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Abstract 

 Studies of colliding laser-produced plasmas are of interest in several 

fields of research, including fusion energy generation, pulsed-laser deposition 

and potentially as intense short wavelength (X-ray and EUV) light sources. 

Computer simulations of such systems are a valuable tool in reconciling 

experimental results with theory and designing new experiments while also 

providing a platform to explore scenarios which are not easy to realise 

experimentally.  

 A one-dimensional (1D) hydrodynamic simulation of quasineutrality-

compliant colliding plasma systems has been developed and is described. The 

model is based on a multi-fluid theory due to P W Rambo and J Denavit [J. 

Comput. Phys. 98 (1992) 317] and uses a flux-corrected transport algorithm 

with an Eulerian grid in order to solve the three Euler equations for 

hydrodynamic flow. It includes source terms appropriate for high-density, 

high-temperature plasmas, such as those produced on dense targets at the 

focus of intense laser beams. Stagnation and interpenetration effects are 

simulated by means of collisional momentum coupling between species. 

Results are compared with the case of colliding plasmas in the absence of 

collisional coupling.  
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Chapter 1. Introduction 

 

 The study of colliding plasma systems is an area of the physical 

sciences that has gained momentum in recent years, due to the array of 

possible technological applications being discovered. Such potential 

applications include pulsed-laser deposition (PLD) allowing the formation 

of micro- and nano-structures of high atomic purity and the prospect of 

colliding plasmas being used as intense extreme ultraviolet (EUV) light 

sources especially for extreme ultraviolet lithography (EUVL), whereby 

shorter wavelength light allows for the patterning of smaller-scale 

structures, vital for the continued increases in semiconductor microchip 

performance encapsulated in “Moore’s Law”. Aside from immediate (or 

short-term) possible technological applications of colliding plasmas, such 

systems also have the potential to increase our scientific knowledge of 

atomic processes. 

 

 As with all computer simulations of physical processes, the purposes 

of developing computational models of colliding plasma systems are three-

fold: (1) Simulations are performed as an aid in reconciling experimental 

results with current theoretical understanding, with all three aspects 

(experimental, theoretical and computational) feeding into and driving the 

development of new physical understandings; (2) Simulations may suggest 

new, interesting experiments to perform, since it is most often easier to 

change the simulation parameters than to re-design experiments repeatedly: 

a wide range of parameters may be explored in a simulation, with the most 

potentially revealing simulations studied in experiment; (3) Computer 

simulations allow for the exploration of situations that may be unattainable 

experimentally. 
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1.1 Definition of the plasma state 

 A plasma is often described simply as an ionised gas. However, a 

more exact definition of the plasma state is required, since any gas with a 

non-zero temperature has some degree of ionisation. The Saha equation, 

   ( )kTU

in

i ie
n

T

n

n /
2/3

21104.2 −×=      (1.1) 

describes the fractional ionisation of a gas in thermal equilibrium, where ni 

and nn are the densities of the ionised atoms and neutral atoms, respectively, 

T is the gas temperature, iU  is the ionisation energy of the gas (in eV) and k 

is Boltzmann’s constant. All quantities used in this and the next section will 

be in SI units, unless otherwise stated. Using the example of air at room 

temperature, with values of 325 m103 −×=nn , K300=T  and eV5.14=iU , 

gives a fractional ionisation of 12210−=ni nn , which, although absurdly 

small, is nonetheless finite and non-zero [1]. 

 

 A more descriptive definition of the plasma state is offered by the 

following statement: 

 

“A plasma is a quasineutral gas of charged and neutral particles which 

exhibits collective behaviour” [1]. 

 

The collective behaviours occur due to the presence of the charged particles 

and change the dynamics of a plasma system relative to a neutral gas, both 

in terms of the plasma’s reactions to external forces (e.g. applied electric or 

magnetic potentials) and the possibility of charge separation within the 

plasma creating electric fields, which in turn modify the dynamics of the 

system. An example of this latter type of collective effect is ambipolar 

diffusion. For example, in a system composed of two particle species, singly-

ionised atoms and electrons, both species will initially diffuse towards 

vacuum regions at their thermal velocities, 
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kT
v =       (1.2) 

where es =  and is =  for electrons and ions, respectively, and sm  is the 

mass of species, s. The thermal velocity of the electrons is usually much 

higher than that of the ions, since ie mm << , resulting in the electrons 

streaming away from the ions. The resulting charge imbalance, however,  

simultaneously acts to slow down the electrons and increase the velocity of 

the ions, thus leading to equilibration of the electron and ion velocities. 

 

 To arrive at a more rigorous definition of the plasma state than the 

statement given above, the concept of Debye shielding must be introduced. 

Consider the example of a pair of charged probes, one positive and one 

negative, both connected to a battery maintaining their respective polarities, 

inserted into a plasma. The negative and positive electrodes will quickly 

attract clouds (sheaths) of ions and electrons, respectively, thereby limiting 

the effects of the electric fields generated by the electrodes to these regions 

of charged particles: this is Debye shielding. In a plasma with no thermal 

energy (i.e. at absolute zero temperature), the shielding would be perfect, 

since there would be an exactly equal amount of positive and negative 

charges contained within the sheaths. At a finite temperature, however, the 

particles at the edges of the clouds are in constant flux, as some of them have 

enough thermal energy to escape the potential well, and hence the shielding 

in this case is not perfect [1]. 

 

 The Debye length is the radius of such a sheath, where the edge is 

defined to reside at the distance from the electrode where the potential 

energy due to the applied charge is equal to the thermal energy of the 

particles, kT , and is given by: 

    

2/1

2
0









≡

en

kT

e

e
D

ελ      (1.3) 
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where 0ε  is the permittivity of free space, eT  and en  are the electron 

temperature and density, respectively, and e is the charge of an electron. 

Contributions to the shielding arising from motions of the ions are neglected 

in eq. (1.3) since the electrons, being much more mobile than the ions, create 

the sheaths by moving so as to create a surplus or deficit of negative 

charges. 

 

 A precise distinction between an ionised gas and a plasma consists of 

three criteria. The first is closely related to the concept of quasineutrality; an 

ionised gas is considered quasineutral if electric potentials are shielded in a 

distance that is small compared to the plasma spatial dimension, L. That is, if 

    LD <<λ       (1.4) 

 

Another important distinction concerns the number of particles, DN , 

contained within a Debye sphere, which is the sphere having a radius of the 

Debye length: 

    3
3
4

DD nN λπ=      (1.5) 

where the plasma density, ie nnn ≅≅ , which is valid for systems for which the 

assumption of quasineutrality is justified [1]. The second criterion that 

distinguishes an ionised gas from a plasma is, then, that; 

    1>>DN       (1.6) 

since a large number of particles must be present in a Debye sphere for the 

statistical techniques used in the derivation of the Debye length equation, 

eq. (1.3), to be legitimate (the derivation is omitted here but may be found in 

any introductory text on plasma physics, such as refs. [1] and [2]). 

