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Abstract 

A series of novel (a)chiral imidazolium based Ionic Liquids (ILs) were synthesised, 

characterised and screened for biodegradation and antimicrobial toxicities. The effect of 

incorporating ester and amide moieties into the IL side chain, on these biological systems 

was studied. 18 achiral imidazolium ILs were prepared containing alkyl (C5-C14) ester or 

amide functionalities in the cation side chain. A range of amino acid ester based ILs (48 

examples) were also synthesised and fully characterised. Similar synthetic methodology 

was employed for the preparation of both these class of ILs. 17 Chiral Ionic Liquids (CILs) 

with dipeptidyl moieties in the side chain were also designed, prepared and characterised. 

All compounds reported in the thesis were characterized by a range of spectroscopic 

techniques including: 1H, 13C, DEPT 135 and HMQC NMR in addition to IR and MS.  

Toxicity and biodegradation studies were carried out on the novel ILs. Minimum Inhibitory 

Concentration assays were used to screen ILs toxicity against several strains of bacteria 

(gram positive and gram negative strains). Most ILs displayed relatively low levels of 

toxicity towards the isolated strains, with inhibition only evident at higher test 

concentrations (200 mM) in these tests. Antimicrobial studies were also performed against 

clinically resistant strains of fungi and bacteria. Inhibition of the resistant MRSA bacterial 

strain was noted for some examples. An Activated Sludge assay was also set up in order to 

investigate the biodegradation of ILs. A modified OECD 301 A (Die-Away test, 28 day 

test) was employed using inoculum from a waste water treatment facility in a 

pharmaceutical company in south Co. Dublin. The breakdown of some ILs was monitored 

via Direct Infusion ElectroSpray Mass Spectrometry (DI-ESI MS). Some promising results 

were achieved from this study, and possible metabolite structures have been elucidated 

using the MS data. 
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1.1 Introduction  

Ionic liquids (ILs) have been described as molten salts that are entirely ionic in nature, 

comprising both a cationic and anionic species and by definition having a melting point 

below 100 °C.1 

ILs usually consist of a large unsymmetrical organic cation associated with a polyatomic 

anion that may be either organic or inorganic1 (Figure 1.1). Symmetrical species tend to 

pack more effectively in the solid state, and so highly symmetrical anions and cations tend 

to form salts with higher melting points. However, for most applications a lower melting 

point (by definition < 100 °C) is preferred for ILs. This is one of the reasons that in many 

cases the cation is designed with a reduced symmetry (e.g. 1-butyl-3-methylimidazolium 

cation is preferred over 1,3-dibutyl or 1,3-dimethylimidazolium cations).2 

N

Commonly used cations

Commonly used anions

OAc, (EtO)2PO2, HOSO3

N(CN)2, CH3OSO3, NTf2
S

O

O

OO

PF6

BF4

R

N

R3 R2

R1

R

P

R3 R2

R1

N N
R1R

R

 

Fig. 1.1: Cations and anions frequently used in Ionic Liquid formation. 

The modular nature of ILs means that structural modifications can either be made to the 

anion, the cationic core or substituents on the anion or cation. Hence, a wide diversity in IL 

structure is possible and by altering either the cationic or anionic component of an IL, the 

physical properties of the IL can readily be fine-tuned. Physical properties which can be 

tailored to the requirements of a process include the melting point, viscosity, density, 

solubility and hydrophobicity of the ionic liquid. Moreover, reaction products can often be 

separated more easily from an ionic liquid than from conventional solvents. These benefits 

make ILs an attractive choice of solvent in many important chemical processes, with 
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examples reported in the areas of catalysis,3 biocatalysis,4 synthetic chemistry5 and 

electrochemistry.6 A number of detailed reviews have demonstrated the advantages of using 

ILs as new solvent types.3,5,7,8 

In addition to the favourable physical and chemical properties of ILs, their low vapour 

pressures and near lack of flammability make them interesting as potentially ‘green’ 

solvents. In general, the negligible volatility of these ILs means that air pollution by 

gaseous release is not a concern. However, the potential release of ionic liquid vapours (or 

decomposition products) must be considered when ILs are used at elevated temperatures.9,10 

In addition, Seddon et al. reported that 1-alkyl-3-methylimidazolium ILs can be distilled at 

200-300 °C.11 Even though the release of ILs into the environment from gaseous waste 

streams is not expected to be a significant cause of pollution9 many ILs are water soluble 

and also thermally and chemically stable. Hence, the environmental impact of these new 

solvents could prove to be a cause for concern if they should escape into the environment 

via waste-water effluents.  

 

Hazard assessment of ILs has now become an important area of research and many groups 

have reported toxicity, ecotoxicity and biodegradation studies on ILs. The toxicity of ILs 

has been evaluated in systems involving microorganisms12,13,14,15 as well as terrestrial 

invertebrates such as earthworms,16 aquatic species, including the zebrafish (Danio rerio)17 

as well as waterfleas, (Daphnia magna)18,19 and algae.20 The toxicity of ILs towards 

terrestrial plants has also been investigated and more recent studies have even screened 

human cells.21 From the accumulated toxicity data, trends have emerged in terms of 

structural features that give rise to increased toxicity in ILs. Notably, ILs that possess a 

substituted cation with an alkyl chain of greater than 8 carbons, and also those with 

lipophilic anions, have been shown to display undesirable toxicity.18,22,23 A recent 

comprehensive review of toxicity studies of ILs was reported by Zhao.24 

 

Many classes of ILs are water soluble, with the exceptions of those containing lipophilic 

anions, such as bis(trifluoromethyl)sulfonyl amide [NTf2], or hexafluorophosphate [PF6] 

anions. A highly desirable property in the design of the first generation of 1-butyl-3-
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methylimidazolium [bmim] ILs was chemical stability, and where possible, inertness. 

These features have given ILs the versatility to be used in a wide variety of chemical 

reactions. However, this stability has led to concern over whether ILs might also prove 

resistant to biological breakdown and hence accumulate in the environment. Due to the 

vastness of the library of ILs that might conceivably be synthesised, it is important at the 

design stage to consider factors which may influence the toxicity and biodegradation of the 

ILs. The pioneering work of Boethling25,26 in the design of biodegradable chemicals has 

greatly assisted researchers in the field of ILs by giving guidelines for the synthesis of 

environmentally benign solvents.  

 

Boethling highlighted a number of factors that can improve the mineralization of organic 

compounds by mixed microbial communities. An increase in aerobic biodegradation is 

usually observed for those compounds that contain the following structural features:  

 

• benzene rings, and unsubstituted linear alkyl chains (> 4 carbons in chain length) 

• groups that provide possible sites for enzymatic hydrolysis (especially oxygen 

atoms in the form of hydroxyls, aldehydes, or carboxylic acids) 

 

However, increased resistance to aerobic biodegradation is generally observed for those 

compounds which contain the following structural motifs: 

 

• halogens; with chlorine and fluorine being particularly persistent 

• chain branching; particularly where tertiary nitrogens or quaternary carbons are part 

of the structure, or where multiple branches are present in the same molecule 

• nitro, nitroso, azo and arylamino groups 

• polycyclic frameworks of the kind encountered in fused aromatic hydrocarbons (e.g. 

benzo[a]pyrene) 

• heterocycles (e.g. pyridine rings) 

• aliphatic ethers 
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It should be noted that these 'rules of thumb' are only guidelines and that the presence of a 

single desirable or undesirable structural feature within a molecule does not guarantee 

either biodegradability or persistence in the environment. While structural motifs that are 

less commonly encountered by enzymes in nature may result in poor biodegradability, even 

xenobiotics (molecular species completely foreign to a biological system) can be 

biodegraded either by 'fortuitous' metabolism (in the presence of a natural substrate, a 'co-

metabolite') or by 'gratuitous' metabolism25 (which takes advantage of an existing pathway). 

 

A wide variety of esterase enzymes (EC 3.1.5-EC 3.1.15) are present in the environment 

and many of these exhibit broad substrate specificity.27 These enzymes are ubiquitously 

found in microbial communities which ensure that biodegradation is frequently improved if 

the substrate contains ester moieties. In certain cases, such as that of the alkylsulfate 

surfactants, etherase and sulfatase enzymes may also play a role in biodegradation. 

Enzymatic oxidation provides another important means by which living systems can 

mineralize foreign molecules, converting them into water-soluble species by hydroxylation 

or epoxidation. The oxidase enzymes can even act upon species that would normally be 

considered inert, such as unsubstituted alkyl chains and aromatic rings. In the environment 

this step is carried out by bacteria and is frequently the rate-limiting step in the degradation 

of organic molecules.27 In particular, unsubstituted alkyl chains with greater than four 

carbons and benzene rings provide possible sites for attack by oxygenases. These 

substituents are particularly beneficial when hydroxylation is required to increase solubility 

and aid breakdown of a potential toxin.  

 

Biodegradability data gathered from decades of analysis of pesticide, pollutant and 

surfactant residues27 enabled Boethling25 to identify molecular features that impede 

biodegradability, leading to persistence in the environment. Persistent Organic Pollutants 

(POPs) typically contain halogens (especially chlorine and fluorine), chain branching (in 

particular problems associated with quaternary carbons), tertiary amines, polycyclic 

systems (more than three fused ring systems) or heterocycles – all features that tend to 

decrease the biodegradability of chemicals. 
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A compromise must arise in the design of biodegradable ionic liquids in order to balance 

the required stability of the solvent with favourable biodegradability. Such considerations 

are especially important when groups introduced into the IL to improve biodegradation may 

limit its practical applications. An example of this bottleneck is observed by the 

requirement of a biodegradable ionic liquid for catalytic hydrogenation reactions. Whilst 

examples of pyridinium cations with good biodegradability28,29 have been reported, they are 

unsuitable as solvents for hydrogenation reactions because of the lower activity of the 

catalyst and in some cases, the susceptibility of the pyridinium ring to reduction. In 

imidazolium solvated hydrogenation reactions, maintenance of catalyst efficiency is 

obtained, while the heterocycle is robust enough even for high pressure reductions. 

 

1.2 Biodegradation Assays 

Biodegradation assays are generally carried out according to OECD Guidelines for Testing 

of Chemicals: A series of guidelines laid down by the Organisation for Economic Co-

operation and Development with the aim of reproducibly assessing the effects of chemicals 

on workers and the environment. 

Commonly used terms and abbreviations in accordance with OECD Guidelines30 include 

• Biodegradation: conversion or breakdown of a chemical structure catalysed by 

enzymes in vitro or in vivo, resulting in loss of specific properties, especially 

biological activity. 

• Readily Biodegradable: an arbitrary classification of chemicals that have passed 

certain specified screening tests for ultimate biodegradability; these tests are so 

stringent that it is assumed that such compounds will rapidly and completely 

biodegrade in aquatic environments under aerobic conditions. 

• Ultimate Biodegradation: the level of degradation achieved when the test 

compound is totally utilised by micro-organisms resulting in the production of 
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carbon dioxide, water, mineral salts and new microbial cellular constituents 

(biomass). 

• Primary Biodegradation: an alteration in the chemical structure of a substance, 

brought about by biological action, resulting in the loss of a specific property of that 

substance. 

• Mineralization: the complete degradation of an organic compound to small 

molecules, such as carbon dioxide and water under aerobic conditions and carbon 

dioxide, water and methane under anaerobic conditions. 

• Inoculum: the source of microorganisms used to carry out biodegradation of the test 

substance; typically this may be derived from a variety of sources: activated sludge; 

sewage effluents (unchlorinated); surface waters and soils; or from a mixture of 

these. For the DOC Die-Away (301 A), CO2 Evolution (301 B) and Manometric 

Respirometry (301 F) methods if activated sludge is used, it should be taken from a 

treatment plant or laboratory-scale unit receiving predominantly domestic sewage. 

Inocula from other sources, usually yielding lower cell densities, have been found to 

give higher scattering of results. For the Modified OECD Screening (301 E) and 

Closed Bottle (301 D) methods, a more dilute inoculum without sludge flocs is 

needed and the preferred source is a secondary effluent from a domestic waste water 

treatment plant or laboratory-scale unit. For the MITI (I) (301 C) method, the 

inoculum is derived from a mixture of sources. Details of the sources and 

preparation of inocula are described under the headings of the specific test 

methods.30 

• Bioaccumulation: Gradual build up over time of a chemical in a living organism. 

• DOC: Dissolved Organic Carbon (DOC/L), is the organic carbon present in solution 

or that which passes through a 0.45 µm filter or remains in the supernatant after 

centrifuging at approximately 4,000 g (around 40,000 ms-2) for 15 minutes. 
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• TOC: Total Organic Carbon, is the sum of the organic carbon in solution and in 

suspension. 

• BOD: Biochemical Oxygen Demand is the amount (mg) of oxygen consumed by 

micro-organisms when metabolising a test substance. 

• COD: Chemical Oxygen Demand is the amount (mg) of oxygen consumed during 

the oxidation of a test compound with hot acidic dichromate; it provides a measure 

of the amount of oxidisable matter present. 

• 10-day window: The ten days immediately following the attainment of 10 % 

biodegradation.30 

The biodegradability of ionic liquids has been evaluated using a number of standard 

methods. The most commonly used tests are the Modified Sturm and Closed Bottle Tests 

(OECD 301 B and D respectively), the DOC Die-Away Test (OECD 301 A) and also the 

CO2 Headspace Test (ISO 14593), which is the reference method for laboratory testing of 

ultimate biodegradability.  

Each method has a relative principle of the test, where by the degradation is monitored by 

the determination of parameters such as Dissolved Organic Carbon (DOC), carbon dioxide 

production and oxygen uptake. Measurements of these parameters are taken at sufficiently 

frequent intervals, in order to identify the beginning and end of the biodegradation. 

Typically the tests are performed over a 28 day period; however, tests may be ended before 

the 28 day time frame if the biodegradation curve has reached a plateau for the last three 

measurements. Also, the tests can be extended beyond the 28 days when the biodegradation 

curve has shown that biodegradation has started but the plateau has not been reached by the 

last day (day 28). In the later case, the chemical would not be deemed readily 

biodegradable. The method used to assess the biodegradation of organic chemicals depends 

on several fundamental physical properties of the compound in question, i.e. whether the 

test substance is soluble in water (to at least 100 mg/L), volatile or adsorbing in nature. 

Table 1.1 illustrates the suitability of the test methods based on these properties of the test 

compound. However, each test method varies depending on the parameters investigated 
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during the test (DOC, CO2 evolution or O2 consumption) and also on the general procedure 

and preparations followed.   

Table 1.1: Applicability of OECD test methods. 
Suitability for compounds which are: Test Analytical 

method poorly soluble volatile Adsorbing 

DOC Die-Away 
(301 A) 
 

Dissolved 
organic carbon 

- - -/+ 

CO2 evolution 
(301 B) 
 

Respirometry: 
CO2 evolution 

+ - + 

MITI (I) 
(301 C) 

Respirometry: 
Oxygen 
consumption 

- -/+ + 

Closed bottle 
(301 D) 

Respirometry: 
Dissolved 
oxygen 

-/+ + + 

Modified 
OECD 
Screening 
(301 E) 
 

Dissolved 
organic carbon 

- - -/+ 

Manometric 
respirometry 
(301 F) 
 

Oxygen 
consumption 

+ -/+ + 

CO2 Headspace 
Test 
(ISO 14593) 
 

CO2 evolution + + + 

OECD 309 14C Labelling 
 

-/+ + + 

ASTM 5988 CO2 
production/BOD 

- - -/+ 

Suitable method to screen compound: +; Unsuitable method to screen compound: - 
 

1.2.1 Die-Away Test (OECD 301 A) 

In the Die-Away Test30 the compound under investigation should ideally be non-volatile 

and possess a water solubility of at least 100 mg/L. It is also desirable to know the carbon 

content and the purity of the compound prior to testing. A measured volume of inoculated 
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mineral medium, along with a known concentration of the test substance (10-40 mg 

DOC/L) as the main source or organic carbon, is aerated in the dark at 22 ± 2 °C. The 

breakdown of the compound is monitored by DOC analysis at frequent time intervals over 

28 days. The degree of biodegradation is calculated by expressing the concentration of 

DOC removed (corrected for the DOC in the blank control) as a percentage of the 

concentration initially added. The percentage biodegradation is calculated using the 

following equation: 

 

Where: 

• Dt = the percentage biodegradation at time t 

• Co = mean starting concentration of DOC in the inoculated culture medium 

containing the test substance (mg DOC/L) 

• Ct = mean concentration of DOC in the inoculated culture medium containing test 

substance at time t (mg DOC/L) 

• Cb(o) = mean starting concentration of DOC in the blank mineral medium  

• Cb(t) = mean concentration of DOC blank inoculated mineral medium at time t (mg 

DOC/L) 

The test system should be set up so that the there are: 

• Two flasks containing the test suspension (inoculum and test compound) 

• Two flasks containing the inoculum blank (inoculum only) and a number of 

controls may be run also. The controls used are the procedure control, which is the 

reference compound (these are compounds which have been classified as readily 
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biodegradable, such as aniline, sodium n-dodecyl sulfate (SDS) and sodium 

acetate) present with the inoculum.  

• An adsorption control can be used where the flask contains the inoculum, test 

compound and a sterilising reagent.  

• Finally an abiotic control is run in order to investigate the possible abiotic 

breakdown of the test compound. This control consists of the inoculum and a 

sterilising agent which inactivates the metabolising inoculum.  

Sampling should be carried out so that a sufficient amount of samples are taken to allow the 

percentage removal in the 10-day window (10 days immediately following the attainment 

of 10 % biodegradation) to be assessed. If subsequent analysis is carried out on the day of 

sampling, the next sampling day can be determined by considering the result of the 

analysis. If the samples are preserved (stored at low temperatures i.e. 2-4 °C for a 

maximum of 48h, or below -18 °C for longer amount of time) samples should be taken 

daily or every two days.  

Water soluble compounds can be screened by the DOC Die-Away method, while poorly 

water soluble compounds (alkanes, fats, oils, hydrophobic ionic liquids) and those which 

are adsorbing in nature are not suitable for this test. 

1.2.2 CO2 Evolution (Modified Sturm Test) (OECD 301 B) 

This well established method has extensively been applied to assess the readily 

biodegradability of organic compounds. It is based on the original tests carried out by 

Sturm31 and the principle is to measure the carbon dioxide produced as a result of microbial 

respiration. This method has been used to screen compounds which are poorly soluble, and 

those which strongly adsorb. Test species must also be non-volatile, as the production of 

carbon dioxide is considered to be the primary indication of microbial activity.  

A measured amount of inoculated mineral medium, with a known concentration of the test 

compound (10-20 mg DOC or Total Organic Carbon, TOC/L) as the main source of 

organic carbon, is aerated with carbon dioxide free air at a controlled rate in the dark, over 
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28 days. Biodegradation is determined over this time frame by measuring the carbon 

dioxide produced. Carbon dioxide formed is trapped in barium or sodium hydroxide and is 

then measured by titration of the residual OH or as inorganic carbon (CO2). The amount of 

carbon dioxide evolved from the test substance (relative to that obtained from blanks) is 

expressed as a percentage of theoretical maximum carbon dioxide production ThCO2.  

The experimental set up of this test should include:  

• two vessels containing the test substance and inoculum (test suspension) 

• two vessels with only the inoculum  present (inoculum blank) 

• a procedure control vessel (in which the reference compound (e.g. sodium n-

dodecyl sulfate) and inocula are present) 

• an abiotic control (containing the test substance and a sterilising reagent)  

• a toxicity control can be set up (test substance, reference standard and inoculum) in 

order to check the possible inhibitory effect of the tested chemical.  

To determine the carbon dioxide produced, it is suggested that the relevant analysis be 

carried out every second or third day and following this, at least every fifth day until the 

last day of testing (day 28). This is to ensure that the 10-day window is identified.  

The percentage biodegradation is calculated from the following equation: 

 

mg CO2 produced

ThCO2 x mg test substance added
x 100% degradation =

 

 Biodegradation curves should be plotted and the 10-day window should be clearly 

indicated. An example of a general biodegradation curve is seen in Figure 1.2. In this curve, 

three different types of substances are being investigated. Three test substances reach the 

pass level (60 %) before or on the 10 day period. Peptones, which are water soluble 

compounds that are obtained by acid or enzyme hydrolysis of natural proteins, and are used 

as nutrients in culture media, 100 % degradation is achieved within 5 days of the test 
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period. >60 % biodegradation is observed for the glycol ether compound just within the 10 

day window. Adsorption of the aliphatic amine to the activated sludge is evident from the 

biodegradation curve (Figure 1.2). This physicochemical phenomenon is indicated when 

there is complete or significant removal of the test compound in the first 3 hours and the 

difference between test and blank samples remains at an unexpectedly low value.  

 

Fig. 1.2: An example of a plot of biodegradation curves.32 

Water soluble or insoluble compounds may be tested using  OECD 301 B CO2 Evolution 

Test, while volatile and adsorbing compounds are less suited to this test. The degradation of 

non-adsorbing pollutants, such as trichlorobenzenes has been assessed using this method.33
 

1.2.3 Closed Bottle Test (301 D) 

In this method, insoluble and volatile compounds may be tested provided that the necessary 

precautions are taken. The degradation for insoluble test substance can be mistakenly low if 

the bottles are not agitated periodically for the duration of the incubation. In the Closed 

Bottle Test a solution of the sampled chemical in mineral medium (2-5 mg/L), is inoculated 

with a relatively small number of microbes from a mixed population and maintained in 

completely full, closed bottles in the dark at a constant temperature. Biodegradation is 

monitored by analysis of dissolved oxygen over 28 days. The amount of oxygen consumed 
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by the micro-organisms (corrected for the uptake of O2 by the blank inoculum) is expressed 

as a percentage of the ThOD. The system should be set up as follows: 

• At least ten bottles containing the test compound and the inoculum 

• At least ten bottles containing just the inoculum (test blank) 

• At least ten bottles containing a reference compound and the inoculum  

Test bottles (at least in duplicate) should be withdrawn for dissolved oxygen analysis (see 

Figure 1.3) at weekly time intervals over the 28 days.  

 

Fig. 1.3: Dissolved oxygen analysis carried out on the closed bottles.34 

Weekly sampling establishes the percentage removal in a 14-day window, and sampling 

every 3-4 days allows the 10-day window to be known. In the case of nitrogen-containing 

test compounds, corrections to the uptake of oxygen by any nitrification occurring should 

be considered. This is usually completed by analysing the concentration of oxygen uptake 

using the electrode method as before, and then samples taken from the BOD bottles for 

nitrites and nitrates analysis. The percentage degradation is calculated by dividing the 

specific Biochemical Oxygen Demand BOD as mg of O2 per mg of the test compound, by 
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the specific ThOD or in some cases the COD. The following equations are used to carry out 

these calculations: 

% biodegradation =

BOD (mg O2 / mg test substance)

ThOD (mg O2 / mg test substance)

x 100

 

% biodegradation =

BOD (mg O2 / mg test substance)

COD (mg O2 / mg test substance)

x 100

 

The degradation of aromatic, hydroaromatic and aliphatic organic compounds can be 

screened using this test. Compounds which are volatile and adsorbing can be studied; 

however those lipophilic examples are not ideally suited to this method. Degradation of 

antibiotics35 and perfluoroalkylated substances (PFAS)36 has also been investigated using 

the Closed Bottle Test.  

1.2.4 CO2 Headspace Test (ISO 14593) 

Biodegradation assessment by the ISO 14593 considers the extent to which an organic 

compound is mineralized by a microbial community to evolve carbon dioxide and gives a 

measure of ultimate biodegradation. The CO2 Headspace Test is the preferred method for 

screening poorly soluble and highly adsorbent species. Several tests study carbon dioxide 

evolution as a parameter of degradation assessment, such as work by Sturm and Gledhill37 

to assess the readily biodegradation of chemicals. However, there are a number of 

drawbacks to these methods, and improvements have been made to these tests. In the Sturm 

methodology31, it has been reported that inorganic carbon (IC) can accumulate in the 

mineral medium during the application of the reference standard. The collection of carbon 

dioxide therefore does not give a true reflection of the amount of carbon dioxide evolved as 

a result of microbial metabolism. Thus, the specification that >60 % of the ThCO2 must be 

collected within a 10-day window for a compound to be classified as readily biodegradable 

would not be met for some test compounds which can be regarded as readily biodegradable 

if only the DOC removal method is used. The Sturm Test can also be time-consuming, 

cumbersome, and prone to experimental error and is inapplicable to volatile compounds. 
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However, independent studies by Struijs and Stoltenkamp,38 and Birch and Fletcher39 have 

resulted in improved methods for studying CO2 evolution, using more compact test systems 

with the significant advantage over the Sturm Test that volatile compounds can be assessed, 

and any delay in measuring carbon dioxide can be minimised. These two tests were 

combined to give the ISO Headspace CO2 Biodegradation Test, and this was ring tested in 

1995.40 

 

In the CO2 Headspace Test, the sample chemical (at a concentration of 20 mg/L) as the 

main source of energy and carbon, is incubated in a mineral medium inoculated with a 

mixed population of microbes. The test is then carried out in sealed bottles with a 

headspace of air which provides a reservoir of oxygen. The percentage biodegradation is 

expressed as a percentage of the Theoretical maximum Inorganic Carbon evolved (TIC) 

based on the concentration of the test compound initially added. The percentage 

biodegradation is calculated from the following equation: 

 

% biodegradation =
(TICt-TICb)

TOC
x 100

 

Where: 

• TICt = mg TIC in bottle at time t. 

• TICb = mean amount (mg) of TIC in blank bottles at time t 

• TOC = mg TOC initially added to bottle. 

 

A biodegradation curve can then be plotted of the percentage biodegradation versus time, 

(see Figure 1.4). 
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Fig. 1.4: An example of a biodegradation curve using the CO2  Headspace Test.41 

 

Hydrophilic and hydrophobic substances are suitable for biodegradation analysis by the 

CO2 Headspace Test, including organic solvents, Volatile Organic Compounds VOCs, 

toluene, hexane, oils, fats, nitrates, acetates and ammonium containing compounds. 

Surfactants biodegradation has also been assessed using the CO2 Headspace method.42
 

1.2.5 OECD 309-Aerobic mineralization in Surface Water: Simulation Biodegradation 

Test 

The OECD 309 test measures the biodegradation of a test substance over time at low 

concentrations in aerobic natural water and to quantify the observations in kinetic rate 

expressions. The test is performed in batch by “pelagic test” (i.e. in batch by incubation of 

the test compound with surface water only) or “suspended sediment test” (test substance 

incubated with surface water amended with suspended solids or sediment) to simulate a 

water body with suspended solids or re-suspended sediment.43 

 

The test vessels are incubated in the dark at an environmental temperature (e.g. 20-25 °C) 

under aerobic conditions and agitated for 60 days. At least two different concentrations of 

test substance are required. The maximum test concentration should be below 100 µg/L and 
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the lowest test concentration in the range of <1-10 µg/L. Two samples are taken from each 

test flask at each sampling time. Degradation is traced at appropriate time intervals by 

measuring either the residual 14C or the residual concentration of the test substance. The 

total mineralization and primary biodegradation are determined by separate 14C labelling 

experiments within the molecule. 14C labelling of the most stable part of the compound 

allows the determination of the total mineralization. Isotopic labelling of a less stable 

region of the molecule enables the assessment of only primary biodegradation. Periodic 

measurements of pH and oxygen concentration in the test system must be also reported. 

 

This test is applicable for substances with low volatility or are non-volatile (with Henry’s 

law constants less than 1 Pa · m3/mol (approx. 10-5 atm · m3/mol).  Reference compounds 

are also used to confirm there is an active microbial population in the surface water. 

 

1.2.6 ASTM D 5988- Standard method for determining Aerobic Biodegradation in 

Soil of Plastic Materials or Residual Plastic Materials after composting 

Biodegradability of synthetic plastic materials in soil or a mixture of soil and mature 

compost under laboratory conditions is determined with the ASTM D 5988 test.44 Soil is a 

species-rich source of inocula for the assessment of biodegradation of plastics in the 

environment. While soil provides an example of a typical medium where spillage of a 

substance might occur, its biological activity is lower than that of other inocula, such as 

activated sludge or compost.  

The test species should be of known weight and have sufficient carbon content. Tested 

substances should be in the form of films, pieces, fragments, powders or formed articles, or 

in aqueous media, and added directly to the soil matrix. A reference substance (for example 

starch or cellulose) is used to test the activity of the soil. If <70 %  biodegradation is 

obtained for the reference control after six months, the test must be reported as invalid and 

should be repeated with fresh soil inoculum. Carbon dioxide production measured for a 

tested material is expressed as a fraction of the measured or calculated carbon content and 

is reported with respect to time, from which the biodegradation is assessed. Biochemical 

Oxygen Demand (BOD) can also be determined, and the level of biodegradation can be 
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reported by comparing the BOD with the ThOD. The percentage biodegradation from 

oxygen consumption is determined by first calculating the specific biochemical oxygen 

demand (BODs) of the test substance using the equation: 

 

Where: 

• Bt = the BOD of the flasks containing test material at time t, in mg/kg of the test soil 

• Bbt = the BOD of the blank control at time t, in mg/kg of the test soil 

• CT = the concentration of the test material in the test flasks in mg/kg of the test soil 

 

The percentage biodegradation as a ratio of the specific biochemical oxygen demand to the 

ThOD, in mg/g of the test substance is calculated as shown below: 

 

% biodegradation =
ThOD

BODs
x 100

 

 

This test has been applied to the investigation of biodegradability of imidazolium ionic 

liquids in soil (see Section 1.3.5). 
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1.3 Biodegradation studies of Ionic Liquids 

Despite ionic liquids appearing increasingly in the research literature for over a decade,5 

biodegradation data for this class of compounds have only appeared in recent years.45,46 

Biodegradation studies of imidazolium, pyridinium and ammonium ionic liquids have 

emerged in the literature as of late. Convincing examples of biodegradable phosphonium 

ionic liquids 66-67 have yet to emerge, and so these are only briefly referred to in Table 

1.5. Primary biodegradation and metabolite profiling of ionic liquids has also been 

investigated, including methods of identifying metabolites arising from ionic liquid 

biodegradation. Elucidation of possible biodegradation pathways occurring during the 

biological breakdown has also been examined by some groups. 

1.3.1 Biodegradation of imidazolium-based ionic liquids 

In 2002 Gathergood and Scammells46 were the first to undertake biodegradation studies of 

ionic liquids when they introduced functional groups which would be susceptible to 

enzymatic hydrolysis (i.e. ester/amides) into the ionic liquid cation side chain. 

Biodegradation of the resulting 3-methyl-1-(alkyloxycarbonylmethyl)imidazolium ionic 

liquids was then compared with that of the commonly used dialkylimidazolium salts, 

[bmim][BF4] and [bmim][PF6] using the modified Sturm and Closed Bottle Tests (OECD 

301 B and D respectively). Compounds which reached a biodegradation level higher than 

60 % are referred to as ‘‘readily biodegradable’’. The ionic liquids were prepared by the 

route depicted in Figure 1.5 and Table 1.2.46 

Fig. 1.5: Preparation of ester and amide-functionalised ionic liquids46  
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Table 1.2: Ester and amide-functionalised ionic liquids - parentheses indicate ILs that are 
solids at RT. 

 

Y = 

 

X = Br 

 

X = BF4 

 

X = PF6 

 

X = NTf2 

 

X = 

N(CN)2 

OMe (2) 
[MeOCO 

CH2mim][Br] 

11 

[MeOCO 
CH2mim][BF4] 

(18) 
[MeOCO 

CH2mim][PF6] 

25 

[MeOCO 
CH2mim][NTf2] 

- 

OEt 3 

[EtOCO 
CH2mim][Br] 

12 

[EtOCO 
CH2mim][BF4] 

19 

[EtOCO 
CH2mim][PF6] 

26 

[EtOCO 
CH2mim][NTf2] 

31 

[EtOCO 
CH2mim] 
[N(CN)2] 

OnPr 4 

[PrOCO 
CH2mim][Br] 

13 

[PrOCO 
CH2mim][BF4] 

20 

[PrOCO 
CH2mim][PF6] 

27 

[PrOCO 
CH2mim][NTf2] 

- 

OnBu 5 

[BuOCO 
CH2mim ][Br] 

 

- - - - 

OnHex 6 

[HexOCO 
CH2mim][Br] 

 

- - - - 

OnOct 7 

[OctOCO 
CH2mim][Br] 

14 

[OctOCOCH2mi
m][BF4] 

21 

[OctOCO 
CH2mim][PF6] 

28 

[OctOCO 
CH2mim][NTf2] 

- 

NHnBu (8) 

[BuNHCO 
CH2mim][Br] 

 

15 

[BuNHCO 
CH2mim][BF4] 

 

(22) 
[BuNHCO 

CH2mim][PF6] 

29 

[BuN(CH3)CO 
CH2mim][NTf2] 

- 

NMenBu 9 

[BuN(CH3)CO 
CH2mim][Br] 

 

16 

[BuN(CH3) 
COCH2mim] 

[BF4] 

(23) 
[BuN(CH3)COC

H2mim][PF6] 

- 32 

[BuN(CH3)
OCH2mim] 
[N(CN)2] 

NEt2 (10) 

[Et2NCO 
CH2mim][Br] 

17 

[Et2NCO 
CH2mim][BF4] 

[24] 

[Et2NCO 
CH2mim][PF6] 

[30] 

[Et2NCO 
CH2mim][NTf2] 

- 

During the design of these novel ionic liquids, the effect on the physical properties of these 

imidazolium based ionic liquids following modification to the cation was a concern. The 

introduction of an ester or amide alkyl chain may affect the melting points and solubility of 
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the parent ionic liquids. Imidazolium ionic liquids with ester side chains were generally 

found to be liquids at room temperature (21 out of 23 examples). Ionic Liquids 

[MeOCOCH2mim][BF4] 11 and [EtOCOCH2mim][BF4] 25 demonstrated that by changing 

the counter ion to BF4 or NTf2, analogues containing the methyl ester can be prepared 

which are liquid at room temperature. The amide derivatives were seen to have higher 

melting points than the ester containing ionic liquids. It was predicted that the cisoid-

transoid mixture of isomers for the amide examples, would lead to a depressed melting 

point, and might give rise to ILs that are liquid at room temperature. However, although the 

BF4 ionic liquids [BuNHCOCH2mim][BF4] 15, [BuN(CH3)COCH2mim][BF4] 16 and 

[Et2NCOCH2mim][BF4] 17 were liquid at room temperature, [BuNHCOCH2mim][Br] 8, 

[Et2NCOCH2mim][Br] 10, [BuNHCOCH2mim][PF6] 22, [BuN(CH3)COCH2mim][PF6] 23 

Et2NCOCH2mim ][PF6] 24 and [Et2NCOCH2mim][NTf2] 30 were solids. Significantly the 

diethyl amide ionic liquid (in which the prospect of cisoid-transoid rotamers is removed) 

[Et2NCOCH2mim][NTf2] 30 was the only NTf2 salt prepared that was solid at room 

temperature. A general trend is that the NTf2 counter ion gives lower viscosity and 

decreased melting point compared with bromide precursors. The symmetry of the diethyl 

amide is also a contributing factor in the observed elevated melting point. 

A preliminary biodegradation investigation was carried out on the two ester-containing 

ionic liquids ([EtOCOCH2mim][Br] 3 and [EtOCOCH2mim][BF4] 12, Table 1.2) and 

[bmim][PF6] using the modified Sturm Test protocol. All three ionic liquids were close to 

the pass level (>60 % readily biodegradable), with [EtOCOCH2mim][Br] 3= 48 %, 

[EtOCOCH2mim][BF4] 12 = 59 %, and [bmim][PF6] = 60 %.46  Following this study a 

Closed Bottle Test was utilised to screen a larger library of ionic liquids with ester and 

amide side chains. In these tests, the ionic liquid (in a concentration of 2 mg/L) was added 

to an aerobic mineral medium inoculated with wastewater sludge and the depletion of 

dissolved oxygen was measured over 28 days. A control inoculum was run in parallel to 

determine oxygen blanks and sodium n-dodecyl sulfate (SDS) used as the reference 

standard. Incorporation of an ester into the ionic liquid side chain significantly improved 

the biodegradation, whereas the amide derivatives displayed poor biodegradability. The 

presence of an ester bond in the side chain provides a site for possible enzymatic cleavage 
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to give the parent imidazolium fragment and the corresponding primary alcohol that may be 

readily metabolised via fatty acid β-oxidation. Esters with an alkyl side-chain of ≥4 carbons 

proved to be the most biodegradable of the series.  

These encouraging initial results led Gathergood et al. to elucidate the effect of the anion 

on the biodegradation of ionic liquids.19 A series of ester-functionalised ionic liquids with a 

variety of different anions were compared with [bmim][Br] examples. Again, the Closed 

Bottle Test was used to compare the biodegradability of the two classes of ionic liquid 

(Figure 1.6).  

 

 

 

Fig. 1.6: Ionic liquids screened in the Closed Bottle Test by Gathergood et al.
19

  

 

From the data it could be seen that the 3-methyl-1-(propoxycarbonyl)imidazolium  series 

showed higher levels of biodegradation, compared with the 1-butyl-3-methylimidazolium 

derivatives (see biodegradation curves- Figures 1.7 and 1.8). In particular, when the 

octylsulfate (C8H17OSO3) anion was incorporated into the ionic liquid structure, an increase 

in biodegradation was observed (49 % degradation after 28 days).  
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Fig. 1.7: Biodegradation curves for the 3-butyl-1-methylimidazolium salts (35-40) 

[bmim][Br] 35 (●), [bmim][BF4] 36 (▼), bmim][PF6] 37 (♦), [bmim][OctOSO3] 40 

(+),[bmim][N(CN)2] 39 (x), [bmim][NTf2] 38 (*), reference substance SDS (■). Figure 

reproduced.19 

 

Fig. 1.8: Biodegradation curves for the 3-methyl-1-(propoxycarbonyl)imidazolium ionic 

liquids (4,13,20,27,33, and 34). [PrOCOCH2mim][Br] 4 (●), [PrOCOCH2mim][BF4] 13 

(▼), [PrOCOCH2mim][PF6] 20 (♦), [PrOCOCH2mim][NTf2] 27 (*), 

[PrOCOCH2mim][N(CN)2] 33 (x), [PrOCO2CH2mim][OctOSO3] 34 (+); reference 

substance SDS (■). Figure reproduced.19 

 

Introduction of an additional methyl group at the C2 position of the imidazolium ring was 

carried out in an attempt to improve enzymatic oxidation of the imidazole core. However, 
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biodegradability remained approximately the same as for the C2-unsubstituted ILs.  Finally 

this work led to the first reported readily biodegradable ionic liquids, with ILs 

[PrOCO2CH2mim][OctOSO3] 34, [1-(PrOCOCH2)dmim][OctOSO3] 44, 

[PnOCOCH2mim][OctOSO3] 45 and  [1-(PnOCOCH2)dmim][OctOSO3] 46 showing 

biodegradabilities above 60 % in the CO2 Headspace Test47 (Table 1.3). 

 

Table 1.3: 3-Methyl and 2,3-dimethylimidazolium ionic liquids investigated for 
biodegradability using the CO2 Headspace Test. 

                                                                                          Biodegradability (%) 

 

R1 R2 X CO2 

Headspace 
(%) 

Closed 
Bottle 
(%) 

4 

[PrOCOCH2 

mim][Br] 

H C3H7 Br 24 24 

41 

[1-(PrOCOCH2) 
dmim][Br] 

CH3 C3H7 Br nd 23 

42 

[PnOCOCH2 

mim][Br] 

H C5H11 Br 41 32 

43 

[1-(PnOCOCH2) 
dmim][Br] 

CH3 C5H11 Br n.d. 33 

34 

[PrOCO2CH2 

mim][OctOSO3] 

H C3H7 OctOSO3 64 49 

44 

[1-(PrOCOCH2) 
dmim][OctOSO3] 

CH3 C3H7 OctOSO3 62 55 

45 

[PnOCOCH2 

mim][OctOSO3] 

H C5H11 OctOSO3 67 54 

46 

[1-(PnOCOCH2) 
dmim][OctOSO3] 

 

CH3 C5H11 OctOSO3 61 56 

nd= not determined 
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For this groups study into the effect of the anion, the CO2 Headspace Test (ISO 14593) was 

selected as the method for monitoring biodegradation. The ionic liquid was added to a 

mineral medium30 at a concentration of 40 mg/L, inoculated with activated sludge and then 

incubated in a sealed vessel with a headspace of air for 28 days. Mineralization of the 

compound to carbon dioxide was determined by measuring the net increase in TOC over 28 

days and comparing with blanks. The levels of biodegradation recorded using the CO2 

Headspace Test were notably higher than those obtained by the Closed Bottle Test. These 

differences may be attributed to the higher bacterial cell density in the inoculum used in the 

CO2 Headspace Test.47 The ionic liquids [PrOCO2CH2mim][OctOSO3] 34 and 

[PnOCOCH2mim][OctOSO3] 45 (Figure 1.9) were both found to be readily biodegradable 

according to the CO2 Headspace Test. This demonstated that the inclusion of an ester bond 

into a short hydrocarbon carbon chain (c.f. dehydrogenated tallow dimethyl ammonium 

compounds) still gave improved biodegradation over the butylimidazoilum salts screened.  

 

NN

O

O

OctOSO3

NN

O

O

OctOSO3

34 [PrOCO2CH2mim][OctOSO3] 45 [PnOCOCH2mim][OctOSO3]  

Fig. 1.9: Readily biodegradable ionic liquids, 3-methyl-1-(propoxycarbonyl)imidazolium 

octylsulfate (34) and 3-methyl-1-(pentoxycarbonyl)imidazolium octylsulfate (45). 

 

In 2009 Morrissey et al. reported biodegradation studies for a library of 66 ionic liquids 

containing oxygenated side chains and also amides.48 A toxicity screen of the ionic liquids 

was also reported, in which seven strains of bacteria were used to assess the antimicrobial 

activity of the ionic liquids. Four Gram negative (Pseudomonas aeruginosa, Escherichia 

coli, Klebsiella sp., Salmonella sp.) and three Gram positive (Staphylococcus aureus, 

Enterococcus sp., Bacillus subtilis) were used in these tests. A significant reduction in 

toxicity for the ionic liquids containing ether or poly ether side-chains (MIC values >20 
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mg/mL, corresponding to low toxicity at concentrations of >27 mM to >75 mM) compared 

with those bearing long chain alkylimidazolium salts was observed. 15 Ionic liquids 

(Figures 1.10 and 1.11) were studied for biodegradation and 6 of these were classified as 

readily biodegradable by the CO2 Headspace Test.  

 

 

Fig. 1.10: Oxygen-functionalised ionic liquids prepared and screened for biodegradation by 

Morrissey et al.48 
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Fig. 1.11: Amide functionalized ionic liquids investigated using the CO2 Headspace Test. 
 

Ionic liquids [PnOCOCH2mim][OctOSO3] 45, [PrOCH2CH2OCOCH2mim][OctOSO3] 50,  

[BuOCH2CH2OCOCH2mim][OctOSO3] 51, [Pr(OCH2CH2)2OCOCH2mim][OctOSO3] 54,  

[Bu(OCH2CH2)2OCOCH2mim][OctOSO3] 55 and [1- (BuOCH2CH2OCOCH2)dmim] 

[OctOSO3] 56 passed the CO2 Headspace Test (% biodegradation of >60 % over 28 days) 

and therefore could be classified as readily biodegradable.ILs [BuOCOCH2mim][OctOSO3] 

47, [MeOCH2CH2OCOCH2mim] [OctOSO3] 48,  [EtOCH2CH2OCOCH2mim] [OctOSO3] 

49,  [Me(OCH2CH2)2OCOCH2mim] [OctOSO3] 52 and [Et(OCH2CH2)2OCOCH2mim] 

[OctOSO3] 53 displayed lower levels of biodegradation (between 55-59 %, Figure 1.12) 

while the biodegradation values for the amides (Figure 1.11) did not exceed 40 %.  

Incorporation of one or two ether groups into the side chain of the ionic liquid did not have 

a detrimental effect on the biodegradation of the ionic liquids compared to the alkyl ester 

analogues. Ionic liquids with propoxy or butoxy terminus [PrOCH2CH2OCOCH2mim] 

[OctOSO3] 50, [BuOCH2CH2OCOCH2mim] [OctOSO3] 51, [Pr(OCH2CH2)2OCOCH2mim] 

[OctOSO3] 54, [Bu(OCH2CH2)2OCOCH2mim] [OctOSO3] 55 and [1-

(BuOCH2CH2OCOCH2)dmim] [OctOSO3] 56 all passed the CO2 Headspace Test. Methoxy 

[MeOCH2CH2OCOCH2mim] [OctOSO3] 48 and [Me(OCH2CH2)2OCOCH2mim] 

[OctOSO3] 52 and ethoxy [EtOCH2CH2OCOCH2mim] [OctOSO3] 49 and 

[Et(OCH2CH2)2OCOCH2mim] [OctOSO3] 53 capped ionic liquids failed the CO2 
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Headspace Test. This data shows close agreement to Boethling’s rules of thumb where a 

greater or equal to C4 chain is preferred for improved biodegradation. 
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Fig. 1.12: Biodegradation curves (a) for compounds [BuOCOCH2mim] [OctOSO3] 47, 

[MeOCH2CH2OCOCH2mim] [OctOSO3] 48, [PrOCH2CH2OCOCH2mim] [OctOSO3] 50, 

[Me(OCH2CH2)2OCOCH2mim][OctOSO3] 52, [Pr(OCH2CH2)2OCOCH2mim] [OctOSO3] 

54 and [(1-PyrCOCH2)dmim] [OctOSO3] 59; (b) for compounds [PnOCOCH2mim] 

[OctOSO3] 45, [EtOCH2CH2OCOCH2mim] [OctOSO3] 49, [BuOCH2CH2OCOCH2mim] 
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[OctOSO3] 51, [Et(OCH2CH2)2OCOCH2mim] [OctOSO3] 53, 

[Bu(OCH2CH2)2OCOCH2mim][OctOSO3] 55 and [(1-(Me(OCH2CH2)2OCOCH2)dmim] 

[OctOSO3] 57. Reference compound used SDS (●). 
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Fig. 1.13: Biodegradation curves for compounds [PyrCOCH2mim] [OctOSO3] 58, [(1-

PyrCOCH2)dmim] [OctOSO3] 59 and [(MeOCH2CH2)2NOCH2mim] [OctOSO3] 60. 

 

Wells and co-workers studied the biodegradation of each of the major classes of IL cation - 

ammonium, imidazolium, phosphonium and pyridinium ions, and also screened related 

salts or acids (i.e. NaPF6, NaCH3OSO3, HN(SO2CF3)2) to test for counter anion effects.18 In 

Wells’ 2006 study the biochemical oxygen demand (BOD5) for the library of ionic liquids 

was measured (Table 1.4) and the biodegradability results compared (Table 1.5).  
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Table 1.4: Ionic liquids investigated for biodegradation by Wells et al..
18 

 
IL 

 
Cation 

 
R1 

 
R2 

 
MWt 

 
Anion 

37 imidazolium C4H9 CH3 139 PF6 

61 

[bmim][Cl] 
imidazolium C4H9 CH3 139 Cl 

62 

[dodecmim] 
[Cl] 

imidazolium C12H25 CH3 251 Cl 

63 

[hexadecmim] 
[Cl] 

imidazolium C16H33 CH3 307 Cl 

64 

[octadecmim] 
[Cl] 

imidazolium C18H37 CH3 335 Cl 

65 

[1-Bupy][Cl] 
pyridinium C4H9 - 136 Cl 

66 

[1-Bu-1-
EtPH2][(EtO)2

PO2] 
CY169™  

phosphonium C4H9 C2H5 231 (EtO)2PO2 

67 

[1-Hex-1-
tetradecylPH2]
[Cl] 
CY101™ 

phosphonium C6H13 C14H29 483 Cl 

68 

[1-Oct-1-
MethylNH2] 
[NTf2] 

ammonium C8H17 CH3 368 N(SO2CF3)2 

69 

EcoEng500™ 
 

ammoniuma {C2H4O(C2H4O)4

Me}2C14H29 

CH3 696 CH3OSO3 

a contains two PEG5 groups plus C14 chain as R1  
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Table 1.5: Biodegradation of ionic liquids screened by Wells et al..
18 

 
% inhibition of glucose / glutamate biodegradation at a given test substance 

concentration: 
 

 

IL 

 

 

100 

mg/L 

 

 

µM 

 

10 

mg/L 

 

µM 

 

1 

mg/L 

 

µM 

 

Measured 

biodegradation a 

37 9 720 8 72.0 28 7.20 0 

61 0 720 18 72.0 15 7.20 0 

62 97 398 59 39.8 3 3.98 Not tested b 

63 100 325 100 32.5 16 3.25 Not tested b 

64 100 298 100 29.8 100 2.98 Not tested b 

65 4 735 13 73.5 21 7.35 0 

66 19 433 15 43.3 16 4.33 9 

67 100 207 100 20.7 78 2.07 Not tested b 

68 23 272 37 27.2 26 2.72 0 

69 100 144 100 14.4 47 1.44 Not tested c 

HN(SO2CF3)2 -  -  -  0d 

a % oxygen uptake (biodegradation) after 28 days = BOD / measured COD 
b Inhibitory at test concentration; c BOD5 result shows material is readily biodegradable 
d note low carbon content of substrate 
 
 

In Wells’ experiment the ionic liquids were screened at different concentrations (expressed 

as µM) to investigate the inhibition of glucose/glutamate as part of the BOD biodegradation 

test. However, the difference in concentration did not appear to influence the 

biodegradability of the ionic liquid itself. For example ionic liquids [1-Bupy][Cl] 65 

(pyridinium cation / chloride anion) and 66 [1-Bu-1-EtPH2][(EtO)2PO2] were tested at 

concentrations of 100 mg/L, 10 mg/L and 1 mg/L with no difference in biodegradability. 

[1-Bupy][Cl] 65 did not undergo biodegradation, whilst [1-Bu-1-EtPH2][(EtO)2PO2] 66 
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was biodegradable at all concentrations. However, when concentrations are expressed in 

mass / volume, it must be remembered that the molar concentration may vary considerably 

– although [1-Bupy][Cl] 65 has a concentration of 735 µM at 100 mg/L, EcoEng500™ 69 

has a concentration of just 144 µM. Notably, both sodium methylsulfate and ditriflimide 

(which were used as controls) exhibited no measurable biodegradation. Furthermore, while 

the phosphonium ionic liquid, [1-Bu-1-EtPH2][(EtO)2PO2] 66 (CY169™) appears to have a 

modest, but encouraging biodegradability of 9 %, on closer examination, Wells noted that 

this roughly corresponds to degradation of the carbon content of the diethyl phosphate 

counter anion, and it is entirely possible that no biodegradation of the ethyl 

tributylphosphonium cation has taken place. Cations with short alkyl chains (C ≤ 4) did not 

undergo biodegradation over the period of the test. Only one short-chain test compound, 

sodium methylsulfate gave any detectable BOD during the test. However, it was apparent 

that imidazolium and pyridinium ILs with longer alkyl chains (C8, C12 and C18) exhibit an 

increase in toxicity to the tested species and most of the ionic liquids displayed resistance to 

biological breakdown. 

Romero has studied the acute toxicity and biodegradability of several imidazolium-based 

ionic liquids (Figure 1.14) in the aqueous phase.49
 

NN

60 R = (CH2)3CH3,X = Cl [bmim][Cl]
70 R = CH3, X = CH3OSO3 [mmim][MeOSO3]
71 R = CH2CH3, X = CH3CH2OSO3 [emim][EtOSO3]
72 R = (CH2)4CH3, X = Cl [pentmim][Cl]
73 R = (CH2)6CH3, X = Cl [hepmim][Cl]
74 R = (CH2)4CH3, X = PF6 [pentmim][PF6]
75 R = (CH2)6CH3, X = PF6 [hepmim][PF6]

R

X

    

Fig. 1.14: Imidazolium based ionic liquids prepared and screened by Romero et al..
49 

The Microtox® Protocol was used to investigate the EC50 and acute toxicity of these 

compounds. The group reported a correlation between alkyl chain length and toxicity; in 

agreement with Wells’ study.18 It was found that the shorter the alkyl chain of R the lower 



34 

 

the toxic effect. Biodegradability was analysed using the biochemical oxygen demand over 

5 days (BOD5) with aqueous samples containing known initial concentrations of the 

compounds and/or D-glucose (as a carbon source).  In this test, solutions containing 100 

mg/mL of the tested ionic liquid and / or 100 mg/mL of glucose were prepared in aerated 

media. 244 mL of each of these solutions were inoculated with 1 mL of effluent from a 

wastewater treatment plant and were dispensed into BOD bottles and incubated at 20 ± 1°C 

in the dark for 5 days.  The final concentration of D-glucose and ionic liquid in the samples 

were analysed using an enzymatic kit or by UV-spectrometry. The glucose concentration 

decreased, indicating that it was being consumed by the inoculum, while the concentrations 

of the ionic liquids remained similar to the initial values, indicating that the ionic liquids 

were poorly biodegradable in the presence of glucose. Tests were also run on the ionic 

liquid samples in the absence of an extra carbon source, in order to see if the 

microorganisms could consume the ionic liquids if glucose was excluded. The 

concentrations of the compounds after 10 days were almost identical to the initial 

concentrations used, confirming that the ionic liquids were poorly biodegradable, in either 

the presence or the absence of an extra carbon source (i.e. glucose). 

1-Butyl-3-methylimidazolium hexafluorophosphate 37, 1-butyl-3-methylimidazolium 

tetrafluoroborate 36, 1-methylimidazolium L-lactate 76, 1-butylimidazolium L-lactate 77, 

1-decylimidazolium L-lactate 78 and 1-butoxymethylimidazolium L-lactate 79 (Table 1.6) 

were tested for biodegradability by Garbaczewska50 according to OECD guidelines (OECD 

309). In the biodegradation test the ionic liquids were inoculated with river surface water 

and then incubated in the dark at 20 °C. Samples were removed at various time intervals 

and the concentration of the ionic liquid present in the sample was determined via HPLC 

analysis (Table 1.6). 
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Table 1.6: Concentrations (determined by RP-HPLC peak areas) of imidazolium ionic 
liquids in surface water at sampling times.50 

Ionic Liquid Time (day) 

 

Conc. (%). 

x 10
 -5 

 

 
37 [bmim][PF6] 

1 
14 
33 
48 
62 
98 

45 
41 
41 
36 
35 
34 

 

 
36 [bmim][BF4] 
 

1 
14 
33 
48 
62 
98 

43 
38 
40 
36 
35 
33 

 

 
 

76 [mimH][Lac] 

1 
13 
32 
43 
55 
77 

13 
13 
11 
11 
12 
11 

 

 
77 [bimH][Lac] 

1 
13 
32 
43 
55 
77 

23 
21 
20 
20 
20 
19 

  
 

N NH

OH

O

O7

 
78 [decimH][Lac] 

1 
13 
32 
43 
55 
77 

17 
10 
0 
0 
0 
0 

 

 
79 [BuOCH2imH][Lac] 

1 
13 
32 
43 
55 
77 

14 
13 
12 
11 
12 
10 
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The 1-Butoxymethylimidazolium lactate ionic liquid [BuOCH2imH][Lac] 79 displayed 

increased biodegradability (reflected in a lower concentration remaining in the surface 

water sample) compared with 1-butylimidazolium lactate [bimH][Lac] 77. The C10 

imidazolium cation 78 was completely undetectable in the sample after day 13, indicating 

that in favourable cases longer alkyl chains can dramatically increase the rate of 

biodegradation.  

 

1.3.2 Biodegradation studies on pyridinium-based ionic liquids 

A range of pyridinium ionic liquids with environmentally benign anions (i.e. saccharinates 

and acesulfamates) have been screened for biodegradation.51
 Saccharin and acesulfamate 

anions are widely used in the food industry as non-nutritive food sweeteners and are non-

toxic in nature. Combining these non-toxic, benign anions with organic cations can lead to 

the production of greener ionic liquids. The general principle of bringing both non-toxic 

parent moieties together is to form a resulting non-toxic compound. The design of low 

toxicity and environmentally benign ionic liquids based on trends observed experimentally 

or calculated from molecular modelling can assist in the rapid determination of preferred 

target ionic liquids. However, every ionic liquid is unique and has a distinct individual 

toxicity and biodegradation. It is therefore preferable to screen an ionic liquid individually 

before it is applied as a solvent type in various applications.  The chloride salts were also 

screened as reference compounds (Figure 1.15).  



37 

 

 

Fig. 1.15: 1-Alkoxymethyl-3-hydroxypyridinium ionic liquids with acesulfamate, 
saccharinate and chloride anions. 

 

Ionic liquids (80-95, Figure 1.15) were tested using the Closed Bottle Test (OECD 301 D) 

in the dark at an incubation temperature of 20 ± 1 ˚C. Compounds which reached a 

biodegradation level higher than 60 % are referred to as ‘‘readily biodegradable’’. The 

ionic liquid and nutrient solution was inoculated with the supernatant liquor. The ionic 

liquid was added in a concentration of 4 mg/L, for an incubation period of 28 days. For the 

duration of the test the Dissolved Oxygen Concentration (DOC) was measured each day for 

the initial 7 days, and henceforth every seventh day. Biodegradation of the 1-alkoxymethyl-

3-hydroxypyridinium ionic liquids ranged from 21 % to 72 % (Table 1.7).  
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Table 1.7: Biodegradation data for 1-alkoxymethyl-3-hydroxypyridinium ionic liquids. 

Cation Counter Anion 

1-Alkoxymethyl-3- 
Hydroxypyridinium 

Saccharinate 
[Sac] 

 

Acesulfamate 
[Ace] 

Chloride 
[Cl] 

 % Biodegradation after 28 days 
C3H7OCH2 43.2 

86 

24.4 
80 

39.6 
92 

C4H9OCH2 12.7 
87 

21.5 
81 

- 

C6H13OCH2 31.2 
88 

38.5 
82 

- 

C7H15OCH2 31.7 
89 

41.2 
83 

43.5 
93 

C11H23OCH2 72.2 
90 

48.7 
84 

47.7 
94 

C18H37OCH2 20.2 
91 

32.4 
85 

25.4 
95 

 

As can be seen from the table of biodegradation data, the biodegradability of the ionic 

liquids depends on both the anion and the length of the alkyl side chain appended to the 

cation. In 4 of the 6 examples, the acesulfamate derivates gave better biodegradation than 

the saccharinates, with values ranging from 21.5-48.7 %. However, with each of the 3 

anions the highest biodegradability was obtained with a C11 chain attached to the pyridine 

ring, and it was 1-undecanoxy-3-hydroxypyridinium saccharinate, [3-HO-1-

UndecOCH2py][Sac] 90 which proved the outstanding example, with a biodegradation of 

72.2 %. 

Scammells et al. have also studied the biodegradability of pyridinium ionic liquids using 

the CO2 Headspace Test (ISO 14593).28,29 Compounds which reached a biodegradation 

level higher than 60% are referred to as ‘‘readily biodegradable’’. These ionic liquids were 

prepared either from pyridine or nicotinic acid, which are cheap and readily available. Ionic 

liquids with a C4 alkyl chain at the 1-position (Figure 1.16) gave poor biodegradabilities 

with values of 1-3 % biodegradation obtained after 28 days. The 1-butylpyridinium salt 

with octylsulfate incorporated as the anion gave higher levels of biodegradation (37-40 %). 

The introduction of a methyl group to the 3-position of the pyridinium core (Figure 1.16) 

did not give rise to increased biodegradation of the ionic liquids.    
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Fig. 1.16: 1-Butylpyridinium ionic liquids prepared by Scammells et al.
28 

 

Fig. 1.17: Pyridinium ionic liquids with 1-alkyl and 1-alkylester side chains. 

 

Ionic liquids with long alkyl chains and ester moieties at the 1-position (Figure 1.17) were 

also synthesised and evaluated for biodegradation. 1-Alkyl pyridinium bromides [1-

decpy][Br] 102 and [1-hexadecpy)][Br] 103 gave poor biodegradabilities (9 % and 0 % 

respectively). Figure 1.18 illustrates the biodegradation curves obtained for ionic liquids 

96-103. 
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Fig. 1.18: Biodegradation curves for [1-Bupy][Br] 96 (○), [1-Bupy][OctOSO3] 97 (□), [1-

Bupy][NTf2] 98 (+), [1-Bupy][PF6] 99 (∆), 3-Me-1-Bupy][Br]100 (x), [3-Me-1-

Bupy][OctOSO3] 101 (◊), [1-decpy][Br] 102 (■) and [1-hexadecpy)][Br] 103 (♦). 

 

Incorporation of an ester group at the 1-position of the pyridinium core resulted in ionic 

liquids [1-EtOCOCH2py][Br] 104, [1-EtOCOCH2py)][OctOSO3] 105, [1-

EtOCOCH2py][NTf2] 106 and [1-EtOCOCH2py][PF6] 107 (Figure 1.17). These salts were 

screened using the CO2 Headspace Test and classified as ‘readily biodegradable’, with 

biodegradations of 60-89 % (Figure 1.19).   

 

Fig. 1.19: Biodegradation curves for [1-EtOCOCH2py][Br] 104 (x), [1-

EtOCOCH2py)][OctOSO3] 105 (+), [1-EtOCOCH2py][NTf2] 106 (▲) and [1-

EtOCOCH2py][PF6] 107(□). 
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108 X= I
109 X= OctOSO3

110 X= NTf2
111 X= PF6
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113 X= OctOSO3

XX

N

O

N
H

X

114 X= I
115 X= OctOSO3

[3-BuNHCO-1-Bupy][I]
[3-BuNHCO-1-Bupy][OctOSO3]

[3-BuOCO-1-Bupy][I]
[3-BuOCO-1-Bupy][OctOSO3]

[3-BuOCOCH2-1-Mepy)][I]
[3-BuOCOCH2-1-Mepy][OctOSO3]
[3-BuOCO-1-Mepy][NTf2]
[3-BuOCO-1-Mepy)][PF6]

 

Fig. 1.20: Pyridinium-based ionic liquids derived from nicotinic acid. 
 

Ionic liquids [3-BuOCOCH2-1-Mepy][I] 108, [3-BuOCOCH2-1-Mepy][OctOSO3] 109, [3-

BuOCO-1-Mepy][NTf2] 110, [3-BuOCO-1-Mepy)][PF6] 111, [3-BuOCO-1-Bupy][I] 112, 

[3-BuOCO-1-Bupy][OctOSO3] 113, [3-BuNHCO-1-Bupy][I] 114 and [3-BuNHCO-1-

Bupy][OctOSO3] 115  were prepared from nicotinic acid by formation of an ester or amide 

linkage from the 3-carboxy group on the pyridine ring (Figure 1.20). These ionic liquids 

were assessed for levels of biodegradability with the ester derivatives being classified as 

readily biodegradable. Ionic liquids [3-BuOCOCH2-1-Mepy][I] 108 and [3-BuOCO-1-

Bupy][OctOSO3] 113 gave biodegradation levels of 72 and 84 % respectively. The 

octylsulfate [3-BuOCOCH2-1-Mepy][OctOSO3] 109, the triflimide [3-BuOCO-1-

Mepy][NTf2] 110 and the hexafluorophosphate [3-BuOCO-1-Mepy][PF6] 111 ionic liquids 

showed biodegradabilities of 75, 68 and 75 % respectively. The nicotinamide based ionic 

liquid [3-BuNHCO-1-Bupy][OctOSO3] 115 gave biodegradation of 30 % after the 28 day 
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duration of the test. Figure 1.21 illustrates the biodegradation curves obtained for ionic 

liquids [3-BuOCOCH2-1-Mepy][I] 108, [3-BuOCOCH2-1-Mepy][OctOSO3] 109, [3-

BuOCO-1-Mepy][NTf2] 110, [3-BuOCO-1-Mepy][PF6] 111, [3-BuOCO-1-Bupy][I] 113 

and [3-BuOCO-1-Bupy][OctOSO3] 115. 

 

Fig. 1.21: Biodegradation curves of ionic liquids [3-BuOCOCH2-1-Mepy][I] 108 (∆), [3-

BuOCOCH2-1-Mepy][OctOSO3] 109 (x), [3-BuOCO-1-Mepy][NTf2] 110 (♦), [3-BuOCO-

1-Mepy][PF6] 111 (+),[3-BuOCO-1-Bupy][OctOSO3] 113 (■) and [3-BuNHCO-1-

Bupy][OctOSO3] 115 (○). 

 

In a more recent study by the same group, a range of ester analogues of [3-BuOCO-1-

Mepy][NTf2] 110 were designed and prepared52 for use as solvents in Sonogashira coupling 

reactions (Section 1.4.3). The presence of the n-butyl ester in 110 could limit its use in 

coupling reactions and other related palladium-catalysed carbon-carbon bond formation 

reactions. Such reactions require the use of bases and sometimes harsh reaction conditions, 

which could potentially lead to cleavage of the ester group in the IL structure. Hence, more 

hindered ester groups such as iso-butyl, sec-butyl and tert-butyl esters were introduced into 

the IL side chain (Figure 1.22).  
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Fig. 1.22: Biodegradable 3-Butoxycarbonyl-1-methylpyridinium triflimide ionic liquids 

prepared by Scammels et al..52 

The biodegradability of these ionic liquids (110, 116-118) was assessed using the CO2 

Headspace Test (OECD 310). It was found that IL 110 displayed 61 % biodegradation 

after 1 week and therefore could be termed “readily biodegradable”. Salts 116-118 

reached the pass level (60 %) at a slower rate but did so within the 28-day time frame of 

the test (Table 1.8).  

Table 1.8: Biodegradation (%) of ILs (110-118). 

Ionic Liquid Biodegradation (%) 

 [3-BuOCO-1-Mepy][NTf2] 110 68 

 [3-sBuOCO-1-Mepy][NTf2] 116 70 

 [3-iBuOCO-1-Mepy][NTf2] 117 69 

 [3-tBuOCO-1-Mepy][NTf2] 118 72 
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1.3.3 Biodegradation studies on ammonium-based ionic liquids 

Recently, Yu and co-workers reported the preparation of ten biodegradable choline-based 

ionic liquids with naphthenic acid derivatives as counter anions.53 These naphthenic acid 

ionic liquids (NAILs) were prepared in a one-pot neutralisation of the respective acids with 

choline hydroxide (Scheme 1.1). 

 

   

 

Scheme 1.1: Synthesis of NAILs. 

 

This one-pot synthesis is advantageous over other commonly used metathesis reactions in 

the formation of ionic liquids, as it results in the pure form of the salt with negligible 

halogen contamination. It is also a greener alternative in that it is atom efficient with 

minimal waste produced.  

 

This group chose naphthenic acid surrogates which were previously shown to biodegrade to 

carbon dioxide and methane. Biodegradation studies on these NAILs using the Closed 

Bottle Test showed that 8 of the 10 ionic liquids prepared reached the pass level for readily 

biodegradability (% biodegradation >60 %, Figure 1.23).  
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Fig. 1.23: NAILS 119-126 which passed the Closed Bottle Test. 

 

The two ionic liquids which failed the biodegradability test were choline 2-

naphthoxyacetate [Ch][NOA] 127 and  choline anthracene-9-carboxylate [Ch][AC] 128  

(Figure 1.24).   
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Fig. 1.24: NAILS [Ch][NOA] 127 and [Ch][AC] 128 which failed the Closed Bottle Test. 

 

This low biodegradability is in accordance with Boethling’s rule of thumb that polycyclic 

residues (especially polycyclic aromatic hydrocarbons) can lead to an increase in resistance 

to biological breakdown.27 However, salts containing anions with four fused ring systems 

as part of a steroid skeleton passed the biodegradation tests, a result which is unsurprising 

for a molecular architecture commonly encountered in biochemical pathways (Figure 1.24). 

In addition to testing these novel NAILs, this group also screened a number of 

commercially available ionic liquids and organic solvents. From these results, the NAILs 

displayed biodegradability comparable with ethanol (a highly biodegradable solvent) while 

the commonly used ionic liquids gave levels of low biodegradation.  

 

Choline-based quaternary ammonium salts of this kind are highly promising biodegradable 

ionic liquids and have even been demonstrated to have a stimulating affect on activated 

sludge in wastewater treatment plants.54 Considerable data are already available for the 

biodegradation of related quaternary ammonium based surfactants40 but are beyond the 

scope of this review.  Design features which have been incorporated into ionic liquids 

based on the precedent from the surfactant industry are: avoiding branched hydrocarbon 

chains, including hydrolysable groups (e.g esters and amides), and the presence of ether 

groups and linear alkyl chains greater or equal to C4. As a general rule all these features 

have lead to improved biodegradation, except the inclusion of an amide bond.  

 

1.3.4 Primary biodegradation studies 

It is evident from the reported biodegradation data that work to determine possible 

pathways for the biodegradation of ionic liquids is still at an early stage. However, steps are 
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now being made towards this objective and a variety of analytical techniques have been 

used to identify possible metabolites of ionic liquids. These studies are especially important 

because a possible metabolite may display toxicity and persist in the environment, even if 

the parent ionic liquid is non-toxic and appears to be biodegradable.  

Docherty has recently used 1H NMR analysis to investigate the biodegradation of a number 

of commonly used ionic liquids.55 In her study six ionic liquids consisting of imidazolium 

and pyridinium bromide salts with 1-butyl, 1-hexyl and 1-octyl alkyl side chains were 

subjected to biodegradation by an activated sludge (Figure 1.25). 

 

Fig. 1.25: Chemical structures of the six (a) imidazolium and (b) pyridinium ILs examined 
by Docherty et al..55 

 

A modified OECD guideline for the Testing of Chemicals standard dissolved organic 

carbon (DOC) Die-Away Test was used to perform the biodegradation analysis of the ionic 

liquids. The ionic liquids were tested at a concentration of 40 mg C L-1 and were inoculated 

with 10.38 mL of activated sludge sample, yielding a final concentration of 30 mg 

suspended solids per 1 L bottle. Biotic controls were also prepared whereby three replicate 

bottles contained no ionic liquid and only inoculated media. An abiotic control was also set 

up (flasks which contained mineral medium and the test compound, but no inoculum). 

Sodium acetate was also used as a positive control (as a carbon source, to test sludge 

viability). All the test vessels were shaken aerobically at room temperature. 10 mL of 

sample was removed four times per week from all flasks for DOC analysis. When a ≥ 20 % 

decrease in DOC was observed, 10 mL samples were removed everyday for 14 days or 

until DOC concentrations became constant. NMR analysis on initial and final chemical 
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structures of the ionic liquids was also carried out. At the beginning of the test one set of 1 

L bottles of inoculated IL-Medium for all the ILs and one blank were prepared. These were 

immediately filtered (0.22 µm) and analysed by NMR. An NMR study was also carried out 

after the last incubation day where the samples were evaporated to remove water and then 

dissolved in 2 mL of D2O. The re-suspended samples were syringe filtered into NMR 

tubes. Figures 1.26 and 1.27 illustrate the NMR data obtained for pyridinium and 

imidazolium based salts. 

 

Fig. 1.26: 1H NMR data of pyridinium based ionic liquids at initial and final sampling 

times during biodegradation screening (for NMR assignments, see Figure 1.24). Figure 

reproduced.55 
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Fig. 1.27: 1H NMR data of imidazolium-based ionic liquids at initial and final sampling 

times during biodegradation screening (for NMR assignments, see Figure 1.25). Figure 

reproduced.55 

 

Ionic liquids most commonly contain a large organic cation substituted with one of a 

variety of possible alkyl side chains. The length of the alkyl side chain alters the 

lipophilicity of the ionic liquid, which can also have a pronounced effect on toxicity.18 

Docherty determined that pyridines alkylated with octyl chains are more biodegradable 

than the corresponding N-hexyl or N-butylpyridinium ions. Pyridinium cations also proved 

to be generally more biodegradable than comparable imidazolium ions. Of the six ionic 

liquids screened, only one example [3-Me-1-Octpy][Br] could be classified as readily 

biodegradable according to the DOC Die-Away Test guidelines (% biodegradation of [3-

Me-1-Octpy][Br] = 96 % after 25 days). Extended incubation times (up to 49 days) saw 

partial mineralization of imidazolium ionic liquids, while the pyridinium ionic liquids were 

fully mineralized in this time frame. 

 

Recently Docherty and co-workers further investigated the primary biodegradation of these 

N-alkyl substituted methyl-pyridines.56 Ionic liquids containing 1-Butyl-3-methyl 

pyridinium [3-Me-1-Bupy], 1-Hexyl-3-methylpyridinium [3-Me-1-Hexpy], and 1-Octyl-3-
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methylpyridinium [3-Me-1-Octpy] cations were studied using an activated sludge mixed 

microbial community. Primary biodegradation of these cations was traced using HPLC-MS 

analysis and Tandem MS (MS/MS) was also employed as a means of elucidating the 

possible routes of IL degradation. All 3 pyridinium cations were seen to be fully 

mineralised by the microbes but only the octyl-derivative could be classified as “readily 

biodegradable” according to OECD protocol. From previous results55 however the N-butyl 

methyl pyridine was seen not to be metabolised after 43 days, using similar methods and 

inoculum from the same waste water treatment plant. It was postulated that the activated 

sludge samples used in the latter study may have varied from that studied in earlier tests 

(i.e. microbial species may have varied between different batches of activated sludge 

inoculum).  

 

A number of possible metabolites and degradation pathways of these ILs were suggested by 

Docherty based on the results achieved from MS analysis. The MS spectrum of [3-Me-1-

Bupy]+ on day 41 gave three degradation products at 148 (m/z), 166 (m/z) and 164 (m/z). 

MS/MS was carried out on each isolated mass as a means of elucidating the metabolite 

structure. From this analysis it could be determined that the butyl pyridinium cation was 

degrading to yield products where the pyridinium ring was hydroxylated at one of the ring 

carbons (exact position on the ring was not known). The butyl side chain also appeared to 

lose two protons (148 (m/z)), leading to unsaturation of the alkyl chain. Similar results were 

observed for the hexyl derivative (178 (m/z)), where unsaturation of the alkyl side chain 

occurred (176 (m/z)). Biodegradation of the parent IL by hydroxylation in the side chain 

(192 (m/z)) and in the aromatic ring (194 (m/z)) was also concluded. Degradation of the N-

octyl substituted methyl pyridinium cation (206 (m/z)) yielded breakdown products with 

double bond insertion in the alkyl side chain (204 (m/z)) and hydroxylation of the side 

chain (222 (m/z)).  

 

Zhang et al.57 observed degradation of pyridinium ILs via ring opening of the pyridinium 

core by a soil bacterium which was isolated by an enrichment-culture technique. 

Corynebacterium sp. was the identified bacterium isolated. The ionic liquids studied were 

N-ethylpyridinium tetrafluoroborate [1-Etpy][BF4], N-ethylpyridinium trifluoroacetate [1-



51 

 

Etpy][CF3COO] and 1-Butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6]. The 

experimental set-up involved addition of 10 mL of tested ILs to 50 mL of mineral salt 

medium in 125 mL flasks with subsequent inoculation with 2 mL of an early-log-phase 

bacterial culture. Triplicate samples were prepared and incubated at 28 °C in the dark. At 

various time intervals, 5 mL samples were taken and bacterial growth was investigated 

using optical density (OD) measurements at 600 nm. Samples were also analysed using 

UV-Vis spectrometry to determine the concentration of N-ethylpyridinium cation in 

biological samples. The aromatic pyridinium ring has a characteristic absorbance at 210 

and 259 nm in UV spectrum. After 24 hours the peaks at these absorbances disappeared 

suggesting biodegradation of the pyridinium cation. Further analysis was carried out by 

electrospray ionisation mass spectrometry (ESI-MS). In the MS spectra obtained, two 

metabolite structures could be indentified with molecular weights of 157.9 and 143.9 (m/z) 

respectively. These two metabolites were believed to be formed upon ring opening of the 

pyridinium cation. MS/MS analysis further identified these breakdown products as N-ethyl-

(4-carboxyamino)but-3-enoic acid semialdehyde and (4-(carboxyamino)but-3-enoic acid, 

which are oxidised further to acetic acid and glyoxylate. Peaks at 73 (m/z) and 60 (m/z) in 

the MS were evident in low concentrations, corresponding to these end products. The 

proposed degradation pathway is summarised in Figure 1.28. 
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Fig. 1.28: Proposed degradation pathway of N-ethyl pyridinium cation via ring cleavage.57 

 

An isolate fungal strain has also been used in biodegrading ionic liquids.58 The primary 

biodegradation of a series of novel cholinium based ionic liquids was reported by 1H NMR 

analysis. Environmentally benign cholinium [NMe3(CH2CH2OH)]+ was combined with a 

range of alkanoate anions ([CnH2n+1CO2]
-, n= 1-9) (Figure 1.29) and was challenged against 

the isolate strain Penicillium Corylophium sp.  
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Fig. 1.29: Biodegradable cholinium alkanoate ionic liquids. 

 

In this assay the fungal cultures (20 mL) were incubated in the dark at 25 °C under 

agitation (at 90 rpm) for 28 days. On sampling days, 1 mL aliquots were taken and syringe 

filtered (through 0.20 µm membrane) then freeze dried to remove water. Samples were then 

subsequently analysed by 1H NMR spectroscopy in D2O solvent. From this analysis it 

could be seen that complete degradation of the long alkyl anions occurred, i.e. butanoate, 

pentanoate, hexanoate and octanoates. Complete disappearance of the spectral peaks due to 

these groups in the 1H NMR spectra demonstrated this degradation. The shorter linear chain 

anions, namely acetate and proponoate, were not fully degraded and this was believed to be 

due to their high concentration in the test media (0.375 and 0.5 M respectively). These ionic 

liquids were also screened for their toxicity properties (see Chapter 5).  

 

Stolte et al.59 reported a study on the primary biodegradation of different N-imidazoles, 

imidazolium, pyridinium and 4-(dimethylamino)pyridinium ionic liquids with various alkyl 

side chains. The biodegradation study used was based on OECD guideline 301D.  



54 

 

The compounds to be tested were prepared at a concentration of 200 µM (200 ppm) in 

inoculated test media with a total volume of 100 mL. Blank samples were prepared, 

consisting of inoculated media without the test compound, abiotic controls (200 µM of the 

test substances in inoculated media poisoned with HgCl2), and also positive controls 

(inoculum with 200 µM of imidazole). Replicates of all the samples and controls were kept 

in the dark at 20 ± 1˚C. The samples were tested at various time periods (day 4, day 9, day 

17, day 24, day 31) and 500 µL samples were taken and centrifuged (5000 rpm, 15 min). 

These samples were then analysed using HPLC-MS to determine possible metabolites 

formed upon mineralization by the activated sludge community with the aim of deducing 

pathways of IL degradation. Adsorption of the test compounds to the sludge was 

investigated using an abiotic control (in which the sludge was inactivated by the HgCl2). 

Stolte and co-workers found that of the 27 substances screened (i.e. three aromatic head 

groups [4-(dimethylamino)pyridinium, pyridinium and 1-methylimidazolium] substituted 

with various alkyl side chains (C2-C8) and also some simple mono N-substituted 

imidazoles (Figures 1.30 and 1.31) there was no indication of sorption to the sludge. It was 

also noted that for the biotic samples a decrease in concentration of the test compounds was 

observed, which would suggest that biological degradation of the chemicals had occurred. 

