
Pattern-based Software Architecture for Service-oriented Software Systems 1

Pattern-based Software Architecture for
Service-oriented Software Systems

Claus Pahl∗, Ronan Barrett∗

*School of Computing, Dublin City University

Claus.Pahl@computing.dcu.ie Ronan.Barrett@computing.dcu.ie

Abstract
Service-oriented architecture is a recent conceptual framework for service-oriented
software platforms. Architectures are of great importance for the evolution of
software systems. We present a modelling and transformation technique for
service-centric distributed software systems. Architectural configurations, ex-
pressed through hierarchical architectural patterns, form the core of a specifi-
cation and transformation technique. Patterns on different levels of abstraction
form transformation invariants that structure and constrain the transformation
process. We explore the role that patterns can play in architecture transforma-
tions in terms of functional properties, but also non-functional quality aspects.

Keywords: Service-oriented Architecture, Service Processes, Architecture
Specification, Design Patterns, Architecture Transformation, Web Services

1 Introduction

The development of distributed software systems based on service architectures is
rapidly gaining momentum. Service-oriented architecture (SOA) is emerging as a
new design paradigm and conceptual framework for distributed service-centric soft-
ware systems, supported by platforms such as the Web Services Framework (WSF)
[1]. Services are reusable software components that are explicitly described, pub-
lished and provided at fixed locations. Due to the ubiquity of the Web, the WSF
platform and SOA paradigm play a major role for software systems.

In service-centric distributed environments such as the Web services platform
that allows services to be invoked using Internet protocols, a notion of workflow
processes is central to capture service composition and interaction between services.
We present techniques to support, firstly, modelling of services and service-oriented
processes and, secondly, property-preserving transformations of service-oriented ar-
chitectures. In contrast to a variety of architecture approaches that focus primarily
on static, structural properties, we concentrate on dynamic dependencies in the
form of interaction processes between services. Our solution is an approach to the
architectural transformation of services, supporting the evolution of service-oriented
architectures. Three aspects characterise our approach:

e-Informatica — Software Development Theory, Practice and Experimentation, c©Wroclaw University of Technology

2 Pattern-based Software Architecture for Service-oriented Software Systems

• Architecture modelling using hierarchical patterns. A three-layered architec-
ture model addresses different levels of abstraction. Each layer is supported by
a pattern-based modelling approach for service processes. A service-oriented
architectural configuration notation that combines patterns and process be-
haviour in architectures forms the backbone. Patterns enhance reuse in SOA.

• Property-preserving architectural transformation. Based on the configuration
notation as the abstract description language for source and target architec-
tures, a transformation technique is developed. Patterns are considered as
characteristics of a service architecture that are, due to the implied reliability
and maintainability, worth being preserved in transformations.

• Distribution and quality-of-service. We investigate the role of distribution
for modelling and look at functional and non-functional service properties.
The integration of quality aspects into modelling is important for the services
platform, where providers and users are usually from different organisations.

We address the lack of behaviour and quality aspects in service-oriented architectural
transformations. Our patterns capture essential behavioural service dependencies in
the form of interaction process patterns and link these to quality properties. We
utilise patterns to capture these properties and allow these properties to be preserved
in transformations by identifying patterns as invariants. Formality is required to ob-
tain unambiguous models of process-based service architectures and to complement
modelling by analysis and reasoning facilities. Architectural change and integration
require a technique for process-oriented property-preserving transformations.

We introduce our architecture model and transformation technique in Section 2.
Pattern-based architecture modelling and specification, supported by the architec-
ture configuration notation, is addressed in Section 3. Architectural transformations
are defined in Section 4. Finally, we discuss related work and end with conclusions.

2 Architecture Model and Specification

Based on background definitions of service and software architecture, we now define
the principles of our architecture model and the core notation.

2.1 Service-oriented Architecture

The objective of software architecture is the separation of computation and commu-
nication. Architectures are about components (i.e. loci of computation) and connec-
tors (i.e. loci of communication). Various architecture description languages (ADL)
and modelling techniques have been proposed [4]. An architectural model captures

Pattern-based Software Architecture for Service-oriented Software Systems 3

common concepts in architectural description: components provide computation,
interfaces provide access and connectors provide connections between components.
In service architecture, the main emphasis is on the composition of services to work-
flow processes and on the overall configuration of services and service processes. For
instance, [20] use scenarios – descriptions of interactions of a user with a system –
to operationalise requirements and map these to a system architecture. We extend
the notion of interaction and also consider system-internal interactions and allow
interaction processes to be composite.

We focus on service architectures, i.e. service-oriented software architectures,
here. A service is usually defined as a coherent set of operations provided at a
certain location [1]. A service provider makes an abstract interface description
available, which can be used by potential service users to locate and invoke this
service. The Web Service platform provides description languages (WSDL) and
invocation protocols (SOAP) for this purpose. Services are often used ’as is’ in
single request-response interactions. More recently, research has focused on the
composition of services to processes [1]. Orchestration is the prevalent form of service
composition. Existing services can be reused to form business or workflow processes.
The principle of architectural composition that we look at here is process assembly.

2.2 An Architectural Configuration Notation

At the core of our architecture modelling and transformation technique is a concep-
tual architecture model. The objective of this conceptual architecture model is to
capture the core layering and structuring principles of service-oriented architectures.
The conceptual service architecture model (SAM), tailored towards the needs of
service- and process-oriented platforms, shall address the different abstraction levels
and perspectives in service-oriented architectures:

• Reference architectures are high-level specifications representing common
structures of architectures specific to a particular domain or platform.

