
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 25, 1321-1336 (2009)

1321

Service-Centric Integration Architecture
for Enterprise Software Systems

CLAUS PAHL*, WILHELM HASSELBRING1 AND MARKUS VOSS2

*School of Computing
Dublin City University

Dublin 9, Ireland
E-mail: Claus.Pahl@dcu.ie

1Software Engineering Group
University of Kiel

D-24118 Kiel, Germany
E-mail: wha@informatik.uni-kiel.de

2Capgemini sd&m AG
63065 Offenbach, Germany

E-mail: markus.voss@capgemini-sdm.com

Service-oriented architecture (SOA) has the potential to provide solutions for enter-

prise application integration (EAI) problems. While core service platform technologies
exist, methodological approaches that link the business domain with the platform infra-
structure − a prerequisite for an EAI solution − are only beginning to mature. We present
a framework for integrating service-centric software systems that emphasizes service ar-
chitecture as the key to the application integration problem and that proposes a ser-
vice-centric integration architecture layer to coherently bridge the gap between business
and platform layers. Domain models act as drivers of the architectural development and
integration process. A dedicated and empirically developed service-specific architecture
solution, based on an adaptation of the QUASAR Enterprise methodology, utilizes ser-
vice and architecture identification techniques.

Keywords: service-oriented architecture, enterprise application integration, architecture
description, integration architecture, service process modelling

1. INTRODUCTION

An enterprise architecture describes an enterprise-wide system of information sys-
tems. The methodological context of enterprise application integration (EAI) with its
domain engineering and application engineering techniques dominates development and
integration solutions [1]. The terminology already points to architecture as the key to a
solution for the integration problem. The difficulty, however, lies in the heterogeneity of
the problem space in several dimensions. Application platforms and languages as well as
modelling notations and methodologies often vary.

With the emergence of Web Service technology as a platform and service-oriented
architecture (SOA) as the corresponding methodological context, the integration problem
has found a solution [2]. Service-centric software applications and systems can easily be
assembled, integrated or migrated. While platform technology is maturing and has al-

Received October 31, 2007; accepted June 27, 2008.
Communicated by Jonathan Lee, Wei-Tek Tsai and Yau-Hwang Kuo.
* Corresponding author.

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1322

ready demonstrated its potential, an architectural service engineering approach that links
the enterprise-level business context with platform considerations is still lacking. An
approach beyond current best practice is needed to meet the need for automated devel-
opment support to achieve improved consistency and cost-effectiveness qualities.

Integration architecture is at the core of our solution, emphasizing service and proc-
ess-centric architectures as the key to our solution. We present a service-centric EAI
framework − a layered modelling and architecture approach consisting of empirically
developed techniques and methods, which are adapted to the services context. Specifi-
cally, we discuss suitable notations for layered integration architecture description and
the transformation between these layers. business model-driven service architecture pro-
vides the necessary coherence across the different development stages. We have based
our framework on an adaptation of the successfully employed QUASAR Enterprise
methodology for application integration [3].

The proposed focus on architectural modelling with an integration architecture layer
at the centre results in a number of benefits:

• It provides a coherent solution that integrates modelling concerns ranging from busi-

ness processes and business domain models to application infrastructures to service-
level software components [3] by mapping these concerns into a process-centric archi-
tecture modelling notation. Coherence enables higher degrees of integrity among mod-
els and consequently delivers improved reliability of resulting software applications.

• The utilization of the recently standardized Business Process Modelling Notation
BPMN [4] provides us with a notation that, firstly, has the potential to be used beyond
IT specialists by the business community and, secondly, is supported by predefined
transformations. It serves us as an interoperable notation for the central software archi-
tecture concerns and also allows us, due to its consistent use throughout, to automate
central activities.

Overall quality improvement in terms of system maintainability, achieved through en-
hanced architecture models, and the cost-reduction through tool-supported languages and
the automation of important activities are central goals.

Our contribution comprises model-based notations and techniques for service-cen-
tric integration architecture for enterprise application integration. A service- and process-
based focus throughout enables the integration of business domain modelling and appli-
cation architecture modelling. Core elements of our contribution are:

• A layered architectural modelling language based on a BPMN extension is the key to

improved quality.
• Two central architectural modelling activities characterize the approach: service iden-

tification based on business process activities and domain-specific concerns and inte-
gration architecture identification based on a reference model organizing services into
layers and categories.