 

 The collective behaviour (electromagnetic effects) in a plasma must 

also dominate the hydrodynamic effects, which are due to collisions 

involving neutral species, to distinguish it from an ordinary gas. Letting ω  

denote a representative frequency of plasma oscillations and with τ  being 
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the average time between collisions involving charged species and neutral 

atoms, then the third criterion for classification of a plasma is 

    1>ωτ       (1.7) 

In summary, for an ionised gas to qualify as a plasma it must satisfy the 

three criteria given by eq’s. (1.4), (1.6) & (1.7). 

 

 The most commonly quoted “representative frequency of plasma 

oscillations” is the plasma frequency, which may be understood by imagining 

a plasma system, again consisting of two species: ions and electrons. On the 

relevant timescale, the ions may be thought of as fixed. If some disturbance 

occurs that causes the electrons to be briefly displaced from their 

equilibrium positions, then the electrons will move so as to restore the 

plasma’s quasineutrality, but will overshoot and oscillate about the 

equilibrium positions. The frequency of these oscillations is the plasma 

frequency, pω , and is defined (in Hz) by [3]: 

   e
e

e
p n

m

en
4.56

0

2

≈=
ε

ω      (1.8) 

 

Figure 1.1 shows the parameter spaces in which a variety of 

laboratory and naturally-occurring plasmas lie, depicting the huge range of 

density and temperature values which may be present in plasma. 
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Fig. 1.1:  Typical density and temperature ranges for a variety of terrestrial and 

extra-terrestrial plasmas. Also shown are three Debye lengths and the plasma 

frequency values. Reproduced from Carroll and Kennedy [3]. 

 

 

1.2 The plasma as a fluid 

A typical fluid consists of a large number of atomic or molecular 

particles, interacting by means of collisions. Thus, the bulk behaviour of a 

fluid is determined by the aggregation of the distributed behaviour of the 

constituent elements. In fluid dynamics (also known as hydrodynamics, the 

terms will henceforth be used interchangeably), the continuum assumption is 

applied, i.e. the flow variables (density, velocity, pressure etc.) are assumed 

to vary continuously between infinitesimal fluid elements. The molecular 

nature of the fluid is ignored; this is in contrast to kinetic theory, where the 
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statistical distribution of the properties of the individual particles is 

calculated stochastically in order to obtain the bulk properties. 

 

 In order for the continuum assumption to be applicable, the system 

must correspond to the model of local thermodynamic equilibrium (LTE). In 

LTE, electron collisional effects are assumed to dominate and a local electron 

temperature, eT , is defined. For LTE to be a justifiable premise, three 

conditions must be met: (a) the electron velocity distribution is Maxwellian; 

(b) the populations of ionised species are described by the Saha equations; 

(c) the populations of excited states are given by the Boltzmann formula; all 

of which depend on eT  [3]. For LTE to be valid, the electron density must 

exceed a certain level, given by: 

   318106.1 χee Tn ×≥      (1.9) 

where χ  (in eV) is the excitation potential of the atomic transition in 

question [3]. A Maxwellian velocity distribution is most commonly 

attributable to a highly-collisional fluid, however, somewhat surprisingly, 

even a relatively collisionless plasma may have a velocity distribution that 

closely approximates a Maxwellian profile [1]. The reason(s) for this 

phenomenon, first observed by Irving Langmuir in the 1920s and termed 

Langmuir’s paradox, is still an open question to this day. Whatever the reason, 

the fact that a wide range of plasmas display Maxwellian velocity 

distributions means that the LTE assumptions implied by the hydrodynamic 

model are justified in most high-density, high-temperature plasmas. 

 

 In the definition of other relevant plasma parameters, the concept of 

the collisional cross section must be introduced. If electrons are incident on a 

slab of neutral atoms, then, upon a collision between an electron and an 

atom, each electron may lose up to twice its initial momentum (since it may 

be elastically scattered directly back upon its initial trajectory). The 

collisional cross section, σ , is defined as the area which could be imagined 
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to be occupied by each atom if each were totally opaque (perfectly 

momentum-absorbing) spheres [1]. 

 

The mean free path, i.e. the average distance travelled between 

collisions, is given by: 

    σλ nm n1=       (1.10) 

The mean time between collisions, taking the particle velocity to be v , is: 

    vmλτ =       (1.11) 

therefore the average frequency of collisions, 

    vnv nm σλτ ==−1      (1.12) 

Averaging this quantity in a suitable way over the (Maxwellian) velocity 

distribution leads to the collision frequency, ν : 

    vnnσν =       (1.13) 

 

 

1.3 The governing equations of fluid dynamics 

 The governing equations of fluid dynamics are the Navier-Stokes 

equations, which relate the flow variables (more specifically, the rates of 

change of the flow variables) for viscous flow. The corresponding relations 

for inviscid (non-viscous, ideal fluid) flow are the Euler or Lagrange 

equations. Viscosity is defined as the resistance of a fluid to applied shear 

and normal stresses. However, in a one-dimensional model, the notion of 

shear stresses does not apply (see fig. 1.2); therefore, the inviscid assumption 

is, in general, more physically accurate in a one dimensional scheme than in 

two or three dimensions. 
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Fig. 1.2:  Depiction of shear stress, xyτ , in two dimensions. 

 

Each of the governing equations may be expressed in any one of four 

distinct, yet equivalent, forms: (a) the differential, conservation form; (b) the 

differential, non-conservation form; (c) the integral, conservation form; and 

(d) the integral, non-conservation form (the terms “conservation” and “non-

conservation” used here have a different meaning than is usual in Physics 

literature and will be explained in due course). There are four corresponding 

theoretical models of the flow (see fig. 1.3), each of which leads directly to 

one of the forms listed above. The various forms of the governing equations 

may also be converted between one another by means of mathematical 

manipulations. The desired form of the Euler equations (the differential, 

conservation form) will be derived based on the derivations found in ref. [4], 

adapted where necessary for the one-dimensional case. 

 

x 

y 

τxy 
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(a) (b)

(c) (d)

 

Fig. 1.3:  Four theoretical models of the fluid flow. Infinitesimal fluid element fixed 

in space (a), infinitesimal fluid element moving with the flow (b), finite control 

volume fixed in space (c), and finite control volume moving with the flow (d). 