• Architectural design patterns are medium-scale patterns – usually referred
to as design patterns or architectural frameworks.

• Workflow patterns are process-oriented patterns that represent common
data exchange-oriented workflow processes in an application domain.

Based on the architecture model, we define a notation for architectural specifica-
tion – the service-oriented architectural configuration notation (SAC) – that
has features of an abstract architectural description language (ADL). Two elements
define our transformation technique: a description notation to capture architectural
properties and rules and techniques for transformation.

4 Pattern-based Software Architecture for Service-oriented Software Systems

Various formal approaches to the representation of processes have been suggested
in the past, e.g. [3] using Petri nets. Process calculi such as the π-calculus [2, 9] are
suitable frameworks for architectural configurations of service- and process-centric
systems, i.e. support of modelling and transformation, due to their abstraction from
service implementation and their focus on interaction processes. The π-calculus,
a calculus for mobile processes, is particularly useful due to a similarity between
mobility and evolution – both are about changes of a service in relation to its neigh-
bourhood – which helps us to support architectural transformations. Our notation
is defined in terms of the π-calculus [2], but we want to firstly provide a less math-
ematical syntax and, secondly, allow the addition of further combinators to express
workflow and design patterns. A simulation notion captures property-preservation
and permitted structure and behaviour variations during transformation.

Our notation consists of process activities, combinators and abstractions, which
are summarised in Fig. 1. The basic element describing process activity is an action.
Actions π are combined to service process expressions. Actions of a service are
primitive processes divided into invocations and activations. Invocations inv x(y)
by a client of a service via channel x connects to the remote service, passing y as
a parameter. Activations receive rcv x(a) from a provider from other services
and the dual reply rep x(b), with channel x and parameters a and b. Based on
actions, process combinators are basic forms of workflow patterns. Sequences are
represented as P1;P2 – process P1 is executed and the system transfers to P2 where
the next action is executed. Exclusive choice means that one Pi (i = 1, . . . , n) from
choice P1,. . .,Pn is chosen, Multi-choice mchoice P1,. . .,Pn allows any number
of the processes Pi (i = 1, . . . , n) to be chosen and executed in parallel. Iteration
repeat P executes process P an arbitrary number of times. Parallel composition
par (P1,. . .,Pn) executes processes Pi concurrently. A(a1, . . . , an) = PA is a process
abstraction, where P is a process expression and the ai are free variables in P. A
variable is introduced using let x = π in P. Inaction is denoted by 0.

The semantics is defined in terms of the π-calculus [2], by mapping constructs
directly to π-calculus constructs. The actions are defined in terms of send x〈y〉 (for
invocation inv and reply rep) and receive x(y) (for receive rcv) of the π-calculus.
Combinators are defined through their π-calculus counterparts, except multichoice
mchoice P1,P2, which is defined as choice (A, B, par (A,B)) – essentially a
parallel composition of all elements of the powerset of the mchoice argument list.
The abstraction is the π-calculus abstraction.

3 Pattern-based Service Architecture Modelling

The architectural configuration notation SAC enables the modelling of pattern-based
service architecture configurations.

Pattern-based Software Architecture for Service-oriented Software Systems 5

Actions:
π ::= inv x(y) Invocation

rcv x(a) Activation – Receive
rep x(b) Activation – Reply

Processes – workflow combinators:
P ::= π Action

P1;P2 Sequential Composition
par (P1, P2) Parallel Composition
repeat (P) Iteration
choice (P1, P2) Exclusive Choice
mchoice (P1, P2) Multi-Choice

Processes – other constructs:
P ::= let x = π in Variable

0 Inaction

Abstraction:

A(a1, . . . , an) = PA with a1, . . . , an are free in PA

Figure 1: Syntactical Definition of the SAC Notation.

3.1 Patterns and Abstraction Levels

Architectural and design patterns are recurring solutions to software design problems
[6]. Although originally proposed for object-oriented development, their applicabil-
ity for service-based architectures has been demonstrated [8]. These patterns are
about structure and interaction and provide reusable solutions to commonly encoun-
tered design problems. We use patterns at different levels of abstraction – reference
architectures, architectural design patterns, and workflow patterns. We cover the
three layers of the architecture model SAM. Workflow operators for service processes
are directly integrated as operators. Architectural design patterns expressing ser-
vice interaction patterns can be formulated as a number of concurrently executing
processes. Reference architectures can be modelled at the level of abstractions.

Reference architectures, often emerge in an abstracted and standardised form
from successful architectural assemblies. Reference architectures define accepted
structures that help us to built maintainable and interoperable systems. Besides
domain-specific architectures, which we will illustrate in the case study section,
platform-specific reference architecture are important. Examples of classical Web-
based architectures are client-server architectures or three-tiered architectures.

