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Abstract

Developing large-scale deep grammars in a constraint-based framework such
as Lexical Functional Grammar (LFG) is time-consuming and requires sig-
nificant linguistic insight. Recently, treebank-based constraint-grammar ac-
quisition approaches have been developed as an alternative to hand-crafting
such resources. While treebank-based approaches are wide coverage and
robust and achieve competitive evaluation results for many languages, the
granularity of the linguistic analyses provided by treebank-based resources
tends to be less fine-grained than what is offered by state-of-the-art hand-
crafted grammars. This paper presents an approach to extend the English
DCU LFG annotation algorithm with more detailed f-structure information
to provide probabilistic treebank-based LFG grammars with rich feature in-
formation comparable to that implemented by the hand-crafted English XLE

grammar, while maintaining the robustness and the coverage of treebank-
based stochastic grammars.

1 Introduction

Robustly parsing natural language has been the focus of research for the last decades,
with frameworks evolving that attempt to go beyond the analysis of constituency
and hierarchical order to provide a more abstract level of linguistic analysis. Lex-
ical Functional Grammar (LFG) (Bresnan and Kaplan, 1982; Dalrymple, 2001),
among others, is one approach that combines two levels of representation, namely
constituent structure and functional structure, which are related in terms of a pro-
jection architecture where functional information is encoded in terms of functional
descriptions annotated to constituents in phrase-structure rules. By employing both
representations, LFG provides insight into the surface as well as the deeper, more
abstract properties of natural language syntax.

In addition, LFG has proven to be a theory that can serve as the backbone
for a computational analysis of natural language. These features have led to the
development of computational LFG grammars that allow for an automatic syntactic
analysis of natural language.

Over time, various methodologies of developing computational LFG grammars
have evolved. One approach that has proven highly successful is the employment
of a rule-based LFG parser (Crouch et al., 2009) where the manual encoding of
syntactic rules and functional descriptions provides a deep and highly detailed syn-
tactic analysis that forms the input to the computation of a semantic representation
at a subsequent processing step (Crouch and King, 2006).

In general, manual development of large-scale deep grammars faces a num-
ber of challenges. First, language data is complex and varied and some perfectly
legitimate constructions may be outside the coverage of the grammar. Second,
”real” input may contain typos and disfluencies not envisaged by the hand-crafted
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grammar. Third, even highly efficient LFG parsing architectures operating on de-
tailed hand-crafted grammars can be significantly slower than some state-of-the-art
treebank-based stochastic parsers. Because of this, full coverage on unrestricted
language data can often only be achieved by taking short-cuts: either combining
fragment analyses in parser output or constraining the amount of computation to
only partially explore sections of the full parsing search space.

An alternative DCU LFG approach (Cahill et al., 2004) uses robust treebank-
based stochastic parsers that automatically produce Penn-II Treebank style (Mar-
cus et al., 1993) constituent structure trees. Functional information is provided
by an f-structure annotation algorithm (Burke, 2006) that automatically annotates
treebank-style trees with f-structure information. In this approach both the tree
parser and the f-structure information are provided automatically, reducing human
grammar development effort. Up to now, treebank-based DCU LFG f-structures en-
coded substantially less information compared to the rich and detailed f-structures
produced by the hand-crafted XLE LFG grammars, even though the treebank-based
approach outperformes the hand-crafted grammars on the restricted core (preds-
only and slightly extended) feature sets in the PARC700 evaluation gold standard
(Cahill et al., 2008). Because of the lack of detail, however, to date treebank-based
f-structure output could not be used for further semantic processing as implemented
by Crouch and King (2006).

This paper attempts to combine the best of the two worlds: the linguistic depth
and detail of the f-structures provided by hand-crafted XLE LFG grammars with the
coverage, robustness and parse quality provided by the automatic grammar acqui-
sition methodology of the treebank-based DCU LFG approach. In order to achieve
this, we extend the f-structure annotation algorithm of the treebank-based DCU

LFG grammar for English with more detailed f-structure information, aproaching
the feature granularity and and linguistic sophistication of the state-of-the-art hand-
crafted XLE LFG grammar for English.