This result was of significance because adsorption to the sludge is a primary concern in the 

choice of experimental method to be adopted.  
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Fig. 1.30: Ionic liquids and imidazole controls that gave 100 % primary biodegradation 

within 31 days.59 
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Fig. 1.31: Ionic liquids for which no primary biodegradation was recorded after 31 days.59 
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Two different types of inoculum were used for the evaluation of the general 

biodegradability of the test substances. A commercially available freeze-dried mix of 

bacteria and an activated sludge community from a wastewater treatment plant were 

studied. The freeze-dried bacterial mixture was used because it is a standardised product, 

and therefore should give high reproducibility in the test. In addition to this, the mixture 

gave an acceptable biological matrix, compared with the activated sludge, causing less 

interference in the HPLC-MS analysis. However, the limited diversity of microorganisms 

present in the freeze-dried bacterial mixture made it unsuitable for biodegradation studies, 

compared with the activated sludge.  

 

In the case of the 1-octyl-3-methylimidazolium (omim) cation, biodegradation followed by 

HPLC-MS analysis established that the mass ions from the original test sample of omim 

chloride were completely absent, and Stolte proposed two possible metabolic pathways59 

for the biodegradation based on the mass ions observed (Figure 1.32). 

 

Fig. 1.32: Proposed chemical structures and degradation pathways for 1-octyl-3-

methylimidazolium chloride [omim][Cl] 140 (Figure reproduced).59 
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These researchers recently carried out a biodegradation study of these ionic liquids in the 

absence of molecular oxygen i.e. anaerobic biodegradation.60 Anaerobic biodegradation is a 

process used in water treatment facilities and soil remediation and has been shown to 

breakdown compounds which are reluctant to aerobic degradation. In these studies, the 

primary biodegradation of imidazolium and pyridinium ionic liquids under denitrifying 

conditions was monitored via HPLC-UV analysis over an 11 month period (328 days). In 

the experimental set-up, the ILs were added as the only source of carbon (200 µM) to the 

inoculated activated sludge media under a nitrogen atmosphere. An equimolar amount of 

acetate was added to two extra parallel flasks of inoculated media in order to test for co-

metabolism. Additional controls were also set up where no test substance was present in the 

inoculated sample (Blank control), and a known biodegradable compound was added to 

sludge (Positive control). All test vessels were stored at room temperature in the dark. At 

each testing day 1.3 mL samples were taken and centrifuged at 14,500 rpm for 15 min. 

Analytical work was subsequently carried out using HPLC-UV measurements. From the 

study, the concentration of compound 141 was the only noticeable concentration decrease 

observed over the 328 day test period. Approximately 52 to 54 % degradation of this IL 

was recorded after 9 days and after 34 days no more [HO(CH2)8mim][Br] (141) was 

detected. MS analysis indicated the various mass to charge ratios of structures present in 

the [HO(CH2)8mim][Br] samples. At the initial day of the test the parent [HO(CH2)8mim] 

mass (211 m/z) was detected. In the early phase samples masses of 225 and 197 m/z were 

evident. These correspond to metabolite structures 1-(7-carboxyheptyl)-3-

methylimidazolium cation and 1-(5-carboxypentyl)-3-methylimidazolium cation 

respectively. In the last day of analysis (day 328), a peak of mass 169 m/z was detected as 

from MS/MS analysis was proposed to be 3-(3-carboxypropyl)-1-methylimidazolium 

cation. Figure 1.33 depicts the parent IL [HO(CH2)8mim][Br] and its proposed metabolite 

products.  
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Fig. 1.33: Anaerobic biodegradation of 141 [HO(CH2)8mim][Br]. 

 

Pham et al.61 were the first group to investigate the metabolites formed as a result of 

biodegradation of 1-butyl-3-methylpyridinium bromide and its biodegradation was studied 

using an activated sludge assay (OECD 301E).  This primary biodegradation was analysed 

via HPLC-MS. Figure 1.34 depicts an example of a HPLC-MS chromatograph showing the 

biodegradation of N-butyl-3-methylpyridinium cation after 18, 21 and 28 days incubation 

with activated sludge. 
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Fig. 1.34: HPLC-MS chromatogram showing the biodegradation of N-butyl-3-

methylpyridinium cation after 18 (Blue), 21 (Red) and 28 (Green) days incubation with 

activated sludge.61 

 

From the HPLC-MS analysis degradation pathways were proposed and possible 

metabolites hypothesized. Two possible pathways for the biodegradation of N-butyl-3-

methylpyridinium bromide were suggested (Figure 1.35). In pathway (I), the ionic liquid 

may first be converted into an N-hydroxybutyl-4-(3-methylpyridinium) cation by enzymatic 

oxidation. Further oxidation of the C1 hydroxyl group of the butyl side chain to an 

aldehyde, and hydroxylation at C3 would give the N-(2-hydroxy-4-oxo-butyl)-3-

methylpyridinium cation as a final metabolite. Pham proposed that this metabolite may 

fragment under HPLC-MS conditions to give the N-(2-hydroxyethyl)-3-methylpyridinium 

cation and acetaldehyde.  

Putative pathway (II) on the other hand invokes a simpler mode of degradation, in which 

hydroxylation of C2 of the alkyl chain gives an N-(2-hydroxybutyl)-3-methylpyridinium 

cation. Under HPLC-MS conditions this metabolite may lose ethane, and subsequently 

ethanol, to give mass ions corresponding to the N-(2-hydroxyethyl)-3-methylpyridinium 

cation. 

At the end of either pathway (I) or (II) a final fragmentation of the N-(2-hydroxyethyl)-3-

methylpyridinium fragment under HPLC-MS conditions may occur in which loss of ethane 

gives the 3-methylpyridinium cation. However, the authors were unable to confirm whether 

this ion was merely an artefact from 3-methylpyridine contaminating the IL stock solution.  
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Fig. 1.35: The proposed biodegradation pathways for the N-butyl-3-methylpyridinium 

cation. The intermediates in brackets were not detected or confirmed in the study.61 

1.3.5 Biodegradation studies of ionic liquids in soil 

Biodegradation of ionic liquids in soil has also been addressed Mondelli62 who reported the 

first aerobic biodegradation of imidazolium ionic liquids in soil. Two cations, 1-butyl-3-

methylimidazolium [bmim] and 1-methoxyethyl-3-methyl imidazolium 

[MeOCH2CH2mim], with BF4 and N(CN)2 anions (Figure 1.36) were tested. 
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Fig. 1.36: Oxygenated and non-oxygenated ionic liquids screened for biodegradation in 
soil. 

The tests were carried out over six months according to the ASTM D 5988-96 protocol. 0.5 

g of each ionic liquid was mixed with 300 g of soil, sieved to 2 mm particle size and tested 

in triplicate in a single batch. CO2 was measured by titrations every 2-3 days for the initial 

two months of the test period and then weekly over the remaining 4 months. It was found 

from these studies that n-butyl derivatives were biodegradable, with the dicyanamide ionic 

liquid being less biodegradable than the tetrafluoroborate. No significant CO2 evolution 

was observed with the oxygenated ionic liquids [MeOCH2CH2mim][BF4] 164  and 

[MeOCH2CH2mim][N(CN)2] 165 over the six months. 

Atomic charge distributions and frontier orbital structures of the 1-alkyl-3-

methylimidazolium cations with B3LYP/6-31G(d) were calculated using the Mulliken 

approximation. Changes in electron distribution resulting from replacement of a methylene 

group in the ester side chain by an ether linkage were estimated using this computational 

method. The localisation properties of the HOMO of the oxygen derivative were very 

different from those of the n-butylimidazolium cation, but until the pathway of 

biodegradation is more firmly established, the role which electron distribution may play in 

improving biodegradability remains uncertain.  

1.4 Applications of Biodegradable ionic liquids 

Though a worthwhile goal is to obtain biodegradable ionic liquids, it is also important that 

these ionic liquids can be applied as green alternative solvents. One such application is as 

reaction media in chemical synthesis. A few publications have investigated the potential of 

known biodegradable ionic liquids as new solvents. Comparison with other ionic liquids 
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and VOCs provides researchers with valuable data on whether a performance advantage 

can be obtained in addition to the enhanced biodegradation properties.  

1.4.1 Diels-Alder reactions  

Scammells and co-workers63 evaluated the readily biodegradable ionic liquids 3-methyl-1-

(propoxycarbonylmethyl)imidazolium octylsulfate and 3-methyl-1-

(pentoxycarbonylmethyl)imidazolium octylsulfate (Figure 1.37) as reaction solvents for 

Diels-Alder reactions.  

 

Fig. 1.37: Biodegradable ionic liquids 3-methyl-1-(propoxycarbonylmethyl)imidazolium 

octylsulfate 34 and 3-methyl-1-(pentoxycarbonylmethyl)imidazolium octylsulfate 45. 

 

The cycloaddition reaction between cyclopentadiene and methyl acrylate was carried out in 

biodegradable ionic liquids and the results compared with those using conventional 1,3-

dialkylimidazolium salts (Table 1.9). The endo-selectivity was clearly enhanced in the 

biodegradable examples when compared with those performed in conventional molecular 

organic solvents or in water. Ionic liquids [PrOCOCH2mim][N(CN)2] 33, 

[PrOCO2CH2mim][OctOSO3] 34 and [PnOCOCH2mim][OctOSO3] 45 gave high yields 

(72-82 %) of product and endo/exo selectivities of 2.1-3.4 after 72 hours reaction time. 
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Table 1.9: Reaction of cyclopentadiene with methyl acrylate in imidazolium ILs. 

Entry Ionic Liquid Time (h) Yield (%) 
Endo-to-exo 

ratio 

1 169 [hmim][BF4]        1d 16a 3.8 

2 170 [emim][BF4]         72 d 91c 4.3 

3 36 [bmim][BF4]          24 d 97b 3.5 

4 37 [bmim][PF6]           24 d 97b 3.8 

5 171 [bmim][SbF6]       24 d 94b 4.2 

6 38 [bmim][NTf2]        24 d 99b 4.2 

7 172 [bmim][CF3CO2] 24 d 96b 4.4 

8 
33 [PrOCOCH2mim] 

[N(CN)2]  
72 e 72c 3.4 

9 
34 [PrOCO2CH2mim] 

[OctOSO3]  
72 e 88c 2.8 

10 
45 [PnOCOCH2mim] 

[OctOSO3]  
72 d 82c 2.1 

aNot isolated, estimated by 1H NMR 
bYield calculated from gas chromatography 
cIsolated yield  
d Reaction carried out at RT 
e Reaction carried out at 40 °C 

 

In a more recent publication, this group reported the use of the biodegradable pyridinium 

based ionic liquid [3-BuOCO-1-Mepy][NTf2] 110 as the reaction solvent in Diels-Alder 

reactions28 (Table 1.10):  
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Fig. 1.38: 3-(Butoxycarbonyl)-1-methylpyridinium triflimide 110 used as reaction media in 

the Diels-Alder reaction by Scammells et al..28  

 

Table 1.10: Diels–Alder reactions in the biodegradable ionic liquid 3-(butoxycarbonyl)-1-

methylpyridinium ditriflimide 110.28 
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Cyclopentadiene reacted with a range of dienophiles, including methyl vinyl ketone (Entry 

2), dimethylacetylene dicarboxylate (Entry 3), maleic anhydride (Entry 4), N-

phenylmaleimide (Entry 5) and dimethyl maleate (Entry 6). The reaction between 

cyclopentadiene and methyl acrylate in ionic liquid [3-BuOCO-1-Mepy][NTf2] 110 gave 

the expected Diels-Alder adduct in 70 % yield after 24 hours and in 97 % after 72 hours. 

All the dienophiles reacted readily with cyclopentadiene in [3-BuOCO-1-Mepy][NTf2] 110 

to give the corresponding cycloaddition products in good to very good yields (57-100 % 

yield). It was also noted that reactivity was directed by the electron deficient character of 

the dienophile, indirectly affecting the reaction time and selectivity of the reaction.    

 

1.4.2 Hydrogenation reactions 

Bouquillon et al.
63 described a selective hydrogenation of 1-phenoxyoctadiene in which 

reduction of the terminal double bond occurs as the major process, leaving the internal 

olefin intact. The hydrogenation was carried out at 0.1 MPa hydrogen pressure using  

palladium acetylacetonate as the precatalyst and a range of imidazolium ionic liquids, 

including readily biodegradable 3-methyl-1-(pentoxycarbonylmethyl)imidazolium 

octylsulfate 45 were screened as solvents (Figure 1.39, Table 1.11).   

 

 

 

Fig. 1.39: Hydrogenation of phenoxyocta-2,7-diene (173) 
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Table 1.11: Hydrogenation of phenoxyocta-2,7-diene (173) in ionic liquids. 

Entry Ionic liquid Conversiona 
(%) 

174  

yield 
(%) 

175 

yield 
(%) 

1 35 [bmim][Br]  76 57 13 
2b 

35 [bmim][Br]  48 36 5 
3 176 [PnOCOCH2mim][BF4]  

 

85 64 18 

4 177 [PnOCOCH2mim][NTf2]  75 44 28 
5 178 [PrOCH2CH2OCOCH2mim][NTf2] 75 40 30 
6 45 [PnOCOCH2mim][OctOSO3]  

 

85 70 12 

7b 
45 [PnOCOCH2mim][OctOSO3]  
 

55 48 5 

aConditions: Pd(acac)2(0.03 equiv.), H2 (0.1 MPa), 24h 
bRecycling experiment 
 

 

The highest conversion for the hydrogenation of 1-phenoxyocta-2,7-diene was obtained 

using [PnOCOCH2mim][OctOSO3] 45 as the solvent (85 % conversion) with the desired 

product, 1-phenoxyoct-2-ene obtained in 70 % yield. This reaction provides a clear 

example of how a biodegradable solvent can not only replace a conventional one, but can 

actually give an improvement in performance. 

 

Another selective hydrogenation was recently reported by Morrissey, in which trans-

cinnamaldehyde was reduced to hydrocinnamaldehyde using ionic liquids, including 

biodegradable examples.64 In this study, a range of imidazolium ionic liquids with ester 

groups in the side chain were used as reaction solvents (Figure 1.40). 
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Fig. 1.40: Ionic liquids used as reaction solvents in the hydrogenation of trans-

cinnamaldehyde by Morrissey et al..64
 

 

Selectivities towards hydrocinnamaldehyde ranged from 90-100 % when the imidazolium 

pentyl esters 177 and 179 were employed as the reaction media. When the dimethyl 

imidazolium ionic liquid was used a 100 % conversion and selectivity was monitored after 

24 hours. Recycling of the catalyst/ionic liquid mixture was investigated, with almost the 

same reaction efficiency recorded up to the fourth recycle. Table 1.12 illustrates the overall 
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results obtained when the reaction was carried out in these ionic liquids 

[PnOCOCH2mim][NTf2] 177 and [1-PnOCOCH2dmim][NTf2] 179. 

Table 1.12: Results obtained in catalytic hydrogenation using [PnOCOCH2mim][NTf2] 

177 and [1-PnOCOCH2dmim][NTf2] 179 ILs. 

Solvent 

 

Experiment 

(E) / Recycle (R) 

 

Time (h) 

 

Conversion(%) 

 

Selectivity (%) 

 

179 

[1-PnOCO 

CH2dmim][NTf2] 

E1 24 8 100 

  48 36 100 

 R1 24 100 100 

  48 100 93 

 R2 24 48 73 

  48 97 98 

 R3 24 79 99 

  48 100 96 

 R4 24 89 100 

  48 97 100 

177 

[PnOCO 

CH2mim][NTf2] 

E1 48 98 94 

             R1             48             100              93 
 

 

Trans-cinnamaldehyde was also hydrogenated in the commercially available ionic liquids 

[bmim][NTf2] and [bmim][OctOSO3] and in toluene (Table 1.13). 100 % Conversion was 

also possible using these solvents, but the selectivities (67-87 %) were not as high as those 

achieved using the biodegradable ionic liquids and ionic liquids [PnOCOCH2mim][NTf2] 

177  and [1-PnOCOCH2dmim][NTf2] 179 (93-100 % selectivity).  
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Table 1.13: Hydrogenation of trans-cinnamaldehyde in commercially available solvents. 
Solvent 

 

Time (h) 

 

% conversion 

 

% selectivity 

 

38 [bmim][NTf2] 
 

24 100 87 

40 [bmim][OctOSO3] 
 

24 100 69 

Toluene 24 100 67 
 

 

Selective hydrogenation of benzyl cinnamate without hydrogenolysis of the benzyl ester 

(Figure 1.41) was also reported by Morrissey et al.64 

 

 

Fig. 1.41: Reduction of benzyl cinnamate. 
 

Solvent effects and catalyst loading were investigated during the hydrogenation of benzyl 

cinnamate. Using 0.005g of catalyst / 4 mmol substrate under 1 atmosphere of hydrogen 

100 % conversion was observed, while only 32 % conversion was achieved if half this mass 

of catalyst was used. Selectivities were retained when the reaction was performed over 48 

hours, suggesting that competing hydrogenolysis of the reduced benzyl ester 186 did not 

take place. This finding was further supported by a separate experiment in which the 

reduced ester 186 (benzyl 3-phenylpropanoate) was subjected to the same hydrogenation 

conditions using an increased amount of catalyst, at 1 atm. H2 pressure and no 

hydrogenolysis occurred. This result indicates that the ionic liquid may play a role in 

suppressing hydrogenolysis of the benzyl ester, both in the substrate, and the product.  
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1.4.3 Sonogashira coupling reaction 

Biodegradable ionic liquids 110, 116, 117 were investigated as solvents for Sonogashira 

coupling reactions in the absence of a copper co-catalyst or a phosphine (Scheme 1.2).52 

 

 

 

Scheme 1. 2: Sonogashira coupling reaction in ionic liquids 110, 116 and 117.52
 

 

Ultrasonic irradiation was also used in these reactions in order to encourage catalytic 

activity of the palladium catalyst in the absence of phosphines. It also allowed the reactions 

to be conducted at room temperature for shorter reaction times. Table 1.34 summarises 

results obtained whilst using the biodegradable ionic liquid 110 in this type of reaction. The 

Sonogashira coupling reaction of iodobenzene with diphenylacetylene gave very good 

yields of 86 % of diphenylacetylene product. The lowest yields were obtained when using 

iodoarenes with electron donating para-substituted groups (Table 1.14, Entries 2 and 4). 

Biodegradable ILs 116 and 117 were also employed as solvents in these coupling reactions 

and gave comparable results to IL 110. The reaction between 1-(4-iodophenyl)ethanone and 

diphenylacetylene in 116 and 117 gave very good yields of the coupled product (77 and 85 

% yield respectively). A similar result was achieved when using 110 as the reaction media 

(Entry 3, Table 1.14).  
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Table 1.14: Results obtained in Sonogashira coupling reactions in biodegradable ionic 

liquids by Scammels et al..52 

Entry Arene Product Yield 

(%) 

1 

  

86 

2 

  

47 

3 
I

O   

88 

4 

  

60 

5 

  

93 

6 
I

  

78 

7 

  

72 

8 

 
O

O

 

81 

9 

  

76 

10 

  

86 



73 

 

11 

  

93 

12 

  

79 

13 

 
 

78 

14 

  

98 

15 S

I  

 

84 

16 
I

O   

85 

17 
I

O   

77 

 

1.5 Conclusions  

Biodegradable ionic liquids have been designed and  prepared based on the principles used 

to improve biodegradation of surfactants. Initial studies aimed at manipulation of the side 

chain of the ionic liquid structure. The incorporation of ester groups into long alkyl chains 

reduced toxicity and improved ecotoxicity of ionic liquids.19,45-48 Further introduction of 
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ether moieties into the side chain improves the biodegradability of imidazolium-based ionic 

liquids. Exchanging halide anions with an octylsulfate anion has a further beneficial effect 

on ionic liquid biodegradation. 

Recent work on pyridinium-based ionic liquids demonstrated how the heteroaromatic 

cationic core can be modified to produce biodegradable examples. As with the imidazolium 

examples, the inclusion of an ester group in the cation side chain led to improved 

biodegradability.28,29 Introduction of the octyl sulfate anion also facilitated improved 

pyridinium-based ionic liquid breakdown. High levels of biodegradability have also been 

achieved in examples where environmentally benign anions such as saccharinate and 

acesulfamate are included.51 Several ammonium ionic liquids based on choline have been 

introduced which are biodegradable and simple to prepare.53-58 

The use of analytical tools such as HPLC-MS, MS/MS and NMR has been employed to 

assess the primary biodegradation of a large library of ionic liquids. Techniques such as 

these allow for the identification of possible metabolites formed during the biological 

breakdown of ionic liquids. Possible pathways of biodegradation can be traced using 

HPLC-MS, indicating which part of the ionic liquid is being targeted during the process of 

mineralization.  

Biodegradable ionic liquids have been investigated as solvents in synthetic organic 

reactions.52,63,64 In particular, superior product selectivities have been observed compared 

with conventional organic solvents and commercially available ionic liquids when 

biodegradable imidazolium-based ionic liquids are used as reaction media for Diels-Alder 

and hydrogenation reactions. Catalyst performance has also been enhanced in selective 

hydrogenations of cinnamaldehyde and benzyl cinnamate using biodegradable ionic liquids 

when recycling of the solvent / catalyst system could be achieved without any significant 

loss in activity of the catalyst.64 Biodegradable pyridinium-based ionic liquids have been 

employed as solvent media in Sonagashira coupling reactions, with high yields of aryl 

products obtained.52 

We have recently published a review on Biodegradation studies of Ionic Liquids (Appendix 

III).65  



75 

 

1.6 References 

1 R. D. Rogers and K. R. Seddon, Ionic Liquids; Industrial applications to Green 

Chemistry, American Chemical Society, 2002. 
2 P. Wasserscheid and T. Welton (Eds.), Ionic liquids in synthesis, Wiley-VCH, 2003. 
3 V. I. Pârvulescu and C. Hardacre, Chem. Rev., 2007, 107, 2615-2665. 
4 F. van Rantwijk and R. A. Sheldon, Chem. Rev., 2007, 107, 2757-2785. 
5 T. Welton, Chem. Rev., 1999, 99, 2071-2084. 
6 D. Wei and A. Ivaska, Analytica Chimica Acta, 2008, 607, 126-135. 
7 J. D. Holbrey and K. R. Seddon, Clean Products and Processes, 1999, 1, 223–236. 
8 N. V. Plechkova and K. R. Seddon, Chem. Soc. Rev., 2008, 37, 123–150. 
9 J. Ranke, S. Stolte, R. Störmann, J. Arning and B. Jastorff, Chem. Rev., 2007, 107, 2183-

2206. 
10 A. W. Taylor, K. R. J. Lovelock, A. Deyko, P. Licence and R. G. Jones, Phys. Chem. 

Chem. Phys., 2010, 12, 1772-1783. 
11 M. J Earle, J. M. S. S. Esperanc¸ M. A. Gilea, J. N. C. Lopes, L. P. N. Rebelo, J. W. 

Magee, K. R. Seddon and J. A. Widegren, Nature, 2006, 439, 831-834. 
12 M. Matsumoto, K. Mochiduki, K. Fukunishi and K. Kondo, Sep. Purif. Techonol., 2004, 

40, 97-101. 
13 M. Matsumoto, K. Mochiduki and K. Kondo, J. Biosci. Bioeng., 2004, 98, 344-347. 
14 J. Pernak, I. Goc and I. Mirska, Green Chem., 2004, 6, 323-329. 
15 M. Rebros, H. Q. Nimal Gunaratne, J. Ferguson, K. R. Seddon and G. Stephens, Green 

Chem., 2009, 11, 402-408. 
16 R. P. Swatloski, J. D. Holbrey, B. S. Memon, G. A. Caldwell and R. D. Rogers, Chem. 

Commun., 2004, 6, 668-669. 
17  C. Pretti, C. Chiappe, D. Pieraccini, M. Gregeri, F. Abramo, G. Monni and L. Intorre, 

Green Chem., 2006, 8, 238-240. 
18 A. S. Wells and V. T. Coombe, Org. Process Res. Dev., 2006, 10, 794-798. 
19 N. Gathergood, M. T. Garcia and P. J. Scammells, Green Chem., 2005, 7, 9-14. 
20 M. Matzke, S. Stolte, K. Thiele, T. Juffernholz, J. Arning, J. Ranke, U. Welz-Biermann 

and B. Jastorff, Green Chem., 2007, 9, 1198-1207. 



76 

 

21 M. Matzke, S. Stolte, J. Arning, U. Uebers and J. Filser, Green Chem., 2008, 5, 584-591. 
22 S. Stolte, M. Matzke, J. Arning, A. Boeschen, W. R Pitner, U. Welz-Biermann, B. 

Jastorff and J. Ranke,  Green Chem., 2007, 9, 1170-1779. 
23 R. P. Swatloski, J. D. Holbrey, B. S. Memon, G. A. Caldwell and R. D. Rogers, Chem. 

Commun., 2004, 6, 668. 
24  D. Zhao, Y. Liao and Z. Zhang, Clean: soil, air, water, 2007, 35, 42-48. 
25 P. H. Howard, R. S. Boethling, W. Stiteler, W. Meylan and J. Beauman, Sci. Total 

Environ., 1991, 635, 109-110. 
26 R. S. Boethling, Cationic Surfactants, Surfactant Science Ser. Vol. 53, Marcel Dekker, 

New York, 1994, 95-135. 
27 R. S. Boethling, E. Sommer and D. Difiore, Chem. Rev., 2007, 107, 2207-2227. 
28 J. R. Harjani, R. D. Singer, M. T. Garcia and P. J. Scammells, Green Chem., 2009, 11, 

83-90. 
29 J. R. Harjani, R. D. Singer, M. T. Garcia and P. J. Scammells, Green Chem., 2008, 4, 

436-438. 
30 OECD Guideline for testing of chemicals; Adopted by council July 1992-ready 

biodegradability. 
31 R. N. Sturm, J. Am. Oil Chem Soc., 1973, 50, 159-167 
32 OECD guideline for testing of chemicals 302B, adopted by council July 1992. 
33 D. T. Gibson, Microbial degradation of organic compounds, Dekker, New York, 1984. 
34 H. H. Sütterlin, K. Kümmerer; Chemical mixtures in the Closed Bottle Test, 

www.uniklinik-

freiburg.de/iuk/live/umweltforschung/veroeffentlichungen/Biodegradability_SETAC_Land

au06_engl.pdf. 
35 R. Alexy, T. Kümpel and K. Kümmerer, Chemosphere, 2004, 57, 505–512. 
36 M. Sáez,  P. de Voogt  and J. R. Parsons, Environ. Sci. Pollut. Res., 2008, 15, 472–477. 
37 W. E. Gledhill, Appl. Microbiol., 1975, 30, 922-929. 
38 J. Struijs and J. Stoltenkamp, Ecotox. Environ. Saf., 1990, 19, 204-211. 
39 R. R. Birch and R. J. Fletcher, Chemosphere, 1991, 23, 855-872. 
40 N. S. Battersby, Chemosphere, 1997, 34, 1813-1822. 



77 

 

41 OECD Guidelines for the testing of chemicals, Proposal for a new guideline 310- Ready 

Biodegradability - CO2 in sealed vessels (Headspace Test), 2003. 
42 H. A. Painter, P. Reynolds and S. Comber, Chemosphere, 2003, 50, 29-38. 
43 OECD Guideline for the testing of chemicals. method 309: Aerobic mineralization in 

surface water – simulation biodegradation test, 2004. 
44 Annual book of ASTM Standards, 2004, Vol. 08.03. 
45 N. Gathergood, M. T. Garcia and P. J. Scammells, Green Chem., 2004, 6, 166-175. 
46 N. Gathergood and P. J. Scammells, Aust. J. Chem., 2002, 55, 557-560. 
47 N. Gathergood, M. T. Garcia and P. J. Scammells, Green Chem., 2006, 8, 156-160. 
48 S. Morrissey, B. Pegot, D. Coleman, M. T. Garcia, D. Ferguson, B. Quilty and N. 

Gathergood, Green Chem., 2009, 11, 475-483. 
49 A. Romero, A. Santos, J. Tojo and A. Rodriguez, J. Hazard. Mater., 2008, 151, 268-273. 
50 S. Garbaczewska and J. Hupko, Pestycydy, 2007, 61-46. 
51 M. Stasiewicz, E. Mulkiewicz, R. Tomczak-Wandzel, J. Kumirska, E. M. Siedlecka, M. 

Golebiowski, J. Gajdus, M. Czerwicka and P. Stepnowski,  Ecotox. Environ. Safety, 2008, 

1, 157-165. 
52 J. R. Harjani, T. J. Abraham, A. T. Gomez, M. T. Garcia, R. D. Singer and P. J. 

Scammels, Green Chem., 2010, 12, 650-655. 
53 Y. Yu, X. Lu and Q. Zhou, Chem. Eur. J., 2008, 14, 11174-11182. 
54 E. Grabinska-Sota and A. Dmuchowski, Przemyst Chemiczny, 2008, 87, 388-391. 
55 K. M. Docherty, J. K. Dixon and C. F. Kulpa, Biodegradation, 2007, 18, 481-493. 
56  K. M. Docherty, M. V. Joyce, K. J. Kulacki and C. F. Kulpa, Green Chem., 2010, 12, 

701-712. 
57 C. Zhang, H. Wang, S. V. Malhotra, C. J. Dodge and A. J. Francis, Green Chem., 2010, 

12, 851-858. 
58 M. Petkovic, J. L. Ferguson, H. Q. Nimal Gunaratne, R. Ferreira, M. C. Leitão, K. R. 

Seddon, L. P. Rebelo and C. S. Pereira, Green Chem., 2010, 12, 643-649. 
59 S. Stolte, S. Abdulkarim, J. Arning, A. Blomeyer-Nienstedt, U. Bottin-Weber, M. 

Matzke, J. Ranke, B. Jastorff and J. Thoeming, Green Chem., 2008, 10, 214-224. 
60 J. Neurmann, O. Grundmann, J. Thöming, M. Schulte and S. Stolte, Green Chem., 2010, 

12, 620-627. 



78 

 

61 T. P. Pham, C. W. Cho, C. O. Jeon, Y. J. Chung, M. W. Lee and Y. S. Yun, Environ. Sci. 

Technol., 2009, 43, 516-521. 
62 A. Modelli,  A. Sali, P. Galletti and C. Samorì, Chemosphere, 2008, 73,  1322-1327. 
63 S. Bouquillon, T. Courant, D. Dean, N. Gathergood, S. Morrissey, B. Pegot, P. J. 

Scammells and R. D. Singer, Aust. J. Chem., 2007, 60, 843-847. 
64 S. Morrissey, I. Beadham and N. Gathergood, Green Chem., 2009, 11, 475-483. 
65 D. Coleman and N. Gathergood, Chem. Soc. Rev. 2010, 39, 600-637. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



79 

 

 

 

 

 

 

 

Chapter 2: Results and discussion 

 

Ester and Amide functionalised achiral Ionic Liquids, 

Synthesis and Characterisation 
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2.1 Introduction 

A conclusion can be drawn from a review of the literature on Ionic Liquid (IL) research, 

that a vast number of Task Specific Ionic Liquids (TSILs) have been designed, prepared 

and studied for various applications. The ILs prepared herein are based primarily on the 

imidazolium cation. Preparation of imidazolium-cation based ILs has been widely 

researched due to their facile preparation, low melting points and relatively favorable 

viscosities.1 Incorporation of various functional groups into the side chain of the 

imidazolium cation has been studied in this work, with a view of reducing the toxicity and 

improving biodegradability of the prepared ILs.    

2.1.1 Aim 

The main objective of the work outlined in this chapter was to synthesise a range of model 

ester and amide achiral ionic liquids, with various alkyl side chains. The introduction of 

these functional groups has previously been achieved.2,3 By adding esters and amides to the 

IL structure, the physical and biological properties of the salts can be altered. Improved 

biodegradation and toxicity were reported for ILs with ester containing side chains.2 Ester 

groups provide sites for possible enzymatic hydrolysis when exposed to the environment. 

The introduction of amide functionalities on the other hand, can improve the performance 

of an IL when employed as reaction media. However the presence of amide groups in IL 

structures also results in elevated melting points and an increased stability towards 

biodegradation (more stable to hydrolysis than esters). The presence of long alkyl chains 

can also assist in IL environmental breakdown,4 but can also lead to high levels of toxicity.5  

However, from a clinical point of view this toxicity may be beneficial in the production of 

antimicrobial agents (against known pathogenic bacteria such as MRSA). These achiral ILs 

were prepared in their pure form and a toxicity screen was performed on these pure salts. 

The synthesis of the achiral derivatives involved a three step preparation process, with the 

formation of the bromide salt followed by anion metathesis reactions.  
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2.2 Synthesis of achiral Ionic Liquids 

2.2.1 Synthesis of achiral ester Ionic Liquids 

The general scheme for the three step synthesis of achiral ionic liquids is illustrated in 

Scheme 2.1. The first step (i) of the achiral IL synthesis is an esterification reaction, which 

involves the formation of an alkylating intermediate. This was carried out by the reaction of 

bromoacetyl bromide with various alkyl alcohols (with increasing side chain lengths; C5, 

C10, C12 and C14) in the presence of a base. Low temperature ranges of -15 and -78 °C 

were used in these reactions, in particular during addition of bromoacetyl bromide.  

 

 

Scheme 2.1: General scheme for achiral ester ionic liquid preparation; (i) Bromoacetyl 

bromide, Et3N, (ii) 1-methyl imidazole, (iii) NaOctOSO3 or LiNTf2. 

These α-bromoester derivatives were obtained in average yields, Table 2.1 below 

summarises the yields obtained for all the alkylating agents prepared. 

 

 

 



82 

 

Table 2.1: Yields obtained for achiral α-bromoester intermediates. 

                       Alkylating reagent          Compound 

No. 

Yield 

(%) 

 

 188
10 64 

 

189
2 52 

 

190
2 61 

 

191 51 

 

192 42 

 

These reactions yielded crude products which contained some coloured impurities 

(typically dark brown or black in colour). From 1H NMR analysis these crude compounds 

showed little impurity. However, it was necessary to remove these coloured impurities, 

even though only present on a small scale, from the intermediate in order to prepare pure 

ILs of limited colour. Figure 2.1 (a) and (b) demonstrate the difference between the pure 

and crude bromoesters.  
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Fig. 2.1: 1H NMR of crude tetradecyl-2-bromoacetate (a), and of pure tetradecyl-2-

bromoacetate (b). 
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In the 1H NMR of the crude tetradecyl-2-bromoacetate (Figure 2.1 (a)) some peaks which 

cannot be assigned as protons from the product can be seen. Namely, a singlet peak at δ 

5.24 is observed and can be assigned as dichloromethane solvent which can be easily 

removed in vacuo. At ~ δ 3.51 and 1.49 some minor multiplet peaks can be noted and are 

attributed to the unreacted tetradecyl alcohol starting material. This alcohol has a high 

boiling point, and is therefore difficult to remove. Drying under high vaccum did not 

remove these signals from the 1H NMR spectrum. 

The crude α-bromoesters were purified by vacuum distillation and the pure products were 

obtained as colourless to pale yellow liquids. However purification by distillation of some 

of the bromoesters became increasingly difficult. The alkylating agents with longer alkyl 

chains were difficult to purify by distillation, presumably due to their increased molecular 

weight, which lead in an increase in their boiling point. This resulted in lower yields 

obtained for these compounds with increased alkyl side chains. This can be seen in Table 

2.1, yields for decyl, dodecyl and tetradecyl bromoesters are slightly lower than those 

obtained for the other shorter chain derivatives. Some of these reactions were carried out on 

a large scale synthesis (120-400 mmol). In such cases an increase in the equivalents of 

bromoacetyl bromide starting material used was employed to ensure the reaction reached 

completion. Reaction times were also increased while maintaining a low temperature (- 78 

°C) to encourage completion of the alkylating reagent formation. In the synthesis of 

dodecyl-2-bromoacetate and tetradecyl-2-bromoacetate a higher reaction temperature of -15 

°C was utilised. Initially, during dropwise addition of bromoacetyl bromide to the alkyl 

alcohols at - 78 °C, the reaction mixture solidified and adequate stirring could not be 

achieved. Increasing the reaction temperature to -15 °C during addition of bromoacetyl 

bromide solved this problem. 

The next step in the IL synthesis (ii) involved alkylation of 1-methyl imidazole with these 

α-bromoesters to produce the bromide salts. The yields obtained from these reactions are 

tabulated in Table 2.2. 
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Table 2.2: Summary of yields and melting points obtained for the bromide salts prepared. 

 Ionic Liquid Compound 

No. 

Yield  

(%) 

m.p 

(°C) 

 

42
10 96 n/a 

 

193
2
 97 

 

51-53 

 

194 55 

 

56-58 

 

195 82 

 

64-66 

 

196
2
 89 

 

50-52 

n/a liquid at R.T. 

 

In this reaction, the α-bromoester was added drop wise to a stirring solution of 1-

methylimidazole in diethyl ether under an inert atmosphere. Diethyl ether was the solvent 

of choice in these experiments as the bromide salt precipitated facilitating isolation. The 

ether layer could then be decanted and the IL was then washed numerous times with diethyl 

ether. In some cases the IL was stirred in ether overnight in order to achieve thorough 

washing of the salt. The ILs were then usually dried under high vacuum to remove residual 

solvent and drying times varied depending on solvent(s) present in different IL species. 

Good to very good yields were obtained for the bromide salts (55-97%). Most of the 
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bromide ILs formed were solids at room temperature (i.e. decyl, dodecyl, tetradecyl and 2-

(2-butoxyethoxy)ethyl derivatives). All the salts prepared could be classified as ionic 

liquids, due to their low melting points (i.e. < 100 °C) ranging from 50-66 °C (Table 2.2) 

After the bromide salt preparation, the final step (iii) in synthesis of ester achiral ionic 

liquids was anion exchange reactions. A series of octyl sulfate (OctOSO3) and bistriflimide 

(and NTf2) salts were prepared (Table 2.3). Anion metathesis reactions were performed 

using sodium and lithium salts (i.e. sodium octylsulfate and lithium 

trifluoromethanesulfonimide).  

Table 2.3: Results obtained for counter ion exchange reactions. 

Ionic liquid Compound 

No. 

Yield 

(%) 

 

45
2 85 

 

197 71 

 

198 79 

 

199 95 

 

177
2
 90 



87 

 

 

200 79 

 

201 89 

 

202 88 

 

The ILs were obtained in good to excellent yields (71-95%). All the salts prepared were 

liquids at room temperature. Therefore, by changing the anion of the bromide ionic liquid 

the physico-chemical properties of the salt were altered.6,7,8 It was noted that the NTf2
 salts 

(177-202) were hydrophobic and liquid in nature. In these ILs the lattice energy can be 

reduced as a result of charge dispersion due to the SO2CF3 groups present in the anion 

species. The OctOSO3 derivatives were prepared in order to improve the biodegradability 

of the ionic liquids as seen previously within the group.9,10  

 

To prepare the NTf2
 salts, the bromide ILs were stirred with lithium salt (LiNTf2) in 

distilled water at room temperature. Hydrophobic NTf2 ILs precipitated out of solution and 

were washed several times with water to yield salts in very good yields (79-90%). In the 

case of the OctOSO3 salts the method was not as straightforward.11 The bromide salts were 

stirred with sodium octylsulfate in distilled water at 60 °C for 2 hours. Following this 

reaction time, the water was removed slowly via rotary evaporation. An oily residue was 

obtained, re-dissolved in dichloromethane and washed with distilled water (three times) to 

remove excess sodium salt. Residual solvent was then removed under reduced pressure. 

The yields of the OctOSO3 salts decreased after the water washings. This is due to the 

increased solubility of the OctOSO3 product in water and DCM layers, compared to the 

NTf2 ILs. 
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2.2.2 Synthesis of achiral amide Ionic Liquids 

In addition to the ester derivatives described above, novel amide achiral ionic liquids were 

prepared. The synthesis of these ILs employed the same methodology previously used to 

prepare the ester ILs (Scheme 2.1). In the first step (i) of the IL synthesis, alkyl amines 

(octyl, decyl and dodecyl amines) were reacted with bromoacetyl bromide to form 

bromoamide alkylating intermediates. This reaction yielded crude products which 

contained some coloured impurities. Vacuum distillation was carried out on the crude 

bromoamides, to give the purified products in moderate to good yields (44-92 %) (Table 

2.4).  

Table 2.4: 2-Bromo-N-alkylacetamide intermediates. 

Alkylating reagent Compound 

No. 

Yield  

(%) 

 

 

203 44 

 

 

204 71 

 

205 92 

 

Step (ii) involved the alkylation reaction of these intermediates with 1-methylimidazole 

using the same synthethic protocol as before for the ester compounds. In this, the α-
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bromoamide intermediate was added dropwise to a stirring solution of 1-methylimidazole 

in diethyl ether solvent at – 15 °C and allowed to proceed under an inert atmosphere 

overnight. The amide ILs precipitated and purification was hence simplified, with ether 

washings required to remove the imidazole starting material impurity. Excellent yields (94-

98%) were achieved for the achiral amide bromide salts. All the ILs were solids at room 

temperature, however with melting points below 100 °C (Table 2.5). 

Table 2.5: Achiral amide Ionic Liquids; yields and melting points. 

Ionic liquid Compound 

No. 

Yield 

(%) 

 

m.p 

(°C) 

 

206 98 

 

82-84 

 

207 94 

 

85-87 

 

208 94 

 

89-91 

 

It is apparent from the accumulated experimental data that manipulation of the ionic liquid 

structures results in a direct effect on their corresponding melting points. Upon anion 

exchange from bromide to NTf2 and OctOSO3 salts, depression of melting point values was 

observed. Furthermore, changes to the IL cation structures also lead to noticeable 

differences in the melting points measured. Table 2.6 summarises the achiral ionic liquids 

synthesised and their obtained melting points. 
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Table 2.6: Melting points of achiral ionic liquids*. 

Ionic Liquid m.p (°C) 

 

                        193 

51-53 

 

                        194 

56-58 

 

                       195 

64-66 

 

                       196 

50-52 

 

                    206 

82-84 

 

                   207 

85-87 



91 

 

 

                  208 

89-91 

*Note: ILs 42, 45, 197-202 were liquids at RT 

 

2.3 NMR studies of achiral Ionic Liquids 

All the achiral ester and amide salts prepared were characterised using various 

spectroscopic techniques; including 1H NMR, 13C NMR, DEPT 135, COSY and HMQC 2D 

NMR.  

2.3.1 
1
H NMR studies of achiral Ionic Liquids 

Novel achiral ester (42, 45, 177, 193-202) and amide ionic liquids (206-208) were 

characterized by 1H NMR spectroscopy. 1H NMR experiments were conducted in 

deuterated chloroform (CDCl3) solvent. The 1H NMR data obtained for known ILs (42, 45, 

177 and 193) was in agreement with that previously reported in the group.2,10 The acidic 

proton12 of the imidazolium ring (-NCHN-) gives a singlet peak whose chemical shift 

differs depending on the anion species present in the IL structure. In the case of bromide 

ILs, the acidic imidazolium CH appears downfield at ~ δ 9.73-10.28. NTf2 achiral ILs give 

signals shifted upfield towards ~ δ 8.75 and the OctOSO3 derivatives are only slightly more 

upfield to the bromide derivatives at ~ δ 9.23-9.41.  

Another common signal in the 1H NMR spectra of these compounds is due to the 

methylene group adjacent to the imidazolium core. This group gives rise to signals at ~ δ 

5.29-5.47 for bromide achiral ester and amide ILs. Achiral OctOSO3 salts produce signals 

that are similar in chemical shift at ~ δ 5.12. In the NTf2 analogues, the methylene peak is 

again shifted slightly further upfield at ~ δ 4.90.  
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Table 2.7: Selected 1H NMR data (δ, CDCl3) of achiral Ionic Liquids (194, 195, 198, 199, 

201, 202, 207 and 208). 

Compound No. Acidic 

imidazolium CH 

Imidazolium 

CH’s 

Methylene NCH2 

194 10.26 7.56,7.43 5.47 

195 10.17 7.58,7.47 5.47 

198 9.23 7.35,7.33 5.12 

199 9.41 7.30,7.22 5.12 

201 8.74 7.30,7.25 4.93 

202 8.75 7.29,7.24 4.94 

207 9.79 7.65,7.26 5.37 

208 9.73 7.57,7.15 5.29 

2.3.1.1 
1
H NMR spectroscopic study of 3-methyl-1-(dodecoxycarbonylmethyl) 

imidazolium bromide (194) 

 

     (194) 

In the 1H NMR spectrum of 3-methyl-1-(dodecoxycarbonylmethyl) imidazolium bromide 

(in CDCl3 solvent), the acidic proton of the imidazolium ring (-NCHN-) appears at δ 10.26. 

The other imidazolium protons (-NCH-CHN-) appear at δ 7.56 and 7.43 as triplet peaks 

with coupling constants of 1.8 Hz (Figure 2.2). It would be expected to observe a set of 

doublet peaks for these protons as they are coupling with each other. However it appears 

that coupling between these protons with the acidic hydrogen, through the aromatic ring, is 
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occurring giving rise to triplet signals. At δ 5.47 a singlet peak is evident with an 

integration of 2, and can be assigned as the methylene group between the alkyl ester side 

chain and the imidazolium core. A triplet occurring at δ 4.20 and integrating as two protons 

with a coupling constant of 6.8 Hz, is due to the OCH2 methylene group of the ester side 

chain. This type of splitting is as expected for these protons as they are coupling to the 

neighbouring methylene protons of the alkyl chain. At δ 4.10 a singlet peak can be seen 

with an integration of three protons and is due to the N-methyl group of the imidazolium 

ring. In the upfield region of the 1H NMR spectrum, the protons of the long alkyl chain can 

be seen. A triplet of triplet (tt) peak is observed at δ 1.67 with coupling constants of 6.8 and 

7.2 Hz. This is due to the second methylene group of the alkyl ester side chain. All of the 

remaining protons of the dodecyl alkyl chain appear together as a broad multiplet peak at δ 

1.36-1.23 with an integration of 18 protons. The last peak appearing in the aliphatic region 

corresponds to the terminal methyl group of the long alkyl chain, giving a triplet signal at δ 

0.89 with coupling constant of 7.2 Hz. 
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Fig. 2.2: 1H NMR spectrum (CDCl3) of 3-methyl-1-(dodecoxycarbonylmethyl) 

imidazolium bromide (194). 
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2.3.1.2 
1
H NMR spectroscopic study of 3-methyl-1-(dodecoxycarbonylmethyl) 

imidazolium NTf2 (201) 

 

               (201) 

Studying the 1H NMR spectra in terms of chemical shift investigations, can prove useful 

when analysing ILs with varying anionic species. For bistriflimide examples no additional 

peaks are observed in the 1H NMR spectra due to the lack of protons in the inorganic anion. 

Hence one way of differentiating between NTf2 ILs and those with a bromide anion is by 

studying differences in the chemical shifts of various protons of the cation in the NMR 

spectra. Differences in these proton chemical shifts can also be due to an ion concentration 

effect.13 However, this concentration effect on chemical shift is not as pronounced as that 

observed as a result of anion exchange from the bromide salt. In the 1H NMR spectrum of 

3-methyl-1-(dodecoxycarbonylmethyl) imidazolium NTf2, the acidic proton of the 

imidazolium cation appears as a singlet shifted upfield at δ 8.74 compared to the bromide 

counterpart (δ 10.26). The methine groups of the imidazolium ring can be seen as a set of 

two triplets with coupling constants of 1.8 Hz. These peaks again appear shifted upfield at δ 

7.30 and 7.25, relative to the bromide salts (peaks at δ 7.56 and 7.43). At δ 4.93 a singlet 

due to the methylene group adjacent to imidazolium ring is evident. When comparing the 

chemical shift of this peak to the bromide IL it can be noted that this signal has been shifted 

upfield (methylene peak appears at δ 5.47 for bromide salt). At δ 4.13 a triplet with a 

coupling constant of 6.8 Hz can be seen and is assigned as the OCH2 methylene of alkyl 

ester side chain. A change in chemical shift of the peak due to the N-methyl group of the 

imidazolium cation is evident. A singlet peak at δ 3.88 can be seen in the spectrum (Figure 

2.3), and has been shifted when compared to signal seen in the spectrum of the bromide IL 

(δ 4.10). The peaks corresponding to the linear alkyl chain all appear at the most upfield 

area of the NMR spectrum but with slightly different chemical shifts than those of the IL 
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containing bromide anion. A more upfield shift is observed for these signals, further 

highlighting the effect of the NTf2 anion on the cation component. A triplet of triplets (tt) is 

seen at δ 1.59 with coupling constants of 6.8 and 7.2 Hz and are due to methylene group 

neighbouring the OCH2 group. A broad multiplet at δ 1.24-1.18 arises from the remaining 

protons of the alkyl chain (integration of 18 protons). A triplet at δ 0.81 with a coupling 

constant of 7.0 Hz, can be assigned as the methyl group of the dodecyl chain.  
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Fig. 2.3: 1H NMR spectrum (CDCl3) of 3-methyl-1-(dodecoxycarbonylmethyl) 

imidazolium NTf2 (201). 
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2.3.1.3 
1
H NMR spectroscopic study of 3-methyl-1-(2-(dodecylamino)-2-oxoethyl)-

imidazolium bromide (208) 

 

     (208) 

Changes in the IL cation are clearly evident in the corresponding 1H NMR spectrum. The 

difference between ester and amide functionalities in the achiral ILs side chain results in 

different NMR spectra. In the 1H NMR spectrum of 3-methyl-1-(2-(dodecylamino)-2-

oxoethyl)-imidazolium bromide (208), a singlet at δ 9.73 can be seen. This signal is due to 

the acidic proton of the imidazolium ring and is slightly shifted upfield compared to the 

ester IL (δ 10.26). At δ 8.49, a triplet resides with a coupling constant of 5.4 Hz, and can be 

assigned as the amide proton of the IL side chain. This proton is coupling to the 

neighbouring methylene protons of the dodecyl alkyl side chain. In the aromatic region of 

the 1H NMR spectrum, the imidazolium methine protons are evident. Two triplet signals 

appear at δ 7.58 and 7.15 with coupling constants of 1.6 Hz and are due to the aromatic 

imidazolium protons. A singlet peak at δ 5.29 with an integration of two protons is due to 

the methylene (NCH2) group linking the imidazolium cation to the alkyl amide side chain. 

The N-methyl group of the imidazole is evident at δ 3.96 and appears as a singlet signal, 

integrating as three protons. At δ 3.16 an overlapping doublet of triplet signal arises with a 

coupling constant of 6.0 and 7.2 Hz and with an integration of 2. This signal is due to the 

methylene group adjacent to the amide moiety in the IL side chain. Further upfield the 

hydrogens of the remaining alkyl side chain are detected. A triplet of triplets is noted at δ 

1.50 with coupling constants of 7.2 and 7.8 Hz. This signal integrates as two protons and 

can be allocated as the second methylene group from the amide functionality. The 

remaining protons of the dodecyl side chain appear together as a broad multiplet at δ 1.22-

1.17. A triplet at δ 0.81 with a coupling constant of 7.0 Hz is due to the terminal methyl 

group of the long alkyl chain. 
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Fig. 2.4: 1H NMR spectrum (CDCl3) of 3-methyl-1-(2-(dodecylamino)-2-oxoethyl)-

imidazolium bromide (208). 

2.3.2 
13

C NMR and DEPT spectroscopic studies of achiral Ionic Liquids 

13C NMR and DEPT 135 experiments were also carried out on all novel achiral ionic 

liquids in deuterated chloroform. In the 13C NMR spectra of the achiral ester derivatives the 

ester carbonyl group appears at ~ δ 165.7-166.5. The amide carbonyls of the amide ILs 

reside at ~ δ 164.2. In the aromatic region of the 13C spectrum the carbons of the 

imidazolium ring can be seen, namely at ~ δ 137.5-138.6, 123.7 and 119-123.2. The 

methylene group between the cation core and the achiral side-chain is seen at ~ δ 49.9-51.8 

in the 13C spectra and gives a negative peak in the DEPT 135 spectra. The N-methyl of the 

imidazolium cation appears up-field at ~ δ 36.5-36.9. Further up-field in the carbon spectra 

the carbons of the linear alkyl chains are observed and give corresponding negative mode 

peaks in the DEPT 135. Table 2.8 illustrates some selected 13C NMR data of achiral ionic 

liquids. 
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Table 2.8: Selected 13C data (δ, CDCl3) of amide and ester functionalised achiral ionic 

liquids (193, 194, 195, 198, 201, 202, 206, 207 and 208) 

Compound C=O 

ester 

C=O 

Amide 

NCHN 

imidazolium 

NCH 

imidazolium 

NCH2 

methylene 

NCH3 

imidazolium 

193 166.2  138.2 123.9 

122.8 

50.1 36.8 

194 166.1  138.3 123.8 

123.0 

50.3 36.9 

195 166.1  138.5 123.7 

122.9 

50.3 36.9 

198 166.5  137.7 123.6 

123.0 

49.9 36.6 

201 165.8  137.5 123.8 

123.3 

49.9 36.5 

202 165.7  137.7 123.8 

123.2 

49.9 36.6 

206  164.2 137.5 123.9 

122.3 

51.9 36.8 

207  164.2 137.5 122.6 

119.7 

51.8 36.8 

208  164.2 137.5 123.9 

122.2 

51.9 36.8 
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2.3.2.1 
13

C NMR and DEPT 135 study of 3-methyl-1-

(tetradecoxycarbonylmethyl)imidazolium NTf2 (202) 

 

     (202) 

In the 13C spectrum of 3-methyl-1-(tetradecoxycarbonylmethyl)imidazolium NTf2 (202), a 

carbonyl group can be seen at δ 165.7. This corresponds to the ester carbonyl of the achiral 

ester side chain of the IL cation. In the DEPT 135 NMR spectrum this peak is not observed. 

The imidazolium carbons can be seen at δ 137.7, 123.8 and 123.2. These can be assigned as 

the carbon of the acidic proton (-NCHN-) and the two ring methine carbons (NCH) 

respectively. Also appearing in the aromatic region of the 13C spectrum is a quartet signal 

with a coupling constant of 319.0 Hz (Figure 2.5). This quartet is assigned as the two 

quaternary carbons present in the bistriflimide anion which is further supported by their 

absence in the DEPT 135 spectrum (Figure 2.6). These carbons appear as a quartet signal 

due to their coupling to the neighbouring fluorines and appear as one quartet due to the 

anion symmetry.2 At δ 67.3 a signal appears and gives a negative peak (opposite resonance 

to aromatic CH at δ 123.8) in the DEPT 135 NMR. This carbon is assigned as the 

methylene ester OCH2 of the IL alkyl ester side chain. The methylene group adjacent to the 

imidazolium core can be seen at δ 49.9 and appears as negative peak in the corresponding 

DEPT 135 spectrum. A signal at δ 36.6 can be noted and is due to the N-methyl group of 

the imidazolium ring. A series of peaks can be seen in the aliphatic region of the 13C 

spectrum and appear as negative peaks in the DEPT 135 spectrum between δ 31.9-22.7. 

These signals represent the methylene carbons of the tetradecyl alkyl side chain. In the 

most upfield region of the 13C spectrum a signal at δ 14.1 is evident and corresponds to the 

methyl group of the alkyl ester side chain. 
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Fig. 2.5: 13C NMR spectrum of 3-methyl-1-(tetradecoxycarbonylmethyl)imidazolium NTf2 

(202) 
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Fig. 2.6: DEPT 135 spectrum of 3-methyl-1-(tetradecoxycarbonylmethyl)imidazolium 

NTf2 (202). 
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2.3.3 COSY study of 3-methyl-1-(2-(decylamino)-2-oxoethyl)-imidazolium bromide 

achiral Ionic Liquid (207) 

Two-Dimensional NMR experiments were obtained for novel achiral ionic liquids. One 

such 2D NMR technique employed was Correlation Spectroscopy (COSY). In a COSY 

NMR spectrum the frequencies of a 1H NMR experiment are shown along both axes and 

the third dimension (within the box) shows the intensity of the observed signals. COSY 

NMR spectroscopy enables elucidation of the connectivity of a molecule by determining 

which protons are spin-spin coupled.14 In the COSY NMR spectrum of 3-methyl-1-(2-

(decylamino)-2-oxoethyl)-imidazolium bromide (Figure 2.8), the acidic proton 1 (δ 9.77) 

couples to the methine protons 3 and 4 of the imidazolium ring (δ 7.65 and 7.26). It is 

evident in the spectrum (Figure 2.9) that the amide proton 6 (δ 8.60) is coupled to the 

methylene group 7 (δ 3.24) of the alkyl side chain. Further coupling of this methylene 7 to 

an adjacent methylene moiety 8 (δ 1.58) in the linear alkyl chain can also be seen. Coupling 

is observed between the imidazolium methine protons 3 and 4 (δ 7.65 and 7.26) and 

between methylene groups 8 (δ 1.58) and 9-15 (δ 1.31-1.20). The terminal methyl group 16 

(δ 0.88) of the alkyl chain also displays correlation to the multiplet representing the alkyl 

protons 9-15 in the COSY spectrum.  

 

 

Fig. 2.7: 3-Methyl-1-(2-(decylamino)-2-oxoethyl)-imidazolium bromide (207) achiral ionic 

liquid. 
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Fig. 2.8: COSY spectrum of 3-methyl-1-(2-(decylamino)-2-oxoethyl)-imidazolium bromide 

(207) achiral ionic liquid. 

2.3.4 HMQC study of 3-methyl-1-(tetradecylcarbonylmethyl) imidazolium bromide 

achiral Ionic Liquid (195) 

Another two-dimensional NMR method used to characterize novel achiral ionic liquids was 

Heteronuclear Multiple Quantum Coherence (HMQC). HMQC is a 2D inverse correlation 

technique that allows determination of correlations between proton and carbon atoms. It 

typically involves a pulse sequence with a delay time set at half the value of the 13C-1H 

coupling constant (100-200 Hz). This type of experiment results in a correlation between 

protons and the carbon to which they are attached.14,15 Therefore as expected quaternary 

carbons are not evident in HMQC spectrum. Table 2.9 and Figure 2.9 describe a C-H 

correlation study of 3-methyl-1-(tetradecylcarbonylmethyl) imidazolium bromide achiral IL 

(195). 
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Table 2.9: C-H correlation data from HMQC spectrum of 3-methyl-1-

(tetradecylcarbonylmethyl) imidazolium bromide (195). 

Carbon No. 
1
H NMR 

13
C NMR HMQC 

1 4.09  36.95 

2 10.17  138.53 

3 7.47  122.92 

4 7.58  123.71 

5 5.47  50.32 

6  166.15  

7 4.19  67.15 

8 1.67  28.35 

9 1.31-1.21  31.91-22.70 

10 1.31-1.21  31.91-22.70 

11 1.31-1.21  31.91-22.70 

12 1.31-1.21  31.91-22.70 

13 1.31-1.21  31.91-22.70 

14 1.31-1.21  31.91-22.70 

15 1.31-1.21  31.91-22.70 

16 1.31-1.21  31.91-22.70 

17 1.31-1.21  31.91-22.70 

18 1.31-1.21  31.91-22.70 

19 1.31-1.21  31.91-22.70 

20 0.88  14.14 
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Fig. 2.9: HMQC NMR spectrum of 3-methyl-1-(tetradecylcarbonylmethyl) imidazolium 

bromide (195). 

 

2.4 Conclusions 

A range of imidazolium based ionic liquids, and associated intermediates, were 

successfully designed and prepared with various functionalised achiral side chains. Five α-

bromoester intermediates (188-192) were synthesised and five bromide achiral ester ILs 

(42, 193-196) were subsequently prepared. Four NTf2 (177, 200-202) and four OctOSO3 

(45, 197-199) ILs were also produced. Additionally, three achiral α-bromoamide 

intermediates (203-205) were prepared and then used in the synthesis of three bromide 

achiral amide ILs (206-208). These novel compounds were characterized by a range of 

spectroscopic techniques including 1H NMR, 13C NMR, DEPT 135, HMQC, IR and MS. 

All compounds gave data in accordance with their proposed chemical structures. The 

accumulated spectroscopic data also allowed for differentiation between cations with 
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varying anionic components. Chemical shifts studies could be conducted of 1H NMR 

spectra of ILs with various anions (i.e. Br, NTf2 and OctOSO3). Additionally, by altering 

the anionic species of the ILs, their physico-chemical properties can be also be changed 

(Table 2.6). Viscosities and depression of melting points are examples of some IL 

properties which can be manipulated upon anion exchange.  
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Characterisation 

 

 

 

 

 

 

 

 

 

 

 



107 

 

3.1 Introduction 

Chiral Ionic Liquids (CILs) are a class of ionic liquids whereby either the cation or anion 

bears at least one stereogenic centre. This field of IL research is still in its relative infancy, 

with the first papers reported just over a decade ago.1 Libraries of novel CILs exist in the 

literature today, and some comprehensive reviews have expounded their preparation and 

applications.2-4  

An efficient and relatively easy way to synthesis enantiomerically pure ionic liquids is to 

use precursors derived from the chiral pool. Many research groups have used amino acids 

as chiral precursors and as a means of preparing functionalised ionic liquids. Amino acids 

contain both a carboxylic acid site and an amino group which allows for their use as either 

cations or anions in ionic liquids. Many groups have incorporated amino acids as anionic 

species. Fukumoto and Ohno were first to report the synthesis of Amino acid ionic liquids 

(AAILs).5,6 Different natural amino acids were employed as anions with the commonly 

used 1-ethyl-3-methylimidazolium [emim] cation. Figure 3.1 illustrates the preparation of 

these AAILS.  

 

 

Fig. 3.1: Synthesis of amino acid ionic liquids by Fukumoto et al..
5
 

A neutralization method was used whereby 1-ethyl-3-methylimidazolium hydroxide 

[emim][OH] was vigourously mixed with an aqueous solution of amino acid. All the 

imidazolium AAILs were obtained as liquids and displayed low thermal stability 

(decomposition occurred at 200 °C). To investigate the effect of the ionic liquid cation on 

its relative thermal stability, a series of Alanine salts were prepared using phosphonium, 

ammonium, pyridinium and pyrolidinium cations. From this list of novel AAILs, the 



108 

 

phosphonium based ionic liquid exhibited the highest thermal stability and lowest glass 

transition temperature (Tg, temperature lower than melting temperature). As a consequence, 

a series of tetraalkylphosphonium amino acid salts were further prepared by the same 

group, to determine the effects of the alkyl chain of the cation on thermal stability, density 

and glass transition temperature. A three step synthesis was required to obtain the novel 

asymmetric phosphonium AAILs. The first step involved the quaternisation of tri-

alkylphosphine with various alkyl halides. Following this, the halide salt was passed 

through an anion exchange resin in order to attain the hydroxide derivative IL. Finally the 

[Pn,n,n,m][OH] ILs were neutralised with aqueous solutions of various L-amino acids. A 

number of physico-chemical properties, namely glass transition temperature, decomposition 

temperature, density and viscosity, were measured for tetraalkylphosphonium AAILs. 

Whilst all AAILs exhibited high levels of thermal stability, a trend was observed in terms 

of alkyl chain length of cation and IL viscosity. The viscosity increased upon increasing the 

carbon number in the alkyl chain.  

A series of tetraalkylammonium AAILs have been synthesised recently.7 Preparation of 

these AAILs was achieved using similar methods previously described in the literature.5 

Symmetry of the cation had an evident effect on the IL viscosity. The asymmetric 

tetraalkylammonium derivatives gave lowest viscosity values (lowest value observed 29 

mPa s). The potential application of these AAILs as CO2 absorbents was also investigated. 

Absorbtion of carbon dioxide has become an important research issue recently as increased 

levels in atmospheric CO2 has lead to global warming. Ionic liquids have been studied as 

possible alternatives to CO2 scavengers commonly used in industry. The low viscosity of 

the tetraalkylammonium amino acid ionic liquids was seen to enhance CO2 mass transfer. 

Up to 90 % of absorbed CO2 could be released from AAIL system, with high recovery 

levels of IL observed after repeated cycles of CO2 uptake and release.  

Amino acids have also been incorporated as cationic components in IL structures. Shreeve 

and co-workers have recently reported the synthesis of a range of N-alkyl substituted 

glycine ester ionic liquids.8 These AAILs were prepared in two steps (Figure 3.2). Direct 

acidification of glycine and glycine ester starting materials, followed by anion exchange 

reactions yielded N-unsubstituted and N,N-dialkyl substituted glycine ionic liquids. N-
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trialkyl glycine halide ionic liquids were synthesised by alkylation of glycine esters with 

bromo and iodoalkanes. Viscosities and thermal stabilities were again investigated in this 

work. A similar trend in cation symmetry effecting AAILs viscosity and melting points was 

observed here, with asymmetric cations yielding salts with low viscosities.  
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Fig. 3.2: Preparation of Glycine-based ionic liquids.8 

 

In our work chirality and functionalisation was incorporated into the ionic liquid structure 

by introducing various amino acid esters into the imidazolium cation side chain.  

3.1.1 Aim  

L-, D- and DL- Amino acid esters (methyl, ethyl and butyl) were selected as chiral building 

blocks and were coupled to the imidazolium cation. Incorporation of these derivatives 

provides the IL side chain with several possible biodegradation sites. The ester forms of 

these amino acids were to be synthesized in order to successfully form the chiral 

bromoamide intermediates which could then be used to prepare the desired chiral bromide 

salt. Figure 3.3 below demonstrates the general structure of these CILs.  
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Fig. 3.3: General structure of Amino acid based chiral ionic liquids. 

As seen in Figure 3.3, there is an amide and ester moiety present in the CIL side chain. This 

strategy provides two possible sites for enzymatic cleavage, hence leading to improved IL 

biodegradability. The goal was to prepare a library of novel amino acid ester ionic liquids 

for toxicity and ecotoxicity studies. A series of Br salts were prepared and screened for 

antimicrobial toxicity. NTf2 and OctOSO3 ILs produced derivatives with various physico-

chemical properties (i.e. liquid/solid, melting point studies). The OctOSO3 salts have also 

been known to improve IL biodegradation.  

3.2 Synthesis of Chiral Ionic Liquids  

The synthethic route utilized in CIL formation is similar to that previously employed for 

the achiral examples (Chapter 2). An extra step is required at the start of the four step 

synthesis. This involved the esterification of the C-terminus of the amino acids in order to 

add a protecting group to the carboxylic acid.9 Scheme 3.1 illustrates the synthetic pathway 

involved in the formation of these CILs.  

 

Scheme 3.1: Synthesis of amino acid ester chiral ionic liquids; (1) SOCl2, (2) Bromoacetyl 

bromide, Et3N, -78 °C, (3) 1-methyl imidazole, (4) NaOctOSO3 or LiNTf2. 
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3.2.1 Step 1:Preparation of Amino Acid esters 

A range of L-, D- and DL- Amino acid ester (AAE) derivatives were prepared from their 

Amino acid (AA) precursors. The amino acids used were; 

• L-, D-, DL-Phenylalanine 

• L-, D-, DL-Valine 

• L-Alanine 

• L-Isoleucine 

• L-Leucine 

Methyl, ethyl and butyl esters were prepared. Figure 3.4 illustrates the reaction conditions 

used in this step. 

NH2

R

O

OH
R'OH

SOCl2

RT/Reflux
24 hrs

NH2

R

O

O

R'

HCl  

Fig. 3.4: Preparation of Amino Acid esters. 

The amino acids were allowed to react with thionyl chloride in the presence of alkyl 

alcohols at ambient temperatures. However in some cases (namely for the ethyl and butyl 

derivatives 230, 231, 233, 234, 239 and 243) reflux conditions were used to obtain the alkyl 

ester hydrochloride salts. The esters were prepared in very good yields (Table 3.1). In some 

cases the esters were commercially available (223, 224, 235, 236) and were therefore not 

synthesized as above.  
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Table 3.1: Amino acid esters synthesized. 

Amino acid ester                                                  Compound no.                Yield   (%)         

L-phenylalanine methyl ester hydrochloride           223 n/a* 

L-phenylalanine ethyl ester hydrochloride           224 n/a* 

L-phenylalanine butyl ester hydrochloride 225
†
 66 

L-alanine methyl ester hydrochloride 226
†
 94 

L-alanine ethyl ester hydrochloride 227
†
 60 

L-alanine butyl ester hydrochloride 228
†
 94 

L-valine methyl ester hydrochloride 229
†
 96 

L-valine ethyl ester hydrochloride 230
†
 87 

L-valine butyl ester hydrochloride 231
†
 65 

L-isoleucine methyl ester hydrochloride 232
†
 96 

L-isoleucine ethyl ester hydrochloride 233
†
 94 

L-isoleucine butyl ester hydrochloride 234
†
 89 

L-leucine methyl ester hydrochloride           235 n/a* 

L-leucine ethyl ester hydrochloride           236 n/a* 

L-leucine butyl ester hydrochloride 237
†
 66 

D-valine methyl ester hydrochloride 238
†
 95 

D-valine ethyl ester hydrochloride 239
†
 77 

D-phenylalanine methyl ester hydrochloride 240
†
 97 

D-phenylalanine ethyl ester hydrochloride 241
†
 97 

DL-valine methyl ester hydrochloride 242
†
 90 

DL-valine ethyl ester hydrochloride 243† 64 

DL-phenylalanine methyl ester hydrochloride 244† 85 

DL-phenylalanine ethyl ester hydrochloride 245† 96 

D-alanine methyl ester hydrochloride           246 n/a* 

n/a* Amino acid esters purchased from chemical supplier, † known compound, see Appendix I 
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3.2.2 Step 2: α-bromoamide intermediates  

Synthesis of the alkylating reagents was carried out as before (Chapter 2) for the achiral 

derivatives (Figure 3.5). The amino acid ester was dissolved in DCM and stirred at -78 °C 

in the presence of Et3N under inert atmospheric conditions. Bromoacetyl bromide was then 

added and stirring was continued for 4-5 hours at - 78°C.  

 

 

Fig. 3.5: Formation of α-bromoamide intermediates. 

 

Column chromatography was used to purify these bromoamides. The eluant used was 50:50 

ethyl acetate: hexane. The products (247-269) were obtained in moderate to good yields. 

Table 3.2 summarises the isolated yields obtained for the pure forms (by 1H and 13C NMR) 

of the alkylating intermediates.  
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Table 3.2: Synthesis of chiral α-bromoamide intermediates. 

 

R R’ Compound 

No. 

Yield (%) 

-CH2-(C6H5) -CH3 247 66 

-CH2-(C6H5)  -C2H5 248 64 

-CH2-(C6H5)  -C4H9 249 79 

-CH3  -CH3 250 65 

-CH3  -C2H5 251 40 

-CH3  -C4H9 252 74 

-CH(CH3)2  -CH3 253 60 

-CH(CH3)2  -C2H5 254 40 

-CH(CH3)2  -C4H9 255 58 

-CH2CH(CH3)2  -CH3 256 62 

-CH2CH(CH3)2  -C2H5 257 61 

-CH2CH(CH3)2  -C4H9 258 54 

-CH(CH3)CH2CH3  -CH3 259 56 

-CH(CH3)CH2CH3  -C2H5 260 59 

-CH(CH3)CH2CH3  -C4H9 261 68 

 

-CH2-(C6H5) -CH3 262 65 

-CH2-(C6H5) -C2H5 263 70 

-CH(CH3)2 -CH3 264 45 
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-CH(CH3)2  -C2H5 265 59 

 

-CH(CH3)2  -CH3 266 82 

-CH(CH3)2 -C2H5 267 62 

- CH2-(C6H5) -CH3 268 66 

- CH2-(C6H5) -C2H5 269 69 

 

An alternative method of α-bromoamide formation was also investigated for some 

intermediates. In this method the amino acid ester was stirred in DCM with potassium 

carbonate at 0 °C. Bromoacetyl bromide was added dropwise and the reaction was stirred at 

room temperature for 24 hours (Figure 3.6).10  

 

Fig. 3.6: Formation of bromoamide intermediates using K2CO3 method. 

 

The purification of the α-bromoamide was facile, requiring only a base wash on the crude 

reaction product. An advantage to this was that the use of column chromatography was 

eliminated, hence making the reaction a greener alternative to the previously used method. 

Figure 3.7 demonstrates a 1H NMR spectrum of a representative purified bromoamide 

intermediate (254). An improvement in product yields was also observed. Table 3.3 draws 

the comparison between yields obtained of alkylating intermediates using both methods.  
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Table 3.3: Et3N alkylation method vs K2CO3 method. 

α-bromoamide intermediate Et3N method 

(yield %) 

K2CO3 method 

(yield %) 

247 66 86 

249 79 82 

251 40 70 

253 60 77 

254 40 71 

255 58 78 

256 62 98 

257 61 75 

264 40 66 

265 59 73 

266 82 67 

267 62 68 
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Fig. 3.7: 1H NMR of L-valine ethyl ester bromoacetate (254).  
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In the 1H NMR spectrum of L-valine ethyl ester bromoacetate (254), a doublet at δ 6.84 

with a coupling constant of 6.8 Hz, represents the proton of the bromo-amide. A doublet of 

doublets appears at δ 4.44 with coupling constants of 8.8 and 4.8 Hz. This signal is due to 

the proton at the L-valine chiral center. A large peak at δ 4.22-4.09 with an integration of 2 

is noted. This peak can be assigned to be the methylene of the ethyl ester group. The 

protons of this methylene group appear inequivalent and as a result are seen to couple to 

each other and to the adjacent protons of the terminal methyl group. Two overlapping 

doublet of quartets are evident for these protons. The singlet at δ 3.85 corresponds to the 

methylene protons adjacent to the terminal bromide atom. Upfield in the proton NMR 

spectrum, the aliphatic protons of the L-valine side chain arise. The methine and methyl 

groups of the branched alkyl side chain appear at δ 2.15 and 0.88 respectively. The triplet at 

δ 1.23 is due to the methyl group of the ethyl ester. 

3.2.3 Step 3: Formation of bromide salts  

The next stage of the synthesis involved the alkylation of 1-methyl imidazole to form the 

chiral bromide salts (270-292). Etheral solvents (e.g. diethyl ether or tetrahydrofuran) are 

used extensively in the group for the preparation of bromide ILs.11 These reactions were 

performed initially using diethyl ether (Et2O) as reaction solvent. However, in some cases 

the IL did not precipitate as a separate phase to the Et2O. In others, poor solubility of the 

alkylating reagents was observed when using diethyl ether as the reaction media. A 

considerable amount of starting material was observed in the 1H NMR spectra following 

the reaction in ether. This was evident in the spectrum of 3-methyl-1-D-valine ethyl ester 

imidazolium bromide (288). A singlet at δ 3.70 indicates the presence of the N-methyl 

group of the imidazolium ring and a set of doublets at δ 6.89 and 7.16 shows the 

imidazolium methine protons. The removal of this starting material is difficult, as methyl 

imidazole has a high boiling point and therefore will not be removed via rotary evaporation. 

In addition column chromatography was attempted in some cases; however the product 

adhered to the silica stationary phase and was difficult to remove. Copious amounts of 

methanol were usually required to remove the IL from the column. Et2O washings were 

also employed with only slight imidazole removal observed in a number of cases. As most 
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of the CILs were liquids at RT recrystallisation was also a purification option which could 

not be used. Therefore the reaction conditions were altered in order to optimize the product 

yields and purity. Tetrahydrofuran (THF) replaced diethyl ether as the reaction media, as 

the starting material is more soluble in this solvent. It was clear from the 1H NMR data that 

the amount of residual starting material was noticeably reduced by replacing diethyl ether 

with THF (Figure 3.8). 
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Fig. 3.8: (a) 1-methyl imidazole starting material evident in the NMR spectrum of the CIL 

(288) using diethyl ether as solvent; (b) and the imidazole peaks removed upon replacement 

of diethyl ether with THF. 
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The bromide CILs were obtained in good to very good yields (Table 3.4) as a range of 

liquids or solids.  

Table 3.4: CILs synthesised and yields obtained. 

 

Compound no. R R’ Yield 

(%) 

270 -CH2(C6H5) -CH3 98 

271 -CH2(C6H5) -C2H5 98 

272 -CH2(C6H5) -C4H9 99 

273 -CH3 -CH3 95 

274 -CH3 -C2H5 90 

275 -CH3 -C4H9 82 

276 -CH(CH3)2 -CH3 85 

277 -CH(CH3)2 -C2H5 98 

278 -CH(CH3)2 -C4H9 96 

279 -CH(CH3)CH2CH3 -CH3 67 

280 -CH(CH3)CH2CH3 -C2H5 94 

281 -CH(CH3)CH2CH3 -C4H9 98 

282 -CH2(CH3)2 -CH3 95 

283 -CH2(CH3)2 -C2H5 69 

284 -CH2(CH3)2 -C4H9 86 
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285 -CH2(C6H5) -CH3 87 

286 -CH2(C6H5) -C2H5 84 

287 -CH(CH3)2 -CH3 89 

288 -CH(CH3)2 -C2H5 79 

 

289 -CH2(C6H5) -CH3 84 

290 -CH2(C6H5) -C2H5 79 

291 -CH(CH3)2 -CH3 87 

292 -CH(CH3)2 -C2H5 77 

 

3.2.4 Step 4: Anion metathesis  

3.2.4.1 NTf2 salt formation  

Following formation of the bromide salts, anion exchange reactions were carried out 

yielding a library of novel CILs. Chiral NTf2 ionic liquids were prepared using lithium 

trifluoromethanesulfonimide as used in the synthesis of the achiral derivatives. This method 

involved stirring the bromide salt with lithium trifluoromethanesulfonimide in distilled 

water at room temperature overnight. After this time the hydrophobic NTf2 salt formed as a 

separate phase. Water washings of the precipitate gave the pure CILs in good to excellent 

yields, all as liquids.  
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Table 3.5: Chiral NTf2 ionic liquids (293-307). 

Compound name  Compound 

No. 

Yield 

(%) 

3-methyl-1-L-isoleucine methyl ester imidazolium NTf2 293 84 

3-methyl-1-L-isoleucine ethyl ester imidazolium NTf2 294 67 

3-methyl-1-L-isoleucine butyl ester imidazolium NTf2 295 77 

3-methyl-1-L-alanine methyl ester imidazolium NTf2 296 54 

3-methyl-1-L-alanine ethyl ester imidazolium NTf2 297 83 

3-methyl-1-L-alanine butyl ester imidazolium NTf2 298 72 

3-methyl-1-L-leucine methyl ester imidazolium NTf2 299 78 

3-methyl-1-L-leucine ethyl ester imidazolium NTf2 300 85 

3-methyl-1-L-leucine butyl ester imidazolium NTf2 301 86 

3-methyl-1-L-phenylalanine methyl ester imidazolium NTf2 302 65 

3-methyl-1-L-phenylalanine ethyl ester imidazolium NTf2 303 94 

3-methyl-1-L-phenylalanine butyl ester imidazolium NTf2 304 84 

3-methyl-1-L-valine methyl ester imidazolium NTf2 305 88 

3-methyl-1-L-valine ethyl ester imidazolium NTf2 306 93 

3-methyl-1-L-valine butyl ester imidazolium NTf2 307 94 

 

3.2.4.2 OctOSO3 CILs  

In the synthesis of OctOSO3 CILs, the bromide salt was stirred in distilled water and 

sodium octyl sulfate. The reaction was then allowed to proceed overnight. The water was 

then removed slowly via rotary evaporation. The precipitate obtained was dissolved in 

DCM and washed with small aliquots of distilled water. After these washings, DCM 

solvent was removed yielding CILs in good to very good yields (up to 96 %). Suppression 

in CIL melting points was observed as all OctOSO3 salts (compared to the bromide 

analogues) were obtained as liquids at RT. 
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Table 3.6: Yields obtained for OctOSO3 CILs (308-317). 