Design patterns are recognised as important building blocks in the develop-
ment of software systems [6]. Their purpose is the identification of common struc-

6 Pattern-based Software Architecture for Service-oriented Software Systems

Client

sendRequest

Client

sendRequest

Dispatcher

registerService
unregisterService
getChannel

Dispatcher

registerService
unregisterService
getChannel

Server

acceptConnection
runService

Server

acceptConnection
runService

requestService

return

register
acceptConnection

requestConnection

Client = repeat (let requestServ = inv requestConnection()
in inv requestServ(resId))

Server = inv registerServ(id);
repeat (rcv acceptConnection(c); rcv requestServ(s);

rep requestServ(runService(s)))
Dispatcher = choice (

choice (rcv registerServ(id), rcv unregisterServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c)))

Figure 2: Pattern – the Client-Dispatcher-Server Architectural Design Pattern.

tural and behavioural patterns. A rich set of design patterns has been described,
which can be used to structure a software design at an intermediate level of ab-
straction. Usually, architectural patterns (such as model-view-controller) are distin-
guished from design patterns (such as factory, composite, or iterator) as the former
are linked to component frameworks. We see both forms as intermediate-level con-
straints on a system architecture, i.e. on services and on their interaction patterns.

Design patterns also play a role in the design of Web services architectures [8].
An example of an architectural design pattern in the Web services context is the
client-dispatcher-server pattern [8]. The pattern architecture with its interactions
is visualised in Fig. 2. The SAC notation adds behaviour specification to the static
view of UML class diagrams. It is a textual description, similar to UML activity and
interaction diagrams in purpose. We have used a UML class diagram to present the
abstract service interface and the service connectivity. Pattern definitions such as
client-dispatcher-server can act as building blocks of complex architectures. Patterns
are defined as process expressions and made available as process abstractions. These
macro-style building blocks can also form a pattern repository.

Workflow patterns are small-scale process patterns [10] – often at the same
level of abstraction as design patterns, but more focussed on data exchange. Work-
flow patterns relate to connector types that are used in the composition of services –

Pattern-based Software Architecture for Service-oriented Software Systems 7

Multimedia
Behaviour

Interaction Context

Learning
Preferences

Learner
InfoCatalog

Info

Query

Learning
Content

Locator
Locator

Assessment

DeliveryDelivery

Learner
Entity

Learner
Entity

EvaluationEvaluation

Learner
Records

Learner
Records

CoachCoach
Learning

Resources
Learning

Resources Learner
Info

Figure 3: Overview of the LTSA Reference Architecture.

we provide them as built-in operators. An example of a workflow pattern is the se-
quencing workflow pattern. Workflow patterns are small compositions of activities.
Workflow patterns for Web services architectures are described in [11].

To identify workflow patterns in an architecture specification is important since
often not all patterns are supported by the implementation language.

choice(A,B,C,par(A,B),par(A,C),par(B,C),par(A,B,C))

is an equivalent workaround to the multichoice workflow, needed if the implementa-
tion language does not support the multichoice pattern mchoice(A, B, C) – which
is the case with some WS-BPEL implementations [11].

3.2 Patterns and Quality

Patterns can influence a system’s quality characteristics such as understandability or
maintainability. For service-centric software systems specific properties arising from
the often distributed and cross-organisational context are of central importance.
The reliability of a system, the availability of services, and the individual service
and overall system performance are often crucial.

• The qualtiy benefits of the client-dispatcher-server pattern are: composition
is easy to maintain, as composition logic is contained at a single participant,
the central dispatcher. Low deployment overhead as only the dispatcher man-
ages the composition. Composition can consume participant services that are
externally controlled. Web service technology enables the reuse of services.

• The main disadvantages are: a single point of failure at the dispatcher provides
for poor reliability/availability. Communication bottlenecks at the dispatcher
result in restricted scalability. Messages have considerable overhead for deseri-
alisation and serialisation. A high number of often verbose messages between
dispatcher and clients/servers is sub-optimal and results in poor performance.

8 Pattern-based Software Architecture for Service-oriented Software Systems

All patterns have their advantages and disadvantages. Often, the qualities mutually
affect each other negatively such as maintainability and performance. What is, how-
ever, important here is that the qualities associated to a given pattern are preserved
during a transformation. The client-dispatcher-server pattern is typical for learning
technology systems, for which maintainability and interoperability are central. Fail-
ure is not a highly critical problem and the number of users is predictable – which
allows us to neglect two of the major disadvantages. Note, that these characteristics
are associated to pattersn, but not part of our notation. For instance distribution is
not part of our notation. We can use an annotation for the composition operators
to indicate a distributed implementation if an extension is considered.

3.3 Case Study – Modelling Service Architectures

Our case study system is a learning environment called IDLE – the Interactive
Database Learning Environment [5], which is based on object technology with a
Web-based access interface. IDLE is a multimedia system that uses different mech-
anisms to provide access to learning content, e.g. Web server and a (synchronised)
audio server. It is an interactive system that integrates components of a database
development environment (a design editor, a programming interface, and an analysis
tool) into a teaching and learning context. Learners can develop database applica-
tions, supported by shared storage and workspace.

IDLE has been developed since 1996 in several stages. The consequence of this
growth is a system without a designed architecture – an architecture that is even not
explicitly captured and documented. However, the existing architecture is service-
oriented (although not fully Web Service-based) and, consequently, is a suitable
starting point for transformations. Evolving Internet technologies and frequently
changing software developers are only two of the contributors to difficult mainte-
nance. Besides achieveing maintainability, interoperability and componentisation
were reasons to choose a fully service-based architecture as the target.

Architecture modelling starts with the proposed three-layered approach. In the
context of our case study domain, the IEEE-defined Learning Technology System
Architecture (LTSA) provides a domain-specific service-oriented reference architec-
ture [7], visualised in the UML-style class diagram in Fig. 3. Six central components
such as Delivery or Coach are identified. These components provide services, e.g.
the Delivery component provides a Multimedia delivery service to the LearnerEn-
tity. These services are usually related to processing multimedia data. We use the
LTSA reference architecture as a starting point for the re-engineering of IDLE.