The paper is structured as follows: section 2 briefly reviews the state-of-the-art
in computational LFG grammars for English, followed by a particular linguistic ex-
ample and how the hand-crafted XLE LFG and treebank- and annotation algorithm-
based DCU LFG grammars attempt to provide a linguistically motivated analysis for
it. Having introduced the concepts we deal with, section 3 presents how the gap
between the two LFG grammar development architectures can be closed. Section 4
presents evaluation results, followed by remarks on future work and the conclusion
in section 5.



2 State-of-the-Art

The aim of parsing natural language has resulted in computational grammars in
various constraint-based frameworks, among them Lexical-Functional Grammar
(LFG) (Bresnan and Kaplan, 1982; Dalrymple, 2001).

LFG is able to provide cross-linguistically valid analyses by employing levels of
representation that abstract away from the surface structure of sentences. Further-
more, due to its computational and mathematical tractability, it has also proven an
excellent theory for use in computational linguistics (Maxwell and Kaplan, 1996).
Therefore, it allows for the combination of theoretically founded linguistic analy-
ses with an efficient computational analysis.

For the purpose of this paper, we restrict ourselves to discussing two state-of-
the-art LFG grammars for English, with the hand-crafted XLE grammar in section
2.1 and the DCU LFG treebank- and annotation algorithm-based approach in section
2.2, followed by an exemplary linguistic issue, namely a non-local dependency, and
how the two approaches cope with it.

2.1 The English XLE grammar

XLE is an efficient rule-based grammar development platform, developed at Palo
Alto Research Center (PARC) and consisting of cutting-edge algorithms for parsing
and generation using LFG grammars, along with a user interface for writing and
debugging LFG grammars and lexical resources (Crouch et al., 2009).

XLE provides the shared technology platform within the ParGram effort (Butt
et al., 1999, 2002) that aims at developing parallel LFG grammars for various lan-
guages such as English, German, French, Norwegian, Japanese, Turkish and Urdu.
Besides providing computationally efficient analyses for natural language, a main
focus of ParGram lies on the cross-linguistically valid analysis of natural language,
making the LFG analyses as parallel and informative as possible across languages.

The English XLE grammar is a part of a larger system that maps text to an
Abstract Knowledge Representation (AKR) which can then be used for applications
such as search, question answering (Bobrow et al., 2007) and editing text (Bier
et al., 2009). Figure 1 shows the basic system pipeline.

In order to break text into sentences and sentences into tokens, finite-state trans-
ducers (FSTs) are applied. These are also used for the morphological component,
where each word is analyzed and morphological information is passed on to the
XLE grammar. Hand-coded syntax rules in the XLE grammar pick up the morpho-
logical information and add constituent structure and functional information. Like
all rule-based LFG grammars, the output of the syntax is a c-structure (constituent
structure) that encodes constituency and linear order, and an attribute-value ma-
trix (f-structure), encoding functional information such as the predicate-argument
structure and semantically important features such, e.g. tense and number (see Fig-
ure 2). In cases of syntactic ambiguity, such as PP-attachment, the XLE grammar
outputs a packed representation of all possible analyses, which allows optimal-
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Figure 1: XLE pipeline

ity marks and a stochastic disambiguation component to choose between them in
further processing. Optimality Theory marks in the syntax rules indicate which
analyses are dispreferred (Frank et al., 1998).
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Figure 2: C- and f-structure for We enjoy conferencing in Ottawa.

In a later step, the syntactic information contained in the f-structure is passed
on to XFR ordered rewrite rules that map f-structure information to a semantic rep-
resentation by using external resources to replace words with concepts and gram-
matical functions with semantic roles (Crouch and King, 2006). Further rewriting
by XFR rules converts the semantic representation into an abstract knowledge rep-
resentation.