Compound name Compound 

no. 

Yield 

(%) 

3-methyl-1-L-leucine methyl ester imidazolium OctOSO3 308 93 

3-methyl-1-L-leucine ethyl ester imidazolium OctOSO3 309 76 

3-methyl-1-L-leucine butyl ester imidazolium OctOSO3 310 75 

3-methyl-1-L-phenylalanine ethyl ester imidazolium OctOSO3 311 96 

3-methyl-1-L-phenylalanine butyl ester imidazolium OctOSO3 312 95 

3-methyl-1-L-alanine methyl ester imidazolium OctOSO3 313 86 

3-methyl-1-L-alanine ethyl ester imidazolium OctOSO3 314 85 

3-methyl-1-L-valine methyl ester imidazolium OctOSO3 315 87 

3-methyl-1-L-valine ethyl ester imidazolium OctOSO3 316 67 

3-methyl-1-L-valine butyl ester imidazolium OctOSO3 317 77 

 

3.3 NMR studies of Chiral Ionic Liquids 

3.3.1 
1
H NMR studies of chiral ionic liquids 

1H NMR experiments of all novel amino acid ester ionic liquids (270-317) were performed 

in deuterated chloroform or deuterated dimethyl sulfoxide. The amide protons of the 

peptide side chain appear typically as doublets due to coupling with the α-hydrogen at the 

chiral centre. These signals reside downfield, with chemical shifts dependent on the 

different counter ions present in the salts. For bromide derivatives (270-292), the amide 

signals appear between ~ δ 8.50-9.63. In the case of the NTf2 salts (293-307), amide 

protons are evident between ~ δ 7.16-7.22 and for the OctOSO3 examples (308-317) these 

protons can be assigned at ~ δ 8.31-8.55. The acidic proton of the imidazolium ring gives a 

singlet whose chemical shift differs depending on the anion present in the IL structure. For 

the bromide ILs, the acidic imidazolium CH appears downfield at ~ δ 9.10-9.85. NTf2 CILs 

give singlets shifted upfield towards ~ δ 8.50-8.75 and the OctOSO3 salts are slightly more 
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upfield to the bromide derivatives at ~ δ 8.98-9.35. The methylene group adjacent to the 

imidazolium core gives rise to signals at ~ δ 5.02-5.48 for bromide CILs. The OctOSO3 

counterparts produce signals that are similar in chemical shift at ~ δ 5.02-5.28. Whilst the 

methylene groups of the NTf2 salts are again shifted slightly further upfield at ~ δ 4.06-

4.98.  

Table 3.7: Selected 1H NMR spectral data (δ, CDCl3) for 3-methyl-1-L-alanine ester 

imidazolium bromide ionic liquids (273, 274, 296, 297, 313 and 314). 

Compound 

no. 

Amide NH Acidic 

imidazolium 

CH 

Imidazolium 

CH’s 

Methylene 

NCH2 

273 9.04 9.15 7.77,7.45 5.12 

274 8.90 9.63 7.58,7.33 5.39 

296 7.19 8.74 7.26,7.17 4.95 

297 7.24 8.67 7.38,7.20 4.93 

313 8.63 9.22 7.49,7.24 5.16 

314 8.52 9.13 7.48,7.27 5.13 
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3.3.1.1 
1
H NMR spectroscopic study of 3-methyl-1-L-alanine ethyl ester imidazolium 

bromide (274) 

 

(274) 

The 1H NMR spectrum of 3-methyl-1-L-alanine ethyl ester imidazolium bromide (274) was 

obtained in CDCl3. In this deuterated solvent the acidic proton (-NCHN-) of the 

imidazolium ring appears at δ 9.63 as a singlet, which is expected as it is not neighbouring 

any other protons. The amide of the L-alanine side chain moiety occurs as a doublet at δ 

8.90 with a coupling constant 6.4 Hz. This proton appears as a doublet due to coupling with 

the α-hydrogen at the chiral centre. Two triplets appear at δ 7.58 and 7.33 with coupling 

constants of 1.8 and 1.6 Hz respectively. These peaks can be assigned as the NCH protons 

of the imidazolium ring for which doublet peaks would be expected. However, it is 

predicted that coupling between these hydrogens with the acidic hydrogen may be 

occurring through the aromatic system. A singlet peak at δ 5.39 in the 1H NMR spectrum is 

due to the methylene group alpha to the imidazolium cation core. At δ 4.33 a peak 

resembling a quintet arises, corresponding to the hydrogen at the chiral centre. However, 

this proton is coupled to inequivalent protons, namely, the methyl protons of the L-alanine 

side chain and the amide proton. Coupling to these protons results in a doublet of quartets 

which appear at the same chemical shift with the same coupling constants of 7.2 Hz. 

Therefore the signal observed in the 1H NMR spectrum appears similar to a quintet. The 

methylene of the ethyl ester group appears as two overlapping doublet of quartets δ 4.09 

and 4.08. The N-methyl group gives a singlet occurring at δ 3.99. At δ 1.44 a doublet is 

noted with a coupling constant of 7.2 Hz. This doublet is assigned to the methyl of L-

alanine, and is split due to coupling with the proton of the chiral centre. The most upfield 

signal observed at δ 1.18 and is due to the CH3 of the ethyl ester group and appears as a 

triplet with a coupling constant of 7.2 Hz.  



125 

 

 

 

11 10 9 8 7 6 5 4 3 2 1 0 ppm

1
.
1
6
3

1
.
1
8
1

1
.
1
9
9

1
.
4
3
6

1
.
4
5
4

3
.
9
9
1

4
.
0
4
5

4
.
0
4
8

4
.
0
5
4

4
.
0
6
3

4
.
0
6
6

4
.
0
8
1

4
.
0
8
4

4
.
0
9
3

4
.
0
9
9

4
.
1
0
2

4
.
1
1
1

4
.
3
0
3

4
.
3
2
1

4
.
3
3
8

4
.
3
5
6

4
.
3
7
4

5
.
3
9
4

7
.
3
2
4

7
.
3
2
9

7
.
3
3
3

7
.
5
7
3

7
.
5
7
7

7
.
5
8
1

8
.
8
9
5

8
.
9
1
1

9
.
6
3
4

3
.0

8

3
.0

4

3
.0

3

2
.0

7

1
.0

1

2
.0

3

1
.0

0

1
.0

0

0
.9

9

1
.0

0

 

5.305.325.345.365.385.405.425.445.465.485.50 ppm

2
.0

3

 

Fig. 3.9: 1H NMR spectrum of 3-methyl-1-L-alanine ethyl ester imidazolium bromide 

(274). 

 

3.3.1.2 
1
H NMR spectroscopic study of 3-methyl-1-L-alanine ethyl ester imidazolium 

NTf2 (297) 

 

(297) 
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Triflimide anions are inorganic and do not possess any hydrogen atoms. Hence these ions 

do not give signals in 1H NMR spectra. Their presence however in an ionic liquid salt can 

be seen in a chemical shift study of various protons of the imidazolium cation. The amide 

protons of the L-alanine in the cation side chain appear slightly shifted up-field to δ 7.24. In 

the case of the bromide salt (274) this peak occurred more downfield at δ 8.90. The acidic 

proton of the imidazolium cation gives a singlet at δ 8.67 whereas the bromide derivatives 

also gave a singlet peak shifted down at δ 9.16. The two methine protons of the 

imidazolium ring give rise to two triplet signals at δ 7.38 and 7.20, with one triplet 

overlapping with the residual CHCl3 solvent peak, and the other with a coupling constant of 

1.8 Hz. The protons of the methylene group appear to be diastereotopic in the spectrum of 

the NTf2 salt. Here, coupling is occurring between the two protons of the methylene of the 

cation side chain giving rise to an AB system with a coupling constant of 10.8 Hz. This 

type of coupling suggests that these protons are chemically different and hence a roofing 

effect is observed. Similar to the imidazolium protons, the methylene signal is shifted in a 

more up-field direction. This indicates that the cation of the triflimide salt is less de-

shielded than that of the bromide example. Notable changes in chemical shifts of these 

signals in the 1H NMR spectra can aid in differentiating between salts with varying anions, 

in particular when an inorganic counter ion is present. A change in chemical shift is also 

seen for the N-Methyl group of the imidazolium ring (gives a singlet at δ 3.86; δ 3.99 for 

bromide salt) and the methyl group of the L-alanine side chain (a doublet occurring at δ 

1.36; δ 1.44 for bromide salt).  
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Fig. 3.10: 1H NMR spectrum of 3-methyl-1-L-alanine ethyl ester imidazolium NTf2 (297). 

 

3.3.1.3 
1
H NMR spectroscopic study of 3-methyl-1-L-alanine ethyl ester imidazolium 

OctOSO3 (314) 

 

                                                              (314) 

The amide proton of the CIL side chain appears at δ 8.52 as a doublet with a coupling 

constant of 6.8 Hz. At δ 9.13 a singlet is present indicating the presence of the acidic proton 

of the imidazolium moiety. The chemical shift of this proton is almost similiar to that 
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observed in the bromide derivative (δ 9.16). Two singlets appear at δ 7.48 and 7.27 which 

are assigned to be the methine groups of the imidazolium core. When compared to the 

bromide counterpart, it can be noted that the chemical shifts of these signals are slightly up-

field (δ 7.58, 7.37 for bromide CILs). The NCH2 group between the imidazolium cation and 

the amino acid containing side chain gives a singlet at δ 5.13. Again, this is slightly shifted 

towards the up-field end of the 1H NMR spectrum with respect to the bromide example (δ 

5.39) and can be correlated to a shielding effect of the anion. Unlike the triflimide CIL, the 

octyl sulfate anion is evident in the 1H NMR spectrum. A triplet can be seen at δ 3.92 and 

overlaps with the N-methyl of the imidazolium group. This triplet is due to the OCH2 of the 

octyl sulfate anion. Further evidence of the octyl sulfate anion can be seen in the aliphatic 

region of the NMR spectrum. The protons in the octyl chain of the anion give multiplet 

signals at δ 1.57-1.40 and 1.26-1.16. 
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Fig. 3.11: 1H NMR spectrum of 3-methyl-1-L-alanine ethyl ester imidazolium OctOSO3 

(314). 
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3.3.2 
13

C NMR and DEPT spectroscopic studies of chiral  ionic liquids 

13C NMR and DEPT 135 experiments were also performed for all novel chiral ionic liquids. 

In the 13C NMR spectrum the amide carbonyl carbon appears between ~ δ 171.2-171.9 

while the ester carbonyl groups reside between ~ δ 164.8-165.2. The carbons of the 

imidazolium ring give signals in the aromatic region of the 13C spectrum; ~ δ 137.7, 123.7 

and 122.6. The N-methyl of the imidazolium cation appears up-field at ~ δ 35.7-37.4. The 

methylene group bridging the cation core to the chiral side-chain is seen at ~ δ 50.2-52.4 in 

the carbon spectra and gives a negative peak (relative to aromatic CH) in the DEPT 135 

spectra. Table 3.8 illustrates some selected 13C NMR data of amino acid ester chiral ionic 

liquids. 

Table 3.8: Selected 13C data (ppm, in CDCl3) for Amino acid ester chiral ionic liquids 

(276, 277, 283, 284, 306 and 310). 

Compound 

no. 

C=O 

ester 

C=O 

amide 

NCHN 

Imidazolium 

NCH 

imidazolium 

NCH2 

Methylene 

NCH3 

Imidazolium 

276 171.9 165.2 137.79 123.9 

122.3 

52.2 36.8 

277 170.9 165.3 137.7 123.7 

122.9 

50.2 35.8 

283 172.5 165.0 137.7 123.7 

122.6 

51.7 36.8 

284 172.5 164.8 137.8 123.8 

122.3 

51.9 36.8 

306 171.3 164.5 137.1 123.9 

122.9 

50.9 36.4 

310 172.7 165.2 137.8 123.6 

122.8 

51.0 36.4 
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3.3.2.1 
13

C NMR and DEPT 135 spectroscopic study of 3-methyl-1-L-valine ethyl ester 

imidazolium NTf2 (306) 

 

(306) 

In the 13C spectrum of 1-methyl-3-L-valine ethyl ester imidazolium NTf2 (306) two 

carbonyl carbons can be seen in the low field region of the NMR at δ 171.3 and 164.5. 

These correspond to the ester and amide carbonyls of the L-valine ethyl ester moiety of the 

CIL side chain respectively. In the DEPT 135 spectrum these carbonyl groups are not 

evident. In the aromatic region at δ 137.1, 123.9 and 122.9 the carbons of the imidazolium 

ring appear. Also present in this region, at δ 118.0, is a quartet of a coupling constant of 

318 Hz. This quartet is assigned to be the two quaternary carbons present in the 

bistriflimide anion which is further supported by their absence in the DEPT 135 spectrum. 

These carbons appear as a quartet signal due to their coupling to the neighbouring fluorine 

groups and appear as one quartet as the anion is symmetrical. This type of coupling has 

previously been reported in the group12 with coupling constants of ~ 320 Hz typically 

observed. The methylene carbon of the ethyl ester side chain appears at δ 61.6, and gives a 

negative peak in the DEPT 135 NMR spectrum. The methylene group adjacent to the 

imidazolium cation also shows a negative resonance peak at δ 50.9. The N-methyl group of 

the imidazolium cation occurs at δ 36.4. The other methyl groups of the branched L-valine 

side chain and the ethyl ester chain appear in the upfield region at δ 18.7, 17.6 and 14.0 

respectively.  
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Fig. 3.12: 13C NMR spectrum of 3-methyl-1-L-valine ethyl ester imidazolium NTf2 (306). 
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Fig. 3.13: DEPT 135 spectrum of 3-methyl-1-L-valine ethyl ester imidazolium NTf2 (306) 
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3.3.3 COSY study of 3-methyl-1-L-leucine methyl ester imidazolium bromide chiral 

ionic liquid (282) 

Correlation Spectroscopy (COSY) was preformed on novel amino acid ester chiral ionic 

liquids. This technique is the simplest form of two dimensional NMR. The proton NMR 

chemical shifts are plotted along both axes and the spectrum shows distinct spots on the 

diagonal with each spot corresponding to the same peak on each coordinate axis.13 In the 

COSY NMR spectrum of 3-methyl-1-L-leucine methyl ester imidazolium bromide (282), it 

can be seen that the acidic proton of the imidazolium cation 2 (δ 9.62) correlates with the 

methine protons of the ring 3 and 4 (δ 7.55 and 7.24). It is also clear that amide proton 7 (δ 

8.89) couples with the methine proton 8 (δ 4.35) at the chiral centre of the L-leucine side 

chain. This proton correlates further with the methylene 9 (δ 1.74) and methine 10 (δ 1.59) 

groups of the ibutyl side chain of L-leucine. Coupling of these protons to the methyl groups 

11 and 12 (δ 0.88 and 0.83) of the ibutyl side chain is also noted from the COSY spectrum. 

Coupling is evident with the methine protons of the imidazolium ring 3 and 4, and also 

between protons 9 and 10 in the 2D NMR spectrum (Figure 3.15).  

 

(282) 

Fig.3.14: 3-methyl-1-L-leucine methyl ester imidazolium bromide (282) chiral ionic liquid. 
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Fig. 3.15: COSY spectrum of 3-methyl-1-L-leucine methyl ester imidazolium bromide 

(282). 

3.3.4 HMQC study of 3-methyl-1-L-Valine butyl ester imidazolium NTf2 chiral ionic 

liquid (307) 

Heteronuclear multiple quantum coherence (HMQC) is a 2D inverse C-H correlation 

technique. It allows for the determination of carbon to hydrogen connectivity. This NMR 

technique is extremely useful in resolving overlapping proton peaks in complex chemical 

structures. As it is a C-H correlation method, quaternary and carbonyl carbons do not 

appear in HMQC spectra.13,14 Table 3.9 and Figure 3.16 describes a C-H correlation study 

of 3-methyl-1-L-valine butyl ester imidazolium NTf2 (307).  

 

(307) 
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Table 3.9: C-H correlation data from HMQC spectrum of 3-methyl-1-L-valine butyl ester 

imidazolium NTf2 (307). 

Site 
1
H NMR 

13
C NMR HMQC 

1 3.97  36.56 

2 8.71  137.23 

3 7.25  121.26 

4 7.45  122.72 

5 5.12  51.03 

6  164.35  

7 7.17   

8 4.42  58.43 

9 2.14  30.46 

10 0.99-0.93*  18.84-13.63 

11 0.99-0.93*  18.84-13.63 

12  171.26  

13 4.12-4.04  65.46 

14 1.66  30.71 

15 1.38  19.06 

16 0.99-0.93*  18.84-13.63 

17  121.26  

18  121.26  

*appear within a multiplet in 1H NMR spectrum 
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Fig. 3.16: HMQC NMR spectrum of 3-methyl-1-L-valine butyl ester imidazolium NTf2 

(307). 

 

3.4 Infra red spectroscopic studies of chiral ionic liquids 

Infra red spectroscopy (IR) is commonly used by organic chemists to characterise novel 

compounds. It is mainly used to identify various functional groups within a molecule.14 

When a molecule absorbs infrared radiation, different vibrational modes (stretching, 

twisting bending and rocking) are induced. Most structural information of a compound can 

be obtained in the region of the IR spectrum above 1400 cm-1. In the IR spectra of amino 

acid ester chiral ionic liquids, the amide N-H appears as two bands above 3000 cm-1. This is 

due to the two possible configurations which the amide groups can undertake (Figure 3.17). 

Two amide carbonyl bands (Amide I and II) can be seen between 1660 and 1530 cm-1. The 

ester group can be observed at 1743 cm-1 in the IR spectrum, and C-O stretches give rise to 

bands at 1171 cm-1.   
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Fig. 3.17: Two amide configurations observed in IR spectra. 

 

Table 3.10: IR frequencies of amino acid ester chiral Ionic Liquids (cm-1). 

Compound 

no. 

N-H C=O 

amide I and II 

C=O 

ester 

C-O ester 

271 3210 1658,1534 1730 1172 

272 3236 1660,1543 1738 1172 

279 3278 1640,1553 1727 1266,1173 

280 3220 1661,1534 1737 1206,1172 

282 3220 1656,1533 1739 1205,1171 

283 3187 1651,1532 1751 1175 
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Fig. 3.18: IR spectrum of 3-methyl-1-L-isoleucine methyl ester imidazolium bromide 

(279). 

3.5 Conclusions  

A panel of 48 novel chiral ionic liquids with highly functionalised side chains were 

sucessfully synthesised.  23 α-bromoamide intermediates (247-269) were prepared from 

amino acid ester precursors. Product yields and purities were improved for these 

intermediates using a modified synthetic method. A method employing milder reaction 

conditions (i.e. use of K2CO3 base, at RT) than previously used (i.e. Et3N, -78 °C), gave 

enhanced yields for various chiral alkylating intermediates (247, 249, 251, 253, 254, 255, 

256, 257, 264, 265, 267).  

23 bromide CILs (270-292) were synthesised from these α-bromoamide intermediates. THF 

replaced diethyl ether as reaction media in this synthesis in order to optimise bromide salt 

formation. All the bromide CILs prepared were screened for various antimicrobial activities 

(see Chapter 5). Bromide CIL (272) was also investigated in an Activated Sludge 
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biodegradation assay (Chapter 6). A series of anion metathesis reactions yielded 15 NTf2 

CILs (293-307), and 10 OctOSO3 (308-317) derivatives. All the CILs (NTf2 and OctOSO3) 

were obtained as liquids at RT. Hence, as seen in Chapter 2, exchanging the bromide anion 

in the IL structures leads to notable changes in the physical properties of the salts. All novel 

chiral ILs were successfully characterised via a range of spectroscopic techniques, namely 
1H NMR, 13C NMR, DEPT 135, HMQC, IR and MS. 
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Chapter 4: Results and discussion 

 

Dipeptidyl Chiral Ionic Liquids, Synthesis and 

Characterisation 
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4.1 Introduction 

A series of dipeptidyl ionic liquids were designed and prepared to further add functionality 

to the IL side chain of the CILs. By incorporating additional sites for possible enzymatic 

cleavage (compared to the amino acid ester derivatives), it was hoped that improved 

biodegradation could be achieved. It was also hypothesised that an ionic liquid containing a 

peptidyl moiety may be more readily recognised by metabolising enzymes (e.g. amidases). 

This could therefore improve IL breakdown in the environment. The side chains of these 

novel ILs possess amide-amide-ester fragments. The first of these amide bonds is attached 

directly to the imidazolium cation. The subsequent amide moiety is the peptide bond 

between two amino acids. As one of the amino acids of the dipeptide requires protection of 

its C-terminus, this gives rise to the terminal ester of the side chain fragment. The 

introduction of peptide bonds to surfactants1 and polymers2 has been studied to improve 

biodegradability. Peptide chemistry was applied in order to synthesise these novel CILs. 

4.1.1 Peptide bond formation 

A peptide bond is a covalent bond formed between two amino acids, when the C-terminus 

(carboxyl group) of one amino acid reacts with the N-terminus (amino group) of the other 

amino acid. To ensure that regiospecific coupling occurs between the amino acids, 

protection of the amine and carboxyl groups not involved in the peptide bond formation is 

required. A commonly used amine protecting group employs a carbamate moiety. These 

carbamate units display low nucleophilic reactivity and can be easily removed via a 

decarboxylation reaction. Common examples of these protecting groups are t-

butoxycarbonyl (BOC) (318) and benzyloxycarbonyl (Cbz) (319) groups. 

 

                             (318)                                                         (319) 
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These groups can be introduced onto the amino acid amine using the corresponding 

chloroformates and can be removed under acidic conditions.3  

A modified version of the BOC group is the diphenylisopropyloxycarbonyl (Bpoc) 

derivative (320). The presence of the aromatic rings enables stabilization of the adjacent 

carbocation in the deprotection reaction.   

 

(320) 

9-Fluorenylmethyoxycarbonyl (Fmoc) (321) is an example of a base labile and acid stable 

amine protecting group. Removal can be achieved using ammonia, piperidine or 

morpholine. The diphenylfulvene formed is trapped by the deprotecting base.3  

 

(321) 

Protection of the carboxylic acid group of an amino acid is carried out by conversion to its 

corresponding ester. Reacting the amino acid with thionyl chloride (SOCl2) in an alkyl 

alcohol yields the alkyl ester hydrochloride salts. These hydrochloride salts can be 

neutralised to give the free base form of the peptide. However, these generally deteriorate 

rapidly and therefore the free base is generally generated in situ when required, usually by 
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using a tertiary amine. Deprotection reactions of these groups are typically conducted in 

basic conditions. 

4.1.2 Coupling reagents  

The reaction between an amine and a carboxylic acid to form an amide bond cannot occur 

spontaneously at ambient temperatures. Therefore it is necessary to activate the carboxylic 

acid, by converting the –OH into a good leaving group. One method of carboxylic acid 

activation is to use peptide coupling reagents. These reagents can form reactive 

intermediates such as acid chlorides, anhydrides and active esters.  

4.1.2.1 Carbodiimides  

Carbodiimides are the most commonly used coupling reagents in peptide synthesis. 

Dicyclohexylcarbodiimide (DCC) was the first carbodiimide reagent synthesised in 1955. 

In coupling reactions using DCC, the initial step involves the reaction of DCC with the 

carboxylic acid group. This leads to the formation of the potent acylating intermediate O-

acylurea.4  

 

O-acylurea can further undergo several reactions; 

i. Amide formation by direct reaction with the amine. In this reaction the by-product 

formed is Dicyclohexylurea (DCU). This product is poorly soluble in organic 

solvents and can be easily removed by filtration.  
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ii. Aminolysis can be achieved via a symmetrical anhydride. 

 

iii. O-acylurea can undergo an intramolecular acyl transfer to form the N-acyl urea by 

product. 

 

 

Moreover, the O-acylourea intermediate can undergo racemization when an intramolecular 

proton transfer from the chiral carbon to the basic centre of the urea occurs.4 To overcome 

this problem of epimerization, a secondary nucleophile such as 1-hydroxy-1H-

benzotriazole (HOBt) (322) can be added. 1-Hydroxy-7-azobenzotriazole (HOAt) (323) is 

another commonly used additive in peptide synthesis. 

 

 

(322)       (323) 

    1-Hydroxy-1H-benzotriazole (HOBt)              1-Hydroxy-7-azobenzotriazole (HOAt) 
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HOBt reacts with the O-acylurea to form a benzotriazole (OBt) activated ester. This 

improves the reactivity of the resulting active ester by stabilizing the amine approach via 

hydrogen bonding. HOBt is also regenerated in situ, hence only catalytic amounts are 

required in coupling reactions. Many other carbodiimide coupling reagents are 

commercially available and widely used in the area of peptide bond formation. Other 

carbodiimides include diisopropylcarbodiimide (DIC) (324), phenyl isopropyl carbodiimide 

(PIC) (325) and N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) 

(326).  

 

   diisopropylcarbodiimide (DIC) (324)          phenyl isopropyl carbodiimide (PIC) (325) 

 

N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDC) (326) 

 

EDC is commonly used as a coupling reagent in peptide synthesis, as the urea by-product 

formed, 1-{3-(dimethylamino)propyl}-3-ethyl urea, is water soluble. This removes the 

difficulties associated with the separation of the undesired DCU by-product from the DCC 

coupling reaction. The peptide bond formation, using EDC coupling reagent, in the 

presence of HOBt is illustrated in Figure 4.1. 
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Fig. 4.1: Amide bond formation using EDC/HOBt. 

4.1.2.2 Phosphonium coupling reagents 

A number of coupling reagents based on the 1H-benzotriazole structure can be used in 

amide bond formation. An example of such coupling reagents are based on HOBt/HOAt 

structures and contain a phosphonium group. The first phosphonium coupling reagent 

reported was benzotriazolyl-1-oxy-tris(dimethylamino) phosphonium hexafluorophosphate 

(BOP) (327). In coupling reactions, BOP reacts with the carboxylic acid to form an active 

ester species. Aminolysis then occurs between the activated intermediate and the amine 

(Figure 4.2).  
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 Fig. 4.2: Peptide coupling using benzotriazolyl-1-oxy-tris(dimethylamino) phosphonium 

hexafluorophosphate (BOP). 

The use of BOP as a coupling reagent in peptide synthesis has been limited due to the 

formation of the carcinogenic by-product hexamethylphosphoramide (HMPA). Less toxic 

derivatives have been developed, such as Benzotriazol-1-yl-oxy-tris-pyrrolidino-

phosphonium hexafluorophosphate (PyBOP) (328).5 

 

PyBOP (328) 



147 

 

4.2 Synthesis of dipeptidyl Chiral Ionic Liquids  

These CILs contain an imidazolium cation core, with a dipeptide fragment in the side chain. 

The synthesis of these CILs involves a 4 step experimental procedure (Scheme 4.1); (i) 

amide bond formation of the dipeptide species (using the EDC/HOBt protocol), (ii) 

subsequent BOC removal from the N-terminus of the dipeptide, to form the free amine 

species (using 4M hydrochloric acid in dioxane), (iii) nucleophilic substitution reaction 

with bromoacetyl bromide to form the alkylating intermediate, and (iv) N-alkylation 

reaction with 1-methyl imidazole to yield the bromide salt. An extra step was required in 

some cases where C-protection of one amino acid (i.e. preparation of amino acid esters) 

was performed.  

 

Scheme 4.1: Synthesis of imidazolium based dipeptide chiral ionic liquids (i) EDC, HOBt, 

Et3N, (ii) 4M HCl in dioxane, (iii) Bromoacetyl bromide, Et3N, -78 °C (iv) 1-methyl 

imidazole. 
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4.2.1 Peptide synthesis  

The dipeptide fragments were prepared using conventional peptide coupling chemistry as 

introduced in Section 4.1 of the chapter. The synthesis involved treating the BOC protected 

amino acids (i.e. N-tert-butyloxycarbonyl-L-alanine, L-valine and L-phenylalanine) with 1-

hydroxybenzotriazole (HOBt), N-(3-dimethylaminopropyl)-N’-ethylcarbodiimide 

hydrochloride (EDC), and triethylamine (Et3N) in dichloromethane at 0 oC in the presence 

of various amino acid esters. The dipeptides synthesized according to this method are 

summarized in Table 4.1. 

Table 4.1: Dipeptides prepared and obtained yields.  

Dipeptide Compound 

no. 

Yield 

(%) 
N-tert-butyloxycarbonyl-L-phenylalanine-L-phenylalanine methyl ester 329 64 

N-tert-butyloxycarbonyl-L-phenylalanine-L-leucine methyl ester 330 90 

N-tert-butyloxycarbonyl-L-phenylalanine-D-phenylalanine ethyl ester 331 87 

N-tert-butyloxycarbonyl-L-phenylalanine-L-phenylalanine butyl ester 332 85 

N-tert-butyloxycarbonyl-L-phenylalanine-L-valine ethyl ester 333 71 

N-tert-butyloxycarbonyl-L-phenylalanine-L-alanine methyl ester 334 61 

N-tert-butyloxycarbonyl-L-valine-L-alanine ethyl ester 335 77 

N-tert-butyloxycarbonyl-L-valine-L-leucine methyl ester 336 82 

N-tert-butyloxycarbonyl-L-valine-L-valine methyl ester 337 78 

N-tert-butyloxycarbonyl-L-valine-L-phenylalanine ethyl ester 338 84 

N-tert-butyloxycarbonyl-L-valine-D-valine ethyl ester 339 87 

N-tert-butyloxycarbonyl-L-valine-L-alanine methyl ester 340 80 

N-tert-butyloxycarbonyl-L-alanine-L-valine methyl ester 341 85 

N-tert-butyloxycarbonyl-L-alanine-L-phenylalanine ethyl ester 342 76 

N-tert-butyloxycarbonyl-L-alanine-L-alanine butyl ester 343 76 

N-tert-butyloxycarbonyl-L-alanine-L-isoleucine methyl ester 344 46 

N-tert-butyloxycarbonyl-L-alanine-L-leucine methyl ester 345 60 
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Purification of these dipeptides was achieved by washing with a dilute acid to remove the 

urea by-product from the EDC coupling reagent, 1-{3-(dimethylamino)propyl}-3 ethyl 

urea. Recrystallisation using ethyl acetate/pet. ether 40-60 °C was then employed yielding 

the peptides in good to very good yields of 46-90 % (Table 4.1).  

The next step of the synthesis (ii) involved the removal of the BOC protecting group from 

the dipeptide. This reaction was conducted in the presence of an acid (i.e. trifluoroacetic 

acid or hydrochloric acid), with formation of a carbamic acid followed by loss of carbon 

dioxide as depicted in Figure 4.3.  

 

Fig. 4.3: Removal of BOC protecting group from dipeptides.4 

Initially trifluoroacetic acid (TFA) was used in these reactions, where the BOC-dipeptide 

was stirred in DCM and TFA was added dropwise at 0 °C. However the TFA salts of the 

dipeptides formed did not react successfully in the next step of the synthesis (with 

bromoacetyl bromide). As a result the hydrochloric salt forms of the peptides were prepared 

using 4M HCl in dioxane solution. This involved treating the BOC-dipeptide in 4M HCl in 

dioxane solution and allowing to stir for 4-5 hours at room temperature. Removal of the 

dioxane solvent via rotary evaporation and further drying under vacuum with heating 

overnight yielded the dipeptide hydrochloride salt.   
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4.2.2 Formation of alkylating intermediates 

Following removal of the BOC protecting group from the dipeptide moiety, the free amine 

terminus can react with bromoacetyl bromide to form the bromo-alkylating reagents 

(Scheme 4.1, step (iii)). In this reaction the peptide was stirred in DCM, in the presence of 

Et3N. Bromoacetyl bromide was added dropwise at -78 °C. The reaction was allowed to 

proceed at this temperature for 5-6 hours and then warmed to room temperature. Initial 

attempts to prepare these intermediates were carried using the TFA salts of the dipeptides. 

These reactions yielded products in very low yields (16-42 %), or in some cases the 

reaction did not proceed and the desired product was not obtained. Reacting bromoacetyl 

bromide with the dipeptide hydrochloride salts gave the bromoamides in good yields. 

Tables 4.2 and 4.3 outlines the results obtained from these reactions using both the TFA 

and HCl dipeptide salts. 

 

 

 

 

 

 

 

 

 

 

 

 



151 

 

Table 4.2: Bromo-alkylating intermediates obtained from dipeptide HCl salts. 

 
R R1 R2 Compound 

No. 

Yield 

(%) 

CH3 CH3 C4H9 346 77 

CH3 CH(CH3)2 CH3 347 67 

CH3 CH(CH3)CH2CH3 CH3 348 63 

CH3 CH2-(C6H5) C2H5 349 76 

CH3 CH2CH(CH3)2 CH3 350 73 

CH(CH3)2 CH2-(C6H5) C2H5 351 77 

CH(CH3)2 CH3 CH3 352 49 

CH(CH3)2 CH3 C2H5 353 84 

CH(CH3)2 CH2CH(CH3)2 CH3 354 68 

CH(CH3)2 CH(CH3)2 CH3 355 60 

CH2-(C6H5) CH2CH(CH3)2 CH3 356 74 

CH2-(C6H5) CH3 CH3 357 73 

CH2-(C6H5) CH(CH3)2 C2H5 358 72 

CH2-(C6H5) CH2-(C6H5) C4H9 359 84 

CH2-(C6H5) CH2-(C6H5) CH3 360 62 

 

R R1 R2 Compound 

No. 

Yield 

(%) 

CH2-(C6H5) CH2-(C6H5) C2H5 361 69 

CH(CH3)2 CH(CH3)2 CH3 362 72 
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Table 4.3: Bromo-alkylating intermediates (346, 348, 351, 353, 356, 357, 359, 360 and 

361) obtained from dipeptide TFA salts. 

Compound no. Yield (%) 

346 n/a 

348 n/a 

351 46 

353 n/a 

356 44 

357 16 

359 22 

360 34 

361 30 

n/a indicates where reaction did not proceed and product was not obtained 

 

Column chromatography was employed to purify the dipeptidyl bromoamide intermediates. 

The mobile phase used was a gradient system of 100 % hexane to 50:50 hexane:ethyl 

acetate. Yields of 60-84 % were obtained of pure products and 1H NMR spectroscopy was 

used to confirm product purity (Figure 4.4).   
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Fig. 4.4: 1H NMR of pure L-phenylalanine-L-leucine methyl ester bromoacetate (356). 

The multiplet at δ 7.24-7.14 in the aromatic region of the 1H NMR spectrum is due to the 

aromatic protons of the L-phenylalanine benzyl group. Also residing in this multiplet is one 

of the amide protons of the dipeptide fragment (integration of 6). A doublet at δ 6.37 with a 

coupling constant of 7.6 Hz corresponds to the amide proton of the L-phenylalanine 

fragment. This proton appears as a doublet as it is coupling with the α-proton of the chiral 

centre of the L-phenylalanine. Subsequent coupling of this proton to the methylene protons 

of the benzyl group of L-phenyalanine is also observed. A doublet at δ 3.01 with a coupling 

constant of 7.2 Hz can be assigned as this methylene group. The methylene adjacent to the 

bromide terminus of the alkylating product gives rise to a doublet peak at δ 3.74. Evidence 

of a roofing effect can be seen with this signal (Figure 4.4). In the aliphatic area of the 1H 

NMR the protons of the ibutyl side chain of L-leucine emerge. A multiplet integrating as 

three protons corresponds to the methine and methylene hydrogens of the ibutyl moiety. 

The methyl groups of the L-leucine side chain result in a doublet signal at δ 0.81, with a 

coupling constant of 6.8 Hz.  
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4.2.3 Bromide salt formation  

Once the dipeptidyl alkylating intermediate was purified, N-alkylation of 1-methyl 

imidazole was carried out. In this reaction THF was used as the reaction solvent. To a 

stirring solution of 1-methyl imidazole in THF, the bromo-alkylating reagents were added 

dropwise (at -15 °C). Stirring at room temperature overnight furnished the end product (i.e. 

the bromide salt). In many cases, the CIL did not form as a separate phase to the THF. 

Removal of the reaction solvent via rotary evaporation yielded a residue. 1H NMR 

indicated that this residue contained both the desired CIL and some unreacted imidazolium 

starting material.  

Washing with THF or diethyl ether removed the imidazole starting material. For some 

examples, the crude residue was dissolved in a small portion of dichloromethane. Washings 

with small aliquots of water resulted in the pure CIL. The CILs were obtained as a range of 

liquids, hygroscopic solids and solids. Table 4.4 summarises the yields and melting points 

of the prepared CILs. All CILs prepared can be classified as ionic liquids as they possess 

melting point <100 °C, with one exception (Table 4.4, 377 has a melting point of 130-132 

°C).  

 

 

 

 

 

 

 



155 

 

Table 4.4: Dipeptidyl Chiral Ionic Liquids. 

                      

 

R R1 R2 Compound 

no. 

Yield  

(%) 

m.p  

(°C) 

CH3 CH3 C4H9 363 88 60-63  

CH3 CH2-(C6H5) C2H5 364 84 ndb  

CH3 CH(CH3)2 CH3 365 97 nda  

CH3 CH(CH3)CH2CH3 CH3 366 98 nda  

CH3 CH2CH(CH3)2 CH3 367 75 nda  

CH2-(C6H5) CH(CH3)2 C2H5 368 96 ndb  

CH2-(C6H5) CH2-(C6H5) C4H9 369 91 ndb  

CH2-(C6H5) CH2CH(CH3)2 CH3 370 75 ndb  

CH2-(C6H5) CH3 CH3 371 97 ndb  

CH2-(C6H5) CH2-(C6H5) CH3 372 83 97-99  

CH(CH3)2 CH(CH3)2 CH3 373 91 ndb  

CH(CH3)2 CH2-(C6H5) C2H5 374 98 ndb  

CH(CH3)2 CH3 CH3 375 70 80-82  

CH(CH3)2 CH2CH(CH3)2 CH3 376 95 ndb  

CH(CH3)2 CH3 C2H5 377 95 130-132  

 

 

R R1 R2   Compound     

no. 

   Yield 

   (%) 

m.p  

(°C) 

CH2-(C6H5) CH2-(C6H5) C2H5 378 98 93-95  

CH(CH3)2 CH(CH3)2 CH3 379 93 82-84  

 

a = liquid at RT, b = very hygroscopic, nd = not determined 
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4.3 NMR studies of dipeptidyl Chiral Ionic Liquids 

4.3.1 
1
H NMR studies of dipeptidyl chiral ionic liquids 

All novel peptidyl chiral ionic liquids (363-379) were characterised by various 

spectroscopic methods. 1H NMR experiments were conducted in deuterated chloroform 

(CDCl3) and dimethyl sulfoxide (DMSO) as some examples were not soluble in 

chloroform. In other cases proton NMR was obtained in both solvents in order to 

investigate solvent effects (in terms of hydrogen bonding behavior of dipeptide species) on 

NMR spectra. In CDCl3, the amide protons of the dipeptide side chain appear between δ 

7.59-9.35. The protons of the imidazolium ring reside in the aromatic region of the 1H 

NMR spectra. The acidic proton (-NCHN-) is observed at ~ δ 9.48-9.87, whilst the methine 

protons of the ring can be seen at ~ δ 7.22-7.69. The methylene group which connects the 

chiral side chain to the imidazolium cation can be noted at ~ δ 5.00-5.98. Table 4.5 

illustrates selected 1H NMR spectral data of dipeptidyl chiral ionic liquids.  

Table 4.5: Selected 1H NMR spectral data (δ, CDCl3) for imidazolium dipeptidyl chiral 

ionic liquids (363, 364, 366, 368, 369, 373 and 375). 

Compound Amide NH’s Acidic 

imidazolium 

CH 

Imidazolium 

CH’s 

Methylene 

NCH2 

363 8.86, 7.59 9.56 7.61-7.25 5.12 

364 8.94, 7.57 9.69 7.46, 7.27 5.66 

366 8.69, 8.33 9.07 7.69, 7.66 5.00 

368 9.37, 7.45-7.17* 9.45 7.45-7.17* 5.02 

369 9.48, 8.12 9.75 7.34-7.10* 5.56 

373 9.10, 7.27 9.60 7.59, 7.26 5.65 

375 9.07, 7.88 9.87 7.58, 7.22 5.98 

*protons appear within a multiplet  

 

 



157 

 

4.3.1.1 
1
H NMR spectroscopic study of 3-methyl-1-L-alanine-L-alanine butyl ester 

imidazolium bromide (363) 

 

(363) 

1H NMR experiments were carried out of 3-methyl-1-L-alanine-L-alanine butyl ester 

imidazolium bromide (363) in both CDCl3 and d6-DMSO. The 1H NMR spectrum of the IL 

differed between the two solvents used. In the 1H NMR spectrum in CDCl3, the acidic 

proton of the imidazolium ring appears as a singlet peak at δ 9.56. In the spectrum obtained 

in DMSO this proton also appears as a singlet peak, but more upfield (δ 9.12). The amide 

protons of the dipeptide side chain appear at δ 8.86 and δ 7.57 in chloroform, with the latter 

signal overlapping with one of the imidazolium methine peaks. In d6-DMSO however the 

amide protons give distinctive peaks at δ 8.77 and 8.54 respectively. In both cases the 

amide hydrogens appear as two doublets with coupling constants of 7.2 and 7.6 Hz. 

Doublet peaks are observed due to coupling of the amide proton with the α-hydrogens at 

the chiral centres. The methine protons of the imidazolium cation give rise to a set of two 

triplets both with coupling constants of 1.8 Hz in both spectra. These peaks can be seen at δ 

7.61 and 7.25 in the spectrum obtained in CDCl3, whilst they appear at δ 7.74 and 7.73 in 

d6-DMSO. Another very obvious difference between the two spectra is the appearance of 

the peak due to the methylene group adjacent to the imidazolium core. In the CDCl3 

spectrum these protons appear as two doublet peaks at δ 5.52 and δ 5.13, both with 

coupling constants of 15.6 Hz. In d6-DMSO the methylene moiety appears as a singlet peak 

at δ 5.07 (Figure 4.6). The protons of the chiral centres give overlapping signals at δ 4.47-

4.31 in the spectrum obtained in CDCl3. However, when the 1H NMR experiment is carried 

out in DMSO two doublet of quartet peaks at δ 4.45 and 4.31 can be seen for the chiral 

protons. Further overlapping is evident for the signals corresponding to the methylene ester 

protons (OCH2) of the butyl chain and the N-methyl group of the imidazolium ring in the 

CDCl3 spectrum. These peaks appear at δ 4.05-3.93 in the proton NMR. In d6-DMSO, no 
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overlapping occurs between these two signals. Two overlapping doublet of quartet peaks at 

δ 4.13 and 4.12  integrating as two protons is due to the OCH2 protons and a singlet at δ 

3.95 is assigned as the protons of the N-methyl group. The protons of the linear butyl ester 

chain give signals in the aliphatic region of the spectrum. Also evident in this area of the 

NMR spectrum are signals due to the methyl groups of the L-alanine side chains and the 

terminal methyl group of the alkyl ester. The L-alanine methyls appear as two doublets 

with coupling constants of 7.2 and 7.6 Hz at δ 1.37 and 1.33 (in d6-DMSO solvent). A 

triplet at δ 0.96 with a coupling constant of 7.2 Hz corresponds to the methyl terminus of 

the butyl chain.  
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Fig 4.5: 1H NMR spectrum of 3-methyl-1-L-alanine-L-alanine butyl ester imidazolium 

bromide (363) in CDCl3. 
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Fig. 4.6: 1H NMR spectrum of 3-methyl-1-L-alanine-L-alanine butyl ester imidazolium 

bromide (363) in d6-DMSO. 

 

4.3.1.2 
1
H NMR spectroscopic study of 3-methyl-1-L-phenylalanine-L-valine ethyl 

ester imidazolium bromide (368) 

 

(368) 

In the proton NMR of 3-methyl-1-L-phenylalanine-L-valine ethyl ester imidazolium 

bromide (368) chiral ionic liquid in CDCl3, the acidic proton of the imidazolium cation 

appears at δ 9.45 as a singlet peak. In the spectrum obtained in d6-DMSO, this peak can be 

seen at δ 9.01. The amide protons of the dipeptide moiety appear as two doublets, both with 

coupling constants of 8.0 Hz at δ 8.75 and 8.49 when the spectrum was acquired in DMSO. 
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In CDCl3 these protons give a doublet at δ 9.37 and a signal which appears within a 

multiplet at δ 7.40-7.15. The imidazolium protons (CH) are observed in the aromatic region 

of the NMR spectra. In chloroform, a triplet signal with a coupling constant of 1.6 Hz 

corresponds to one of the imidazolium methine protons. The other methine group gives a 

signal which overlaps with the multiplet at δ 7.40-7.15, where the protons of the L-

phenylalanine ring also reside. In the spectrum obtained in d6-DMSO, two triplet peaks at δ 

7.66 and 7.54 both with coupling constants of 1.6 Hz can be noted. These peaks are 

assigned as the imidazolium methine protons. At δ 5.38 and 4.98 two doublets signals arise 

with coupling constants of 15.2 Hz each and when integrated together give two protons. 

These signals are due to the methylene group adjacent to the imidazolium ring. A different 

signal appears in the d6-DMSO 1H NMR spectrum, where these protons give a doublet at δ 

4.93 with evidence of a roofing effect occurring (Figure 4.8). In the same spectrum, a 

doublet of doublets at δ 4.74 with coupling constants of 8.4 and 4.8 Hz corresponds to the 

proton of the L-valine chiral centre. At δ 4.17-4.07 a multiplet resides which integrates as 

three protons. These correspond to the methylene group of the L-valine ethyl ester and the 

chiral proton of the L-phenylalanine residue. In the 1H NMR spectrum carried out in CDCl3 

a multiplet at δ 4.66-4.59 and a doublet of doublets at δ 4.38 are due to the chiral protons of 

the L-phenyalanine and L-valine groups respectively. The N-methyl group of the 

imidazolium ring gives a singlet peak at δ 3.96 in CDCl3 and at δ 3.86 in d6-DMSO. In the 

up-field region of the NMR spectra the methine of the L-valine moiety can be seen at 

approximately δ 2.05 (DMSO) and δ 2.19 (CDCl3). In both spectra the methyl moiety of the 

ethyl ester group arises as a triplet at approximately δ 1.20 with a coupling constant of 7.2 

Hz. The methyl groups of the branched L-valine side chain give a doublet of doublets at δ 

0.89 with coupling constants of 8.4 and 6.8 Hz for each signal (in d6-DMSO spectrum). A 

doublet of doublets at δ 0.95 is also evident for these protons in the CDCl3 spectrum. 
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Fig. 4.7: 1H NMR spectrum of 3-methyl-1-L-phenylalanine-L-valine ethyl ester 

imidazolium bromide (368) chiral ionic liquid in CDCl3.  
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Fig. 4.8: 1H NMR spectrum of 3-methyl-1-L-phenylalanine-L-valine ethyl ester 

imidazolium bromide (368) chiral ionic liquid in d6-DMSO. 
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4.3.2 
13

C NMR and DEPT spectroscopic studies of dipeptidyl chiral  ionic liquids 

13C NMR and DEPT 135 studies were also carried out on each of the compounds prepared. 

The amide and ester carbonyl moieties of the dipeptide side chain appear between δ 173.8 

and δ 164.7. In the aromatic region of the 13C spectra the carbons of the imidazolium reside, 

typically at ~ δ 137.6, 123.8 and 122.4. The N-methyl carbons of the imidazolium ring give 

rise to peaks at ~ δ 35.7-37.7 in the carbon spectra. At ~ δ 50.4-53.6 the signal due to the 

methylene group between the IL cation and side chain occurs. As expected this peak 

appears as a negative peak in the DEPT 135 spectra. 

Table 4.6: Selected 13C data for dipeptidyl chiral ionic liquids (365, 369, 370, 371, 372, 

374, 375, 376 and 377). 

Compound 

No. 
C=O 
ester 

C=O 
amide 

NCHN 
Imidazolium 

NCH 
imidazolium 

NCH2 
Methylene 

NCH3 
Imidazolium 

365 172.9 172.6 
164.8 

137.8 124.1 
122.5 

52.0 36.7 

369 172.5 171.1 
164.7 

137.9 123.9 
122.2 

51.9 36.6 

370 173.8 171.5 
165.0 

137.6 123.8 
122.7 

51.6 36.7 

371 173.7 171.7 
164.8 

137.1 123.9 
122.4 

51.8 36.7 

372 172.6 171.1 
164.9 

137.7 123.8 
122.5 

53.6 37.7 

374 172.1 171.3 
165.4 

137.7 123.9 
122.8 

51.7 36.7 

375 172.8 170.3 
164.8 

137.7 123.7 
122.9 

50.4 35.8 

376 174.3 171.4 
165.0 

 

137.9 124.0 
122.4 

52.0 36.7 

377 172.3 170.3 
164.7 

137.7 123.7 
122.9 

50.4 35.8 
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4.3.2.1 
13

C NMR and DEPT 135 spectroscopic study of 3-methyl-1-L-valine-L-alanine 

methyl ester imidazolium bromide (375) 

N
N

O

H
N

N
H

O

O

O

Br  

(375) 

In the 13C spectrum of 3-methyl-1-L-valine-L-alanine methyl ester imidazolium bromide 

(375) peaks at δ 172.8, 170.3 and 164.8 are evident. These peaks correspond to the amide 

and ester carbonyls of the dipeptide side chain are their absence in the DEPT 135 spectrum 

is also notable. The imidazolium carbons occur at δ 137.7, 123.7 and 122.9 in the 13C 

spectrum. At δ 50.4 the methylene group bridging the IL cation and side chain is observed. 

Both these signals appear as negative peaks in the DEPT 135 spectrum. The N-methyl 

carbon of the imidazolium can be seen at δ 35.8 in the 13C spectrum and remains as a 

positive peak in the DEPT NMR. In the most up-field region of the 13C and DEPT spectra 

signals due to the methyl carbons of the dipeptide arise. At δ 18.9 and 17.9 the methyl 

carbons of the L-Valine side chain are observed. The methyl carbon of the L-Alanine 

moiety gives a peak at δ 16.7 in the carbon spectrum.  
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Fig. 4.9: 13C NMR spectrum of 3-methyl-1-L-valine-L-alanine methyl ester imidazolium 

bromide (375). 
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Fig. 4.10: DEPT 135 spectrum of 3-methyl-1-L-valine-L-alanine methyl ester imidazolium 

bromide (375). 
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4.3.3 COSY study of 3-methyl-1-L-phenylalanine-L-leucine methyl ester imidazolium 

bromide chiral ionic liquid (370) 

1H-1H correlation techniques (COSY) were used to characterise novel dipeptidyl chiral 

ionic liquids. In the COSY spectrum of 3-methyl-1-L-phenylalanine-L-leucine methyl ester 

imidazolium bromide (370), the amide proton 7 (δ 9.15) correlates with the methine proton 

8 (δ 4.48) at the L-phenylalanine chiral center. This methine group subsequently couples 

with the methylene protons 9 (δ 3.26-3.08) in the COSY spectrum. The amide proton 17 (δ 

7.87) couples with proton 18 at the L-Leucine chiral center (δ 4.50) which further couples 

to the methylene protons 19 (δ 1.86-1.69). These methylene protons are also seen to 

correlate with the methine proton 20 (δ 1.61-1.54). Coupling occurs between the 

imidazolium protons 2 (δ 9.38), 3 and 4 (δ 7.54-7.24) in the COSY spectrum. The protons 

due to the methylene group 5 (δ 5.42 and 4.95) are also seen to couple with each other 

(Figure 4.11).  

 

Fig. 4.11: 3-methyl-1-L-phenylalanine-L-leucine methyl ester imidazolium bromide (370). 
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Fig. 4.12: COSY spectrum of 3-methyl-1-L-phenylalanine-L-leucine methyl ester 

imidazolium bromide (370). 

4.3.4 HMQC study of 3-methyl-1-L-valine-L-alanine ethyl ester imidazolium bromide 

Chiral Ionic Liquid (377) 

1H-13C two-dimensional NMR experiments were carried out on novel dipeptidyl CILs. The 

HMQC technique allows for assignment of carbon and proton signals of the compounds.6 

Table 4.7 summarizes the results obtained from the HMQC spectroscopic study of 3-

methyl-1-L-valine-L-alanine ethyl ester imidazolium bromide (377)  

 

Fig. 4.13: Numbered structure of 3-methyl-1-L-valine-L-alanine ethyl ester imidazolium 

bromide (377). 
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Table 4.7: C-H correlation data from HMQC spectrum of 3-methyl-1-L-valine-L-alanine 

ethyl ester imidazolium bromide (377). 

Site 
1
H NMR 

13
C NMR HMQC 

1 3.95  35.78 

2  9.16  137.70 

3 7.74  122.95 

4 7.75  123.73 

5 5.14  50.44 

6  164.76  

7    

8 4.32  57.45 

9 2.07  31.07 

10 0.94/0.97  17.99/19.01 

11 0.94/0.97  17.99/19.01 

12  170.29  

13    

14 4.28  47.62 

15 1.33  16.72 

16  172.79  

17 4.16-4.10  60.41 

18 1.24  13.98 
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Fig. 4.14: HMQC NMR spectrum of 3-methyl-1-L-valine-L-alanine ethyl ester 

imidazolium bromide (377). 

4.4 Infra red spectroscopic studies of dipeptidyl chiral ionic liquids 

The presence of different functional groups within a structure can be identified by IR 

spectroscopy. At certain wavelengths molecular vibrations of various functional groups can 

be induced, after IR radiation.7 In the IR spectra dipeptidyl chiral ionic liquids, the amide 

N-H appears as two bands above 3000 cm-1. The amide carbonyl stretching vibration band 

(Amide I) and the localized N-H bending vibration (Amide II) can be seen between 1660 

and 1530 cm-1. The ester group can be observed at 1740 cm-1 in the IR spectrum, and C-O 

stretches give rise to bands at 1170 cm-1.   
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Table 4.8: IR frequencies of dipeptidyl chiral Ionic Liquids (cm-1). 

Compound 

no. 

N-H C=O 

amide I and II 

C=O 

Ester 

C-O ester 

378 3210 1658,1534 1730 1172 

367 3236 1660,1543 1738 1172 

379 3278 1640,1553 1727 1266,1173 

365 3220 1661,1534 1737 1206,1172 

376 3220 1656,1533 1739 1205,1171 

364 3187 1651,1532 1751 1175 

375 3281 1637,1553 1731 1171 
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Fig 4.15: IR spectrum of 3-methyl-1-L-valine-D-valine methyl ester imidazolium bromide 

(379). 
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4.5 Mass spectrometric studies of dipeptidyl chiral ionic liquids 

Mass spectrometry (MS) is a frequently used analytical technique for the determination of 

relative molecular masses of a molecules.8 A mass spectrometer consists of three parts, 

namely an ion source, mass analyser and a detector. In the ion source the sample is 

converted into ions, the ions are then sorted by their mass/charge ratios (m/z). The separated 

ions are detected and subsequently displayed as the mass spectrum.  

 

Electrospray Ionisation (ESI) mass spectrometry was employed to analyse dipeptidyl chiral 

ionic liquids. ESI is an Atmospheric Pressure Ionisation (API) technique which can be used 

to analyse polar molecules.8 The sample (in a polar volatile solvent) is introduced to the ion 

source through a narrow stainless steel capillary, which is surrounded by a nebulising gas 

(nitrogen). A high voltage is applied to the tip of the capillary. As the sample solution exits 

the capillary, an aerosol is formed composed of charged droplets. The charged droplets are 

directed to the mass spectrometer by a flow of nebulising gas. Droplets in the aerosol 

diminish in size as the solvent evaporates hence concentrating the charged ions. An 

electrostatic repulsion occurs between these ions and the droplet undergoes a ‘Coulombic 

explosion’. The sample ions are then released into a vapour phase and are then directed to 

the mass analyser using various sampling orfices.8 In the ESI-MS spectrum of the 3-

methyl-1-L-valine-L-phenylalanine ethyl ester imidazolium cation, the molecular ion [M]+ 

is noted at m/z 415 (Figure 4.16). This ion was further fragmented using MS/MS in order to 

study any possible sequence specific fragment ions.  



171 

 

415.4

100 200 300 400 500 600 700 800 m/z

0.0

0.5

1.0

1.5

2.0

6x10

Intens.

 

Fig. 4.16: ESI mass spectrum of 3-methyl-1-L-valine-L-phenylalanine ethyl ester 

imidazolium bromide (374). 

MS/MS (or Tandem MS) is commonly used for peptide identification. Peptidyl species can 

be elucidated by fragmentation in the mass spectrometer. When peptides collide with a gas 

within the MS they can dissociate into fragments at their peptide bonds.8 Peptidyl 

fragmentation results in the formation of b and y ions which correspond to the residue 

masses of the respective amino acids. A nomenclature system has been developed for 

identifying peptide fragments that result from a MS/MS spectrum.9,10 This system 

distinguishes fragment ions according to the amide bond that fragments and also the 

terminal of the peptide that retains a charge after the fragmentation process. Fragmentation 

can occur at three different bonds along the amino acid sequence, namely at the NH-CH, 

CH-CO and CO-NH bonds (Figure 4.17). Peptidyl fragment ions are indicated by a, b or c 

if the charge is retained on the N-terminal fragment, and by x, y or z if the charge is 

maintained on the C-terminal fragment (the subscript indicates the number of amino acids 

in the fragment).9 
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Fig. 4.17: Peptide fragmentation nomenclature.9  

In the MS/MS spectrum of 3-methyl-1-L-valine-L-phenylalanine ethyl ester imidazolium 

bromide (Figure 4.18), an intense peak at m/z 416 is present. This mass is attributed to the 

[M+H]+ ion. A peak of largest intensity is observed at m/z 194, which represents a b ion 

fragment (i.e. the L-phenylalanine ethyl ester [PheOEt]+, Figure 4.18). 
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Fig. 4.18: MS/MS spectrum of 3-methyl-1-L-valine-L-phenylalanine ethyl ester 

imidazolium bromide (374). 

 



173 

 

4.6 Synthesis of Lactate-peptidyl Chiral Ionic Liquids  

Manipulation of the dipeptidyl side chain of the chiral ionic liquids was also attempted. In 

these examples, one of the peptides was replaced with a lactate moiety. By doing this, the 

order of the chiral fragment was altered so as to obtain an ester-amide-ester sequence. The 

former ester functionality originated from the lactate group. Coupling of the benzyloxy 

protected lactate with an amino acid ester, using EDC/HOBt, yielded the peptidyl fragment. 

A four step synthetic route was thus employed to prepare these derivatives (Scheme 4.2).  

 

Scheme 4.2: Lactate-peptidyl Chiral Ionic liquid synthesis. (i) EDC, HOBt, Et3N (ii) 5% 

Pd/C, H2 (iii) Bromoacetyl bromide, K2CO3 (iv) 1-methyl imidazole. 

The first step in the preparation of these chiral ILs, involved a peptide coupling reaction 

between R-(benzyloxy)-Lactic acid and various amino acid esters. Peptide bond formation 

was achieved using the standard EDC/HOBt coupling protocol (as described in Section 

4.2). Column chromatography was employed to purify the crude reaction products (mobile 

phase 50:50 hexane:ethyl acetate). The coupling products were obtained in good yields 

(Table 4.9).  



174 

 

Table 4.9: Lactate-peptides prepared. 

Compound Compound 

no. 

Yield (%) 

Benzyloxy-R-lactate- L-alanine methyl ester 380 83 

Benzyloxy-R-lactate- L-alanine ethyl ester 381 81 

Benzyloxy-R-lactate- D-alanine methyl ester 382 68 

Benzyloxy-R-lactate- L-phenylalanine methyl ester 383 98 

Benzyloxy-R-lactate- L-phenylalanine ethyl ester 384 61 

 

Following these coupling reactions, the benzyloxy protecting group was removed from the 

peptidyl fragment. Cleavage of these protecting groups is carried out under hydrogenation 

conditions, using 5 % Pd/C catalyst. The reaction was monitored by TLC (50:50 

hexane:ethyl acetate) and completion times varied between 3 to 5 days. When the reaction 

reached completion, the catalyst was removed by filtration.  

Bromoalkylating reagents were prepared in the following stage of the CIL synthesis. The 

experimental procedure used differed to that employed for the dipeptidyl derivatives. In 

these reactions, the R-Lactate-peptidyl products (obtained from hydrogenation reaction) 

were stirred in DCM, with K2CO3 (Et3N was the base used previously in the dipeptidyl 

derivatives) at 0 °C and bromoacetyl bromide was added dropwise. The reaction was 

monitored by TLC, with extra equivalents of bromo acetyl bromide required to force the 

reactions to completion. There are a number of advantages in using this method. In this 

method the K2CO3 base is present as a separate phase to the reaction mixture, hence 

allowing for facile removal (i.e by filtration). Also, in using this reaction, compared to Et3N 

method, less reaction impurities may arise. In some cases when using Et3N as the reaction 

base, deprotonation of the α-methylene protons adjacent to the bromine of bromoacetyl 

bromide can occur. This leads to the formation of side products and impurities. The 

reaction products typically required purification before being used in the final step of the 

CIL synthesis. Column chromatography (60:40 hexane:ethyl acetate) furnished the desired 

chiral α-bromo esters in moderate yields (Table 4.10).   
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Table 4.10: Lactate-peptidyl alkylating intermediates. 

 

R1 R2 Compound No. Yield (%) 

CH3 CH3 385 73 

CH3 C2H4 386 54 

CH3* CH3 387 35 

CH2-(C6H5) CH3 388 37 

CH2-(C6H5) C2H4 389 55 

* Amino acid in D enantiomeric form  

 

Figure 4.19 represents an example of a 1H NMR spectrum obtained for purified R-Lactate-

L-Alanine ethyl ester bromoacetate alkylating intermediate. A doublet peak resides at δ 

6.71 with a coupling constant of 6.8 Hz and corresponds to the amide proton of the amide 

bond. At δ 5.22, a quartet with a coupling constant of 6.8 Hz appears. This signal is due to 

the chiral methine proton of the R-lactate chiral centre. The proton adjacent to the amide 

bond (of the L-alanine fragment) gives a peak at δ 4.50 as a doublet of quartets. A quartet at 

δ 4.15, with an integration of two protons, correlates to the methylene of the ethyl ester 

group. The methylene group adjacent to the bromo terminus gives rise to two doublets 

mutually coupled at δ 3.80 and 3.90. The methyl groups then appear upfield in the 

spectrum. Two doublet peaks at δ 1.45 and 1.36 correspond to the methyl groups of the 

lactate and amino acid respectively. A triplet at δ 1.23 represents the methyl protons of the 

ethyl ester side chain. 
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Fig. 4.19: 1H NMR of purified R-lactate-L-alanine ethyl ester bromoacetate alkylating 

intermediate (386). 

After successful purification of the above intermediates, the next step required reacting 

them with 1-methyl imidiazole to yield to final CIL product. These reactions were carried 

out as before, by adding the chiral α-bromo esters to 1-methylimidazole in THF. The CILs 

typically precipitated out of solution, therefore the THF could be decanted off. 1H NMR 

analysis of these reaction products indicated high levels of impurities, in particular 

imidazolium based contaminants were noted. Ether washings were carried out initially, as 

this has previously been used to remove imidazolium impurities from ionic liquids. Up to 

ten 20 mL aliquots of ether were used in this washing process, and some washing 

sequences were left overnight. THF washes were also adapted as these imidazolium 

impurities are more soluble in this solvent. However, this failed to remove the imidazolium 

contamination. A number of purification techniques were then attempted in order to remove 

the evident impurities. Column chromatography using DCM: Methanol was used. Lower 

percentages of methanol were used initially in the mobile phase system, however a final 

ratio of 90:10 DCM:methanol was required to move the compound along the stationary 

phase. The column chromatography separation proved unsuccessfully, from the 1H NMR 
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analysis of the column product, it was clear that the chiral product had broke down on the 

stationary phase (Figure 4.20 (a) and (b)).  
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Fig. 4.20: (a) 1H NMR spectrum of crude 3-methyl-1-R-lactate-L-phenylalanine methyl 

ester imidazolium bromide (390); (b) 1H NMR spectrum of 3-methyl-1-R-lactate-L-

phenylalanine methyl ester imidazolium bromide product following column 

chromatography. 
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It is noteworthy from the 1H NMR data, the absence of the imidazolium protons from the 

product obtained from the column. This would suggest that cleavage occurred at the chiral 

ester side chain of the CIL. 

Column chromatography using 90:10 DCM: ethanol was also attempted in isolating the 

desired chiral ionic liquids. However this gave the same result as using the previous mobile 

phase systems. Preparative Thin Layer Chromatography (Prep TLC) was also trialled as a 

means of product purification and also proved unsuccessful. Recrystalisation could not be 

performed on the CILs as they were all present in a liquid or oil form. It was also found that 

when the CILs were left for a period of time, even during refrigeration, they continued to 

degrade. Figure 4.21 illustrates a 1H NMR spectrum of 3-methyl-1-R-lactate-L-alanine 

ethyl ester imidazolium bromide obtained initially (a) and after two weeks (b) 
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Fig. 4.21: (a) 1H NMR spectrum of 3-methyl-1-R-lactate-L-alanine ethyl ester imidazolium 

bromide (391) obtained initially and (b) degradation observed after two weeks (stored at -4 

°C); the peaks in the highlighted areas indicate presence of degraded product. 

One example, however, was successfully obtained in its pure form and could be fully 

characterized. 3-Methyl-1-R-lactate-L-alanine methyl ester imidazolium bromide was 

synthesized as a white solid, and from the 1H NMR spectrum, did not require further 

purification (Figure 4.22). The purity of this CIL compared to the other examples may be 

explained in terms of the difference in physical states observed for the CILs. 3-Methyl-1-R-

lactate-L-alanine methyl ester imidazolium bromide was attained in a solid state, whilst the 

other CILs were present as viscous liquids. The increase in viscosity of the CILs can allow 

for impurities to become trapped and hence more cumbersome to remove from the CIL. 

 



180 

 

 

1.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.5 ppm

1
.
4
4
4

1
.
4
6
2

1
.
4
7
4

1
.
4
9
2

3
.
6
5
5

3
.
9
9
4

4
.
4
6
1

4
.
4
7
9

4
.
4
9
8

4
.
5
1
6

4
.
5
3
4

5
.
2
6
0

5
.
2
7
7

5
.
2
9
4

5
.
3
1
1

5
.
4
4
4

5
.
4
8
8

5
.
9
2
5

5
.
9
6
8

7
.
2
0
0

7
.
2
0
4

7
.
5
4
8

7
.
5
5
1

7
.
5
5
5

7
.
8
3
0

7
.
8
4
8

1
0
.
0
7
6

6
.6

2

3
.2

8

3
.5

1

1
.0

7

1
.1

7

1
.0

2

1
.0

0

1
.0

5

0
.9

5

1
.0

0

 

Fig. 4.22: 1H NMR spectrum of 3-methyl-1-R-lactate-L-alanine methyl ester imidazolium 

bromide (392). 

In the 1H NMR spectrum of 3-methyl-1-R-lactate-L-alanine methyl ester imidazolium 

bromide (Figure 4.22), the acidic proton of the imidazolium cation is noted at δ 10.08 as a 

singlet peak. The protons of the amide bond, which links the lactate and amino acid 

moieties, gives rise to a doublet at δ 7.84, with a coupling constant of 7.6 Hz. These protons 

evidently couple with the adjacent methine group of L-alanine, which appear as a doublet 

of quartet signal with coupling constants of 7.2 Hz. At δ 7.55 and 7.20 the methine protons 

of the imidazolium ring reside as triplet signals, with the latter overlapping with the 

residual solvent (CHCl3) peak. The bridging methylene group between the imidazolium 

cation and the chiral side chain appears as a set of peaks between δ 5.94 and 5.46. A singlet 

peak at δ 3.99 which integrates as three protons, corresponds to the N-methyl protons of the 

imidazolium cation. Another singlet appears as δ 3.65 which can be assigned as the protons 

of the methyl ester of the L-alanine side chain. At the most upfield region of the 1H NMR 

spectrum, the protons of the lactate and alanine methyl moieties reside as doublets, with 

coupling constants of 7.2 Hz.  
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4.7 Conclusions  

A series of dipeptidyl chiral ionic liquids (363-379) were successfully designed and 

synthesised. 17 dipeptidyl bromo-alkylating intermediates (346-362) were prepared from 

the corresponding dipeptides. Subsequent formation of 17 bromide salts from these chiral 

intermediates was achieved. Various protecting group and peptide chemistry was employed 

in this synthetic route. All novel chiral ILs were successfully characterised via a range of 

spectroscopic techniques, namely 1H NMR, 13C NMR, DEPT 135, HMQC, IR and MS 

(MS/MS). By preparing these ILs, various functionalities were successfully introduced onto 

the cation scaffold. Furthermore, addition of peptide moieties in the IL structure may 

contribute to biodegradability. The biodegradation of CIL 378 was further studied using an 

activated sludge assay (Chapter 6). All dipeptidyl CILs were also screened against a range 

of bacterial and fungal strains (Chapter 5). A series of chiral ester ILs was also attempted, 

using Lactic acid and peptide precursors. 5 chiral bromoesters were successfully prepared 

(385-389). The chiral ester imidazolium bromide salts prepared were unstable to column 

chromatography conditions and evidently decomposed further under storage conditions (-4 

°C). However one bromide salt (392) was successfully synthesised from the intermediates 

and fully characterised via the aforementioned spectroscopic techniques.  
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Chapter 5: Results and discussion 

 

Toxicity studies of (a)chiral ionic liquids 
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5.1 Introduction  

The terms ‘green’ and ‘benign’ have been used ad infinitum to describe ionic liquids in the 

literature, with their negligible vapour pressures and flammabilities lending to these 

classifications. Recently however, ionic liquid researchers have begun to employ this 

terminology with caution. In order to confidently label ILs as ‘green’, their environmental 

impact must be known. Since many ILs are water soluble, the potential for their release into 

the environment via wastewater effluents becomes a major concern. As a consequence, a 

combination of toxicity, biodegradation and bioaccumulation data for these compounds is 

pertinent. Environmental hazard assessment of ILs has now become an important area of 

research with many groups reporting toxicity, ecotoxicity and biodegradation studies on 

ILs. The toxicity of ILs has been evaluated in numerous biological systems including; 

antimicrobial studies on bacterial and fungal strains, acute toxicity studies on terrestrial 

invertebrates1 (e.g. earthworms), aquatic species (zebrafish2 (Danio rerio)), waterfleas3 

(Daphnia magna), algae and terrestrial plants.4 In the following sections, the toxicological 

assessment of ILs will be introduced and discussed, with particular focus on antibacterial, 

antifungal and antibiofilm studies on novel ILs.  

5.1.1 Antibacterial and antifungal studies of ILs   

The antimicrobial activities of a series of 3-alkoxymethyl-1-methylimidazolium ionic 

liquids (Figure 5.1) were evaluated by Pernak et al.5 These ILs were tested against various 

microbial strains, namely rod (Escherichia coli, Proteus vulgaris, Klebsiella pneumoniae, 

Pseudomonas aeruginosa) and cocci (Micrococcus luteus, Staphylococcus epidermidis, 

Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), 

Enterococcus hirae) shaped bacteria and fungal isolates (Candida albicans, Rhodotorula 

rubra). 
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Fig. 5.1: 3-Alkoxymethyl-1-methylimidazolium ionic liquids screened by Pernak.5 

 

Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations 

(MBC) were reported for the ILs and also for Benzalkonium chloride (BAC), a commonly 

used ingredient in biocides.5 The most active IL was that which contained a dodecyl alkoxy 

side chain. All three salts (403, 419 and 435) containing this cation approached the activity 

of BAC (Table 5.1) 
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Table 5.1: MIC (µM) values of 3-dodecyloxymethyl-1-methylimidazolium vs. BAC.5 

 

Strain X = Cl 

403 

X = BF4 

419 

X = PF6 

435 

BAC 

M. Luteus 25 21 37 7 

S. epidermidis 25 21 18 3 

S. aureus 25 21 18 7 

 MRSA 99 85 73 7 

E. hirae 99 85 37 11 

E. coli 99 170 73 7 

P. vulgaris 197 170 147 22 

K. pneumonia 197 170 147 11 

P. aeruginosa 395 340 587 54 

C. albicans 197 340 587 7 

R. rubra 45 21 37 11 

 

In a later study, the same research group reported the antimicrobial activities of 1-

alkylimidazolium and 1-alkoxymethyl imidazolium lactate ILs (Figure 5.2).6 A range of 

bacterial strains were challenged against the ILs; Escherichia coli, Proteus vulgaris, 

Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens (Rods), 

Micrococcus luteus, Staphylococcus epidermidis, Staphylococcus aureus, Methicillin-

resistant Staphylococcus aureus (MRSA), Enterococcus hirae (cocci) and fungal isolates 

Candida albicans, Rhodotorula rubra.  
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Fig. 5.2: 1-Alkoxymethyl and 1-alkylimidazolium imidazolium lactate ILs. 

It was generally observed that the L-lactate ILs displayed the highest anti-microbial activity 

(lower MIC values) than the DL-lactate derivatives. Additionally, L-lactates with undecyl 

and dodecyl alkyl side chains proved most toxic towards the tested microorganisms. MIC 

and MBC values reported for these ILs were similar for those obtained for BAC. Shorter 

alkyl chain salts typically proved inactive towards the microbes.  

The growth of three microorganisms Escherichia coli, Pichia pastoris and Bacillus cerieus, 

in the presence of [bmim][BF4] and [PF6] was studied by Bornscheuer.7 These commonly 

used ILs gave similar inhibitory effects as several organic solvents (e.g. ethanol, methanol 

and dimethylsulfoxide) against the tested bacterial strains.  

In 2009 anti-bacterial quaternary ammonium cations (QACs) were combined with artificial 

sweetener anions, namely acesulfamates and saccharinates, to form a new class of ILs8 

(Figure 5.3). These dual function salts were screened for antimicrobial activities.  
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Fig. 5.3: QAC based ILs.8  

Toxicity of these QAC ILs (482-485) was assessed against various bacterial strains; 

Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), 

Enterococcus faecium, Escherichia coli, Micrococcus luteus, Staphylococcus epidermidis, 

Klebsiella pneumoniae, Streptococcus mutans and fungi Candida albicans, Rhodotorula 

rubra,. MIC and MBC values were reported for the ILs, and also for the commercially 

available staring materials BAC and didecyldimethylammonium chloride (DDAC). From 

this data (Table 5.2 and 5.3) it was clear that the activities of the ILs approach those of the 

toxic starting materials, with [BA][Sac] producing highest toxicity against all strains. This 

IL displayed higher activity than the synthetic precursor chloride in some cases (Table 5.2, 

Micrococcus luteus, Klebsiella pneumoniae, Streptococcus mutans). 
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Table 5.2: MIC (µM) values of QAC ILs. 

Strain 482 483 484 485 BAC DDAC 

S. aureus 7.8 8.3 7.9 16.4 5.4 5.5 

MRSA 7.8 8.3 7.9 8.2 5.4 5.5 

E. faecium 15.6 16.7 15.8 16.4 10.9 11.0 

E. coli 31.1 64.7 31.5 32.8 21.8 22.1 

M. luteus 7.8 16.7 7.9 16.4 10.9 5.5 

S. epidermidis 7.8 8.3 7.9 8.2 5.4 5.5 

K. pneumoniae 7.8 16.7 7.9 8.2 10.9 11.0 

C. albicans 31.1 33.4 31.5 32.8 21.8 22.1 

R. rubra 31.1 33.4 31.5 32.8 21.8 11.0 

S. mutans 0.2 2.1 61.0 32.8 5.4 5.5 

 

Table 5.3: MBC (µM) values of QAC ILs. 

Strain 482 483 484 485 BAC DDAC 

S. aureus 60.3 64.7 122.0 32.8 5.4 5.5 

 MRSA 60.3 64.7 61.0 63.5 5.4 5.5 

E. faecium 31.1 64.7 31.5 63.5 10.9 11.0 

E. coli 120.6 260.9 31.5 127.0 21.8 22.1 

M. luteus 120.6 129.4 61.0 127.0 10.9 5.5 

S. epidermidis 60.3 129.4 31.5 63.5 5.4 5.5 

K. pneumonia 120.6 64.7 31.5 63.5 10.9 11.0 

C. albicans 60.3 64.7 31.5 63.5 21.8 22.1 

R. rubra 120.6 125.2 61.0 127.0 21.8 11.0 

S. mutans 0.9 33.4 122.0 256.1 5.4 5.5 

 

A study of the biological activity of alkyl imidazolium ionic liquids towards the 

luminescent bacterium Vibrio fischeri (Figure 5.4) was undertaken by Ranke et al.9 V. 

fischeri is a rod shaped bacterium which is found in marine environments. Free living V. 
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fischeri can survive on decaying organic matter. The V. fischeri acute bioluminescence 

inhibition assay is a frequently used standard ecotoxicological bioassay in Europe (DIN EN 

ISO 11348). This assay is utilized for routine screening of river and lake water industry 

effluents and for screening chemical toxicity.  Toxicity towards V. fischeri can be 

determined by measuring the difference in light output from the organism. A decrease in 

observed light output indicates an increase in toxicity. Increase in alkyl chain length of the 

imidazolium cation, displayed a subsequent increase in toxicity (a decrease in light 

production of bacterium). A slight anion effect was also noted, whereby the PF6 anions 

appeared slightly toxic compared to BF4 and Cl derivatives. However, one exception was 

observed from this trend. The decyl imidazolium cation combined with the BF4 anion, 

demonstrated higher toxicity than its Cl and PF6 counterparts.  

 

Fig. 5.4: Vibrio fischeri bacteria plates are visible with ambient light (left), and also in the 

dark (right), due to their production of blue-green bioluminescence.10  

 

Fungal isolates have also been subjected to ionic liquid environments as a means of 

measuring their tolerance to these chemical entities. In 2009 a group of researchers 

investigated the toxicity of a series of imidazolium, pyridinium and cholinium based ILs 

towards filamentous fungi (of Penicilium genus).11 The species tested were Penicillium 

breviocompactum, Penicillium olsonii, Penicillium janczewskii, Penicillium glandicola, 

Penicillium corylophilum, Penicillium glabrum, Penicillium restictum, Penicillium 

adametzii, Penicillium variabile, and Penicillium diversum. The ionic liquid medium (50 

mM) was inoculated with the fungal spores (105 spores per mL), and incubated in the dark 

at 25 °C. In addition to testing the ILs, a number of experimental controls were also set up. 