In IDLE, a learner requests content from a resources server. The IDLE specifi-
cation in SAC, Fig. 4, is based on the client-dispatcher-server design pattern, Fig. 2,
with the learner (as client), a coach (as dispatcher), and the resources and delivery
subsystem (as server). This specification captures a central behavioural property

Pattern-based Software Architecture for Service-oriented Software Systems 9

Learner = repeat (let requestEducServ = inv requestConnection()
in inv requestEducServ(resId))

Delivery = inv registerEducServ(id);
repeat (rcv acceptConnection(c); rcv requestEducServ(s);

rep requestEducServ(run(s)); rcv locator(uri);
let learnResource = inv retrieveResource(uri)
in rep multimedia(learnResource))

Coach = choice (
choice (rcv registerEducServ(id), rcv unregisterEducServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c)))

Figure 4: Specification – Educational Service (EducServ) Registration and Provision
in IDLE directly based on the Client-Dispatcher-Server Design Pattern.

of IDLE, captured using the pattern. It is an extension of the pattern in terms of
the IDLE application context that adds interaction with the Resources server to the
Delivery component. Servers register their services with the dispatcher and clients
request connection channels to servers in order to use the services. The learner is
a client invoking services of the delivery (request a connection and an educational
service). The coach is a broker and mediator that handles the service registration
(from the delivery) and forwards the delivery channel (provided by the delivery com-
ponent) to the learner. Passing channel names over channels, as in the example, is
typical for the notation’s ability to model dynamic infrastructures. A learner uses
the provided channel to access the delivery’s educational service.

Another example of a design pattern is the factory method pattern – a creational
pattern [6] that provides an interface for creating related objects without specifying
their concrete classes. This pattern can be applied in IDLE for manipulating a
variety of related persistent stores such as the learners records or adding/retrieving
objects to/from a database such as a workspace feature.

Workflow patterns are the final architectural aspect. The multichoice operator
denotes a process composition pattern. mchoice(Lecture,Tutorial,Lab) expresses
that any selection of the IDLE services Lecture, Tutorial, and Lab can be used
concurrently. We have realised the storage and workspace function, which could
have been integrated into either learning resources or learner records, as a separate
service. This IDLE feature can be specified as a complex service workflow process,
see Fig. 5. The workspace service deals with incoming retrieval or storage requests.

Our service modelling notation needs a methodological context that covers mod-
elling existing systems and transformations. Service-oriented architecture usually
starts with the identification of services. Two cases can be distinguished:

10 Pattern-based Software Architecture for Service-oriented Software Systems

WorkSpace = choice (
repeat (rcv retrieve(resId); inv provide(res)) ,
repeat (rcv store(resId, res)))

Figure 5: Specification – Specification of the IDLE Storage and Workspace Service.

• Some system components will exhibit service character – an SQL execution
element, part of the IDLE lab resources and delivery subsystem, is an example.

• Some components could easily be wrapped up as services, if required. An
example of this category is the IDLE storage and workspace feature.

Once all services have been identified, the connections and interactions between
services have to be modelled. In our case study, the problem is re-engineering
of a legacy system into a service-based system. The existing architecture – even
though not adequately designed and documented – provides a starting point for
service identification. The LTSA also determines the service-based modelling of
IDLE due to the LTSA’s SOA character. We have used a top-down approach to
service identification as the first step of the transformation part.

The need to change, adapt and extend makes it clear that the original archi-
tecture cannot be fully preserved. An abstraction mechanism – in the form of pat-
terns – answers the need to focus on essential, but not all architectural properties
that should be preserved. Patterns not only identify common functional structures;
they also have typical quality attributes associated with them. A central difficulty
arises: how to identify suitable patterns. The collection of frequent patterns is often
domain-specific, as our investigation indicates. Examples of frequently occurring de-
sign patterns in IDLE, other learning technology systems, and also the LTSA include
the client-dispatcher-server pattern, but also the factory, proxy, observer, compos-
ite, and serialiser patterns [6]. Other, less frequent patterns include the iterator
and the strategy pattern. These common patterns could result in a domain-specific
formulation of patterns and a repository of domain-specific patterns, which would
help software architects in identifying invariants of the transformation.

4 Transformation

Software architecture addresses more than the high-level system design. Software
change resulting from maintenance requirements and integration problems is equally
important. We focus on architecture transformations as a central software change
technique. A number of reasons might require transformations:

• Interoperability can be a transformation objective.

Pattern-based Software Architecture for Service-oriented Software Systems 11

• A reference architecture might need to be adopted.

• Changes in interface and interaction of services need to be addressed.

Architectures are often transformed if implementation restrictions have to be dealt
with. An objective of architecture transformation is to implement changes, but
also to preserve properties. Existing service connectivity and interaction is often
worth being preserved, i.e. act as invariants of the transformation. Our patterns
express processes at different levels of abstraction. Preserving patterns is desirable
since patterns represent architectural configurations that are easy to understand and
implement and describe structures that are often easy to maintain and reliable.

While the idea of preserving patterns at all architecture layers is therefore obvi-
ous, a verifiable transformation technique is needed. A generic constructive mapping
rule is at the centre of our transformation technique. A notion of simulation captures
the notions of equivalence and refinement of services and service processes.