 

1.3.1 The continuity equation 

 Each of the three governing equations of hydrodynamics embodies a 

fundamental physical principle. The continuity equation arises from the 

principle of conservation of mass which, when applied to model (a) above, 

leads to the following statement: 

 

Net mass flow out of dV = time rate of decrease of mass inside dV. 

 

 In one dimension, the infinitesimal fluid control volume, dV , 

becomes an infinitesimal line element, dx . Designating ρ as the density and 

u as the velocity at spatial coordinate, x, and temporal coordinate, t, the left-

hand side of the statement above may be evaluated as follows: 

 

 the mass flow in through the left of udx ρ=  
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 the mass flow out through the right of 
( )

dx
x

u
udx

∂
∂+= ρρ   

Therefore, 

 the net mass flow out of 
( )

udx
x

u
udx ρρρ −

∂
∂+=  

     
( )

dx
x

u

∂
∂= ρ

     (1.14) 

The right-hand side is simply: 

       time rate of mass increase dx
t∂

∂= ρ
 

 => time rate of mass decrease dx
t∂

∂−= ρ
     (1.15) 

Equating eq. (1.14) and eq. (1.15): 

    
( )

dx
t

dx
x

u

∂
∂−=

∂
∂ ρρ

  

      =>  
( )

0=
∂

∂+
∂
∂

x

u

t

ρρ
    (1.16) 

 

 Equation (1.16) is the differential, conservation form of the continuity 

equation in one dimension and is the same for viscous (Navier-Stokes) and 

inviscid (Euler) flows. 

 

1.3.2 The momentum equation 

 The physical principle which the momentum equation encapsulates is 

Newton’s second law: 

 

F = ma     (1.17) 

 

 In order to derive the momentum equation, this principle will be 

applied to model (b) of fig. 1.3 above. Since this model is one consisting of 

an infinitesimal control “volume” moving with the flow, the concept of the 

substantial (or material or Lagrangian) derivative must be introduced. The 

substantial derivative describes the time rate of change of some physical 
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quantity at a point (or region) which moves within some time- and/or 

space-dependent velocity field. As a simple example, consider the situation 

of a swimmer travelling across a pool which has a temperature gradient 

held constant in time, e.g. a linear gradient from one, hotter, end of the pool 

to the other. The time rate of change of temperature at any fixed point in the 

pool will be zero, however a temperature sensor attached to the swimmer 

will register a change of temperature as the swimmer moves across the pool. 

This is analogous to the substantial derivative of the temperature moving 

with the velocity field of the swimmer. Formally, the substantial derivative 

is defined as 

  
z

w
y

v
x

u
ttDt

D

∂
∂+

∂
∂+

∂
∂+

∂
∂≡∇⋅+

∂
∂≡ ϕϕϕϕϕϕϕ

V    (1.18) 

in three-dimensional Cartesian space, where ( )tzyx ,,,ϕ  is some scalar flow 

field variable and V is the velocity field along which the rate of change of φ 

is measured, 

kjiV wvu ++=   

where i, j and k are the unit vectors along the x, y and z axes, and u, v and w 

are the x, y and z components of velocity, respectively, and are each 

functions of x, y, z and t. 

 

 

Fig. 1.4:  “Surface” forces acting on an infinitesimal fluid element moving with the 

flow, dx, used in the derivation of the 1-D Euler momentum equation. Fluid 

element given height for illustrative purposes. 

 

 Returning to the application of Newton’s second law to the 

theoretical model being used, the total force experienced by the fluid 

P 








∂
∂+ dx

x

P
P

dx 

x 
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element results from forces which fall into one of two general classes: surface 

forces acting on the boundaries of the fluid element and which may vary 

from one surface to another, e.g. pressure or frictional, viscous forces, and 

body forces acting on the fluid element as a whole, due to, for example, 

electric or magnetic fields. If viscosity is neglected, the only surface forces 

acting on a fluid element are those due to pressure (see fig. 1.4). In one 

dimension, the fluid element in question becomes a line element with length 

dx . It may be seen that: 

 

 the surface force acting on the left of Pdx =  

 the surface force acting on the right of 








∂
∂+−= dx

x

P
Pdx   

where ( )txPP ,=  is the pressure. If we let =bF  the body force per unit mass, 

then: 

 the body force acting on fluid element dxFdx bρ=  

Hence, the total force acting on dx , 

  dx
x

P
dxFdx

x

P
PPdxFF bb ∂

∂−=








∂
∂+−+= ρρ    (1.19) 

which is the left-hand side of eq. (1.17). 

 

Evaluating the right-hand side, the mass is, simply, 

   dxm ρ=       (1.20) 

and the acceleration, 

    
Dt

Du
a =       (1.21) 

Therefore, substituting eq’s. (1.19) - (1.21) into eq. (1.17): 

    maF =  

         => 
Dt

Du
dxdx

x

P
dxFb ρρ =

∂
∂−  

         => bF
x

P

Dt

Du ρρ +
∂
∂−=      (1.22) 
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 Equation (1.22) is the differential, non-conservation form of the 

inviscid momentum equation in one dimension. The meaning of the terms 

conservation and non-conservation in the context of fluid dynamics may 

now be explained: by convention, the non-conservation forms of the 

governing equations are those containing substantial derivative terms, i.e. 

they are those forms of the equations that are obtained directly from a model 

of a control volume moving with the flow. If the assumption of an inviscid 

flow is used, as above, then the non-conservation forms may also be referred 

to as the Lagrange equations. The conservation forms of the governing 

equations are those which do not include substantial derivative terms. These 

forms, in the inviscid case, are the Euler equations. 

 

 To convert the Lagrangian momentum equation into the desired 

Eulerian form, we apply the definition of the substantial derivative, eq. 