An osmotic stress control (media treated with aqueous NaCl or CsCl) and starting material 

controls (media with aqueous 1-methylimidazole and pyridine) were run in the test. Fungal 



191 

 

growth (or lack thereof) was studied by measuring the absorbance of the medium at 600 

nm. An increase in absorbance indicated fungal growth. The authors reported the fungal 

isolates to display the least tolerance towards the imidazolium based ionic liquids. The well 

reported observation of increased alkyl chain length of an IL cation resulting in increased 

toxicity was also evident. The environmentally benign cation cholinium unsurprisingly 

exhibited the lowest fungal toxicity (highest MIC and Minimum Fungicidal Concentrations 

(MFC)). Moreover, the IL staring materials namely 1-methylimidazole and pyridine 

inhibited fungal growth in 100 and 60 % of cases respectively. Thus proving to be more 

toxic than their corresponding ionic liquid derivatives. Studies were also conducted to 

examine if the ILs could alter the metabolic profile (by MS analysis) in the fungal species. 

Fungal cultures responded to specific ILs by altering their cell biochemistry, and therefore 

leading to variations in the secondary metabolite pattern.  

 

Continuing on from this work11, this group probed the toxic effect of the anion species of 

cholinium based ILs against filamentous fungi.12 A series of cholinium ILs with alkanoate 

anions [CnH2n+1CO2]
- (where n = 1-9) were screened against a range of fungal isolates; 

Penicillium glandicola, Penicillium brevicompactum and Penicillium diversum. Fungal 

tolerance decreased with an increase in the alkyl chain length of the IL anion. Branching of 

anion side chain lead to lower toxicities, which was evident for IL s containing 2-

methylproponoate and 2,2-dimethylproponoate anions. In comparison to their linear 

counterparts (butanoate and pentanoate respectively) much lower MIC and MFC values 

were observed. 

 

Gathergood and Connon et al. recently reported antifungal studies of imidazolium derived 

ILs13 (Figure 5.5). These ILs were challenged against a large array of fungal isolates; 

Candida albicans (ATCC 44859 and ATCC 90028), Candida parapsilosis, Candida krusei 

(ATCC 6258 and E28), Candida tropicalis, Candida glabrata, Candida lusitaniae, 

Trichosporon  beigelii, Aspergillus fumigatus, Absidia corymbifera and Trichophyton 

mentagrophytes. No fungal inhibition was observed against the test strains when exposed to 

the ILs (highest test concentration of 2000 µM). 
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Fig. 5.5: Imidazolium-based ILs with low antifungal activities.13 

5.1.2 Antibiofilm studies  

(Eco)toxicological screening of ionic liquids reported hitherto, have predominately 

employed organisms in a planktonic mode of growth (single cells which may float or swim 

in liquid medium). However, the main mode of growth of microorganisms in pathogenic 

and environmental scenarios is as biofilms. Biofilm is a mode of microbial growth, 

whereby cells adhere to each other or to a surface within a self-produced matrix of 

extracellular polymeric substance (EPS). Microorganisms can form biofilms in response to 

many external factors and signify a key survival mechanism for these microbial 

communities. Numerous chronic plant, animal and human infections have been caused by 

biofilms, in addition to other environmental and clinical problems. Therefore antibiofilm 

investigations are of environmental and clinical importance. Albeit toxicity of ionic liquids 

has been viewed as a negative environmental effect, it can also be exploited to a number of 

beneficial applications (in new antiseptic agents or as anti-fouling media).  

 

Gilmore and co-workers were the first researchers to study the antibiofilm properties of 

ionic liquids.14 In this work a range of 1-alkyl-3-methylimidazolium chloride ionic liquids 

were assessed for antibiofilm activity against clinically relevant pathogens. The strains of 

resistant bacteria and fungi used included Staphylococcus aureus (ATCC 29213), 

Methicillin-resistant Staphylococcus aureus (MRSA), Epidemic Methicillin-resistant 

Staphylococcus aureus (E-MRSA 15), Staphylococcus epidermidis (ATCC 35984), 

Escherichia coli, Pseudomonas aeruginosa, Klebsiella aerogenes, Bacillus cenocepacia, 

Pseudomonas mirabilis and Candida tropicalis. Biofilms of each strain were grown on 
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polystyrene pegs of a Calgary Biofilm Device (CBD), and were grown for 24 hours. 24 

hour biofilm viable counts were carried out to in order to measure viable cell counts for 

each strain biofilm. MIC and MBEC (minimum biofilm eradication concentration) were 

obtained for the tested ILs (Table 5.4). 

 

Table 5.4: MIC and MBEC (µM) values of 1-alkyl-3-methylimidazolium chloride ILs. 

  n =    

Strain   6 
140 

8 
489 

10 
62 

12 
490 

S. aureus MIC 

MBEC 

722 
2708 

40 
2415 

18 
272 

16 
124 

E-MRSA MIC 

MBEC 

722 
2708 

40 
1207 

18 
272 

16 
248 

MRSA MIC 

MBEC 

1444 
21666 

160 
4829 

36 
545 

16 
124 

S. epidermidis MIC 

MBEC 

722 
10833 

40 
4829 

36 
272 

7.75 
124 

E. coli MIC 

MBEC 

722 
21666 

321 
9659 

73 
1089 

33 
124 

P.aeruginosa MIC 

MBEC 

5416 
21666 

2415 
2415 

580 
1089 

264 
496 

K. aerogenes MIC 

MBEC 

1444 
43331 

643 
19318 

73 
2179 

33 
248 

B. cenocepacia MIC 

MBEC 

>1444 
43331 

1287 
19318 

290 
2179 

132 
496 

P. mirabilis MIC 

MBEC 

1444 
43331 

1287 
9659 

580 
4357 

264 
1984 

C. tropicalis MIC 

MBEC 

1444 
>43331 

321 
19318 

73 
8714 

66 
248 

 

From this data it was found that for each strain the MBEC value decreased (increase in 

antibiofilm activity) with an increase in the alkyl chain length of the IL side chain. The 

decyl derivative (489) displayed antibiofilm activity against all Gram positive and most 
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Gram negative bacteria tested, with tolerance observed against K. aerogenes and B. 

Cenopacia. Overall, it appeared that the tetradecyl substituted IL (490) gave the greatest 

activity against all biofilm strains (i.e. higher potency). This group further investigated the 

antibiofilm activities if 1-alkylquinolium bromide ILs against pathogen biofilm microbes.15 

The authors reported a similar trend of higher antibiofilm potency with increased alkyl 

chain length of the IL side chains.  

 

5.2 Toxicity Studies of (a)chiral imidazolium ionic liquids 

The following sections detail the work undertaken in our research on the antimicrobial 

activites of novel (a)chiral imidazolium based ionic liquids. 

5.2.1 Antibacterial studies of achiral ionic liquids 

A panel of achiral imidazolium-based ionic liquids (42, 45, 193-199) were screened for 

antibacterial activities against four strains of bacteria. Two Gram negative bacteria, all rod-

shaped, (Salmonella sp., Klebsiella sp.) and two Gram positive rod and cocci, (Bacillus 

Subtilis, Micrococcus sp.) were challenged against the ILs over a wide concentration range 

(0-20 mg/mL). The minimum inhibitory concentrations (MIC) were measured visibly for 

ILs which displayed activity against the bacterial strains after 24 hour incubation (at 37 °C). 

Table 5.5 outlines the MIC values determined in these studies. 
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Table 5.5: MIC (µM) values of achiral imidazolium based ionic liquids. 

 IL         

Organism 42 193 196 194 195 45 197 198 199 

Salmonella sp. >6872 >5540 >5479 2570 2398 >4761 2040 >3861 >3663 

Klebsiella sp. >6872 >5540 >5479 1285 1199 >4761 4081 1930 915 

B. subtilis >6872 2770 >5479 1285 149 >4761 4081 965 1831 

Micrococcus sp. >6872 >5540 >5479 2570 1199 >4761 2040 3861 1831 

 

From the obtained data (Table 5.5), MIC values greater than 20 mg/mL correspond to a 

lack of IL toxicity against the bacterial strains at concentration ranges from >3663 µM to 

>6872 µΜ (depending on the molecular weight of the IL). In general, inhibition was 
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observed for those ILs containing cations with long hydrocarbon side chains. Low MIC 

(high toxicity) values were measured for decyl, dodecyl and tetradecyl examples, whilst 

high MIC values (low toxicities) were noted for ILs with pentyl and ethereal side chains.16 

The most toxic ILs were 3-methyl-1-(dodecoxycarbonylmethyl)imidazolium bromide (194) 

and 3-methyl-1-(tetradecoxycarbonylmethyl)imidazolium bromide (195), displaying 

activity against all bacterial strains, and in some cases even at lower concentrations (Table 

5.5, B. subtilis). This result is in accordance with data reported in the literature5,8,14 where 

increased alkyl chain length of ILs cation and/or anion side chain results in an increase of 

toxicity. An increase in IL lipophilicity means that these compounds can cross 

biomembranes readily and therefore enter the cell. Varying the IL anion did not seem to 

influence toxicity overall (bromide vs OctOSO3), with the exception of the decyl derivative. 

The OctOSO3 salt (197) appeared more toxic than the bromide form against certain strains 

of bacteria (Table 5.5, Salmonella sp., Klebsiella sp., Micrococcus sp.) most likely due to 

an increase in IL lipophilicity. Furthermore, no clear trend was observed between toxicity 

and the nature of bacterial species (i.e. Gram negative and Gram positive), with toxicity 

seen across a broad range of microorganisms.  

The pentyl, dodecyl and tetradecyl ester achiral ILs (42, 194, 195) were further screened 

against a range of clinically resistant bacterial strains, these included; Staphylococcus 

aureus (CCM 4516/08), Escherichia coli (CCM4517), Pseudomonas aeruginosa (CCM 

1961), a range of clinical isolates were also challenged; Staphylococcus aureus MRSA (H 

5996/08), Staphylococcus epidermidis (H 6966/08), Enterococcus sp. (J 14365/08), 

Klebsiella pneumoniae (D 11750/08), Klebsiella pneumonia-ESBL positive (J 14368/08). 

This work was undertaken in collaboration with Dr. Marcel Špulák of Charles University, 

Czech Republic. The MIC values obtained are given in Table 5.6. 
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Table 5.6: MIC (µM) values of ILs 42, 194 and 195.† 

  IL   

Organism Time (h) 42 194 195 

S. aureus 24 

48 

>2000 

>2000 

15.62 

15.62 

7.81 

15.62 

MRSA 24 

48 

>2000 

>2000 

15.62 

15.62 

7.81 

7.81 

S. epidermidis 24 

48 

>2000 

>2000 

15.62 

31.25 

31.25 

62.50 

Enterococcus sp. 24 

48 

>2000 

>2000 

31.25 

62.50 

31.25 

62.50 

E. coli 24 

48 

>2000 

>2000 

31.25 

62.50 

15.62 

62.50 

K. pneumonia 24 

48 

>2000 

>2000 

31.25 

125 

62.50 

62.50 

K. pneumoniae-ESBL 24 

48 

>2000 

>2000 

31.25 

125 

62.50 

125 

P. aeruginosa 24 

48 

>2000 

>2000 

31.25 

125 

1000 

1000 

†Results obtained by collaborator 

 

Similar to the results obtained in previous antibacterial screens (Table 5.5), ILs 194 and 195 

displayed high levels of bacterial activity, whilst the pentyl derivative 42 proved non-toxic. 

From the results obtained (Table 5.6) in this study, relatively low MIC values 

(corresponding to high toxicities) were obtained for 194 and 195 against all the test 
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organisms (Gram negative and Gram positive). These alkyl ester ILs exhibit similar 

potency as the biocide Benzalkonium chloride, BAC (Tables 5.1, 5.2). From an 

environmental prospective these results are not desirable as highly antimicrobial toxic ILs 

cannot be classified as ‘green’. However, in terms of clinical applications these ILs have 

the potential to act as new classes of antibacterial or antiseptic agents towards, in particular, 

resistant bacterial strains (e.g. MRSA).   

5.2.2 Antifungal studies of achiral ionic liquids 

Three achiral bromide salts (42, 194 and 195, Figure 5.6) were tested for antifungal 

activities against four ATCC strains (Candida albicans ATCC 44859, Candida albicans 

ATCC 90028, Candida parapsilosis ATCC 22019, Candida krusei ATCC 6258), eight 

clinical isolates of yeast (Candida krusei E28, Candida tropicalis 156, Candida glabrata 

20/I, Candida lusitaniae 2446/I, Trichosporon asahii 11880) and three filamentous fungi 

(Aspergillus fumigatus 231, Absidia corymbifera 272, Trichophyton mentagrophytes 445). 

This work was also carried out by our collaborator, Dr. Marcel Špulák. The results 

retrieved from these studies are reported in Table 5.7. 

 

Fig. 5.6: Achiral ILs screened for antifungal activities. 
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Table 5.7: Antifungal activities of achiral ILs 42, 194 and 195 

  IL   

Organism Time (h) 42 194 195 

C. albicans (ATCC44859) 24 

48 

>2000 

>2000 

7.81 

31.25 

3.90 

7.81 

C. albicans (ATCC 90028) 24 

48 

>2000 

>2000 

7.81 

31.25 

3.90 

7.81 

C. parapsilosis (ATCC 22019) 24 

48 

>2000 

>2000 

31.25 

62.50 

7.81 

7.81 

C. krusei (ATCC 6258) 24 

48 

>2000 

>2000 

1.95 

3.90 

1.95 

3.90 

C. krusei (E28) 24 

48 

>2000 

>2000 

1.95 

3.90 

1.95 

3.90 

C. tropicalis (156) 24 

48 

>2000 

>2000 

3.90 

7.81 

3.90 

7.81 

C. glabrata (20/I) 24 

48 

>2000 

>2000 

1.95 

3.90 

1.95 

3.90 

C. lustaniae (2446/I) 24 

48 

>2000 

>2000 

31.25 

62.50 

7.81 

7.81 

T.asahii (1188) 24 

48 

>2000 

>2000 

15.62 

31.25 

1.95 

7.81 

A. fumigates (231) 24 

48 

>2000 

>2000 

15.62 

31.25 

1.95 

7.81 

A. corymbifera (272) 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

T. mentagrophytes (445) 72 

120 

>2000 

>2000 

15.62 

31.25 

7.81 

7.81 
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As can be seen from the accumulated data, inhibition was observed for ILs 194 and 195 

against the tested fungal strains. Notably the filamentous fungal isolate Absidia 

corymbifera 272 was an exception, and proved resistant to the most toxic ILs (Table 5.7). 

High antifungal activity of these compounds can be related to the structural features of the 

IL cation. In ILs, 194 and 195, the cation side chains contain dodecyl and tetradecyl esters 

respectively. Introduction of long alkyl chains to an IL structure has been well known to 

increase their bioactivities.5,6,14 Similarly the less lipophilic ILs, namely those which 

contain short alkyl side chains, lack in ability to inhibit microorganism growth. Achiral IL 

42 displayed no inhibition towards the twelve fungal species, and therefore can be 

described as ‘green’.  

5.2.3 Antibacterial studies of chiral ionic liquids (CILs) 

The toxicity of various novel chiral ionic liquids (Figure 5.7) was investigated against 

environmentally relevant bacteria. The bacterial strains employed were Escherichia coli, 

Bacillus subtilis (commonly found in soil samples), Pseudomonas fluorenscens (ubiquitous 

in soil and water systems), Pseudomonas putida-CP1, and Pseudomonas putida-KT2440 

(known to biologically degrade chemical compounds, e.g. toluene). MIC values were 

measured both visually and photometrically at 450 nm. The results obtained from these 

tests are outlined in Table 5.8. 
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Table 5.8: MIC (µM) values of CILs (274, 283, 284, 363 and 364). 

 IL     

Strain   274   283   284   363    364 

E. coli 22800 43500 77000 >90000 >142000 

B. subtilis 22800 43500 77000 >90000 >142000 

P. fluorescens 91000 >174000 77000 >90000 >142000 

P. putida (CP1) 91000 >174000 154000 >90000 >142000 

P. putida (KT2440) 91000 >174000 154000 >90000 >142000 

 

 

Fig. 5.7: CILs challenged against environmental bacteria Escherichia coli, Bacillus subtilis, 

Pseudomonas fluorenscens, Pseudomonas putida-CP1 and Pseudomonas putida-KT2440.  

 

The dipeptidyl derivatives 363 and 364 appeared the least toxic against the tested isolates 

giving MIC values higher than the test concentration (90000 and 142000 µM respectively). 

Compounds 274, 283 and 284 displayed inhibition against the bacteria screened. However 

the concentration required to inhibit these microorganisms was relatively large (Table 5.8). 

Taking the example of Bacillus subtilus, the lowest test concentration (MIC) capable of 

inhibiting the growth of this bacterium was 22800 µM (for compound 274).  However, in a 

previous screen of the achiral derivatives, an MIC value of 149 µM (Table 5.5) was 
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measured for IL 195 against this bacterial strain. All other CILs give MIC values at or near 

to their upper limit tested concentrations. 

In vitro antibacterial activities of a number of novel chiral ionic liquids (Figure 5.8, 5.9) 

were also investigated against more clinically relevant microbes. The microorganisms 

employed in these studies were Staphylococcus aureus (CCM 4516/08), Escherichia coli 

(CCM4517), Pseudomonas aeruginosa (CCM 1961), a range of clinical isolates were also 

challenged; Staphylococcus aureus MRSA (H 5996/08), Staphylococcus epidermidis (H 

6966/08), Enterococcus sp. (J 14365/08), Klebsiella pneumoniae (D 11750/08), Klebsiella 

pneumonia-ESBL positive (J 14368/08). The results in Table 5.9 represent the MIC values 

obtained for those dipeptidyl CILs which displayed antibacterial inhibition. 
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Table 5.9: MIC (µM) values obtained for dipeptidyl CILs (368, 370, 371 and 378).† 

   IL   

Organism Time (h) 368 370 371 378 

S. aureus 24 

48 

500 

1000 

>2000 

>2000 

>2000 

>2000 

1000 

1000 

MRSA 24 

48 

125 

500 

>2000 

>2000 

>2000 

>2000 

2000 

2000 

S. epidermidis 24 

48 

500 

>2000 

2000 

>2000 

1000 

>2000 

2000 

>2000 

Enterococcus sp. 24 

48 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

2000 

2000 

E. coli 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

K. pneumonia 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

K. pneumoniae-

ESBL 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

P. aeruginosa 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

†Results obtained by collaborator 
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Fig. 5.8: Dipeptidyl CILs displaying antibacterial activities.  

Out of the 17 dipeptidyl CILs screened, only four examples (368, 370, 371 and 378) 

exhibited activity towards various bacterial strains (<2000 µM). 371 and 370 were 

relatively non toxic overall, but both demonstrated activity towards Staphylococcus 

epidermidis (Table 5.9, MIC values of 1000 and 2000 µM respectively). CILs 368 and 378 

appeared most toxic, inhibiting the growth of four resistant isolates, namely, 

Staphylococcus aureus, MRSA, Staphylococcus epidermidis, and Enterococcus sp.. The 

lowest MIC value was obtained for 368 against the MRSA strain (125 µM after 24 hour 

incubation and 500 µM after 48 hours). Some minor trends can be noted from the results 

(Table 5.9). Structurally, all four CILs possess a phenylalanine residue adjacent to the 

cation core. ILs bearing this structural motif may have increased lipophilicities, and hence 

increased bioactivities.  Interestingly, some trends can be noted between CIL activity and 

the bacterial strains tested.  The CILs (368, 370, 371 and 378) displayed increased toxicity 

towards the Gram positive type bacteria (namely Staphylococcus aureus, Staphylococcus 

aureus-MRSA, Staphylococcus epidermidis, and Enterococcus sp.).  Whilst the Gram 

negative species appeared the most tolerant towards the test compounds. This result may be 

understood by considering the different structural features present in both types of bacteria. 

Gram positive bacterial cell walls lack the outer membrane found in Gram negative species. 

Certain components of the Gram negative bacterial cell well (e.g. lipopolysaccharide layer) 

can protect the bacteria from various antibiotics and chemical entities.17 
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23 amino acid ester CILs (247-269) were also screened against these resistant bacteria, with 

antimicrobial activity evident for only 5 examples (272, 277, 281, 285 and 287, Figure 5.9). 

The CILs which displayed activities are summarized in Table 5.10.  

Table 5.10: MIC (µM) values† obtained for amino acid ester CILs (272, 277, 281, 285 and 
287). †Results obtained by collaborator 

  IL     

Organism Time (h)  272   277   281  285   287 

S. aureus 24 

48 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

MRSA 24 

48 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

2000 

>2000 

>2000 

>2000 

S. epidermidis 24 

48 

>2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

Enterococcus sp. 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

E. coli 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

K. pneumonia 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

K. pneumoniae-ESBL 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

P. aeruginosa 24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 
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Fig. 5.9: Amino acid ester CILs displaying antibacterial activities. 

An overall lack in toxic activity was noted for the amino acid ester CILs (Table 5.10). Only 

compounds 272, 277, 281, 285 and 287 showing toxicity towards the tested bacteria. No 

clear trends can be noted between IL structure and antibacterial activity in this study. 

Moreover, the stereochemistry of the IL side chain does not seem to play a significant role 

in the activity of the compound. CILs containing both L and D enantiomeric amino acid 

groups displayed toxicity towards the bacterial isolates. Inhibition of Staphylococcus 

aureus at 2000 µM was evident for 272. CILs 281 and 285 both demonstrated toxicity 

towards the resistant strain MRSA at a high MIC value of 2000 µM (after 24 hour 

incubation). As seen previously for the dipeptidyl derivatives, the Gram positive bacteria 

are more susceptible to the test compounds than the Gram negative strains (Table 5.10). 

This relationship between IL activity and bacterial class is believed to be due to differences 

in biochemical properties between the two classes. 
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5.2.4 Antifungal studies of chiral ionic liquids (CILs) 

In vitro antifungal activities of several chiral ionic liquids were evaluated on a range of 

filamentous fungi and yeasts isolates. Novel CILs were screened against Candida albicans 

ATCC 44859, Candida albicans ATCC 90028, Candida parapsilosis ATCC 22019, 

Candida krusei ATCC 6258, Candida krusei E28, Candida tropicalis 156, Candida 

glabrata 20/I, Candida lusitaniae 2446/I, Trichosporon asahii 11880, Aspergillus 

fumigatus 231, Absidia corymbifera 272, Trichophyton mentagrophytes 445. The results 

obtained for those dipeptidyl and amino acid ester CILs which indicated inhibition are 

summarized in Tables 5.11 and 5.12.  
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Table 5.11: Antifungal activities* of dipeptidyl CILs (364, 365, 368, 371, 374, 377 and 

378).† 

  IL       

Organism Time (h) 364 365 368 371 374 377 378 

C. albicans 

(ATCC44859) 

24 

48 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. albicans 

(ATCC 90028) 

24 

48 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. parapsilosis 

(ATCC 22019) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. krusei 

(ATCC 6258) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. krusei 

(E28) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. tropicalis 

(156) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

C. glabrata 

(20/I) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

C. lustaniae 

(2446/I) 

24 

48 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

T.asahii 

(1188) 

24 

48 

2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

2000 

>2000 

2000 

>2000 
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In this study 17 dipeptidyl chiral ionic liquids were screened for antifungal activities, with 

inhibition observed for 7 examples. Figure 5.10 illustrates the most active CILs from this 

class. 

A. fumigates 

(231) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

A. corymbifera 

(272) 

24 

48 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

T. 

mentagrophytes 

(445) 

72 

120 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

>2000 

* reported as MIC (µM) values 

†Results obtained by collaborator 
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Fig. 5.10: Dipeptidyl CILs with antifungal activities.  

The dipeptidyl CILs appeared moderately toxic towards the fungal species. Inhibition was 

observed for compounds 364, 365, 368, 371, 378, 374 and 377 against the various fungal 

strains. CIL 368 inhibited the growth of three fungi, namely, Candida albicans ATCC 

44859, Candida albicans ATCC 90028 and Candida lusitaniae 2446/I. The remaining ILs 

were seen to inhibit only one or two isolates, all at higher concentrations (MIC values of 

2000 µM). In terms of structure activity relationships (SAR), no strong trends can be 

deduced from the obtained data. The presence of phenylalanine groups in the IL structure 

(i.e. an increase in IL lipophilicity) could increase its toxicity towards the tested fungi. 
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However 365 and 377 do not possess an aromatic functionality in the IL side chain, and 

inhibition was measured for both CILs.  

Amino acid ester CILs were also studied for their antifungal toxicities. 23 bromide chiral 

salts were screened and activity was determined for 10 derivatives. Figure 5.11 depicts the 

chemical structures of these CILs. 

 

Fig. 5.11: Amino acid ester CIL with antifungal properties. 



212 

 

 

 2
9
1

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 
2

8
8

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
8

6
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
8

1
 

 5
0
0

 

 2
0
0

0
 

>
20

00
 

>
20

00
 

 2
0
0

0
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 2
0
0

0
 

>
20

00
 

 

2
7

7
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
7

8
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
7

6
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
7
4

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 

2
7
3

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

IL
 

2
7
1

 

2
0
0

0
 

>
20

00
 

2
0
0

0
 

>
20

00
 

2
0
0

0
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 T
im

e 

(h
) 

24
 

48
 

24
 

48
 

24
 

48
 

24
 

48
 

24
 

48
 

24
 

48
 

T
a

b
le

 5
.1

2
: A

nt
if

un
ga

l a
ct

iv
it

ie
s†

 o
f 

A
m

in
o 

ac
id

 e
st

er
 C

IL
s.

 †
R

es
ul

ts
 o

bt
ai

ne
d 

by
 c

ol
la

bo
ra

to
r 

 O
rg

an
is

m
 

C
. 
 a

lb
ic

a
n

s 

(A
T

C
C

 4
48

59
) 

C
. 
 a

lb
ic

a
n

s 

(A
T

C
C

 9
00

28
) 

C
. 
p

a
ra

p
si

lo
si

s 

(A
T

C
C

 2
20

19
) 

C
. 
kr

u
se

i 
 

(A
T

C
C

 6
25

8)
 

C
. 
kr

u
se

i 
 

(E
28

) 

C
. 
tr

o
p

ic
a

li
s 

(1
56

) 

 



213 

 

 2
9
1

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 2
0

0
0
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

  
2

5
0

 

  
2

5
0

 

 

2
8

8
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 2
0
0

0
 

>
20

00
 

 1
0
0

0
 

>
20

00
 

 

2
8

6
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 2
0

0
0

 

>
20

00
 

 1
0

0
0

 

>
20

00
 

 

2
8

1
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 1
0

0
0

 

>
20

00
 

>
20

00
 

>
20

00
 

 1
0

0
0

 

>
20

00
 

 1
0

0
0

 

 2
0

0
0

 

 

2
7

7
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

  
2
5

0
 

  
2
5

0
 

>
20

00
 

>
20

00
 

 

2
7

8
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

  
5

0
0
 

  
5

0
0
 

  
5

0
0
 

 1
0
0

0
 

>
20

00
 

>
20

00
 

 6
2
.5

 

 6
2
.5

 

 

2
7

6
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 1
0
0

0
 

 1
0
0

0
 

 

2
7

4
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

2
0

0
0

 

2
0

0
0

 

 5
0

0
 

 5
0

0
 

 

2
7
3

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

  
5

0
0

 

 1
0

0
0
 

IL
 

2
7
1

 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

>
20

00
 

 1
0

0
0
 

 2
0

0
0
 

 T
im

e 

(h
) 

24
 

48
 

24
 

48
 

24
 

48
 

24
 

48
 

24
 

48
 

72
 

12
0 

 T
a
b

le
 5

.1
2

: (
co

nt
in

ua
ti

on
) 

 A
nt

if
un

ga
l a

ct
iv

it
ie

s†
 o

f 
A

m
in

o 
ac

id
 e

st
er

 C
IL

s.
 †

R
es

ul
ts

 o
bt

ai
ne

d 
by

 c
ol

la
bo

ra
to

r 

 O
rg

an
is

m
 

C
. 

g
la

b
ra

ta
 

(2
0/

I)
 

C
. 

lu
st

a
n

ia
e 

(2
44

6/
I)

 

T
.a

sa
h

ii
 

(1
18

8)
 

A
. 

fu
m

ig
a
te

s 

(2
31

) 

A
. 

co
ry

m
b

if
er

a
 

(2
72

) 

T
. 

m
en

ta
g

ro
p
h

yt
es

 

(4
45

) 

 

 



214 

 

It can be seen from these studies, that both classes of CILs are relatively non-toxic towards 

fungal isolates. However, in general the amino acid ester derivatives appear to inhibit more 

strains of fungi than the dipeptidyl CILs (Tables 5.11 and 5.12). 281 proved to be the most 

active of the ILs tested, inhibiting six fungal strains (Table 5.12), Candida albicans (ATCC 

44859), Candida parapsilosis (ATCC 22019), Candida tropicalis (156), Trichosporon 

asahii (1188), Absidia corymbifera (272), Trichopyton mentagrophytes (445)). The lowest 

MIC value obtained for 281 was at 500 µM against Candida albicans (ATCC44859) after 

24 hour incubation, and further inhibited growth after 48 hours (MIC 2000 µM). However 

278 gave the lowest measured MIC value (highest toxicity) of 62.50 µM against 

Trichopyton mentagrophytes (445) even after 48 hours incubation. Compound 271 

displayed activity against four isolates, namely Candida albicans (ATCC 44859), Candida 

albicans (ATCC 90028), Candida parapsilosis (ATCC 22019) and Trichopyton 

mentagrophytes (445). The lowest MIC value measured for this IL was at 1000 µM against 

the dermatophytic strain Trichopyton mentagrophytes (445) after 24 hour incubation. This 

fungal strain (Trichopyton mentagrophytes (445)) appeared the most susceptible isolate 

overall, being inhibited by 9 of the 10 active test compounds (Table 5.12).  

5.3 Conclusions  

A range of toxicity studies were carried out on novel achiral and chiral ionic liquids. 

Minimum Inhibitory Concentrations (MIC) of the ILs were measured against bacterial and 

fungal strains. A panel of achiral ionic liquids (42, 45, 193-199) was screened for 

antimicrobial activity. High levels of toxicity were observed for ILs containing dodecyl 

(194) and tetradecyl (195) ester side chains. These compounds displayed a broad range of 

activity towards resistant bacterial and fungal isolates. The potency of these ILs can be 

related to structural features of the IL side chain. Substitution of the ILs cation with long 

alkyl chains results in more lipophilic examples. This increase in lipophilicity results in a 

corresponding increase in toxicity.  

Dipeptidyl (363-379) and Amino acid ester (247-269) chiral ionic liquids were challenged 

against a range of bacteria and fungi, of both clinical and environmental relevance. Both 

classes of CILs displayed relatively low toxicities (high measured MIC values) against the 



215 

 

test microorganisms. CIL 368 was capable of inhibiting the resistant bacterial strain MRSA 

at 125 µM concentration (Table 5.9). Inhibition of other resistant bacterial strains was also 

observed for compounds 370, 371 and 378. All the aforementioned toxic CILs possessed a 

phenylalanine moiety in the cation side chain. The presence of this group in IL side chains 

leads to increased lipophilicity and toxicity. A trend was also noted between IL activity and 

the bacterial strains. Inhibition was predominately against Gram positive bacteria, whilst 

the Gram negative species proved the most tolerant. The amino acid ester CILs gave higher 

toxicities (lower MIC values) towards the fungal strains. 23 bromide CILs were screened 

with 10 examples (273-291) demonstrating antifungal activities (Table 5.12).  

ILs displaying toxicity in these studies cannot be classified as ‘green’. However, an 

inhibitory effect towards a microbe, in particular resistant examples, may allow for 

medicinal applications of these compounds.  
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Chapter 6: Results and discussion 

 

Primary biodegradation and metabolite profiling of chiral 

ionic liquids-initial studies 
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6.1 Introduction 

Chapter one of the thesis provides an in depth review of the literature on work which has 

been carried out to date on biodegradation investigations of ionic liquids. Interest in this 

area of research has escalated, with many research groups reporting biodegradable ionic 

liquids. Various types of biodegradation and the assays consequently used to measure these 

biodegradations are also discussed (Chapter one, Section 1.2). Many techniques measure 

respirometric parameters such as oxygen depletion (OECD 301 D), carbon dioxide 

evolution (OECD 301 B), dissolved organic carbon (DOC) content (OECD 301 A/E) and 

biochemical oxygen demand (BOD) (OECD 301 C, ASTM 5988). By analyzing these 

parameters, compounds can be classified as various levels of biodegradable, namely as 

‘readily biodegradable’ or ‘ultimately biodegradable’. These classifications describe the 

level of degradation achieved when the test compound is totally utilised by micro-

organisms resulting in the production of carbon dioxide, water, mineral salts and biomass. 

‘Primary biodegradation’, on the other hand, results in an alteration in the chemical 

structure of a substance, brought about by biological action of active microbes. Analytical 

techniques such as High Performance Liquid Chromatography (HPLC), High Performance 

Liquid Chromatography Mass Spectrometry (HPLC-MS), Mass Spectrometry (MS) and 

Nuclear Magnetic Resonance (NMR) have been employed in the determination of ILs 

‘primary biodegradation’.1-6 In this work, HPLC-MS (quantitative) and ESI-MS 

(qualitative) analysis was used to analyze the products of biodegradation of two novel 

chiral ionic liquids, namely 3-methyl-1-L-phenylalanine butyl ester imidazolium bromide 

(272) and 3-methyl-1-L-phenylalanine-D-phenylalanine ethyl ester imidazolium bromide 

(378).  

6.2 HPLC-MS method development for the identification of novel chiral 

ionic liquids and their metabolite products 

The first step in these studies was to develop a suitable High Performance Liquid 

Chromatography (HPLC) system in order to conduct quantitative analysis of ionic liquid 

biodegradation samples. Two different HPLC methods have been reported in the literature 

for identification of ionic liquids and their corresponding metabolites. Hydrophilic 
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interaction chromatography (HILIC)4,5 and reverse-phase chromatography2,6,7 have both 

been used in the chemical analysis of ionic liquids. HILIC is a normal-phase 

chromatography method that involves the use of organic solvents that are miscible in water, 

typically methanol or acetonitrile. HILIC is an especially useful method for hydrophilic or 

ionisable compounds and can improve obtained mass spectra. The stationary phase is polar 

and is generally made of a silica, hybrid, amide, cyano, amino or diol material. The mobile 

phase requires a high percentage of organic solvent and a much lower volume of aqueous 

solvent. The aqueous solvent acts as the eluting solvent in this type of chromatography. 

Retention of ILs on reverse-phase columns is based on hydrophobicity properties of the 

ILs. The stationary phase in reverse-phase chromatography is non-polar, composed of a 

modified silica based packing with C8 or C18 functionalities incorporated on the silica 

surface. A highly polar mobile phase system is then employed, generally containing a high 

water content. The organic solvent in this case acts as the eluting solvent. 

6.2.1 Method development of HILIC HPLC system 

Hydrophilic interaction chromatography (HILIC) has been employed by other groups as a 

means of quantitatively identifying ionic liquids and their biodegradation products.4,5 

HILIC chromatography was investigated in this work along with UV and MS detection. A 

UV spectrometric analysis of 272 CIL gave an absorbance maximum at the wavelength (λ) 

210 nm. Ionic liquids typically display low absorbance maxima around 200 nm.7,12 The use 

of acetonitrile (ACN) as a organic modifier can improve the low wavelength in UV 

detection of ionic liquids.12 Furthermore, in HILIC chromatography a high volume of 

organic solvent is required, in order to elute the desired solute product. ACN acts as a 

suitable organic modifier in this type of liquid chromatography. Development of a suitable 

HILIC method was conducted using two columns; Waters Atlantis® HILIC Silica column 

(5 µm packing, 4.6 × 150 mm, Column A) and Waters XBridge™ Amide column (3.5 µm 

packing, 4.6 × 150 mm, Column B). Work was initially carried out on the Amide column 

(Column B), as a manufacturing error was encountered with Column A. Standard solutions 

of 272 (in ACN) at various concentrations were prepared and used as the standard 

injections for the method development process. Fresh standards were prepared regularly 
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and refrigerated until required. Initial methods involved the use of the UV detector at 210 

nm. A mobile phase system composed of 50 % ACN and 50 % water (0.1 % formic acid) 

was attempted initially to gauge the relative retention of the CIL. This resulted in a large 

peak eluting off the column before the void volume at a retention time of 4.105 min (Figure 

6.1).  

 

Fig. 6.1: HPLC-UV chromatogram of 272 (1 mg/mL) eluted from Column B using 50:50 

ACN:Water (0.1 % formic acid).  

Changing the mobile phase to 70:30 ACN:Water (0.1 % formic acid) an increase in 

retention time to 4.443 min was observed so that the peak was eluting just after the void 

volume. Increasing the volume of organic solvent (90:10 ACN:Water) and the flow rate of 

the system resulted in the product peak eluting at 3.517 min, however it was well resolved 

from the void volume (Figure 6.2).  

 

Fig. 6.2: HPLC-UV chromatogram of 272 (1 mg/mL) eluted from Column B using 90:10 

ACN:Water (0.1 % formic acid). 

However, the observed peak was quite broad and not of favourable shape. The mobile 

phase was further manipulated in an attempt to improve the peak shape. A binary mixture 

of 80 % ACN and 20 % 5mM ammonium formate buffer solution as the aqueous phase was 
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run. The analyte peak gave a retention time 5.351 min when using these system conditions, 

with improved peak shape also noted (Figure 6.3).  

 

Fig. 6.3: HPLC-UV chromatogram of 272 (1 mg/mL) eluted from Column B using 80:20 

ACN: 5mM ammonium formate buffer. 

The mobile phase was once again altered, this time to obtain improved retention (longer 

retention time was desirable) and consequently better separation from the void volume. By 

changing the amount of buffer phase, the analyte was retained for a longer time, eluting at 

6.812 min. The observed peak was very sharp with no evidence of fronting. Table  6.1 

summarises the parameters employed in this method. 

Table 6.1: HILIC-UV method used for identifying 272, using Column B. 

Column Waters XBridge™ Amide column 

Mobile phase 85:15, ACN: 5 mM Ammonium formate buffer 

Flow rate 0.5 mL/min 

Detection method UV at 210 nm 

Temperature 25°C 

Run time 10 min 

Injection volume 50 µL 
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This method was deemed suitable for the HPLC-UV analysis of the CIL 272, and 

validation was therefore required. A calibration curve was constructed using the 

aforementioned method. A calibration curve is a plot of how an instrumental response 

changes with the concentration of the analyte. Various concentrations of 272 were injected 

and a plot of peak area versus concentration was obtained (Figure 6.4).  

 

Fig. 6.4: Calibration curve using HILIC-UV method. 

As can be seen in Figure 6.4, the plot obtained appeared linear up until standard 

concentrations of 0.08 - 0.10 mg/ml. The linearity of the calibration curve diminishes 

between these concentrations ranges. The reproducibility of the system was also studied as 

a means of validating the method. This test involved multiple injections of the same 0.10 

mg/mL standard and subsequently monitoring reproducible peak areas. Peak areas and 

retention times both showed lack of precision from these standard injections. UV peak 

areas were obtained ranging from 5883.39 – 8205.79 mAU after multiple injections. Due to 

this lack of reproducibility using this mode of detection, MS detection was therefore 

investigated. 
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During the development of this method some issues arose with the HILIC column. The 

system pressure appeared to notably fluctuate. A regeneration of the column was performed 

as follows; 

1. 25 ml of LCMS grade water was run through column. 

2. 100 ml of Tetrahydrofuran (THF) was run through column. 

3. 50 ml of Methanol was run through column. 

4. 50 ml of water was run through column. 

5. Equilibrated with mobile phase. 

 

An extended equilibration time was required in order to stabilise the fluctuation in pressure. 

Following this a mobile phase system composed of 90:10 ACN:Water (0.1 % formic acid) 

was used for injections to the MS detector. Smaller injection volumes were also utilised so 

as to avoid overloading and consequently contaminating the MS system. Table 6.2 

indicates the system parameters employed in this analytical method.  

Table 6.2: HILIC-MS method used for identifying 272, using Column B. 

Column Waters XBridge™ Amide column 

Mobile phase 

 

90:10, ACN: Water 

(0.1% F.A.) 

Flow rate 0.4 mL/min 

Detection method MS detector 

Temperature 25°C 

Run time 15 min, 6 min post time 

Injection volume 10 µL 
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Once this system was established as being a suitable method to analyse the IL samples, 

validation was sought. This required multiple injections of the CIL standard into the MS 

detector to give reproducible peak areas and retention times. As previously observed for the 

UV detection method, a very noticeable lack in reproducibility was observed. Figure 6.5 

demonstrates an overlay TIC chromatogram of the standard injections.  

 

Fig. 6.5: Overlay MS TIC chromatogram of analyte peak (0.1 mg/ml). 

Upon further consideration of this method (Table 6.2), a number of parameters were 

deemed unsuitable. Though the HILIC method has a short run time, 90 % ACN is used 
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throughout the run at flow rate of 0.4 mL/min. This results in the generation of copious 

amounts of organic waste. The use of high volumes of ACN in mobile phase systems is a 

growing concern due to the global shortage of this organic solvent. To try reduce the 

amount of organic waste produced during this analysis, and to also investigate further the 

lack of reproducibility, a second HPLC system was studied. 

6.2.2 Method development of Reverse-Phase HPLC system 

Reverse-Phase High Performance Liquid Chromatography (RP-HPLC) is a commonly used 

analytical technique in many fields of chemistry. In this type of chromatography the 

stationary phase is typically composed of a non-polar material. In this work, columns 

containing octadecylsilica (C18) stationary phase packing were employed. The two RP 

columns employed were an Agilent XDB-C18 1.8 µm packing, 4.6 × 50 mm column 

(Column C) and an Agilent Eclipse XDB-C18 5 µm packing, 4.6 × 150 mm column 

(Column D). A polar mobile phase system is typically used in RP-methods. Binary 

mixtures containing a high percentage of water or aqueous buffers with a small percentage 

of organic solvents (namely acetonitrile or methanol) are generally employed.  

The isocratic methods developed for the HILIC system were initially incorporated using the 

Agilent Eclipse XDB-C18 5 µm, 4.6 × 150 mm column (Column D). The eluted peaks 

appeared poorly resolved with equally poor peak shapes. In some cases the CIL standard 

eluted as two separate peaks as seen in Figure 6.6. 

 

Fig. 6.6: Extracted ion count (EIC) MS chromatogram for 272, using an isocratic method 

with 95:5 ACN: Water (0.1 % formic acid). 
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Previous HPLC work carried out in our research group involved the use of RP methods 

with gradient solvent systems. These solvent gradients were investigated in this work using 

the two C18 columns since the isocratic methods gave poor results. From this study, 

Column D gave superior peak resolution and shape over Column C, and was therefore 

chosen in developing a suitable RP system. Figures 6.7 and 6.8 illustrate TIC 

chromatograms obtained of 272 using Column C and Column D respectively. 

 

Fig. 6.7: TIC chromatogram of 272 using Agilent XDB-C18 1.8 µm, 4.6 × 50 mm column 

(Column C). 

 

Fig. 6.8: TIC chromatogram of 272 using Agilent Eclipse XDB-C18, 5 µm 4.6 × 150 mm 

column (Column D). 

A longer run time was employed when using the longer RP-column; 22 minute run time 

with an additional 6-7 minute pre-equilibration time. A gradient solvent phase consisting of 

a high volume of water initially (for 10 mins), then 100 % ACN (for 2 min) and then 

returning to 95:5 water:ACN (for final 10 minutes) was used. The final optimized method 

for the RP-HPLC method is summarized in Table 6.3. Once the method was developed, 

validation studies were conducted.  
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Table 6.3: RP-HPLC method developed to identify CIL 272. 

Column Column D  

Mobile phase Gradient  

Time                   ACN:H20 

(min)                  (0.1%F.A.) 

- 0                         5:95 
- 10                     100:0 
- 11                     100:0 
- 12                      5:95  

Flow rate 0.25 mL/min 

Detection method MS detector 

Temperature 25°C 

Run time 22 min  

Injection volume 10 µl and needle wash 

 

As encountered previously with the HILIC systems, after the development of a suitable 

method reproducibility could not be achieved using the RP-method (Table 6.3). This issue 

of obtaining reproducibility and method validation could therefore be associated with 

instrumental errors.  

6.3 Primary biodegradation and metabolite profiling studies of 3-methyl-1-

L-phenylalanine butyl ester imidazolium bromide (272) CIL 

6.3.1 Activated Sludge assay 

A preliminary primary biodegradation test was conducted using a modified OECD method 

(OECD 301 A).8 The inoculum used was an activated sludge mixed microbial community, 

collected from a pharmaceutical company’s wastewater treatment facility (Dublin). The 
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sludge sample was pre-conditioned by aeration at room temperature for 5 days. After 

aeration, the activated sludge was washed three times with mineral nutrient medium 

(prepared according to OECD guideline 301 A).8 The final supernatant was decanted and 

the solid sludge was re-suspended in mineral medium to give a concentration of 5 g/L 

suspended solids (SS). The CIL 272 was tested in duplicate at a concentration of 240 µM. 

All controls flasks were also tested in duplicate. Abiotic control flasks were prepared 

whereby a flask containing 240 µM of the test substance was subsequently poisoned by 

adding HgCl2 at a concentration of 50 mg/L. Positive control flasks containing reference 

standard sodium-n-dodecyl sulfate (SDS) (240 µM) and inoculated medium, were also set 

up. Blank controls contained no test substrate only inoculated mineral medium. All the test 

flasks were capped with cotton plugs and subsequently incubated aerobically at 80 rpm in 

the dark at 25°C.6 Figure 6.9 illustrates the experimental set-up. During the 28 day 

incubation period 500 µl duplicate samples were retrieved from the flasks every 3 to 4 days. 

All samples were then centrifuged (8000 rpm for 15 mins) before being analysed via ESI-

MS. 

 

 

Fig. 6.9: Activated sludge experimental set up. 

Following analysis of the results obtained from this preliminary screen (see section 6.3.2) 

several adjustments were made to the activated sludge experimental procedure. These 
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changes included the addition of three abiotic controls; flasks containing the test substance 

and autoclaved inoculum (sterile control), flasks containing the test substance in mineral 

medium in the absence of activated sludge inoculum and flasks containing the test 

substance in distilled water (no inoculated medium) were all prepared. Additionally the 

flask agitation was also increased to 100 rpm to ensure a more homogenous mixing of the 

aqueous supernatant with the solid sludge particles.  

6.3.2 ESI-MS analysis of CIL metabolites 

Electro-spray ionisation mass spectrometry (ESI-MS) was used to qualitatively analyse the 

preliminary biodegradation samples of 3-methyl-1-L-phenylalanine butyl ester imidazolium 

bromide (272). Samples obtained from the biological experiments were directly infused 

(DI) into the MS detector using a Cole Palmer 749000 Series 100 µl syringe at an injection 

rate of 300 µL/hour (5 µL/min). Positive ion mode was generally used to obtain MS 

spectral data of biological samples. Figure 6.10 depicts the MS spectrum obtained of the 

initial testing day activated sludge sample (day 0). An intense peak at m/z 344 can be noted 

and indicates the presence of the parent CIL cation [M-Br]+. 
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Fig. 6.10: MS spectrum of day 0 activated sludge sample of 272. 

This mass peak remained evident in the MS spectra until day 15 of the activated sludge test. 

However, the relative intensity of this peak decreases over time, and the appearance of a 

secondary mass peak becomes apparent. Figure 6.11 illustrates the MS spectra obtained for 

day 3, day 7 and day 15 of the assay.  
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Fig. 6.11: MS spectra of (a) day 3, (b) day 7 and (c) day 15 of biodegradation test. 

The mass peak at m/z 141 increases in intensity over time whilst the parent ion at m/z 344 

appears to decrease. By day 28 the peak at m/z 344 is no longer evident and the most 

intense peak is seen at m/z 141 (Figure 6.12).  
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Fig. 6.12: MS spectra of day 28 activated sludge sample. 

This mass peak may represent the presence of a metabolite structure of 3-methyl-1-L-

phenylalanine butyl ester imidazolium bromide. Enzymatic hydrolysis at the peptide bond 

of the chiral side chain of the IL may have occurred (Figure 6.13). This demonstrates a 

significant result as amide bonds are known to be more resistant to biological breakdown 

than, in particular, ester bonds.9,10,11 As can be seen in Figure, the side chain of CIL 272 

possesses both an ester and an amide functionality. Hydrolysis at the ester moiety can be 

noted, but gives a peak of very low intensity in the MS spectrum. The peak at m/z 311 can 

be attributed to the sodium adduct of the ester hydrolysed parent ion [M-Br-C4H9]
+.  
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Fig. 6.13: Possible biodegradation mechanism of 272. 

However, degradation of the compound was also observed in the abiotic control samples. In 

these controls, the sludge was inactivated or poisoned by the addition of HgCl2. Therefore 

biodegradation of the CIL is not expected in these flasks. The MS spectra of these samples 

indicate the disappearance of the intact parent cation (m/z 344) over time and the formation 

of the mass ion at m/z 141(Figure 6.14). 
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Fig. 6.14: Abiotic control samples after day 0, day 7 and day 28. 
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In the day 28 abiotic sample (Figure 6.14) the sodium adduct of the hydrolysis product can 

be seen as a high intensity peak (m/z 163) and the IL cation mass is no longer evident. This 

result would hence suggest that an abiotic degradation of the CIL occurred. The 

concentration of the HgCl2 added to the control flask may not have been efficient in 

inactivating the sludge inoculum. Adsorption of the test substance to the solid sludge 

particles or a chemical hydrolysis of the IL side chain in aqueous media may also explain 

the disappearance of the parent molecule in both biotic and abiotic controls. Taking these 

factors into consideration, several additional abiotic controls were prepared in the 

subsequent experiments.  

The experiments were repeated with several alterations made to the experimental 

procedure. A panel of additional controls was prepared in order to gauge a better 

understanding of the observed IL degradation. Sterile controls (test IL in the presence of 

autoclaved inoculated test media), controls with no activated sludge inoculum present (IL 

in mineral medium only) and a control containing the test IL in distilled water. The speed 

of the flask agitation was increased also to 100 rpm to ensure a homogenous mixing during 

incubation.  

The MS data acquired from these sets of experiments yielded results similar to those 

observed in the preliminary tests. The mass ion at m/z 141 or its corresponding sodium 

and/or potassium adducts (m/z 163 and 179 respectively) was noted in both biotic and 

abiotic controls. The disappearance of the parent cationic species in the test samples from 

these experiments was rapid, compared to those noted in the preliminary data. The cation of 

272 can be seen on the initial day of sampling (Figure 6.15) but is no longer observed in 

MS spectra of the next sampling day (Figure 6.16, Day 3). This may be due to the fact that 

the agitation speed of the incubated flasks was increased (from 80 to 100 rpm). A more 

homogenous mixture of the aqueous supernatant and the solid sludge could lend to this 

significant difference in degradation rates. However when the assay was repeated again at 

the higher agitation speed, the rate of degradation remained rapid (disappearance of parent 

cation after day 3 of testing). The difference in degradation rates between the various 

experimental runs may be as a result of different activated sludge samples employed. The 
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mixed microbial community of the activated sludge can vary from one sludge sample to the 

next.1,2  
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Fig. 6.15: MS spectrum of 272 (Day 0 activated sludge sample). 
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Fig. 6.16: MS spectrum of 272 (Day 3 activated sludge sample). 

The abiotic controls all displayed similar MS data to the abovementioned biotic data with a 

clear absence of the parent ion at m/z 344. In the sterile activated sludge controls (where 

sludge was autoclaved prior to treatment with tested IL) removal of 272 occurred after day 

3 of the test. This result was not anticipated since sterilising the inoculum would ensure that 

all the microorganisms in the sludge would be killed. Therefore biological mineralization of 

the IL would not be possible. The MS spectra of the abiotic controls containing no sludge 

inoculum indicated the presence of this mass ion (m/z 344) up until day 10 of the 

experiment. Additionally, the MS data of the test controls containing the CIL in distilled 

water only demonstrated removal of the parent cation after day 12 of the study (Figure 

6.18). 
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Fig. 6.17: MS spectrum of 272 in mineral nutrient medium after day 10. 
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Fig. 6.18: MS spectrum of 272 in distilled water after day 12. 
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This data clearly indicates that biotic degradation of 272 did not occur in the test controls. 

The results would also suggest that the CIL 272 breaks down in aquatic environments over 

time. Although this CIL cannot be described as biodegradable from the obtained 

experimental results, it is envisaged that its persistence in aquatic environments may not be 

a concern.  

6.4 Primary biodegradation and metabolite profiling studies of 3-methyl-1-

L-phenylalanine-D-phenylalanine ethyl ester imidazolium bromide (378) 

CIL 

6.4.1 Activated Sludge assay 

The primary biodegradation of 3-methyl-1-L-phenylalanine-D-phenylalanine ethyl ester 

imidazolium bromide (378) CIL was studied using an activated sludge assay. The AS 

inoculum was treated as previously described (Section 6.3.1). In order to investigate 

possible abiotic degradation of the compound, a series of controls were run in parallel. 

These abiotic controls contained the same concentration of the test substance (240 µM) 

however in various test environments. Control flasks were prepared in which the activated 

sludge inoculum was inactivated or sterilized (poisoned by the addition of HgCl2 or 

autoclaved respectively). Controls in which no sludge inoculum was present (i.e. control 

flasks containing the test CIL in mineral nutrient medium or in distilled water) were also set 

up. All the test vessels and controls was prepared in duplicate and kept at 100 rpm in the 

dark at 25 °C. The flasks were maintained under these conditions for the 28 day test period. 

Sampling was performed every 3 or 4 days and subsequently analysed via ESI-MS.  

6.4.2 ESI-MS analysis of CIL metabolites 

Following sampling from the biological test vessels, analysis was performed using ESI-MS. 

This technique allowed for qualitative analysis of the CIL biodegradation samples and 

identification of any possible metabolite products. Samples were introduced to the MS 

detector via a direct infusion method. Figure 6.19 depicts an MS spectrum obtained of an 

initial 378 biodegradation sample (day 0). 
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Fig. 6.19: MS spectrum of 378 activated sludge sample (Day 0). 

An intense peak at m/z 463 indicates the presence of the intact parent cation of 378 [M-

Br]+. However this mass ion disappears after the next sampling day (Figure 6.20, Day 3) 

and other peaks become evident. This rapid removal of the CIL may be due to the 

organisms present in the activated sludge sample (may contain a higher diversity of 

microbes compared to previous batches). A physical interaction between the test chemical 

and the activated sludge may also explain the disappearance of the cation so quickly.  
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Fig. 6.20: MS spectrum of 378 activated sludge sample (Day 3). 

From the spectra a peak at m/z 141 can be seen (Figure 6.20). This mass peak was seen 

previously in the biodegradation samples of the CIL 3-methyl-1-L-phenylalanine butyl 

ester imidazolium bromide (272). This mass arises from hydrolysis of the amide bond 

adjacent to the imidazolium cation (Figure 6.21). The peaks at m/z 163 and m/z 179 

correspond to the sodium and potassium metal adducts. Figure 6.21 schematically depicts 

the chemical structure of 378. The side chain of the CIL bears an ester and two amide 

functionalities which provide sites for possible enzymatic hydrolysis. However, it appears 

from the obtained MS data that hydrolysis mainly occurs at the bridging amide moiety.  



244 

 

 

Fig. 6.21: Chemical structure of 378, indicating possible sites for hydrolysis. 

Similar MS data was obtained for the abiotic controls, with the removal of the CIL cation 

(m/z 463) observed after 3 days of the test. The disappearance of this mass ion was noted in 

the assay flasks containing poisoned (inactivated) and sterilized sludge inoculum. 

Moreover, degradation of the CIL (disappearance of parent ion) was also noted in the test 

vessels which contained no sludge inoculum (IL in distilled water or mineral medium). The 

rate of degradation in these samples was slower than inoculated abiotic controls. After ten 

days incubation, samples from these controls indicated the presence of the hydrolysis 

product at m/z 141 (Figure 6.22).  
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Fig. 6.22: MS spectrum of 378 in mineral medium (after 10 days). 
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Fig. 6.23: MS spectrum of 378 in distilled water (after 10 days). 



246 

 

From screening both of these CILs for biodegradation, one metabolite structure can be 

proposed. 3-Carboxymethyl-1-methylimidazolium (m/z 141) is formed as a result of 

hydrolysis of the chiral side chain of the CIL. Albeit the CILs 272 and 378 displaying 

relatively low levels of antibacterial and antifungal activities (Chapter 5), the toxicity of the 

metabolite product must be known. As a result, 3-carboxymethyl-1-methylimidazolium 

bromide was synthesized13 in the laboratory (see experimental, Chapter 7) and subsequently 

challenged against various strains of bacteria. This compound displayed low levels of 

toxicity against bacterial strains, Escherichia coli, Bacillus subtilis, Pseudomonas 

fluorenscens, Pseudomonas putida (CP1), and Pseudomonas putida (KT2440). High MIC 

values (low toxicities) of 100000 µM (100 mM) were observed (Table 6.4) for all bacterial 

strains.  

Table 6.4: MIC (µM) values of proposed metabolite, 3-carboxymethyl-1-
methylimidazolium. 

 

Strain MIC (µM) 

E. coli 100000 

Bacillus subtilis 100000 

P.  fluorenscens 100000 

P.  putida (CP1) 100000 

P.  putida (KT2440) 100000 
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6.5 Conclusions 

Two High Performance Liquid Chromatography (HPLC) methods were developed to 

identify novel chiral ionic liquids and their corresponding metabolite structures. Reverse-

Phase (RP) and Hydrophilic interaction chromatography (HILIC) systems were studied 

with Mass Spectrometry (MS) employed as the detection method in both cases. However 

validation of the developed methods was not successful, most notably due to a lack of 

reproducibility. This lack of reproducibility was evident for both methods therefore 

indicating potential instrumental errors (i.e. lack of obtaining an analytical system). A 

Direct Infusion Electro-Spray Ionisation Mass Spectrometry (DI ESI-MS) method was 

hence employed to analyse IL biodegradation samples.  

The biodegradation of two novel CILs (272 and 378) were studied using an activated 

sludge assay. In this assay an activated sludge inoculum (sampled from a wastewater 

treatment facility) was challenged against the test ILs over a 28-day period. Samples were 

withdrawn periodically (every 3-4 days) and subsequently analysed by MS. From the 

accumulated data obtained, it appeared that both CILs broke down (disappearance of parent 

ion masses from mass spectra) in the test vessels over the sampling period. However, this 

degradation could not be classified as a biotic breakdown of the test compounds as similar 

MS data was achieved in the experimental abiotic controls (i.e. sludge inoculum was 

poisoned, sterilised or absent from test flasks). A metabolite structure was proposed, 

namely 3-carboxymethyl-1-methylimidazolium, and synthesized in the laboratory. An 

antibacterial screen was performed on the metabolite compound (Table 6.4) in order to 

investigate its possible toxicity in the environment. Relatively high MIC values (low 

toxicities) were noted from this test. 
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Chapter 7: Experimental 
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7.1 Introduction 

7.1.1 Chemicals 

All chemicals used in Chapters 2, 3 and 4 were purchased from Sigma Aldrich, with the 

exceptions of lithium bis(trifluromethanesulfonyl) imide (LiNTf2) and N-[(3-

dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (EDC) which were purchased 

from Solvionic and TCI Europe respectively. Methanol, ethanol, hexane and triethylamine 

were dried over molecular sieves and distilled before use. 1-butanol, 1-pentanol, 1-decanol 

were dried over molecular sieves and used without further purification. THF and diethyl 

ether were dried over sodium wire, then sodium benzophenone, and distilled before use. 

DCM was dried over calcium hydride, and distilled before use. Riedel de Haën silica gel 

was used for flash and thin layer chromatography. 

Müeller Hinton broth, 96 well plates and nutrient broth were received from Sigma Aldrich 

and Oxoid and used as instructed (Chapter 5). In Chapter 6, ammonium formate, formic 

acid, water with 0.1% formic acid (HPLC-MS grade), acetonitrile with 0.1% formic acid 

(HPLC-MS grade) and HgCl2 were obtained from Fluka. Potassium dihydrogen 

orthophosphate (KH2PO4), dipotassium hydrogen orthophosphate (K2HPO4), disodium 

hydrogen orthophosphate dehydrate (Na2HPO4·2H2O), Iron (III) chloride hexahydrate 

(FeCl3.6H2O) and bromoacetic acid were received from Aldrich. Ammonium chloride 

(NH4Cl), calcium chloride anhydrous (CaCl2·2H2O) and Magnesium sulphate heptahydrate 

(MgSO4.7H2O) were obtained from Riedel de Haën. and Fluka respectively.  

7.1.2 NMR 

All NMR analysis was preformed on a Bruker AC 400 MHz spectrometer in deuterated 

chloroform or dimethyl sulfoxide (DMSO-d6), operating at 400 MHz for 1H NMR and 100 

MHz for 13C NMR. A 600 MHz spectrometer, operating at 600 MHz for 1H NMR  and 150 

MHz for 13C NMR, was also used for analysis of some examples. Chemical shifts are 

reported in parts per million (ppm) are relative to the internal standard TMS and coupling 

constants (J) in Hertz (Hz).  
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Numbering of specific protons and carbons of the compounds is assigned for all alkylating 

agents, bromide and octylsulfate (OctOSO3) salts. Numbering is then assigned for the first 

outlined compound of each bistriflimide anion (NTf2). When stating multiplicity of peaks 

in NMR the following abbreviations are used; s-singlet, d-doublet, t-triplet, q-quartet, qt-

quintet, dd-doublet of doublets, dt doublet of triplets, dq-doublet of quartets, tt-triplet of 

triplets, tq-triplet of quartets, m-multiplet, br-broad.  

7.1.3 Optical Rotation 

Optical rotations were measured using a Perkin Elmer 343 Polarimeter in chloroform, water 

or ethanol at 20 °C. 

7.1.4 Melting point 

Melting points were determined using a Griffin melting point apparatus and the values are 

expressed in degrees celcius (°C). 

7.1.5 IR analysis 

All IR analysis was carried out on a Perkin Elmer 100 FT-IR spectrometer with ATR.  The 

strength of reported peaks are described as weak (w), medium (m), broad (b), strong (s) and 

very strong (vs). 

7.1.6 MS 

Mass spectrometry (MS) characterisation was obtained for novel (a)chiral ILs (from 

Chapters 2, 3 and 4). High resolution mass spectrometry was obtained for all bromide ILs. 

Low resolution mass spectrometry was obtained for all NTf2 and OctOSO3 ILs. Mass 

spectrometry analysis was not obtained for the starting materials (namely α-bromoester and 

amide intermediates) due to the reactivity and rapid hydrolysis of these compounds.  

7.1.7 LC/MS 

High Performance Liquid Chromatography (HPLC) analysis of biodegradation samples 

(Chapter 6) was carried out on an Agilent Technologies 1200 Series Liquid 
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Chromatography system, with a degasser and quaternary pump (G1311A), and Dual Loop 

Autosampler (DLA-G2258A). Agilent Chemstation software was also utilised in 

processing obtained spectral data (Agilent ChemStation Rev.B.03.01-SR1 [317]). MS 

analysis was preformed on an Agilent Technologies 6110 Mass Spectrometer (Quadrupole 

G6110A) and a Bruker Esquire 3000 Mass spectrometer. Direct Infusion Electrospray 

Ionization (DI-ESI MS) was carried out using a Cole Palmer 749000 Series 100 µl syringe 

pump. 

7.2 Chapter 2 experimental-Preparation of Achiral Ionic liquids 

7.2.1 Preparation of achiral bromoesters 

Representative procedure for the preparation of achiral bromoesters; Pentyl-2-

bromoacetate (188) 

 

To a stirred solution of DCM (300 mL), pentanol (26.421 g, 300.0 mmol), and 

triethylamine (55.30 mL, 400.0 mmol) under a nitrogen atmosphere at -78 ºC was added 

dropwise bromoacetyl bromide (72.648 g, 360 mmol). After stirring at -78 ºC for 3 h, the 

reaction mixture was allowed warm up to -20 ºC and quenched by addition of water (60 

mL). The organic phase was washed with distilled water (3 x 60 mL), saturated ammonium 

chloride (3 x 60 mL), saturated sodium bicarbonate (3 x 60 mL) and brine (3 x 60 mL). The 

organic phase was then dried over magnesium sulfate, filtered and solvents removed via 

rotary evaporation to yield to give a brown liquid at RT in 79 % yield. The crude product 

was then distilled to give the title compound (188) as a pale yellow oil at RT in 64 % yield 

(40.223 g, 192.0 mmol). 

Molecular formula C7H13BrO2 

Molecular weight 209 gmol-1 

1H NMR* (400 MHz, CDCl3)  δ (ppm) 4.04 (t, J = 6.8 Hz, 2H, H3), 3.74 (s, 2H, H1), 1.60 

(tt, J = 7.2, 6.8 Hz, 2H, H4), 1.30-1.21 (m, 4H, H5,6), 0.82 (t, J = 7.2 Hz, 3H, H7) 



253 

 

13C NMR (100 MHz, CDCl3) δ (ppm) 168.35 (CO,C2), 65.54 (OCH2,C3), 28.69 (CH2,C4), 

27.37 (CH2,C5/C6), 25.03 (CH2,C1), 22.37 (CH2,C5/C6), 13.98 (CH3,C7) 

The NMR data in agreement with literature1 

Decyl-2-bromoacetate (189) 

 

The title compound (189) was prepared from decan-1-ol (31.651 g, 200.0 mmol) and 

bromoacetyl bromide (48.440 g, 240.0 mmol) according to the general procedure (Section 

7.2.1, page 252) as a colourless oil in 52 % yield (29.008 g, 103.97 mmol). 

Molecular formula C12H23BrO2 

Molecular weight 279 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 4.10 (t, J = 6.6 Hz, 2H, H3), 3.76 (s, 2H, H1), 1.62 

(tt, J = 7.4, 6.6 Hz, 2H, H4), 1.48-1.24 (m, 14H, H5-11), 0.81 (t, J = 6.8 Hz, 3H, H12) 

13C NMR (100 MHz, CDCl3) δ (ppm) 168.45 (CO,C2), 67.52 (OCH2,C3), 62.49 (CH2,C4), 

34.16 (CH2), 32.95 (CH2), 32.77 (CH2), 28.69 (CH2), 28.58 (CH2), 28.34 (CH2), 28.19 

(CH2,C1), 22.64 (CH2), 14.12 (CH3,C12) 

The NMR data in agreement with literature2 

2-(2-butoxyethoxy)ethyl-2-bromoacetate (190) 

 

The title compound (190) was prepared from butoxy ethoxyethanol (28.253 g, 200.0 mmol) 

and bromoacetyl bromide (48.339 g, 240.0 mmol) according to the general procedure 

(Section 7.2.1, page 252) as a pale yellow liquid in 61 % yield (34.561 g, 122.12 mmol). 

Molecular formula C10H19BrO4 
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Molecular weight 283 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 4.30 (t, J = 6.0 Hz, 2H, H3), 3.82 (s, 2H, H1), 3.60 (t, 

J = 6.0 Hz, 2H, H4), 3.51 (t, J = 4.6 Hz, 2H, H5), 3.44 (t, J = 4.6 Hz, 2H, H6), 3.33 (t, J = 

6.8 Hz, 2H, H7), 1.56 (tt, J = 7.6, 6.8Hz, 2H, H8), 1.38 (tq, J = 7.6, 7.2 Hz, 2H, H9) 0.90 (t, 

J = 7.2 Hz, 3H, H10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 168.28 (CO,C2), 71.23 (OCH2,C7), 71.12 

(OCH2,C6), 70.69 (OCH2,C5), 68.81 (OCH2,C4), 64.38 (OCH2,C3), 31.64 (CH2,C8), 24.78 

(CH2,C1), 19.22 (CH2,C9), 14.06 (CH3,C10) 

NMR data in agreement with literature2 

Dodecyl-2-bromoacetate (191) 

 

The title compound (191) was prepared from 1-dodecanol (18.626 g, 120.00 mmol) and 

bromoacetyl bromide (30.273 g, 150.00 mmol) according to the general procedure (Section 

7.2.1, page 252) as a pale yellow liquid in 51 % yield (18.901 g, 61.76 mmol). 

Molecular formula C14H27BrO2 

Molecular weight 307 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 4.08 (t, J = 6.8 Hz, 2H, H3), 3.75 (s, 2H, H1), 1.62 

(tt, J = 7.6, 6.8 Hz, 2H, H4), 1.32-1.20 (m, 18 H, H5-13), 0.82 (t, J = 7.0 Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 167.35 (CO,C2), 66.48 (OCH2,C3), 31.99 (CH2), 

29.68 (CH2), 29.63 (CH2), 29.56 (CH2), 29.49 (CH2), 29.19 (CH2), 28.58 (CH2), 28.19 

(CH2,C4), 25.96 (CH2,C1), 25.74 (CH2), 22.70 (CH2), 14.13 (CH3,C14). 
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Tetradecyl-2-bromoacetate (192) 

 

The title compound (192) was prepared from 1-tetradecanol (24.401 g, 144.00 mmol) and 

bromoacetyl bromide (28.259 g, 172.80 mmol) according to the general procedure (Section 

7.2.1, page 252) as a pale yellow liquid in 42 % yield (20.45 g, 61.23 mmol). 

Molecular formula C16H31BrO2 

Molecular weight 335 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 4.11 (t, J = 6.8 Hz, 2H, H3), 3.84 (s, 2H, H1), 1.62 

(tt, J = 7.4, 6.6 Hz, 2H, H4), 1.32-1.19 (m, 22H, H5-15), 0.83 (t, J = 6.8 Hz, 3H, H16) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.35 (CO,C2), 64.48 (OCH2,C3), 30.93 (CH2), 

29.79 (CH2), 29.73 (CH2), 29.68 (CH2), 29.65 (CH2), 29.58 (CH2), 29.50 (CH2), 29.19 

(CH2), 28.60 (CH2), 28.18 (CH2,C4), 25.86 (CH2), 25.70 (CH2,C1), 22.80 (CH2), 14.16 

(CH3,C16) 

7.2.2 Preparation of achiral bromoamides 

 General procedure for the preparation of achiral bromoamides; 2-bromo-N-

octylacetamide (203) 

 

To a stirred solution of DCM (90 mL), octylamine (4.080 g, 32.0 mmol), and triethylamine 

(4.155 g, 41.0 mmol) under a nitrogen atmosphere at -78 ºC was added dropwise 

bromoacetyl bromide (7.728 g, 38.0 mmol). After stirring at -78 ºC for 30 mins, the 

reaction mixture was allowed warm up to room temperature and allowed to stir for 5 hours. 

The reaction was then quenched by addition of water (60 mL). The organic phase was 

washed with distilled water (3 x 60 mL), saturated ammonium chloride (3 x 60 mL), 
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saturated sodium bicarbonate (3 x 60 mL) and brine (3 x 60 mL). The organic phase was 

then dried over magnesium sulfate, filtered and solvents removed via rotary evaporation to 

yield to give a brown liquid at RT in 57 % yield. The crude product was distilled to yield 

the title compound (203) in 44 % yield (3.548 g, 14.19 mmol) as a pale yellow liquid. 

Molecular formula C10H20BrNO 

Molecular weight 250 gmol-1 

1H NMR (400 MHz, CDCl3)  δ (ppm) 6.92 (t, J = 8.0 Hz, 1H, H3), 3.89 (s, 2H, H1), 3.26 

(dt, J = 7.2, 7.0 Hz, 2H, H4), 1.57 (tt, J = 7.2, 6.8 Hz, 2H, H5), 1.32-1.25 (m, 10H, H6-10), 

0.86 (t, J = 7.0 Hz, 3H, H11) 

13C NMR (400 MHz, CDCl3) δ (ppm) 165.69 (CO,C2), 40.29 (HNCH2,C4), 31.74 (CH2), 

29.23 (CH2,C5), 29.19 (CH2), 29.14 (CH2), 26.90 (CH2,C1), 26.57 (CH2), 22.60 (CH2), 

14.06 (CH3,C11) 

2-bromo-N-decylacetamide (204) 

 

The title compound (204) was prepared from decylamine (5.011 g, 32.0 mmol) and 

bromoacetyl bromide (7.691 g, 38.0 mmol) according to the general procedure (Section 

7.2.2, page 255) as a pale orange solid in 71 % yield (6.315 g, 22.71 mmol). 

m.p. 58-60 °C 

Molecular formula C12H24BrNO 

Molecular weight 278 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.43 (t, J = 8.0 Hz, 1H, H3), 3.84 (s, 2H, H1), 3.24 

(dt, J = 7.0, 7.0 Hz, 2H, H4), 1.47 (tt, J = 7.4, 7.0 Hz, 2H, H5), 1.23-1.17 (m, 14 H, H6-12), 

0.83 (t, J = 6.8 Hz, 3H, H13) 



257 

 

13C NMR (100 MHz, CDCl3) δ (ppm) 165.27 (CO,C2), 40.31 (HNCH2,C4), 31.90 

(CH2,C5), 29.61 (CH2), 29.54 (CH2), 29.53 (CH2), 29.45 (CH2), 29.32 (CH2), 29.26 

(CH2,C1), 26.83 (CH2), 22.71 (CH2), 14.16 (CH3,C13) 

2-bromo-N-dodecylacetamide (205) 

 

The title compound (205) was prepared from dodecylamine (15.002 g, 80.90 mmol) and 

bromoacetyl bromide (19.381 g, 97.10 mmol) according to the general procedure (Section 

7.2.2, page 255) as a pale orange solid in 92 % yield (22.885 g, 74.78 mmol). 

m.p. 64-66 °C 

Molecular formula C14H28BrNO 

Molecular weight 306 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.41 (t, J = 8.8 Hz, 1H, H3), 3.82 (s, 2H, H1), 3.21 

(dt, J = 7.0, 6.6 Hz, 2H, H4), 1.47 (tt, J = 7.4, 6.6 Hz, 2H, H5), 1.23-1.14 (m, 18H, H6-14), 

0.81 (t, J = 6.8 Hz, 3H, H15) 

13C NMR (100 MHz, CDCl3) δ (ppm) 165.29 (CO,C2), 40.30 (HNCH2,C4), 31.92 

(CH2,C5) 29.63 (CH2), 29.57 (CH2), 29.51 (CH2), 29.39 (CH2), 29.35 (CH2), 29.25 (CH2), 

29.05 (CH2,C5), 26.82 (CH2,C1), 26.70 (CH2), 22.70 (CH2), 14.13 (CH3,C15) 

7.2.3 Preparation of achiral bromide salts 

General procedure for the preparation of achiral bromide salts; 3-Methyl-1-

(pentoxycarbonylmethyl) imidazolium bromide (42) 
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To a stirred solution of 1-methylimidazole (9.032 g, 110.0 mmol) in diethyl ether (200 mL) 

at -78 ºC under a nitrogen atmosphere pentyl bromoacetate (188) (37.011 g, 132.0 mmol) 

was added dropwise. The reaction mixture was stirred vigorously at -15 ºC for 2 h, then at 

RT overnight. The diethyl ether top phase was decanted and the IL washed with diethyl 

ether (3 x 10 mL). The residual solvent was removed on the rotary evaporator and the 

product was dried under high vacuum for 24 h to yield the title compound (42) as a 

yellow/orange viscous liquid at RT in 96 % yield (30.769 g, 105.73 mmol).  