A central role supporting the two identification steps is played by the information archi-
tecture. The information architecture provides domain-specific solutions to service iden-
tification at both the business and platform level and architecture identification.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1323

2. ENTERPRISE APPLICATION INTEGRATION AND
SERVICE ARCHITECTURE

Enterprise Application Integration (EAI) [1] is a central concern of large-scale soft-
ware systems that has gained importance rapidly due to the recent emergence of service-
oriented architecture (SOA) as an architecture and development framework for service-
centric software systems. SOA provides service orientation as a structuring principle that
can form the backbone of EAI solutions [5]. Enterprise IT architectures consist of com-
plex systems of interdependent components that are governed by business processes [6].
The logical integration of information and process aspects is the central aim of EAI [7].
Software architecture is the ideal location to place an integration solution [8]. Service-
oriented architecture links integration to a development process, but also to a platform
that aims at interoperability in heterogeneous environments.

Consistency of information and uniformity of access are usually the goals of EAI,
but also evolution, maintenance and interoperability are drivers of EAI. Different layers
of integration, from information to services to presentation, implement EAI. In the SOA
context, service-based integration becomes the central driver of integration needs. With
SOA as the EAI approach, an integration architecture technique becomes the key to the
solution of the problem. Integration architecture defines the stage and the location at
which service integration is realized. Integration architecture is framed by two activities
in the service engineering process model:

• Business architecture modelling aims at capturing principles of the application domain.

Business processes that provide business services are part of this aim, as are more
product-oriented and organizational views on the business domain.

• Service implementation development addresses the implementation and representation
of services within a given platform, such as Web Services technologies.

Business architecture modelling and service implementation development are, however,
not the focus of this paper. In order to provide an integration architecture solution, we
need bridge the gap between business models and service implementation through a SOA-
specific architecture solution. We propose to incrementally transform business-level
models towards service architecture descriptions.

Integration architecture is a SOA-based EAI approach based on a number of ser-
vice-centric architecture and modelling techniques, see Fig. 1. We propose layered ac-
tivities corresponding to the layers of business process integration, application integra-
tion and platform-oriented systems integration as established in the area of information
system integration − see [7] for details. The proposed incremental approach is based on
two techniques:

• the identification of services based on activities of a business process model, which is

a central concern of application integration in order to consistently integrate and man-
age software applications,

• the identification of an architecture that integrates services of an application in a co-
herent platform-oriented system architecture that allows the implementation using Web
service technologies.

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1324

Application Integration Architecture

Business Process
Model

Business Domain
Model

System Integration Architecture

Integration Service Architecture Model

Architecture Identification & Service Types
Integration Points and Layers
Reference Architecture Integration

Service Classification and Identification

Business
Architecture

Enterprise Application
Integration

Service-based System
Integration

Application Service
Model

Service
Classification

Architecture Implementation
System

Implementation

Service Classification and Identification

Application Integration Architecture

Business Process
Model

Business Domain
Model

System Integration Architecture

Integration Service Architecture Model

Architecture Identification & Service Types
Integration Points and Layers
Reference Architecture Integration

Service Classification and Identification

Business
Architecture

Enterprise Application
Integration

Service-based System
Integration

Application Service
Model

Service
Classification

Architecture Implementation
System

Implementation

Service Classification and Identification

Fig. 1. The two central integration architecture layers (application and system) and integration

architecture activities for the two layer transformation stages.

Based on architecture constraints and service analysis, classification and identifica-

tion techniques, we incrementally add architectural detail to the models such that an in-
tegration of systems on the service platform can be implemented. The service identifica-
tion based on the application domain layer and service-based architecture integration in
the integration layer are addressed in sections 3 and 4.

3. SERVICE IDENTIFICATION

A comprehensive account of an application context with business architecture views
such as business processes and the business domain, but also a structural and behavioural
view of the application architecture is an essential prerequisite for integration architec-
ture. A business architecture model provides a process-independent information archi-
tecture that acts as a constraining vocabulary based on domain concepts and activities for
an application domain.

This section introduces our notational framework, an extension of the Business
Process Modelling Notation BPMN [4], and a technique for service identification based
on this notation to support application integration.

3.1 Business Architecture Modelling with Extended BPMN

Service-oriented architecture is about services, and, essentially, about the composi-
tion of services to processes. Orchestration and choreography are two perspectives on
service process composition. Processes are also at the centre of the business domain.
Business processes provide structure and organize an enterprise. These processes are em-
bedded into a business domain context defining the organizational constraints and the
product-oriented perspective.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1325

BPMN is a notation to model business processes [4]. Crucial to our approach is the
utilization of BPMN as an architecture description language, i.e. as a notation that de-
fines the components (here services at various levels of abstraction), their connections,
and the static and dynamic dependencies between them. BPMN’s process-centricity
makes it an ideal candidate for service architecture issues such as orchestration and cho-
reography as two ways of expressing service connectivity and dependencies [2]. The
standardization of BPMN and support in terms of defined transformations into WS-BPEL
[9] make it suitable to achieve the desired degree of automation for a fully service-cen-
tric development approach. We have chosen BPMN over executable notations as execu-
tability is not required and a notation is needed that is acceptable to software architects as
well as business analysts.