(1.18), to the left-hand side of eq. (1.22): 

    uu
t

u

Dt

Du ∇⋅+
∂
∂= ρρρ     (1.23) 

Applying the product rule of calculus (Leibniz’s law): 

    
( )

t
u

t

u

t

u

∂
∂+

∂
∂=

∂
∂ ρρρ

 

         => 
( )

t
u

t

u

t

u

∂
∂−

∂
∂=

∂
∂ ρρρ      (1.24) 

Using the identity relating to the divergence of a scalar times a vector, taking 

u as the scalar and ( )uρ  as the vector: 

   ( ) ( ) ( ) uuuuuu ∇⋅+⋅∇=⋅∇ ρρρ  

  => ( ) ( ) ( ) ( )
x

u
u

x

u
uuuuuu

∂
∂−

∂
∂=⋅∇−⋅∇=∇⋅ ρρρρρ

2

  (1.25) 

Substituting eq. (1.24) and eq. (1.25) into eq. (1.23): 

  
( ) ( ) ( )

x

u
u

x

u

t
u

t

u

Dt

Du

∂
∂−

∂
∂+

∂
∂−

∂
∂= ρρρρρ

2

 

             
( ) ( ) ( )

x

u

x

u

t
u

t

u

∂
∂+






∂
∂+

∂
∂−

∂
∂=

2ρρρρ
    (1.26) 
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The term in the square brackets in eq. (1.26) above is the left-hand side of the 

continuity equation, and is thus equal to zero. 

              
( ) ( )

x

u

t

u

Dt

Du

∂
∂+

∂
∂=∴

2ρρρ      (1.27) 

Substituting eq. (1.27) into eq. (1.22) gives: 

   
( ) ( )

bF
x

P

x

u

t

u ρρρ +
∂
∂−=

∂
∂+

∂
∂ 2

   (1.28) 

 

 Equation (1.28) is the desired, differential form of the Euler 

momentum equation in one dimension. 

 

1.3.3 The energy equation 

 The physical principle which is applied in the case of the energy 

equation is the first law of thermodynamics: the principle that, in a closed 

system, energy is conserved. When applied to the model of an infinitesimal 

control volume moving with the fluid, model (b) of fig. 1.3, it results in the 

following statement: 

 

Rate of change of energy inside fluid element 

 = Rate of work done on fluid element + Net heat flux into element 

 

In what follows, we will denote this statement as 

    CBA +=       (1.29) 

 

 The rate of work done by a force on a moving body may be shown to 

be equal to the product of the force and the component of velocity in the 

direction of the force [4]. Hence, the rate of work done by the body force on 

the fluid element is: 

udxFbρ   
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Fig. 1.5:  Surface forces and heat fluxes relating to the infinitesimal fluid element 

moving with the flow, dx, for the derivation of the 1-D Euler energy equation. Fluid 

element given height for illustrative purposes. 

 

 Figure 1.5 above illustrates the “surface” forces and heat fluxes acting 

on the 1-D fluid element under consideration. We will use the convention 

that forces in the positive x-direction do positive work and vice versa. The 

net surface force, therefore, is: 

    
( ) ( )

dx
x

uP
dx

x

uP
uPuP

∂
∂−=






∂
∂+−   

Then, the quantity B in eq. (1.29) is the sum of the surface and body forces: 

    
( )

udxFdx
x

uP
B bρ+

∂
∂−=     (1.30) 

 

 The heat flux into the fluid element is due to two general types of 

thermal activity: volumetric heating, e.g. absorption or emission of radiation 

and thermal conduction, i.e. heat transfer across the surfaces. If we denote the 

rate of volumetric heating per unit mass as VQ  then, since mass = dxρ , the 

volumetric heating dxQVρ= . 

 

The heat transferred into the fluid element by thermal conduction through 

both sides is shown in fig. 1.5, where 
•
q  is the heat flux. The net heat 

conduction is 

    dx
x

q
dx

x

q
qq

∂
∂−=















∂
∂+−

••
••

  

dx 

uP ( )







∂
∂− dx

x

uP
uP

x 

•
q










∂
∂+

•
dx

x

q
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The term C in eq. (1.29) is the sum of volumetric heating and heat 

conduction: 

    dx
x

q
QC V















∂
∂−=

•

ρ   

From Fourier’s law of heat conduction, the heat flux is proportional to the 

local temperature gradient: 

     
x

T
kq

∂
∂−=

•
  

where k is the thermal conductivity. 

          dx
x

T
k

x
QC V 

















∂
∂

∂
∂+=∴ ρ     (1.31) 

 

 On the left-hand side of eq. (1.29), the term A is the time rate of 

change of the energy of the fluid element. This energy is the sum of the 

internal energy (the kinetic, thermal, rotational and electronic energies of the 

atoms or molecules constituting the fluid) per unit mass, U , and the kinetic 

energy due to the bulk motion of the fluid element as a whole, 22u  per unit 

mass. The substantial derivative must be invoked once again, since we are 

dealing with a fluid element moving with the flow: 
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Combining eq’s. (1.29) – (1.32) and dividing both sides by dx : 
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 The conversion of the Lagrange differential form, eq. (1.33), to the 

differential Euler form proceeds in an equivalent fashion to the 

manipulations used in the case of the momentum equation and are omitted 

here. The differential Euler form of the energy equation obtained by 

conversion of the left-hand side of eq. (1.33) is 
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 Equation (1.34) is the Euler energy equation expressed in terms of the 

total energy per unit mass, ( )22uU +  . Equivalent forms of the equation may 

also be derived expressing the conservation of energy in terms of internal 

energy, U , alone, or in terms of static enthalpy, h, or total enthalpy, 

22
0 uhh += . The manipulations involved in these conversions change both 

sides of the energy equation [4]. 

 

 The Euler equations of fluid flow in 1-D have now been derived. 

However, examining the equations reveals that there are four independent 

flow-field variables (ρ, u, P and e) in only three equations. In order to close 

the system, the ideal gas equation of state is commonly used: 

     RTP ρ=  

where R is the specific gas constant. This provides a fourth equation, but 

also introduces a fifth flow-field variable: the temperature, T. Full closure of 

the system is accomplished by inclusion of a thermodynamic relation, e.g. 

the caloric equation of state: 

     Tce V=  

where Vc  is the specific heat at constant volume.  

 

 

1.4 Basic computational methods 

 The Euler equations are a set of partial differential equations (PDEs) 

for which no closed-form, general analytical solution has been found. The 

equations describe functions for which variables are required to be defined 

for the infinite set of continuous values which exist in the domain of interest, 

e.g. at a certain time, t, each of the flow-field variables (ρ, u etc.) must have a 

finite, defined value at each of the infinity of spatial positions, x, in the 
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system’s domain. In general, it is not possible to obtain continuous functions 

describing the variation of these flow-field variables across all times and 

positions by direct solution of the PDEs. 

 

1.4.1 Discretisation (finite differencing) 

 Discretisation is the process by which the continuous functions 

represented by an equation are replaced by analogous approximate, 

algebraic relations defined only at discrete temporal and/or spatial 

positions (grid points). The procedure of discretisation of PDEs is termed 

finite difference discretisation or “the method of finite differences”. 