Molecular formula C11H19BrN2O2 

Molecular weight 291 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 10.01 (s, 1H, H2), 7.72 (t, J = 1.8 Hz, 1H, H4), 7.66 

(t, J = 1.6 Hz, 1H, H3), 5.41 (s, 2H, H5), 4.11 (t, J = 7.0 Hz, 2H, H7), 4.05 (s, 3H, H1), 

1.63 (tt, J = 7.2, 7.0 Hz, 2H, H8), 1.28-1.23 (m, 4H, H9,10), 0.85 (t, J = 6.8 Hz, 3H, H11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.17 (CO,C6), 137.94 (NCHN,C2), 123.00 

(NCH,C4), 122.87 (NCH,C3), 66.91 (OCH2,C7), 50.17 (NCH2,C5), 36.84 (NCH3,C1), 

27.91 (CH2,C8), 27.70 (CH2,C9), 22.14 (CH2,C10), 13.87 (CH3,C11) 

IR (neat) (cm-1) 3060 (w), 2957 (w), 2932 (w), 1743 (s), 1225 (s), 1202 (s), 1173 (vs) 

MS (m/z) Found [M-Br-]+ 211.1440, C11H19N2O2
+ requires 211.1441 

The spectral data are in agreement with literature1 

3-Methyl-1-(decoxycarbonylmethyl) imidazolium bromide (193) 

 

The title compound (193) was prepared from 1-methylimidazole (6.733 g, 82.0 mmol) and 

decyl bromoacetate (189) (29.010 g, 99.0 mmol) according to the general procedure 

(Section 7.2.3, page 257) as a white solid in 97 % yield (28.811 g, 79.81 mmol). 
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m.p 51-53 °C 

Molecular formula C16H29BrN2O2 

Molecular weight 361 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 10.01 (s, 1H, H2), 7.72 (t, J = 1.6 Hz, 1H, H4), 7.66 

(t, J = 1.6 Hz, 1H, H3), 5.41 (s, 2H, H5), 4.11 (t, J = 7.0 Hz, 2H, H7), 4.05 (s, 3H, H1), 

1.63 (tt, J = 7.2, 6.8 Hz, 2H, H8), 1.28-1.15 (m, 14H, H9-15), 0.85 (t, J = 7.2 Hz, 3H, H16) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.19 (CO,C6), 138.20 (NCHN,C2), 123.90 

(NCH,C4), 122.81 (NCH,C3), 67.05 (OCH2,C7), 50.12 (NCH2,C5), 36.81 (NCH3,C1), 

31.84 (CH2), 29.50 (CH2), 29.45 (CH2), 29.27 (CH2), 29.18 (CH2), 28.31 (CH2,C8), 25.68 

(CH2), 22.65 (CH2), 14.11 (CH3,C16) 

IR (neat) (cm-1) 2921 (m), 2850 (m), 1748 (s), 1218 (s), 1176 (vs) 

MS (m/z) Found [M-Br-]+ 281.2216, C16H29N2O2
+ requires 281.2223 

The spectral data are in agreement with literature2 

3-Methyl-1-(dodecylcarbonylmethyl) imidazolium bromide (194) 

 

The title compound (194) was prepared from 1-methylimidazole (4.187 g, 51.0 mmol) and 

dodecyl bromoacetate (191) (18.362 g, 60.0 mmol) according to the general procedure 

(Section 7.2.3, page 257) as a pale orange solid in 55 % yield (10.868 g, 27.94 mmol). 

m.p 56-58 °C 

Molecular formula C18H33BrN2O2 

Molecular weight 389 gmol-1 
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1H NMR (400 MHz, CDCl3) δ (ppm) 10.26 (s, 1H, H2), 7.57 (t, J = 1.8 Hz, 1H, H4), 7.43 

(t, J = 1.8 Hz, 1H, H3), 5.47 (s, 2H, H5), 4.20 (t, J = 6.8 Hz, 2H, H7), 4.10 (s, 3H, H1), 

1.67 (tt, J = 7.2, 6.8 Hz, 2H, H8), 1.36-1.23 (m, 18H, H9-17), 0.89 (t, J = 7.2 Hz, 3H, H18) 

13C NMR (400 MHz, CDCl3) δ (ppm) 166.15 (CO,C6), 138.33 (NCHN,C2), 123.79 

(NCH,C4), 123.05 (NCH,C3), 67.10 (OCH2,C7), 50.28 (NCH2,C5), 36.92 (NCH3,C1), 

31.90 (CH2), 29.63 (CH2), 29.58 (CH2), 29.48 (CH2), 29.34 (CH2), 29.29 (CH2), 29.19 

(CH2), 28.33 (CH2,C8), 25.70 (CH2), 22.68 (CH2), 14.13 (CH3,C18) 

IR (neat) (cm-1) 3420 (b), 2916 (s), 1746 (s), 1578 (m), 1470 (m) , 1224 (s), 1177 (vs) 

MS (m/z) Found [M-Br-]+ 309.2540, C18H33N2O2
+ requires 309.2536 

3-Methyl-1-(tetradecylcarbonylmethyl) imidazolium bromide (195) 

 

The title compound (195) was prepared from 1-methylimidazole (4.243 g, 51.30 mmol) and 

tetradecyl bromoacetate (192) (20.451 g, 62.0 mmol) according to the general procedure 

(Section 7.2.3, page 257) as a white solid in 82 % yield (17.472 g, 41.90 mmol). 

m.p 64-66 °C 

Molecular formula C20H37BrN2O2 

Molecular weight 417 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 10.17 (s, 1H, H2), 7.58 (t, J = 1.8 Hz, 1H, H4), 7.47 

(t, J = 1.8 Hz, 1H, H3), 5.47 (s, 2H, H5), 4.13 (t, J = 6.8 Hz, 2H, H7), 4.02 (s, 3H, H1), 

1.62 (tt, J = 7.2, 6.8 Hz, 2H, H8), 1.30-1.19 (m, 22H, H9-19), 0.83 (t, J = 6.8 Hz, 3H, H20) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.15 (CO,C6), 138.53 (NCHN,C2), 123.71 

(NCH,C4), 122.92 (NCH,C3), 67.15 (OCH2,C7), 50.32 (NCH2,C5), 36.95 (NCH3,C1), 

31.91 (CH2,C18), 29.65 (CH2), 29.64 (CH2), 29.59 (CH2), 29.49 (CH2), 29.35 (CH2), 29.20 
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(CH2), 29.19 (CH2), 29.14 (CH2), 28.35 (CH2,C8), 25.72 (CH2), 22.69 (CH2), 14.14 

(CH3,C20) 

IR (neat) (cm-1) 3332 (w), 2915 (s), 2850 (s), 1747 (s), 1579 (m), 1471 (m), 1230 (s), 1178 

(vs) 

MS (m/z): Found [M-Br-]+ 337.2841, C20H37N2O2
+ requires 337.2849 

3-Methyl-1-(butoxyethoxycarbonylmethyl) imidazolium bromide (196) 

 

The title compound (196) was prepared from 1-methylimidazole (14.779 g, 180.0 mmol) 

and di(ethyleneglycol)butyl ether bromoacetate (190) (61.331 g, 217.0 mmol) according to 

the general procedure  (Section 7.2.3, page 257) as a white solid in 89 % yield (58.256 g, 

159.60 mmol). 

m.p 50-52 °C 

Molecular formula C14H25BrN2O4 

Molecular weight 365 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 10.04 (s, 1H, H2), 7.64 (t, J = 1.8 Hz, 1H, H4), 7.47 

(t, J = 1.6 Hz, 1H, H3), 5.46 (s, 2H, H5), 4.30 (t, J = 4.8 Hz, 2H, H7), 4.03 (s, 3H, H1), 

3.68 (t, J = 4.6 Hz, 2H, H8), 3.60 (t, J = 4.6 Hz, 2H, H9), 3.53 (t, J = 4.8 Hz, 2H, H10), 

3.40 (t, J = 6.8 Hz, 2H, H11), 1.52 (tt, J = 7.6, 6.8 Hz, 2H, H12), 1.33 (tq, J = 7.6, 7.4 Hz, 

2H, H13), 0.86 (t, J = 7.4 Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.16 (CO,C6), 137.90 (NCHN,C2), 123.92 

(NCH,C4), 123.24 (NCH,C3), 71.03 (OCH2,C11), 70.45 (OCH2,C10), 69.93 (OCH2,C9), 

69.79 (OCH2,C8), 68.40 (OCH2,C7), 50.08 (NCH2,C5), 36.81 (NCH3,C1), 31.50 

(CH2,C12), 19.10 (CH2,C13), 13.84 (CH3,C14) 
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IR (neat) (cm-1) 3440 (w), 2870 (m), 1752 (s), 1576 (m), 1567 (m), 1219 (s), 1095 (vs) 

MS (m/z) Found [M-Br-]+ 285.1811, C14H25N2O2
+ requires 285.1808 

The spectral data are in agreement with literature2 

3-Methyl-1-(2-(octylamino)-2-oxoethyl)-imidazolium bromide (206) 

 

The title compound (206) was prepared from 1-methylimidazole (0.623 g, 7.60 mmol) and 

2-bromo-N-octylacetamide (203) (2.271 g, 9.10 mmol) according to the general procedure 

(Section 7.2.3, page 257) as a beige solid in 98 % yield (2.489 g, 7.52 mmol). 

m.p 82-84 °C 

Molecular formula C14H26BrN3O 

Molecular weight 332 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.89 (s, 1H, H2), 8.60 (t, J = 4.7 Hz, 1H, H7), 7.68 (s, 

1H, H4), 7.06 (s, 1H, H3), 5.38 (s, 2H, H5), 4.03 (s, 3H, H1), 3.23 (dt, J = 6.8, 6.4 Hz, 2H, 

H8), 1.59 (tt, J = 7.0, 6.8 Hz, 2H, H9), 1.31-1.21 (m, 10H, H10-14), 0.88 (t, J = 6.8 Hz, 3H, 

H15) 

13C NMR (100 MHz, CDCl3) δ (ppm) 164.22 (CO,C6), 137.52 (NCHN,C2), 123.87 

(NCH,C4), 122.31 (NCH,C3), 51.87 (NCH2,C5), 40.16 (HNCH2,C8), 36.80 (NCH3,C1), 

31.92 (CH2,C9), 29.58 (CH2), 29.37 (CH2), 29.28 (CH2), 27.07 (CH2), 22.70 (CH2), 14.14 

(CH3,C15) 

IR (neat) (cm-1) 3071 (w), 2920 (m), 2852 (m), 1667 (vs), 1686 (m), 1560 (s), 1267 (s), 

1183 (s), 1165 (s) 

MS (m/z) Found [M-Br-]+ 252.2088, C14H26N3O
+ requires 252.2070 
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3-Methyl-1-(2-(decylamino)-2-oxoethyl)-imidazolium bromide (207) 

 

The title compound (207) was prepared from 1-methylimidazole (1.448 g, 17.60 mmol) and 

2-bromo-N-decylacetamide (204) (5.871 g, 21.10 mmol) according to the general procedure 

(Section 7.2.3, page 257) as a beige solid in 94 % yield (5.982 g, 16.62 mmol). 

m.p. 85-87 °C 

Molecular formula C16H30BrN3O 

Molecular weight 360 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.79 (s, 1H, H2), 8.60 (t, J = 5.7 Hz, 1H, H7), 7.65 (t, 

J = 1.6 Hz, 1H, H4), 7.26 (t, J = 1.6 Hz, 1H, H3), 5.37 (s, 2H, H5), 3.99 (s, 3H, H1), 3.24 

(dt, J = 7.2, 7.0 Hz, 2H, H8), 1.58 (tt, J = 7.8, 7.2 Hz, 2H, H9), 1.31-1.20 (m, 14H, H10-

16), 0.88 (t, J = 7.2 Hz, 3H, H17) 

13C NMR (100 MHz, CDCl3) δ (ppm) 164.25 (CO,C6), 137.47 (NCHN,C2), 122.64 

(NCH,C4), 119.65 (NCH,C3), 51.82 (NCH2,C5), 40.10 (HNCH2,C8), 36.83 (NCH3,C1), 

31.86 (CH2,C9), 29.57 (CH2), 29.55 (CH2), 29.29 (CH2), 29.26 (CH2), 29.14 (CH2), 27.07 

(CH2), 22.65 (CH2), 14.10 (CH3,C17) 

IR (neat) (cm-1) 3211 (w), 3071 (w), 2918 (m), 2850 (m), 1667 (vs), 1686 (m), 1561 (s), 

1263 (m), 1182 (s), 1164 (s) 

MS (m/z) Found [M-Br-]+ 280.2389, C16H30N3O
+ requires 280.2383 
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3-Methyl-1-(2-(dodecylamino)-2-oxoethyl)-imidazolium bromide (208) 

 

The title compound (208) was prepared from 1-methylimidazole (0.262 g, 3.20 mmol) and 

2-bromo-N-dodecylacetamide (205) (1.171 g, 3.80 mmol) according to the general 

procedure (Section 7.2.3, page 257) as a beige solid in 94 % yield (1.170 g, 3.01 mmol). 

m.p 89-91 °C 

Molecular formula C18H34BrN3O 

Molecular weight 388 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.73 (s, 1H, H2), 8.49 (t, J = 5.4 Hz, 1H, H7), 7.57 (t, 

J = 1.6 Hz, 1H, H4), 7.15 (t, J = 1.6 Hz, 1H, H3), 5.29 (s, 2H, H5), 3.96 (s, 3H, H1), 3.16 

(dt, J = 7.2, 6.0 Hz, 2H, H8), 1.50 (tt, J = 7.8, 7.2 Hz, 2H, H9), 1.22-1.17 (m, 18H, H10-

18), 0.81 (t, J = 7.0 Hz, 3H, H19) 

13C NMR (100 MHz, CDCl3) δ (ppm) 164.20 (CO,C6), 137.49 (NCHN,C2), 123.90 

(NCH,C4), 122.25 (NCH,C3), 51.88 (NCH2,C5), 40.15 (HNCH2,C8), 36.79 (NCH3,C1), 

31.93 (CH2,C9), 29.66 (CH2), 29.58 (CH2), 29.37 (CH2), 29.28 (CH2), 29.20 (CH2),  29.10 

(CH2), 27.07 (CH2), 22.70 (CH2), 14.15 (CH3,C19) 

IR (neat) (cm-1) 3212 (w), 3071 (w), 2917 (vs), 2850 (s), 1667 (vs), 1686 (m), 1561 (s), 

1266 (m), 1183 (m), 1165 (m) 

MS (m/z) Found [M-Br-]+ 308.2698, C18H34N3O
+ requires 308.2696 
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7.2.4 Preparation of achiral OctOSO3
 
salts- General procedure for the preparation of 

OctOSO3 achiral salts: 3-methyl-1-(pentoxycarbonylmethyl)imidazolium OctOSO3 (45) 
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To a solution of 3-methyl-1-(pentoxycarbonylmethyl)imidazolium bromide (42) (0.580 g, 

2.00 mmol) in distilled water (7 mL) was added in one portion sodium octyl sulphate 

(0.521 g, 2.20 mmol) and stirred at 60 ºC for 2 h. The water was then slowly removed 

under vacuum and a brown solid precipitated was obtained. The precipitate was dissolved 

in DCM (8 mL) and washed with distilled water (2 x 1 mL). The DCM was removed on the 

rotary evaporator to yield the title compound (45) as a viscous pale yellow liquid at RT in 

85 % yield (0.712 g, 1.69 mmol).  

Molecular formula C19H36N2O6S 

Molecular weight 420 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.29 (s, 1H, H2), 7.39 (t, J = 1.6 Hz, 1H, H4), 7.33 (t, 

J = 1.6 Hz, 1H, H3), 5.14 (s, 2H, H5), 4.12 (t, J = 7.0 Hz, 2H, H7), 3.95 (t, J = 6.8 Hz, 2H, 

H12), 3.94 (s, 3H, H1), 1.89-1.63 (m, 4H, H8,13), 1.32-1.19 (m, 14H, H9-10,14-18), 0.88 

(t, J = 7.0 Hz, 3H, H11), 0.82 (t, J = 6.8 Hz, 3H, H19) 

13C NMR (400 MHz, CDCl3) δ (ppm) 166.50 (CO,C6), 138.79 (NCHN,C2), 123.69 

(NCH,C4), 123.07 (NCH,C3), 67.94 (OCH2,C12), 66.95 (OCH2,C7), 49.93 (NCH2,C5), 

36.56 (NCH3,C1), 31.83 (CH2), 29.49 (CH2), 29.37 (CH2), 29.23 (CH2,C8), 28.03 

(CH2,C13), 27.81 (CH2), 25.87 (CH2), 22.66 (CH2), 22.26 (CH2), 14.12 (CH3,C11/C19), 

13.94 (CH3,C11/C19) 

IR (neat) (cm-1) 3050 (w), 2955 (w), 2922 (w), 1747 (m), 1223 (vs), 1057 (m), 1017 (m) 

LRMS (m/z) 211.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

Spectral data in agreement with literature2 
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3-Methyl-1-(decoxycarbonylmethyl)imidazolium OctOSO3 (197) 

 

The title compound (197) was prepared from 3-methyl-1-

(decoxycarbonylmethyl)imidazolium bromide (193) (1.310 g, 4.00 mmol) and sodium octyl 

sulfate (1.401 g, 4.20 mmol) according to the general procedure (Section 7.2.4, page 265) 

as a pale yellow viscous liquid in 71 % yield (1.401 g, 2.85 mmol). 

Molecular formula C24H46N2O6S 

Molecular weight 491 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.17 (s, 1H, H2), 7.35 (t, J = 1.8 Hz, 1H, H4), 7.28 (t, 

J = 1.6 Hz, 1H, H3), 5.12 (s, 2H, H5), 4.11 (t, J = 6.8 Hz, 2H, H7), 3.95 (t, J = 6.8 Hz, 3H, 

H17), 3.94 (s, 3H, H1), 1.62-1.57 (m, 4H, H8,18), 1.28-1.10 (m, 24H, H9-15,19-23), 0.83-

0.78 (m, 6H, H16,24) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.42 (CO,C6), 139.59 (NCHN,C2), 123.73 

(NCH,C4), 122.93 (NCH,C3), 67.93 (OCH2,C17), 67.03 (OCH2,C7), 49.96 (NCH2,C5), 

36.60 (NCH3,C1), 31.90 (CH2), 31.84 (CH2), 29.97 (CH2), 29.75 (CH2), 29.61 (CH2), 29.56 

(CH2), 29.51 (CH2), 29.37 (CH2), 29.32 (CH2), 29.28 (CH2,C8), 29.22 (CH2,C18), 28.26 

(CH2), 25.88 (CH2), 25.73 (CH2), 14.14 (CH3,C16/C24), 13.91 (CH3,C16/C24) 

IR (neat) (cm-1) 3048 (w), 2919 (m), 2852 (m), 1749 (m), 1223 (vs), 978 (m) 

LRMS (m/z) 281.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 
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3-Methyl-1-(dodecoxycarbonylmethyl)imidazolium OctOSO3 (198) 

 

The title compound (198) was prepared from 3-methyl-1-

(dodecoxycarbonylmethyl)imidazolium bromide (194) (0.741 g, 1.90 mmol) and sodium 

octyl sulfate (0.538 g, 2.30 mmol) according to the general procedure (Section 7.2.4, page 

265) as a viscous yellow liquid in 79 % yield (0.776 g, 1.49 mmol). 

Molecular formula C26H50N2O6S 

Molecular weight 519 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.23 (s, 1H, H2), 7.35 (t, J = 1.8 Hz, 1H, H4), 7.33 (t, 

J = 1.6 Hz, 1H, H3), 5.12 (s, 2H, H5), 4.11 (t, J = 7.0 Hz, 2H, H7), 3.92 (t, J = 6.8 Hz, 2H, 

H19), 3.91 (s, 3H, H1), 1.61-1.56 (m, 4H, H8,20), 1.27-1.14 (m, 28H, H9-17,21-25) 0.83-

0.78 (m, 6H, H18,26) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.55 (CO,C6), 137.73 (NCHN,C2), 123.58 

(NCH,C4), 123.30 (NCH,C3), 68.10 (OCH2,C19), 66.99 (OCH2,C7), 49.94 (NCH2,C5), 

36.57 (NCH3,C1), 31.93 (CH2), 31.86 (CH2), 29.98 (CH2), 29.84 (CH2), 29.74 (CH2), 29.68 

(CH2), 29.54 (CH2), 29.50 (CH2), 29.47 (CH2), 29.39 (CH2,C8), 28.37 (CH2,C20), 25.86 

(CH2), 25.73 (CH2), 24.88 (CH2), 22.70 (CH2), 22.68 (CH2), 14.14 (CH3,C18/26), 14.12 

(CH3,C18/26) 

IR (neat) (cm-1) 3123 (w), 2922 (s), 2853 (m), 1747 (m), 1175 (vs), 1046 (vs) 

LRMS (m/z) 309.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 
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3-Methyl-1-(tetradecoxycarbonylmethyl)imidazolium OctOSO3 (199) 

 

The title compound (199) was prepared from 3-methyl-1-

(tetradecoxycarbonylmethyl)imidazolium bromide (195) (0.752 g, 1.80 mmol) and sodium 

octyl sulfate (0.514 g, 2.20 mmol) according to the general procedure (Section 7.2.4, page 

265) as a colourless viscous liquid in 95 % yield (0.938 g, 1.71 mmol). 

Molecular formula C28H54N2O6S 

Molecular weight 547 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.41 (s, 1H, H2), 7.30 (t, J = 1.8 Hz, 1H, H4), 7.22 (t, 

J = 1.6 Hz, 1H, H3), 5.12 (s, 2H, H5), 4.11 (t, J = 7.0 Hz, 2H, H7), 3.94 (t, J = 6.8 Hz, H7), 

3.93 (s, 3H, H1), 1.62-1.57 (m, 4H, H8,22), 1.29-1.18 (m, 32H, H9-19,22-27) 0.83-0.78 (m, 

6H, H20,28) 

13C NMR (100 MHz, CDCl3) δ (ppm) 166.46 (CO,C6), 138.88 (NCHN,C2), 123.65 

(NCH,C4), 123.02 (NCH,C3), 67.91 (OCH2,C21), 67.00 (OCH2,C7), 49.92 (NCH2,C5), 

36.56 (NCH3,C1), 31.94 (CH2), 31.84 (CH2), 29.92 (CH2), 29.81 (CH2), 29.71 (CH2), 29.68 

(CH2) 29.64 (CH2), 29.54 (CH2), 29.51 (CH2), 29.38 (CH2), 29.28 (CH2), 29.25 (CH2,C8), 

28.37 (CH2,C22), 25.88 (CH2), 25.74 (CH2), 24.22 (CH2), 22.71 (CH2), 22.67 (CH2), 14.15 

(CH3,C20/C28), 14.13 (CH3,C20/C28) 

IR (neat) (cm-1) 3114 (w), 2914 (vs), 2850 (vs), 1756 (s), 1575 (w), 1471 (m), 1366 (w), 

1236 (vs), 1203 (s), 1059 (m) 

LRMS (m/z) 337.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 
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7.2.5 Preparation of achiral  NTf2 salts- General procedure for the preparation of 

achiral NTf2 salts; 3-Methyl-1-(pentoxycarbonylmethyl)imidazolium NTf2 (177) 

 

A flask was charged with 3-methyl-1-(pentoxycarbonylmethyl)imidazolium bromide (42) 

(40.891 g, 141.0 mmol) and distilled water (100 mL). Lithium trifluoromethanesulfonimide 

(48.101 g, 169.0 mmol) was added in one portion and the suspension stirred vigorously 

overnight at RT. The top aqueous layer was removed, the IL washed with water (3 x 30 

mL) then the solvent removed on the rotary evaporator. The product was dried under high 

vacuum to give the title compound (177) as a yellow/orange slightly viscous liquid at RT in 

90 % yield (62.141 g, 126.56 mmol).  

Molecular formula C13H19F6N3O6S2 

Molecular weight 491 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.68 (s, 1H, H2), 7.34 (t, J = 1.8 Hz, 1H, H4), 7.28 (t, 

J = 1.8 Hz, 1H, H3), 4.92 (s, 2H, H5), 4.13 (t, J = 7.0 Hz, 2H, H7), 3.96 (s, 3H, H1), 1.17 

(tt, J = 7.2, 6.8 Hz, 2H, H8), 1.33-1.27 (m, 4H, H9,10), 0.91 (t, J = 6.8 Hz, 3H, H11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 165.81 (CO,C6), 137.34 (NCHN,C2), 123.90 

(NCH,C4), 123.32 (NCH,C3), 118.09 (q, J = 319 Hz, 2CF3,C12,C13), 67.09 (OCH2,C7), 

49.80 (NCH2,C5), 36.36 (NCH3,C1), 27.85 (CH2,C8), 27.69 (CH2,C9), 22.14 (CH2,C10), 

13.76 (CH3,C11) 

IR (neat) (cm-1) 3167 (w), 2917 (w), 2848 (w), 1760 (m), 1342 (m), 1324 (s), 1173 (vs), 

1120 (vs), 1059 (m) 

LRMS (m/z)  211.4 [M-NTf2]
+; 279.9 [NTf2]

- 

The spectral are data in agreement with literature1 
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3-Methyl-1-(decoxycarbonylmethyl)imidazolium NTf2
 
(200) 
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The title compound (200) was prepared from 3-methyl-1-

(decoxycarbonylmethyl)imidazolium bromide (193) (0.612 g, 1.70 mmol) and Lithium 

trifluoromethanesulfonimide (0.571 g, 2.00 mmol) according to the general procedure 

(Section 7.2.5, page 269) as a yellow liquid in 79 % yield (0.757 g, 1.35 mmol). 

Molecular formula C18H29F6N3O6S2 

Molecular weight 561 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.82 (s, 1H), 7.38 (t, J = 1.8 Hz, 1H), 7.28 (t, J = 1.8 

Hz, 1H), 5.02 (s, 2H), 4.21 (t, J = 7.0 Hz, 2H), 3.89 (s, 3H), 1.59 (tt, J = 7.2, 6.8 Hz, 2H), 

1.23-1.18 (m, 14H), 0.89 (t, J = 6.8 Hz, 3H)  

13C NMR (100 MHz, CDCl3) δ (ppm) 165.71, 137.61, 123.61, 122.96, 118.29 (q, J = 318 

Hz, 2CF3), 67.45, 59.52, 37.43, 36.75, 31.88, 29.52, 29.45, 29.30, 29.15, 28.29, 22.69, 

14.13 

IR (neat) (cm-1) 3177 (w), 2919 (w), 2854 (w), 1759 (m), 1341 (s), 1329 (s), 1176 (vs), 

1129 (vs), 1058 (m) 

LRMS (m/z)  281.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-(dodecoxycarbonylmethyl)imidazolium NTf2
 
(201) 
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The title compound (201) was prepared from 3-methyl-1-

(dodecoxycarbonylmethyl)imidazolium bromide (194) (0.660 g, 1.70 mmol) and Lithium 

trifluoromethanesulfonimide (0.581 g, 2.00 mmol) according to the general procedure 

(Section 7.2.5, page 269) as a pale yellow liquid in 89 % yield (0.889 g, 1.51 mmol). 

Molecular formula C20H33F6N3O6S2 

Molecular weight 590 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.74 (s, 1H), 7.30 (t, J = 1.8 Hz, 1H), 7.25 (t, J = 1.8 

Hz, 1H), 4.93 (s, 2H), 4.13 (t, J = 6.8 Hz, 2H), 3.88 (s, 3H), 1.59 (tt, J = 7.0, 6.8 Hz, 2H), 

1.24-1.18 (m, 18H), 0.81 (t, J = 7.0 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 165.78, 137.53, 123.82, 123.26, 118.10 (q, J = 319 

Hz, 2CF3), 67.25, 49.89, 36.50, 31.92, 29.65, 29.64, 29.58, 29.47, 29.36, 29.18, 28.25, 

25.64, 22.70, 14.13 

IR (neat) (cm-1) 3176 (w), 2916 (m), 2851 (m), 1761 (s), 1342 (s), 1329 (s), 1177 (vs), 1129 

(vs), 1061 (s) 

LRMS (m/z): 309.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-(tetradecoxycarbonylmethyl)imidazolium NTf2
 
(202) 

 

The title compound (202) was prepared from 3-methyl-1-

(tetradecoxycarbonylmethyl)imidazolium bromide (195) (0.707 g, 1.70 mmol) and Lithium 

trifluoromethanesulfonimide (0.581 g, 2.00 mmol) according to the general procedure 

(Section 7.2.5, page 269) as a pale yellow liquid in 88 % yield (0.925 g, 1.50 mmol). 

Molecular formula C22H37F6N3O6S2 

Molecular weight 618 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.75 (s, 1H), 7.29 (t, J = 1.8 Hz, 1H), 7.24 (t, J = 1.6 

Hz, 1H), 4.94 (s, 2H), 4.16 (t, J = 6.8 Hz, 2H), 3.88 (s, 3H), 1.59 (tt, J = 6.9, 6.8 Hz, 2H), 

1.24-1.18 (m, 22H), 0.81 (t, J = 6.8 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 165.75, 137.66, 123.78, 123.20, 119.65 (q, J = 320 

Hz, 2CF3), 67.31, 49.95, 36.57, 31.93, 29.91, 29.71, 29.69, 29.67, 29.60, 29.48, 29.38, 

29.18, 28.27, 25.66, 22.70, 14.14 

IR (neat) (cm-1) 3169 (w), 2916 (m), 2851 (m), 1761 (s), 1471 (w), 1343 (s), 1329 (s), 1179 

(vs), 1129 (vs), 1062 (s) 

LRMS (m/z) 337.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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7.3 Chapter 3 experimental-Preparation of Chiral ionic liquids-AAE CILs 

7.3.1 Preparation of Chiral bromoamide intermediates 

Representative procedure for the preparation of chiral α-bromoamides L-phenylalanine 

methyl ester bromoacetate (247) 

 

To a stirred solution of DCM, L-phenylalanine methyl ester hydrochloride (223) (2.092 g, 

10.40 mmol), and triethylamine (1.368 g, 13.50 mmol), under a nitrogen atmosphere at -78 

ºC was added dropwise bromoacetyl bromide (2.519 g, 12.50 mmol). After stirring at -78 

ºC for 5 h, the reaction mixture was allowed warm up to -20 ºC and quenched by addition 

of water (10 mL). The organic phase was washed with distilled water (3 x 10 mL), 

saturated ammonium chloride (3 x 10 mL), saturated sodium bicarbonate (3 x 10 mL) and 

brine (3 x 10 mL). The organic phase was then dried over anhydrous magnesium sulfate, 

filtered and volatiles removed via rotary evaporation to give a crude product in 72 % yield 

(2.233 g, 7.45 mmol). Column chromatography was performed on the crude product (50:50 

hexane:ethyl acetate) to yield the title product (247) as a white solid in 66 % yield (2.063 g, 

6.88 mmol).  

m.p. 82-84 oC, [α] 20
D

=  +48.3 ° (1.0 c, CHCl3) 

Molecular formula C12H14BrNO3 

Molecular weight 300 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.26-6.99 (m, 5H, H7-11), 6.78 (d, J = 7.6 Hz, 1H, 

H3), 4.88 (ddd, J = 8.0, 5.6, 5.6 Hz, 1H, H4), 3.90 (d, J = 3.6 Hz, 2H, H1), 3.67 (s, 3H, 

H13), 3.11 (dd, J = 13.6, 5.6 Hz, 1H, H5), 3.07 (dd, J = 14.0, 6.0 Hz, 1H, H5) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 171.29 (CO,C2), 165.18 (CO,C12), 135.30 

(ArC,C6), 129.29 (ArCH), 128.72 (ArCH), 127.67 (ArCH,C9), 53.72 (CH,C4), 52.54 

(OCH3,C13), 37.72 (CH2,C5), 25.52 (CH2,C1) 

L-Phenylalanine ethyl ester bromoacetate (248) 
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The title compound (248) was prepared from L-phenylalanine ethyl ester hydrochloride 

(224) (2.220 g, 10.30 mmol) and bromoacetyl bromide (2.503 g, 12.40 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 64 % yield (2.078 g, 

6.62 mmol). 

m.p. 65-67 oC, [α] 20
D

= +40.7 ° (0.9 c, CHCl3) 

Molecular formula C13H16BrNO3 

Molecular weight 314 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.25-7.03 (m, 5H, H7-11), 6.82 (d, J = 7.2 Hz, 1H, 

H3), 4.78 (ddd, J = 8.0, 5.6, 5.6 Hz, 1H, H4), 4.14 (q, J = 7.0 Hz,, 2H, H13), 3.78 (d, J = 

2.8 Hz, 2H, H1), 3.09 (dd, J = 14.0, 6.0 Hz, 1H, H5), 3.04 (dd, J = 14.0, 6.0 Hz, 1H, H5), 

1.20 (t, J = 7.0 Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.85 (CO,C2), 165.15 (CO,C12), 135.39 

(ArC,C6), 129.36 (ArCH), 128.64 (ArCH), 127.31 (ArCH,C9), 61.78 (OCH2,C13), 53.76 

(CH,C4), 37.77 (CH2,C5), 28.69 (CH2,C1), 14.11 (CH3,C14) 
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L-Phenylalanine butyl ester bromoacetate (249) 
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The title compound (249) was prepared from L-phenylalanine butyl ester hydrochloride 

(225) (2.001 g, 7.80 mmol) and bromoacetyl bromide (1.881 g, 9.30 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 79 % yield (2.112 g, 

6.17 mmol). 

m.p. 66-68 oC, [α] 20
D

= +28.9 o (0.9 c, CHCl3) 

Molecular formula C15H20BrNO3 

Molecular weight 342 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.23-7.03 (m, 5H, H7,11), 6.98 (d, J = 7.6 Hz, 1H, 

H3), 4.77 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H4), 4.06 (q, J = 6.0 Hz, 2H, H13), 3.87 (d, J = 2.0 

Hz, 2H, H1), 3.09 (dd, J = 14.0, 6.0 Hz, 1H, H5), 3.05 (dd, J = 14.0, 6.0 Hz, 1H, H5), 1.52 

(tt, J = 7.0, 6.8 Hz, 2H, H14), 1.26 (tq, J = 7.6, 7.0 Hz, 2H, H15), 0.94 (t, J = 7.4 Hz, 3H, 

H16) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.90 (CO,C2), 165.04 (CO,C12), 135.40 

(ArC,C6), 129.33 (ArCH), 128.65 (ArCH), 127.30 (ArCH,C9), 65.61 (OCH2,C13), 53.78 

(CH,C4), 37.84 (CH2,C5), 30.45 (CH2,C14), 28.70 (CH2,C1), 19.05 (CH2,C15), 13.65 

(CH3,C16) 
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L-Alanine methyl ester bromoacetate (250) 
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The title compound (250) was prepared from L-alanine methyl ester hydrochloride (226) 

(1.002 g, 6.80 mmol) and bromoacetyl bromide (1.642 g, 8.10 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 65 % yield (0.997 g, 

4.45 mmol). 

[α] 20
D = +12.0 o (0.7 c, CHCl3) 

Molecular formula C6H10BrNO3 

Molecular weight 224 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.28 (d, J = 7.8 Hz, 1H, H3), 4.64 (dq, J = 7.2, 7.2 

Hz, 1H, H4), 3.91 (d, J = 2.0 Hz, 2H, H1), 3.80 (s, 3H, H7), 1.48 (d, J = 7.2 Hz, 3H, H5) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.83 (CO,C2), 165.15 (CO,C6), 53.70 (OCH3,C7), 

48.75 (CH,C4), 28.71 (CH2,C1), 18.22 (CH3,C5) 

 

L-Alanine ethyl ester bromoacetate (251) 

 

The title compound (251) was prepared from L-alanine ethyl ester hydrochloride (227) 

(1.012 g, 6.80 mmol) and bromoacetyl bromide (1.642 g, 8.10 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 40 % yield (0.647 g, 

2.72 mmol). 
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[α] 20
D

= +14.4 o (0.8 c, CHCl3) 

Molecular formula C7H12BrNO3 

Molecular weight 238 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.96 (d, J = 7.8 Hz, 1H, H3), 4.52 (dq, J = 7.2, 7.2 

Hz, 1H, H4), 4.19 (q, J = 7.0 Hz, 2H, H7), 3.82 (s, 2H, H1), 1.39 (d, J = 7.2 Hz, 3H, H5), 

1.25 (t, J = 7.0 Hz, 3H, H8) 

13C NMR (100 MHz, CDCl3) δ (ppm) 169.83 (CO,C2), 162.64 (CO,C6), 59.51 (OCH2,C7), 

46.27 (CH,C4), 26.17 (CH2,C1), 19.03 (CH3,C5), 15.69 (CH3,C8) 

L-Alanine butyl ester bromoacetate (252) 

 

The title compound (252) was prepared from L-alanine butyl ester hydrochloride (228) 

(1.034 g, 5.50 mmol) and bromoacetyl bromide (1.341 g, 6.60 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a colourless liquid in 74 % yield (1.086 g, 

4.08 mmol). 

[α] 20
D = +22.0 o (0.8 c, CHCl3) 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.20 (d, J = 6.2 Hz, 1H, H3), 4.51 (dq, J = 6.8, 6.0 

Hz, 1H, H4), 4.13 (dq, J = 7.2, 7.0 Hz, 1H, H7), 4.12 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.82 (s, 

2H, H1), 1.58 (tt, J = 7.2, 6.8 Hz, 2H, H8), 1.39 (d, J = 6.8 Hz, 3H, H5), 1.29 (tq, J = 7.2, 

7.0 Hz, 2H, H9), 0.89 (t, J = 7.4 Hz, 3H, H10) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 172.43 (CO,C2), 164.97 (CO,C6), 65.63 (OCH2,C7), 

48.58 (CH,C4), 30.51 (CH2,C8), 28.77 (CH2,C1), 19.03 (CH2,C9), 18.33 (CH3,C5), 13.65 

(CH3,C10) 

L-Valine methyl ester bromoacetate (253) 

 

The title compound (253) was prepared from L-valine methyl ester hydrochloride (229) 

(1.042 g, 6.00 mmol) and bromoacetyl bromide (1.464 g, 7.20 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 60 % yield (0.904 g, 

3.60 mmol). 

 [α] 20
D = +21.0 o (0.9 c, CHCl3) 

Molecular formula C8H14BrNO3 

Molecular weight 252 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.90 (d, J = 7.2 Hz, 1H, H3), 4.48 (dd, J = 8.8, 4.8 

Hz, 1H, H4), 3.86 (s, 2H, H1), 3.70 (s, 3H, H9),  2.13 (qqd, J = 6.8, 6.4, 4.8 Hz, 1H, H5), 

0.88 (dd, J = 9.6, 6.8 Hz, 6H, H6,7) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.51 (CO,C2), 169.46 (CO,C8), 59.02 (CH,C4), 

50.23 (OCH3,C9), 35.78 (CH,C5), 30.11 (CH2,C1), 18.85 (CH3,C6/C7), 18.06 (CH3,C6/C7) 

L-Valine ethyl ester bromoacetate (254) 
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The title compound (254) was prepared from L-valine ethyl ester hydrochloride (230) 

(2.001 g, 11.0 mmol) and bromoacetyl bromide (2.649 g, 13.20 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 40 % yield (1.166 g, 

4.38 mmol). 

[α] 20
D = +18.0 o (1.0 c, CHCl3) 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.84 (d, J = 6.8 Hz, 1H, H3), 4.44 (dd, J = 8.8, 4.8 

Hz, 1H, H4), 4.17 (dq, J = 7.2, 7.2 Hz, 1H, H9), 4.14 (dq, J = 7.2, 7.0 Hz, 1H, H9), 3.85 (s, 

2H, H1), 2.15 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H5), 1.23 (t, J = 7.2 Hz, 3H, H10), 0.88 (dd, J 

= 9.2, 6.8 Hz, 6H, H6,7) 

 13C NMR (100 MHz, CDCl3) δ (ppm) 171.29 (CO,C2), 165.36 (CO,C8), 61.51 (OCH2,C9), 

57.68 (CH,C4), 31.37 (CH,C5), 29.01 (CH2,C1), 18.87 (CH3,C6/C7), 17.66 (CH3,C6/C7), 

14.22 (CH3,C10) 

L-Valine butyl ester bromoacetate (255) 

 

The title compound (255) was prepared from L-valine butyl ester hydrochloride (231) 

(2.010 g, 9.60 mmol) and bromoacetyl bromide (2.321 g, 11.50 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a colourless liquid in 58 % yield (1.640 g, 

5.58 mmol). 

 [α] 20
D

= +15.1 o (1.0 c, CHCl3) 

Molecular formula C11H20BrNO3 
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Molecular weight 294 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.97 (d, J = 8.0 Hz, 1H, H3), 4.57 (dd, J = 8.0, 4.8 

Hz, 1H, H4), 4.28 (q, J = 7.2 Hz, 2H, H9), 3.94 (s, 2H, H1), 2.15 (qqd, J = 6.8, 6.8, 4.4 Hz, 

1H, H5), 1.63 (m, 2H, H10), 1.46-1.36 (m, 2H, H11), 0.99-0.94 (m, 9H, H 6,7,12) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.40 (CO,C2), 165.45 (CO,C8), 65.41 (OCH2,C9), 

57.73 (CH,C4), 31.41 (CH2,C10), 30.43 (CH,C5), 29.02 (CH2,C1), 19.11 (CH3,C6/C7), 

19.00 (CH3,C6/C7), 17.65 (CH2,C11), 13.66 (CH3,C12) 

L-Leucine methyl ester bromoacetate (256) 
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The title compound (256) was prepared from L-leucine methyl ester hydrochloride (235) 

(3.050 g, 16.50 mmol) and bromoacetyl bromide (4.011 g, 19.80 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a colourless liquid in 62 % yield (2.731 g, 

10.26 mmol). 

[α] 20
D

= +5.5 ° (0.7 c, CHCl3) 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.73 (d, J = 8.4 Hz, 1H, H3), 4.56 (ddd, J = 8.4, 8.4, 

5.6 Hz, 1H, H4), 3.83 (d, J = 1.2 Hz, 2H, H1), 3.68 (s, 3H, H10), 1.67-1.50 (m, 3H, H5,6), 

0.88 (d, J = 6.4 Hz, 6H, H7,8) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 172.89 (CO,C2), 166.38 (CO,C9), 52.57 (CH,C4), 

51.09 (OCH3,C10), 41.16 (CH2,C5), 28.59 (CH2,C1), 24.84 (CH,C6), 22.79 (CH3,C7/C8), 

21.84 (CH3,C7/C8) 

L-Leucine ethyl ester bromoacetate (257) 

 

The title compound (257) was prepared from L-leucine ethyl ester hydrochloride (236) 

(3.002 g, 15.30 mmol) and bromoacetyl bromide (3.714 g, 18.40 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 61 % yield (2.620 g, 

9.36 mmol). 

[α] 20
D

= +6.0 ° (1.0 c, CHCl3) 

Molecular formula C10H18BrNO3 

Molecular weight 280 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.76 (d, J = 7.6 Hz, 1H, H3), 4.52 (ddd, J = 8.4, 8.4, 

5.2, Hz, 1H, H4), 4.17 (q, J = 7.2 Hz, 2H, H10), 3.83 (s, 2H, H1), 1.65-1.51 (m, 3H, H5,6), 

1.24 (t, J = 7.2 Hz, 3H, H11), 0.90 (d, J = 6.4 Hz, 6H, H7,8) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.39 (CO,C2), 165.45 (CO,C9), 61.54 

(OCH2,C10), 51.40 (CH,C4), 41.37 (CH2,C5), 28.79 (CH2,C1), 24.67 (CH,C6), 22.79 

(CH3,C7/C8), 21.95 (CH3,C7/C8), 14.12 (CH3,C11) 
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L-Leucine butyl ester bromoacetate (258) 

 

The title compound (258) was prepared from L-leucine butyl ester hydrochloride (237) 

(2.012 g, 9.00 mmol) and bromoacetyl bromide (2.169 g, 10.75 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow oil in 54 % yield (1.490 g, 

4.84 mmol). 

[α] 20
D

= +9.2 ° (1.0 c, CHCl3) 

Molecular formula C12H22BrNO3 

Molecular weight 308 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.71 (d, J = 8.0 Hz, 1H, H3), 4.30 (ddd, J = 8.0, 8.0, 

5.2 Hz, 1H, H4), 4.12 (dq, J = 7.0, 7.0 Hz, 1H, H10), 4.11 (dq, J = 7.4, 7.2 Hz, 1H, H10), 

3.88 (d, J = 5.6 Hz, 2H, H1), 1.70-1.46 (m, 5H, H5,6,11), 1.35 (m, 2H, H12), 0.91-0.84 (m, 

9H, H7,8,13) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.06 (CO,C2), 166.20 (CO,C9), 64.20 

(OCH2,C10), 54.89 (CH,C4), 50.74 (CH2,C11), 30.07 (CH2,C12), 28.80 (CH2,C1), 24.20 

(CH,C6), 22.72 (CH3,C7/C8), 21.25 (CH3,C7/C8), 18.49 (CH2,C12), 13.51 (CH3,C13) 

L-Isoleucine methyl ester bromoacetate (259)  
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The title compound (259) was prepared from L-isoleucine methyl ester hydrochloride (232) 

(0.579 g, 3.20 mmol) and bromoacetyl bromide (0.785 g, 3.85 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a yellow liquid in 59 % yield (0.501 g, 1.88 

mmol). 

[α] 20
D = +30.0 o (0.9 c, CHCl3) 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.93 (d, J = 7.2 Hz, 1H, H3), 4.53 (dd, J = 8.4, 4.8 

Hz, 1H, H4), 3.85 (s, 2H, H1), 3.69 (s, 3H, H10), 1.90 (dddq, J = 8.0, 8.0, 6.8, 4.4 Hz, 1H, 

H5), 1.41 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H7), 1.18 (ddq, J = 8.0, 8.0, 7.0 Hz, 1H, H7), 0.89 

(t, J = 7.2 Hz, 3H, H8), 0.84 (d, J = 6.8 Hz, 3H, H6) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.78 (CO,C2), 165.33 (CO,C9), 57.08 (CH,C4), 

52.31 (OCH3,C10), 37.91 (CH,C5), 28.96 (CH2,C1), 25.13 (CH2,C7), 15.39 (CH3,C6), 

11.56 (CH3,C8) 

L-Isoleucine ethyl ester bromoacetate (260) 
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The title compound (260) was prepared from L-isoleucine ethyl ester hydrochloride (233) 

(0.663 g, 3.40 mmol) and bromoacetyl bromide (0.807 g, 4.00 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 59 % yield (0.558 g, 

2.00 mmol) 

[α] 20
D = +29.6 o (0.7 c in CHCl3) 

Molecular formula C10H18BrNO3 
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Molecular weight 280 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.88 (d, J = 7.6 Hz, 1H, H3), 4.50 (dd, J = 8.0, 4.4 

Hz, 1H, H4), 4.15 (dq, J = 7.2, 7.2 Hz, 1H, H10), 4.14 (dq, J = 7.2, 7.2 Hz, 1H, H10), 3.84 

(s, 2H, H1), 1.96 (dddq, J = 8.0, 8.0, 6.8, 4.8 Hz, 1H, H5), 1.49 (ddq, J = 8.0, 8.0, 7.2 Hz, 

1H, H7), 1.22 (m, 4H, H7,11), 0.89 (t, J = 7.2 Hz, 6H, H6,8) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.24 (CO,C2), 165.20 (CO,C9), 61.47 

(OCH2,C10), 57.06 (CH,C4), 37.91 (CH,C5), 28.23 (CH2,C1), 25.16 (CH2,C7), 15.37 

(CH3,C6), 14.21 (CH3,C11), 11.62 (CH3,C8) 

L-Isoleucine butyl ester bromoacetate (261) 

 

The title compound (261) was prepared from L-isoleucine butyl ester hydrochloride (234) 

(1.528 g, 6.85 mmol) and bromoacetyl bromide (1.65 g, 8.20 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a pale yellow liquid in 68 % yield (1.443 g, 

4.68 mmol) 

[α] 20
D = +22.0 o (0.7 c in CHCl3) 

Molecular formula C12H22BrNO3 

Molecular weight 308 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.86 (d, J = 7.6 Hz, 1H, H3), 4.50 (dd, J = 8.4, 4.8 

Hz, 1H, H4), 4.12 (dq, J = 7.0, 7.0 Hz, 1H, H10), 4.11(dq, J = 7.2, 7.0 Hz, 1H, H10), 3.84 

(s, 2H, H1), 1.92 (dddq, J = 8.0, 8.0, 6.6, 4.8 Hz, 1H, H5), 1.49 (ddq, J = 8.0, 8.0, 7.2 Hz, 

1H, H7), 1.25-1.11 (m, 5H, H7,11,12), 0.97 (t, J = 7.2 Hz, 3H, H13), 0.89 (t, J = 7.2 Hz, 

6H, H6,8) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 171.56 (CO,C2), 164.98 (CO,C9), 61.37 

(OCH2,C10), 56.66 (CH,C4), 37.92 (CH,C5), 31.42 (CH2,C11), 28.33 (CH2,C1), 25.17 

(CH2,C7), 22.34 (CH2,C12), 15.35 (CH3,C6/C8), 14.18 (CH3,C6/C8), 11.60 (CH3,C13) 

D-Phenylalanine methyl ester bromoacetate (262) 

 

The title compound (262) was prepared from D-phenylalanine methyl ester hydrochloride 

(240) (2.096 g, 9.75 mmol) and bromoacetyl bromide (2.509 g, 11.70 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 65 % yield (1.901 g, 

6.34 mmol). 

m.p. 92-94 °C  [α] 20
D

= -47.3 ° (0.9 c, CHCl3) 

Molecular formula C12H14BrNO3 

Molecular weight 300 gmol-1 

1H NMR (400 MHz, CDCl3) δ ppm 7.26-7.04 (m, 5H, H7-11), 6.77 (d, J = 6.8 Hz, 1H, H3), 

4.78 (ddd, J = 7.0, 5.6, 5.6 Hz, 1H, H4), 3.78 (d, J = 3.6 Hz, 2H, H1), 3.68 (s, 3H, H13), 

3.12 (dd, J = 13.6, 5.6 Hz, 1H, H5), 3.09 (dd, J = 13.6, 5.6 Hz, 1H, H5) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.30 (CO,C2), 165.28 (CO,C12), 135.28 

(ArC,C6), 129.31 (ArCH), 128.72 (ArCH), 127.70 (ArCH,C9), 53.68 (CH,C4), 52.52 

(OCH3,C13), 37.71 (CH2,C5), 25.50 (CH2,C1) 
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D-Phenylalanine ethyl ester bromoacetate (263) 

 

The title compound (263) was prepared from D-phenylalanine ethyl ester hydrochloride 

(241) (1.721 g, 8.00 mmol) and bromoacetyl bromide (1.942 g, 9.60 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 70 % yield (1.750 g, 

5.57 mmol). 

m.p. 94-96 °C, [α] 20
D

= -40.3 ° (0.9 c, CHCl3) 

Molecular formula C13H16BrNO3 

Molecular weight 314 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.19-7.03 (m, 5H, H7-11), 6.86 (d, J = 6.8 Hz, 1H, 

H3), 4.73 (ddd, J = 8.0, 6.4, 6.4 Hz, 1H, H4), 4.08 (q, J = 7.2 Hz, 2H, H13), 3.71 (d, J = 2.0 

Hz, 2H, H1), 3.14 (dd, J = 13.6, 5.6 Hz, 1H, H5), 3.02 (dd, J = 13.6, 5.6 Hz, 1H, H5), 1.14 

(t, J = 7.2 Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ ppm 170.95 (CO,C2), 165.82 (CO,C12), 135.58 (ArC,C6), 

129.17 (ArCH), 128.33 (ArCH), 127.22 (ArCH,C9), 61.70 (OCH2,C13), 53.81 (CH,C4), 

37.70 (CH2,C5), 28.37 (CH2,C1), 14.13 (CH3,C14) 
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D-Valine methyl ester bromoacetate (264) 

 

The title compound (264) was prepared from D-valine methyl ester hydrochloride (238) 

(2.031 g, 15.30 mmol) and bromoacetyl bromide (3.673 g, 18.20 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a slightly viscous yellow liquid in 45 % 

yield (1.750 g, 6.94 mmol). 

 [α] 20
D = -22.7 ° (0.9 c, CHCl3)  

Molecular formula C8H14BrNO3 

Molecular weight 252 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.16 (d, J = 8.4 Hz, 1H, H3), 4.44 (dd, J = 8.0, 4.8 

Hz, 1H, H4), 3.88 (s, 2H, H1), 3.68 (s, 3H, H9), 2.17 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H5), 

0.90 (d, J = 6.8, Hz, 3H, H6/7), 0.84 (d, J = 6.8, Hz, 3H, H6/7) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.84 (CO,C2), 166.32 (CO,C8), 57.59 (CH,C4), 

52.35 (OCH3,C9), 31.09 (CH,C5), 28.93 (CH2,C1), 18.84 (CH3,C6/C7), 17.55 (CH3,C6/C7) 

D-Valine ethyl ester bromoacetate (265) 

 

The title compound (265) was prepared from D-valine ethyl ester hydrochloride (239) 

(2.001 g, 11.00 mmol) and bromoacetyl bromide (2.664 g, 13.20 mmol) according to the 
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general procedure (Section 7.3.1, page 273) as a colourless liquid in 59 % yield (1.731 g, 

6.50 mmol). 

 [α] 20
D = -18.4 ° (0.9 c, CHCl3) 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  6.69 (d, J = 8.0 Hz, 1H, H3), 4.48 (dd, J = 8.8, 4.4 

Hz, 1H, H4), 4.18 (dq, J = 7.2, 7.0 Hz, 1H, H9), 4.16 (dq, J = 7.0, 7.0 Hz, 1H, H9), 3.85 (s, 

2H, H1), 2.17 (qqd, J = 6.4, 6.4, 4.4 Hz, 1H, H5), 1.23 (t, J = 7.0 Hz, 3H, H10), 0.91 (d, J = 

6.8, Hz, 3H, H6/7), 0.87 (d, J = 6.8, Hz, 3H, H6/7) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.34 (CO,C2), 165.82 (CO,C8), 61.28 (OCH2,C9), 

57.60 (CH,C4), 31.27 (CH,C5), 28.82 (CH2,C1), 18.81 (CH3,C6/C7), 17.61 (CH3,C6/C7), 

14.15 (CH3,C10) 

DL-Valine methyl ester bromoacetate (266) 

H
N

O

5

2

6

Br

O

O

1
3

4

7

8

9

 

The title compound (266) was prepared from DL-valine methyl ester hydrochloride (242) 

(2.011 g, 12.00 mmol) and bromoacetyl bromide (2.901 g, 14.40 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a yellow liquid in 82 % yield (2.471 g, 9.84 

mmol). 

Molecular formula C8H14BrNO3 

Molecular weight 252 gmol-1 
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1H NMR (400 MHz, CDCl3) δ (ppm)  7.69 (d, J = 8.8 Hz, 1H, H3), 4.56 (dd, J = 8.8, 4.8 

Hz, 1H, H4), 3.94 (s, 2H, H1), 3.78 (s, 3H, H9), 2.15 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H5), 

0.98 (d, J = 6.8 Hz, 3H, H6/7), 0.90 (d, J = 6.8 Hz, 3H, H6/7) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.85 (CO,C2), 166.88 (CO,C8), 57.53 (CH,C4), 

52.40 (OCH3,C9), 31.11 (CH,C5), 28.89 (CH2,C1), 18.88 (CH3,C6/C7), 17.69 (CH3,C6/C7) 

DL-Valine ethyl ester bromoacetate (267) 

 

The title compound (267) was prepared from DL-valine ethyl ester hydrochloride (243) 

(2.591 g, 14.30 mmol) and bromoacetyl bromide (3.451 g, 17.10 mmol) according to the 

general procedure (Section 7.3.1, page 273) as a yellow liquid in 62 % yield (2.361 g, 8.87 

mmol). 

Molecular formula C9H16BrNO3 

Molecular weight 266 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  6.99 (d, J = 8.0 Hz, 1H, H3), 4.54 (dd, J = 8.0, 4.8 

Hz, 1H, H4), 4.19 (dq, J = 7.0, 7.0 Hz, 1H, H9), 4.17 (dq, J = 7.2, 7.0 Hz, 1H, H9), 3.92 (s, 

2H, H1), 2.17 (qqd, J = 6.8, 6.8, 4.4 Hz, 1H, H5), 1.30 (t, J = 7.2 Hz, 3H, H10), 0.93 (dd, J 

= 9.6, 6.8 Hz, 6H,  H6,7) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.87 (CO,C2), 166.27 (CO,C8), 61.16 (OCH2,C9) 

57.54 (CH,C4), 31.12 (CH,C5), 28.89 (CH2,C1), 18.85 (CH3,C6/C7), 17.54 (CH3,C6/C7), 

14.20 (CH3,C10) 
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DL-Phenylalanine methyl ester bromoacetate (268) 

 

The title compound (268) was prepared from DL-phenylalanine methyl ester hydrochloride 

(244) (2.501 g, 11.60 mmol) and bromoacetyl bromide (2.821 g, 13.95 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 66 % yield (2.301 g, 

7.67 mmol). 

m.p. 68-70 ° C 

Molecular formula C12H14BrNO3 

Molecular weight 300 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.35-7.13 (m, 5H, H7-11), 6.86 (d, J = 7.2 Hz, 1H, 

H3), 4.87 (dd, J = 8.0, 6.8, 6.8 Hz, 1H, H4), 3.88 (d, J = 3.6 Hz, 2H, H1), 3.77 (s, 3H, 

H13), 3.14 (dd, J = 14.0, 6.8 Hz, 1H, H5), 3.09 (dd, J = 14.0, 6.4 Hz, 1H, H5) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.29 (CO,C2), 165.16 (CO,C12), 135.35 

(ArC,C6), 129.14 (ArCH), 128.70 (ArCH), 127.35 (ArCH,C9), 53.74 (CH,C4), 52.49 

(OCH3,C13), 37.74 (CH2,C5), 28.63 (CH2,C1) 
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DL-Phenylalanine ethyl ester bromoacetate (269) 

 

The title compound (269) was prepared from DL-phenylalanine ethyl ester hydrochloride 

(245) (2.011 g, 8.70 mmol) and bromoacetyl bromide (2.113 g, 10.45 mmol) according to 

the general procedure (Section 7.3.1, page 273) as a white solid in 69 % yield (1.890 g, 

6.02 mmol). 

m.p. 71-73 ° C 

Molecular formula C13H16BrNO3 

Molecular weight 314 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.35-7.15 (m, 5H, H7-11), 6.67 (d, J = 7.2 Hz, 1H, 

H3), 4.87 (ddd, J = 8.4, 6.8, 6.8 Hz, 1H, H4), 4.14 (q, J = 7.0 Hz, 2H, H13), 3.84 (d, J = 3.5 

Hz, 2H, H1), 3.18 (dd, J = 14.0, 6.8 Hz, 1H, H5), 3.11 (dd, J = 13.8, 6.4 Hz, 1H, H5), 1.28 

(t, J = 7.2 Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.37 (CO,C2), 166.31 (CO,C12), 135.75 

(ArC,C6), 129.53 (ArCH), 128.33 (ArCH), 126.86 (ArCH,C9), 61.74 (OCH2,C13), 53.89 

(CH,C4), 37.63 (CH2,C5), 28.58 (CH2,C1), 14.11 (CH3,C14) 
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7.3.2 Representative procedure for the preparation of chiral α-bromoamides (K2CO3 

method); L-phenylalanine methyl ester bromoacetate (247) 

To a stirred solution of DCM, L-phenylalanine methyl ester hydrochloride (223) (2.780 g, 

12.88 mmol), and potassium carbonate (2.671 g, 19.33 mmol) at room temperature was 

added dropwise bromoacetyl bromide (3.901 g, 19.33 mmol). After stirring at this 

temperature for 24 h, the reaction was filtered to remove the potassium carbonate. The 

organic phase was washed with distilled water (3 x 10 mL) and saturated ammonium 

chloride (3 x 10 mL). The organic phase was then dried over anhydrous magnesium sulfate, 

filtered and volatiles removed via rotary evaporation to give title product (247) in 86 % 

yield (3.337 g, 11.16 mmol). 1H and 13C NMR spectral data was in accordance with that 

previously reported for the triethylamine method (Section 7.3.1). 

L-Phenylalanine butyl ester bromoacetate (249) 

The title compound (249) was prepared from L-phenylalanine butyl ester hydrochloride 

(224) (1.680 g, 6.52 mmol) and bromoacetyl bromide (1.974 g, 9.78 mmol) according to 

the general procedure in 82 % yield (1.829 g, 5.36 mmol). 1H and 13C NMR spectral data 

was in accordance with that previously reported for the triethylamine method (Section 

7.3.1). 

L-Alanine ethyl ester bromoacetate (251) 

The title compound (251) was prepared from L-alanine ethyl ester hydrochloride (226) 

(1.433 g, 9.34 mmol) and bromoacetyl bromide (2.828 g, 14.01 mmol) according to the 

general procedure in 70 % yield (1.558 g, 6.57 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

L-Valine methyl ester bromoacetate (253) 

The title compound (253) was prepared from L-valine methyl ester hydrochloride (229) 

(1.270 g, 7.60 mmol) and bromoacetyl bromide (2.302 g, 11.40 mmol) according to the 

general procedure in 77 % yield (1.480 g, 5.89 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 
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L-Valine ethyl ester bromoacetate (254) 

The title compound (254) was prepared from L-valine ethyl ester hydrochloride (230) 

(1.057 g, 5.82 mmol) and bromoacetyl bromide (1.763 g, 8.74 mmol) according to the 

general procedure in 71 % yield (1.096 g, 4.12 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

L-Valine butyl ester bromoacetate (255) 

The title compound (255) was prepared from L-valine butyl ester hydrochloride (231) 

(2.622 g, 12.95 mmol) and bromoacetyl bromide (3.921 g, 19.42 mmol) according to the 

general procedure in 78 % yield (2.992 g, 10.17 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

L-Leucine methyl ester bromoacetate (256) 

The title compound (256) was prepared from L-leucine methyl ester hydrochloride (235) 

(1.012 g, 5.57 mmol) and bromoacetyl bromide (1.680 g, 8.35 mmol) according to the 

general procedure in 98 % yield (1.449 g, 5.45 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

L-Leucine ethyl ester bromoacetate (257) 

The title compound (257) was prepared from L-leucine ethyl ester hydrochloride (236) 

(2.049 g, 10.47 mmol) and bromoacetyl bromide (3.170 g, 15.70 mmol) according to the 

general procedure in 75 % yield (2.189 g, 7.82 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

D-Valine methyl ester bromoacetate (264) 

The title compound (264) was prepared from D-valine methyl ester hydrochloride (238) 

(0.499 g, 2.98 mmol) and bromoacetyl bromide (0.901 g, 4.46 mmol) according to the 

general procedure in 66 % yield (0.498 g, 1.98 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 
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D-Valine ethyl ester bromoacetate (265) 

The title compound (265) was prepared from D-valine ethyl ester hydrochloride (239) 

(1.837 g, 9.49 mmol) and bromoacetyl bromide (2.874 g, 14.25 mmol) according to the 

general procedure in 73 % yield (1.842 g, 6.95 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

DL-Valine methyl ester bromoacetate (266) 

The title compound (266) was prepared from DL-valine methyl ester hydrochloride (242) 

(1.717 g, 10.25 mmol) and bromoacetyl bromide (3.105 g, 15.38 mmol) according to the 

general procedure in 67 % yield (1.738 g, 6.92 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

DL-Valine ethyl ester bromoacetate (267) 

The title compound (267) was prepared from DL-valine ethyl ester hydrochloride (243) 

(1.084 g, 5.97 mmol) and bromoacetyl bromide (1.810 g, 8.95 mmol) according to the 

general procedure in 68 % yield (1.071 g, 4.04 mmol). 1H and 13C NMR spectral data was 

in accordance with that previously reported for the triethylamine method (Section 7.3.1). 

 

7.3.3 Preparation of Chiral Br ILs 

General procedure for the Preparation of Chiral Amino Acid ester bromide salts; 3-

methyl-1-L-phenylalanine methyl ester imidazolium bromide (270) 
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To a stirred solution of 1-methylimidazole (0.472 g, 5.75 mmol) in tetrahydrofuran (60 mL) 

at -78 ºC under a nitrogen atmosphere L-phenylalanine methyl ester bromoacetate (247) 

(2.061 g, 6.90 mmol) was added dropwise. The reaction mixture was stirred vigorously at -

15 ºC for 2h, then at RT overnight. The THF top phase was decanted and the IL washed 

with diethyl ether (3 x 10 mL). The residual solvent was removed on the rotary evaporator 

and the product was dried under high vacuum for 24 h to yield the title product (270) as a 

colourless liquid at RT in 98 % yield (2.160 g, 5.65 mmol).  

 [α] 20
D = +18.0 o (1.0 c, CHCl3) 

Molecular formula C16H20BrN3O3 

Molecular weight 382 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.74 (s, 1H, H2), 9.06 (d, J = 8.0 Hz, 1H, H7), 7.68 (t, 

J = 1.6 Hz, 1H, H4), 7.61 (t, J = 1.6 Hz, 1H, H3), 7.40-7.12 (m, 5H, H11-15), 5.02 (d, J = 

6.0 Hz, 2H, H5), 4.62 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H8), 3.91 (s, 3H, H1), 3.58 (s, 3H, 

H17), 3.14 (dd, J = 13.0, 6.0 Hz, 1H, H9), 3.09 3.14 (dd, J = 13.0, 6.0 Hz, 1H, H9) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.73 (CO,C16), 164.91 (CO,C6), 137.74 

(NCHN,C2), 136.64 (ArC,C10), 129.47 (ArCH), 126.83 (ArCH), 123.68 (ArC,C13), 

123.06 (NCH,C4), 122.46 (NCH,C3), 54.74 (CH,C8), 52.45 (NCH2,C5), 51.49 

(OCH3,C17), 37.30 (CH2,C9), 36.76 (NCH3,C1) 

IR (neat) (cm-1) 3199 (w), 3026 (w), 1773 (s), 1672 (vs), 1528 (m), 1262 (m), 1219 (s), 

1173 (vs), 764 (m), 701 (m) 

MS (m/z) Found [M-Br-]+ 302.1497, C16H20N3O3
+ requires 302.1499 
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3-Methyl-1-L-phenylalanine ethyl ester imidazolium bromide (271) 

 

The title compound (271) was prepared from 1-methylimidazole (0.454 g, 5.55 mmol) and 

L-phenylalanine ethyl ester bromoacetate (248) (2.081 g, 6.60 mmol) according to the 

general procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 98 % yield 

(2.152 g, 5.43 mmol). 

[α] 20
D = +17.0 o (0.7 c, CHCl3) 

Molecular formula C17H22BrN3O3 

Molecular weight 396 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.04 (s, 1H, H2), 8.99 (d, J = 7.6 Hz, 1H, H7), 7.68 (t, 

J = 1.6 Hz, 1H, H4), 7.60 (t, J = 1.8 Hz, 1H, H3), 7.33-7.22 (m, 5H, H11-15), 5.02 (d, J = 

5.6 Hz, 2H, H5), 4.46 (ddd, J = 7.8, 5.6, 5.6 Hz, 1H, H8), 4.04 (q, J = 7.2, Hz, 2H, H17), 

3.92 (s, 3H, H1), 3.07 (dd, J = 13.0, 6.0 Hz, 1H, H9), 2.96 (dd, J = 10.0, 8.8 Hz, 1H, H9), 

1.14 (t, J = 7.2 Hz, 3H, H18) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.22 (CO,C16), 164.80 (CO,C6), 137.78 

(NCHN,C2) 136.66 (ArC,C10), 129.52 (ArCH), 128.48 (ArCH), 126.79 (ArCH,C13), 

123.69 (NCH,C4), 122.39 (NCH,C3), 61.50 (OCH2,C17), 54.81 (CH,C8), 51.54 

(NCH2,C5), 37.40 (CH2,C9), 36.76 (NCH3,C1), 14.06 (CH3,C18) 

IR (neat) (cm-1) 3160 (b), 3034 (w), 1735 (m), 1682 (s), 1548 (s), 1172 (vs), 747 (m), 701 

(m) 

MS (m/z) Found [M-Br-]+ 316.1653, C17H22N3O3
+ requires 316.1655 
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3-Methyl-1-L-phenylalanine butyl ester imidazolium bromide (272) 

 

The title compound (272) was prepared from 1-methylimidazole (0.401 g, 4.90 mmol) and 

L-phenylalanine butyl ester bromoacetate (249) (1.991 g, 5.85 mmol) according to the 

general procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 99 % yield 

(2.072 g, 4.89 mmol). 

[α] 20
D = +20.0 o (0.9 c, CHCl3) 

Molecular formula C19H26BrN3O3 

Molecular weight 424 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.68 (s, 1H, H2), 8.95 (d, J = 7.6 Hz, 1H, H7), 7.36 

(t, J = 1.6 Hz, 1H, H4), 7.30-7.12 (m, 6H, H3,11-15), 5.33 (d, J = 8.4 Hz, 2H, H5), 4.63 

(ddd, J = 7.8, 5.2, 5.2 Hz, 1H, H8), 4.10 (dq, J = 7.2, 7.2 Hz, 1H, H17), 4.09 (dq, J = 7.2, 

7.2 Hz, 1H, H17), 3.92 (s, 3H, H1), 3.11 (dd, J = 13.6, 6.0 Hz, 1H, H9), 3.07 (dd, J = 13.6, 

5.6 Hz, 1H, H9), 1.45 (tt, J = 7.0, 6.8 Hz, 2H, H18), 1.24 (tq, J = 7.2, 7.0 Hz, 2H, H19), 

0.83 (t, J = 7.4 Hz, 3H, H20) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.33 (CO,C16), 164.76 (CO,C6), 137.77 

(NCHN,C2), 136.64 (ArC,C10), 129.49 (ArCH), 128.44 (ArCH), 126.79 (ArCH,C13), 

123.69 (NCH,C4), 122.38 (NCH,C3), 65.39 (OCH2,C17), 54.80 (CH,C8), 51.55 

(NCH2,C5), 37.43 (CH2,C9), 36.77 (NCH3,C1), 35.48 (CH2,C18), 19.00 (CH2,C19), 13.70 

(CH3,C20) 
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IR (neat) (cm-1) 3423 (b), 3214 (w), 2959 (w), 1735 (m), 1683 (s), 1561 (m), 1174 (vs), 744 

(m), 700 (m) 

MS (m/z) Found [M-Br-]+ 344.1964, C19H26N3O3
+ requires 344.1968 

3-Methyl-1-L-alanine methyl ester imidazolium bromide (273) 

 

The title compound (273) was prepared from 1-methylimidazole (0.250 g, 3.45 mmol) and 

L-alanine methyl ester bromoacetate (250) (0.971 g, 3.45 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a pale yellow slightly viscous liquid in 96 % yield 

(1.009 g, 3.30 mmol). 

[α] 20
D

= -11.0 o (1.0 c, CHCl3) 

Molecular formula C10H16BrN3O3 

Molecular weight 306 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.15 (s, 1H, H2), 9.04 (d, J = 7.2 Hz, 1H, H7), 7.77 (t, 

J = 1.6 Hz, 1H, H4), 7.45 (t, J = 1.8 Hz, 1H, H3), 5.12 (d, J = 2.4 Hz, 2H, H5), 4.42 (dq, J 

= 7.2, 7.2 Hz, 1H, H8), 3.95 (s, 3H, H1), 3.71 (s, 3H, H11), 1.40 (d, J = 7.2 Hz, 3H, H9) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.50 (CO,C10), 164.83 (CO,C6), 137.72 

(NCHN,C2), 123.73 (NCH,C4), 122.98 (NCH,C3), 52.05 (NCH2,C5), 51.90 (OCH3,C11), 

47.88 (CH,C8), 35.78 (NCH3,C1), 17.02 (CH3,C9) 

IR (neat) (cm-1) 3385 (b), 3069 (w), 1732 (m), 1679 (s), 1563 (m), 1219 (m), 1208 (m), 

1173 (vs) 

MS (m/z) Found [M-Br-]+ 226.1195, C10H16N3O3
+ requires 226.1186 
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3-Methyl-1-L-alanine ethyl ester imidazolium bromide (274) 

 

The title compound (274) was prepared from 1-methylimidazole (0.190 g, 2.70 mmol) and 

L-alanine ethyl ester bromoacetate (251) (0.653 g, 2.70 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a pale yellow liquid in 90 % yield (0.781 g, 2.44 

mmol). 

[α] 20
D = -16.0 o (1.0 c, CHCl3) 

Molecular formula C11H18BrN3O3 

Molecular weight 320 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.63 (s, 1H, H2), 8.90 (d, J = 6.4 Hz, 1H, H7), 7.58 (t, 

J = 1.8 Hz, 1H, H4), 7.33 (t, J = 1.6 Hz, 1H, H3), 5.39 (s, 2H, H5), 4.33 (dq, J = 7.2, 7.2 

Hz, 1H, H8), 4.09 (dq, J = 7.2, 7.2 Hz, 1H, H11), 4.08 (dq, J = 7.2, 7.2 Hz, 1H, H11), 3.99 

(s, 3H, H1), 1.44 (d, J = 7.2 Hz, 3H, H9), 1.18 (t, J = 7.2 Hz, 3H, H12) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.49 (CO,C10), 164.76 (CO,C6), 137.75 

(NCHN,C2), 123.85 (NCH,C4), 122.67 (NCH,C3), 61.48 (OCH2,C11), 51.52 (NCH2,C5), 

49.03 (CH,C8), 36.88 (NCH3,C1), 17.05 (CH3,C9), 14.15 (CH3,C12) 

IR (neat) (cm-1) 3406 (b), 2985 (w), 1731 (m), 1681 (s), 1564 (m), 1210 (s), 1183 (s), 

1173(vs) 

MS (m/z) Found [M-Br-]+ 240.1342, C11H18N3O3
+ requires 240.1342 

 

 



300 

 

3-Methyl-1-L-alanine butyl ester imidazolium bromide (275) 
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The title compound (275) was prepared from 1-methylimidazole (0.227 g, 2.77 mmol) and 

L-alanine butyl ester bromoacetate (252) (1.032 g, 3.88 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a pale yellow oil in 82 % yield (0.789 g, 2.27 

mmol). 

[α] 20
D = -20.0 o (0.7 c, CHCl3) 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.11 (s, 1H, H2), 8.96 (d, J = 7.2 Hz, 1H, H7), 7.71 (t, 

J = 1.6 Hz, 1H, H4), 7.68 (t, J = 1.6 Hz, 1H, H3), 5.06 (s, 2H, H5), 4.32 (dq, J = 7.2, 7.0 

Hz, 1H, H8), 4.08 (dq, J = 7.2, 7.2 Hz, 1H, H11), 4.07 (dq, J = 7.2, 7.2 Hz, 1H, H11), 3.89 

(s, 3H, H1), 1.56 (tt, J = 6.9, 6.8 Hz, 2H, H12), 1.34-1.28 (m, 5H, H9,13), 0.89 (t, J = 7.4 

Hz, 3H, H14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 169.45 (CO,C10), 164.80 (CO,C6), 137.72 

(NCHN,C2), 123.72 (NCH,C4), 122.99 (NCH,C3), 64.30 (OCH2,C11), 54.52 (NCH2,C5), 

48.00 (CH,C8), 35.78 (NCH3,C1), 30.05 (CH2,C12), 18.47 (CH2,C13), 17.04 (CH3,C9), 

13.50 (CH3,C14) 

IR (neat) (cm-1) 3416 (b), 3060 (w), 2960 (w), 1736 (m), 1682 (vs), 1563 (m), 1204 (s), 

1172 (vs) 

MS (m/z) Found [M-Br-]+ 268.1656, C13H22N3O3
+ requires 268.1655 
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3-Methyl-1-L-valine methyl ester imidazolium bromide (276) 
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The title compound (276) was prepared from 1-methylimidazole (0.123 g, 1.45 mmol) and 

L-valine methyl ester bromoacetate (253) (0.552 g, 2.20 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a pale yellow liquid in 85 % yield (0.412 g, 1.23 

mmol). 

 [α] 20
D = -9.6 ° (0.7 c, CHCl3) 

Molecular formula C12H20BrN3O3 

Molecular weight 334 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.55 (s, 1H, H2), 8.53 (d, J = 7.6 Hz, 1H, H7), 7.45 (t, 

J = 1.6 Hz, 1H, H4), 7.27 (t, J = 1.6 Hz, 1H, H3), 5.36 (s, 2H, H5), 4.30 (dd, J = 8.8, 4.8 

Hz, 1H, H8), 3.86 (s, 3H, H1), 3.52 (s, 3H, H13), 2.15 (qqd, J = 6.8, 6.4, 4.8 Hz, 1H, H9), 

0.90 (d, J = 6.8 Hz, 3H, H10/11), 0.85 (d, J = 7.2 Hz, 3H, H10/11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.96 (CO,C12), 165.28 (CO,C6), 137.79 

(NCHN,C2), 123.95 (NCH,C4), 122.31 (NCH,C3), 58.90 (CH,C8), 52.26 (NCH2,C5), 

51.68 (OCH3,C13), 36.80 (NCH3,C1), 30.32 (CH,C9), 19.18 (CH3,C10/C11), 18.55 

(CH3,C10/C11) 

IR (neat) (cm-1) 3386 (b), 3232 (b), 2965 (w), 1733 (m), 1678 (s), 1545 (m), 1209 (s), 1174 

(vs) 

MS (m/z) Found [M-Br-]+ 254.1493, C12H20N3O3
+ requires 254.1499 
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3-Methyl-1-L-valine ethyl ester imidazolium bromide (277) 

 

The title compound (277) was prepared from 1-methylimidazole (0.418 g, 5.10 mmol) and 

L-valine ethyl ester bromoacetate (254) (1.532 g, 6.15 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a pale yellow liquid in 98 % yield (1.744 g, 5.01 

mmol). 

 [α] 20
D = -11.2 ° (0.8 c, CHCl3) 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.10 (s, 1H, H2), 8.82 (d, J = 8.0 Hz, 1H, H7), 7.64 (t, 

J = 1.8 Hz, 1H, H4), 7.38 (t, J = 1.8 Hz, 1H, H3), 5.53 (d, J = 4.0 Hz, 2H, H5), 4.44 (dd, J 

= 8.0, 4.8 Hz, 1H, H8),  4.18 (dq, J = 7.2, 7.2 Hz, 1H, H13), 4.17 (dq, J = 7.2, 7.0 Hz, 1H, 

H13), 4.04 (s, 3H, H1), 2.16 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H9), 1.21 (t, J = 7.2 Hz, 3H, 

H14), 1.06 (d, J = 6.8 Hz, 3H, H10/11), 0.96 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.96 (CO,C12), 165.33 (CO,C6), 137.74 

(NCHN,C2), 123.75 (NCH,C4), 122.95 (NCH,C3), 60.56 (OCH3,C13), 57.72 (CH,C8), 

50.26 (NCH2,C5), 35.78 (NCH3,C1), 30.11 (CH,C9), 18.84 (CH3,C10), 18.03 (CH3,C11), 

14.07 (CH3,C14) 

IR (neat) (cm-1) 3401 (b), 3219 (b), 2967 (w), 1733 (s), 1681 (vs), 1545 (s), 1373 (m), 1173 

(vs), 1022 (s) 

MS (m/z) Found [M-Br-]+ 268.1661, C13H22N3O3
+ requires 268.1655 
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3-Methyl-1-L-valine butyl ester imidazolium bromide (278) 
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The title compound (278) was prepared from 1-methylimidazole (0.399 g, 4.86 mmol) and 

L-valine butyl ester bromoacetate (255) (1.641 g, 5.85 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a viscous pale yellow liquid in 96 % yield (1.755 g, 

4.67 mmol). 

 [α] 20
D = -5.0 ° (0.8 c, CHCl3) 

Molecular formula C15H26BrN3O3 

Molecular weight 376 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.09 (s, 1H, H2), 8.81 (d, J = 8.0 Hz, 1H, H7), 7.70 (t, 

J = 1.8 Hz, 1H, H4), 7.64 (t, J = 1.6 Hz, 1H, H3), 5.10 (d, J = 4.0 Hz, 2H, H5), 4.23 (dd, J 

= 8.8, 4.4 Hz, 1H, H8),  4.09 (dq, J = 7.2, 7.2 Hz, 1H, H13), 4.08 (dq, J = 7.2, 7.2 Hz, 1H, 

H13), 3.92 (s, 3H, H1), 2.12 (qqd, J = 6.8, 6.0, 4.8 Hz, 1H, H9), 1.58 (tt, J = 7.0, 6.8 Hz, 

2H, H14), 1.33 (tq, J = 7.2, 7.0 Hz, 2H, H15), 0.93-0.87 (m, 9H, H10,11,16) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.51 (CO,C12), 165.22 (CO,C6), 137.77 

(NCHN,C2), 123.85 (NCH,C4), 122.44 (NCH,C3), 65.15 (OCH2,C13), 58.91 (CH,C8), 

51.65 (NCH2,C5), 36.84 (NCH3,C1), 30.54 (CH2,C14), 30.35 (CH,C9), 19.23 (CH2,C15), 

19.13 (CH3,C10/C11), 18.51 (CH3,C10/C11), 13.71 (CH3,C16) 

IR (neat) (cm-1) 3386 (b), 3197 (w),  2961 (m), 1733 (s), 1678 (vs), 1545 (s), 1209 (m), 

1174 (vs) 

MS (m/z) Found [M-Br-]+ 296.1967, C15H26N3O3
+ requires 296.1968 
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3-Methyl-1-L-isoleucine methyl ester imidazolium bromide (279) 

 

The title compound (279) was prepared from 1-methylimidazole (0.236 g, 3.46 mmol) and 

L-isoleucine methyl ester bromoacetate (259) (0.922 g, 3.46 mmol) according to the 

general procedure (Section 7.3.3, page 295) as a yellow viscous liquid in 67 % yield (0.813 

g, 2.33 mmol). 

[α] 20
D = -7.2 ° (0.6 c, CHCl3) 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.70 (s, 1H, H2), 8.69 (d, J = 7.6 Hz, 1H, H7), 7.56 (t, 

J = 1.8 Hz, 1H, H4), 7.19 (t, J = 1.8 Hz, 1H, H3), 5.48 (s, 2H, H5), 4.34 (dd, J = 8.0, 6.4 

Hz, 1H, H8), 3.96 (s, 3H, H1), 3.64 (s, 3H, H14), 1.94 (dddq, J = 8.0, 8.0, 7.2, 6.0 Hz, 1H, 

H9), 1.48 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H11), 1.30 (ddq, J = 8.0, 8.0 , 7.2 Hz, 1H, H11), 

0.89 (t, J = 7.2 Hz, 3H, H12), 0.85 (d, J = 7.2 Hz, 3H, H10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.81 (CO,C13), 165.11 (CO,C6), 137.82 

(NCHN,C2), 123.90 (NCH,C4) 122.30 (NCH,C3), 57.88 (CH,C8), 52.13 (NCH2,C5), 51.64 

(OCH3,C14), 36.82 (CH,C9), 36.79 (NCH3,C1), 25.55 (CH2,C11), 15.77 (CH3,C10), 11.55 

(CH3,C12) 

IR (neat) (cm-1) 3337 (w), 3230 (w), 2960 (w), 1750 (s), 1740 (s), 1696 (vs), 1558 (s), 1216 

(m), 1168 (vs), 1147 (s) 

MS (m/z) Found [M-Br-]+ 268.1654, C13H22N3O3
+ requires 268.1655 
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3-Methyl-1-L-isoleucine ethyl ester imidazolium bromide (280) 
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The title compound (280) was prepared from 1-methylimidazole (0.123 g, 1.50 mmol) and 

L-isoleucine ethyl ester bromoacetate (260) (0.587 g, 2.11 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a viscous yellow liquid in 94 % yield (0.510 g, 1.41 

mmol). 