In cases where the parser produces a large number of analysis, XLE uses a
stochastic disambiguation model that is trained on LFG analyses for Penn-II Tree-



bank sentences and uses tree information from the Penn-II Treebank to guide the
XLE analyses. For sentences where the XLE grammar cannot produce a spanning
parse, i.e. a complete analysis for the entire input, XLE is able to produce a se-
quence of largest well-formed fragment analyses. This provides a degree of ro-
bustness for language data outside the coverage of the grammar and also allows for
”ungrammatical” or fragmented language, including typos etc.

2.2 The DCU LFG Annotation Algorithm

The treebank-based DCU LFG annotation algorithm, developed at Dublin City Uni-
versity (DCU) (Cahill, 2004; Cahill et al., 2008), generates c- and f-structures for
English sentences in a different manner than the XLE grammar. Making use of
reliable treebank-parsers, the DCU f-structure annotation algorithm annotates the
nodes in the tree with f-structure equations. Annotation algorithms and wide-
coverage treebank-based LFG systems have been developed in the GramLab project
for English, Chinese, French, Spanish, Arabic and German.
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Figure 3: DCU pipeline

In general, the parsing pipeline comprises the following parts: at first, a text
breaker splits running text into sentences. These are then parsed by a treebank-
trained stochastic parser (Charniak and Johnson, 2005; Bikel, 2002), which creates
trees in the Penn-II Treebank style (Marcus et al., 1993). The treebank function la-
bel tagger (Chrupała et al., 2007) (also trained on the Penn-II treebank) enriches the
bare CFG parser output trees with further information by assigning treebank func-
tion labels (where possible), e.g. adding SBJ to subject noun phrases (NP-SBJ),
and LOC to locative prepositional phrases (PP-LOC). This information helps the
f-structure annotation algorithm to assign f-structure equations to the tree nodes



(including the terminal nodes). A constraint solver collects and resolves the f-
structure equations and produces an f-structure. The last step, the long-distance
dependency resolution module, resolves non-local dependencies using automati-
cally acquired subcategoraisation frames and finite approximations of functional-
uncertainty equations (all automatically extracted from the f-structures automati-
cally generated from the training set of the original Penn-II treebank trees). See
Figure 3 for a schematic overview.

Figure 4 shows the Penn-II Treebank-style tree for We enjoy conferencing in
Ottawa. As the CFG-parser is trained on the Penn-II Treebank, tree nodes are
named according to Penn-II conventions and may not necessarily correspond to
usual LFG textbook or XLE-style phrase-structure labels.

S

NP-SBJ VP .
(↑ SUBJ) = ↓ ↑ = ↓

PRP VBP S .
(↑ XCOMP) = ↓

We enjoy VP PP-LOC
↓ ∈ (↑ ADJUNCT)

VPG IN NP

conferencing in NNP

Ottawa

Figure 4: DCU tree with f-structure equations

The DCU LFG parsing pipeline including the f-structure annotation algorithm
has been successfully evaluated on gold standards such as the PARC700 (King
et al., 2003), outperforming the rule-based English XLE grammar and parser by
more than 2% f-score absolute (Cahill et al., 2008).

This provides an excellent basis for a further development of the DCU pro-
cessing pipeline, with a particular focus on the f-structure annotation algorithm.
However, as the original DCU system was tuned to produce only basic LFG rep-
resentations concentrating on a restricted set of core syntactic and semantic fea-
tures, it lacks the detail and linguistic sophistication of the f-structures produced
by the hand-crafted English XLE grammar. In order to close this gap between the
treebank-based and the hand-crafted grammars, we need to extend the restricted
feature space of the DCU annotation algorithm to obtain f-structures as detailed as
XLE f-structures.

2.3 An Example Linguistic Issue for Computational Grammars

A recurring problem for computational grammars that goes beyond the analysis of
pure surface structure and provides a linguistically motivated analysis is the treat-



ment of non-local dependencies. Consider the example ‘We enjoy conferencing in
Ottawa.’. Here we have an unexpressed argument in the subordinate clause, with
the subject of the main clause also being the subject of subordinate clause.