We extend BPMN and provide a meta-model layer that captures product and or-
ganizations aspects. Two elements are added:

• a separate domain ontology in the form of a concept taxonomy that defines and organ-

izes the objects (such as products) and activities (such as processes) of the domain that
are used in business process models,

• an integration of process models and their activities into the concept taxonomy, pro-
viding a semantic context for each process.

The business domain model is illustrated by an enterprise organization taxonomy in

Fig. 2, which shows an excerpt of a sample hierarchy for a policy application processes
for the insurance domain. A taxonomy is a hierarchical representation of concepts of a
domain, ordered using the subsumption relationship between concepts. We use the in-
surance domain through to provide examples for notations and techniques. The insurance
domain is an application context in which our underlying Quasar architecture methodol-
ogy has been extensively applied [3].

─ Front Office
─── ─ Customer Management

── ─ Aquisition
── ─ Contracts
── ─ Claims
── ─ ...

─── ─ Account Management
── …

─ Front Office
─── ─ Customer Management

── ─ Aquisition
── ─ Contracts
── ─ Claims
── ─ ...

─── ─ Account Management
── …

Fig. 2. Ontology-based domain taxonomy model for an insurance application.

This domain model extension of BPMN provides essentially a simple ontology − a

vocabulary with a hierarchical structuring mechanism − that captures organizational units,
their products and activities. Business processes at different levels of abstraction are
embedded into this hierarchy. We use BPMN as a conceptual process modelling lan-
guage that allows the embedding of processes into their organizational context − see up-
per left corner in Fig. 3, which is a excerpt of the domain ontology in Fig. 2.

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1326

X

+ +

Validate
Application

Perform
Risk Check

Analyse
Applicant

Reject
Application

Offer
Policy

─ Front Office
└── ─ Customer Management

└── ─ Acquisition

X

+ +

Validate
Application

Perform
Risk Check

Analyse
Applicant

Reject
Application

Offer
Policy

─ Front Office
└── ─ Customer Management

└── ─ Acquisition

Fig. 3. Insurance policy application business process in an insurance context.

3.2 Service Identification at the Application Integration Layer

The business architecture models provide a computation-independent architectural
perspective. Crucial is now to bridge the gap between this and a system-oriented view.
We propose to first create an application integration layer, which acts as a development
plan for the overall system architecture, i.e. firstly, it captures application integration
through services that have been identified based on business-level constraints and, sec-
ondly, is going to prepare the system-oriented integration architecture stage. The func-
tionality of the system shall be elicited in terms of the processes and organizational con-
straints identified in the business domain model. The development plan prepares for de-
tailed architectural decisions at lower layers.

The architectural concern at this stage is what is often called IT architecture. It aims
at a holistic view of a service-centric software system in the context of its governing
business aspects and the overall software systems infrastructure. The central difficulty is
how to utilize the business-level models to create an architecture description. We pro-
pose a method for this stage adding service identification and classification to the busi-
ness-level models. Three individual application integration tasks can be identified:

1. service classification based on domain-driven classification criteria,
2. service identification of application-level (usually coarse-grained) services,
3. service hierarchy definition to refine coarse-grained services.

The classification is based on business facets − specifically the product and process
dimensions. The instrument to carry out the service identification and their classification
is a classification matrix, presented in Fig. 4, where it is applied to the insurance domain
to identify and organize services. The two dimensions result from the product (business
domain) and process (business process) aspects of the business architecture models.
These two dimensions themselves are generic and independent of the domain itself. The
elements in each of the classification dimensions are domain-specific and are based on
the domain information taxonomy. We have defined similar classification and identifica-
tion matrixes for other domains such as banking [3] − based on the experience and exper-
tise of our industrial partner in a large number of integration projects. The services iden-
tified through the classification are generally broad and often refined in further system-
oriented steps. The aim of this classification is application integration, not software sys-
tem-level service definition.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1327

Motor

Accident

Life

Health

Asset
Management

Service

Acquisition Application
Contract

Manage
Contract Claims Accounts Finance

Admin Controlling
P

ro
du

ct
 C

at
eg

or
ie

s

Ap
pl

ic
at

io
n

Pr
oc

es
si

ng

Data Management Motor & Accident

Data Management Life

Data Management Health

Accounts
Accident

Accounts
Health

Accounts
Life

Accounts
Motor

Finance Business
Intelligence

Asset Management

Re-insurance

Benefits

Processes Categories

Br
ok

er

Motor

Accident

Life

Health

Asset
Management

Service

Acquisition Application
Contract

Manage
Contract Claims Accounts Finance

Admin Controlling
P

ro
du

ct
 C

at
eg

or
ie

s

Ap
pl

ic
at

io
n

Pr
oc

es
si

ng

Data Management Motor & Accident

Data Management Life

Data Management Health

Accounts
Accident

Accounts
Health

Accounts
Life

Accounts
Motor

Finance Business
Intelligence

Asset Management

Re-insurance

Benefits

Processes Categories

Br
ok

er

Fig. 4. Service classification and identification for an insurance application.