[α] 20
D = -4.0 o (1.0 c, CHCl3) 

Molecular formula C14H24BrN3O3 

Molecular weight 362 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.71 (s, 1H, H2), 8.62 (d, J = 7.6 Hz, 1H, H7), 7.56 (t, 

J = 1.4 Hz, 1H, H4), 7.23 (t, J = 1.4 Hz, 1H, H3), 5.46 (s, 2H, H5), 4.32 (dd, J = 8.0, 6.0 

Hz, 1H, H8), 4.14 (dq, J = 7.2, 7.2 Hz, 1H, H14), 4.13 (dq, J = 7.2, 7.2 Hz, 1H, H14), 3.96 

(s, 3H, H1), 1.98 (dddq, J = 8.0, 8.0, 7.2, 6.6 Hz, 1H, H9), 1.49 (ddq, J =, 8.0, 8.0, 7.2 Hz, 

1H, H11), 1.32 (ddq, J = 8.0, 8.0, 7.0 Hz, 1H, H11), 1.19 (t, J = 7.0 Hz, 3H, H15), 0.88 (d, 

J = 7.2 Hz, 3H, H12), 0.85 (t, J = 7.2 Hz, 3H, H10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.28 (CO,C13), 165.06 (CO,C6), 137.82 

(NCHN,C2), 123.88 (NCH,C4) 122.33 (NCH,C3), 61.19 (OCH2,C14), 57.87 (CH,C8), 

51.65 (NCH2,C5), 36.89 (CH,C9), 36.80 (NCH3,C1), 25.57 (CH2,C11), 15.78 (CH3,C10), 

14.25 (CH3,C15), 11.62 (CH3,C12) 

IR (neat) (cm-1) 3406 (b), 2967 (w), 1733 (s), 1681 (vs), 1545 (s), 1373 (m), 1173 (vs), 

1022 (m) 

MS (m/z) Found [M-Br-]+ 282.1816, C14H24N3O3
+ requires 282.1812 
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3-Methyl-1-L-isoleucine butyl ester imidazolium bromide (281) 

 

The title compound (281) was prepared from 1-methylimidazole (0.276 g, 3.37 mmol) and 

L-isoleucine butyl ester bromoacetate (261) (1.451 g, 4.72 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 98 % yield (1.284 g, 

3.29 mmol). 

[α] 20
D = -3.2 o (0.9 c, CHCl3) 

Molecular formula C16H28BrN3O3 

Molecular weight 390 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.42 (s, 1H, H2), 8.55 (d, J = 7.6 Hz, 1H, H7), 7.54 (t, 

J = 1.8 Hz, 1H, H4), 7.29 (t, J = 1.8 Hz, 1H, H3),  5.38 (s, 2H, H5), 4.34 (dd, J = 8.8, 6.8 

Hz, 1H, H8), 4.09-3.98 (m, 2H, H14), 3.95 (s, 3H, H1), 1.97 (dddq, J = 8.0, 8.0, 7.2, 6.8 

Hz, 1H, H9), 1.46 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H11), 1.38 (ddq, J = 8.0, 8.0, 7.0 Hz, 1H, 

H11), 1.45-1.23 (m, 4H, H15,16),  0.92 (d, J = 6.8 Hz, 3H, H10), 0.87-0.82 (m, 6H, 

H12,17) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.70 (CO,C13), 165.33 (CO,C6), 137.69 

(NCHN,C2), 123.84 (NCH,C4), 122.64 (NCH,C3), 65.16 (OCH2,C14), 57.75 (CH,C8), 

51.52 (NCH2,C5), 36.96 (CH,C9), 36.84 (NCH3,C1), 30.51 (CH2), 25.51 (CH2,C11), 19.11 

(CH2), 15.78 (CH3,C10), 13.66 (CH3,C17), 11.63 (CH3,C12) 

IR (neat) (cm-1) 3405 (b), 2961 (m), 1735 (s), 1682 (vs), 1545 (s), 1382 (w), 1174 (vs) 

MS (m/z) Found [M-Br-]+ 310.2119, C16H28N3O3
+ requires 310.2125 
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3-Methyl-1-L-leucine methyl ester imidazolium bromide (282) 

 

The title compound (282) was prepared from 1-methylimidazole (0.279 g, 3.40 mmol) and 

L-leucine methyl ester bromoacetate (256) (1.081 g, 4.10 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a white solid in 95 % yield (1.131 g, 3.25 mmol). 

m.p 60-62 oC  [α] 20
D

= -17.5 o  (0.8 c, CHCl3) 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.62 (s, 1H, H2), 8.89 (d, J = 7.2 Hz, 1H, H7), 7.55 (t, 

J = 1.8 Hz, 1H, H4), 7.24 (t, J = 1.8 Hz, 1H, H3), 5.49 (d, J = 11.6  Hz, 2H, H5), 4.35 (ddd, 

J = 8.0, 8.0, 5.2 Hz, 1H, H8), 4.94 (s, 3H, H1), 3.58 (s, 1H, H14), 1.77-1.58 (m, 3H, 

H9,10), 0.88 (d, J = 6.4 Hz, 3H, H11/12), 0.83 (d, J = 6.4 Hz, 3H, H11/12) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.95 (CO,C13), 165.01 (CO,C6), 137.83 

(NCHN,C2), 123.83 (NCH,C4), 122.50 (NCH,C3), 52.36 (NCH2,C5), 51.85 (CH,C8), 

51.60 (OCH3,C14), 39.87 (CH2,C9), 36.82 (NCH3,C1), 24.88 (CH,C10), 22.79 

(CH3,C11/C12), 21.59 (CH3,C11/C12) 

IR (neat) (cm-1) 3160 (m), 3019 (w), 2952 (m), 1743 (s), 1668 (vs), 1537 (s), 1273 (m), 

1208 (s), 1183 (s), 1171 (s) 

MS (m/z) Found [M-Br-]+ 268.1656, C13H22N3O3
+ requires 268.1655 
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3-Methyl-1-L-leucine ethyl ester imidazolium bromide (283) 

 

The title compound (283) was prepared from 1-methylimidazole (0.281 g, 3.45 mmol) and 

L-leucine ethyl ester bromoacetate (257) (1.152 g, 4.15 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a white solid in 69 % yield (0.866 g, 2.39 mmol). 

m.p 67-69 ºC  [α] 20
D

= -11.0 o (0.8 c, CHCl3) 

Molecular formula C14H24BrN3O3 

Molecular weight 362 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.89 (s, 1H, H2), 8.89 (d, J = 7.6 Hz, 1H, H7), 7.62 (t, 

J = 1.6 Hz, 1H, H4), 7.19 (t, J = 1.8 Hz, 1H, H3), 5.43 (d, J = 17.6  Hz, 2H, H5), 4.40 (ddd, 

J = 8.0, 8.0, 5.6 Hz, 1H, H8), 4.18 (dq, J = 7.2, 7.2 Hz, 1H, H14), 4.15 (dq, J = 7.2, 7.2 Hz, 

1H, H14), 4.03 (s, 3H, H1), 1.79-1.56 (m, 3H, H9,10), 1.29 (t, J = 7.0 Hz, 3H, H15), 0.90 

(d, J = 6.4 Hz, 3H, H11/12), 0.84 (d, J = 6.0 Hz, 3H, H11/12) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.54 (CO,C13), 165.02 (CO,C6), 137.75 

(NCHN,C2), 123.77 (NCH,C4), 122.67 (NCH,C3), 61.33 (OCH2,C14), 51.92 (CH,C8), 

51.71 (NCH2,C5), 39.92 (CH2,C9), 36.86 (NCH3,C1), 24.88 (CH,C10), 22.78 

(CH3,C11/C12), 21.63 (CH3,C11/C12), 14.17 (CH3,C15) 

IR (neat) (cm-1) 3164 (m), 3106 (w), 2954 (m), 1743 (s), 1687 (vs), 1547 (m), 1373 (m), 

1273 (m), 1186 (vs), 1155 (vs) 

MS (m/z) Found [M-Br-]+ 282.1813, C14H24N3O3
+ requires 282.1812 
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3-Methyl-1-L-leucine butyl ester imidazolium bromide (284) 

 

The title compound (284) was prepared from 1-methylimidazole (0.307 g, 3.75 mmol) and 

L-leucine butyl ester bromoacetate (258) (1.382 g, 4.50 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a white solid in 86 % yield (1.252 g, 3.21 mmol). 

m.p 78-80 ºC  [α] 20
D

= -10.7 o (0.8 c, CHCl3) 

Molecular formula C16H28BrN3O3 

Molecular weight 390 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.68 (s, 1H, H2), 8.84 (d, J = 8.0 Hz, 1H, H7), 7.53 (t, 

J = 1.6 Hz, 1H, H4), 7.18 (t, J = 1.8 Hz, 1H, H3), 5.52 (d, J = 18.9  Hz, 2H, H5), 4.35 (ddd, 

J = 8.0, 8.0, 5.6 Hz, 1H, H8), 4.04 (dq, J = 7.2, 7.0 Hz, 1H, H14), 4.02 (dq, J = 7.2, 7.0 Hz, 

1H, H14), 3.96 (s, 3H, H1), 1.71 (tt, J = 7.0, 6.8 Hz, 2H, H15), 1.62-1.50 (m, 3H, H9,10), 

1.28 (tq, J = 7.2, 6.8 Hz, 2H, H16), 0.91-0.84 (m, 9H, H11,12,17) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.53 (CO,C13), 164.85 (CO,C6), 137.81 

(NCHN,C2), 123.85 (NCH,C4), 122.35 (NCH,C3), 65.23 (OCH2,C14), 51.97 (NCH2,C5), 

51.66 (CH,C8), 39.94 (CH2,C9), 36.81 (NCH3,C1), 30.52 (CH2,C15), 24.91 (CH,C10), 

22.78 (CH3,C11/C12), 21.66 (CH3,C11/C12), 19.08 (CH2,C16), 13.74 (CH3,C17) 

IR (neat) (cm-1) 3165 (m), 3023 (w), 2955 (m), 1741 (s), 1686 (vs), 1545 (m), 1274 (m), 

1226 (m), 1185 (s), 1172 (s), 1157 (s) 

MS (m/z) Found [M-Br-]+ 310.2127, C16H28N3O3
+ requires 310.2125 
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3-Methyl-1-D-phenylalanine methyl ester imidazolium bromide (285) 

 

The title compound (285) was prepared from 1-methylimidazole (0.432 g, 5.25 mmol) and 

D-phenylalanine methyl ester bromoacetate (262) (1.881 g, 6.30 mmol) according to the 

general procedure (Section 7.3.3, page 295) as an off white solid in 87 % yield (1.753 g, 

4.59 mmol). 

m.p. 56-58 °C, [α] 20
D = -19.0 o (1.0 c, CHCl3) 

Molecular formula C16H20BrN3O3 

Molecular weight 382 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.44 (s, 1H, H2), 8.98 (d, J = 7.6 Hz, 1H, H7), 7.35 

(s, 1H, H4), 7.26-7.19 (m, 6H, H3,11-15), 5.28 (d, J = 10.0 Hz, 2H, H5), 4.64 (ddd, J = 7.4, 

5.6, 5.6 Hz, 1H, H8), 3.91 (s, 3H, H1), 3.57 (s, 3H, H17), 3.19 (dd, J = 13.6, 6.0 Hz, 1H, 

H9), 3.08 (dd, J = 13.0, 6.6 Hz, 1H, H9) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.74 (CO,C16), 164.93 (CO,C6), 137.65 

(NCHN,C2) 136.65 (ArC,C10), 129.98 (ArCH), 128.48 (ArCH), 126.85 (ArCH,C13), 

123.66 (NCH,C4), 122.65 (NCH,C3), 54.81 (CH,C8), 52.48 (NCH2,C5), 51.51 

(OCH3,C17), 37.31 (NCH3,C1), 36.85 (CH2,C9). 

IR (neat) (cm-1) 3194 (w), 3025 (m), 1736 (s), 1672 (vs), 1529 (m), 1220 (s), 1174 (vs), 

1111 (m), 765 (m), 701 (m) 

MS (m/z) Found [M-Br-]+ 302.1500, C16H20N3O3
+ requires 302.1499 
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3-Methyl-1-D-phenylalanine ethyl ester imidazolium bromide (286) 

 

The title compound (286) was prepared from 1-methylimidazole (0.381 g, 4.65 mmol) and 

D-phenylalanine ethyl ester bromoacetate (263) (1.753 g, 5.60 mmol) according to the 

general procedure (Section 7.3.3, page 295) as a white solid in 84 % yield (1.549 g, 3.91 

mmol). 

m.p. 63-65 °C [α] 20
D = -15.5 o (0.8 c, CHCl3) 

Molecular formula C17H22BrN3O3 

Molecular weight 396 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.54 (s, 1H, H2), 8.98 (d, J = 8.0 Hz, 1H, H7), 7.35 

(s, 1H, H4), 7.30-7.07 (m, 6H, H3,11-15), 5.42 (d, J = 24.1 Hz, 2H, H5), 4.61 (ddd, J = 8.0, 

6.0, 6.0 Hz, 1H, H8), 4.05 (dq, J = 7.2 , 7.2 Hz, 1H, H17), 4.05 (dq, J = 7.2 , 7.2 Hz, 1H, 

H17), 3.92 (s, 3H, H1), 3.17 (dd, J = 13.6, 6.0 Hz, 1H, H9), 3.07 (dd, J = 13.0, 6.6 Hz, 1H, 

H9), 1.11 (t, J = 7.2 Hz, 3H, H18) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.24 (CO,C16), 164.82 (CO,C6), 137.72 

(NCHN,C2) 136.67 (ArC,C10), 129.54 (ArCH), 128.43 (ArCH), 126.81 (ArCH,C13), 

123.67 (NCH,C4), 122.49 (NCH,C3), 61.52 (OCH2,C17), 54.84 (CH,C8), 51.54 

(NCH2,C5), 37.41 (NCH3,C1), 36.80 (CH2,C9), 14.08 (CH3,C18)  

IR (neat) (cm-1) 3201 (w), 3027 (m), 2937 (w), 1732 (s), 1675 (vs), 1527 (m), 1373 (m), 

1218 (s), 1177 (vs), 1108 (s), 749 (s), 703 (s) 

MS (m/z) Found [M-Br-]+ 316.1655, C17H22N3O3
+ requires 316.1655 
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3-Methyl-1-D-valine methyl ester imidazolium bromide (287) 
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The title compound (287) was prepared from 1-methylimidazole (0.283 g, 3.45 mmol) and 

D-valine methyl ester bromoacetate (264) (1.035 g, 4.12 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 89 % yield (1.028 g, 

3.08 mmol). 

 [α] 20
D = +9.3 o (0.7 c, CHCl3) 

Molecular formula C12H20BrN3O3 

Molecular weight 334 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.67 (s, 1H, H2), 8.60 (d, J = 7.6 Hz, 1H, H7), 7.47 (t, 

J = 1.8 Hz, 1H, H4), 7.17 (t, J = 1.6 Hz, 1H, H3), 5.42 (s, 2H, H5), 4.18 (dd, J = 8.0, 4.4 

Hz, 1H, H8), 3.88 (s, 3H, H1), 3.55 (s, 3H, H13), 2.18 (qqd, J = 6.8, 6.8, 4.4 Hz, 1H, H9), 

0.91 (d, J = 6.8 Hz, 3H, H10/11), 0.85 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.87 (CO,C12), 165.27 (CO,C6), 137.78 

(NCHN,C2), 123.83 (NCH,C4), 122.51 (NCH,C3), 58.98 (CH,C8), 52.15 (NCH2,C5), 

51.66 (OCH3,C13), 36.82 (NCH3,C1), 30.29 (CH,C9), 19.19 (CH3,C10/C11), 18.66 

(CH3,C10/C11) 

IR (neat) (cm-1) 3456 (b), 3148 (w), 2966 (w), 1736 (s), 1672 (vs), 1551 (m), 1203 (s), 

1174 (s), 1147 (s) 

MS (m/z) Found [M-Br-]+ 254.1499, C12H20N3O3
+ requires 254.1499 
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3-Methyl-1-D-valine ethyl ester imidazolium bromide (288) 

 

The title compound (288) was prepared from 1-methylimidazole (0.382 g, 4.65 mmol) and 

D-valine ethyl ester bromoacetate (265) (1.609 g, 6.04 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a colourless liquid in 79 % yield (1.282 g, 3.68 

mmol). 

 [α] 20
D = +10.0 o (0.9 c, CHCl3) 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.51 (s, 1H, H2), 8.61 (d, J = 7.6 Hz, 1H, H7),  7.63 

(t, J = 1.8 Hz, 1H, H4), 7.40 (t, J = 1.8 Hz, 1H, H3), 5.48 (d, J = 4.0 Hz, 2H, H5), 4.27 (dd, 

J = 8.0, 4.4 Hz, 1H, H8), 4.12 (dq, J = 7.2, 7.0 Hz, 1H, H13), 4.11 (dq, J = 7.0, 7.0 Hz, 1H, 

H13), 4.01 (s, 3H, H1), 2.21 (qqd, J = 6.6, 6.8, 4.4 Hz, 1H, H9), 1.22 (t, J = 7.0 Hz, 3H, 

H14), 0.98 (d, J = 6.8 Hz, 3H, H10/11), 0.91 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.40 (CO,C12), 165.26 (CO,C6), 137.60 

(NCHN,C2), 123.82 (NCH,C4), 122.73 (NCH,C3), 61.25 (OCH2,C13), 58.76 (CH,C8), 

50.30 (NCH2,C5), 36.74 (NCH3,C1), 30.37 (CH,C9), 19.09 (CH3,C10/C11), 18.36 

(CH3,C10/C11), 14.19 (CH3,C14) 

IR (neat) (cm-1) 3047 (b), 2967 (w), 1733 (s), 1682 (vs), 1544 (s), 1198 (s), 1173 (s), 1150 

(s) 

MS (m/z) Found [M-Br-]+ 268.1657, C13H22N3O3
+ requires 268.1655 
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3-Methyl-1-DL-phenylalanine methyl ester imidazolium bromide (289) 

 

The title compound (289) was prepared from 1-methylimidazole (0.405 g, 4.92 mmol) and 

D-phenylalanine methyl ester bromoacetate (268) (1.922 g, 6.40 mmol) according to the 

general procedure (Section 7.3.3, page 295) as an off white solid in 84 % yield (1.581 g, 

4.14 mmol). 

m.p. 55-57 °C 

Molecular formula C16H20BrN3O3 

Molecular weight 382 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.84 (s, 1H, H2), 9.05 (d, J = 8.0 Hz, 1H, H7), 7.44 (t, 

J = 1.6 Hz, 1H, H4), 7.44-7.23 (m, 5H, H11-15), 7.14 (t, J = 1.8 Hz, 1H, H3), 5.37 (d, J = 

5.6 Hz, 2H, H5), 4.75 (ddd, J = 7.6, 5.6, 5.6 Hz, 1H, H8), 4.00 (s, 3H, H1), 3.70 (s, 3H, 

H17), 3.18 (dd, J = 14.0, 5.6 Hz, 1H, H9), 3.09 (dd, J = 13.0, 5.6 Hz, 1H, H9) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.84 (CO,C16), 165.13 (CO,C6), 136.95 

(NCHN,C2) 136.66 (ArC,C10), 129.88 (ArCH), 128.54 (ArCH), 126.65 (ArCH,C13), 

123.58 (NCH,C4), 122.60 (NCH,C3), 54.80 (CH,C8), 52.52 (NCH2,C5), 51.50 

(OCH3,C17), 37.30 (NCH3,C1), 36.79 (CH2,C9) 

IR (neat) (cm-1) 3229 (w), 3033 (m), 1740 (m), 1728 (s), 1672 (s), 1528 (m), 1217 (s), 1173 

(s), 764 (m), 704 (m) 

MS (m/z) Found [M-Br-]+ 302.1498, C16H20N3O3
+ requires 302.1499 
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3-Methyl-1-DL-phenylalanine ethyl ester imidazolium bromide (290) 

 

The title compound (290) was prepared from 1-methylimidazole (0.314 g, 3.82 mmol) and 

D-phenylalanine ethyl ester bromoacetate (269) (1.556 g, 4.97 mmol) according to the 

general procedure (Section 7.3.3, page 295) as a beige solid in 79 % yield (1.203 g, 3.04 

mmol). 

m.p. 60-62 °C 

Molecular formula C17H22BrN3O3 

Molecular weight 396 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.74 (s, 1H, H2), 8.91 (d, J = 7.6 Hz, 1H, H7), 7.36 

(s, 1H, H4), 7.30-7.07 (m, 5H, H11-15), 7.06 (s, 1H, H3), 5.42 (d, J = 10.0 Hz, 2H, H5), 

4.64 (ddd, J = 7.6, 5.2, 5.2 Hz, 1H, H8), 4.07 (dq, J = 7.2, 7.2 Hz, 1H, H17), 4.06 (dq, J = 

7.2, 7.2 Hz, 1H, H17), 3.91 (s, 3H, H1), 3.18 (dd, J = 13.0, 5.6 Hz, 1H, H9), 3.08 (dd, J = 

13.0, 5.6 Hz, 1H, H9), 1.12 (t, J = 7.2 Hz, 3H, H18) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.10 (CO,C16), 165.80 (CO,C6), 138.05 

(NCHN,C2) 136.60 (ArC,C10), 129.58 (ArCH), 128.30 (ArCH), 126.78 (ArCH,C13), 

123.64 (NCH,C4), 122.47 (NCH,C3), 61.50 (OCH2,C17), 54.81 (CH,C8), 51.51 

(NCH2,C5), 37.39 (NCH3,C1), 36.80 (CH2,C9), 14.04 (CH3,C18) 

IR (neat) (cm-1) 3218 (b), 3029 (w), 1733 (s), 1671 (vs), 1533 (m), 1371 (s), 1215 (s), 1178 

(vs), 749 (s), 704 (m) 

MS (m/z) Found [M-Br-]+ 316.1655, C17H22N3O3
+ requires 316.1655 
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3-Methyl-1-DL-valine methyl ester imidazolium bromide (291) 

 

The title compound (291) was prepared from 1-methylimidazole (0.283 g, 3.45 mmol) and 

DL-valine methyl ester bromoacetate (266) (1.035 g, 4.12 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 87 % yield (1.003 g, 

3.00 mmol). 

Molecular formula C12H20BrN3O3 

Molecular weight 334 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.75 (s, 1H, H2), 8.68 (d, J = 7.6 Hz, 1H, H7), 7.56 (t, 

J = 1.8 Hz, 1H, H4), 7.17 (t, J = 1.8 Hz, 1H, H3), 5.50 (s, 2H, H5), 4.27 (dd, J = 8.0, 5.6 

Hz, 1H, H8), 3.96 (s, 3H, H1), 3.64 (s, 3H, H13), 2.16 (qqd, J = 6.8, 6.8, 5.2 Hz, 1H, H9), 

0.96 (d, J = 6.8 Hz, 3H, H10/H11), 0.88 (d, J = 6.8 Hz, 3H, H10/H11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.91 (CO,C12), 164.88 (CO,C6), 137.66 

(NCHN,C2), 123.91 (NCH,C4), 122.43 (NCH,C3), 59.04 (CH,C8), 52.02 (NCH2,C5), 

51.68 (OCH3,C13), 36.81 (NCH3,C1), 30.28 (CH,C9), 19.17 (CH3,C10/C11), 18.54 

(CH3,C10/C11) 

IR (neat) (cm-1) 3149 (w), 2966 (m), 1736 (s), 1672 (vs), 1552 (m), 1203 (s), 1175 (s), 1147 

(s) 

MS (m/z) Found [M-Br-]+ 254.1501, C12H20N3O3
+ requires 254.1499 
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3-Methyl-1-DL-valine ethyl ester imidazolium bromide (292) 

 

The title compound (292) was prepared from 1-methylimidazole (0.347 g, 4.22 mmol) and 

DL-valine ethyl ester bromoacetate (267) (1.461 g, 5.50 mmol) according to the general 

procedure (Section 7.3.3, page 295) as a colourless viscous liquid in 77 % yield (1.134 g, 

3.26 mmol). 

Molecular formula C13H22BrN3O3 

Molecular weight 348 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.82 (s, 1H, H2), 8.67 (d, J = 7.6 Hz, 1H, H7), 7.65 

(s, 1H, H4), 7.23 (s, 1H, H3), 5.58 (s, 2H, H5), 4.32 (dd, J = 8.0, 4.4 Hz, 1H, H8), 4.18 (dq, 

J = 7.2, 7.0 Hz, 1H, H13), 4.17 (dq, J = 7.2, 7.2 Hz, 1H, H13), 4.04 (s, 3H, H1), 2.29 (qqd, 

J = 6.8, 6.8, 4.4 Hz, 1H, H9), 1.28 (t, J = 7.0 Hz, 3H, H14), 1.08 (d, J = 6.8 Hz, 3H, 

H10/H11), 1.03 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.26 (CO,C12), 165.14 (CO,C6), 137.82 

(NCHN,C2), 123.87 (NCH,C4), 122.34 (NCH,C3), 61.21 (OCH2,C13), 58.96 (CH,C8), 

53.46 (NCH2,C5), 36.80 (NCH3,C1), 30.33 (CH,C9), 19.19 (CH3,C10/C11), 18.55 

(CH3,C10/C11), 14.25 (CH3,C14) 

IR (neat) (cm-1) 3047 (b), 2964 (w), 2927 (w), 1733 (s), 1681 (vs), 1544 (s), 1173 (vs), 
1149 (s), 1022 (s) 

MS (m/z) Found [M-Br-]+ 268.1650, C13H22N3O3
+ requires 268.1655 
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7.3.4 Preparation of Chiral NTf2 ILs 

General procedure for the Preparation of Chiral Amino Acid ester NTf2 salts; 3-methyl-

1-L-isoleucine methyl ester imidazolium NTf2 (293) 

 

A flask was charged with 3-methyl-1-L-isoleucine methyl ester imidazolium bromide (279) 

(0.201 g, 0.58 mmol) and distilled water (2 mL). LiNTf2 (0.182 g, 0.64 mmol) was added in 

one portion and the suspension was stirred vigorously for overnight at RT. The top aqueous 

layer was removed and the IL was washed with distilled water (3 x 1 mL). The solvent was 

then removed on the rotary evaporator and under high vacuum for 5 h to give the title 

material (293) as a pale yellow liquid at RT in 84 % yield (0.266 g, 0.48 mmol) 

 [α] 20
D

=  -6.6 o (0.8 c, CHCl3) 

Molecular formula C15H22F6N4O7S2 

Molecular weight 548 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.65 (s, 1H, H2), 7.37 (s, 1H, H4), 7.17 (s, 1H, H3), 

7.16 (d, J = 8.0 Hz, 1H, H7), 4.95 (d, J = 18.6 Hz, 2H, H5), 4.38 (dd, J = 8.0, 4.8 Hz, 1H, 

H8), 3.85 (s, 3H, H1), 3.65 (s, 3H, H14), 1.85 (dddq, J = 8.0, 8.0, 6.8, 4.4 Hz, 1H, H9), 

1.42 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H11), 1.30 (ddq, J = 8.4, 8.4, 7.0 Hz, 1H, H11), 0.89 (t, 

J = 7.2 Hz, 3H, H12), 0.85 (d, J = 7.2 Hz, 3H, H10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.63 (CO,C13), 163.36 (CO,C6), 136.13 

(NCHN,C2), 122.93 (NCH,C4) 121.89 (NCH,C3), 119.70 (q, J = 319.5 Hz, 2CF3, 

C15,C16), 56.54 (CH,C8), 52.43 (NCH2,C5), 49.39 (OCH3,C14), 36.30 (CH,C9), 35.42 

(NCH3,C1), 24.04 (CH2,C11), 14.24 (CH3,C10), 10.31 (CH3,C12) 
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IR (neat) (cm-1) 3363 (b), 2968 (w), 1735 (m), 1689 (s), 1539 (m), 1347 (s), 1178 (vs), 

1132 (vs), 1053 (vs) 

LRMS (m/z)  268.4 [M-NTf2]
+; 279.9 [NTf2]

- 

3-Methyl-1-L-isoleucine ethyl ester imidazolium NTf2 (294) 

 

The title compound (294) was prepared from 3-methyl-1-L-isoleucine ethyl ester 

imidazolium bromide (280) (0.200 g, 0.55 mmol) and LiNTf2 (0.170 g, 0.60 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow liquid in 67 % 

yield (0.206 g, 0.37 mmol). 

[α] 20
D

=  -10.4 ° (0.8 c, CHCl3) 

Molecular formula C16H24F6N4O7S2 

Molecular weight 562 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.62 (s, 1H), 7.35 (s, 1H), 7.23 (s, 1H), 7.18 (d, J = 

7.8 Hz, 1H), 4.97 (d, J = 17.8 Hz, 2H), 4.35 (dd, J = 8.4, 4.4 Hz, 1H), 4.18-4.07 (m, 2H), 

3.84 (s, 3H), 1.86 (dddq, J = 8.0, 8.0, 7.0, 4.4 Hz, 1H), 1.41 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H), 

1.22 (ddq, J = 8.0, 8.0, 7.4 Hz, 1H), 1.19 (t, J = 7.2 Hz, 3H), 0.86 (t, J = 7.4 Hz, 3H), 0.83 

(d, J = 7.2 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.25, 165.35, 137.12, 123.88, 122.85, 118.60 (q, J 

= 319.5 Hz, 2CF3), 61.54, 57.54, 50.87, 36.38, 28.95, 25.10, 15.24, 14.00, 11.37 

IR (neat) (cm-1) 3356 (b), 2970 (w), 1732 (m), 1688 (s), 1544 (m), 1347 (s), 1179 (vs), 

1133 (vs), 1053 (vs) 
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LRMS (m/z)  282.4 [M-NTf2]
+; 279.9 [NTf2]

- 

3-Methyl-1-L-isoleucine butyl ester imidazolium NTf2 (295) 

 

The title compound (295) was prepared from 3-methyl-1-L-isoleucine butyl ester 

imidazolium bromide (281) (0.202 g, 0.51 mmol) and LiNTf2 (0.161 g, 0.56 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow oil in 77 % 

yield (0.231 g, 0.39 mmol). 

[α] 20
D = -6.0 ° (0.7 c, CHCl3) 

Molecular formula C18H28F6N4O7S2 

Molecular weight 590 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.63 (s, 1H), 7.36 (s, 1H), 7.23 (s, 1H), 7.14 (d, J = 

7.8 Hz, 1H), 4.93 (d, J = 17.8 Hz, 2H), 4.38 (dd, J = 8.0, 4.4 Hz, 1H), 4.09-4.00 (m, 2H), 

3.85 (s, 3H), 1.85 (dddq, J = 8.0, 8.0, 7.2, 5.0 Hz, 1H), 1.59-1.50 (m, 2H), 1.40-1.26 (m, 

4H), 0.86-0.80 (m, 9H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.37, 164.30, 137.13, 123.92, 122.87, 118.62 (q, J 

= 318 Hz, 2CF3), 65.38, 57.55, 50.89, 37.41, 36.41, 30.51, 25.08, 19.04, 15.31, 13.60, 

11.41 

IR (neat) (cm-1) 3360 (b), 3160 (w), 2966 (w), 1732 (m), 1689 (s), 1538 (m), 1347 (s), 1180 

(vs), 1133 (vs), 1054 (vs) 

LRMS (m/z)  310.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-alanine methyl ester imidazolium NTf2 (296) 

 

The title compound (296) was prepared from 3-methyl-1-L-alanine methyl ester 

imidazolium bromide (273) (0.202 g, 0.69 mmol) and LiNTf2 (0.220 g, 0.76 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow liquid in 54 % 

yield (0.189 g, 0.37 mmol). 

[α] 20
D =  -10.2 o ( 0.4 c, CHCl3) 

Molecular formula C12H16F6N4O7S2 

Molecular weight 506 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.74 (s, 1H), 7.26 (t, J = 1.8 Hz, 1H), 7.19 (d, J = 6.8 

Hz, 1H), 7.17 (t, J = 1.6 Hz, 1H), 4.95 (d, J = 10.8 Hz, 2H), 4.31 (dq, J = 7.2, 7.2 Hz, 1H), 

3.86 (s, 3H), 3.32 (s, 3H), 1.40 (d, J = 7.2 Hz, 3H), 1.17 (t, J = 7.2 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.22, 164.58, 136.78, 123.87, 122.88, 119.08 (q, J 

= 319.0 Hz, 2CF3), 61.70, 51.01, 48.10, 36.59, 16.89 

IR (neat) (cm-1) 3362 (b), 3163 (w), 1739 (m), 1686 (s), 1546 (m), 1346 (vs), 1176 (vs), 

1132 (vs), 1051 (vs) 

LRMS (m/z)  226.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-alanine ethyl ester imidazolium NTf2 (297) 

 

The title compound (297) was prepared from 3-methyl-1-L-alanine ethyl ester imidazolium 

bromide (274) (0.200 g, 0.66 mmol) and LiNTf2 (0.201 g, 0.72 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a colourless liquid in 83 % yield (0.284 g, 

0.55 mmol). 

[α] 20
D =  -14.1 ° (0.4 c, CHCl3) 

Molecular formula C13H18F6N4O7S2 

Molecular weight 520 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.67 (s, 1H), 7.38 (t, J = 1.8 Hz, 1H), 7.24 (d, J = 6.8 

Hz, 1H), 7.20 (t, J = 1.6 Hz, 1H), 4.93 (d, J = 10.8 Hz, 2H), 4.38 (dq, J = 7.2, 7.2 Hz, 1H), 

4.10 (q, J = 7.2 Hz, 2H), 3.86 (s, 3H), 1.36 (d, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.12, 163.89, 137.18, 123.97, 122.83, 118.08 (q, J 

= 319.0 Hz, 2CF3), 61.70, 51.01, 48.09, 36.48, 17.20, 13.09 

IR (neat) (cm-1) 3360 (w), 3161 (w), 2992 (w), 1735 (m), 1685 (s), 1543 (m), 1347 (s), 

1329 (s), 1176 (vs), 1132 (vs), 1051 (vs) 

LRMS (m/z)  240.3 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-alanine butyl ester imidazolium NTf2 (298) 

 

The title compound (298) was prepared from 3-methyl-1-L-alanine butyl ester imidazolium 

bromide (275) (0.171 g, 0.51 mmol) and LiNTf2 (0.162 g, 0.56 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a pale yellow oil in 72 % yield (0.201 g, 

0.37 mmol). 

[α] 20
D =  -16.2 ° (0.4 c, CHCl3) 

Molecular formula C15H22F6N4O7S2 

Molecular weight 548 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.75 (s, 1H), 7.46 (t, J = 1.8 Hz, 1H), 7.28 (t, J = 1.6 

Hz, 1H), 7.26 (d, J = 6.8 Hz, 1H), 4.95 (d, J = 11.2 Hz, 2H), 4.44 (dq, J = 7.2, 7.2 Hz, 1H), 

4.13 (q, J = 7.2 Hz, 2H), 3.95 (s, 3H), 1.59 (tt, J = 7.2, 7.0 Hz, 2H), 1.43 (d, J = 7.6 Hz, 

3H), 1.37 (tq, J = 7.6, 7.2 Hz, 2H), 0.95 (t, J = 7.6 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.12, 163.84, 137.16, 123.97, 122.83, 118.08 (q, J 

= 319.0 Hz, 2CF3), 65.55, 51.00, 48.99, 36.50, 30.44, 18.98, 17.35, 13.62 

IR (neat) (cm-1) 3549 (b), 3357 (w), 1736 (m), 1693 (s), 1565 (m), 1345 (s), 1181 (vs), 

1130 (vs), 1052 (vs) 

LRMS (m/z)  268.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-leucine methyl ester imidazolium NTf2 (299) 

 

The title compound (299) was prepared from 3-methyl-1-L-leucine methyl ester 

imidazolium bromide (282) (0.201 g, 0.58 mmol) and LiNTf2 (0.180 g, 0.63 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a colourless liquid in 78 % 

yield (0.248 g, 0.45 mmol) 

[α] 20
D =  -11.8 o (0.9 c, CHCl3) 

Molecular formula C15H22F6N4O7S2 

Molecular weight 548 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.67 (s, 1H), 7.42 (s, 1H), 7.32 (s, 1H), 7.22 (d, J = 

7.6 Hz, 1H), 4.98 (s, 2H), 4.46 (ddd, J = 8.0, 8.0, 5.2 Hz, 1H), 3.92 (s, 3H), 3.70 (s, 3H), 

1.71-1.62 (m, 3H), 0.91 (dd, J = 8.6, 5.6 Hz, 6H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.74, 164.36, 137.09, 123.21, 123.07, 118.06 (q, J 

= 318 Hz, 2CF3), 52.42, 51.64. 50.81, 40.47, 36.38, 24.64, 22.16, 21.52 

IR (neat) (cm-1) 3359 (b), 2962 (w), 1739 (m), 1688 (s), 1542 (m), 1347 (s), 1176 (vs), 

1132 (vs), 1053 (vs) 

LRMS (m/z)  268.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-leucine ethyl ester imidazolium NTf2 (300) 

 

The title compound (300) was prepared from 3-methyl-1-L-leucine ethyl ester imidazolium 

bromide (283) (0.203 g, 0.56 mmol) and LiNTf2 (0.175 g, 0.61 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a yellow liquid in 85 % yield (0.269 g, 0.48 

mmol). 

[α] 20
D =  -8.5 o (0.5 c, CHCl3) 

Molecular formula C16H24F6N4O7S2 

Molecular weight 562 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.62 (s, 1H), 7.38 (s, 1H), 7.20 (s, 1H), 7.22 (d, J = 

7.2 Hz, 1H), 4.91 (d, J = 15.4 Hz, 2H), 4.45 (ddd, J = 7.8, 7.8, 5.6 Hz, 1H), 4.17 (dq, J = 

7.2, 7.2 Hz, 2H), 4.15 (dq, J = 7.2, 7.2 Hz, 2H), 3.82 (s, 3H), 1.65-1.51 (m, 3H), 1.18 (t, J = 

7.0 Hz, 3H), 0.91 (dd, J = 6.0, 6.0 Hz, 6H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.21, 163.22, 136.13, 123.87, 122.84, 119.77 (q, J 

= 319 Hz, 2CF3), 60.58, 50.74, 49.95, 39.65, 35.48, 23.88, 21.74, 20.58, 13.09  

IR (neat) (cm-1) 3359 (b), 3162 (w), 2964 (w), 1734 (m), 1691 (s), 1543 (m), 1347 (s), 1179 

(vs), 1132 (vs), 1053 (vs) 

LRMS (m/z)  282.4 [M-NTf2]
+; 279.9 [NTf2]

- 

 

 



326 

 

3-Methyl-1-L-leucine butyl ester imidazolium NTf2 (301) 

 

The title compound (301) was prepared from 3-methyl-1-L-leucine butyl ester imidazolium 

bromide (284) (0.202 g, 0.51 mmol) and LiNTf2 (0.160 g, 0.56 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a colourless liquid in 86 % yield (0.260 g, 

0.44 mmol). 

[α] 20
D =  -6.2 o (0.3 c, CHCl3) 

Molecular formula C18H28F6N4O7S2 

Molecular weight 590 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.59 (s, 1H), 7.33 (s, 1H), 7.25 (s, 1H), 7.16 (d, J = 

7.6 Hz, 1H), 4.91 (d, J = 5.6 Hz, 2H), 4.41 (ddd, J = 7.8, 7.8, 5.2 Hz, 1H), 4.05-3.99 (m, 

2H), 3.84 (s, 3H), 1.64-1.49 (m, 5H), 1.30 (tq, J = 7.6, 7.6 Hz, 2H), 0.86-0.81 (m, 9H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.44, 164.34, 137.05, 123.74, 123.11, 118.04 (q, J 

= 319 Hz, 2CF3), 65.47, 51.77, 49.79, 40.53, 36.33, 30.14, 24.66, 22.40, 21.58, 18.94, 

13.42 

IR (neat) (cm-1) 3357 (b), 2963 (w), 1733 (m), 1691 (s), 1544 (m), 1347 (s), 1777 (vs), 

1133 (vs), 1054 (vs) 

LRMS (m/z) 310.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-phenylalanine methyl ester imidazolium NTf2 (302) 
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The title compound (302) was prepared from 3-methyl-1-L-phenylalanine methyl ester 

imidazolium bromide (270) (0.270 g, 0.71 mmol) and LiNTf2 (0.221 g, 0.78 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow liquid in 65 % 

yield (0.267 g, 0.46 mmol). 

[α] 20
D =  +14.0 o (0.4 c, CHCl3) 

Molecular formula C18H20F6N4O7S2 

Molecular weight 582 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.54 (s, 1H), 7.33 (d, J = 7.6 Hz, 1H), 7.20-7.04 (m, 

7H), 4.83 (d, J = 4.8 Hz, 2H), 4.64 (ddd, J = 7.8, 6.0, 6.0 Hz, 1H), 3.78 (s, 3H), 3.59 (s, 

3H), 3.07 (dd, J = 13.0, 6.0 Hz, 1H), 2.92 (dd, J = 14.0, 6.0 Hz, 1H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.54, 164.28, 137.06, 135.94, 129.94, 128.61, 

127.14, 123.77, 122.92, 118.64 (q, J = 319 Hz, 2CF3), 54.36, 52.54, 50.97, 50.83, 37.62, 

36.27 

IR (neat) (cm-1) 3357 (w), 1740 (m), 1689 (s), 1540 (m), 1347 (s), 1175 (vs), 1132 (vs), 

1052 (vs), 739 (m), 703 (m) 

LRMS (m/z) 302.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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 3-Methyl-1-L-phenylalanine ethyl ester imidazolium NTf2 (303) 
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The title compound (303) was prepared from 3-methyl-1-L-phenylalanine ethyl ester 

imidazolium bromide (271) (0.200 g, 0.51 mmol) and LiNTf2 (0.151 g, 0.55 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow viscous liquid 

in 94 % yield (0.284 g, 0.48 mmol) 

[α] 20
D =  +13.1 o (0.9 c, CHCl3) 

Molecular formula C19H22F6N4O7S2 

Molecular weight 596 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.51 (s, 1H), 7.24-7.04 (m, 8H), 4.81 (d, J = 4.8 Hz, 

2H), 4.66 (ddd, J = 7.6, 5.8, 5.8 Hz, 1H), 4.06 (q, J = 7.2 Hz, 2H), 3.79 (s, 3H), 3.07 (dd, J 

= 13.6, 6.0 Hz, 1H), 2.92 (dd, J = 13.0, 7.8 Hz, 1H), 1.03 (t, J = 7.2 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 169.94, 163.01, 136.01, 134.81, 128.32, 127.55, 

126.10, 122.74, 121.88, 117.57 (q, J = 319 Hz, 2CF3), 60.77, 53.34, 49.90, 36.67, 35.43, 

12.84 

IR (neat) (cm-1) 3160 (b), 1735 (m), 1692 (s), 1539 (m), 1347 (s), 1177 (vs), 1132 (vs), 

1053 (vs), 738 (m), 703 (m) 

LRMS (m/z) 316.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-phenylalanine butyl ester imidazolium NTf2 (304) 

 

The title compound (304) was prepared from 3-methyl-1-L-phenylalanine butyl ester 

imidazolium bromide (272) (0.202 g, 0.49 mmol) and LiNTf2 (0.152 g, 0.54 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow oil in 84 % 

yield (0.256 g, 0.41 mmol). 

[α] 20
D =  +11.2 o (0.7 c, CHCl3) 

Molecular formula C21H26F6N4O7S2 

Molecular weight 624 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.50 (s, 1H), 7.20-7.08 (m, 8H), 4.81 (s, 2H), 4.67 

(ddd, J = 7.8, 6.0, 6.0 Hz, 1H), 4.07 (q, J = 7.2 Hz, 2H), 3.98 (s, 3H), 3.07 (dd, J = 16.6, 6.6 

Hz, 1H), 2.93 (dd, J = 14.0, 7.8 Hz, 1H), 1.48 (tt, J = 6.8, 7.0 Hz, 2H), 1.21 (tq, J = 7.2 Hz, 

2H), 1.03 (t, J = 7.2 Hz, 3H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.07, 164.01, 137.02, 135.89, 129.25, 128.59, 

127.12, 123.75, 122.89, 118.64 (q, J = 319 Hz, 2CF3), 65.69, 54.38, 50.92, 37.77, 36.38, 

30.32, 18.95, 13.75 

IR (neat) (cm-1) 3356 (b), 3160 (w), 2963 (w), 1734 (m), 1692 (s), 1541 (m), 1347 (s), 1178 

(vs), 1132 (vs), 1053 (vs), 738 (m), 702 (m) 

LRMS (m/z) 344.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-valine methyl ester imidazolium NTf2 (305) 

 

The title compound (305) was prepared from 3-methyl-1-L-valine methyl ester 

imidazolium bromide (276) (0.202 g, 0.60 mmol) and LiNTf2 (0.190 g, 0.66 mmol) 

according to the general procedure (Section 7.3.4, page 318) as a pale yellow liquid in 88 % 

yield (0.282 g, 0.53 mmol). 

 [α] 20
D =  -4.7 o (0.3 c, CHCl3) 

Molecular formula C14H20F6N4O7S2 

Molecular weight 534 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.66 (s, 1H), 7.38 (t, J =  1.8 Hz, 1H), 7.23 (t, J = 1.6 

Hz, 1H), 7.18 (d, J = 8.0 Hz, 1H), 5.00 (d, J = 14.0 Hz, 2H), 4.32 (dd, J = 8.4, 5.2 Hz, 1H), 

3.84 (s, 3H), 3.65 (s, 3H), 2.11 (qqd, J = 6.8, 6.4, 5.6 Hz, 1H), 0.86 (dd, J = 6.8, 3.6 Hz, 

6H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.70, 164.51, 137.16, 123.97, 122.86, 118.07 (q, J 

= 319 Hz, 2CF3), 58.46, 52.32, 50.91, 36.45, 30.68, 18.78, 17.69 

IR (neat) (cm-1) 3353 (b), 2968 (w), 1736 (m), 1686 (s), 1543 (m), 1347 (s), 1176 (vs), 

1132 (vs), 1052 (vs) 

LRMS (m/z) 254.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-valine ethyl ester imidazolium NTf2 (306) 

 

The title compound (306) was prepared from 3-methyl-1-L-valine ethyl ester imidazolium 

bromide (277) (0.200 g, 0.57 mmol) and LiNTf2 (0.181 g, 0.63 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a yellow liquid in 93 % yield (0.293 g, 0.53 

mmol). 

 [α] 20
D =  -5.0 o (0.2 c, CHCl3) 

Molecular formula C15H22F6N4O7S2 

Molecular weight 548 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.63 (s, 1H), 7.36 (t, J =  1.6 Hz, 1H), 7.23 (t, J = 1.8 

Hz, 1H), 7.16 (d, J = 8.0 Hz, 1H), 4.98 (d, J = 13.6 Hz, 2H), 4.31 (dd, J = 8.0, 5.2 Hz, 1H), 

4.11 (dq, J = 7.0, 7.0 Hz, 1H), 4.10 (dq, J = 7.2, 7.0 Hz, 1H), 3.84 (s, 3H), 2.10 (qqd, J = 

7.0, 6.8, 5.6 Hz, 1H), 1.19 (t, J = 7.0 Hz, 3H), 0.86 (dd, J = 6.8, 5.6 Hz, 6H) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.31, 164.52, 137.13, 123.89, 122.97, 118.06 (q, J 

= 318 Hz, 2CF3), 61.57, 58.40, 50.86, 36.38, 30.73, 18.73, 17.60, 14.01 

IR (neat) (cm-1) 3361 (b), 3162 (w), 2970 (w), 1732 (m), 1688 (s), 1541 (m), 1347 (s), 1177 

(vs), 1132 (vs), 1053 (vs) 

LRMS (m/z) 268.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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3-Methyl-1-L-valine butyl ester imidazolium NTf2 (307) 

 

The title compound (307) was prepared from 3-methyl-1-L-valine butyl ester imidazolium 

bromide (278) (0.202 g, 0.53 mmol) and LiNTf2 (0.167 g, 0.59 mmol) according to the 

general procedure (Section 7.3.4, page 318) as a pale yellow liquid in 94 % yield (0.288 g, 

0.50 mmol). 

 [α] 20
D =  -7.4 o (0.4 c, CHCl3) 

Molecular formula C17H26F6N4O7S2 

Molecular weight 576 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.71 (s, 1H), 7.45 (t, J = 1.8 Hz, 1H), 7.25 (t, J = 1.8 

Hz, 1H), 7.17 (d, J = 8.4 Hz, 1H), 5.12 (d, J = 21.6 Hz, 2H), 4.42 (dd, J = 8.0, 5.2 Hz, 1H), 

4.07 (dq, J = 7.0, 7.0 Hz, 1H), 4.06 (dq, J = 7.2, 7.0 Hz, 1H), 3.96 (s, 3H), 2.14 (qqd, J = 

7.0, 6.8, 5.2 Hz, 1H), 1.66 (tt, J = 7.4, 6.8 Hz, 2H), 1.38 (tq, J = 7.6, 7.4 Hz, 2H), 0.99-0.93 

(m, 9H) 

13C NMR (100 MHz, CDCl3) δ (ppm)  171.26, 164.35, 137.23, 124.07, 122.72, 121.26 (q, J 

= 319 Hz, 2CF3), 65.46, 58.43, 51.03, 36.56, 30.71, 30.46, 19.06, 18.84, 17.59, 13.63. 

IR (neat)(cm-1) 3355 (b), 2966 (w), 1732 (m), 1688 (s), 1541 (m), 1347 (s), 1178 (vs), 1133 

(vs), 1053 (vs) 

LRMS (m/z) 296.4 [M-NTf2]
+; 279.9 [NTf2]

- 
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7.3.5 Preparation of Chiral OctOSO3 ILs 

General procedure for the Preparation of Chiral Amino Acid ester OctOSO3 salts; 3-

methyl-1-L-leucine methyl ester imidazolium OctOSO3 (308) 

 

To a stirred solution of 3-methyl-1-L-leucine methyl ester imidazolium bromide (282) 

(0.200 g, 0.59 mmol) in distilled water (3 mL) was added in one portion sodium octyl 

sulfate (0.171 g, 0.72 mmol). The mixture was left stirring overnight, and then the water 

was evaporated on the rotary evaporator. The remaining residue was dissolved in DCM (4 

mL) and washed with water (2 x 1 mL). The product was then dried on the rotary 

evaporator and under high vacuum for 10 h to give the title product (308) as a colourless 

liquid at RT in 93 % yield (0.262 g, 0.55 mmol). 

 [α] 20
D

=  -14.1 o (0.9 c, CHCl3) 

Molecular formula C21H39N3O7S 

Molecular weight 478 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.91 (s, 1H, H2), 8.44 (d, J = 7.2 Hz, 1H, H7), 7.43 

(s, 1H, H4), 7.33 (s, 1H, H3), 5.08 (d, J = 3.6 Hz, 2H, H5), 4.34 (ddd, J = 8.4, 8.4, 5.6 Hz, 

1H, H4), 3.90 (t, J = 6.8 Hz, 2H, H15), 3.87 (s, 3H, H1), 3.62 (s, 3H, H14), 1.73-1.52 (m, 

5H, H9,10,16), 1.27-1.18 (m, 10H, H17-21), 0.88 (d, J = 6.4 Hz, 3H, H11/12), 0.83 (d, J = 

6.4 Hz, 3H, H11/12), 0.78 (t, J = 7.0 Hz, 3H, H22) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 173.26 (CO,C13), 165.51 (CO,C6), 137.70 

(NCHN,C2), 123.66 (NCH,C3), 122.69 (NCH,C4), 68.28 (OCH2,C15), 52.36 (OCH3,C14), 

51.57 (CH,C8), 50.96 (NCH2,C5), 40.01 (CH2,C9), 36.41 (NCH3,C1), 31.79 (CH2), 29.37 

(CH2), 29.33 (CH2), 29.22 (CH2), 25.79 (CH2), 24.71 (CH,C10), 22.72 (CH2), 22.60 

(CH3,C11/C12), 21.47 (CH3,C11/C12), 14.05 (CH3,C22) 

IR (neat) (cm-1) 3159 (w), 3087 (w), 2957 (m), 2927 (m), 2857 (w), 1731 (m), 1682 (s), 

1564 (m), 1175 (vs), 1052 (m) 

LRMS (m/z)  268.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-leucine ethyl ester imidazolium OctOSO3 (309) 

 

The title compound (309) was prepared from 3-methyl-1-L-leucine ethyl ester imidazolium 

bromide (283) (0.250 g, 0.70 mmol) and sodium octyl sulfate (0.190 g, 0.85 mmol) 

according to the general procedure (Section 7.3.5, page 333) as a pale yellow slightly 

viscous liquid in 76 % yield (0.260 g, 0.53 mmol). 

[α] 20
D

=  -9.0 o (0.7 c, CHCl3) 

Molecular formula C22H41N3O7S 

Molecular weight 492 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.03 (s, 1H, H2), 8.43 (d, J = 7.2 Hz, 1H, H7), 7.45 

(s, 1H, H4), 7.27 (s, 1H, H3), 5.08 (s, 2H, H5), 4.36 (ddd, J = 8.8, 8.8, 6.0 Hz, 1H, H4), 

4.09 (dq, J = 7.2, 7.0 Hz, 1H, H14), 4.08 (dq, J = 7.0, 7.0 Hz, 1H, H14), 3.91 (t, J = 7.0 Hz, 
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2H, H16), 3.89 (s, 3H, H1), 1.73-1.52 (m, 5H, H9,10,17), 1.28-1.16 (m, 13H, H15,17-22), 

0.88 (d, J = 6.4 Hz, 3H, H11/12), 0.84 (d, J = 6.4 Hz, 3H, H11/12), 0.79 (t, J = 6.8 Hz, 3H, 

H23) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.56 (CO,C13), 164.20 (CO,C6), 136.97 

(NCHN,C2), 122.77 (NCHN,C4), 121.80 (NCHN,C3), 68.07 (OCH2,C15), 61.29 

(OCH2,C14), 51.69 (CH,C8), 51.07 (NCH2,C5), 40.07 (CH2,C9), 36.46 (NCH3,C1), 31.80 

(CH2), 29.45 (CH2), 29.33 (CH2), 29.23 (CH2), 25.84 (CH2), 24.73 (CH3,C11/C12), 22.75 

(CH2), 22.62 (CH2), 20.65 (CH3,C11/C12), 14.11 (CH3,C15), 14.08 (CH3,C23) 

IR (neat) (cm-1) 3268 (b), 2957 (m), 2927 (m), 1739 (m), 1689 (s), 1565 (m), 1198 (vs), 

1019 (m) 

LRMS (m/z)  282.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-leucine butyl ester imidazolium OctOSO3 (310) 

 

The title compound (310) was prepared from 3-methyl-1-L-leucine butyl ester imidazolium 

bromide (284) (0.201 g, 0.55 mmol) and sodium octyl sulfate (0.150 g, 0.65 mmol) 

according to the general procedure (Section 7.3.5, page 333)  as a pale yellow slightly 

viscous liquid in 75 % yield (0.216 g, 0.41 mmol). 

[α] 20
D

=  -8.3 o (0.6 c, CHCl3) 

Molecular formula C24H45N3O7S 
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Molecular weight 520 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.00 (s, 1H, H2), 8.43 (d, J = 7.2 Hz, 1H, H7), 7.46 

(t, J = 1.6 Hz, 1H, H4), 7.29 (t, J = 1.8 Hz, 1H, H3), 5.08 (s, 2H, H5), 4.31 (ddd, J = 7.8, 

7.8, 5.6 Hz, 1H, H4), 4.01 (dq, J = 7.2, 7.2 Hz, 1H, H14), 4.00 (dq, J = 7.2, 7.0 Hz, 1H, 

H14), 3.91 (t, J = 6.8 Hz, 2H, H18), 3.89 (s, 3H, H1), 1.72-1.50 (m, 7H, H9,10,15,19), 

1.35-1.18 (m, 12H, H16,20-24), 0.88-0.78 (m, 12H, H11,12,17,25) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.73 (CO,C13), 165.24 (CO,C6), 137.87 

(NCHN,C2), 123.65 (NCHN,C4), 122.86 (NCHN,C3), 68.10 (OCH2,C15), 65.18 

(OCH2,C14), 51.67 (CH,C8), 51.02 (NCH2,C5), 40.13 (CH2,C9), 36.43 (NCH3,C1), 31.79 

(CH2), 30.48 (CH2), 29.43 (CH2), 29.33 (CH2), 29.22 (CH2), 25.82 (CH2), 24.74 

(CH3,C11/C12), 22.71 (CH2), 22.61 (CH2), 21.68 (CH3,C11/C12), 19.02 (CH2), 14.06 

(CH3,C17), 13.66 (CH3,C25) 

IR (neat) (cm-1) 3274 (b), 2958 (m), 2928 (m), 2872 (w), 1738 (m), 1689 (s), 1565 (m), 

1347 (w), 1200 (s), 1058 (m) 

LRMS (m/z)  310.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-phenylalanine ethyl ester imidazolium OctOSO3 (311) 

 

The title compound (311) was prepared from 3-methyl-1-L-phenylalanine ethyl ester 

imidazolium bromide (271) (0.202 g, 0.50 mmol) and sodium octyl sulfate (0.130 g, 0.55 
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mmol) according to the general procedure (Section 7.3.5, page 333) as a colourless liquid in 

96 % yield (0.254 g, 0.48 mmol). 

[α] 20
D =  +15.5 ° (0.9 c, CHCl3) 

Molecular formula C25H39N3O7S 

Molecular weight 526 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  8.98 (s, 1H, H2), 8.53 (d, J = 7.8 Hz, 1H, H7), 7.29 

(t, J = 1.8 Hz, 1H, H4), 7.21 (t, J = 1.8 Hz, 1H, H3), 7.17-7.09 (m, 5H, H11-15), 5.00 (d, J 

= 5.4 Hz, 2H, H5), 4.57 (ddd, J = 8.0, 6.6, 6.6 Hz, 1H, H8), 4.01 (dq, J = 7.2, 7.2 Hz, 1H, 

H17), 3.98 (dq, J = 7.2, 7.2 Hz, 1H, H17), 3.94 (t, J = 6.9 Hz, 2H, H19), 3.84 (s, 3H, H1), 

3.09 (dd, J = 12.0, 6.0 Hz, 1H, H9), 2.99 (dd, J = 12.0, 6.0 Hz, 1H, H9), 1.56 (tt, J = 7.2, 

7.0 Hz, 2H, H20), 1.28-1.23 (m, 2H, H21), 1.20-1.13 (m, 8H, H22-25), 1.07 (t, J =  7.2 Hz, 

3H, H18), 0.78 (t, J = 7.2 Hz, 3H, H26) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.26 (CO,C16), 164.99 (CO,C6), 137.92 

(NCHN,C2), 136.64 (ArC,C10), 129.38 (ArCH), 128.60 (ArCH), 127.69 (ArCH,C13), 

123.56 (NCH,C4), 122.78 (NCH,C3), 68.08 (OCH2,C19), 61.41 (OCH2,C17), 54.68 

(CH,C8), 51.12 (NCH2,C5), 37.74 (CH2,C9), 36.42 (NCH3,C1), 31.79 (CH2), 29.49 (CH2), 

29.34 (CH2), 29.22 (CH2), 28.68 (CH2,C20), 25.87 (CH2), 22.61 (CH2), 14.06 (CH3,C18), 

13.98 (CH3,C26) 

IR (neat) (cm-1) 3158 (w), 2926 (m), 2856 (m), 1735 (m), 1682 (s), 1564 (m), 1174 (s), 

1048 (m), 746 (m), 700 (m) 

LRMS (m/z)  316.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 
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3-Methyl-1-L-phenylalanine butyl ester imidazolium OctOSO3 (312) 

 

The title compound (312) was prepared from 3-methyl-1-L-phenylalanine butyl ester 

imidazolium bromide (272) (0.198 g, 0.47 mmol) and sodium octyl sulfate (0.121 g, 0.52 

mmol) according to the general procedure (Section 7.3.5, page 333) as a colourless liquid in 

95 % yield (0.244 g, 0.45 mmol). 

[α] 20
D

=  +9.0 o (0.8 c, CHCl3) 

Molecular formula C27H43N3O7S 

Molecular weight 554 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.02 (s, 1H, H2), 8.55 (d, J = 7.8 Hz, 1H, H7), 7.30 

(t, J = 1.8 Hz, 1H, H4), 7.23 (t, J = 1.8 Hz, 1H, H1), 7.20-7.11 (m, 5H, H11-15), 5.03 (s, 

2H, H5), 4.58 (ddd, J = 8.4, 6.0, 6.0 Hz, 1H, H8), 3.96-3.92 (m, 4H, H17,22), 3.85 (s, 3H, 

H1), 3.09 (dd, J = 13.0, 6.0 Hz, 1H, H9), 3.01 (dd, J = 13.8, 6.0 Hz, 1H, H9), 1.57 (tt, J = 

7.2, 7.0 Hz, 2H, H23), 1.47-1.39 (m, 2H, H18), 1.28-1.24 (m, 2H, H19), 1.22-1.12 (m, 10H, 

H24-28), 0.82 (t, J = 7.2 Hz, 3H, H21), 0.78 (t, J = 7.2 Hz, 3H, H29) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.27 (CO,C16), 164.88 (CO,C6), 137.90 

(NCHN,C2), 136.66 (ArC,C10), 129.37 (ArCH), 128.39 (ArCH), 126.77 (ArCH,C13), 

123.51 (NCH,C4), 122.80 (NCH,C3), 68.02 (OCH2,C19), 65.20 (OCH2,C17), 54.71 

(CH,C8), 51.18 (NCH2,C5), 37.58 (CH2,C9), 36.48 (NCH3,C1), 31.79 (CH2), 30.40 (CH2), 
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29.51 (CH2), 29.34 (CH2), 29.22 (CH2), 28.36 (CH2,C23), 25.84 (CH2), 25.77 (CH2), 22.64 

(CH2), 18.97 (CH2),  14.05 (CH3,C21), 13.64 (CH3,C29) 

IR (neat) (cm-1) 3066 (w), 2927 (m), 1737 (m), 1688 (s), 1563 (m), 1202 (vs), 1018 (m), 

748 (m), 700 (m) 

LRMS (m/z)  344.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-alanine methyl ester imidazolium OctOSO3 (313) 
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The title compound (313) was prepared from 3-methyl-1-L-alanine methyl ester 

imidazolium bromide (273) (0.244 g, 0.80 mmol) and sodium octyl sulfate (0.280 g, 0.96 

mmol) according to the general procedure (Section 7.3.5, page 333) as a colourless liquid in 

86 % yield (0.298 g, 0.68 mmol). 

[α] 20
D

=  -9.0 o (0.6 c, CHCl3) 

Molecular formula C18H33N3O7S 

Molecular weight 435 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 9.22 (s, 1H, H2), 8.63 (d, J = 6.4 Hz, 1H, H7), 7.49 (t, 

J = 1.8 Hz, 1H, H4), 7.24 (t, J = 1.8 Hz, 1H, H3), 5.16 (s, 2H, H5), 4.34 (dq, J = 7.8, 7.6 

Hz, 1H), 3.95-3.92 (m, 5H, H1,12), 3.63 (s, 3H, H11), 1.57 (tt, J = 7.6, 7.4 Hz, 2H, H13), 

1.41 (d, J = 7.8 Hz, 3H, H9), 1.28-1.18 (m, 10H, H14-18), 0.79 (t, J = 6.2 Hz, 3H, H19) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.92 (CO,C10), 164.90 (CO,C6), 138.00 

(NCHN,C2), 123.79 (NCH,C4), 122.71 (NCHN,C3), 68.19 (OCH2,C12), 52.43 
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(OCH3,C11), 51.26 (NCH2,C5), 48.82 (CH,C8), 36.61 (CH3,C1), 31.80 (CH2), 29.43 

(CH2), 29.32 (CH2), 29.23 (CH2,C13), 25.83 (CH2), 22.62 (CH2), 16.94 (CH2), 14.07 

(CH3,C19) 

IR (neat) (cm-1) 3080 (w), 2955 (m), 2927 (m), 1741 (m), 1684 (s), 1564 (m), 1208 (vs), 

1176 (vs), 1056 (m) 

LRMS (m/z)  226.3 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-alanine ethyl ester imidazolium OctOSO3 (314) 

 

The title compound (314) was prepared from 3-methyl-1-L-alanine ethyl ester imidazolium 

bromide (274) (0.220 g, 0.63 mmol) and sodium octyl sulfate (0.171 g, 0.75 mmol) 

according to the general procedure (Section 7.3.5, page 333) as a pale yellow oil in 85 % 

yield (0.240 g, 0.53 mmol). 

[α] 20
D

=  -12.1 o (0.5 c, CHCl3) 

Molecular formula C19H35N3O7S 

Molecular weight 449 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.13 (s, 1H, H2), 8.52 (d, J = 6.8 Hz, 1H, H7), 7.48 

(s, 1H, H4), 7.27 (s, 1H, H3), 5.13 (s, 2H, H5), 4.32 (dq, J = 7.2, 6.8 Hz, 1H, H8), 4.07 (q, J 

= 6.4 Hz, 2H, H11), 3.93-3.90 (m, 5H, H1,13), 1.55 (tt, J = 7.2, 7.0 Hz, 2H, H14), 1.39 (d, 

J = 7.2 Hz, 3H, H9), 1.26-1.16 (m, 13H, H12,15-19), 0.80 (t, J = 6.6 Hz, 3H, H20) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 171.47 (CO,C10), 163.99 (CO,C6), 136.94 

(NCHN,C2), 122.74 (NCH,C4), 121.99 (NCHN,C3), 67.10 (OCH2,C13), 60.69 

(OCH2,C11), 50.14 (NCH2,C5), 47.88 (CH,C8), 36.49 (CH3,C1), 31.77 (CH2), 29.41 

(CH2), 29.30 (CH2), 29.19 (CH2,C13), 25.81 (CH2), 22.56 (CH2), 16.94 (CH2), 15.97 

(CH3,C12), 14.07 (CH3,C20) 

IR (neat) (cm-1) 3079 (w), 2958 (w), 2930 (m), 1742 (m), 1686 (s), 1567 (m), 1210 (vs), 

1174 (vs), 1056 (s) 

LRMS (m/z)  240.3 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-valine methyl ester imidazolium OctOSO3 (315) 

 

The title compound (315) was prepared from 3-methyl-1-L-valine methyl ester 

imidazolium bromide (276) (0.202 g, 0.63 mmol) and sodium octyl sulfate (0.180 g, 0.76 

mmol) according to the general procedure (Section 7.3.5, page 333) as a colourless liquid in 

87 % yield (0.256 g, 0.55 mmol). 

 [α] 20
D

=  -8.1 o (0.4 c, CHCl3) 

Molecular formula C20H37N3O7S 

Molecular weight 463 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.10 (s, 1H, H2), 8.39 (d, J = 8.0 Hz, 1H, H7), 7.49 

(t, J = 1.8 Hz, 1H, H4), 7.29 (t, J = 1.8 Hz, 1H, H3), 5.22 (d, J = 2.8 Hz, 2H, H5), 4.25 (dd, 

J = 7.6, 5.6 Hz, 1H, H8), 3.93 (t, J = 6.4 Hz, 2H, H14), 3.91 (s, 3H, H1), 3.64 (s, 3H, H13), 
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2.19 (qqd, J = 7.0, 7.0, 5.2 Hz, 1H, H9), 1.55 (tt, J = 6.9, 6.8 Hz, 2H, H15), 1.40-1.32 (m, 

10H, H16-20), 1.02 (d, J = 7.0 Hz, 3H, H10/11),  0.98 (d, J = 7.0 Hz, 3H, H10,11), 0.88 (t, 

J = 6.8 Hz, 3H, H21) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.11 (CO,C12), 165.56 (CO,C6), 137.88 

(NCHN,C2), 123.77 (NCH,C4), 122.77 (NCHN,C3), 68.21 (OCH2,C14), 58.65 (CH,C8), 

52.20 (NCH2,C5), 51.12 (OCH3,C13), 36.56 (CH3,C1), 31.82 (CH2), 30.32 (CH2), 29.41 

(CH2), 29.36 (CH2), 29.26 (CH2,C14), 25.83 (CH2), 22.63 (CH2), 19.03 (CH3,C10/C11), 

18.24 (CH3,C10/C11), 14.09 (CH3,C21) 

IR (neat) (cm-1) 2959 (w), 2927 (w), 2856 (m), 1735 (m), 1687 (s), 1563 (m), 1203 (vs), 

1020 (m) 

LRMS (m/z)  254.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-valine ethyl ester imidazolium OctOSO3 (316) 

 

The title compound (316) was prepared from 3-methyl-1-L-valine ethyl ester imidazolium 

bromide (277) (0.203 g, 0.61 mmol) and sodium octyl sulfate (0.170 g, 0.72 mmol) 

according to the general procedure (Section 7.3.5, page 333)  as a viscous colourless liquid 

in 67 % yield (0.198 g, 0.41 mmol). 

 [α] 20
D

=  -10.0 o (0.6 c, CHCl3) 

Molecular formula C21H39N3O7S 

Molecular weight 478 gmol-1 
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1H NMR (400 MHz, CDCl3) δ (ppm)  9.36 (s, 1H, H2), 8.44 (d, J = 7.6 Hz, 1H, H7), 7.60 

(t, J = 1.8 Hz, 1H, H4), 7.21 (t, J = 1.8 Hz, 1H, H3), 5.28 (d, J = 12.8 Hz, 2H, H5), 4.30 

(dd, J = 7.6, 5.6 Hz, 1H, H8), 4.16 (dq, J = 7.2, 7.0 Hz, 1H, H13), 4.14 (dq, J = 7.0, 7.0 Hz, 

1H, H13), 4.05 (t, J = 6.4 Hz, 2H, H15), 3.98 (s, 3H, H1), 2.19 (qqd, J = 7.0, 6.8, 5.2 Hz, 

1H, H9), 1.66 (tt, J = 7.0, 6.8 Hz, 2H, H16), 1.39-1.26 (m, 13H, H14,17-21), 1.02 (dd, J = 

7.0, 6.8 Hz, 6H, H10/11), 0.88 (t, J = 6.8 Hz, 3H, H22) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.57 (CO,C12), 165.23 (CO,C6), 138.13 

(NCHN,C2), 123.93 (NCH,C4), 122.28 (NCHN,C3), 68.17 (OCH2,C15), 61.24 

(OCH2,C13) 58.69 (CH,C8), 51.20 (NCH2,C5), 36.54 (CH3,C1), 31.83 (CH2), 30.32 (CH2), 

29.44 (CH2), 29.34 (CH2), 29.26 (CH2,C14), 25.85 (CH2), 22.66 (CH2), 19.03 

(CH3,C10/C11), 18.06 (CH3,C10/C11), 14.21 (CH3,C14), 14.09 (CH3,C22) 

IR (neat) (cm-1) 2956 (w), 2920 (m), 2852 (w), 1739 (m), 1685 (s), 1548 (m), 1214 (vs), 

1080 (vs), 1019 (s) 

LRMS (m/z)  268.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

3-Methyl-1-L-valine butyl ester imidazolium OctOSO3 (317) 
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The title compound (317) was prepared from 3-methyl-1-L-valine butyl ester imidazolium 

bromide (278) (0.204 g, 0.57 mmol) and sodium octyl sulfate (0.161 g, 0.71 mmol) 

according to the general procedure (Section 7.3.5, page 333)  as a colourless liquid in 77 % 

yield (0.221 g, 0.44 mmol). 