In the case of the hand-crafted LFG grammar, we can express this information
by writing a lexical entry for the verb enjoy, as given in Figure 5, which encodes
this dependency information:

enjoy V * (ˆ PRED) = ‘enjoy 〈(ˆ SUBJ) (ˆ XCOMP)〉’
(ˆ SUBJ) = (ˆ XCOMP SUBJ)

Figure 5: The LFG lexical entry for enjoy

Whenever the grammar finds a construction with the word enjoy that subcate-
gorizes for a SUBJ and an XCOMP, the subject of the main clause is automatically
made the subject of the XCOMP, represented with co-indexed f-structures.

For the treebank- and annotation algorithm-based DCU parsing pipeline, the
matter is different. Instead of manually encoding information on the non-local
dependencies between the main and the subordinate clause in the lexical entry, all
that is available is a parser output simplified Penn-II treebank-style tree structure
as in Figure 6.

(S (NP (PRP We))
(VP (VBP enjoy)
(S (VP (VBG conferencing)

(PP (IN in)
(NP (NNP Ottawa))))))

(. .))

Figure 6: Parser output tree

Treebank-trained CFG parsers such as Charniak and Johnson (2005) and Bikel
(2002) do not capture non-local dependencies. The parser output tree for the exam-
ple sentence contains no information on the missing argument in the subordinate
clause and does not record the non-local dependency between the subject of the
main clause and the subordinate clause. From this tree alone, the basic f-structure
annotation algorithm cannot recover the non-local dependency.

The long-distance dependency resolution module (Cahill et al., 2004) in the
DCU LFG parsing pipeline employs statistical methods and works as follows: un-
like the simplified parser output trees, the original Penn-II Treebank contains co-
indexed paths for long-distance dependencies, that mark the missing subject in the
subordinate clause with an empty node (NP-SBJ (-NONE- *-1)) and relate it to the
subject in the main clause.



(Cahill et al., 2004) apply the f-structure annotation algorithm to the full Penn-
II treebank trees producing fully non-local dependency-resolved f-structures which
record non-local dependencies as corresponding reentrancies in f-structure. From
these non-local dependency-resolved f-structures, (Cahill et al., 2004) learn subcat-
egorization frames and finite approximations of functional uncertainty equations.
These are used to non-local dependency resolve f-structures and the f-structure
with the highest probability is chosen.

So instead of making use of lexical information in the verb entries as in the XLE

grammar, the long-distance dependencies are learned from the Penn-II Treebank.

3 Closing the gap

The overall aim of this paper is to show that the gap in detail and granularity of
linguistic representation between the hand-crafted English XLE grammar and the
treebank-based DCU LFG approach for English can be closed by extending the DCU

annotation algorithm.
Proof of concept that this can be done has been shown by earlier experiments

reported in Hautli and King (2009), however this paper present a different approach
that substantially outperforms previous experiments. This section presents the two
approaches, with evaluations following in the next section.

3.1 Using XFR rewrite rules

A recent approach (Hautli and King, 2009) attempted to overcome the differences
between the hand-crafted XLE grammar and the treebank-based DCU LFG approach
by using a set of XFR rewrite rules that added missing f-structure information to
DCU LFG output, effectively treating the DCU system as a black box. This means
that information about the CFG tree structure is not taken into account, and the XFR

rewrite rules solely operate on the DCU f-structure output. For a schematic view of
the experimental layout see Figure 7.

XFR rewrite rules ↔
rule-based
XLE grammar

DCU annotation
algorithm

Figure 7: Schematic view of Hautli and King (2009)

In particular, the DCU LFG pipeline as described in the previous section and its
output was used as is. After reformatting the DCU LFG output for it to be readable



by XLE, XFR rewrite rules were defined and applied, adding information on the
level of f-structure that the DCU LFG system had not yet provided. Additionally,
existing information was modified, such as feature names and values, to make it
XLE-compatible.