 

 The simplest finite difference discretisations are based on Taylor 

series expansions. If iu  is the velocity at spatial position, i, then the velocity 

at 1+i , 1+iu , may be expressed in terms of a Taylor series expansion about 

point i, as follows: 
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which is an exact expression for 1+iu  in the limit of an infinite number of 

terms in the Taylor series. 

Solving eq. (1.35) for ( )
ix

u
∂

∂  gives: 
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Equation (1.36) may be rewritten in the form, 
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where ( )xO ∆  represents the truncation error associated with the finite 

difference approximation of ( )
ix

u
∂

∂  . 

 

 Because the truncation error includes a term of x∆  to the first power, 

then the finite difference represented by eq. (1.37) is termed first-order 
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accurate. Furthermore, since the finite difference contains only 1+iu  and iu , 

i.e. no terms to the left of point i, then it is called a forward difference. 

 

 A first-order accurate, backward difference discretisation is found by 

writing a Taylor series for 1−iu  expanded about iu : 
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which, when solved for ( )
ix

u
∂

∂  , as above, gives: 
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 To obtain a second-order accurate finite difference, we can construct a 

Taylor series for 11 −+ − ii uu  by subtracting eq. (1.38) from eq. (1.35): 
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 Since the finite difference includes information from grid points on 

both sides of i, eq. (1.40) is a second-order accurate, central difference 

expression. 

 

 It is evident that there exists a large number of finite difference 

discretisations which may be derived (limited only by the number of grid 

points in the domain), of increasing order of accuracy, incorporating the 

values at a greater number of grid points. For example, a fourth-order 

accurate central difference approximation for the first derivative is: 
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 Increasing the order of accuracy is desirable, since it naturally results 

in a more accurate solution, may give sharper shocks and, for a required 

level of accuracy needs fewer grid points. However, there are also 

disadvantages: computing time is increased at each grid point due to more 

calculations being performed, larger matrices being stored, etc. and 

programming challenges, especially near boundaries (to be discussed in the 

following subsection). 

 

 Much of the impetus for the past investigations into CFD came from 

the need for aerodynamicists to accurately model, for example, air flow over 

aircraft designs. In many of these types of simulations a steady-state solution 

is ultimately sought. However, often this is only possible by modelling the 

unsteady solution to long timescales at which convergence to the steady 

state is obtained. The method of stepping through time is known as time-

marching, and is performed by calculating all the flow variables across the 

entire spatial domain at each time-step before the simulation moves on to 

the next time-step. The types of unsteady, inviscid flow involved in plasma 

simulations require time-marching solutions. 

 

 The choice of discretisation method is generally a trade-off between 

numerical accuracy within smooth regions and accuracy near 

discontinuities, such as those found at shocks, expansion fans and contacts, 

at which the formal order of accuracy may drop to first-order (or lower) for 

even high-order methods. Sophisticated discretisation schemes have been 

developed to combat the limitations of particular methods, e.g. by using a 

weighted average of different discretisations, which are modified 

automatically depending on the “steepness” of the solution about a point. 

See chapters 17, 18 & 20-23 of ref [5] for a detailed analysis of the relative 

strengths and weaknesses of a large variety of both simple and more 

advanced discretisation schemes. 
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 To end this discussion of basic discretisation methods, we will briefly 

mention the other two main types of discretisation. Finite volume methods, 

instead of using samples as the primary representation of a function, as is 

the case for finite difference methods, use cell-integral averages as the 

primary representation of a function. Thus, they are most often used to 

approximate integral equations. Finite element methods differ by 

constructing “piecewise-polynomial” representations of a function, i.e. they 

approximate a functions’ value at each cell by a polynomial interpolation 

between neighbouring samples. 

 

1.4.2 Boundary treatments 

 For an inviscid, one-dimensional model of fluid flow with solid (non-

porous) walls, the only physical boundary condition to be enforced is that 

there is no mass transfer into the wall, i.e. the velocities at the walls are zero. 

This is referred to as the “no-penetration boundary condition”. The values of 

the other flow-field variables at the walls are generated by the numerical 

solution to the governing equations. The numerical implementation of the 

no-penetration condition can be accomplished by using one of a variety of 

boundary treatments. 

 

 Any single finite difference scheme will suffer from a lack of available 

samples at one or both boundaries. For example, a backward-difference at 

the left boundary requires the use of point 1−i  which, when 1=i , is the 

point 0 and is outside the computational domain. A central difference will 

have this problem at both boundaries. One method of resolving this issue is 

by changing the finite difference scheme used at the problematic boundary, 

e.g. if a first-order backward difference is being used for the interior solution 

then, at cell 1=i , a forward difference may be used to ensure the samples 

needed lie within the computational domain. Second- and higher-order 

differences can be derived that are one-sided, that is they contain only grid 
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points on one side of i. An example of a second-order, one-sided forward 

finite difference is: 
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 An alternative to changing the finite difference at the boundary is to 

use the idea of ghost cells, also known as the “reflection boundary 

condition”. This boundary treatment, in order to cope with the lack of 

available grid points at a boundary, generates the necessary grid points for 

the finite difference by using the condition that the first cell outside the 

domain has the same values for the flow-field variables as the last cell inside 

the domain (except the velocity, which has the same magnitude, but 

opposite sign), the second cell outside equates to the second-last cell inside 

and so on, until all the grid points needed have been generated. This method 

ensures that the variables are continuous across the boundary, however 

discontinuities commonly occur in the first derivative across the boundary, 

which may lead to spurious oscillations, overshoots etc., as at any 

discontinuity. 

 

 The two boundary treatments briefly described above are both 

examples of solid boundaries. Far-field or permeable boundaries are another 

class of boundary treatments that, instead of reflecting the fluid back 

towards the interior, may both absorb and emit fluid out of or into the 

computational domain. These types of treatments are more complicated 

than solid boundaries, as information must be inferred where there is no 

explicit data computed. Therefore, whereas solid boundaries impose only 

physical conditions on the fluid flow at a boundary, far-field boundaries are 

purely numerical in origin and involve using a number of additional 

assumptions. Far-field boundaries are typically used where a steady-state 

solution is sought, e.g. aerodynamic simulations. 
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1.4.3 CFL condition, artificial viscosity 

 The Courant-Friedrichs-Lewy (CFL) condition, also commonly 

known as the Courant condition, is an important criterion that must be 

satisfied at all times and positions in any numerical solution of PDEs. The 

CFL condition is that the Courant number, 

    1max ≤
∆
∆=

x

t
uC      (1.41) 

 

This condition simply states that for any given time-step, the maximum 

velocity must not be greater than that which would allow fluid to travel 

more than one grid-step. Simulations where the Courant number exceeds 

one generally become unstable and quickly “blow up”, e.g. values grow 

rapidly and uncontrollably. Often, these problematic simulations may be 

run successfully by reducing the time-step, with the concomitant increase in 

computing time.  