A prerequisite for transformations is the explicit architecture specification of an
existing system. A complete specification is not necessary; accuracy and level of
preservation of the transformation, however, depend on the degree of detail and
number of patterns identified. In IDLE, we have for instance analysed an inade-
quately documented system to extract structures and patterns.

4.1 Simulation and Transformation Rules

Our transformation technique is based on a notion of simulation and on simulation-
based transformation rules. It has to address the needs of the three pattern-based
architecture layers and the focus on patterns as transformation invariants. Each of
the three architecture models might create its own requirements:

• Reference architectures. Each service abstraction is mapped to a service ab-
straction in the new architecture. The transformation objective determines
whether the service process definition has to be changed. The transformation
is subject to invariants, i.e. pattern preservation.

• Architectural design patterns. Often, interaction processes need to be changed
to accommodate new or modified service functionality. Ideally, newly emerging
patterns that a service participates in will simulate the original patterns.

• Workflow patterns. Workflow pattern transformations can often be handled
automatically in architecture implementations.

Property preservation is the goal of our architecture transformations. A simula-
tion notion shall capture service process pattern preservation in the transformation
technique. A simulation definition, adopted from the π-calculus, satisfies the pattern
preservation requirement for the processes that we envisage:

12 Pattern-based Software Architecture for Service-oriented Software Systems

Process Q simulates process P if there exists a binary relation S over
the set of processes such that if whenever PSQ and P

m−→P ′ then there
exists Q′ such that Q

n−→Q′ and P ′SQ′ for service processes n and m.

This definition expresses when process Q based on service expression n preserves, or
simulates, the behaviour of process P based on service expression m. The services n
and m can here be unrelated, as this definition is about observable behaviour only.

In order to automate transformation support based on this definition, a con-
structive theorem supporting simulation is needed. This theorem is the basis of a
transformation rule which allows the verification of preservation and the automation
of transformation. In [13], we have developed a constructive simulation test based
on the construction of transition graphs for SAC process expressions.

Since usually not the entire specified behaviour should be preserved, we have
introduced the notion of patterns to capture common behavioural aspects that need
to be preserved. Patterns at different levels of abstraction identify reliable and
maintainable interaction patterns between services. Central to our transformation
technique is a transformation rule, which associates patterns and simulation:

Given an architecture specification S in SAC, create an architecture
specification S ′ as follows. For each abstraction A in S (apply this rule
recursively from top to bottom), map A to A′ where A′ is another ab-
straction such that for any pattern P that A participates in, A′ simulates
P ′ with P ′ = P [A/A′], i.e. A′ substitutes A and P is replaced by P ′ to
cater for renaming of abstractions.

This produces pattern-preserving target architectures, if no further modification are
made. We, however, argue that further modifications of the initial architecture
in terms of additional or modified functionality are typical for transformations in
evoluation and integration contexts. In this case, the invariant pattern preservation
needs to be demonstrated. Pattern-preserving transformation rules can aid here.
These are based on standard simulation relationships discussed in the process algebra
literature [2], such as:

• A;B simulates A: only transitions of B are added that do not affect A.

• repeat(A) simulates A: a single repetition corresponds to A.

• choice(A;B) simulates A: the selection of A corresponds to A.

• par(A;B) simulates A: A is always executed in the parallel composition.

From this constructive rule set, pattern-preserving transformations that even include
structural and behavioural changes can be formulated.

The determination of an invariant, here the pattern P , is a common, but often
non-trivial problem, which can be alleviated through domain-specific patterns.

Pattern-based Software Architecture for Service-oriented Software Systems 13

4.2 Case Study – Pattern-preserving Transformations

We demonstrate the adoption of the LTSA reference architecture on the highest level
of abstraction for the IDLE system. The transformation aim is interoperability
of IDLE services and components with other LTSA-specified components. This
interoperability objective, however, can have an impact on all levels of abstraction.
Other learning technology standards, for instance, prescribe interfaces for learning
technology objects, which would have to be reflected in service interfaces here.

The starting point for the transformation is the architecture specification of an
existing system – in our case IDLE in its original form. IDLE on the highest level
of abstraction is a parallel composition of composite processes

IDLE = par (Learner,Delivery, StudentModel
PedagogyModel,Workspace,Evaluation, . . .)

where each top-level service is an abstraction of a process expression based on other,
more basic services. Some of these are already similar to LTSA components – we
have indicated this fact by using the similar names. Other existing IDLE components
such as StudentModel and PedagogyModel have no direct counterpart in the LTSA,
but can be abstracted by e.g. the Coach. Several different combinations of individual
services can form patterns; these might actually overlap.

The first transformation step is to describe IDLE’s architectural characteristics
– ideally in LTSA terminology to simplify the transformation, see Fig. 3. The client-
server-dispatcher pattern, see Fig. 2, is not identical to the structure that can be
found in the IDLE system, see Fig. 4, since interactions with the resources server are
added. The pattern itself as an identifiable pattern is nonetheless worth preserving
and is, thus, one of the invariants. In our case, the client-dispatcher-server pat-
tern par (Client, Dispatcher, Server) is therefore simulated by the composite IDLE
process par (LearnerEntity, Coach, Delivery), resulting from the composition of
learner, coach, and resources and delivery subsystems of the IDLE reformulation in
LTSA terminology. This property is in our case easy to verify, since the IDLE spec-
ification in Fig. 4 describes only the service requests and connections that establish
functionality defined in the pattern.