Below, we provide a very simple example of the kind of ordered XFR rewrite
rule that is employed in this approach, and although being a somewhat artificial ex-
ample, the principle remains the same for more complicated constructions. Figure
8 shows a DCU LFG f-structure for the subject pronoun ‘we’ that is rewritten via
an XFR rewrite rule. The rule works as follows: the facts on the left hand side of
the rewrite rule (before the arrow) constitute the input f-structure facts that must be
matched for the rule to apply. If they cannot be matched, the rule does not apply.
In cases where the rule fires, the facts on the left side are rewritten to the facts on
the right hand side of the rule (after the arrow). Forms beginning with a percent
sign (%) are variables that can be instantiated by f-structures.

input:

⎡
⎢⎢⎣subj

⎡
⎢⎢⎣

pred pron

num pl

pron form we

⎤
⎥⎥⎦

⎤
⎥⎥⎦

XFR rule:
subj(%X,%Subj), pred(%Subj,pron), num(%Subj,pl),

pron form(%Subj,we)

==>

SUBJ(%X,%Subj), PRED(%Subj,we),

NTYPE(%Subj,%Ntype), NSYN(%Ntype,pronoun),

CASE(%Subj,nom), HUMAN(%Subj,+), NUM(%Subj,pl), PERS(%Subj,1),

PRON-TYPE(%Subj,pers).

output:

⎡
⎢⎢⎢⎣SUBJ

⎡
⎢⎢⎢⎣

PRED pron

NTYPE
[

NSYN pronoun
]

CASE nom HUMAN + NUM pl PERS 1 PRON-TYPE pers

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

Figure 8: Rewriting of the pronoun we

Consider the XFR rule in Figure 8: the variable %X is the f-structure which
contains a subj; this subj is then referred to by the variable %Subj. This %Subj
f-structure must have a pred attribute with value pron, a num attribute with value
pl and a pron form feature with the value we in order for the XFR rule to match.



The input f-structure in Figure 8 matches the facts required by the XFR rule, and
is rewritten to the output f-structure shown at the bottom of Figure 8. In total, the
XFR system mapping from DCU to XLE f-structures consists of 162 manually coded
rewrite rules that add and modify information from the DCU f-structures.

Evaluation shows that adding information to the DCU LFG f-structures by XFR

rules and then evaluating these against the f-structures produced by the hand-
crafted XLE grammar proves successful. However, issues remain where lexical
entries would have to be listed in the XFR rules in order to make their analysis
parallel to the XLE analysis, e.g. in the case of distinguishing first and last names.

An alternative approach based on extending the DCU LFG annotation algorithm
directly without the intermediate step of XFR rewriting will be discussed in the
following section.

3.2 Extending the DCU Annotation Algorithm

Instead of applying XFR rewrite rules as in Hautli and King (2009), the approach
explored in this paper is to directly enrich the DCU annotation algorithm with the
full feature inventory, detail and sophistication of the hand-crafted XLE grammar,
as shown in Figure 9. There is no intermediate step between DCU and XLE output,
and they are compared directly. In addition, we retain a version of the original
annotation algorithm (Cahill, 2004) and its feature space.

↔
extended rule-based

DCU annotation XLE grammar
algorithm

Figure 9: Schematic view of 2010 experiment

The overall DCU pipeline is not changed for this paper, only the f-structure annota-
tion algorithm is extended, as shown in Figure 10.

Apart from extending the feature space, some existing features were also re-
named and their representation in the f-structure changed. To give an overview of
the feature space of the DCU LFG annotation algorithm, Table 1 lists the original
DCU features (36 in total) with the newly added f-structure features in bold (30
added). Besides adding features, we also extended the range of feature values to
make the DCU f-structures more informative, for instance the values ‘first name’
and ‘last name’ of the feature NAME-TYPE.
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Figure 10: Extended DCU Annotation Algorithm

original features added features
adegree, adjunct, aquant, comp, conj,
coord-form, det-form, focus-int, mod,
num, number, number-type, obj, obj-
th, obl, obl-ag, obl-compar, passive,
pcase, perf, poss, prog, pron-form,
pron-int, pron-rel, proper, prt-form,
quant, stmt-type, subj, subord-form,
tense, topic-rel, xcomp