The identified services, such as the account or data management services, are classi-

fied according to the two generic dimensions, see Fig. 4 where domain concepts such as
products and processes from the business models define the dimensions. The domain
taxonomy model can even provide the information to structure identified services hier-
archically. Reference architectures play an important role here to constrain the classifica-
tion and organization. Detailed organization models often stem from reference architec-
tures for vertical domains, such as banking or insurance. For instance, a life insurance
policy creation service could be a subservice of the data management process for life
insurance, which in turn is a subservice of a policy management process.

The step from the business layer to the application integration architecture is a re-
finement step. The process model, see e.g. Fig. 3, is still the central architectural descrip-
tion. This BPMN-based process model is, however, complemented by a service classifi-
cation meta-model (Fig. 4) that, as just illustrated, categorizes services and that includes
individual services and processes into a hierarchy, which is often dominated by reference
architectures. The application processing activity described in Fig. 3 is categorized using
the Fig. 4 scheme as belonging to the acquisition process category and as spanning sev-
eral product categories. In terms of concerns of architectural description languages, this
meta-model resembles an architectural type language that adds a semantical layer to
process definitions and serves to constrain an extended BPMN model for further archi-
tectural concerns.

4. SERVICE-CENTRIC ARCHITECTURE IDENTIFICATION

Integration architecture addresses the difficult issue of defining a basis on which
heterogeneous application components can be integrated. It needs to provide the abstract
frame in which existing and new systems can be integrated, in which legacy systems can
be accessed in a uniform way and into which legacy systems can be migrated. Based on
our experience, coarse-grained services that can capture a number of applications (legacy

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1328

or to be developed/acquired) at the systems level are a suitable starting point. We have
distinguished an application and a systems layer for integration architecture. The busi-
ness architecture models constrain the integration from the business perspective. Two
central decisions, which would have to be considered in a generic approach to EAI, have
already been taken:

• Services as the organizing principle of software is currently considered the best solu-
tion to the integration problem [10].

• Web Services are currently the predominant platform for interoperable service deploy-
ment [11].

4.1 Service-centric System Integration Architecture

The architectural development plan that the application integration architecture de-
scribes need to be applied to define a coarse-grained system architecture design that ad-
dresses the following issues:

• system boundaries that separate the system focus from its supporting environment,
• interfaces that clearly identify structural and behavioural dependencies between ser-

vices,
• higher-level assemblies of services through a component mechanism.

The application integration architecture defines a development plan that guides the
development of a coarse-grained architecture, whose purpose it is to provide an abstract,
logical integration layer and its link to a supporting platform. We propose an integration
architecture development method in three steps:

1. architecture identification and service types;
2. service-based integration;
3. logical architecture identification.

The first step refines the initial service classification from the application integra-
tion discussed in section 3 and adds necessary software architecture and system-related
information. Essentially, the business-centric notions of process and activity have to be
reinterpreted as software system-specific concepts, i.e. this is a change of focus from
computation-independent to platform-independent architecture modelling and further on
to platform-specific implementation.

We can distinguish two layers of the service-centric integration architecture model −
a logical, platform-independent layer and a physical, platform-specific layer.

• The purpose of the logical layer is the platform-independent orchestration of services
as elements of composite processes. Its conceptual elements are flows that model proc-
esses, whereby the service notion is viewed as conceptual. We can still use the same
extended BPMN notation, but now in a more structured way and interpreted in terms
of logical system architecture considerations, i.e. platform-independent, but not com-
putation-independent anymore. It should, however, be noted that this is not the typical
bus-oriented model; essential elements are process and service abstractions.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1329

• The purpose of the physical integration architecture layer is the platform-specific im-
plementation of orchestration. Its conceptual elements are services and processes, where
the service notion is directly linked to the Web services platform. We can use prede-
fined translations from BPMN to WS-BPEL in the transformation from the logical to
the physical layer. In order to produce executable code, our extensions to BPMN are
not needed, i.e. we can directly use the predefined transformations. The purpose of our
BPMN extension is to support the architecture development and integration through
semantic constraints.

The first three steps above relate to the development of a logical system integration

layer. A further fourth step is needed to address platform integration in the form of a
logical to physical layer transformation, which shall also be discussed briefly to empha-
size the automation potential at this stage.