LTSA is a high-level system specification, to which we add functionality in IDLE
in the form of new services not covered by LTSA. Architectural changes are neces-
sary due to the workspace service integration into IDLE. The explicit storage and
workspace service, see Fig. 5, requires the services LearnerEntity and Delivery to be
modified in their interaction behaviour. Again, the pattern shall be the invariant of
the transformation, but some refinements – constrained by the simulation definition
– need to be made to accommodate the added service within the system.

Workflow patterns to be preserved can be identified due to their implementation
as operators in the notation. The specification of the IDLE educational service

14 Pattern-based Software Architecture for Service-oriented Software Systems

system based on the client-dispatcher-server architectural design pattern in Fig. 4
based on Fig. 2 is defined in terms of workflow patterns. The Learner is based
on a sequence of activities. The Coach is based on choice in the first part, and a
concurrent split and merge in the second part. These are candidates for invariants.

The reconstructed IDLE architecture is the transformation basis. The integra-
tion of specifications of the identified existing or created services forms the trans-
formed architecture. The transformation task is to transform IDLE into LTSA-IDLE
– an architectural variant of IDLE with LTSA-conform service interfaces and interac-
tion processes. In the transformation, we need to consider the source, the invariant,
the target construction, and the preservation proof.

• Source. The starting point of the transformation is the original IDLE spec-
ification. Since in our case a full specification did not exist, we analysed the
system and extracted its current structural, behavioural and quality properties
based on existing documentation and system tests. The high-level architecture
was given earlier and some detailed excerpts are presented in Figs. 4 and 5.

• Invariant. The invariant is determined by patterns on different levels of
abstraction. The LTSA determines the high-level architecture. We focus here
on the client-dispatcher-server pattern as the architectural pattern invariant.
The identification of patterns as invariants is a crucial and difficult step that
depends on the expertise of the software architect – domain-specific patterns
with common behaviour or qualities provide a starting point for invariant
identification. The central pattern that we have identified and chosen to be an
invariant captures the interactions between three of the central components of
IDLE, i.e. learner, coach and delivery. It is one of the patterns that we found
frequently in learning technology systems, and that we considered suitable to
capture common interaction behaviour between central system components.

• Target Construction. The LTSA-based architecture specification of some
IDLE services – which is the transformation result – can be found in Fig. 6.
It is constructed based on our transformation rule as follows.

– At the reference architecture level, IDLE is mapped to LTSA-IDLE where
the merger of StudentModel and PedagogyModel simulates the Coach.
This requires a reformulation of the IDLE process (parallel composition
of composite processes, e.g. Delivery) as LTSA-IDLE by renaming ab-
stractions and introducing Coach as a new element on the highest level.

– At the architectural design pattern level, the composition is changed at
the subcomponent level. Coach is defined to reflect the merger of the
two model components as a parallel composition of StudentModel and
PedagogyModel.

Pattern-based Software Architecture for Service-oriented Software Systems 15

• Simulation and Preservation. The invariants – LTSA and client-dispatcher-
server – are two patterns that have to be simulated by the new architecture.
We have adapted our terminology to LTSA. For instance, Learner becomes
LearnerEntity. Renaming does not affect the simulation property. The two
components StudentModel and PedagogyModel are merged into Coach, i.e. the
model components were abstracted by a single Coach interface, which results
in the LTSA pattern being simulated. In this case, Coach is only introduced
as an abstraction for behaviour that already existed in the source system.
Simulation is therefore also guaranteed. The new Coach’ service handles the
interaction with the learner and pedagogy model components. The original
Coach specification from Fig. 4 has been extended to reflect this fact, which
is presented in Fig. 6. The structural and behavioural properties of the client-
dispatcher-server pattern P := par(Client, Dispatcher, Server) are still intact,
i.e. the pattern is preserved according to the transformation with pattern P
and the original Coach adapted to Coach’. The three pattern components are
still present and the externally visible interaction behaviour is the same1.

The specification in Fig. 6 describes a more complete range of interactions than
the initial focus of Fig. 4 on educational service request and connection establish-
ment. Fig. 6 adds the adaptive delivery of resources. After updating preferences
by interacting with the coach, the learner entity requests and receives learning re-
sources via a multimedia channel from the delivery service. The learning resources
service retrieves the actual content for the delivery service, which in turn delivers
it to the learner entity. Adding functionality or significantly modifying the original
architecture is common in evolution and integration situations. This is also the
primary motivation for introducing invariants that are abstractions of the original
architecture. The original architecture can due to these modifications in practice
rarely be fully preserved – only well-chosen abstractions can be suitable invariants.

Verifying the preservation of the client-dispatcher-server invariant in the resulting
architecture is a non-trival task. We can demonstrate for each affected service, i.e.
LearnerEntity, Coach’ and Delivery, that each simulates the original component:

• LearnerEntity simulates the Client through the first process elements (the
repeat expression with the first two invocations) in the sequence of four sub-
process expressions. In general, repeat(A;B) simulates repeat(A) because
for each state transition in A there is a corresponding one in A;B.

• Delivery (which is unchanged) simulates the Server since, similar to the first
case, only basic activities such as receive-reply interactions and invocations
with the Resources component are added within the repeat loop.

1The formal proof is based on a constructive simulation test developed in [13], which is beyond
the scope of this paper.