adjunct-type, adv-type, atype, case,
clause-type, coord, common, deg-
dim, degree, deixis, det, focus,
gend-sem, human, inf-type, mood,
name-type, nsem, nsyn, ntype, part,
precoord form, proper-type, psem,
ptype, spec, time, tns-asp, vtype,
xcomp-pred

extended features

Table 1: Original and extended feature space of the DCU annotation algorithm

Figures 11 and 12 show the f-structures for We enjoy conferencing in Ottawa.,
exemplifying tense and aspect as it is represented in the original and the extended
DCU LFG annotation algorithm, respectively. The tense feature, which is on the
top level of the f-structure in the original DCU representation, is moved to the TNS-
ASP f-structure that is complemented by the aspectual features MOOD, PERF and
PROG.

Following the general methodology of making the DCU f-structures as closely
resembling the hand-crafted XLE grammar as possible, the representation of tense
and aspect in the extended DCU f-structures is now equivalent to the representa-
tion in the XLE grammar. This enables the output of the treebank- and annotation
algorithm-based DCU LFG pipeline to serve as valid input to the XFR semantics. As



the correct XLE-style representation of tense and aspect is crucial for getting valid
semantic representations, it is necessary to capture this information as completely
and precisely as possible.

num pl, pred pro, pron_form wesubj

num sg, pers 3, pred Ottawa, proper locationobj

inpform
1adjunct

pred conference, prog +, stmt_type declarative

xcomp

pred enjoy, stmt_type declarative, tense pres-1

Figure 11: Tense and aspect in the original DCU f-structures

'enjoy<[-1-XCOMP:conference]>[-1-SUBJ:we]'PRED

'we'PRED

pronounNSYNNTYPE

CASE nom, HUMAN +, NUM pl, PERS 1, PRON-TYPE pers

SUBJ

V-SUBJexpl-XCOMPinf_SUBCAT-FRAMECHECK

MOOD indicative, PERF -_, PROG -_, TENSE presTNS-ASP

'conference'PRED
[-1-SUBJ:we]SUBJ

'in<[-2-OBJ:Ottawa]>'PRED

'Ottawa'PRED

locationPROPER-TYPEPROPERNSEM

properNSYN
NTYPE

CASE obl, NUM sg, PERS 3

OBJ

semPTYPE-2

ADJUNCT

V-SUBJ_SUBCAT-FRAMECHECK

MOOD indicative, PERF -_, PROG +_TNS-ASP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main

XCOMP

CLAUSE-TYPE decl, PASSIVE -, VTYPE main-1

Figure 12: Tense and aspect in the extended DCU f-structures

Another important point, in particular for the corpora we evaluated on, was the
precise XLE-style analysis of first and last names (as in John Smith). In order to add
this information, the relation of the CFG parse tree nodes is taken into considera-
tion. If two (or more) proper names are sisters and the lemma of the leftmost node
can be found in a list of first names, we annotate it with the information that it is a
first name. This is recursively done until one of the sisters to the right is not a first
name, annotating this node with the feature for last names. This is a substantial
improvement over the approach with XFR rewrite rules, because in addition to list-
ing first names, last names also had to be listed. By considering node information,
this can be automatically done, with middle names also being detected (e.g. John
Adam Smith). As a result, this substantially increases the precision for any corpora,
but in particular for those containing newspaper text, as is the case in PARC700.



4 Evaluation

The evaluation covers two aspects we are concerned with: the quality of the ex-
tended DCU f-structures and the overall coverage of the DCU annotation algorithm.