4.2 Architecture Identification and Service Types

The business domain drives this initial architecture identification step. The business
models provide context and also the subject of the identification technique. We use a
4-layered categorization and reference architecture scheme for services, see Fig. 5, that
assigns service types to services and organizes these into data, function, process and in-
teraction layers. Data services provide access to stored business data. Functional services
support specific business functions such as credit checks or customer identification.
Process services support a composite business process, usually across several functions.
Interaction services coordinate external access to the system services.

Operative Domains Analytic Domains

Interaction

Process

Function

Data

Te
ch

ni
ca

l C
at

eg
or

ie
s

+ +

Perform
Credit Check

Analyse
Withdrawal

+ +

Perform
Credit Check

Analyse
Withdrawal

XValidate
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

XValidate
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

Operative Domains Analytic Domains

Interaction

Process

Function

Data

Te
ch

ni
ca

l C
at

eg
or

ie
s

Operative Domains Analytic Domains

Interaction

Process

Function

Data

Te
ch

ni
ca

l C
at

eg
or

ie
s

+ +

Perform
Credit Check

Analyse
Withdrawal

+ +

Perform
Credit Check

Analyse
Withdrawal

XValidate
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

XValidate
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

Reject
Withdrawal

Accept
Withdrawal

Fig. 5. A 4-layered service classification and reference architecture schema.

The business process elements − including the business activities and processes

themselves, but also functionality and data aspects derived from the business domain
model − can be classified along these technical categories in order to characterize their
role for integration on the system architecture layer through a specific type. The process
layer is the starting point of a top-down style architecture identification; it can be derived

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1330

directly from the business process model in the first step, then refined and detailed into
individual functions. Although the business process models provide input here, a sig-
nificant amount of architecture-related information (data, distribution, choreography)
needs to be added − this is going to be detailed in the next section. The data layer is also
a reflection of information models at the business level. The presentation layer is not part
of the business-driven integration architecture and needs to be added on top of the ser-
vice layer.

4.3 Service-based Integration Points and Layers

An integration point of an application enables another application to communicate
in terms of data or control flow elements. Data, service, and presentation are three layers
on an application that can act as integration points. An integration layer is determined by
the primary focus of integration points in terms of the architectural layers of the refer-
ence architecture. In the SOA context, services are the primary layer of integration for
processes and functionality. Service-based integration through publication of service
interfaces and interface-based invocation is the core principle of service centricity.

Detailed service-based control flow needs to be addressed for integration architec-
ture models. Abstractly defined business processes need to be refined or amended to pro-
vide the necessary level of detail for the integration architecture focus:

• adding data to indicate the data processing capabilities of individual services,
• separating processes across a possibly distributed deployment topology to reflect logi-

cally and physically separate organizational units,
• adding service choreography aspects (i.e. message passing between independent proc-

esses) to the orchestration focus on business process models.

Fig. 6 presents a refinement of the previous policy application process at the process

layer of the reference architecture schema, adding data (a policy application), distribution
(two swim lanes), and choreography (interaction across swim lanes). We have mapped
the withdrawal business process activities onto services, here at the process layer in terms

X

+ +

Validate
Application

Perform
Risk Check

Analyse
Applicant

Send Reject
Request

Send Offer
Request

Execute
Reject

Execute
Offer

Policy
Application

A
pp

lic
at

io
n

R
eq

ue
st

A
pp

lic
at

io
n

N
ot

ifi
ca

tio
n

X

+ +

Validate
Application

Perform
Risk Check

Analyse
Applicant

Send Reject
Request

Send Offer
Request

Execute
Reject

Execute
Offer

Policy
Application

A
pp

lic
at

io
n

R
eq

ue
st

A
pp

lic
at

io
n

N
ot

ifi
ca

tio
n

Fig. 6. Logical integration architecture model with data, distribution and choreography aspects.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1331

Fig. 7. Reference architecture constraints − Organizational and connectivity perspective on platform-
oriented runtime services.

of our previous categorization. It should be noted that BPMN already allows objects
such as documents process separation to be modelled, but it is important here it reinterpret
the business-level modelling elements in more computation-oriented terms. The aim is
here to obtain a platform-independent representation that can be directly mapped to data
representation, message passing and Web service choreography and distribution nota-
tions (such as WS-BPEL or WSDL) at the platform level.

Data, distribution and choreography are central software architecture aspects. These
aspects help to determine, firstly, function and their data processing abilities for the layer
two layers and, secondly, support the transformation into WS-BPEL skeletons based on
the additional distribution and choreography information.