 

 The Euler equations, as has been described previously in section 1.3, 

are inviscid approximations to the Navier-Stokes equations. The Navier-

Stokes momentum equation in conservation form, with “standard 

assumptions such as Stokes’ hypothesis and Fourier’s law for heat transfer” 

[5] applied, is: 
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whereµ  is the coefficient of viscosity. The right-hand side, the viscous term, 

is a second derivative term and arises from physical viscosity. Physical 

viscosity makes a fluid system more stable by damping small oscillations 

caused by small disturbances.  

 

 While the Euler equations omit viscosity considerations, many 

discretisations re-introduce viscous-like terms in the form of second-

differences, analogous to the second derivative terms in the Navier-Stokes 
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equations. These second differences may arise naturally from certain 

differencing schemes, for example the second-order forward difference, 
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may be re-written as a first difference plus a second difference; 

   ( )2121

2

2
xO

x

uuu

x

uu

x

u iiiii

i

∆+
∆

+−
−

∆
−

=








∂
∂ +++   

Other times, second differences may be intentionally added to first-

derivative approximations. Regardless of how they originate, these viscous-

like terms have no direct relationship to physical viscosity, i.e. they are 

purely numerical in origin, and are thus termed artificial viscosity. The 

advantage of artificial viscosity is increased stability; often a method 

requires artificial viscosity to be added explicitly to prevent it from 

becoming unstable, however this benefit comes at the cost of decreased 

accuracy [4]. Thus, one must be careful about when and how much artificial 

viscosity should be used. 

 

 

1.5 Summary 

 The chapter began by defining the plasma state. In words, the three 

conditions that must be met are: (a) the distance over which local electric 

fields are shielded from the bulk of the plasma, due to Debye shielding, 

must be much less than the size of the plasma; (b) the number of particles 

contained within a sphere having a radius of the Debye length must be large 

for the concept of Debye shielding to be statistically valid; (c) collective, 

electromagnetic effects, due to the interactions of the charged particles, must 

dominate ordinary hydrodynamic effects, due to collisions involving neutral 

atoms. 

 

 In section 1.2, it is described that the Maxwellian velocity 

distribution, characteristic of highly collisional gases, is approached to a 
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high degree of accuracy in many plasmas, even among those that may be 

said to be collisionless. This is termed Langmuir’s paradox and, although 

the causes are still largely unknown, the result is that the fluid model of 

plasmas is applicable in most cases and is able to describe the majority of 

experimentally-observed plasma phenomena. 

 

 The derivation of the one-dimensional, inviscid governing equations 

of hydrodynamics, the 1D Euler equations, is detailed in section 1.3. These 

equations arise from the application of fundamental physical laws (mass 

conservation, Newton’s second law, energy conservation) to theoretical 

models of the fluid flow, by examining the various fluxes crossing the 

surfaces of the idealised control “volumes” (in the 1D case, these volumes 

are line elements), together with the forces acting on these surfaces. 

 

 In section 1.4, the basics of the numerical methods employed to solve 

the Euler equations (and other partial differential equations) are presented. 

The numerical technique of finite differencing is first introduced and 

examples of forward, backward and centred discretisations of first- and 

second-order of accuracy are given. A brief discussion of boundary 

treatments then follows, together with descriptions of two of the most 

important considerations affecting numerical discretisations: the CFL 

condition and artificial viscosity. 
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Chapter 2. The Rambo & Denavit model of colliding plasmas 

 

2.1 Model outline 

 The hydrodynamic model of Rambo and Denavit was initially 

developed for the simulation of isothermal and adiabatic plasma-vacuum 

expansion tests and published in 1991 in ref. [6]. This two-fluid (ions and 

electrons), collisionless model was a one-dimensional fluid dynamics model 

defined on a uniform Eulerian grid, using a modified version of the Boris 

and Book flux-corrected transport (FCT) method [7-9] for the differencing 

scheme by which the Euler equations are solved. FCT is a relatively 

sophisticated transport algorithm, incorporating a flux-limiter, involving 

solution-sensitive limited application of an anti-diffusive flux to the values 

predicted by a low-order diffusive flux. The successful coupling of the fluid 

dynamics algorithm to an electric field (Poisson equation) solver was 

demonstrated. However, in this present work, electric field considerations 

have been omitted. The numerical tests of ref. [6] were designed to verify the 

acceptable behaviour of the fluid and field algorithms at the fluid-vacuum 

boundary, and all results published were given in terms of dimensionless, 

normalised units. 

 In ref. [10], the algorithms developed by Rambo and Denavit in ref. 

[6] were generalised to include collisional forces between multiple atomic 

species (ions, neutrals, electrons) in the form of collisional momentum 

coupling, temperature equilibration and heat conduction between species. In 

this formulation, interpenetration and stagnation effects, present in physical 

colliding plasma experiments, may be simulated. The numerical tests 

presented apply the model to a variety of scenarios, showing acceptable 

behaviour in the simulation of Ohmic heating, a friction test resulting in a 

shock at the interface between two fluids, colliding plasmas displaying 

interpenetration, and plasma shocks involving two fluids (ions and 

electrons). All results were again given in terms of normalised units. 
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2.2 Detailed technical description 

 

2.2.1 Staggered grid 

 In ref. [6], Rambo and Denavit take great pains to describe the effect 

of changing the locations on the grid where the various flow variables are 

sampled and the fluxes are calculated. The two basic possibilities are: (a) to 

define quantities at cell centres, i, or (b) to define them at cell edges, 2
1±i  . 

Accurate discretisation schemes can be defined on either type of grid, 

however the grid that they found to produce the most reliable results is a 

mixed grid type, largely to accommodate electric field (Poisson equation) 

solver problems, but also to help stability in the electric-field-free cases such 

as those studied here. It was deemed prudent to follow the formulation 

adopted by Rambo and Denavit to allow for easier incorporation of an 

electric field solver, should the code be extended at a later stage. 

 

 The final grid scheme adopted by Rambo and Denavit, which they 

refer to as “Scheme #3”, defines densities, temperatures and momenta at cell 

centres and velocities at cell edges. Because the specific electric field solver 

they used required the averaging of velocities in adjoining cells, velocities 

defined at cell centres, investigated in “Scheme #1”, led to unphysical even-

odd oscillations in the velocity profiles when the electric field solver was 

turned on (see figs. 4 & 5 of ref [6]). 