16 Pattern-based Software Architecture for Service-oriented Software Systems

LearnerEntity = repeat (let requestEducServ = inv requestConnection()
in inv requestEducServ(resId);

let preferencesInfo = inv getPreferences();
learnResource = inv multimedia()

in inv setPreferences(alter(preferencesInfo)))
Delivery = inv registerEducServ(id);

repeat (rcv acceptConnection(c); rcv requestEducServ(s);
rep requestEducServ(run(s)); rcv locator(uri);
let learnResource = inv retrieveResource(uri)
in rep multimedia(learnResource))

Coach’ = choice (
choice (rcv registerEducServ(id), rcv unregisterEducServ(id)),
repeat (rcv requestConnection();

let c = getChannel()
in inv acceptConnection(c); rep requestConnection(c);

repeat (
choice (

rcv getPreferences(); rep getPreferences(prefInfo),
rcv setPreferences(preferencesInfo),
rcv getLearnerInfo(id); rep getLearnerInfo(info),
let uri = inv locator(resource) in 0))))

LearningRes = rcv retrieveResource(uri); rep retrieveResource(retrieve(uri))
LearnerRec = rcv getLearnerInfo(id); rep getLearnerInfo(info(id))

Figure 6: Transformation – Resulting Adaptive Delivery in IDLE Architecture (se-
lected components and services) based on the LTSA.

• Coach’ simulates the Dispatcher as the Dispatcher functionality becomes the
outer process structure of the Coach to which preferences and learner initiali-
sation and the location retrieval aspects are added. A;B simulates A because
transitions in A are also part of A;B.

Constructive rules are important in discharging the simulation proof obligation.

In our method, design patterns that can be identified in an existing system such
as the original IDLE, should be invariants of the architectural transformation. This
method can be supported by transformation tools. The architect provides the source
system model and identifies preservable patterns from the model patterns and, if
necessary, renamings and non-standard transformations. More involvement from
the software architect is required if in the context of the transformation process,
architectural features are also changed or extended. In this case, which is actually
the standard situation in application integration and software migration, a fully

Pattern-based Software Architecture for Service-oriented Software Systems 17

automated approach is not feasible and the software architect needs to apply the
provided constructive transformation rules to guarantee pattern preservation.

5 Related Work

Some ADLs are similar to SAC in terms of their focus on processes. Darwin [14]
is a π-calculus based ADL. Darwin focuses on component-oriented development ap-
proach, addressing behaviour and interfaces. Restrictions based on the declarative
nature of Darwin make it rather unsuitable for the design of service-based architec-
tures, where flexibility and change demands such as both binding and unbinding on
demand are required features. Wright [15] is an ADL based on CSP as the process
calculus. Wright supports compatibility and deadlock checks through formalised
specifications, based on explicit connector types. This is an aspect that we have
neglected here, but that could enable further analysis techniques, if we introduced
typed channels. In [16], the formal foundations of a notion of behaviour confor-
mance are explored, based on the π-calculus bisimilarity relation. We chose the
π-calculus as our basis, since it caters for mobility, and, consequently, allows us to
address transformation in the context of architecture evolution. Mobility allows us
to deal with changes in the interaction infrastructure. The client-dispatcher-server
pattern is an example where a new channel is dynamically formed. Architecture
transformation also means controlled changes of architectural structures.

Patterns have recently been discussed in the context of Web service architectures
[8, 10, 11, 12]. In [10, 11], collections of workflow patterns are compiled. We have
based our catalog on these collections. The client-dispatcher-server pattern is also
discussed in [8]. Other patterns that we have mentioned mainly originate from [6].
Grønmo et al. [19] consider the modelling and building of compositions from existing
Web services using model-driven development. The authors consider two modelling
aspects, service (interface and operations) and workflow models (control and data
flow concerns). These efforts embed patterns into a methodological framework,
similar to our objectives. Our consideration of distribution as a further dimension
in service patterns, however, goes beyond those approaches.

A recent software architecture approach for service-based systems is model-driven
development (MDD). MDD emphasises the importance of modelling and transfor-
mations. The latter are, in contrast to our framework, part of the modelling process
between modelling levels of abstraction. Our framework addresses the transforma-
tion of architecture specifications, for instance to support software change and evo-
lution. While MDD is vertically oriented, i.e. mapping from abstract domain models
to more concrete platform models, we follow a more horizontal transformation ap-
proach on the level of architectures. We have focused on hierachical pattern-based
process modelling and architectural configuration – two aspects that can comple-

18 Pattern-based Software Architecture for Service-oriented Software Systems

ment and extend MDD by providing higher levels of abstraction and architectural
transformation. The formality of our approach satisfies the automation requirements
of model-driven development and even adds reasoning support.

6 Conclusions

A new architectural design paradigm such as service-oriented architecture (SOA)
requires adequate methodological support for design, maintenance, and evolution.
While an underlying deployment platform exists in the form of Web Services, an
engineering methodology and techniques are still largely missing. We have presented
a layered architecture model that captures behavioural aspects and associates quality
of architectural structures at different levels of abstraction through patterns. A
modelling notation allows interaction behaviour in architectures and architectural
configurations to be captured and distribution and quality characteristics to be
associated. Interaction behaviour and composite processes are essential aspects for
the development and maintenance of distributed service-based systems.

Our emphasis here was on the applicability of the method by demonstrating the
usefulness for a service-based learning technology system. We have investigated the
role that hierarchically organised patterns, supported by the architecture model and
the transformation technique, can play for service-oriented architecture. Patterns
that capture interaction behaviour between services are ideally suited for the ser-
vice context with its focus on processes. Process patterns provide an abstraction
mechanism that captures relevant invariants for architectural transformation.