4.4 Architecture Definition and Architectural Constraints

The use of reference architectures at this stage is an integral element of integration
architecture. In contrast to our earlier use of a layered reference architecture to identify a
coarse-grained initial architectural template, a reference architectures at this next step
will define common service categories that are typically found in supporting middleware
and platform infrastructures. Their deployment as architectural styles (or architectural
constraints) is crucial for the architectural modelling of an application in terms of an in-
tegrating architecture that is linked to an underlying platform [12]. The organizational
perspective of such a reference architecture for an integration platform defines two as-
pects:

• It defines the structural perspective by providing a subclass hierarchy of nested service

categories, see Fig. 7. These serve as component types that can be applied to services.
• The structural perspective is complemented by the service connectivity. Fig. 7 shows

an example for the runtime service level where two (unnamed) connections between
services are defined.

- Runtime Services
- - - Runtime Management

- - - Monitoring
- - - Load Balancing
- - - …

- - – Process Management
- - - Workflow
- - - …

- - – Communication Services
- - - Addressing
- - - …

- - - Applications
- - …

- Development Services
- - - Development

- - - Configuration Management
- - - Transformation Modelling

Process Management ↔ Communication Services
Communication Services ↔ Applications

- Runtime Services
- - - Runtime Management

- - - Monitoring
- - - Load Balancing
- - - …

- - – Process Management
- - - Workflow
- - - …

- - – Communication Services
- - - Addressing
- - - …

- - - Applications
- - …

- Development Services
- - - Development

- - - Configuration Management
- - - Transformation Modelling

Process Management ↔ Communication Services
Communication Services ↔ Applications

- Runtime Services
- - - Runtime Management

- - - Monitoring
- - - Load Balancing
- - - …

- - – Process Management
- - - Workflow
- - - …

- - – Communication Services
- - - Addressing
- - - …

- - - Applications
- - …

- Development Services
- - - Development

- - - Configuration Management
- - - Transformation Modelling

Process Management ↔ Communication Services
Communication Services ↔ Applications

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1332

We have again, as for the domain taxonomy, used an ontology-oriented representa-
tion for these reference architecture aspects. We have presented these architectural
aspects in simplified textual form for the sake of brevity − a representation in terms of
BPMN grouping and abstraction mechanisms would also be possible.

The sample policy application process would need to be integrated into the applica-
tion architecture, which of course would utilize communications or runtime and process
management services that are defined in the reference architecture.

Product reference architectures can help match services with tools and service mid-
dleware functionality. Most major providers of enterprise software components provide a
map of products that can supplement reference architectures.

4.5 Platform Integration

The last step is, at least in the current technological situation, straightforward. WS-
BPEL is the predominant orchestration language for Web services as the platform. The
BPMN standard defines a translation from BPMN to WS-BPEL, which implements ab-
stract business processes as executable service-based processes in the Web service frame-
work, assuming that concrete, provided services are available for each of their abstract
counterparts [13]. Other platforms and middleware technologies such as CORBA may
also be used to support the platform implementation.

For the transformation, we do not have to consider the additional architectural con-
straints such as reference architectures, since these are supplementary constraints that are
already satisfied if the required concrete services can be associated to the abstract ser-
vices. The previous steps guarantee consistency of the logical system integration archi-
tecture with models at higher level architecture models.

5. DISCUSSION

The presented framework is the result of an empirically developed methodology. It
is an adaptation of the QUASAR Enterprise architecture methodology [3, 14], which has
been successfully used in large-scale projects across banking, insurance and automotive
domains, to the specific needs of service engineering and Web services as the platform.
Quasar Enterprise is itself the result of applying the Quasar architecture approach to
quality architectures to service-oriented application integration [14]. Quasar Enterprise is
used by sd&m, a software solution and IT consultancy provider with more than 1400
employees, which is active in central Europe.

We evaluated our service-based architecture approach for EAI thoroughly. The
Quasar Enterprise approach has been used in sd&m projects of in total more than 1000
person years. The costs for EAI-based service development can be reduced by up to 40%,
as an evaluation over a three-year period of the methodology application demonstrates.

In this investigation, we have looked specifically at the language perspective of
Quasar Enterprise and language-based formalized transformation steps. The aim here
was to provide a notational framework that provides further cost reductions and also
more consistency across the development stages through tool support for modelling and
partial automation of activities. This model-driven approach has also benefits in terms of

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1333

improved maintainability of the integration architecture, which can be enhanced further
if tool support is provided throughout.

One of our central observations here is the need to enhance BPMN to an architec-
tural description language [16] to provide a notational framework for service and archi-
tecture identification. Reference architectures, that impose constraints on architectures in
the form of structural patterns, dominate this concern. This suggests an investigation of
the integration of architectural styles into the approach. Alternatives to a BPMN exten-
sion would have involved an extension of UML activity diagrams. However, in the ser-
vices context, transformations from BPMN to WS-BPEL as the execution language are
well investigated [13] and suggest using BPMN as the basis of an architectural exten-
sion.