 [α] 20
D =  -13.1 o (0.7 c, CHCl3) 
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Molecular formula C23H43N3O7S 

Molecular weight 506 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm)  9.35 (s, 1H, H2), 8.31 (d, J = 7.6 Hz, 1H, H7), 7.52 

(s, 1H, H4), 7.13 (s, 1H, H3), 5.26 (d, J = 34.0 Hz, 2H, H5), 4.26 (dd, J = 7.6, 5.2 Hz, 1H, 

H8), 4.10-3.95 (m, 4H, H13/17), 3.91 (s, 3H, H1), 2.19 (qqd, J = 6.8, 6.8, 5.6 Hz, 1H, H9), 

1.63-1.51 (m, 4H, H14,18), 1.34-1.19 (m, 12H, H15,19-23), 0.96 (dd, J = 8.4, 6.8 Hz, 6H, 

H10/11), 0.85 (t, J = 7.4 Hz, 3H, H16), 0.80 (t, J = 7.0 Hz, 3H, H24) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.69 (CO,C12), 165.51 (CO,C6), 137.86 

(NCHN,C2), 123.74 (NCH,C4), 122.79 (NCHN,C3), 68.17 (OCH2,C17), 65.13 

(OCH2,C13) 58.58 (CH,C8), 51.08 (NCH2,C5), 36.50 (CH3,C1), 31.82 (CH2), 30.51 (CH2), 

30.37 (CH2), 29.58 (CH2), 29.40 (CH2), 29.36 (CH2), 29.25 (CH2,C14), 25.85 (CH2), 22.63 

(CH2), 19.08 (CH3,C10/C11), 18.09 (CH3,C10/C11), 14.21 (CH3,C16), 14.11 (CH3,C24) 

IR (neat) (cm-1) 3159 (w), 2960 (m), 2930 (m), 1735 (m), 1686 (s), 1563 (m), 1201 (vs), 

1059 (m) 

LRMS (m/z) 296.4 [M-OctOSO3]
+; 209.1 [OctOSO3]

- 

7.4 Chapter 4 experimental-Preparation of dipeptidyl Chiral Ionic Liquids  

7.4.1 Preparation of Chiral dipeptidyl α-bromoamides 

Representative procedure for the preparation of chiral dipeptide α-bromoamides: L-

alanine-L-alanine butyl ester bromoacetate (346) 

 

To a stirred solution of DCM, L-alanine-L-alanine butyl ester hydrochloride (1.180 g, 4.70 

mmol), and triethylamine (0.660 g, 6.55 mmol), under a nitrogen atmosphere at -78 ºC was 

added dropwise bromoacetyl bromide (1.131 g, 5.60 mmol). After stirring at -78 ºC for 5 h, 
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the reaction mixture was allowed warm up to -20 ºC and quenched by addition of water (10 

mL). The organic phase was washed with distilled water (3 x 10 mL), saturated ammonium 

chloride (3 x 10 mL), saturated sodium bicarbonate (3 x 10 mL) and brine (3 x 10 mL). The 

organic phase was then dried over anhydrous magnesium sulfate, filtered and volatiles 

removed via rotary evaporation to give a crude product (1.42 g). The crude product was 

purified by column chromatography (eluant, ethyl acetate:hexane, 50:50) to give the title 

compound (346) as a white solid at RT in 77 % yield (1.221 g, 3.62 mmol).  

m.p. 78-80 °C, [α] 20
D = -42.5 ˚ (0.8 c, CHCl3) 

Molecular formula C12H21BrN2O4 

Molecular weight 337 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.12 (d, J = 7.2 Hz, 1H, H3), 6.58 (d, J = 7.2 Hz, 1H, 

H7), 4.50 (dq, J = 7.2, 7.0 Hz, 1H, H4), 4.39 (dq, J = 7.2, 7.2 Hz, H8), 4.13 (q, J = 7.4 Hz, 

2H, H11), 3.80 (s, 2H, H1), 1.61 (tt, J = 7.2, 6.8 Hz, 2H, H12), 1.39 (d, J = 7.0 Hz, 3H, 

H5), 1.36 (d, J = 7.2 Hz, 3H, H9), 1.27 (tq, J = 7.2, 7.2 Hz, 2H, H13), 0.87 (t, J = 7.2 Hz, 

3H, H14) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.64 (CO, C2), 171.06 (CO,C10), 165.48 (CO, 

C6), 65.51 (OCH2,C11), 49.39 (CH,C4), 48.35 (CH,C8), 36.53 (CH2,C12), 28.61 (CH2,C1), 

19.02 (CH2,C18), 18.48 (CH3,C5), 18.27 (CH3,C9), 13.62 (CH3,C14) 

L-Alanine-L-valine methyl ester bromoacetate (347) 
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The title compound (347) was prepared from L-alanine-L-valine methyl ester hydrochloride 

(1.411 g, 5.95 mmol) and bromoacetyl bromide (1.433 g, 7.10 mmol) according to the 
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general procedure (Section 7.4.1, page 344) as a beige solid in 67 % yield (1.295 g, 4.01 

mmol). 

m.p. 94-96 °C [α] 20
D = -22.0 ° (0.8 c, CHCl3) 

Molecular formula C11H29BrN2O4 

Molecular weight 323 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.96 (d, J = 7.6 Hz, 1H, H3), 6.31 (d, J = 8.4 Hz, 1H, 

H7), 4.48 (dd, J = 8.8, 4.8 Hz, 1H, H8), 4.40 (dq, J = 7.2, 7.2 Hz, 1H, H4), 3.81 (s, 2H, 

H1), 3.69 (s, 3H, H13), 2.17 (qqd, J = 6.6, 6.8, 4.8 Hz, 1H, H9), 1.38 (d, J = 7.0 Hz, 3H, 

H5), 0.90 (d, J = 6.8 Hz, 3H, H10/11), 0.87 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.05 (CO,C2), 171.38 (CO,C12), 165.55 (CO,C6), 

57.35 (CH,C8), 52.21 (CH,C4), 49.48 (OCH3,C13), 31.12 (CH,C9), 28.55 (CH2,C1), 18.93 

(CH3,C10/C11), 17.92 (CH3,C10/C11), 17.71 (CH3,C5) 

L-Alanine-L-isoleucine methyl ester bromoacetate (348) 
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The title compound (348) was prepared from L-alanine–L-isoleucine methyl ester 

hydrochloride (2.331 g, 9.20 mmol) and bromoacetyl bromide (2.240 g, 11.10 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a pale orange solid in 63 % 

yield (1.969 g, 5.84 mmol). 

m.p. 75-77 °C, [α] 20
D = -13.0˚ (1.0 c, CHCl3) 

Molecular formula C12H21BrN2O4 

Molecular weight 337 gmol-1 
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1H NMR (600 MHz, CDCl3) δ (ppm) 6.99 (d, J = 7.2 Hz, 1H, H3), 6.67 (d, J = 8.4 Hz, 1H, 

H7), 4.51 (dd, J = 8.0, 4.8 Hz, 1H, H8), 4.39 (dq, J = 7.2, 7.2 Hz, 1H, H4), 3.81 (s, 2H, 

H1), 3.68 (s, 3H, H14), 1.84 (dddq, J = 8.0, 8.0, 6.8, 4.8 Hz, 1H, H9), 1.35 (d, J = 6.8 Hz, 

3H, H5), 1.30 (ddq, J = 8.8, 8.0, 7.2 Hz, 1H, H11), 1.13 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, 

H11), 0.87 (t, J = 7.2 Hz, 3H, H12) 0.83 (d, J = 7.2 Hz, 3H, H10) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.12 (CO,C2), 171.57 (CO,C13), 165.65 (CO,C6), 

56.71 (CH,C8), 52.24 (CH,C4), 49.38 (OCH3,C14), 37.68 (CH,C9), 28.56 (CH2,C1), 25.09 

(CH2,C11), 18.44 (CH3,C5), 15.49 (CH3,C10),  11.61 (CH3,C12) 

L-Alanine-L-phenylalanine ethyl ester bromoacetate (349) 

 

The title compound (349) was prepared from L-alanine–L-phenylalanine ethyl ester 

hydrochloride (1.862 g, 6.20 mmol) and bromoacetyl bromide (1.503 g, 7.45 mmol) 

according to the general procedure (Section 7.4.1, page 344) as an off-white solid in 76 % 

yield (1.828 g, 4.75 mmol).  

m.p. 90-92 °C, [α] 20
D = +22.4˚ (1.4 c, CHCl3) 

Molecular formula C16H21BrN2O4 

Molecular weight 385 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.23-7.03 (m, 6H, H7,11-15), 6.54 (d, J = 8.0 Hz, 1H, 

H7), 4.78 (ddd, J = 8.0, 6.4, 6.0 Hz, 1H, H8), 4.40 (dq, J = 7.2, 7.2 Hz, 1H, H4), 4.12 (q, J 

= 7.2 Hz, 2H, H17), 3.76 (d, J = 8.4 Hz, 2H, H1), 3.09 (dd, J = 14.0, 6.0 Hz, 1H, H9), 3.01 

(dd, J = 13.6, 6.4 Hz, 1H, H9), 1.31 (d, J = 7.2 Hz, 3H, H5), 1.18 (t, J = 7.2 Hz, 3H, H18) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 171.16 (CO,C2), 168.13 (CO,C16), 165.64 (CO,C6), 

135.60 (ArC,C10), 129.29 (ArCH), 128.60 (ArCH), 127.22 (ArCH,C13), 61.73 

(OCH2,C17), 53.34 (CH,C8), 49.34 (CH,C4), 37.73 (CH2,C9), 28.60 (CH2,C1), 18.09 

(CH3,C5), 14.11 (CH3,C18) 

L-Alanine-L-leucine methyl ester bromoacetate (350) 
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The title compound (350) was prepared from L-alanine–L-leucine methyl hydrochloride 

(2.411 g, 9.55 mmol) and bromoacetyl bromide (2.232 g, 11.50 mmol) according to the 

general procedure (Section 7.4.1, page 344) as a white solid in 73 % yield (2.351 g, 6.98 

mmol).  

m.p 128-130 °C, [α] 20
D = +14.9˚ (1.0 c, CHCl3) 

Molecular formula C12H21BrN2O4 

Molecular weight 337 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.13 (d, J = 7.2 Hz, 1H, H3), 6.49 (d, J = 8.0 Hz, 1H, 

H7), 4.53 (ddd, J = 8.4, 8.0, 5.4 Hz, 1H, H8), 4.45 (dq, J = 7.2, 7.2 Hz, 1H, H4), 3.80 (s, 

2H, H1), 3.68 (s, 3H, H14), 1.63-1.48 (m, 3H, H9,10), 1.37 (d, J = 7.2 Hz, 3H, H5), 0.87 

(d, J = 6.0 Hz, 3H, H11/12), 0.84 (d, J = 6.0 Hz, 3H, H11/12) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.13 (CO,C2), 171.42 (CO,C13), 165.58 (CO,C6), 

52.45 (CH,C8), 50.95 (CH,C4), 49.33 (OCH3,C14), 41.22 (CH2,C9), 28.61 (CH2,C1), 

24.84 (CH,C10), 22.79 (CH3,C11/C12), 21.84 (CH3,C11/C12),  18.32 (CH3,C5) 

 



349 

 

L-Valine-L-phenylalanine ethyl ester bromoacetate (351)  

 

The title compound (351) was prepared from L-valine–L-phenylalanine ethyl ester 

hydrochloride (1.720 g, 5.24 mmol) and bromoacetyl bromide (1.24 g, 7.44 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 77 % yield 

(1.66 g, 4.02 mmol). 

m.p. 166-168 °C, [α] 20
D

= -20.0 ° (0.7 c, CHCl3) 

Molecular formula: C18H25BrN2O4 

Molecular weight 413 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.23-7.03 (m, 5H, H13-17), 7.12 (d, J = 6.8 Hz, 1H, 

H9), 6.89 (d, J = 8.8 Hz, 1H, H3), 4.79 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H10), 4.22 (dd, J = 

8.8, 6.8 Hz, 2H, H4), 4.12 (q, J = 7.2 Hz, 2H, H19), 3.80 (d, J = 9.6 Hz, 2H, H1), 3.09-2.94 

(m, 2H, H11), 2.12 (qqd, J = 6.8, 6.8, 6.4 Hz, 1H, H5), 1.16 (t, J = 7.2 Hz, 3H, H20), 0.86 

(dd, J = 9.8, 6.8 Hz, 6H, H6,7) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.12 (CO,C2), 170.19 (CO,C18), 165.78 (CO,C8), 

135.55 (ArC,C12), 129.31 (ArCH), 128.3 (ArCH), 127.25 (ArCH,C15), 61.63 (CH,C4), 

58.81 (OCH2,C19), 53.22 (CH,C10), 37.85 (CH2,C11), 31.32 (CH,C5), 28.83 (CH2,C1), 

19.03 (CH3,C6/C7), 18.02 (CH3,C6/C7), 14.11 (CH3,C20) 
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L-Valine-L-alanine methyl ester bromoacetate (352) 
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The title compound (352) was prepared from L-valine–L-alanine methyl ester 

hydrochloride (1.592 g, 6.70 mmol) and bromoacetyl bromide (1.622 g, 8.02 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 49 % yield 

(1.072 g, 3.32 mmol). 

m.p. 70-72 °C, [α] 20
D = -14.0 ° (0.6 c, CHCl3) 

Molecular formula: C11H19BrN2O4 

Molecular weight 323 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.92 (d, J = 8.0 Hz, 1H, H3), 6.17 (d, J = 6.8 Hz, 1H, 

H9), 4.49 (dq, J = 7.2, 7.2 Hz, 1H, H10), 4.17 (dd, J = 8.8, 6.4 Hz, 1H, H4), 3.83 (s, 2H, 

H1), 3.69 (s, 3H, H13), 2.14 (qqd, J = 6.8, 6.8, 6.4 Hz, 1H, H5), 1.37 (d, J = 7.2 Hz, 3H, 

H11), 0.92 (dd, J = 6.8, 3.2 Hz, 6H, H6,7) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.83 (CO,C2), 170.44 (CO,C12), 165.95 (CO,C8), 

57.31 (CH,C4), 51.74 (OCH3,C13), 47.52 (CH,C10), 31.05 (CH,C5), 29.35 (CH2,C1), 

18.90 (CH3,C6/C7), 17.87 (CH3,C6/C7), 16.66 (CH3,C11) 

L-Valine-L-alanine ethyl ester bromoacetate (353) 
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The title compound (353) was prepared from L-valine–L-alanine ethyl ester hydrochloride 

(1.901 g, 7.55 mmol) and bromoacetyl bromide (1.830 g, 9.06 mmol) according to the 

general procedure (Section 7.4.1, page 344) as a white solid in 84 % yield (2.151 g, 6.38 

mmol). 

m.p. 75-77 °C, [α] 20
D = -10.6 ° (0.6 c, CHCl3) 

Molecular formula: C12H21BrN2O4 

Molecular weight 337 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.96 (d, J = 8.4 Hz, 1H, H3), 6.20 (d, J = 6.8 Hz, 1H, 

H9), 4.49 (dq, J = 7.2, 7.2 Hz, 1H, H10), 4.32 (dd, J = 8.0, 4.8 Hz, 1H, H4), 4.17 (q, J = 7.2 

Hz, 2H, H13), 3.83 (s, 2H, H1), 2.16 (qqd, J = 7.0, 6.8, 4.8 Hz, 1H, H5), 1.37 (d, J = 7.2 

Hz, 3H, H11), 1.22 (t, J = 7.2 Hz, 3H, H14), 0.92 (dd, J = 7.2, 3.6 Hz, 6H, H6,7) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.35 (CO,C2), 170.37 (CO,C12), 165.93 (CO,C8), 

60.38 (CH,C4), 57.30 (CH2,C13), 47.62 (CH,C10), 31.06 (CH,C5), 29.35 (CH2,C1), 18.95 

(CH3,C6/C7), 17.98 (CH3,C6/C7), 16.67 (CH3,C11), 13.95 (CH3,C14) 

L-Valine-L-leucine methyl ester bromoacetate (354) 

 

The title compound (354) was prepared from L-valine–L-leucine methyl ester 

hydrochloride (1.981 g, 7.10 mmol) and bromoacetyl bromide (1.722 g, 8.53 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 68 % yield 

(1.773 g, 4.86 mmol). 

m.p 111-113 °C, [α] 20
D = -19.3 ° (1.1 c, CHCl3) 
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Molecular formula: C14H27BrN2O4 

Molecular weight 365 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.98 (d, J = 8.4 Hz, 1H, H3), 6.18 (d, J = 8.0 Hz, 1H, 

H9), 4.52 (ddd, J = 8.0, 8.0, 5.6 Hz, 1H, H10), 4.22 (dd, J = 8.8, 7.2 Hz, 1H, H4), 3.82 (s, 

2H, H1), 3.67 (s, 3H, H16), 2.14 (qqd, J = 6.8, 6.8, 6.4 Hz, 1H, H5), 1.71-1.43 (m, 3H, 

H11,12), 0.91 (dd, J = 6.8, 6.8 Hz, 6H, H6,7), 0.85 (dd, J = 6.0, 4.0 Hz, 6H, H13,14) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.07 (CO,C2), 170.68 (CO,C15), 166.05 (CO,C8), 

58.77 (CH,C4), 52.32 (CH,C10), 50.98 (OCH3,C16), 41.00 (CH2,C11), 31.58 (CH,C5), 

30.05 (CH,C11), 28.75 (CH2,C1), 24.82 (CH,C12), 22.73 (CH3,C13/C14), 21.90 

(CH3,C13/C14),  18.99 (CH3,C6/C7), 18.15 (CH3,C6/C7). 

L-Valine-L-valine methyl ester bromoacetate (355) 

 

The title compound (355) was prepared from L-valine–L-valine methyl ester hydrochloride 

(1.453 g, 5.44 mmol) and bromoacetyl bromide (1.322 g, 6.53 mmol) according to the 

general procedure (Section 7.4.1, page 344) as a pale yellow liquid in 60 % yield (1.151 g, 

3.28 mmol). 

 [α] 20
D

= -9.3 o (0.5 c, CHCl3) 

Molecular formula: C13H23BrN2O4 

Molecular weight 351 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.22 (d, J = 8.8 Hz, 1H, H3), 6.70 (d, J = 8.4 Hz, 1H, 

H9), 4.44 (dd, J = 8.8, 5.2 Hz, 1H, H4), 4.33 (dd, J = 8.4, 6.8 Hz, 1H, H10), 3.82 (s, 2H, 

H1), 3.68 (s, 3H, H15), 2.14-2.03 (m, 2H, H5,11), 0.92-0.83 (m, 12H, H6,7/12,13) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 172.20 (CO,C2), 170.83 (CO,C14), 166.07 (CO,C8), 

58.97 (CH,C4), 57.38 (CH,C10), 52.25 (OCH3,C15), 31.43 (CH,C5), 30.98 (CH,C11), 

28.73 (CH2,C1), 19.04 (CH3), 18.94 (CH3), 18.18 (CH3), 17.85 (CH3,C6/C7/C12/C13)  

L-Phenylalanine-L-leucine methyl ester bromoacetate (356) 

 

The title compound (356) was prepared from L-phenylalanine–L-leucine methyl ester 

hydrochloride (1.681 g, 5.12 mmol) and bromoacetyl bromide (1.238 g, 6.14 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a pale orange liquid in 74 % 

yield (1.558 g, 3.77 mmol). 

[α] 20
D = +14.3 o (0.9 c, CHCl3) 

Molecular formula: C18H25BrN2O4 

Molecular weight 413 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.24-7.14 (m, 6H, H7-11,14), 6.37 (d, J = 7.6 Hz, 1H, 

H3), 4.63 (dt, J = 7.2, 7.0 Hz, 1H, H4), 4.44 (ddd, J = 8.0, 8.0, 5.6 Hz, 1H, H15), 3.74 (d, J 

= 3.6 Hz, 2H, H1), 3.64 (s, 3H, H16), 3.01 (d, J = 7.2 Hz, 2H, H5), 1.59-1.37 (m, 3H, 

H16,17), 0.80 (d, J = 6.4 Hz, 6H, H18,19) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.72 (CO,C2), 170.16 (CO,C20), 165.85 

(CO,C13), 135.96 (ArC,C6), 129.46 (ArCH), 128.69 (ArCH), 127.19 (ArCH,C9), 54.90 

(CH,C4), 52.39 (CH,C15), 51.03 (OCH3,C21), 41.26 (CH2,C16), 38.27 (CH2,C5), 28.59 

(CH2,C1), 24.77 (CH,C17), 22.68 (CH3,C18/C19), 21.95 (CH3,C18/C19) 
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L-Phenylalanine-L-alanine methyl ester bromoacetate (357) 
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The title compound (357) was prepared from L-phenylalanine–L-alanine methyl ester 

hydrochloride (1.768 g, 6.32 mmol) and bromoacetyl bromide (1.532 g, 7.58 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 73 % yield 

(1.710 g, 4.61 mmol). 

m.p. 128-130 °C, [α] 20
D

= +24.4 o (0.8 c, CHCl3) 

Molecular formula: C15H19BrN2O4 

Molecular weight 371 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.27-7.16 (m, 5H, H7-11), 7.05 (d, J = 7.6 Hz, 1H, 

H3), 6.14 (d, J = 6.8 Hz, 1H, H14), 4.52 (ddd, J = 8.0, 6.4, 6.0 Hz, 1H, H4), 4.53 (dq, J = 

7.4, 7.2 Hz, 1H, H15), 3.79 (d, J = 4.8 Hz, 2H, H1), 3.66 (s, 3H, H18), 3.08 (dd, J = 14.0, 

6.4 Hz, 1H, H5), 2.98 (dd, J = 14.0, 7.6 Hz, 1H, H5), 1.29 (d, J = 7.2 Hz, 3H, H16) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.72 (CO,C2), 169.90 (CO,C17), 165.78 

(CO,C13), 135.91 (ArC,C6), 129.42 (ArCH), 128.71 (ArCH), 127.23 (ArCH,C9), 54.91 

(CH,C4), 52.58 (OCH3,C18), 48.30 (CH,C15), 38.44 (CH2,C5), 28.63 (CH2,C1), 18.16 

(CH3,C16) 
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L-Phenylalanine-L-valine ethyl ester bromoacetate (358) 

 

The title compound (358) was prepared from L-phenylalanine–L-valine ethyl ester 

hydrochloride (1.688 g, 5.79 mmol) and bromoacetyl bromide (1.382 g, 6.84 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a pale yellow liquid in 72 % 

yield (1.733 g, 4.20 mmol). 

 [α] 20
D

= +13.9 o (1.0 c, CHCl3) 

Molecular formula: C18H25BrN2O4 

Molecular weight 413 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.24-7.14 (m, 6H, H3,7-11), 6.31 (d, J = 8.4 Hz, 1H, 

H14), 4.63 (ddd, J = 8.0, 6.4, 6.0 Hz, 1H, H4), 4.33 (dd, J = 8.8, 5.2 Hz, 1H, H15), 4.09 (q, 

J = 7.2 Hz, 2H, H20), 3.75 (d, J = 4.4 Hz, 2H, H1), 3.09 (dd, J = 14.0, 6.4 Hz, 1H, H5), 

2.98 (dd, J = 14.0, 6.4 Hz, 1H, H5), 2.02 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H16), 1.20 (t, J = 

7.2 Hz, 2H, H21), 0.78 (dd, J = 6.8, 6.8 Hz, 6H, H17,18) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.15 (CO,C2), 170.17 (CO,C19), 165.69 

(CO,C13), 135.96 (ArC,C6), 129.39 (ArCH), 128.73 (ArCH), 127.20 (ArCH,C9), 61.33 

(OCH2,C20), 57.47 (CH,C15), 55.08 (CH,C4), 38.25 (CH2,C5), 31.45 (CH2,C16), 28.61 

(CH2,C1), 18.82 (CH3,C17/C18), 17.74 (CH3,C17/C18), 14.24 (CH3,C21) 

 

 



356 

 

L-Phenylalanine-L-phenylalanine butyl ester bromoacetate (359) 

 

The title compound (359) was prepared from L-phenylalanine–L-phenylalanine butyl ester 

hydrochloride (1.461 g, 3.61 mmol) and bromoacetyl bromide (0.872 g, 4.33 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 84 % yield 

(1.483 g, 3.03 mmol). 

m.p. 93-95 °C [α] 20
D

= -79.0 ° (0.8 c, CHCl3) 

Molecular formula: C24H29BrN2O4 

Molecular weight 489 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.24-6.90 (m, 11H, H3,7-11,18-22), 6.10 (d, J = 7.6 

Hz, 1H, H14), 4.68 (ddd, J = 7.6, 6.0, 6.0 Hz, 1H, H4), 4.53 (ddd, J = 7.8, 6.6, 6.0 Hz, 1H, 

H15), 4.02 (dq, J = 7.2, 7.2 Hz, 1H, H24), 4.01 (dq, J = 7.2, 7.0 Hz, 1H, H24), 3.72 (s, 2H, 

H1), 3.07-2.89 (m, 4H, H5,16), 1.51 (tt, J = 7.4, 7.2 Hz, 2H, H25), 1.24 ( tq, J = 7.2, 7.0 

Hz, 2H, H26), 0.85 (t, J = 7.2 Hz, 3H, H27) 

13C NMR (150 MHz, CDCl3) δ (ppm) 170.88 (CO,C2), 169.56 (CO,C23), 165.46 

(CO,C13), 135.85 (ArC,C6/C17), 135.46 (ArC,C6C17), 129.43 (ArCH), 129.21 (ArCH), 

128.78 (ArCH), 128.59 (ArCH), 127.29 (ArCH,C9/C20), 127.19 (ArCH,C9/C20), 65.33 

(OCH2,C24), 54.83 (CH,C4), 53.40 (CH,C15), 37.94 (CH2,C5/C16), 37.87 (CH2,C5/C16), 

30.45 (CH2,C25), 28.67 (CH2,C1), 19.05 (CH2,C26), 13.69 (CH3,C27) 
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L-Phenylalanine-L-phenylalanine methyl ester bromoacetate (360) 

 

The title compound (360) was prepared from L-phenylalanine–L-phenylalanine methyl 

ester hydrochloride (2.031 g, 5.41 mmol) and bromoacetyl bromide (1.312 g, 6.49 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 62 % yield 

(1.511 g, 3.38 mmol). 

m.p. 105-107 °C, [α] 20
D

= +18.0 o (0.7 c, CHCl3) 

Molecular formula: C21H23BrN2O4 

Molecular weight 447 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.22-6.88 (m, 10H, H3,7-11,18-22), 6.03 (d, J = 7.6 

Hz, 1H, H14), 4.71 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H4), 4.49 (ddd, J = 7.6, 7.0, 6.0 Hz, 1H, 

H15), 3.72 (s, 2H, H1), 3.64 (s, 3H, H24), 3.06-2.88 (m, 4H, H5,16) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.24 (CO,C2), 169.66 (CO,C23), 165.49 

(CO,C13), 135.88 (ArC,C6/C17), 135.42 (ArC,C6/C17), 129.44 (ArCH), 129.16 (ArCH), 

128.76 (ArCH), 128.63 (ArCH), 127.26 (ArCH,C9/C20), 127.24 (ArCH,C9/C20), 54.81 

(CH,C4), 53.36 (CH,C15), 52.44 (OCH3,C24), 37.96 (CH2,C5/C16), 37.76 (CH2,C5/C16), 

28.67 (CH2,C1) 
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L-Phenylalanine-D-phenylalanine ethyl ester bromoacetate (361) 

 

The title compound (361) was prepared from L-phenylalanine–D-phenylalanine ethyl ester 

hydrochloride (2.050 g, 5.40 mmol) and bromoacetyl bromide (1.322 g, 6.50 mmol) 

according to the general procedure (Section 7.4.1, page 344) as a white solid in 69 % yield 

(1.731 g, 3.75 mmol). 

m.p. 110-112 °C, [α] 20
D

= -30.0 ° (0.9 c, CHCl3) 

Molecular formula: C22H25BrN2O4 

Molecular weight 461 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.35-7.18 (m, 10H, H7-11,18-22), 6.99 (d, J = 8.0 Hz, 

1H, H3), 6.13 (d, J = 8.4 Hz, 1H, H14), 4.83 (ddd, J = 8.0, 6.4, 6.0 Hz, 1H, H4), 4.64 (ddd, 

J = 8.4, 6.0, 6.0 Hz, 1H, H15), 4.18 (dq, J = 7.2, 7.2 Hz, 1H, H24), 4.16 (dq, J = 7.2, 7.2 

Hz, 1H, H24), 3.83 (s, 2H, H1), 3.11-2.89 (m, 4H, H5,16), 1.22 (t, J = 7.2 Hz, 3H, H25) 

13C NMR (150 MHz, CDCl3) δ (ppm) 170.01 (CO,C2), 169.81 (CO,C23), 165.59 

(CO,C13), 135.94 (ArC,C6/C17), 135.56 (ArC,C6/C17), 129.42 (ArCH), 129.34 (ArCH), 

128.76 (ArCH), 128.60 (ArCH), 127.27 (ArCH,C9/C20), 127.22 (ArCH,C9/C20), 61.63 

(OCH2,C24), 55.28 (CH,C4), 53.23 (CH,C15), 38.37 (CH2,C5/C16), 37.91 (CH2,C5/C16), 

28.28 (CH2,C1), 14.07 (CH3,C25) 
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L-Valine-D-valine methyl ester bromoacetate (362) 

 

The title compound (362) was prepared from L-valine–D-valine methyl ester hydrochloride 

(1.462 g, 6.46 mmol) and bromoacetyl bromide (1.562 g, 7.75 mmol) according to the 

general procedure (Section 7.4.1, page 344) as a white solid in 72 % yield (1.630 g, 4.64 

mmol). 

m.p 76-78 °C, [α] 20
D

= -9.0 o (0.5 c, CHCl3) 

Molecular formula: C13H23BrN2O4 

Molecular weight 351 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.18 (d, J = 8.4 Hz, 1H, H3), 6.62 (d, J = 8.8 Hz, 1H, 

H9), 4.44 (dd, J = 8.4, 4.8 Hz, 1H, H4), 4.31 (dd, J = 8.8, 6.8 Hz, 1H, H10), 3.84 (s, 2H, 

H1), 3.68 (s, 3H, H15), 2.17-2.07 (m, 2H, H5,11), 0.92-83 (m, 12H, H6,7/12,13) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.89 (CO,C2), 168.83 (CO,C14), 165.12 (CO,C8), 

57.96 (CH,C4), 58.22 (CH,C10), 52.65 (OCH3,C15), 31.76 (CH,C5), 30.94 (CH,C11), 

28.18 (CH2,C1), 19.22 (CH3), 18.94 (CH3), 18.19 (CH3), 17.87 (CH3, C6/C7/C12/C13) 
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7.4.2 Preparation of dipeptidyl chiral Br ILs 

Representative procedure for the preparation of chiral dipeptide bromide salts: 3-

Methyl-1-L-alanine-L-alanine butyl ester imidazolium bromide (363) 

 

To a stirred solution of 1-methylimidazole (0.233 g, 2.86 mmol) in tetrahydrofuran (20 mL) 

at -15 ºC under an inert atmosphere was added dropwise L-alanine-L-alanine butyl ester 

bromoacetate (346) (1.101 g, 3.44 mmol). The reaction mixture was stirred vigorously at -

15 ºC for 2 h, then at RT overnight. The solvent was removed on the rotary evaporator and 

the residual product was washed with diethyl ether. The product was dried under high 

vacuum for 48 h to yield the title product (363) as an off white solid in 88 % yield (1.059 g, 

2.53 mmol). 

m.p. 60-63 °C, [α] 20
D

= -34.4 o (0.8 c, CHCl3) 

Molecular formula C16H27BrN4O4 

Molecular weight 419 gmol-1 

1H NMR (600 MHz, DMSO-d6) δ (ppm) 9.12 (s, 1H, H2), 8.79 (d, J = 7.6 Hz, 1H, H7), 

8.54 (d, J = 7.2 Hz, 1H, H11), 7.75 (t, J = 1.8 Hz, 1H, H4), 7.73 (t, J = 1.8 Hz, 1H, H3), 

5.06 (s, 2H, H5), 4.45 (dq, J = 7.6, 7.2 Hz, 1H, H8), 4.31 (dq, J = 7.2, 7.2 Hz, 1H, H12), 

4.13 (dq, J = 7.2, 7.2 Hz, 1H, H15), 4.12 (dq, J = 7.2, 7.2 Hz, 1H, H15), 3.94 (s, 3H, H1), 

1.56 (tt, J = 7.2, 6.8 Hz, 2H, H16), 1.33 (tq, J = 7.6, 6.8 Hz, 2H, H17), 1.37 (d, J = 7.6 Hz, 

3H, H9), 1.33 (d, J = 7.2 Hz, 3H, H13), 0.96 (t, J = 7.2 Hz, 3H, H18) 

13C NMR (150 MHz, DMSO-d6) δ (ppm) 172.35 (CO,C14), 171.59 (CO,C10), 164.34 

(CO,C6), 137.68 (NCHN,C2), 123.70 (NCH,C4), 122.96 (NCH,C3), 64.07 (OCH2,C15), 
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50.45 (CH,C8), 48.07 (NCH2,C5), 47.61 (CH,C12), 35.78 (NCH3,C1), 30.10 (CH2,C16), 

18.39 (CH2,C17), 17.94 (CH3,C9), 16.78 (CH3,C13), 13.47 (CH3,C18) 

IR (neat) (cm-1) 3415 (m), 3314 (m), 2960 (w), 1730 (s), 1654 (vs), 1566 (s), 1535 (s), 1212 

(s), 1177 (s) 

MS (m/z) Found [M-Br-]+ 339.2018, C16H27N4O4
+ requires 339.2026 

3-Methyl-1-L-alanine-L-phenylalanine ethyl ester imidazolium bromide (364) 

 

The title compound (364) was prepared from 1-methylimidazole (0.298 g, 3.65 mmol) and 

L-alanine-L-phenylalanine ethyl ester bromoacetate (349) (1.673 g, 4.35 mmol) according 

to the general procedure (Section 7.4.2, page 360) as a pale yellow hygroscopic semi-solid 

in 84 % yield (1.440 g, 3.08 mmol). 

 [α] 20
D = -11.4 o (0.6 c, CHCl3) 

Molecular formula C20H27BrN4O4 

Molecular weight 467 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.69 (s, 1H, H2), 8.94 (d, J = 7.0 Hz, 1H, H7), 7.57 

(d, J = 8.0 Hz, 1H, H11), 7.46 (d, J = 1.4 Hz, 1H, H4), 7.27-7.17 (m, 6H, H3,15-19), 5.66 

(d, J = 14.8 Hz, 1H, H5), 4.89 (d, J = 14.4 Hz, 1H, H5), 4.73 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, 

H12), 4.62 (d, J = 14.4 Hz, 1H, H5), 4.24 (dq, J = 7.2, 7.2 Hz, 1H, H8), 4.11 (q, J = 6.8 Hz, 

2H, H21), 3.92 (s, 3H, H1), 3.15 (dd, J = 14.0, 6.0 Hz, 1H, H13), 3.05 (dd, J = 13.8, 6.4 Hz, 

1H, H13), 1.24 (d, J = 7.2 Hz, 3H, H9), 1.12 (t, J = 7.0 Hz, 3H, H22) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 172.50 (CO,C20), 171.93 (CO,C10), 165.05 

(CO,C6), 137.62 (NCHN,C2), 136.57 (ArC,C14), 129.53 (ArCH), 128.38 (ArCH), 126.81 

(ArCH,C17), 123.98 (NCH,C4), 122.83 (NCH,C3), 61.37 (OCH2,C21), 53.58 (CH,C12), 

51.58 (NCH2,C5), 50.79 (CH,C8), 37.57 (CH2,C13), 36.75 (NCH3,C1), 17.60 (CH3,C9), 

14.08 (CH3,C22) 

IR (neat) (cm-1) 3423 (w), 3301 (w), 2983 (w), 1751 (s), 1679 (vs), 1650 (vs), 1532 (vs), 

1212 (m), 1175 (vs), 749 (m), 699 (m) 

MS (m/z) Found [M-Br-]+ 387.2018, C20H27N4O4
+ requires 387.2026 

3-Methyl-1-L-alanine-L-valine methyl ester imidazolium bromide (365) 

 

The title compound (365) was prepared from 1-methylimidazole (0.261 g, 3.35 mmol) and 

L-alanine-L-valine methyl ester bromoacetate (347) (1.290 g, 4.00 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a pale yellow viscous liquid in 97 % yield 

(1.320 g, 3.26 mmol). 

[α] 20
D = -23.5 o (0.7 c, CHCl3) 

Molecular formula C15H25BrN4O4 

Molecular weight 405 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.65 (s, 1H, H2), 9.24 (d, J = 7.6 Hz, 1H, H7), 7.59 (t, 

J = 1.8 Hz, 1H, H4), 7.25-7.20 (m, 2H, H3,11), 5.58 (d, J = 15.2 Hz, 1H, H5), 5.01 (d, J = 

15.2 Hz, 1H, H5), 4.37 (dd, J = 8.8, 4.8 Hz, 1H, H12), 4.32 (dq, J = 7.2, 7.2 Hz, H8), 3.97 

(s, 3H, H1), 3.10 (s, 3H, H17), 2.17 (qqd, J = 7.0, 7.0, 4.8 Hz, 1H, H13), 0.94 (d, J = 6.8 

Hz, 3H, H9), 0.89 (d, J = 7.2 Hz, 3H, H14/15), 0.85 (d, J = 7.2 Hz, 3H, H14/15) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 172.97 (CO,C16), 172.66 (CO,C10), 164.83 

(CO,C6), 137.84 (NCHN,C2), 124.06 (NCH,C4), 122.47 (NCH,C3), 57.28 (CH,C12), 

52.01 (NCH2,C5), 51.73 (CH,C8), 51.28 (OCH3,C17), 36.74 (NCH3,C1), 31.06 (CH,C13), 

19.09 (CH3,C14/C15), 18.33 (CH3,C14/C15), 17.69 (CH3,C9) 

IR (neat) (cm-1) 3220 (b), 3053 (w), 2966 (w), 1737 (m), 1661 (vs), 1534 (s), 1206 (s), 

1173 (vs) 

MS (m/z) Found [M-Br-]+ 325.1861, C15H25N4O4
+ requires 325.1870 

3-Methyl-1-L-alanine-L-isoleucine methyl ester imidazolium bromide (366) 

 

The title compound (366) was prepared from 1-methylimidazole (0.141 g, 1.70 mmol) and 

L-alanine-L-isoleucine methyl ester bromoacetate (348) (0.692 g, 2.05 mmol) according to 

the general procedure (Section 7.4.2, page 360) as a pale yellow viscous liquid in 98 % 

yield (0.701 g, 1.67 mmol). 

[α] 20
D

= -19.0 o (0.6 c, CHCl3) 

Molecular formula C16H27BrN4O4 

Molecular weight 419 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.07 (s, 1H, H2), 8.69 (d, J = 7.2 Hz, 1H, H7), 8.33 

(d, J = 8.0 Hz, 1H, H11), 7.69 (t, J = 1.8 Hz, 1H, H4), 7.66 (t, J = 1.8 Hz, 1H, H3), 5.00 (s, 

2H, H5), 4.48 (dq, J = 7.2, 7.2 Hz, 1H, H8), 4.20 (dd, J = 8.0, 6.0 Hz, 1H, H12), 3.88 (s, 

3H, H1), 3.63 (s, 3H, H18), 1.84 (dddq, J = 8.0, 8.0, 6.8, 6.0 Hz, 1H, H13), 1.41 (ddq, J = 

8.8, 8.0, 7.2 Hz, 1H, H15), 1.23 (d, J = 7.2 Hz, H9), 1.21 (dd, J = 8.0, 8.0, 7.2 Hz, 1H), 0.86 

(t, J = 7.0 Hz, 3H, H16), 0.82 (d, J = 7.2 Hz, 3H, H14) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 172.83 (CO,C17), 172.62 (CO,C10), 164.95 

(CO,C6), 137.78 (NCHN,C2), 124.04 (NCH,C4), 122.70 (NCH,C3), 56.61 (CH, C12), 

51.99 (NCH2,C5), 51.60 (CH,C8), 51.07 (OCH3,C18), 37.35 (CH,C13), 36.74 (NCH3,C1), 

25.34 (CH2,C15), 17.67 (CH3,C9), 15.60 (CH3,C14), 11.45 (CH3,C16) 

IR (neat) (cm-1) 3064 (w), 3040 (w), 2965 (w), 1732 (m), 1659 (vs), 1537 (s), 1175 (s), 

1205 (m) 

MS (m/z) Found [M-Br-]+ 339.2033, C16H27N4O4
+ requires 339.2026 

3-Methyl-1-L-alanine-L-leucine methyl ester imidazolium bromide (367) 
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The title compound (367) was prepared from 1-methylimidazole (0.411 g, 5.05 mmol) and 

L-alanine-L-leucine methyl ester bromoacetate (350) (2.042 g, 6.10 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a pale yellow viscous liquid in 75 % yield 

(1.590 g, 3.79 mmol). 

[α] 20
D

= -25.8  o (0.7 c, CHCl3) 

Molecular formula C16H27BrN4O4 

Molecular weight 419 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.54 (s, 1H, H2), 8.92 (d, J = 7.8 Hz, 1H, H7), 7.61 

(d, J = 8.0 Hz, 1H, H11), 7.34 (t,  J = 1.8 Hz, 1H, H4), 7.29 (t,  J = 1.8 Hz, 1H, H3), 5.51 

(d, J = 15.0 Hz, 1H, H5), 5.09 (d, J = 15.0 Hz, 1H, H5), 4.46 (ddd, J = 8.0, 8.0, 5.6 Hz, 1H, 

H12), 4.33 (dq, J = 7.2, 7.2 Hz, 1H, H8), 3.96 (s, 3H, H1), 3.58 (s, 3H, H18), 1.72-1.50 (m, 
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3H, H13,14), 1.42 (d, J = 7.2 Hz, 3H, H9), 0.87 (d, J = 6.6 Hz, 3H, H15/16), 0.83 (d, J = 

6.6 Hz, 3H, H15/16) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.95 (CO,C17), 172.79 (CO,C10), 164.91 

(CO,C6), 137.86 (NCHN,C2), 124.09 (NCH,C4), 122.63 (NCH,C3), 65.86 (CH,C8), 52.17 

(CH,C12), 51.76 (NCH2,C5), 51.14 (OCH3,C18), 40.54 (CH2,C13), 36.77 (NCH3,C1), 

24.90 (CH,C14), 22.90 (CH3,C15/C16), 21.58 (CH3,C15/C16), 17.84 (CH3,C9) 

IR (neat) (cm-1) 3236 (b), 3056 (w), 2957 (m), 1738 (m), 1660 (s), 1534 (s), 1206 (m), 1172 

(s) 

MS (m/z) Found [M-Br-]+ 339.2021, C16H27N4O4
+ requires 339.2026 

3-Methyl-1-L-phenylalanine-L-valine ethyl ester imidazolium bromide (368) 

 

The title compound (368) was prepared from 1-methylimidazole (0.266 g, 3.25 mmol) and 

L-phenylalanine-L-valine ethyl ester bromoacetate (358) (1.592 g, 3.87 mmol) according to 

the general procedure (Section 7.4.2, page 360) as a pale yellow hygroscopic semi-solid in 

96 % yield (1.544 g, 3.12 mmol). 

[α] 20
D = -22.0 o (0.8 c, CHCl3) 

Molecular formula C22H31BrN4O4 

Molecular weight 495 gmol-1 
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1H NMR (600 MHz, DMSO-d6) δ (ppm) 9.01 (s, 1H, H2), 8.75 (d, J = 8.0 Hz, 1H, H7), 

8.49 (d, J = 8.4 Hz, 1H, H17), 7.66 (t, J = 1.6 Hz, 1H, H4), 7.54 (t, J = 1.6 Hz, 1H, H3), 

7.30-7.20 (m, 5H, H11-15), 4.93 (d, J = 14.4 Hz, 2H, H5), 4.74 (dd, J = 8.4, 4.8 Hz, 1H, 

H18), 4.17-4.07 (m, 3H, H8,23), 3.86 (s, 3H, H1), 3.04 (dd, J = 13.6, 4.0 Hz, 1H, H9), 2.78 

(dd, J = 14.0, 7.6 Hz, 1H, H9), 2.05 (qqd, J = 6.8, 6.8, 4.4 Hz, 1H, H19), 1.19 (t, J = 7.2 

Hz, 3H, H24), 0.89 (dd, J = 8.4, 6.8 Hz, 6H, H20,21). 

13C NMR (150 MHz, DMSO-d6) δ (ppm) 172.17 (CO,C22), 171.48 (CO,C16), 165.03 

(CO,C6), 137.56 (NCH2,C2), 137.12 (ArC,C10), 129.47 (ArCH), 128.46 (ArCH), 126.74 

(ArCH,C13), 123.78 (NCH,C4), 122.69 (NCH,C3), 61.10 (OCH2,C23), 57.66 (CH,C18), 

56.99 (CH,C8), 51.57 (NCH2,C5), 37.81 (CH2,C9), 36.70 (NCH3,C1), 30.94 (CH,C19), 

19.09 (CH3,C20/C21) 18.47 (CH3,C20/C21), 14.19 (CH3,C24) 

IR (neat) (cm-1) 3210 (b), 3044 (w), 2965 (w), 1730 (m), 1658 (s), 1534 (m), 1172 (s), 1206 

(m), 744 (m), 701 (m) 

MS (m/z) Found [M-Br-]+ 415.2236, C22H31N4O4
+ requires 415.2239 

3-Methyl-1-L-phenylalanine-L-phenylalanine butyl ester imidazolium bromide (369) 

 

The title compound (369) was prepared from 1-methylimidazole (0.167 g, 2.05 mmol) and 

L-phenylalanine-L-phenylalanine butyl ester bromoacetate (359) (1.192 g, 2.45 mmol) 

according to the general procedure (Section 7.4.2, page 360) as a white hygroscopic semi-

solid in 91 % yield (1.060 g, 1.86 mmol). 
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[α] 20
D

= -31.4 o (0.8 c, CHCl3) 

Molecular formula C28H35BrN4O4 

Molecular weight 571 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.75 (s, 1H, H2), 9.48 (d, J = 8.0 Hz, 1H, H7), 8.12 

(d, J = 8.8 Hz, 1H, H17), 7.34-7.10 (m, 12H, H4,11-15,21-25), 7.02 (s, 1H, H3), 5.56 (d, J 

= 14.4 Hz, 2H, H5), 4.76 (ddd, J = 8.0, 6.6, 6.6 Hz, 1H, H8), 4.56 (d, J = 14.0 Hz, 1H, H5), 

4.40 (ddd, J = 8.4, 6.0, 6.0 Hz, 1H, H18), 3.94 (dq, J = 7.2, 7.2 Hz, 1H, H27), 3.93 (dq, J = 

7.2, 7.2 Hz, 1H, H27), 3.90 (s, 3H, H1), 3.04-2.66 (m, 4H, H9,19), 1.52 (tt, J = 7.2, 6.9 Hz, 

2H, H28), 1.24 (tq, J = 7.4, 6.8 Hz, 2H, H29), 0.84 (t, J = 7.4 Hz, 3H, H30) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.55 (CO,C26), 171.07 (CO,C16), 164.77 

(CO,C6), 137.97 (NCHN,C2), 137.18 (ArC,C10/C20), 136.73 (ArC,C10/C20), 129.76 

(ArCH), 129.29 (ArCH), 128.40 (ArCH), 127.81 (ArCH), 126.80 (ArCH,C13/C23), 126.60 

(ArCH,C13/C23), 123.86 (NCH,C4), 122.19 (NCH,C3), 65.06 (OCH2,C27), 57.20 

(CH,C8), 53.39 (CH,C18), 51.97 (NCH2,C5), 38.09 (CH2,C9/C19), 37.76 (CH2,C9/C19), 

36.60 (NCH3,C1), 30.43 (CH2,C28), 19.11 (CH2,C29), 13.73 (CH3,C30) 

IR (neat) (cm-1) 3202 (b), 3030 (w), 2959 (w), 1732 (m), 1661 (s), 1547 (m), 1497 (m), 

1454 (m), 1175 (s), 743 (m), 699 (s) 

MS (m/z) Found [M-Br-]+ 491.2639, C28H35N4O4
+ requires 491.2652 
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3-Methyl-1-L-phenylalanine-L-leucine methyl ester imidazolium bromide (370) 

 

The title compound (370) was prepared from 1-methylimidazole (0.242 g, 2.95 mmol) and 

L-phenylalanine-L-leucine methyl ester bromoacetate (356) (1.451 g, 3.55 mmol) 

according to the general procedure (Section 7.4.2, page 360) as a pale yellow hygroscopic 

semi-solid in 75 % yield (1.091 g, 2.20 mmol). 

[α] 20
D = -44.9 o (0.8 c, CHCl3) 

Molecular formula C22H31BrN4O4 

Molecular weight 495 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.38 (s, 1H, H2), 9.15 (d, J = 8.4 Hz, 1H, H7), 7.87 

(d, J = 8.0 Hz, 1H, H17), 7.44 (s, 1H, H4), 7.40-7.24 (m, 7H, H3,11-15), 5.42 (d, J = 15.2 

Hz, 1H, H5), 4.95 (d, J = 15.6 Hz, 1H, H5), 4.58 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H8), 4.47 

(ddd, J = 8.0, 8.0, 5.6 Hz, 1H, H18), 3.94 (s, 3H, H1), 3.61 (s, 3H, H24), 3.26 (dd, J = 9.0, 

5.2 Hz, 1H, H9), 3.11 (dd, J = 10.4, 6.0 Hz, 1H, H9), 1.86-1.58 (m, 3H, H19,20), 0.94 (d, J 

= 6.4 Hz, 3H, H21/22), 0.88 (d, J = 6.4 Hz, 3H, H21/22) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.87 (CO,C23), 171.59 (CO,C17), 165.04 

(CO,C6), 137.59 (NCHN,C2), 137.00 (ArC,C10), 129.45 (ArCH), 128.47 (ArCH), 126.79 

(ArCH,C13), 123.83 (NCH,C4), 122.70 (NCH,C3), 56.97 (CH, C8), 52.20 (CH,C18), 

51.61 (NCH2,C5), 50.91 (OCH3,C24), 40.33 (CH2,C19), 37.88 (CH2,C9), 36.69 

(NCH3,C1), 24.86 (CH,C20), 22.93 (CH3,C21/C22), 21.51 (CH3,C21/C22) 
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IR (neat) (cm-1) 3196 (w), 3037 (w), 2956 (w), 1738 (m), 1660 (vs), 1537 (s), 1436 (m), 

1202 (s), 1171 (vs), 745 (m), 700 (s) 

MS (m/z) Found [M-Br-]+ 415.2339, C22H31N4O4
+ requires 415.2339 

3-Methyl-1-L-phenylalanine-L-alanine methyl ester imidazolium bromide (371) 
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The title compound (371) was prepared from 1-methylimidazole (0.272 g, 3.31 mmol) and 

L-phenylalanine-L-alanine methyl ester bromoacetate (357) (1.594 g, 4.31 mmol) 

according to the general procedure (Section 7.4.2, page 360) as a white hygroscopic semi-

solid in 97 % yield (1.455 g, 3.21 mmol). 

[α] 20
D =  -22.7 o (0.8 c, CHCl3) 

Molecular formula C19H25BrN4O4 

Molecular weight 453 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.36 (s, 1H, H2), 8.96 (d, J = 8.4 Hz, 1H, H7), 7.77 

(d, J = 7.2 Hz, 1H, H17), 7.34 (t, J = 1.6 Hz, 1H, H4), 7.32-7.12 (m, 6H, H3,11-15), 5.35 

(d, J = 10.8 Hz, 1H, H5), 4.88 (d, J = 10.6 Hz, 1H, H5), 4.59 (ddd, J = 8.0, 5.6, 5.6 Hz, 1H, 

H8), 4.42 (dq, J = 7.2, 7.2 Hz, 1H, H18), 3.89 (s, 3H, H1), 3.57 (s, 3H, H21), 3.18 (dd, J = 

13.8, 4.8 Hz, 1H, H9), 3.02 (dd, J = 14.4, 10.2 Hz, 1H, H9), 1.38 (d, J = 7.2 Hz, 3H, H19) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.75 (CO,C20), 171.75 (CO,C16), 164.85 

(CO,C6), 137.11 (ArC,C10), 137.08 (NCHN,C2), 129.46 (ArCH), 128.48 (ArCH), 126.74 
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(ArCH,C13), 123.86 (NCH,C4), 122.36 (NCH,C3), 56.69 (CH,C8), 52.57 (OCH3,C21), 

51.79 (NCH2,C5), 48.13 (CH,C18), 37.93 (CH2,C9), 36.70 (NCH3,C1), 17.79 (CH3,C19) 

IR (neat) (cm-1) 3198 (b), 3046 (w), 2952 (w), 1737 (m), 1659 (vs), 1537 (s), 1210 (s), 

1169 (s), 726 (m), 701 (m) 

MS (m/z) Found [M-Br-]+ 373.1862, C19H25N4O4
+ requires 373.1870 

3-Methyl-1-L-phenylalanine-L-phenylalanine methyl ester imidazolium bromide (372) 

 

The title compound (372) was prepared from 1-methylimidazole (0.211 g, 2.72 mmol) and 

L-phenylalanine-L-phenylalanine methyl ester bromoacetate (360) (1.461 g, 3.27 mmol) 

according to the general procedure (Section 7.4.2, page 360) as a white solid in 83 % yield 

(1.201 g, 2.27 mmol). 

m.p. 97-99 °C, [α] 20
D = -33.6 o (0.5 c, CHCl3) 

Molecular formula C25H29BrN4O4 

Molecular weight 529 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.72 (s, 1H, H2), 9.18 (d, J = 8.4 Hz, 1H, H7) 7.96 (d, 

J = 8.8 Hz, 1H, H17), 7.44-7.14 (m, 12H, H3,4,11-15,21-25), 5.68 (d, J = 14.4 Hz, 1H, 

H5), 4.85 (ddd, J = 8.0, 5.6, 5.6 Hz, 1H, H8), 4.68 (d, J = 14.4 Hz, 1H, H5), 4.50 (ddd, J = 

8.0, 6.0, 6.0 Hz, 1H, H18), 3.99 (s, 3H, H1), 3.65 (s, 3H, H27), 3.26-2.85 (m, 4H, H9/19) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 172.61 (CO,C26), 171.12 (CO,C16), 164.95 

(CO,C6), 137.70 (NCHN,C2), 137.04 (ArC,C10/C20), 136.65 (ArC,C10/C20), 129.65 

(ArCH), 129.33 (ArCH), 128.53 (ArCH), 128.43 (ArCH), 126.86 (ArCH,C13/C23), 126.68 

(ArCH,C13/C23), 123.88 (NCH,C4), 122.47 (NCH,C3), 67.97 (CH,C8), 57.14 (CH,C18), 

53.57 (NCH2,C5), 52.19 (OCH3,C27), 37.68 (NCH3,C1), 37.60 (CH2,C9/C19), 36.64 

(CH2,C9/C19) 

IR (neat) (cm-1) 3205 (w), 3031 (w), 2952 (w), 1737 (m), 1661 (s), 1533 (s), 1215 (m), 

1172 (s), 744 (m), 700 (vs) 

MS (m/z) Found [M-Br-]+ 449.2177, C25H29N4O4
+ requires 449.2183 

3-Methyl-1-L-valine-L-valine methyl ester imidazolium bromide (373) 

 

The title compound (373) was prepared from 1-methylimidazole (0.203 g, 2.50 mmol) and 

L-valine-L-valine methyl ester bromoacetate (355) (1.052 g, 3.00 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a colourless hygroscopic semi-solid in 91 % 

yield (0.989 g, 2.28 mmol). 

[α] 20
D

= -48.5 o (0.4 c, CHCl3) 

Molecular formula C17H29BrN4O4 

Molecular weight 433 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.60 (s, 1H, H2), 9.10 (d, J = 8.8 Hz, 1H, H7), 7.59 (t, 

J = 1.6 Hz, 1H, H4), 7.27 (d, J = 8.4 Hz, 1H, H13), 7.26 (t, J = 1.8 Hz, 1H, H3), 5.65 (d, J 

= 15.2 Hz, 1H, H5), 5.05 (d, J = 15.2 Hz, 1H, H5), 4.37 (dd, J = 8.8, 4.8 Hz, 1H, H18), 

4.10 (dd, J = 8.0, 4.4 Hz, 1H, H8), 3.96 (s, 3H, H1), 3.59 (s, 3H, H19), 2.29-2.10 (m, 2H, 
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H9,15), 0.99 (dd, J = 6.8, 6.8 Hz, 6H, H10,11/16,17), 0.93 (dd, J = 6.8, 6.4 Hz, 6H, 

H10,11/16,17) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.07 (CO,C18), 172.62 (CO,C12), 165.29 

(CO,C6), 137.80 (NCHN,C2), 124.02 (NCH,C4), 122.54 (NCH,C3), 61.47 (CH,C8), 57.60 

(CH,C14), 51.98 (NCH2,C5), 51.82 (OCH3,C19), 36.73 (NCH3,C1), 30.77 (CH,C9/C15), 

30.27 (CH,C9/C15), 19.43, 19.2, 19.13, 18.64 (CH3,C10/11/16/17) 

IR (neat) (cm-1) 3225 (b), 3053 (w), 2964 (w), 1737 (m), 1657(vs), 1532 (s), 1206 (m), 

1172 (s) 

MS (m/z) Found [M-Br-]+ 353.2181, C17H29N4O4
+ requires 353.2183 

3-Methyl-1-L-valine-L-phenylalanine ethyl ester imidazolium bromide (374) 

 

The title compound (374) was prepared from 1-methylimidazole (0.245 g, 3.00 mmol) and 

L-valine-L-phenylalanine ethyl ester bromoacetate (351) (1.481 g, 3.60 mmol) according to 

the general procedure (Section 7.4.2, page 360) as a pale yellow hygroscopic semi-solid in 

98 % yield (1.450 g, 2.93 mmol). 

 [α] 20
D =  -20.7 o (0.9 c, CHCl3) 

Molecular formula C22H31BrN4O4 

Molecular weight 495 gmol-1 
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1H NMR (600 MHz, CDCl3) δ (ppm) 9.68 (s, 1H, H2), 8.88 (d, J = 6.8 Hz, 1H, H13), 7.76 

(d, J = 8.8 Hz, 1H, H7), 7.49 (t, J = 1.6 Hz, 1H, H4), 7.39-7.23 (m, 6H, H3,17-21), 5.78 (d, 

J = 14.8 Hz, 1H, H5), 4.89 (d, J = 14.8 Hz, 1H, H5), 4.75 (ddd, J = 8.0, 6.4, 6.4 Hz, 1H, 

H14), 4.06-3.94 (m, 3H, H8,23), 3.92 (s, 3H, H1), 3.16-3.06 (m, 2H, H15), 2.16 (qqd, J = 

6.8, 6.8, 4.4 Hz, 1H, H9), 1.13 (t, J = 7.2 Hz, 3H, H24), 0.82 (d, J = 6.8 Hz, 3H, H10/11), 

0.58 (d, J = 6.8 Hz, 3H, H10/11) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.13 (CO,C22), 171.26 (CO,C12), 165.37 

(CO,C6), 137.68 (NCHN,C2), 136.70 (ArC,C16), 129.43 (ArCH), 128.56 (ArCH), 126.77 

(ArCH,C19), 123.95 (NCH,C4), 122.80 (NCH,C3), 65.82 (OCH2,C23), 61.29 (CH,C8), 

53.67 (CH,C14), 51.72 (NCH2,C5), 37.51 (CH2,C15), 36.69 (NCH3,C1), 30.31 (CH,C9), 

19.06 (CH3,C10/C11), 18.95 (CH3,C10/C11), 15.25 (CH3,C24) 

IR (neat) (cm-1) 3055 (w), 2963 (w), 1731 (m), 1659 (vs), 1535 (s), 1173 (vs), 745 (m), 700 

(s) 

MS (m/z) Found [M-Br-]+ 415.2339, C17H29N4O4
+ requires 415.2339 

3-Methyl-1-L-valine-L-alanine methyl ester imidazolium bromide (375) 

 

The title compound (375) was prepared from 1-methylimidazole (0.152 g, 1.84 mmol) and 

L-valine-L-alanine methyl ester bromoacetate (352) (0.651 g, 2.21 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a white solid in 70 % yield (0.522 g, 1.29 

mmol). 

m.p. 80-82 °C [α] 20
D

=  -42.5 ° (0.8 c, CHCl3) 

Molecular formula C15H25BrN4O4 
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Molecular weight 405 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.87 (s, 1H, H2), 9.07 (d, J = 9.2 Hz, 1H, H7), 7.88 

(d, J = 8.0 Hz, 1H, H13), 7.58 (s, 1H, H4), 7.22 (s, 1H, H3), 5.98 (d, J = 14.4 Hz, 1H, H5), 

4.86 (d, J = 14.8 Hz, 1H, H5), 4.71 (dq, J = 7.2, 7.2 Hz, 1H, H14), 4.61 (dd, J = 9.2, 6.2 

Hz, 1H, H8), 4.05 (s, 3H, H1), 3.68 (s, 3H, H17), 2.20 (qqd, J = 6.8, 6.8, 6.0 Hz, 1H, H9), 

1.51 (d, J = 7.6 Hz, 3H, H15), 1.07 (d, J = 6.8 Hz, 3H, H10/11), 1.02 (d, J = 6.8 Hz, 3H, 

H10/11) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.81 (CO,C16), 170.39 (CO,C12), 164.83 

(CO,C6), 137.63 (NCHN,C2), 123.63 (NCH,C4), 122.95 (NCH,C3), 57.56 (CH,C8), 51.78 

(CH,C14), 50.43 (NCH2,C5), 47.55 (OCH3,C19), 35.80 (NCH3,C1), 31.09 (CH,C9), 18.95 

(CH3,C10/C11), 17.91 (CH3,C10/C11), 16.66 (CH3,C15) 

IR (neat) (cm-1) 3281 (w), 2964 (w), 1731 (m), 1667 (m), 1637 (vs), 1553 (s), 1230 (m), 

1171 (s), 1056 (m) 

MS (m/z) Found [M-Br-]+ 325.1868, C15H25N4O4
+ requires 325.1870 

3-Methyl-1-L-valine-L-leucine methyl ester imidazolium bromide (376) 
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The title compound (376) was prepared from 1-methylimidazole (0.310 g, 3.77 mmol) and 

L-valine-L-leucine methyl ester bromoacetate (354) (1.632 g, 4.53 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a colourless liquid in 95 % yield (1.602 g, 

3.58 mmol). 

 [α] 20
D

= -45.2 o (0.7 c, CHCl3) 
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Molecular formula C18H31BrN4O4 

Molecular weight 447 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.64 (s, 1H, H2), 8.54 (d, J = 9.0 Hz, 1H, H7), 8.52 

(d, J = 8.4 Hz, 1H, H13), 7.55 (t, J = 1.6 Hz, 1H, H4), 7.23 (t, J = 1.8 Hz, 1H, H3), 5.73 (d, 

J = 14.4 Hz, 1H, H5), 4.89 (d, J = 14.6 Hz, 1H, H5), 4.50 (ddd, J = 8.0, 8.0, 5.6 Hz, 1H, 

H14), 4.10 (dd, J = 9.0, 7.2 Hz, 1H, H8), 3.95 (s, 3H, H1), 3.56 (s, 3H, H20), 2.18 (qqd, J = 

6.8, 6.8, 6.8 Hz, 1H, H9), 1.84-1.74 (m, 1H, H15), 1.74-1.67 (m, 1H, H16), 1.54-1.48 (m, 

1H, H15), 0.97 (d, J = 7.2 Hz, 3H, H10/11), 0.92 (d, J = 6.6 Hz, 3H, H10/11), 0.88 (d, J = 

6.6 Hz, 3H, H17/18), 0.84 (d, J = 6.6 Hz, 3H, H17/18) 

13C NMR (150 MHz, CDCl3) δ (ppm) 174.31 (CO,C19), 171.40 (CO,C12), 165.05 

(CO,C6), 137.90 (NCHN,C2), 124.05 (NCH,C4), 122.40 (NCH,C3), 61.62 (CH,C8), 52.05 

(CH,C14), 52.03 (NCH2,C5), 50.64 (OCH3,C20), 40.43 (CH2,C15), 36.70 (NCH3,C1), 

30.40 (CH,C9), 24.89 (CH,C16), 23.01 (CH3,C17/18), 21.30 (CH3,C17/18), 19.40 

(CH3,C10/11), 19.10 (CH3,C10/11) 

IR (neat) (cm-1) 3220 (b), 3049 (w), 2959 (w), 1739 (m), 1656 (vs), 1533 (s), 1205 (m), 

1171 (s) 

MS (m/z) Found [M-Br-]+ 367.2351, C18H31N4O4
+ requires 367.2339 

3-Methyl-1-L-valine-L-alanine ethyl ester imidazolium bromide (377) 

 

The title compound (377) was prepared from 1-methylimidazole (0.101 g, 1.32 mmol) and 

L-valine-L-alanine ethyl ester bromoacetate (353) (0.579 g, 1.72 mmol) according to the 

general procedure (Section 7.4.2, page 360) as a white solid in 95 % yield (0.526 g, 1.25 

mmol). 
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m.p. 130-132 °C [α] 20
D

= -46.2 o (0.5 c, CHCl3) 

Molecular formula C16H27BrN4O4 

Molecular weight 419 gmol-1 

1H NMR (600 MHz, DMSO-d6) δ (ppm) 9.16 (s, 1H, H2), 8.63 (d, J = 9.0 Hz, 1H, H7), 

8.47 (d, J = 6.6 Hz, 1H, H13), 7.76 (t, J = 1.8 Hz, 1H, H4), 7.49 (t, J = 1.8 Hz, 1H, H3), 

5.14 (d, J = 16.2 Hz, 2H, H5), 4.32 (dd, J = 8.4, 6.0 Hz, 1H, H8), 4.28 (dq, J = 7.2, 7.2 Hz, 

1H, H14), 4.14 (dq, J = 7.2, 7.2 Hz, 1H, H17), 4.13 (dq, J = 7.2, 7.2 Hz, 1H, H17), 3.95 (s, 

3H, H1), 2.06 (qqd, J = 6.8, 6.8, 5.6 Hz, 1H, H9), 1.33 (d, J = 7.2 Hz, 3H, H15), 1.24 (t, J = 

7.2 Hz, 3H, H18), 0.97 (d, J = 6.6 Hz, 3H, H10/11), 0.94 (d, J = 6.6 Hz, 3H, H10/11) 

13C NMR (150 MHz, DMSO-d6) δ (ppm) 172.29 (CO,C16), 170.29 (CO,C12), 164.76 

(CO,C6), 137.70 (NCHN,C2), 123.73 (NCH,C4), 122.95 (NCH,C3), 60.41 (OCH2,C17), 

57.45 (CH,C8), 50.44 (NCH2,C5), 47.62 (CH,C14), 35.78 (NCH3,C1), 31.07 (CH,C9), 

19.01 (CH3,C10/C11), 17.99 (CH3,C10/C11), 16.72 (CH3,C15), 13.98 (CH3,C18) 

IR (neat) (cm-1) 3280 (m), 3258 (m), 2964 (w), 1727 (m), 1669 (m), 1646 (vs), 1557 (s), 

1219 (s), 1174 (s) 

MS (m/z) Found [M-Br-]+ 339.2024, C16H27N4O4
+ requires 339.2026 

3-Methyl-1-L-phenylalanine-D-phenylalanine ethyl ester imidazolium bromide (378) 
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The title compound (378) was prepared from 1-methylimidazole (0.170 g, 2.05 mmol) and 

L-phenylalanine-D-phenylalanine ethyl ester bromoacetate (361) (1.151 g, 2.50 mmol) 

according to the general procedure (Section 7.4.2, page 360) as a white solid in 98 % yield 

(1.098 g, 2.02 mmol). 

m.p. 93-95 °C [α] 20
D =  -23.7 o (0.7 c, CHCl3) 

Molecular formula C26H31BrN4O4 

Molecular weight 543 gmol-1 

1H NMR (600 MHz, DMSO-d6) δ (ppm) 8.99 (s, 1H, H2), 8.75 (d, J = 8.4 Hz, 1H, H7), 

8.66 (d, J = 9.0 Hz, 1H, H17), 7.64 (t, J = 1.6 Hz, 1H, H4), 7.53 (t, J = 1.6 Hz, 1H, H3), 

7.31-7.16 (m, 10H, H11-15,21-25), 4.87 (d, J = 21.6 Hz, 2H, H5), 4.63 (ddd, J = 8.0, 6.0, 

6.0 Hz, 1H, H8), 4.52 (ddd, J = 8.8, 5.6, 5.6 Hz, 1H, H18), 4.01 (dq, J = 7.2, 7.2 Hz, 1H, 

H27), 4.00 (dq, J = 7.2, 7.2 Hz, 1H, H27), 3.85 (s, 3H, H1), 3.11-2.94 (m, 4H, H9,19), 1.11 

(t, J = 7.2 Hz, 3H, H28) 

13C NMR (150 MHz, DMSO-d6) δ (ppm) 171.34 (CO,C26), 170.40 (CO,C16), 164.42 

(CO,C6), 137.54 (NCHN,C2), 137.12 (ArC,C10/C20), 136.99 (ArC,C10/C20), 129.19 

(ArCH), 129.17 (ArCH), 128.21 (ArCH), 128.01 (ArCH), 126.61 (ArCH,C13/C23), 126.32 

(ArCH,C13/C23), 123.51 (NCH,C4), 122.97 (NCH,C3), 66.99 (OCH2,C27), 60.64 

(CH,C8), 53.87 (CH,C18), 50.44 (NCH2,C5), 38.14 (CH2,C9/C19), 36.99 (NCH3,C1), 

35.77 (CH2,C9/C19), 13.93 (CH3,C28) 

IR (neat) (cm-1) 3300 (m), 1736 (s), 1677 (m), 1645 (vs), 1536 (s), 1219 (s), 1181 (s), 746 

(m), 695 (s) 

MS (m/z) Found [M-Br-]+ 463.2338, C26H31N4O4
+ requires 463.2339 
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3-Methyl-1-L-valine-D-valine methyl ester imidazolium bromide (379) 

 

The title compound (379) was prepared from 1-methylimidazole (0.290 g, 3.65 mmol) and 

L-valine-D-valine methyl ester bromoacetate (362) (1.531 g, 4.37 mmol) according to the 

general procedure (Section 7.4.2, page 360) as an off white solid in 93 % yield (1.471 g, 

3.40 mmol). 

m.p. 82-84 °C [α] 20
D = -36.1 ° (1.2 c, CHCl3) 

Molecular formula C17H29BrN4O4 

Molecular weight 433 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 9.63 (s, 1H, H2), 8.71 (d, J = 7.8 Hz, 1H, H7), 7.61 

(s, 1H, H4), 7.25 (s, 1H, H3), 7.15 (d, J = 8.4 Hz, 1H, H13), 5.50 (d, J = 15.6 Hz, 1H, H5), 

5.30 (d, J = 15.6 Hz, 1H, H5), 4.30 (dd, J = 8.4, 6.0 Hz, 1H, H14), 4.19 (dd, J = 7.8, 7.2 

Hz, 1H, H8), 3.97 (s, 3H, H1), 3.64 (s, 3H, H19), 2.11-1.95 (m, 2H, H9,15), 0.95 (dd, J = 

6.6, 6.0 Hz, 6H, H10,11/16,17), 0.84 (dd, J = 6.3, 6.0 Hz, 6H, H10,11/16,17) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.46 (CO,C18), 171.36 (CO,C12), 165.32 

(CO,C6), 137.96 (NCHN,C2), 123.97 (NCH,C4), 122.51 (NCH,C3), 60.40 (CH,C8), 57.92 

(CH,C14), 52.17 (NCH2,C5), 51.65 (OCH3,C19), 36.82 (NCH3,C1), 30.58 (CH,C9/C15), 

30.45 (CH,C9/C15), 19.43 (CH3), 19.11 (CH3), 18.57 (CH3), 18.44 (CH3, CH3,C10/C11/ 

C16/C17) 

IR (neat) (cm-1) 3402 (b), 3278 (w), 2964 (w), 1727 (m), 1670 (m), 1640 (vs), 1553 (s), 

1266 (m), 1173 (m), 1022 (m) 

MS (m/z) Found [M-Br-]+ 353.2172, C17H29N4O4
+ requires 353.2183 
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7.5 Preparation of Chiral Lactate dipeptidyl Ionic liquids- Chapter 4 

7.5.1 General procedure for the preparation of starting materials for Lactate peptidyl 

Chiral Ionic Liquids: Benzyloxy-R-lactate- L-alanine methyl ester (380) 

 

R-Benzyloxy-Lactic acid (1.290 g, 7.16 mmol) was dissolved in DCM (20 mL) with N-[(3-

dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.372 g, 7.16 mmol), 1-

hydroxybenzotriazole (0.966 g, 7.16 mmol), and triethylamine (0.724 g, 7.16 mmol). The 

reaction mixture was then cooled to 0 °C. L-alanine methyl ester hydrochloride (227) 

(1.020 g, 7.16 mmol) was added. After 30 mins the reaction was raised to room temperature 

and the reaction was allowed to proceed for 24 h. After this time, the organic phase was 

washed with distilled water, then dried over MgSO4. The organic solvent was then removed 

via rotary evaporation yielding a white solid. The crude product was purified via column 

chromatography (50:50 ethyl actetate:hexane), and the title compound (380) was obtained 

in 83 % yield (1.570 g, 5.92 mmol).  

m.p 40-44 ° C, [α] 20
D =  +15.0 ° (1.0 c, CHCl3) 

Molecular formula C14H19NO5 

Molecular weight 265 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.41-7.28 (m, 5H, H1-5), 7.12 (d, J = 7.2, 1H, H11), 

4.65-4.55 (m, 3H, H7,12), 3.99 (q, J = 6.8 Hz, 1H, H8), 3.77 (s, 3H, H15), 1.44 (d, J = 6.8 

Hz, 3H, H9), 1.42 (d, J = 7.2 Hz, 3H, H13) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.08 (CO,C14), 172.61 (CO,C10), 137.47 

(ArC,C6), 128.62 (ArCH), 128.10 (ArCH), 127.83 (ArCH,C3), 76.00 (CH,C8), 71.99 
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(OCH2,C7), 52.47 (CH,C12), 47.39 (OCH3,C15), 18.50 (CH3,C13), 18.45 (CH3,C9). MS 

(m/z) Found [M+H ]+ 266.1380, C14H10NO4
+ requires 266.1392 

Benzyloxy-R-lactate-L-alanine ethyl ester (381) 

 

The title compound (381) was prepared from R-Benzyloxy lactic acid (2.046 g, 11.35 

mmol), L-alanine ethyl ester hydrochloride (227) (1.742 g, 11.35 mmol), 1-

hydroxybenzotriazole (1.533 g, 11.35 mmol), and triethylamine (1.148 g, 11.35 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.175 g, 11.35 mmol) 

according to the general procedure (Section 7.5.1, page 379) as a pale yellow solid in 81 % 

yield (2.574 g, 9.22 mmol).  

m.p 39-41 °C, [α] 20
D =  +18.1 ° (0.9 c, CHCl3) 

Molecular formula C15H21NO4 

Molecular weight 279 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.41-7.30 (m, 5H, H1-5), 7.15 (d, J = 7.2 Hz, 1H, 

H11), 4.63-4.55 (m, 3H, H7,12), 4.18 (dq, J = 7.2, 7.2 Hz, 1H, H15), 4.17 (dq, J = 7.2, 7.2 

Hz, 1H, H15), 3.99 (q, J = 6.8 Hz, 1H, H8), 1.45 (d, J = 6.8 Hz, 3H, H9), 1.31 (d, J = 7.2 

Hz, 3H, H13), 1.29 (t, J = 7.0 Hz, 3H, H16) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.00 (CO,C10), 172.62 (CO,C14), 137.30 

(ArC,C6), 128.63 (ArCH), 128.09 (ArCH), 127.82 (ArCH,C3), 73.74 (CH,C8), 71.99 

(OCH2,C7), 61.48 (OCH2,C15), 47.62 (CH,C12), 18.48 (CH3,C13), 18.40 (CH3,C9), 14.12 

(CH3,C16)  

MS (m/z) Found [M+H]+ 280.1538, C15H22NO4
+ requires 280.1549 
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Benzyloxy-R-lactate- D-alanine methyl ester (382) 

 

The title compound (382) was prepared from R-Benzyloxy lactic acid (2.581 g, 14.30 

mmol), D-alanine methyl ester hydrochloride (246) (2.001 g, 14.30 mmol), 1-

hydroxybenzotriazole (1.801 g, 14.30 mmol), and triethylamine (1.449 g, 14.30 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.740 g, 14.30 mmol) 

according to the general procedure (Section 7.5.1, page 379) as a colourless viscous liquid 

in 68 % yield (2.583 g, 9.75 mmol).  

 [α] 20
D

=  +33.4 ° (1.2 c, CHCl3) 

Molecular formula C14H29NO4 

Molecular weight 265 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.44-7.31 (m, 5H, H1-5), 7.16 (d, J = 7.2 Hz, 1H, 

H11), 4.68-4.59 (m, 3H, H7,12), 3.98 (q, J = 6.8 Hz, 1H, H8), 3.78 (s, 3H, H15), 1.43 (d, J 

= 6.8 Hz, 3H, H9), 1.41 (d, J = 7.2 Hz, 3H, H13) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.29 (CO,C14), 173.02 (CO,C10), 137.23 

(ArC,C6), 128.62 (ArCH), 128.04 (ArCH), 127.82 (ArCH,C3), 76.06 (CH,C8), 72.21 

(OCH2,C7), 52.48 (CH,C12), 47.36 (OCH3,C15), 18.78 (CH3,C13), 18.43 (CH3,C9)  

MS (m/z) Found [M+H]+ 266.1380, C14H20NO4
+ requires 266.1392 
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Benzyloxy-R-lactate- L-phenylalanine methyl ester (383) 

 

The title compound (383) was prepared from R-Benzyloxy lactic acid  (2.044 g, 11.35 

mmol), L-phenylalanine methyl ester hydrochloride (223) (2.446 g, 11.35 mmol), 1-

hydroxybenzotriazole (1.532 g, 11.35 mmol), and triethylamine (1.147 g, 11.35 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.174 g, 11.35 mmol) 

according to the general procedure (Section 7.5.1, page 379) as a white solid in 98 % yield 

(3.819 g, 11.20  mmol).  

m.p. 37-39 °C [α] 20
D

=  +24.3 ° (0.8 c, CHCl3) 

Molecular formula C20H23NO4 

Molecular weight 341 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.38-7.22 (m, 10H, H1-5,15-19), 7.01 (d, J = 8.0 Hz, 

1H, H11), 4.87 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H12), 4.39 (d, J = 1.2 Hz, 2H, H7), 3.94 (q, J 

= 6.8 Hz, 1H, H8), 3.76 (s, 3H, H21), 3.25 (dd, J = 14.0, 7.2 Hz, 1H, H13), 3.12 (dd, J = 

14.4, 7.2 Hz, 1H, H13), 1.42 (d, J = 6.8 Hz, 3H, H9) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.11 (CO,C10), 171.77 (CO,C20), 137.21 

(ArC,C6/C14), 135.87 (ArC,C6/C14), 129.27 (ArCH), 128.68 (ArCH), 128.53 (ArCH), 

127.99 (ArCH), 127.79 (ArCH,C3/C17), 127.66 (ArCH,C3/C17), 72.12 (CH,C8), 71.75 

(OCH2,C7), 53.46 (CH,C12), 52.52 (OCH3,C21), 37.75 (CH2,C13), 18.80 (CH3,C9)  

MS (m/z) Found [M+H]+ 342.1707, C20H24NO4
+ requires 342.1705 
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Benzyloxy-R-lactate- L-phenylalanine ethyl ester (384) 

 

The title compound (384) was prepared from R-Benzyloxy lactic acid  (1.010 g, 5.55 

mmol), L-phenylalanine ethyl ester hydrochloride (224) (1.261 g, 5.55 mmol), 1-

hydroxybenzotriazole (0.686 g, 5.55 mmol), and triethylamine (0.556 g, 5.55 mmol) and N-

[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.059 g, 5.55 mmol) 

according to the general procedure (Section 7.5.1, page 379) as a white solid in 61 % yield 

(1.198 g, 3.37  mmol).  

m.p. 33-35 °C [α] 20
D

=  -24.5 ° (0.8 c, CHCl3) 

Molecular formula C21H25NO4 

Molecular weight 355 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.29-7.03 (m, 10H, H1-5,15-19), 6.95 (d, J = 8.0 Hz, 

1H, H11), 4.85 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H12), 4.34 (s, 2H, H7), 4.11 (q, J = 7.2 Hz, 

2H, H21), 3.84 (q, J = 6.8 Hz, 1H, H8), 3.16 (dd, J = 14.4, 8.4 Hz, 1H, H13), 3.10 (dd, J = 

13.8, 6.8 Hz, 1H, H13), 1.33 (d, J = 6.8 Hz, 3H, H9), 1.18 (t, J = 7.2 Hz, 3H, H22) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.05 (CO,C10), 171.29 (CO,C20), 137.22 

(ArC,C6/C14), 135.95 (ArC,C6/C14), 129.23 (ArCH), 128.62 (ArCH), 127.97 (ArCH), 

127.64 (ArCH), 127.14 (ArCH,C3/C17), 127.56 (ArCH,C3/C17), 75.91 (CH,C8), 71.75 

(OCH2,C7), 61.52 (OCH2,C21), 52.55 (CH,C12), 37.78 (CH2,C13), 18.52 (CH3,C9), 14.12 

(CH3,C22)   

MS (m/z) Found [M+H]+ 356.1860, C21H26NO4
+ requires 356.1862 
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7.5.2 Preparation of Chiral Lactate-peptidyl α-bromoamides 

Representative procedure for the preparation of chiral Lactate-peptidyl α-bromoamides: 

R-lactate-L-alanine methyl ester bromoacetate (385) 
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To a stirred solution of DCM, R-lactate-L-alanine methyl ester (0.444 g, 2.53 mmol), and 

potassium carbonate (0.520 g, 2.53 mmol), bromoacetyl bromide (0.766 g, 3.80 mmol) was 

added dropwise. The reaction was continued stirring overnight at room temperature. After 

this time the potassium carbonate was removed by filtration. The organic phase was washed 

with distilled water (3 x 10 mL), and saturated sodium bicarbonate (3 x 10 mL). The 

organic phase was then dried over anhydrous magnesium sulfate, filtered and volatiles 

removed via rotary evaporation to give a crude product (0.685 g). The crude product was 

purified by column chromatography (eluant, ethyl acetate:hexane, 50:50) to give the title 

compound (385) as a colourless liquid in 73 % yield (0.546 g, 1.84 mmol).  

 [α] 20
D = +35.1 ° (0.8 c, CHCl3) 

Molecular formula: C9H14BrNO5 

Molecular weight 296 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.74 (d, J = 7.4 Hz, 1H, H6), 5.24 (q, J = 6.8 Hz, 1H, 

H3), 4.51 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.86 (d, J = 16.2 Hz, 2H, H1), 3.70 (s, 3H, H10), 

1.47 (d, J = 6.8 Hz, 3H, H4), 1.36 (d, J = 7.2 Hz, 3H, H8) 

13C NMR (150 MHz, CDCl3) (δ ppm) 173.10 (CO,C9), 169.31 (CO,C5), 165.74 (CO, C2), 

71.79 (CH,C3), 53.49 (OCH3,C10), 47.09 (CH,C7), 25.44 (CH2,C1), 18.32 (CH3,C8), 17.50 

(CH3,C4) 
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R-Lactate-L-alanine ethyl ester bromoacetate (386) 

 

The title compound (386) was prepared from R-lactate–L-alanine ethyl ester (0.753 g, 4.00 

mmol) and bromoacetyl bromide (1.207 g, 6.00 mmol) according to the general procedure 

(Section 7.5.2, page 384) as a pale yellow liquid in 54 % yield (0.669 g, 2.16 mmol). 

 [α] 20
D

= +28.0 ° (1.0 c, CHCl3) 

Molecular formula: C10H16BrNO5 

Molecular weight 310 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.71 (d, J = 6.8 Hz, 1H, H6), 5.22 (q, J = 6.8 Hz, 1H, 

H3), 4.50 (dq, J = 7.2, 7.2 Hz, 1H, H7), 4.15 (q, J = 7.2 Hz, 2H, H10), 3.86 (d, J = 16.2 Hz, 

2H, H1), 1.44 (d, J = 6.8 Hz, 3H, H4), 1.36 (d, J = 7.2 Hz, 3H, H8), 1.23 (t, J = 7.2 Hz, 3H, 

H11) 

13C NMR (150 MHz, CDCl3) δ (ppm) 172.59 (CO,C5), 169.15 (CO,C9), 165.71 (CO, C2), 

71.96 (OCH2,C10), 61.69 (CH,C3), 47.97 (CH,C7), 25.39 (CH2,C1), 18.36 (CH3,C8), 17.57 

(CH3,C4), 14.13 (CH3,C11) 

R-Lactate-D-alanine methyl ester bromoacetate (387) 

 

The title compound (387) was prepared from R-lactate–D-alanine methyl ester (0.540 g, 

3.10 mmol) and bromoacetyl bromide (0.926 g, 4.65 mmol) according to the general 
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procedure (Section 7.5.2, page 384) as a colourless liquid in 35 % yield (0.321 g, 1.08 

mmol). 

