem

getRatePairing

GetPreInitMap target library Initialize variables

ReusableMillerm2 R-ate parameters of the curve, x-parameter true if we can reuse intermediate values of the Miller loops

WriteRate Same as in the Final Exponentiation Idem

getIrreducible

GetnpFpd (p,k,t) defining the Elliptic Curve The number of rational points on the twisted curve over Fp3

GenerateFpk flag, finite field Fpd , polynomial χ The extension field

GenerateExtT flag, finite field Fpd ; a,b from the EC defini-

tion; polynomial χ

The EC in the twist (E′)

GeneratePointTw twisted and extended EC’s; polynomial ∆;

r, number of points

a point Q

Continued . . .
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Table D.1: (continued)

Filename Function name Input Output

GetIrreducible parameters of the curve Irreducible polynomial, and Elliptic curve and finite field ob-

ject for Magma

millerRGengood2 pairing (generic R-ate pairing) P ∈ G1, Q ∈ G2, R-ate pairing parameters

to test

GT

TiCombo GetTiTjCombo parameters of the curve m× n matrix containing the R-ate parameters

ChooseTiTj ChooseTiTj m × n matrix containing the R-ate parame-

ters

OptimalTiTj index for the previous matrix with the recom-

mended R-ate parameters

millerate and millerTate generic ate and Tate pairing to test P ,Q,r or t− 1 true if bilinear and non-degeneracy

WriteHardExpo WriteHardExpo Magma code for the Final Exponentiation File written

The End179
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ficient library for cryptography. http://code.google.com/p/

relic-toolkit/. One citation on page 38.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles,

Techniques, and Tools. Computer Science. Addison-Wesley, 1986. There are

2 citations on pages 39 and 103.

[Bab86] László Babai. On Lovasz lattice reduction and the nearest lattice point prob-

lem. Combinatorica., 6(1):1–13, 1986. There are 2 citations on pages 46

and 48.

[Bar] Paulo S. L. M. Barreto. Personal communication. One citation on page 50.

[BBB+09a] Daniel V. Bailey, Brian Baldwin, Lejla Batina, Daniel J. Bernstein, Pe-

ter Birkner, Joppe W. Bos, Gauthier van Damme, Giacomo de Meule-
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