• Patterns as abstractions greatly improve the possibility to reuse and evolve
architectural designs. As architectural abstractions, they capture important
behaviour and quality invariants.

• Pattern-based modelling has implications for functional and quality charac-
teristics of a service-centric software system. Pattern-based transformation
focuses on functional properties, but also preserves the quality characteristics.

The novelty of our architecture transformation technique is to use patterns to cap-
ture behaviour and quality invariants in a layered architectural modelling approach
to service-based architecture evolution and change.

We have applied the presented techniques in the ongoing design, maintenance
and evolution of the IDLE system. It is an extensive system with a range of interac-
tive, distributed features, characterised by complex a information architecture, that
has been developed by more than 20 people and maintained for more than ten years
– which indicates the scalability of the transformation technique. The technique
was described in its principles and illustrated using the case study. Our tool im-
plementation for distribution pattern architecture demonstrates the positive effect

Pattern-based Software Architecture for Service-oriented Software Systems 19

of pattern-based transformations on architectures in terms of quality. However, the
pragmatics of modelling with formal notations need to be addressed further. While
in the case study, architects were familiar with the notation, a closer integration
with UML activity diagrams is envisaged to improve acceptance and usability.

A critical aspect of the approach is the reliance on the quality of the architectural
description of the original system and the adequacy of the identified patterns –
particularly obvious is migration and legacy integration projects. Transformations
depend on the detail of the input architecture and the patterns that define the
transformation invariant. The extraction of a system’s architecture and the correct
identification of intended patterns for undocumented systems is a difficult aspect
that, although essential for the success, has been addressed only through the idea
of domain-specific patterns here. Re-engineering and migration approaches for the
architectural level can provide further solutions here.

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services – Concepts,
Architectures and Applications. Springer-Verlag, 2004.

[2] D. Sangiorgi and D. Walker. The π-calculus – A Theory of Mobile Processes.
Cambridge University Press, 2001.

[3] R. Dijkman and M. Dumas. Service-oriented Design: A Multi-viewpoint Ap-
proach. Intl. Journal of Cooperative Information Systems, 13(4):337–368. 2004.

[4] R.N. Taylor, N. Medvidovic and E. Dashovy. Software Architecture: Founda-
tions, Theory, and Practice. John Wiley & Sons, 2009.

[5] C. Pahl, R. Barrett, and C. Kenny. Supporting Active Database Learning and
Training through Interactive Multimedia. In Proc. Intl. Conf. on Innovation
and Technology in Computer Science Education ITiCSE’04. ACM, 2004.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Design. Addison Wesley, 1995.

[7] IEEE Learning Technology Standards Committee LTSC. IEEE P1484.1/D8.
Draft Standard for Learning Technology - Learning Technology Systems Archi-
tecture LTSA. IEEE Computer Society, 2001.

[8] N.Y. Topaloglu and R. Capilla. Modeling the Variability of Web Services from
a Pattern Point of View. In L.J. Zhang and M. Jeckle, editors, Proc. European
Conf. on Web Services ECOWS’04, pages 128–138. Springer LNCS, 2004.

20 Pattern-based Software Architecture for Service-oriented Software Systems

[9] C. Pahl. A Pi-Calculus based Framework for the Composition and Replacement
of Components. In Workshop on Specification and Verification of Component-
Based Systems SAVCBS’01. 2001.

[10] W.M.P. van der Aalst, B. Kiepuszewski, A.H.M. ter Hofstede, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

[11] M. Vasko and S. Duskar. An Analysis of Web Services Flow Patterns in Collaxa.
In L.J. Zhang and M. Jeckle, editors, Proc. European Conf. on Web Services
ECOWS’04, pages 1–14. Springer LNCS, 2004.

[12] F. Buschmann, K. Henney, and D.C. Schmidt. Pattern-Oriented Software Ar-
chitecture Vol.4: A Pattern Language for Distributed Computing. Wiley, 2007.

[13] C. Pahl. An Ontology for Software Component Matching. In M. Pezzè, editor,
Proc. Fundamental Approaches to Software Engineering FASE’2003, pages 6–
21. Springer-Verlag, LNCS 2621, 2003.

[14] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed Soft-
ware Architectures. In W. Schäfer and P. Botella, editors, Proc. 5th European
Software Eng. Conf. ESEC’95, Springer LNCS 989, pages 137–153. 1995.

[15] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[16] C. Canal, E. Pimentel, and J.M. Troya. Compatibility and inheritance in soft-
ware architectures. Science of Computer Programming, 41:105–138, 2001.

[17] R. Barrett, L. M. Patcas, J. Murphy, and C. Pahl. Model Driven Distribu-
tion Pattern Design for Dynamic Web Service Compositions. In International
Conference on Web Engineering ICWE06. Palo Alto, US. ACM Press, 2006.

[18] D. Garlan and B. Schmerl. Architecture-driven modelling and analysis. In Tony
Cant, editor, Proceedings of the 11th Australian Workshop on Safety Related
Programmable Systems (SCS’06), 2006.

[19] D. Skogan, R. Grønmo and I. Solheim. Web Service Composition in UML. In
Proc. 8th International IEEE Enterprise Distributed Object Computing Con-
ference (EDOC), pages 47-57. 2004.

[20] R. Kazman, S.J. Carriere and S.G. Woods. Toward a Discipline of Scenario-
based Architectural Evolution. Annals of Software Eng., 9(1-4):5–33. 2000.