With respect to the quality of the f-structures, the purpose of the evaluation
is to see how closely the extended treebank- and annotation algorithm-based DCU

f-structures resemble the hand-crafted XLE grammar f-structures. For this we use
evaluation measures from information retrieval, namely precision (“How accurate
are the extended DCU f-structures?”), recall (“How complete are the extended DCU

f-structures?”) and the f-score, which is a weighted average of precision and recall.
These measures are calculated on a per-feature basis, i.e. every feature of either the
DCU or the XLE side is checked whether it appears on the other side. The number
of found and not found features is calculated and divided by the total number of
features present. The overall matching results lie between 0 (no feature matches)
and 1 (all features match). The same methodology is employed when matching the
semantic representations that the DCU and the XLE f-structures generate.

Concerning the evaluation of the coverage of the DCU annotation algorithm, the
aim is to detect constructions where either the stochastic parser or the annotation
algorithm fails to produce a valid representation.

4.1 Quality of representations

4.1.1 F-Structure matching

In the first set of experiments we measure the similarity of treebank- and annotation
algorithm-based DCU and hand-crafted XLE grammar f-structures and compare our
results to the architecture proposed in Hautli and King (2009) with XFR rewrite
rules. Both architectures (XFR rewrite rules approach vs. extended DCU annotation
algorithm) are tested on a testsuite of f-structures for 720 sentences constructed by
PARC and designed to test the semantic representation of the English XLE grammar.

Given the difference that the XLE grammar can produce multiple f-structures
for a sentence and the DCU grammar cannot, we match a single DCU analysis
against each XLE analysis and choose the best matching result.

Hautli and King (2009) extended DCU system
precision recall f-score precision recall f-score

sem test 70.31 67.69 68.98 83.44 77.22 80.20

Table 2: Evaluation results for semantics testsuite

The results in Table 2 show that the features can be reconstructed successfully
in both architectures, however extending the DCU algorithm is more effective than
using the set of XFR rewrite rules, because we can allow for operations that are
unavailable to the rewrite approach, such as taking into account the relation of
nodes in the tree, as shown for the annotation of first and last names.



In order to test the extended DCU LFG annotation algorithm more indepen-
dently, we evaluate the DCU pipeline against the PARC700 gold standard which
contains 700 randomly extracted sentences from Section 23 of Penn-II Treebank
(WSJ section) with an average length of 19.8 words per sentence. The sentences
are split into a development set (140 sentences) and a test set (560 sentences).
In addition, we compare our evaluation results of the extended DCU LFG approach
with the PARC700 evaluation results of the original DCU LFG approach and the XLE

grammar (Cahill et al., 2008)1. Evaluation on the test set generates the following
results.

PARC700

XLE grammar original DCU extended DCU

precision — — 85.45
recall — — 81.81

f-score 80.55 82.73 83.59

Table 3: PARC700 evaluation

Table 3 shows that the extended DCU annotation algorithm outperforms the
XLE grammar and the original DCU annotation algorithm.

In addition to improving our evaluation results for the extended DCU version,
we have also improved the f-score for the original version from 82.73% in Cahill
et al. (2008) to 83.45%. This is due to further refining of the annotation algorithm.

In order to show in detail how the extended DCU system is performing, Table 4
gives the breakdown by dependency relation of the evaluation against PARC700.

Dependency Precision Recall F-score Dependency Precision Recall F-score
adegree 81 79 80 pcase 91 77 83
adjunct 73 72 73 perf 95 88 92
aquant 33 77 47 poss 88 90 89
comp 69 75 72 precoord form 0 0 0
conj 82 79 80 prog 97 75 85
coord form 74 90 81 pron form 91 84 88
det form 98 98 98 pron int 0 0 0
focus int 0 0 0 pron rel 68 56 62
mod 80 69 74 proper 87 90 88
num 91 89 90 prt form 78 78 78
number 89 89 89 quant 84 73 78
number type 95 92 94 stmt type 90 82 86
obj 91 87 89 subj 88 69 77
obj theta 42 45 43 subord form 84 74 79
obl 51 70 59 tense 96 93 95
obl ag 87 87 87 topic rel 39 64 49
obl compar 57 27 36 xcomp 86 78 82
passive 85 69 77

Table 4: Breakdown by dependency relation of extended DCU annotation algorithm
against PARC700

1Cahill et al. (2008) only provide the f-score for the evaluations.