6. RELATED WORK

A number of methodologies for application integration have been suggested, such
as SOMA, TOGAF or the Zachman framework [5]. We go beyond these, incorporating
modelling support to achieve coherence between business and software aspects, and in-
corporating architectural abstractions starting at business level, thus enhancing the main-
tainability of the resulting architecture. We have emphasized the notion of architecture
modelling, which goes beyond these approaches in terms of its more technical perspec-
tive on architecture description [12], which also brings our approach into the context of
model-driven development [15]. We can broadly characterize business architecture mod-
elling as a computation-independent modelling concern. System integration architecture
is a system-oriented, but platform-independent concern. Application integration links
these two concerns to different architectural layers. Abstraction, one of the core princi-
ples of model-driven development, is clearly utilized, whereas full automation, the other
pillar of model-driven development, is not an objective. We pursue a refinement approach
that bridges different architectural layers, i.e. aims at the integration of perspectives and
concerns through our incremental architecture approach.

Zdun et al. [17] present a business-centric architecture framework, determined by
patterns, that forms a reference architecture for SOA-based systems development. We,
however distinguish two architectural layers for application and system-level integration.
In particular if, as in our case, system-independent integration needs to be addressed,
then the information architecture providing domain-specific input into the architecture
and integration effort becomes central.

A critical step for the design of service architectures is service identification. The
granularity of each service impacts on design principles such as loose coupling, reusabil-
ity, abstraction, and autonomy. Most SOA design methodologies consider service identi-
fication a manual task. Some approaches have proposed semi-automatic strategies to
identify the set of software components that will provide the services functionality. In
[18] business processes elements and information objects are organized in a matrix whose
cell values correspond to weights representing the type of manipulation performed in
each process step. The matrix is reorganized using an optimization algorithm to deter-
mine clusters, which later will represent software components. The optimization criteria
aim at minimal communication between components (loose coupling) and maximum
compactness of components (high cohesion).

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1334

Authors in [19] introduce a framework with reusable architectural decision models
as a design method for service realization. Our methodology can be complemented with
this framework for structuring architectural decisions. It can, for instance, support the
selection of a particular reference model.

The key findings of this discussion are summarized in Table 1.

Table 1. Summary of comparison.

 Coherence Architectural
Abstraction

Architectural
Modelling

Decision
Modelling

Application Integration Frameworks [5] No No Yes Yes
Zdun et al. [17] Yes Yes No No

Albani et al. [18] Yes Yes No No
Zimmermann et al. [19] Yes No Yes Yes

Presented Approach Yes Yes Yes No

7. CONCLUSIONS

Enterprise Application Integration is a problem that has dominated the enterprise-
wide view on IT architectures and software applications for a long time. With the emer-
gence of service-oriented architecture, a new paradigm has emerged for the integration
of service-centric software applications. A methodological framework for the develop-
ment of service-centric software systems that emphasizes the integration architecture layer
can achieve enterprise-wide integration of new system features, legacy systems, and off-
the-shelf products.

A dedicated and empirically developed service-specific solution, based on the QUA-
SAR Enterprise methodology, that utilizes business process modelling and service com-
position techniques defines our framework. Service architecture is the key to successful
integration. An architectural description language consequently needs to be at the centre
of such a framework. The demonstration of the suitability of an extension of BPMN to
provide the notational basis for this architecture approach was a central objective. The
benefits are increased consistency through a formalization of architectural constraints in
an architectural description notation and development cost reduction achieved through a
tailored, architecture-centric integration approach. We have identified abstraction mecha-
nisms such as reference architectures and constraints as means to provide a mechanism
that allows constraining process-centric architectural models in a refinement-style de-
velopment approach.

Integration architecture needs to satisfy the needs of two perspectives, the computa-
tion-independent application-level view in terms of services on the one hand and soft-
ware the system-oriented service architecture. We have seen that the development of
both views is driven by business-level process and information models. A notion of ser-
vice architecture integrates the views and consequently emerging layers.

Our discussion of model-driven development indicates the future needs arising from
our investigation. Automation is becoming central to, firstly, achieve improved cost-ef-
fectiveness, but also to achieve reliability of products and application systems through
internal coherence of architectural concerns across modelling layers and stages.

SERVICE-CENTRIC INTEGRATION ARCHITECTURE

1335

REFERENCES

1. S. Conrad, W. Hasselbring, A. Koschel, and R. Tritsch, Enterprise Application Inte-
gration, Elsevier, Spektrum, 2006.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services − Concepts, Archi-
tectures and Applications, Springer-Verlag, Berlin, 2004.