 [α] 20
D = +30.0 ° (0.6 c, CHCl3) 

Molecular formula: C9H14BrNO5 

Molecular weight 296 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 6.79 (d, J = 7.0 Hz, 1H, H6), 5.28 (q, J = 6.8 Hz, 1H, 

H3), 4.61 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.90 (d, J = 16.4 Hz, 2H, H1), 3.78 (s, 3H, H10), 

1.54 (d, J = 6.8 Hz, 3H, H4), 1.46 (d, J = 7.2 Hz, 3H, H8) 

13C NMR (150 MHz, CDCl3) δ (ppm) 173.18 (CO,C5), 169.02 (CO,C9), 165.17 (CO, C2), 

71.79 (CH,C3), 53.48 (OCH3,C10), 47.07 (CH,C7), 25.45 (CH2,C1), 18.30 (CH3,C8), 17.54 

(CH3,C4) 

R-Lactate-L-phenylalanine methyl ester bromoacetate (388) 

 

The title compound (388) was prepared from R-lactate–L-phenylalanine methyl ester 

(0.664 g, 2.70 mmol) and bromoacetyl bromide (0.350 g, 4.00 mmol) according to the 

general procedure (Section 7.5.2, page 384) as a pale yellow liquid in 37 % yield (0.373 g, 

1.00 mmol). 

[α] 20
D

= +23.0 ° (0.8 c, CHCl3) 

Molecular formula: C15H18BrNO5 

Molecular weight 372 gmol-1 



387 

 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.24-7.00 (m, 5H, H10-14), 6.52 (d, J = 7.6 Hz, 1H, 

H6), 5.18 (q, J = 6.8 Hz, 1H, H3), 4.81 (ddd, J = 8.0, 6.8, 6.8 Hz, 1H, H3), 3.72 (d, J = 15.4 

Hz, 2H, H1), 3.68 (s, 3H, H16), 3.12-3.02 (m, 2H, H8), 1.41 (d, J = 6.8 Hz, 3H, H4) 

13C NMR (150 MHz, CDCl3) δ (ppm) 171.57 (CO,C5), 169.36 (CO,C15), 165.65 (CO, 

C2), 135.37 (ArC,C9), 129.29 (ArCH), 128.68 (ArCH), 127.68 (ArCH,C12), 71.87 

(CH,C7), 52.80 (OCH3,C16), 52.54 (CH,C3), 37.69 (CH2,C8), 25.24 (CH2,C1), 17.63 

(CH3,C4) 

R-Lactate-L-phenylalanine ethyl ester bromoacetate (389) 
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The title compound (389) was prepared from R-lactate–L-phenylalanine ethyl ester (0.434 

g, 1.65 mmol) and bromoacetyl bromide (0.390 g, 2.00 mmol) according to the general 

procedure (Section 7.5.2, page 384) as a pale yellow liquid in 55 % yield (0.350 g, 0.91 

mmol). 

[α] 20
D = +15.1° (0.8 c, CHCl3) 

Molecular formula: C16H20BrNO5 

Molecular weight 386 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 7.21-7.01 (m, 5H, H10-14), 6.53 (d, J = 7.6 Hz, 1H, 

H6), 5.21 (q, J = 7.2 Hz, 1H, H3), 4.79 (ddd, J = 7.8, 6.4, 6.4 Hz, 1H, H7), 4.15 (q, J = 7.2 

Hz, 2H, H16), 3.74 (d, J = 15.4 Hz, 2H, H1), 3.10-3.04 (m, 2H, H8), 1.44 (d, J = 6.8 Hz, 

3H, H4), 1.19 (t, J = 7.2 Hz, 3H, H17) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 171.09 (CO,C5), 169.31 (CO,C15), 165.64 (CO, 

C2), 135.46 (ArC,C9), 129.37 (ArCH), 128.62 (ArCH), 127.62 (ArCH,C12), 71.88 

(OCH2,C16), 61.76 (CH,C3), 52.84 (CH,C7), 37.72 (CH2,C8), 25.25 (CH2,C1), 17.65 

(CH3,C4), 14.14 (CH3,C17) 

 

7.5.3 Preparation of lactate-peptidyl chiral Br ILs 

3-Methyl-1-R-lactate-L-alanine methyl ester imidazolium bromide (392) 

 

To a stirred solution of 1-methylimidazole (0.095 g, 1.16 mmol) in tetrahydrofuran (20 mL) 

at -15 ºC under a nitrogen atmosphere was added dropwise R-lactate-L-alanine methyl ester 

bromoacetate (385) (0.445 g, 1.50 mmol). The reaction mixture was stirred vigorously at -

15 ºC for 2 h, then at RT overnight. The IL precipitated separate from the THF phase. The 

solvent was removed on the rotary evaporator and the residual product was washed with 

diethyl ether. The product was dried under high vacuum for 48 hrs to yield the title product 

(392) as an off white solid in 87 % yield (0.382 g, 1.01 mmol). 

m.p. 68-70 °C, [α] 20
D = +18.1 ° (0.8 c, CHCl3) 

Molecular formula C13H20BrN3O5 

Molecular weight 378 gmol-1 

1H NMR (600 MHz, CDCl3) δ (ppm) 10.08 (s, 1H, H2), 7.84 (d, J = 7.6 Hz, 1H, H10), 7.55 

(t, J = 1.8 Hz, 1H, H4), 7.20 (t, J = 1.8 Hz, 1H, H3), 5.94 (d, J = 17.2 Hz, 1H, H5), 5.46 (d, 

J = 17.6 Hz, 1H, H5), 5.28 (q, J = 6.8 Hz, 1H, H7), 4.94 (dq, J = 7.2, 7.2 Hz, 1H, H11), 

3.99 (s, 3H, H1), 3.65 (s, 3H, H14), 1.48 (d, J = 7.2 Hz, 3H, H12), 1.45 (d, J = 6.8 Hz, 3H, 

H8) 
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13C NMR (150 MHz, CDCl3) δ (ppm) 173.42 (CO,C9), 169.57 (CO,C13), 165.92 (CO,C6), 

138.08 (NCHN,C2), 123.20 (NCH,C4), 122.96 (NCH,C3), 72.28 (CH,C7), 65.86 

(NCH2,C5), 52.37 (CH,C11), 50.81 (OCH3,C14), 36.92 (NCH3,C1), 17.59 (CH3,C8), 17.29 

(CH3,C12) 

IR (neat) (cm-1) 3269 (w), 3043 (w), 1761 (m), 1742 (vs), 1653 (s), 1525 (s), 1188 (s), 1173 

(s), 1086 (s),1026 (m) 

MS (m/z) Found [M-Br-]+ 298.1393, C13H20N3O5
+ requires 298.1397 

7.6 Chapter 5 experimental-toxicity studies 

7.6.1 Minimum Inhibitory Concentration (MIC) Assay- Microtiter broth dilution 

technique 

Minimum inhibitory concentrations (MICs) for compounds were determined by serial two-

fold dilutions in Mueller-hinton or nutrient broth using the microtiter broth dilution 

technique described by Amsterdam.3 All assays were done in triplicate. 

Method 

Test strains were grown in nutrient broth at 30 °C overnight. Next day, cultures were 

centrifuged at 5000 rpm for 10 minutes. The pellet formed was washed twice with 10 ml 

0.01 M sodium phosphate buffer (pH 7.0). Optical density of cultures was adjusted to give 

an optical density of 0.07 at 660 nm. 

The compound solution and 96 well plates were ready before the cultures were adjusted to 

the desired optical density. 

For stock solution of chemical, the compound to be tested was dissolved in 1 ml of sterile 

water or organic solvents such as methanol and DMSO dependant on the chemicals 

solubility. 

For microplate preparation, 190 µl of Müeller-hinton broth was dispensed into wells in 

column 1. 100 µl of Müeller-hinton broth was dispensed into all wells from column 2 to 

column 12. 10 µl of the compound solution was pipetted into wells in column 1 (far left of 
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plate). The compound was mixed into the wells in column 1 by pipetting up and down 6-8 

times. 100 µl was withdrawn from column 1 and added to column 2. This made column 2 a 

two-fold dilution of column 1. This was mixed up and down 6-8 times. 100 µl was 

transferred to column 3. This procedure was repeated down to column 10 only. 100µl was 

discarded from column 10 rather than putting it in column 11. 5µl of the strain to be tested 

was dispensed into wells in columns 11 to 1 in that order. Column 11 was used as a growth 

control and column 12 was the sterility control.  The plates were incubated at 30 °C 

overnight. Growth on the plates was noted and optical density measured after 24 hours. 

 

7.7 Chapter 6 experimental-Primary biodegradation studies 

7.7.1 Primary Biodegradation Assay 

For the Primary Biodegradation assay a modified OECD Guideline for Testing of 

Chemicals (OECD 301A- Die-Away Test) was used.4 Activated sludge (AS) collected from 

a pharmaceutical company was used for the mixed microbial community inoculum. The AS 

sample was pre-conditioned by aeration at room temperature for 5 days. After aeration, the 

total suspended solids (SS) concentration of the AS used was 5g/L SS in mineral nutrient 

medium. The mineral medium was composed as follows; 0.085 g/L KH2PO4, 0.2175 g/L 

K2HPO4, 0.334 g/L Na2HPO4·2H2O, 5 mg/L NH4Cl, 36.4 mg/L CaCl2·2H2O, 22.5 mg/L 

MgSO4·7H2O, 0.25 mg/L FeCl3·6H2O. The ILs were tested in duplicate at a concentration 

of 240 µM. All controls were also tested in duplicate. Abiotic control flasks containing 240 

µM of the chemical and HgCl2 at a concentration of 50 mg/L were prepared. Flasks 

containing the test substance and autoclaved inoculum (sterile control), flasks containing 

the test substance in mineral medium in the absence of AS inoculum and flasks containing 

the test substance in distilled water (no inoculated medium) were all prepared. The positive 

control flask contained the standard Sodium-n-dodecyl sulfate (SDS) at a concentration of 

240 µM. The blank controls contained no test substrate only mineral medium and AS. All 

the test flasks were incubated at 25°C for 28 days at 100 rpm; 500 µl samples were 
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retrieved from the flasks every 3 to 4 days, these samples were taken in duplicate per flask. 

All samples were subsquently centrifuged (8000 rpm, 15 min) prior to analysis. 

7.7.2 Preparation of proposed metabolite, 3-carboxymethyl-1-methylimidazolium 

bromide 

Bromacetic acid (2.001 g, 14.50 mmol) was added in small portions over a 30 min time 

period to 1-methylimidazole (1.188 g, 14.50 mmol). The reaction was then heated to 70 °C 

for 4 hours.5 After this time the reaction mixture was cooled to room temperature and 

washed with acetonitrile (5 x 10 mL). Drying in vacuo yielded the product as a white solid 

in 76 % yield (2.439 g, 11.13 mmol). 

1H NMR (400 MHz, D2O) δ (ppm) 8.65 (s, 1H), 7.36 (s, 2H), 4.84 (s, 2H), 4.65 (s, 3H) 

13C NMR (100 MHz, D2O) δ (ppm) 170.68, 137.21, 123.59, 123.47, 51.00, 36.07 

7.8 References 
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3 D. Amsterdam, Susceptibility testing of Antimicrobials in liquid media. "Antibiotics in 

Laboratory Medicine", Lorian, V., ed. Fourth Edition, 1996, 52-111. 
4 OECD guidelines for testing chemicals 301 A-F, Organisation for Economic Co-operation 

and Development, Paris, France, 1992. 
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Thesis Conclusions and Future Work 

 

A series of achiral imidazolium based ionic liquids, and associated intermediates, were 

successfully designed and prepared (Chapter 2). Alkyl ester and amide moieties (alkyl 

chains C5-C14) were incorporated into the imidazolium cation side chain. Introduction of 

these functionalities was achieved previously in the research group with superior 

biodegradation and decreased toxicity observed for ester examples, whilst ILs containing 

amide side chains gave poor biodegradabilities. A number of anion exchange reactions 

yielded a range of salts with various physico-chemical properties (i.e. melting points and 

viscosities). It was generally found that ILs containing OctOSO3 and NTf2 anions were 

liquids at room temperature. 

A library of novel chiral ionic liquids containing amino acid ester groups in the side chain 

was also designed and synthesised (Chapter 3). Introduction of these chiral building blocks 

provides the IL side chain with several possible biodegradation sites. 23 bromide CILs 

(270-292) were synthesised. THF replaced diethyl ether as reaction medium in this 

synthesis in order to optimise bromide salt formation. All the bromide CILs prepared were 

screened for various antimicrobial activities (Chapter 5). Bromide CIL 272 was also 

investigated in an activated sludge biodegradation assay (Chapter 6). A range of NTf2 (293-

307) and OctOSO3 (308-317) CILs was also successfully synthesised. As seen in Chapter 2, 

exchanging the bromide anion in the IL structures leads to notable changes in the physical 

properties of the salts (all NTf2 and OctOSO3 CILs were obtained as liquids).  

The final approach in preparing highly functionalised ionic liquids, involved the coupling 

of dipeptidyl species into the IL side chain. This resulted in salts containing ester and amide 

functionalities, at various positions, in the side chain. It was hoped that improved 

biodegradation could be achieved by using this strategy. By including amide bonds 

adjacent to ester groups, biodegradation of this typically stable moiety was envisaged. It 

was also hypothesised that an ionic liquid containing a peptidyl moiety may be more 

readily recognised by metabolising enzymes. This could therefore lead to improved 

environmental breakdown of ionic liquids. 17 dipeptidyl examples were successfully 
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synthesised and characterised. Peptide species were prepared using the standard EDC/ 

HOBt coupling protocol. All novel achiral and chiral ionic liquids described in the thesis 

were structurally characterised by a range of spectroscopic techniques including 1H, 13C, 

DEPT 135 and HMQC NMR. IR and MS data was also reported.  

Biological assessment of the novel ionic liquids was also a prime objective of this research. 

Antimicrobial screening of various achiral and chiral ionic liquids was carried out both in 

DCU and in collaborative work with Dr. Marcel Špulák (Charles University, Czech 

Republic). A range of environmentally relevant bacteria and clinically resistant strains of 

bacteria and fungi were challenged against novel ILs. Achiral ionic liquids (42, 45, 193-

199) were screened for antimicrobial activity. High levels of toxicity were observed for ILs 

containing dodecyl (194) and tetradecyl (195) ester side chains. These compounds 

displayed a broad range of activity towards resistant bacterial and fungal strains. The 

potency of these ILs can be related to structural features of the IL side chain. Substitution 

of the ILs cation with long alkyl chains results in more lipophilic examples. Increase in 

lipophilicity results in a corresponding increase in toxicity. Dipeptidyl (363-379) and 

Amino acid ester (247-269) chiral ionic liquids were challenged against a range of bacterial 

and fungal isolates, of both clinical and environmental relevance. CILs 274, 283, 284, 363 

and 364 displayed relatively high MIC values (Minimum Inhibitory Concentration) 

corresponding to low toxicities against several strains of bacteria ubiquitous in the 

environment. CIL 368 was capable of inhibiting the resistant bacterial strain MRSA at 125 

µM concentration. Inhibition of other resistant bacterial strains was also observed for 

compounds 370, 371 and 378. All the abovementioned toxic CILs possessed a 

phenylalanine moiety in the cation side chain. The presence of this group in IL side chains 

leads to increased lipophilicity and toxicity. A trend was also noted between IL activity and 

the bacterial strains. Inhibition was predominately against Gram positive bacteria, whilst 

the Gram negative species proved the most tolerant.  

The primary biodegradation of two novel ILs (272 and 378) was also investigated (Chapter 

6). High Performance Liquid Chromatography with Mass Spectrometry (HPLC-MS) and 

Electrospray Ionisation Mass Spectrometry (ESI MS) analysis was employed to monitor IL 

breakdown. Two HPLC methods were successfully developed to identify novel CILs and 
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their corresponding metabolite structures. Reverse-Phase (RP) and Hydrophilic interaction 

chromatography (HILIC) systems were studied with MS employed as the detection method 

in both cases. However, validation of the developed methods could not be achieved 

(presumably due to instrumental errors). An activated sludge assay (a modified OECD 301 

A, 28 day test) was set up in order to investigate biological breakdown of the novel ILs. 

Over the 28 day test period, samples were retrieved and subsequently analysed by ESI-MS. 

The results obtained from this assay indicated an evident disappearance of the parent IL 

cation masses over the 28 days. Nonetheless, the results also suggested that an abiotic 

degradation of the novel salts had occurred in the test vessels. Similar MS data was 

obtained from both these biotic and abiotic controls.  A metabolite structure was proposed, 

namely 3-carboxymethyl-1-methylimidazolium, and synthesized in the laboratory. An 

antibacterial screen was performed on the metabolite compound in order to investigate its 

possible toxicity in the environment. Relatively high MIC values (low toxicities) were 

noted from this test. Although these ILs cannot be described as biodegradable from the 

obtained experimental results, it is envisaged that their persistence in aquatic environments 

may not be a concern.  

Due to the vast number of possible ionic liquid structures which may be formed (by the 

variation of the anion or cation within an IL structure) and of possible peptide moieties 

which may also be prepared, a further library of novel ILs could be attained. Examples may 

be prepared with the inclusion of other biodegradable functionalities (i,e hydroxyls, 

aldehydes or aromatic esters). Ionic liquids have gained much attention in the literature as 

possible replacements for organic solvents in various chemical reactions. Therefore, it 

would be of interest to examine the possible application of the novel ILs prepared in this 

work in organic chemical reactions (e.g. Diels Alder, Hydrogenation).  

Inhibition of various resistant strains of bacteria and fungi have been obtained for some of 

the novel ILs. Even though these particular examples cannot be fully classified as ‘green’, 

their relative toxicities may be exploited to a number of beneficial applications (as new 

antiseptic or antibacterial agents). Gilmore et al. have recently described the antibiofilm 

activities of imidazolium based ionic liquids. Numerous chronic plant, animal and human 

infections have been caused by bacterial biofilms. Therefore antibiofilm screenings are of 
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environmental and clinical importance. Further work may involve challenging the novel ILs 

prepared in this research in biofilm environments.  

The biodegradation of all the prepared ILs may also be examined in the future. The use of 

respirometric analysis along with the primary biodegradation studies would allow for a 

better understanding of the IL breakdown. Validation of the developed HPLC methods 

discussed in this thesis (Chapter 6) is necessary in order to report quantitative analysis of 

degradation samples. Therefore work should be carried out to obtain reproducible results 

using the developed methods. 
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Appendix I 

 

General procedures for the preparationof  known starting 

materials for L-Amino acid ester Chiral Ionic Liquids  

(Chapter 3) 
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General procedure for the preparation of starting materials for L-Amino acid ester 

Chiral Ionic Liquids; Preparation of L-Phenylalanine butyl ester hydrochloride (225) 

 

L-Phenylalanine (2.010 g, 12.0 mmol) was added slowly to a solution of butanol (30 mL) 

and thionyl chloride (2.88 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

After this time the reaction was allowed to cool to room temperature, and evaporation of 

solvent furnished the desired product (225) as a white powder in 66 % yield (2.040 g, 7.91 

mmol).  

m.p. 124-126 °C,  lit. m.p.  128-130 °C,1 [α] 20
D

= -28.0 ° (0.8 c, MeOH), lit. [α] 20
D

= -33.0 ° 

(1.0 c, EtOH)1  

Molecular formula C13H20ClNO2 

Molecular weight 258 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.69 (sBr, 3H, H9,15), 7.24-7.15 (m, 5H, H2-6), 

4.32 (dd, J = 8.4, 5.2 Hz, 1H, H8), 4.00 (t, J = 6.8 Hz, 2H, H11), 3.43 (dd, J = 7.2, 4.4 Hz, 

1H, H7), 3.30 (dd, J = 7.2, 6.6 Hz, 1H, H7), 1.45-1.32 (tt, J = 7.2, 6.8 Hz, 2H, H12), 1.18 

(tq, J = 7.6, 7.2 Hz, 2H, H13), 0.78 (t, J = 7.2 Hz, 3H, H14) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 168.99 (CO,C10), 134.15 (ArC,C1), 129.62 

(ArCH), 128.86 (ArCH), 127.58 (ArCH,C4), 66.31 (OCH2,C11), 54.35 (CH,C8), 36.40 

(CH2,C7), 30.17 (CH2,C12), 18.87 (CH2,C13), 13.60 (CH3,C14) 

NMR data was in agreement with the literature.2  
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L-Alanine methyl ester hydrochloride (226) 

 

L-Alanine (0.510 g, 5.60 mmol) was added slowly to a solution of methanol (20 mL) and 

thionyl chloride (0.81 mL) at 0 oC. The solution was stirred at room temperature for 48 

hours. Evaporation of solvent furnished the desired product (226) as a white powder in 94 

% yield (0.736 g, 5.29 mmol).  

m.p. 106-108 °C, lit. m.p. 106-108 °C,3 [α] 20
D = +6.9 ° (0.8 c, MeOH), lit. [α] 20

D = +6.5 ° (1.0 

c, MeOH)4 

Molecular formula C4H10ClNO2 

Molecular weight 139 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.49 (sBr, 3H, H3,6), 4.09 (dq, J = 7.2, 7.2 Hz, 1H, 

H2), 3.75 (s, 3H, H5), 1.42 (d, J = 7.2 Hz, 3H, H1) 

13C NMR (100 MHz, CDCl3) δ (ppm) 170.34 (CO,C4), 54.70 (OCH3,C5), 46.72 (CH,C2), 

15.49 (CH3,C1) 

NMR data was in agreement with the literature.5 

L-Alanine ethyl ester hydrochloride (227) 
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L-Alanine (0.997 g, 11.20 mmol) was added slowly to a solution of ethanol (20 mL) and 

thionyl chloride (1.63 mL) at 0 oC. The solution was stirred at room temperature for 48 
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hours. Evaporation of solvent furnished the desired product (227) as a white solid in 60 % 

yield (1.036 g, 6.73 mmol).  

m.p. 74-76 °C, lit. m.p. 75-77 °C,6 [α] 20
D = +2.6 ° (0.9 c, H2O), lit. [α] 20

D = +3.1 (2.0 c, H2O)7 

Molecular formula C5H12ClNO2 

Molecular weight 154 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.55 (sBr, 3H, H3,7), 4.17 (dq, J = 7.0, 7.0 Hz, 1H, 

H5), 4.16 (dq, J = 7.2, 7.0 Hz, 1H, H5), 4.05 (dq, J = 7.2, 7.2 Hz, 1H, H2), 1.42 (d, J = 7.2 

Hz, 3H, H1), 1.25 (t, J = 7.2 Hz, 3H, H6) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.30 (CO,C4), 59.53 (OCH2,C5) 54.78 

(CH,C2), 19.30 (CH3,C1), 13.49 (CH3,C6) 

NMR data was in agreement with the literature.8  

L-Alanine Butyl ester hydrochloride (228) 
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L-Alanine (0.997 g, 11.20 mmol) was added slowly to a solution of butanol (20 mL) and 

thionyl chloride (1.63 mL) at 0 oC. The solution was stirred at room temperature for 48 

hours. Evaporation of solvent furnished the desired product (228) as a white solid in 94 % 

yield (1.919 g, 10.54 mmol).  

m.p. 88-90 oC, [α] 20
D

= +12.2 ° (0.9 c, H2O) lit. [α] 20
D

= +15.0 ° (0.8 c, MeOH)9 

Molecular formula C7H16ClNO2 

Molecular weight 182 gmol-1 
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1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.48  (sBr, 3H, H3,9), 4.14 (dq, J = 7.2, 7.0 Hz, 

1H, H5), 4.13 (dq, J = 7.2, 7.2 Hz, 1H, H5), 4.09 (dq, J = 7.2, 7.2 Hz, 1H, H2), 1.60 (tt, J = 

7.2, 7.0 Hz, 2H, H6), 1.32 (tq, J = 7.2, 7.0 Hz, 2H, H7), 0.91 (t, J = 7.2 Hz, 3H, H1) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.02 (CO,C4), 65.25 (OCH2,C5), 47.80 

(CH,C2), 29.96 (CH2,C6), 18.40 (CH2,C7), 15.70 (CH3,C1), 13.39 (CH3,C8) 

NMR data was in agreement with the literature.9 

L-Valine methyl ester hydrochloride (229) 

 

L-Valine (1.001 g, 8.50 mmol) was added slowly to a solution of methanol (30 mL) and 

thionyl chloride (1.24 mL) at 0 oC. The solution was stirred at room temperature for 48 

hours. Evaporation of solvent furnished the desired product (229) as a white solid 96 % 

yield (1.369 g, 8.15 mmol).  

m.p. 169-171 oC, lit. m.p. 168-170 oC,10 [α] 20
D = +15.0 o (0.9 c, H2O), lit. [α] 20

D =  +15.6 o 

(1.0 in H2O)10  

Molecular formula C6H14ClNO2 

Molecular weight 168 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.64 (sBr, 3H, H5,8), 3.83 (d, J = 4.0 Hz, 1H, H4), 

3.72 (s, 3H, H7), 2.18 (qqd, J = 7.0, 6.8, 4.4 Hz, 1H, H2), 0.97 (d, J = 7.2 Hz, 3H, H1/3), 

0.93 (d, J = 7.2 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6)  δ (ppm) 170.07 (CO,C6), 57.20 (CH,C4), 52.49 

(OCH3,C7), 29.25 (CH,C2), 18.24 (CH3,C1/C3), 17.50 (CH3,C1/C3)  
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NMR data was in agreement with the literature.11 

L-Valine ethyl ester hydrochloride (230) 

 

L-Valine (5.011 g, 42.70 mmol) was added slowly to a solution of ethanol (60 mL) and 

thionyl chloride (6.20 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (230) as a white solid 87 % yield 

(6.794 g, 37.32 mmol).  

m.p. 99-101 oC, lit. m.p 102-104 oC,12 [α] 20
D

= +7.0 o (1.0 c, H2O), lit. [α] 20
D

=  +6.6 o (2.0 c, 

H2O)12 

Molecular formula C7H16ClNO2 

Molecular weight 182 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.64 (sBr, 3H, H5,9), 4.16 (dq, J = 7.0, 7.0 Hz, 1H, 

H7), 4.15 (dq, J = 7.2, 7.0 Hz, 1H, H7), 3.79 (d, J = 4.0 Hz, 1H, H4), 2.17 (qqd, J = 7.0, 

6.8, 4.0 Hz, 1H, H2), 1.23 (t, J = 7.0 Hz, 3H, H8), 1.00 (d, J = 6.8 Hz, 3H, H1/3), 0.95 (d, J 

= 7.2 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.46 (CO,C6), 61.53 (OCH2,C7), 57.20 

(CH,C4), 29.27 (CH,C2), 18.20 (CH3,C1/C3), 17.66 (CH3,C1/C3), 14.00 (CH3,C8) 

NMR data was in agreement with the literature.13   
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L-Valine Butyl ester hydrochloride (231) 

 

L-Valine (3.001 g, 25.60 mmol) was added slowly to a solution of butanol (60 mL) and 

thionyl chloride (1.25 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (231) as an off white solid 65 % yield 

(3.510 g, 16.71 mmol).  

m.p. 50-52 oC, lit. m.p. 53-54 oC,9 [α] 20
D  = +15.6 ° (0.7 c, H2O) lit. [α] 20

D  = +12.5 °(0.8c, 

MeOH)9 

Molecular formula C9H20ClNO2 

Molecular weight 210 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.41 (sBr, 2H, H5,11), 4.00-3.89 (m, 2H, H7), 3.72 

(d, J = 4.0 Hz, 1H, H4), 2.17 (qqd, J = 6.8, 6.4, 4.4 Hz, 1H, H2), 1.62 (tt, J = 6.8, 6.6 Hz, 

2H, H8), 1.38 (tq, J = 6.8, 6.8 Hz, 2H, H9), 0.96 (t, J = 6.8 Hz, 3H, H10), 0.91 (d, J = 6.8 

Hz, H1/3), 0.84 (d, J = 6.8 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.20 (CO,C6), 61.69 (OCH2,C7), 59.03 

(CH,C4), 30.90 (CH2,C8), 28.98 (CH,C2), 18.40 (CH2,C9), 18.14 (CH3,C1/C3), 17.68 

(CH3,C1/C3), 13.38 (CH3,C10) 

NMR data was in agreement with the literature.9 
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L-Isoleucine methyl ester hydrochloride (232) 

 

L-Isoleucine (1.010 g, 7.70 mmol) was added slowly to a solution of methanol (45 mL) and 

thionyl chloride (1.12 mL) at 0 oC. The solution was stirred at room temperature for 48 

hours. Evaporation of solvent furnished the desired product (232) as a white solid in 96 % 

yield (1.340 g, 7.36 mmol).  

m.p. 98-100 °C, lit. m.p. 98-100 °C,4 [α] 20
D = +21.0 ° (0.9 c, H2O), lit. [α] 20

D = +27.0 ° (0.2c, 

H2O)4  

Molecular formula C7H16ClNO2 

Molecular weight 182 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.12 (sBr, 3H, H6,9), 3.93 (d, J = 4.0 Hz, 1H, H5), 

3.68 (s, 3H, H8), 1.96 (dddq, J = 8.0, 8.0, 6.8, 4.4 Hz, 1H, H3), 1.48 (ddq, J = 8.0, 8.0, 7.2 

Hz, 1H, H2), 1.27 (ddq, J = 8.8, 8.0, 7.2 Hz, 1H, H2), 0.89 (t, J = 7.2 Hz, 3H, H1), 0.85 (d, 

J = 6.8 Hz, 3H, H4) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.12 (CO,C7), 55.95 (CH,C5), 52.54 

(OCH3,C8), 39.65 (CH,C3), 25.23 (CH2,C2), 14.38 (CH3,C4), 11.57 (CH3,C1) 

NMR data was in agreement with the literature.14 
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Preparation of L-Isoleucine ethyl ester (233) 
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L-Isoleucine (1.96g, 15.34 mmol) was added slowly to a solution of ethanol (30 mL) and 

thionyl chloride (2.00 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (233) as a yellow liquid in 94 % yield 

(2.821 g, 14.39 mmol).  

 [α] 20
D = +18.4 ° (0.8 c, H2O), lit. [α] 20

D = +27.8 °(neat)15 

Molecular formula C7H16ClNO2 

Molecular weight 195 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.53 (sBr, 3H, H6,10), 4.18 (dq, J = 7.2, 7.2 Hz, 

1H, H8), 4.17 (dq, J = 7.2, 7.2 Hz, 1H, H8), 3.89 (d, J = 4.0 Hz, 1H, H5), 1.98 (dddq, J = 

7.8, 7.8, 6.8, 4.0 Hz, 1H, H3), 1.49 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H2), 1.29 (ddq, J = 8.0, 

8.0, 7.2 Hz, 1H, H2), 0.91 (t, J = 7.2 Hz, 3H, H1), 0.89 (t, J = 7.2 Hz, 3H, H9),  0.85 (d, J = 

6.8 Hz, 3H, H4) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.05 (CO,C7), 61.54 (OCH2,C8), 56.05 

(CH,C5), 35.63 (CH,C3), 25.35 (CH2,C2), 15.61 (CH3,C4), 14.20 (CH3,C1), 11.56 

(CH3,C9) 

NMR data was in agreement with the literature.15 
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L-Isoleucine Butyl ester hydrochloride (234) 

 

L-Isoleucine (1.061 g, 7.70 mmol) was added slowly to a solution of butanol (30 mL) and 

thionyl chloride (1.12 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (234) as a pale yellow liquid was 

obtained in 89 % yield (1.531 g, 6.83 mmol).  

[α] 20
D

= +8.0 o (0.8 c, H2O),  

Molecular formula C10H22ClNO2 

Molecular weight 224 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.53 (sBr, 3H, H6,12), 4.19 (dq, J = 7.2, 7.2 Hz, 

1H, H8), 4.18 (dq, J = 7.2, 7.2 Hz, 1H, H8),  3.90 (d, J = 4.0 Hz, 1H, H5), 1.96 (dddq, J = 

7.8, 7.8, 6.8, 4.0 Hz, 1H, H3), 1.50 (ddq, J = 8.0, 8.0, 7.2 Hz, 1H, H2), 1.28 (ddq, J = 8.0, 

8.0, 6.8 Hz, 1H, H2), 0.96-0.83 (m, 9H, H1,4,11) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.05 (CO,C7), 61.54 (OCH2,C8), 56.05 

(CH,C5), 35.63 (CH,C3), 31.18 (CH2,C9), 25.35 (CH2,C2), 15.10 (CH3,C4), 14.20 

(CH3,C1), 11.56 (CH3,C11) 

 
L-Leucine Butyl ester hydrochloride (237) 
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L-Leucine (3.067 g, 23.40 mmol) was added slowly to a solution of butanol (40 mL) and 

thionyl chloride (3.41 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (237) as a white solid precipitate was 

obtained in 66 % yield (3.456 g, 15.43 mmol).  

m.p. 103-105 oC, lit. m.p. 113-115 oC,16 [α] 20
D = +13.6 ° (0.9 c, EtOH), lit. [α] 20

D = +6.0 ° 

(1.0 c, aq. HCl)16  

Molecular formula C10H22ClNO2 

Molecular weight 224 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.64 (sBr, 3H, H6,12), 4.14 (dq, J = 7.2, 7.0 Hz, 

1H, H8), 4.13 (dq, J = 7.2, 7.0 Hz, 1H, H8), 3.88 (t, J = 7.0 Hz, 1H, H5), 1.78-1.56 (m, 5H, 

H2,4,9), 1.42-1.26 (m, 2H, H10), 0.91-0.86 (m, 9H, H1,3,11) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.88 (CO,C7), 65.21 (CH2,C8), 50.47 (CH,C5), 

40.09 (CH2, C4), 29.93 (CH2,C9), 23.76 (CH,C2), 22.17 (CH3,C1/C3), 21.89 (CH3,C1/C3), 

18.60 (CH2,C10), 13.46 (CH3,C11) 

NMR data was in agreement with the literature.16 

D-Valine methyl ester hydrochloride (238) 

 

D-Valine (2.030 g, 17.35 mmol) was added slowly to a solution of methanol (30 mL) and 

thionyl chloride (2.50 mL) at 0 oC. The solution was stirred at room temperature for 24 

hours. Evaporation of solvent furnished the desired product (238) as a white solid 95 % 

yield (2.765 g, 16.46 mmol).  
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m.p. 166-168 °C, lit. m.p. 167-169 °C,17 [α] 20
D

= -13.0 ° (0.8 c, H2O), lit, [α] 20
D

=  -15.6° 

(2.0c, H2O)17  

Molecular formula C6H14ClNO2 

Molecular weight 168 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.75 (sBr, 3H, H5,8), 3.93 (d, J = 4.0 Hz, 1H, H4), 

3.75 (s, 3H, H7), 2.17 (qqd, J = 7.0, 7.0, 4.4 Hz, 1H, H2), 0.98 (d, J = 7.2 Hz, 3H, H1/3), 

0.92 (d, J = 7.2 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6)  δ (ppm) 170.02 (CO,C6), 57.18 (CH,C4), 52.44 

(OCH3,C7), 29.29 (CH,C2), 18.21 (CH3,C1/C3), 17.58 (CH3,C1/C3)  

NMR data was in agreement with the literature.18 

D-Valine ethyl ester hydrochloride (239) 

 

D-Valine (2.050 g, 17.50 mmol) was added slowly to a solution of ethanol (30 mL) and 

thionyl chloride (2.50 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 

Evaporation of solvent furnished the desired product (239) as a white solid 77 % yield 

(2.465 g, 13.54 mmol).  

m.p. 96-98 oC, lit. m.p 102-104 oC,19 [α] 20
D

= -10.0 o (1.0 c, H2O), lit. [α] 20
D

= -6.7 ° (2.0 c, 

H2O)19 

Molecular formula C7H16ClNO2 

Molecular weight 182 gmol-1 
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1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.74 (sBr, 3H, H5,9), 4.18 (dq, J = 7.2, 7.0 Hz, 1H, 

H7), 4.16 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.80 (d, J = 4.0 Hz, 1H, H4), 2.16 (qqd, J = 6.8, 

6.8, 4.0, 1H, H2), 1.25 (t, J = 7.0 Hz, 3H, H8), 0.99 (d, J = 6.8 Hz, 3H, H1/3), 0.93 (d, J = 

6.8 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.90 (CO,C6), 61.49 (OCH3,C7), 57.14 

(CH,C4), 29.29 (CH,C2), 18.18 (CH3,C1/C3), 17.50 (CH3,C1/C3), 14.06 (CH3,C8) 

NMR data was in agreement with the literature.13 

D-Phenylalanine methyl ester hydrochloride (240) 

 

D-Phenylalanine (2.020 g, 10.05 mmol) was added slowly to a solution of methanol (30 

mL) and thionyl chloride (2.00 mL) at 0 oC. The solution was stirred at room temperature 

for 24 hours. Evaporation of solvent furnished the desired product (240) as a white solid 97 

% yield (2.115 g, 9.79 mmol).  

m.p. 155-157 °C, lit. m.p. 160-162 °C,20 [α] 20
D = +28.1 o (1.0 c, H2O), lit. [α] 20

D = +35.7 o (2.0 

c, H2O)20 

Molecular formula C10H14ClNO2 

Molecular weight 216 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.71 (sBr, 3H, H9,12), 7.37-7.23 (m, 5H, H2-6), 

4.28 (dd, J = 8.0, 6.6 Hz, 1H, H8), 3.66 (s, 3H, H11), 3.18 (dd, J = 10.4, 7.2 Hz, 1H, H7), 

3.08 (dd, J = 10.0, 7.2 Hz, 1H, H7) 
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13C NMR (100 MHz, DMSO-d6) δ (ppm): 169.34 (CO,C10), 134.63 (ArC,C1), 129.37 

(ArCH), 128.51 (ArCH), 127.25 (ArCH,C4), 53.17 (CH,C8), 52.52 (OCH3,C11), 35.80 

(CH2,C7) 

NMR data was in agreement with the literature.21 

D-Phenylalanine ethyl ester hydrochloride (241) 

 

D-Phenylalanine (2.018 g, 10.00 mmol) was added slowly to a solution of ethanol (30 mL) 

and thionyl chloride (2.00 mL) at 0 oC. The solution was stirred at room temperature for 24 

hours. Evaporation of solvent furnished the desired product (241) as a white solid 97 % 

yield (2.240 g, 9.74 mmol).  

m.p. 148-150 °C, lit. m.p. 154-155 °C,22  [α] 20
D

= +27.0 o (1.0 c, H2O), lit. [α] 20
D

= +32.7 ° 

(2.0 c, H2O)22  

Molecular formula C11H16ClNO2 

Molecular weight 230 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.77 (sBr, 3H, H9,13), 7.35-7.24 (m, 5H, H2-6), 

4.18 (dd, J = 8.0, 6.6 Hz, 1H, H8), 4.03 (dq, J = 7.2, 7.2 Hz, 1H, H11), 4.02 (dq, J = 7.2, 

7.2 Hz, 1H, H11), 3.24 (dd, J = 7.8, 5.6  Hz, 1H, H7), 3.06 (dd, J = 8.0, 5.6 Hz, 1H, H7), 

1.08 (t, J = 7.2 Hz, 3H, H12) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.89 (CO,C10), 134.74 (ArC,C1), 129.42 

(ArCH), 128.49 (ArCH), 127.18 (ArCH,C4), 61.50 (OCH2,C11), 53.15 (CH,C8), 35.90 

(CH2,C7), 13.71 (CH3,C12) 

NMR data was in agreement with the literature.22 
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DL-Valine methyl ester hydrochloride (242) 

NH2

O

O
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DL-Valine (2.010 g, 17.20 mmol) was added slowly to a solution of methanol (30 mL) and 

thionyl chloride (2.50 mL) at 0 oC. The solution was stirred at room temperature for 24 

hours. Evaporation of solvent furnished the desired product (242) as a white solid 90 % 

yield (2.616 g, 15.57 mmol).  

m.p. 161-163 °C, lit. m.p. 167-169 °C17 

Molecular formula C6H14ClNO2 

Molecular weight 168 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.65 (sBr, 3H, H5,8), 3.87 (d, J = 4.0 Hz, 1H, H4), 

3.68 (s, 3H, H7), 2.17 (qqd, J = 7.0, 7.0, 4.4 Hz, 1H, H2), 1.01 (d, J = 7.2 Hz, 3H, H1/3), 

0.98 (d, J = 7.2 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6)  δ (ppm) 169.88 (CO,C6), 57.20 (CH,C4), 52.40 

(OCH3,C7), 29.31 (CH,C2), 18.17 (CH3,C1/C3), 17.62 (CH3,C1/C3)  

DL-Valine ethyl ester hydrochloride (243) 
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DL-Valine (2.001 g, 17.10 mmol) was added slowly to a solution of ethanol (30 mL) and 

thionyl chloride (2.50 mL) at 0 oC. The solution was stirred under reflux for 48 hours. 
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Evaporation of solvent furnished the desired product (243) as a white solid 64 % yield 

(2.010 g, 11.04 mmol).  

m.p. 95-97 oC, lit. m.p 101-103 oC19 

Molecular formula C7H16ClNO2 

Molecular weight 182 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.42 (sBr, 3H, H5,9), 4.17 (dq, J = 7.2, 7.2 Hz, 1H, 

H7), 4.16 (dq, J = 7.2, 7.0 Hz, 1H, H7), 3.88 (d, J = 4.0 Hz, 1H, H4), 2.15 (qqd, J = 7.0, 

7.0, 4.0 Hz, 1H, H2), 1.23 (t, J = 7.2 Hz, 3H, H8), 0.98 (d, J = 7.2 Hz, 3H, H1/3), 0.94 (d, J 

= 7.2 Hz, 3H, H1/3) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 170.02 (CO,C6), 60.90 (OCH2,C7), 57.16 

(CH,C4), 29.28 (CH,C2), 18.17 (CH3,C1/C3), 17.48 (CH3,C1/C3), 14.02 (CH3,C8) 

DL-Phenylalanine methyl ester hydrochloride (244) 

 

DL-Phenylalanine (3.002 g, 18.19 mmol) was added slowly to a solution of methanol (30 

mL) and thionyl chloride (2.65 mL) at 0 oC. The solution was stirred at room temperature 

for 24 hours. Evaporation of solvent furnished the desired product (244) as a white solid 85 

% yield (3.336 g, 15.44 mmol).  

m.p. 152-153 °C, lit. m.p. 158-160 °C20 

Molecular formula C10H14ClNO2 

Molecular weight 216 gmol-1 
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1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.58 (sBr, 3H, H9,12), 7.37-7.25 (m, 5H, H2-6), 

4.24 (dd, J =7.8, 4.4 Hz, 1H, H8), 3.63 (s, 3H, H11), 3.22 (dd, J = 8.8, 6.6 Hz, 1H, H7), 

3.07 (dd, J = 8.0, 6.4 Hz, 1H, H7) 

13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.40 (CO,C10), 134.68 (ArC,C1), 129.50 

(ArCH), 128.49 (ArCH), 127.19 (ArCH,C4), 53.15 (CH,C8), 52.50 (OCH3,C11), 35.80 

(CH2,C7) 

NMR data was in agreement with the literature.20 

DL-Phenylalanine ethyl ester hydrochloride (245) 

 

DL-Phenylalanine (2.100 g, 10.45 mmol) was added slowly to a solution of ethanol (30 

mL) and thionyl chloride (2.50 mL) at 0 oC. The solution was stirred at room temperature 

for 24 hours. Evaporation of solvent furnished the desired product (245) as a white solid 96 

% yield (2.314 g, 10.06 mmol).  

m.p. 140-142 °C, lit. m.p. 152-154 °C22   

Molecular formula C11H16ClNO2 

Molecular weight 230 gmol-1 

1H NMR (400 MHz, DMSO-d6) δ (ppm) 8.73 (sBr, 3H, H9,13), 7.36-7.24 (m, 5H, H2-6), 

4.21 (dd, J = 8.0, 6.6 Hz, 1H, H8), 4.14 (dq, J = 7.2, 7.0 Hz, 1H, H11), 4.13 (dq, J = 7.2, 

7.2 Hz, 1H, H11), 3.22 (dd, J = 8.8, 5.6 Hz, 1H, H7), 3.04 (dd, J = 8.0, 5.0 Hz, 1H, H7), 

1.06 (t, J = 7.2 Hz, 3H, H12) 
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13C NMR (100 MHz, DMSO-d6) δ (ppm) 169.91 (CO,C10), 134.69 (ArC,C1), 129.42 

(ArCH), 128.51 (ArCH), 127.14 (ArCH,C4), 61.53 (OCH2,C11), 53.13 (CH,C8), 35.92 

(CH2,C7), 13.72 (CH3,C12) 

NMR data was in agreement with the literature.22 
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General procedures for the preparation of known starting 

materials for dipeptidyl Chiral Ionic Liquids (Chapter 4) 
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General procedure for the preparation of starting materials for dipeptidyl Chiral Ionic 

Liquids: N-tert-butyloxycarbonyl-L-phenylalanine-L-phenylalanine methyl ester (329) 

 

N-tert-butyloxycarbonyl-L-phenylalanine (3.011 g, 11.30 mmol) was dissolved in DCM 

(90mL) with N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.159 g, 

11.30 mmol), 1-Hydroxybenzotriazole (1.526 g, 11.30 mmol), and triethylamine (1.139 g, 

11.30 mmol). The reaction mixture was then cooled to 0 °C. L-phenylalanine methyl ester 

hydrochloride (224) (2.432 g, 11.30 mmol) was added after 30 mins and the reaction was 

stirred at room temperature for 24 hours. After this time, the organic phase was washed 

with distilled water, 10 % potassium hydrogen carbonate and 5 % citric acid then dried over 

MgSO4. The organic solvent was then removed via rotary evaporation yielding a white 

solid. The crude product was recrystallised from ethyl acetate/pet. ether 40-60 °C, yielding 

the title compound (329) in 64 % yield (3.092 g, 7.26 mmol).  

m.p. 115-117 °C, lit. m.p 114-116 °C,1 [α] 20
D

=  -12.3 ° (0.9 c, EtOH) lit. [α] 20
D

= -13.3 ° (1.0 

c, MeOH)1  

Molecular formula C24H30N2O5 

Molecular weight 426 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.31-6.99 (m, 10H, H10-14,20-24), 6.29 (d, J = 7.2 

Hz, 1H, H6), 4.95 (ddd, J = 7.4, 5.2, 5.2 Hz, 1H, H7), 4.81 (d, J = 6.0 Hz, 1H, H16), 4.34 
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(ddd, J = 6.4, 4.0, 4.0 Hz, 1H, H17), 3.69 (s, 3H, H26), 3.12-3.02 (m, 4H, H8,18), 1.42 (s, 

9H, H1-3) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.35 (CO,C15), 170.76 (CO,C25), 155.59 

(CO,C5), 136.47 (ArC,C9/C19), 135.62 (ArC,C9/C19), 129.49 (ArCH), 129.23 (ArCH), 

128.69 (ArCH), 127.70 (ArCH), 127.14 (ArCH,C12/C22), 127.00 (ArCH,C12/C22), 80.24 

(Cq,C4), 55.69 (CH,C7), 53.29 (CH,C17), 52.31 (OCH3,C26), 38.26 (CH2,C8/C18), 37.97 

(CH2,C8/C18), 28.24 ((CH3)3,C1,C2,C3) 

NMR data was in agreement with the literature.1  

N-tert-Butyloxycarbonyl-L-phenylalanine-L-leucine methyl ester (330) 

 

The title compound (330) was prepared from N-tert-butyloxycarbonyl-L-phenylalanine 

(2.001 g, 7.55 mmol), L-leucine methyl ester hydrochloride (235) (1.367 g, 7.55 mmol), 1-

hydroxybenzotriazole (1.020 g, 7.55 mmol), and triethylamine (0.755 g, 7.55 mmol) and N-

[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.442 g, 7.55 mmol) 

according to the general procedure as a white solid in 90 % yield (2.651 g,  6.76 mmol).  

m.p 92-94 °C, lit. m.p. 101-103 °C,2 [α] 20
D

=  -14.9 ° (0.7 c, EtOH), lit. [α] 20
D

=  -17.5 ° (1.2 

c, MeOH)2 

Molecular formula C21H32N2O5 

Molecular weight 392 gmol-1 
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1H NMR (400 MHz, CDCl3) δ (ppm) 7.25-7.12 (m, 5H, H10-14), 6.21 (d, J = 8.8 Hz, 1H, 

H6), 5.04 (d, J = 7.4 Hz, 1H, H16), 4.68 (ddd, J = 7.4, 7.4, 5.6 Hz, 1H, H17), 4.42 (ddd, J = 

8.8, 6.0, 6.0 Hz, 1H, H7), 3.75 (s, 3H, H23), 2.97 (d, J = 6.8 Hz, 2H, H8), 1.66-1.53 (m, 

3H, H18,19), 1.48 (s, 9H, H1-3), 0.98 (d, J = 6.8 Hz, 3H, H20/21), 0.91 (d, J = 6.8 Hz, 3H, 

H20/21).  

13C NMR (100 MHz, CDCl3) δ (ppm) 172.84 (CO,C22), 170.98 (CO,C15), 155.41 

(CO,C5), 129.39 (ArC,C9), 128.65 (ArCH), 126.76 (ArCH), 126.94 (ArCH,C12), 80.14 

(Cq,C4), 58.86 (CH,C7), 52.29 (CH,C17), 50.74 (OCH3,C23), 41.62 (CH2,C18), 37.40 

(CH2,C8) 28.25 ((CH3)3,C1,C2,C3), 24.65 (CH,C19), 22.76 (CH3,C20/C21), 21.89 

(CH3,C20/C21) 

NMR data was in agreement with the literature.2  

N-tert-Butyloxycarbonyl-L-phenylalanine-D-phenylalanine ethyl ester (331) 

 

The title compound (331) was prepared from N-tert-butyloxycarbonyl-L-phenylalanine 

(1.013 g, 3.75 mmol), D-phenylalanine ethyl ester hydrochloride (241) (0.895 g, 3.75 

mmol), 1-hydroxybenzotriazole (0.510 g, 3.75 mmol), and triethylamine (0.377 g, 3.75 

mmol) and N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (0.722 g, 

3.75 mmol) according to the general procedure as a colourless oil in 87 % yield (1.441 g, 

3.27  mmol).  

[α] 20
D = +8.0 o (0.7 c, EtOH), lit. [α] 20

D = +2.4 (4.0 c, in MeOH)3 



419 

 

Molecular formula C25H32N2O5 

Molecular weight 440 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.29-6.91 (m, 10H, H10-14,20-24), 6.37 (d, J = 7.6 

Hz, 1H, H6), 5.04 (d, J = 8.0 Hz, 1H, H16), 4.81 (ddd, J = 7.5, 5.2, 5.2 Hz, 1H, H7), 4.41 

(ddd, J = 7.8, 6.0, 6.0 Hz, 1H, H17), 4.14 (dq, J  = 7.2, 7.2 Hz, 1H, H26), 4.13 (dq, J  = 7.2, 

7.2 Hz, 1H, H26), 3.11-2.91 (m, 4H, H8,18), 1.39 (s, 9H, H1-3), 1.23 (t, J = 7.0 Hz, 3H, 

H27) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.11 (CO,C15), 170.32 (CO,C25), 155.35 

(CO,C5), 136.61 (ArC,C9/C19), 135.61 (ArC,C9/C19), 129.35 (ArCH), 129.25 (ArCH), 

128.67 (ArCH), 128.56 (ArCH), 127.12 (ArCH,C12/C22), 126.98 (ArCH, C12/C22), 80.22 

(Cq,C4), 61.49 (OCH2,C26), 55.76 (CH,C7), 53.11 (CH,C17), 38.45 (CH2,C8/C18), 37.96 

(CH2,C8/C18), 28.24 ((CH3)3,C1,C2,C3), 14.07 (CH3,C27) 

NMR data was in agreement with the literature.4  

N-tert-Butyloxycarbonyl-L-phenylalanine-L-phenylalanine butyl ester (332) 
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The title compound (332) was obtained from N-tert-butyloxycarbonyl-L-phenylalanine 

(2.011 g, 7.50 mmol), L-phenylalanine butyl ester hydrochloride (225) (1.781 g, 7.50 

mmol), 1-hydroxybenzotriazole (1.012 g, 7.50 mmol), and triethylamine (0.755 g, 7.50 

mmol) and N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.444 g, 
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7.50 mmol) according to the general procedure as a white solid in 85 % yield (2.987 g, 6.38 

mmol).  

m.p 102-104 °C, [α] 20
D =  +30.8 o (0.7 c, CHCl3) 

Molecular formula C27H36N2O5 

Molecular weight 468 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.20-6.91 (m, 10H, H10-14,20-24), 6.23 (d, J = 6.2 

Hz, 1H, H6), 4.85 (ddd, J = 6.0, 5.0, 5.0 Hz, 1H, H7), 4.71 (d, J = 6.8 Hz, 1H, H16), 4.26 

(ddd, J = 7.0, 6.0, 6.0 Hz, 1H, H17), 4.09 (q, J  = 7.2 Hz, 2H, H26), 3.03-3.92 (m, 4H, 

H8,18), 1.55-1.39 (m, 2H, H27), 1.32 (s, 9H, H1-3), 1.25- 1.14 (m, 2H, H28), 0.87 (t, J = 

7.4 Hz, H29) 

13C NMR (100 MHz, CDCl3) δ (ppm) 171.03 (CO,C15), 170.81 (CO,C25), 155.30 

(CO,C5), 136.52 (ArC,C9/C19), 135.71 (ArC,C9/C19), 129.38 (ArCH), 129.29 (ArCH), 

128.66 (ArCH), 128.51 (ArCH), 127.07 (ArCH,C12/C22), 126.98 (ArCH,C12/C22), 80.21 

(Cq,C4), 65.36 (OCH2,C26), 55.69 (CH,C7), 53.37 (CH,C17), 38.29 (CH2,C8/C18), 38.09 

(CH2,C8/C18), 30.43 (CH2,C27), 28.25 ((CH3)3,C1,C2,C3), 19.02 (CH2,C28), 13.67 

(CH3,C29) 

MS (m/z) Found [M+H]+ 469.2689, C27H37N2O5
+ requires 469.2702 

N-tert-Butyloxycarbonyl-L-phenylalanine-L-valine ethyl ester (333) 
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The title compound (333) was prepared from N-tert-butyloxycarbonyl-L-phenylalanine 

(2.001 g, 7.55 mmol), L-valine ethyl ester hydrochloride (229) (1.261 g, 7.55 mmol), 1-

Hydroxybenzotriazole (catalytic amount), and triethylamine (0.755 g, 7.55 mmol) and N-

[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.442 g, 7.55 mmol) 

according to the general procedure as a colourless oil in 71 % yield (2.122 g, 5.41  mmol).  

[α] 20
D = -18.0 o (0.7 c, EtOH), lit. [α] 20

D = -15.5 o (2.0 c, MeOH)5 

Molecular formula C21H32N2O5 

Molecular weight 392 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm): 7.34-7.23 (m, 6H, H6,10-14), 6.37 (d, J = 8.4, 1H, 

H16), 4.97 (ddd, J = 7.0, 5.0, 5.0 Hz, 1H, H7), 4.46 (dd, J = 8.4, 4.8 Hz, 1H, H17), 4.18 (q, 

J = 7.2 Hz, 2H, H22), 3.11 (dd, J = 14.1, 6.8 Hz, 1H, H8), 3.05 (dd, J = 14.1, 6.8 Hz, 1H, 

H8), 2.16 (qqd, J = 6.8, 6.8, 4.4 Hz, 1H, H18), 1.44 (s, 9H, H1-3), 1.21 (t, J = 7.0 Hz, 3H, 

H23), 0.90 (d, J = 6.8 Hz, 3H, H19/20), 0.86 (d, J = 6.8 Hz, 3H, H19/20) 

13C NMR (100 MHz, CDCl3) δ (ppm): 171.79 (CO,C15), 171.16 (CO,C21), 155.46 

(CO,C5), 136.61 (ArC,C9), 129.34 (ArCH), 128.68 (ArCH), 126.92 (ArCH,C12), 80.23 

(Cq,C4), 61.01 (OCH2,C22), 57.24 (CH,C17), 55.86 (CH,C7), 37.98 (CH2,C8), 31.29 

(CH,C18), 28.26 ((CH3)3,C1,C2,C3), 18.82 (CH3,C19/C20), 17.75 (CH3,C19/C20), 14.03 

(CH3,C23). 

NMR data was in agreement with the literature.5 

N-tert-Butyloxycarbonyl-L-phenylalanine-L-alanine methyl ester (334) 
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The title compound (334) was prepared from N-tert-butyloxycarbonyl-L-phenylalanine 

(2.653 g, 10.00 mmol), L-alanine methyl ester hydrochloride (226) (1.395 g, 10.00 mmol), 

1-hydroxybenzotriazole (catalytic amount), and triethylamine (1.018 g, 10.00 mmol) and N-

[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.911 g, 10.00 mmol) 

according to the general procedure as a white solid in 61 % yield (2.142 g, 6.12  mmol).  

m.p 96-98 °C, lit. m.p. 99-101 °C,6 [α] 20
D =  -10.0 o (0.8 c, EtOH), lit. [α] 20

D = -18.0 (1.0 c, 

MeOH)7  

Molecular formula C18H26N2O5 

Molecular weight 350 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.25-7.13 (m, 6H, H6,10-14), 6.37 (d, J = 7.2, 1H, 

H16), 4.93 (ddd, J = 8.0, 6.4, 6.0 Hz, 1H, H7), 4.48 (dq, J = 7.2, 7.0 Hz, 1H, H17), 3.65 (s, 

1H, H20), 3.10 (dd, J = 13.0, 6.6 Hz, 2H, H8), 3.04 (dd, J = 13.0, 6.0 Hz, 2H, H8), 1.34 (s, 

9H, H1-3), 1.28 (d, J = 6.8 Hz, 3H, H18)  

13C NMR (100 MHz, CDCl3) δ (ppm) 172.85 (CO,C15), 170.71 (CO,C19), 155.36 

(CO,C5), 136.49 (ArC,C9), 129.34 (ArCH), 128.67 (ArCH), 126.98 (ArCH,C12), 80.10 

(Cq,C4), 57.48 (CH,C7), 52.47 (OCH3,C20), 48.11 (CH,C17), 38.35 (CH2,C8), 28.25 

((CH3)3,C1,C2,C3), 18.42 (CH3,C18) 

NMR data was in agreement with the literature.6 

N-tert-Butyloxycarbonyl-L-valine-L-alanine ethyl ester (335) 

 

The title compound (335) was prepared from N-tert-butyloxycarbonyl-L-valine (2.171 g, 

10.00 mmol), L-alanine ethyl ester hydrochloride (227) (1.536 g, 10.00 mmol), 1-
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hydroxybenzotriazole (1.340 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a colourless oil in 77 % yield (2.449 g, 7.75 mmol).  

[α] 20
D

= -12.4 o (0.5 c, CHCl3), lit. [α] 20
D

= -8.3 (1.0 c, CHCl3)
8 

Molecular formula C15H28N2O5 

Molecular weight 316 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.52 (d, J = 6.8 Hz, 1H, H12), 5.10 (d, J = 8.8 Hz, 

1H, H6), 4.50 (dq, J = 7.2, 7.0 Hz, 1H, H13), 4.24 (q, J = 7.2 Hz, 2H, H16), 3.88 (dd, J = 

8.4, 4.8 Hz, 1H, H7), 2.18 (qqd, J = 6.8, 6.8, 4.2 Hz, 1H, H8), 1.37 (s, 9H, H1-3), 1.33 (d, J 

= 7.0 Hz, 3H, H14), 1.20 (t, J = 7.2 Hz, H17), 1.00 (d, J = 6.8 Hz, 3H, H9/10), 0.94 (d, J = 

6.8 Hz, 3H, H9/10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 174.45 (CO,C15), 171.22 (CO,C11), 155.88 

(CO,C5), 79.84 (Cq,C4), 61.45 (CH,C7), 59.81 (OCH2,C16), 48.08 (CH,C13), 31.19 

(CH,C8), 28.30 ((CH3)3,C1,C2,C3), 19.16 (CH3,C9/C10), 18.28 (CH3,C9/C10), 17.78 

(CH3,C14), 14.08 (CH3,C17) 

NMR data was in agreement with the literature.8 

N-tert-Butyloxycarbonyl-L-valine-L-leucine methyl ester (336) 

 

The title compound (336) was prepared from N-tert-butyloxycarbonyl-L-valine (2.001 g, 

9.20 mmol), L-leucine methyl ester hydrochloride (235) (1.666 g, 9.20 mmol), 1-

hydroxybenzotriazole (1.240 g, 9.20 mmol), and triethylamine (0.929 g, 9.20 mmol) and N-
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[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.76 g, 9.20 mmol) 

according to the general procedure as a white solid in 82 % yield (2.614 g, 7.60 mmol).  

m.p 122-124 °C, lit m.p 126-128 °C,3 [α] 20
D = -36.0 o (0.2 c, EtOH), lit. [α] 20

D = -53.0 (1.0 c, 

MeOH)3 

Molecular formula C17H32N2O5 

Molecular weight 344 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.18 (d, J = 7.2 Hz, 1H, H12), 4.99 (d, J = 8.0 Hz, 

1H, H6), 4.53 (dd, J = 8.0, 4.8 Hz, 1H, H7), 3.74 (ddd, J = 7.2, 7.0, 5.2 Hz, 1H, H13), 3.62 

(s, 1H, H19), 2.19 (qqd, J = 6.8, 6.8, 4.4 Hz, 1H, H8), 1.68-1.56 (m, 3H, H14,15), 1.46 (s, 

9H, H1-3), 1.00 (dd, J = 6.8, 6.0 Hz, 6H, H9,10), 0.96 (d, J = 6.8 Hz, 3H, H16/17), 0.88 (d, 

J = 6.8 Hz, 3H, H16/17) 

13C NMR (100 MHz, CDCl3) δ (ppm) 173.17 (CO,C18), 171.71 (CO,C12), 155.86 

(CO,C5), 79.67 (Cq,C4), 59.76 (CH,C7), 52.15 (CH,C13), 50.66 (OCH3,C19), 41.17 

(CH2,C14), 30.92 (CH,C8), 28.26 ((CH3)3,C1,C2,C3), 24.70 (CH,C15), 22.73 

(CH3,C16/C17), 21.79 (CH3,C16/C17), 17.95 (CH3,C9/C10), 17.42 (CH3,C9/C10) 

NMR data was in agreement with the literature.9 

N-tert-Butyloxycarbonyl-L-valine-L-valine methyl ester (337) 
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The title compound (337) was prepared from N-tert-butyloxycarbonyl-L-valine (2.170 g, 

10.0 mmol), L-valine methyl ester hydrochloride (229) (1.666 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.352 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 
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N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.0 mmol) 

according to the general procedure as a white solid in 78 % yield (2.561 g, 7.76 mmol).  

m.p. 152-154 °C, lit. m.p. 157-159 °C,5 [α] 20
D = -40.0 o (0.6 c, CHCl3) lit. [α] 20

D = -44.0 o (0.4 

c, CHCl3)
10 

Molecular formula C16H30N2O5 

Molecular weight 330 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.29 (d, J = 7.2 Hz, 1H, H12), 4.96 (d, J = 8.0 Hz, 1H 

H6), 4.49 (dd, J = 8.8, 6.8 Hz, 1H, H7), 3.82 (dd, J = 7.8, 5.8 Hz, 1H, H13), 3.67 (s, 3H, 

H18), 2.22-2.03 (m, 2H, H8,14), 1.38 (s, 9H, H1-3), 0.90-0.82 (m, 12H, H9,10,15,16) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.16 (CO,C17), 171.57 (CO,C11), 153.84 

(CO,C5), 79.93 (Cq,C4), 60.19 (CH,C7), 57.04 (CH,C13), 52.17 (OCH3,C18), 31.26 

(CH,C8/C14), 30.63 (CH,C8/C14), 28.30 ((CH3)3,C1,C2,C3), 19.28, 18.94, 17.88, 17.73 

(CH3, C9,C10,C15,C16) 

NMR data was in agreement with the literature.11 

N-tert-Butyloxycarbonyl-L-valine-L-phenylalanine ethyl ester (338) 

 

The title compound (338) was prepared from N-tert-butyloxycarbonyl-L-valine (2.170 g, 

10.00 mmol), L-phenylalanine ethyl ester hydrochloride (224) (2.297 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.352 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 



426 

 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a white solid in 84 % yield (3.278 g, 8.36 mmol).  

m.p 100-102 °C, lit. m.p. 110-112 °C,5 [α] 20
D = +32.2 o (0.6 c, CHCl3) lit. [α] 20

D = +31.1 ° 

(1.0 c. CH2Cl2)
5 

Molecular formula C21H32N2O5 

Molecular weight 392 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.24-6.99 (m, 5H, H16-20), 6.34 (d, J = 7.8 Hz, 1H, 

H12), 5.00 (d, J = 8.4 Hz, 1H H6), 4.76 (dd, J = 8.4, 4.8 Hz, 1H, H7), 4.06 (q, J = 7.0 Hz, 

2H, H22), 3.82 (ddd, J = 8.0, 6.0, 6.0 Hz, 1H, H13), 3.09 (dd, J = 8.0, 5.2 Hz,  1H, H14), 

2.99 (dd, J = 13.6, 6.4 Hz, 1H, H14), 2.00 (qqd, J = 7.0, 6.8, 4.4 Hz, 1H, H8), 1.37 (s, 9H, 

H1-3), 1.14 (t, J = 7.2 Hz, 3H, H23), 0.84 (d, J = 7.2 Hz, 3H, H9/H10), 0.79 (d, J = 6.0 Hz, 

3H, H9/H10) 

13 C NMR (100 MHz, CDCl3) δ (ppm) 171.53 (CO,C21), 170.70 (CO,C11), 155.77 

(CO,C5), 135.78 (ArC,C15), 129.31 (ArCH),  128.55 (ArCH), 127.10 (ArCH,C18), 79.86 

(Cq,C4), 61.48 (CH,C7), 59.94 (OCH2,C22), 53.51 (CH,C13), 38.05 (CH2,C14), 31.23 

(CH,C8), 28.30 ((CH3)3,C1,C2,C3), 19.14 (CH3,C9/C10), 17.74 (CH3,C9/C10), 14.05 

(CH3,C23) 

N-tert-Butyloxycarbonyl-L-valine-D-valine methyl ester (339) 

 

The title compound (339) was prepared from N-tert-butyloxycarbonyl-L-valine (2.170 g, 

10.0 mmol), D-valine methyl ester hydrochloride (238) (1.666 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.352 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 
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N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a white solid in 87 % yield (2.863 g, 8.67 mmol).  

m.p. 118-120 °C, lit. m.p. 110-112 °C,12 [α] 20
D = -18.4 o (0.7 c, CHCl3), lit. [α] 20

D = -23.7 o 

(1.0 c, CHCl3)
12 

Molecular formula C16H30N2O5 

Molecular weight 330 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.61 (d, J = 8.0 Hz, 1H, H6), 5.09 (d, J = 6.8 Hz, 1H 

H12), 4.49 (dd, J = 8.0, 4.0 Hz, 1H, H7), 3.86 (dd, J = 6.8, 4.8 Hz, 1H, H13), 3.66 (s, 3H, 

H18), 2.17-2.08 (m, 2H, H8,14), 1.38 (s, 9H, H1-3), 0.92-0.82 (m, 12H, H9,10,15,16) 

13 C NMR (100 MHz, CDCl3) δ (ppm) 172.29 (CO,C17), 171.65 (CO,C11), 155.81 

(CO,C5), 79.92 (Cq,C4), 59.89 (CH,C7), 57.03 (CH,C13), 52.16 (OCH3,C18), 31.22 

(CH,C8), 30.72 (CH,C14), 28.28 ((CH3)3,C1,C2,C3), 19.36, 19.00, 17.74, 17.49 

(CH3,C9,C10,C15,C16) 

NMR data was in agreement with the literature.12 

N-tert-Butyloxycarbonyl-L-valine-L-alanine methyl ester (340) 
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The title compound (340) was prepared from N-tert-butyloxycarbonyl-L-valine (2.170 g, 

10.00 mmol), L-alanine methyl ester hydrochloride (226) (1.390 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.352 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a white solid in 80 % yield (2.424 g, 8.05 mmol).  
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 m.p. 103-105 °C, lit m.p 112-116 °C,13 [α] 20
D

=  -53.3 o (0.4 c, CHCl3) lit. [α] 20
D

= -60.9 o 

(1.0 c, H2O)13 

Molecular formula C14H26N2O5 

Molecular weight 302 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.73 (d, J = 6.4 Hz, 1H, H12), 5.20 (d, J = 8.8 Hz, 

1H, H6), 4.54 (dd, J = 8.4, 4.4 Hz, 1H, H7), 3.92 (dq, J = 7.4, 7.2 Hz, 1H, H13), 3.66 (s, 

3H, H16), 2.09 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H8), 1.37 (s, 9H, H1-3), 1.34 (d, J = 7.2 Hz, 

3H, H14), 0.91 (d, J = 6.8 Hz, 3H, H9/10), 0.87 (d, J = 6.8 Hz, 3H, H9/10) 

13C NMR (100 MHz, CDCl3) δ (ppm) 173.18 (CO,C15), 171.37 (CO,C11), 155.90 

(CO,C5), 79.77 (Cq,C4), 59.67 (CH,C7), 52.37 (OCH3,C16), 47.94 (CH,C13), 31.13 

(CH,C8), 28.28 ((CH3)3,C1,C2,C3), 19.13 (CH3,C9/C10), 18.07 (CH3,C9/C10), 17.81 

(CH3,C14) 

NMR data was in agreement with the literature.14 

N-tert-Butyloxycarbonyl-L-alanine-L-valine methyl ester (341) 
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The title compound (341) was prepared from N-tert-butyloxycarbonyl-L-alanine (1.891 g, 

10.00 mmol), L-valine methyl ester hydrochloride (229) (1.666 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.350 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a white solid in 85 % yield (2.561 g, 8.48 mmol).  

m.p. 78-80 °C, lit. m.p. 72-75 °C,15 [α] 20
D = -37.4 o (0.3 c, EtOH) lit. [α] 20

D = -45.5 o (2.8 c, 

MeOH)15  
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Molecular formula C14H26N2O5 

Molecular weight 302 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.55 (d, J = 7.4 Hz, 1H, H6), 4.87 (d, J = 8.8 Hz, 1H 

H10), 4.48 (dd, J = 8.0, 4.4 Hz, 1H, H11), 4.01 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.66 (s, 3H, 

H16), 2.11 (qqd, J = 6.8, 6.8, 4.8 Hz, 1H, H12), 1.38 (s, 9H, H1-3), 1.30 (d, J = 7.2 Hz, 3H, 

H8), 0.92 (d, J = 6.8 Hz, 3H, H13/14), 0.85 (d, J = 6.8 Hz, 3H, H13/14) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.62 (CO,C15), 172.18 (CO,C9), 155.58 (CO,C5), 

80.07 (Cq,C4), 57.06 (CH,C11), 52.06 (CH,C7), 50.01 (OCH3,C16), 31.22 (CH,C12), 28.28 

((CH3)3,C1,C2,C3), 18.89 (CH3,C13/C14), 18.71 (CH3,C13/C14), 17.62 (CH3,C8) 

NMR data was in agreement with the literature.15 

N-tert-Butyloxycarbonyl-L-alanine-L-phenylalanine ethyl ester (342) 

 

The title compound (342) was prepared from N-tert-butyloxycarbonyl-L-alanine (1.891 g, 

10.00 mmol), L-phenylalanine ethyl ester hydrochloride (224) (2.289 g, 10.00 mmol), 1-

hydroxybenzotriazole (1.350 g, 10.00 mmol), and triethylamine (1.009 g, 10.00 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.922 g, 10.00 mmol) 

according to the general procedure as a white solid in 76 % yield (2.767 g, 7.60 mmol).  

m.p 93-95 °C, lit. m.p. 100-102 °C,16 [α] 20
D

= +24.1 o (1.0 c, CHCl3), lit. [α] 20
D

= +30.0 o (0.9 

c, CHCl3)
16 

Molecular formula C19H28N2O5 
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Molecular weight 364 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 7.28-7.05 (m, 5H, H14-18), 6.47 (d, J = 7.2 Hz, 1H, 

H6), 4.90 (sB, 1H H10), 4.74 (dq, J = 7.2, 7.2 Hz, 1H, H7), 4.13-4.03 (m, 3H, H11,20), 

2.16-2.05 (m, 1H, H12), 1.36 (s, 9H, H1-3), 1.24 (d, J = 7.2 Hz, 3H, H8), 1.15 (t, J = 7.2 

Hz, 3H, H21) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.19 (CO,C19), 171.23 (CO,C9), 155.32 (CO,C5), 

135.86 (ArC,C13), 129.36 (ArCH), 128.50 (ArCH), 127.07 (ArCH,C16), 80.05 (Cq,C4), 

61.48 (OCH2,C20), 53.22 (CH,C11), 50.10 (CH,C7), 37.98 (CH2,C12), 28.30 

((CH3)3,C1,C2,C3), 18.35 (CH3,C8), 14.07 (CH3,C21)  

NMR data was in agreement with the literature.16 

N-tert-Butyloxycarbonyl-L-alanine-L-alanine butyl ester (343) 

 

The title compound (343) was prepared from N-tert-butyloxycarbonyl-L-alanine (1.131 g, 

6.00 mmol), L-alanine butyl ester hydrochloride (228) (1.082 g, 6.00 mmol), 1-

hydroxybenzotriazole (0.810 g, 6.00 mmol), and triethylamine (0.609 g, 6.00 mmol) and N-

[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (1.154 g, 6.00 mmol) 

according to the general procedure as a white solid in 76 % yield (1.445 g, 4.57 mmol).  

 m.p 68-70 °C, [α] 20
D

=  -17.0 o (1.0 c, CHCl3) 

Molecular formula C15H28N2O5 

Molecular weight 316 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.82 (d, J = 7.6 Hz, 1H, H6), 5.20 (d, J = 7.2 Hz, 1H 

H10), 4.74 (dq, J = 7.4, 7.2 Hz, 1H, H7), 4.21-4.08 (m, 3H, H11,18), 1.62 (tt, J = 7.2, 7.0 
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Hz, 1H, H19), 1.38 (s, 9H, H1-3), 1.40 (d, J = 7.4 Hz, 3H, H8), 1.37 (d, J = 6.8 Hz, 3H, 

H12), 1.30 (tq, J = 7.4, 7.2 Hz, 2H, H20), 0.92 (t, J = 7.4 Hz, 3H, H21) 

13C NMR (100 MHz, CDCl3) δ (ppm) 172.82 (CO,C13), 172.32 (CO,C9), 155.45 (CO,C5), 

80.00 (Cq,C4), 65.31 (OCH2,C18), 49.93 (CH,C11), 48.09 (CH,C7), 30.50 (CH2,C19), 

28.28 ((CH3)3,C1,C2,C3), 19.00 (CH2,C20), 18.45 (CH3,C8), 18.31 (CH3,C12), 13.64 

(CH3,C21)  

MS (m/z) Found [M+H-]+ 317.2066, C15H29N2O5
+ requires 317.2076 

N-tert-Butyloxycarbonyl-L-alanine-L-isoleucine methyl ester (344) 

N
H

O

H
N

O

O

1

2

3

4

5

6

7

8

10
9

O

O

11

13

17

12
14

15

16

 

The title compound (344) was prepared from N-tert-butyloxycarbonyl-L-alanine (2.428 g, 

12.90 mmol), L-isoleucine methyl ester hydrochloride (232) (2.330 g, 12.90 mmol), 1-

hydroxybenzotriazole (1.741 g, 12.90), and triethylamine (1.301 g, 12.90 mmol) and N-[(3-

dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.474 g, 12.90 mmol) 

according to the general procedure as a white solid in 46 % yield (1.898 g, 6.01 mmol).  

m.p 90-92 °C, [α] 20
D =  -40.1 o (0.8 c, CHCl3), lit. [α] 20

D = -47.8 o (1.1 c, CHCl3)
17 

Molecular formula C15H28N2O5 

Molecular weight 316 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 6.46 (d, J = 6.8 Hz, 1H, H6), 4.91 (d, J = 8.8 Hz, 1H, 

H10), 4.40 (dq, J = 7.2, 7.0 Hz, 1H, H7), 4.04 (dd, J = 8.8, 6.8 Hz, 1H, H11), 3.55 (s, 3H, 

H17), 1.52-1.35 (m, 3H, H12,14), 1.27 (s, 9H, H1-3), 1.16 (d, J = 6.8 Hz, 3H, H8), 0.89 (t, 

J = 7.2 Hz, 3H, H15), 0.85 (d, J = 6.8 Hz, 3H, H13) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 173.23 (CO,C9), 172.40 (CO,C16), 155.52 (CO,C5), 

80.11 (Cq,C4), 52.29 (CH,C11), 50.63 (CH,C7), 49.86 (OCH3, C17), 41.47 (CH,C12), 

28.27 ((CH3)3,C1,C2,C3), 24.73 (CH2,C14), 22.84 (CH3,C13), 21.79 (CH3, C15), 17.88 

(CH3,C8) 

NMR data was in agreement with the literature.17 

N-tert-Butyloxycarbonyl-L-alanine-L-leucine methyl ester (345) 
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The title compound (345) was prepared from N-tert-butyloxycarbonyl-L-alanine (2.001 g, 

10.60 mmol), L-leucine methyl ester hydrochloride (235) (1.923 g, 10.60 mmol), 1-

hydroxybenzotriazole (1.350, 10.60 mmol), and triethylamine (1.067 g, 10.60 mmol) and 

N-[(3-dimethylamino)propyl]-N’-ethyl carbodiimide hydrochloride (2.031 g, 10.60 mmol) 

according to the general procedure in 60 % yield (2.013 g, 6.37 mmol).  

m.p 69-71 °C, lit. m.p. 66-68 °C,18 [α] 20
D =  -24.5 o (0.8 c, CHCl3), lit. [α] 20

D = -32. o (1.2 c, 

CH2Cl2)
19 

Molecular formula C15H28N2O5 

Molecular weight 316 gmol-1 

1H NMR (400 MHz, CDCl3) δ (ppm) 8.12 (d, J = 7.0 Hz, 1H, H6), 6.89 (d, J = 8.0 Hz, 1H, 

H10), 4.32 (ddd, J = 8.0, 8.0, 5.4 Hz, 1H, H11), 3.98 (dq, J = 7.2, 7.2 Hz, 1H, H7), 3.61 (s, 

3H, H17), 1.70-1.44 (m, 2H, H12,13), 1.37 (s, 9H, H1-3), 1.16 (d, J = 6.8 Hz, 3H, H8), 

0.89 (d, J = 6.4 Hz, H14/15), 0.83 (d, J = 6.8 Hz, H14/15) 
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13C NMR (100 MHz, CDCl3) δ (ppm) 173.23 (CO,C16), 172.51 (CO,C9), 155.52 (CO,C5), 

79.97 (Cq,C4), 53.45 (CH,C11), 52.24 (CH,C7), 50.61 (OCH3,C17), 41.35 (CH2,C12), 

28.25 ((CH3)3,C1,C2,C3), 24.27 (CH,C13), 22.81 (CH3,C14/C15), 21.74 (CH3,C14/C15), 

18.02 (CH3,C8) 

NMR data was in agreement with the literature.18 
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