 

 

2.2.2 Flux-corrected transport: density transport 

 The original flux-corrected transport (FCT) method was developed by 

Boris and Book and first published in 1973 [7]. It is an example of a 

“predictor-corrector” method, whereby the values at the new time-step are 

calculated by a two-step procedure from the values at the previous time-step. 

This will be illustrated by using the example of density transport. The first 
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step involves the application of a low-order, diffusive flux, Lf , to obtain 

temporary densities, 

   ( )L
j

L
jj

TD
j ffnn 2/12/1

0
−+ −−=      (2.1) 

Here, the subscripts indicate the spatial position on the grid, where j is a cell 

centre and 2
1±j  are cell edges, while the superscripts (except for the “L” 

superscript which simply identifies the fluxes as the low-order fluxes)  

specify the time-level, where 0 signifies values at the previous time-step and 

t indicates values at the new time-step. The temporary densities obtained by 

eq. (2.1) are then “corrected” by limited application of a higher-order, 

antidiffusion flux, Af : 
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where the flux limiter, C, is defined by 
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where ( )A
jfSign 2/1+=σ . Equation (2.3) is constructed so as to allow as much 

of the high-order flux to be restored as possible, without creating or 

intensifying maxima or minima, what Laney terms the “range-diminishing” 

condition, see section 16.3 of ref. [5]. 

 

 What is missing from the above discussion is the definition of the 

fluxes in question. The original FCT method used the SHASTA transport 

algorithm [7], however this type of transport requires all quantities to be 

cell-centred. In 1979, Zalesak [11] generalised the Boris and Book FCT 

method to allow for a wide range of first- and second-order differences to be 

used. With the velocities defined at cell edges, Rambo and Denavit describe 

the use of several differencing possibilities for the low-order and 

antidiffusion fluxes. The method they demonstrated to give the best results 

in the single-fluid vacuum expansion tests for Scheme #3 is what they refer 

to as “FCT-Fromm” advection. This method uses “Donor Cell” as the low-

order flux: 
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   0
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L
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              0
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and Fromm’s method [12] for the antidiffusion flux: 
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where 2/12/1 ++ ∆
∆= jj u

x

tε  is the local CFL number. 

 

 The equations (2.1) - (2.5) allow advancement of the density from the 

previous to the new time-step. The operator, Ψ , we will use as shorthand to 

denote a single step of the transport algorithm. The density transport then 

may be represented by the expression: 
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 It may be noted that eq. (2.6) involves the use of velocities at the new 

time-step, t
ju 2/1+ , however this implies introducing an implicit method into 

the algorithm. Due to programming challenges, in this work these velocities 

are approximated by using the velocities from the previous time-step, 0u , 

thereby keeping the transport method fully explicit (except in the case of the 

collisional momentum coupling, see subsection 2.2.4). 

 

2.2.3 Energy and momentum transport 

 The transport algorithms for momentum and energy involve the 

same relations as those involved in the density transport, with the densities, 

jn , in eq’s. (2.1) - (2.6) replaced by ( ) jnu  and ( ) jnT , in the case of 

momentum and energy, respectively. However, an important difference is 
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the necessary inclusion of source term contributions to model the effects of 

pressure gradients within the gas or quasineutral plasma. 

 

 The internal (thermal) energy of the fluid, 23nTU = , thus allowing 

the energy transport to be accomplished by means of advancing the 

temperature in a suitable manner. Including the pressure source term, one 

step of the temperature transport is described by the equation: 
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where the pressure, 

    jjjj QTnP +=      (2.8) 

with the artificial viscosity, Q, necessary to give stable solutions in 

compressive regions, defined by 

  0=jQ    for 2/12/1 −+ ≥ jj uu  

        ( )2
2/12/1 −+ −= jjj uumnκ  for 2/12/1 −+ < jj uu   

where m is the particle mass and κ is a dimensionless quantity, typically set 

to unity (as in all results to be presented later in this work), used to adjust, if 

required, the strength of the artificial viscosity. 

 

 The momentum and velocity transport requires multiple steps, since 

the momenta and velocities are defined at different positions on the grid. 

First, the momenta are advanced from the momenta at the previous time-

step: 

   ( ) ( ){ }t
jjj ununu 2/1

0 , +
∗ Ψ=  .    (2.9) 

Intermediate velocities at the cell boundaries are then calculated by an 

averaging of the momenta in the adjoining cells: 
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The intermediate velocities then have the source terms applied, giving the 

velocities at the new time-level: 
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where 
2/1+j

n  is the average of the densities in cells j and j+1. 

To complete the momentum transport, the momenta are then advanced by 

an average of the source terms from the cell edges: 

  ( ) ( ) ( )2/12/12
1
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t
jj
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2.2.4 Collisional momentum coupling 

 All of the equations (2.1) – (2.12) are applicable to single-fluid models, 

that is they do not include references to atomic species. In their 1992 paper 

[10], Rambo and Denavit generalise the transport algorithms to include 

multiple species. In this multi-fluid formulation, the set of equations (2.1) – 

(2.12) are repeated for each species. The notation is to replace all flow-field 

variables measured at specific grid positions by values at these grid 

positions for each species. For example, eq. (2.6) re-written to include multiple 

species becomes: 

    { }t
jsjs

t
js unn 2/1,

0
,, , +Ψ=   

with the extra subscript, s, referring to the specific species in question. 

 

 The interaction between species in this work is by means of 

collisional momentum coupling. The collisionless momentum transport 

equations, eq’s. (2.9) – (2.10), are first applied to each species individually, 

with eq. (2.11) applied in a re-stated form to give the collisionless velocities, 
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 The collisionless velocities obtained by eq. (2.13) then have the 

collisional source terms applied: 
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where sm  is the mass of species, s , 'ssν  is the collision frequency between 

species, s  and 's , and ( )''' ssssss mmmmm += . 

The right-hand side of eq. (2.14) uses velocities at the new time-level 

to calculate the collisional coupling between the species, requiring that the 

set of equations represented by eq. (2.14) be solved simultaneously for each 

species at the cell edge, 2
1+j , to maintain stability. This is accomplished by 

using the following equation to update the collisionless velocities: 
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where the collisional momentum coupling matrix at 2
1+j , 
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The source term contributions are then added to the momenta, completing 

the momentum transport: 
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is the total source term contribution to the velocity at 2
1+j . 
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 The definition of the collision frequencies, ν, used by Rambo and 

Denavit in the colliding plasma simulations of [10] is: 
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and xjd ∆= max  is the scale length. Equation (2.18) is a simplified expression 

for the collision frequencies, one that does not depend on the relative 

streaming velocities of the species in question. The dimensionless 

collisionality parameter, η, is inversely proportional to the collision frequency 

and approximately equal to the ratio of the mean-free-path to the scale 

length [10]. 