3. A. Hess, B. Humm, and M. Voß, “Rules for high-quality service-oriented architec-
tures (in German),” Informatik Spektrum, Vol. 29, 2006, pp. 395-411.

4. Object Management Group, “Business process modeling notation (BPMN),” 2007,
http://www.bpmn.org/.

5. D. Krafzig, K. Banke, and D. Slama, Enterprise SOA: Service-Oriented Architecture
Best Practices, Prentice Hall, 2004.

6. F. Leymann, W. Reisig, S. R. Thatte, and W. M. P. van der Aalst, “The role of busi-
ness processes in service oriented architectures,” Dagstuhl Seminar Proceedings, Vol.
06291, 2006, http://drops.dagstuhl.de/opus/volltexte/2006/832/pdf/06291_abstracts_
collection.832.pdf.

7. W. Hasselbring, “Information system integration,” Communications of the ACM,
Vol. 43, 2000, pp. 32-36.

8. L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.,
SEI Series in Software Engineering, Addison-Wesley, Boston, US, 2003.

9. WS-BPEL Coalition, “WS-BPEL business process execution language for web ser-
vices − Specification version 1.1,” 2004, http://www-106.ibm.com/developerworks/
webservices/library/ws-bpel.

10. M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J. Krämer, “Service-
oriented computing: A research roadmap,” Dagstuhl Seminar Proceedings, Vol.
05462, 2005, http://drops.dagstuhl.de/opus/volltexte/2006/524/pdf/05462.SWM.Paper.
524.pdf.

11. World Wide Web Consortium (W3C), “Web services architecture,” 2006, http://
www.w3.org/TR/ws-arch/.

12. D. Garlan and B. Schmerl, “Architecture-driven modelling and analysis,” in Pro-
ceedings of the 11th Australian Workshop on Safety Related Programmable Systems,
Conferences in Research and Practice in Information Technology, Vol. 69, 2006, pp.
3-17.

13. C. Ouyang, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede, “From
BPMN process models to BPEL web services,” in Proceedings of the 4th Interna-
tional Conference on Web Services, 2006, pp. 285-293.

14. M. Voß, A. Hess, and B. Humm, “Towards a framework for large scale quality ar-
chitecture,” Perspectives in Software Quality − 2nd International Conference on the
Quality of Software Architectures, 2006, pp. 52-58.

15. C. Pahl, “Layered ontology-based modelling of service-based software systems,”
Information and Software Technology, Vol. 49, 2007, pp. 838-850.

16. N. Medvidovic and R. N. Taylor, “A classification and comparison framework for
software architecture description languages,” IEEE Transactions on Software Engi-
neering, Vol. 26, 2000, pp. 70-93.

17. U. Zdun, C. Hentrich, and S. Dustdar, “Modeling process-driven and service-ori-
ented architectures using patterns and pattern primitives,” ACM Transactions on the

CLAUS PAHL, WILHELM HASSELBRING AND MARKUS VOSS

1336

Web, Vol. 1, 2007, pp. 14.1-14.44.
18. A. Albani, J. Dietz, and J. Zaha, “Identifying business components on the basis of an

enterprise ontology,” Interoperability of Enterprise Software and Applications, 2006,
pp. 335-347.

19. O. Zimmermann, J. Koehler, and F. Leymann, “Architectural decision models as
micro-methodology for service-oriented analysis and design,” in Proceedings of
Workshop on Software Engineering Methods for Service Oriented Architecture, Vol.
244, 2007, pp. 46-60.

Claus Pahl is a senior lecturer and the head of the Software
and Systems Engineering group at Dublin City University. He is
also the director the M.Sc. in Software Engineering degree pro-
gramme. His research interests encompass software and service
engineering, in particular the development and deployment of
Web and Internet-based applications. He received his Ph.D. in
Computer Science from the University of Dortmund, Germany.
He is a member of the IEEE Computer Society and the German
Association for Computer Science.

Wilhelm Hasselbring is a Professor of Software Engineer-
ing at the University of Kiel. His research interests include soft-
ware engineering and distributed systems, particularly software
architecture design and evaluation. He received his Ph.D. in
Computer Science from the University of Dortmund, Germany.
He’s a member of the ACM, the IEEE Computer Society, and the
German Association for Computer Science.

Markus Voss is business unit head at Capgemini sd&m AG,
Germany. From 2006-2007 he headed sd&m Research, the re-
search and technology management division. His technical inter-
ests include enterprise architecture, systems integration and mod-
ern software engineering techniques. He received his Ph.D. in
Computer Science from Karlsruhe University, Germany. He is
member of the executive committee of the German Association
for Computer Science.