The results show that that as far as the f-structure matching is concerned, the
extended DCU annotation algorithm performs well. Especially for features such
as tense and aspect, where recall and precision are above 95%, we get the right
analysis for most sentences, except in cases where the treebank-trained CFG tree
parser produces a wrong tree. The same holds for other features such as NUMBER-
TYPE and DET-FORM with matching figures around 95%. Remaining issues are
notorious cases such as the adjunct and oblique distinction, where only around 60%
of annotations are correct, as well as the annotation of OBJ-TH with a matching
precision of 43%.

4.1.2 Matching of Semantic Representations

To validate our claim that we can provide treebank- and annotation algorithm-based
DCU LFG output that can serve as input to the XFR semantic representation, we
match the semantic representations that are generated using the extended DCU LFG

f-structures as input with semantic representations based on using the f-structures
generated by the hand-crafted XLE grammar as input. The f-score for that matching
is 73.7, which means that by using extended DCU f-structures we can produce
73.7% of information that is contained in the semantic representations when XLE

f-structures are used. This is a promising result and although the f-score is lower
compared to matching f-structures, the information we catch in the extended DCU

f-structure is so comprehensive that the semantic representations generated from
them are useful.

4.2 Coverage Evaluation

In addition to evaluating the quality of the extended DCU f-structures, we also mea-
sure the coverage of the extended DCU annotation algorithm (i.e. the percentage
of sentences for which at least one analysis is found). By using the PARC700 gold
standard, we count the number of parsed sentences, divided by the total number of
sentences.

For both the training and the test set, we get full coverage, whereas the XLE

grammar has a coverage of 80% and 83.8%, respectively. Preliminary experiments
of running the DCU annotation algorithm on all of Penn-II Treebank have resulted
in a coverage of above 98%.



5 Future Work and Conclusion

In this paper we have presented the extension of the DCU LFG annotation algorithm
so that its output can serve as input to the XFR semantic representation which re-
quires detailed f-structure information. The experiments show that the gap in the
richness of the feature space and detail of the f-structure representations between
the treebank- and annotation algorithm-based DCU LFG approach and hand-crafted
XLE grammars can be closed, which means that there is a possibility of generating
rich and deep LFG grammars on the basis of treebanks and annotation algorithms.
This technique cannot only be used for English but also for other languages, bene-
fiting from the aspect that the CFG trees are automatically created with a treebank-
trained robust parser and have a good coverage for general unrestricted text or even
fragmented text such as John ! hops !.

One aspect that remains for future work is to test the performance of the ex-
tended (as compared to the original) DCU annotation algorithm on larger corpora,
for instance all of Penn-II treebank training set. This would allow for a more com-
prehensive assessment of the coverage of the extended DCU annotation algorithm
and could also provide a large-scale rich f-structure bank that can be used for other
natural language processing tools.

Another area of future work is the long-distance dependency module that has
to be retrained to get more exact probabilities for the resolution of the non-local
dependencies. Having more exact probabilities will most likely improve our eval-
uation results.

A more long-term goal is the development of an integrated DCU-XLE system,
which would use the current XLE system for in-coverage sentences, but the ex-
tended DCU system for out-of-coverage and fragmenting sentences. Given the pos-
itive results for the matching of the semantic representations, this would potentially
help in getting a more wide-coverage semantic representation.

The paper also shows that by extending the DCU LFG system, we can outper-
form the earlier approach where the DCU LFG system was employed as a black box
and rewrite rules were used to modify the f-structures. The approach here results
in a single DCU LFG system, which is more efficient and also has a higher accuracy
due to the extra information that is available by looking at the node relation in the
tree. By being able to take into account tree information which previously could
not be done, we allow for more linguistic insight that can be captured in the final
f-structure representation.

As more researchers wish to build meaning-sensitive applications, we can con-
tribute a robust, deep syntactic analysis that can be used for further levels of ab-
straction.
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