 

 To complete the collisional coupling between species, the collision 

frequencies and new velocities are used in an additional temperature source 

term to model dissipation. The “new” temperatures obtained by eq. (2.7) are 

modified in the following manner: 

 { }
sjj

t
sjjs TTTT 2/12/12

1
,

)1(
, −+ ++= δδ      (2.19) 
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 The Rambo and Denavit collisional model also includes temperature 

equilibration and heat conduction between species, however these 

considerations have not yet been included in this work. 
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2.3 Summary 

 In this chapter, the inner workings of the Rambo and Denavit 

hydrodynamic model have been described, in the absence of electric fields, 

for both the single-fluid and multi-fluid formulations. 

 

 The single-fluid model is defined on a mixed Eulerian grid type, with 

densities, temperatures, pressures and momenta defined at cell centres, and 

velocities defined at cell edges. At each time-step, densities are first updated 

from the previous time-step by application of a low-order, diffusive flux 

(Donor cell), which are then corrected by limited application of a higher-

order, antidiffusion flux (Fromm’s method). A similar procedure is 

implemented in the transport of the other primitive variables, velocities and 

temperatures, with the necessary inclusion of source term (pressure 

gradient) contributions in each case. The velocity transport has the extra 

complication of momenta and velocities being defined at different positions 

on the spatial grid, which is resolved by transporting the momenta at each 

time-step, with the new velocities (at cell edges) defined by suitably 

averaging the momenta in the two adjacent cells. 

 

 The multi-fluid model first applies the single-fluid transport 

algorithms to each species separately. The coupling between species is 

accomplished by: (a) the use of an additional source term in the momentum 

transport equation (collisional momentum coupling), involving a collisional 

momentum coupling matrix having elements dependent on the relative 

masses of the particles and the collision frequencies between the particle 

species in question; (b) an additional temperature source term to model 

dissipation, with corrections to the predicted temperatures dependent on the 

relative masses, the collision frequency and the relative streaming velocities 

of the particular species. 
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Chapter 3.  Results – Numerical tests and comparisons 

 

3.1  Numerical accuracy tests: comparisons with analytical solutions 

 The initial numerical accuracy tests performed with the code 

described in the previous chapter are exactly as outlined in ref. [6]. These 

simulations are “applicable to a neutral gas, or to a single fluid plasma 

model obeying quasineutrality” [6], and involve isothermal and adiabatic 

expansions into vacuum. All results in this chapter are given in terms of 

dimensionless, normalised quantities: the characteristic length is 0λ ; density 

is measured relative to the characteristic density, 0n ; velocity, particle mass 

and temperature are given in units of 0v , 0m  and 0T , respectively, and are 

related by 000 mTv = (the thermal velocity relation); and a unit of time, 

000 vt λ= . At time 0=t , a region of undisturbed fluid of length 0x  and 

density 0nn =  is present at the left side of the system, with a vacuum region 

extending from the fluid-vacuum interface to the right boundary. 

 

3.1.1 Isothermal vacuum expansion tests- qualitative comparisons 

 The first test is an isothermal simulation, with the temperature held 

constant at 0TT = . A self-similar solution exists for this problem, making it 

an ideal test case for the purpose of validating the numerical accuracy of the 

computational model. The self-similar solution is given by [6]: 
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where 0vCs =  is the isothermal sound speed. Spatial positions for which 

1−<η  are regions of undisturbed fluid, with 0nn =  and 0=u . The 

isothermal tests are initialised at time 0tt =  with the density and velocity 

profiles as given by eq. (3.1) with xx ∆= 500 . The total system length is 
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200∆x, with 0λ=∆x . The initial density and velocity profiles, together with 

the resulting initial momentum, are shown in fig. 3.1. 

(a) (b)

(c)

 

Fig. 3.1:  Initial profiles for isothermal vacuum expansion test. Self-similar density 

(a), velocity (b) and resulting momentum (c) at time 0tt = . 

 

 Figure 3.2 shows the density, velocity and momentum from a 

simulation with 0025.0 tt =∆  at time 06tt = , i.e. after 200 time-iterations. The 

computed results are shown in solid lines while the self-similar, analytical 

solutions are plotted in dashed lines. The velocity successfully attains its 

maximum value, ( ) 7.20ln 0max == floornnu , in the vacuum region and only 

small deviations from the analytical solutions are visible in the plots. 

 

 Figure 3.3, a snapshot of the same simulation at a later time, t=8.5 

(300 time-iterations), reveals improved agreement with the analytical 

solutions, as is particularly evident upon comparing the momentum plots, 

fig. 3.2(c) and fig. 3.3(c). 
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(a) (b)

(c)

 

Fig. 3.2:  Isothermal vacuum expansion test. Density (a), velocity (b) and  

momentum (c) at time 06tt = ; 0025.0 tt =∆ , after 200 time-steps. 

(a) (b)

(c)

 

Fig. 3.3:  Isothermal vacuum expansion test. Density (a), velocity (b) and  

momentum (c) at time 05.8 tt = ; 0025.0 tt =∆ , after 300 time-steps. 
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3.1.2 Adiabatic vacuum expansion tests- quantitative comparisons 

 The next test is an adiabatic (constant total thermal energy) test with 

temperature variations included. Again, a self-similar solution to this 

problem exists, with the density, velocity and temperature profiles given by: 
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where 
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0−
=ξ   

For a monatomic ideal gas ( 3
5=γ ), the adiabatic sound speed, 

029.1 vCa == γ . Values of x for which 1−<ξ  are regions of undisturbed 

fluid, with 1== Tn  and 0=u , while 3>ξ  corresponds to the vacuum 

region, where 0== Tn  and the velocity, aCuu 3max ==  [6]. 

(a) (b)

(c)

 

Fig. 3.4:  Initial profiles for adiabatic vacuum expansion test. Self-similar density 

(a), velocity (b) and temperature (c) at time 088.3 tt = . 
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 The adiabatic tests are initialised according to the self-similar 

solutions at time 088.3 tt = ; the initial profiles are shown in fig. 3.4. Again, 

xx ∆= 500 , the total system length is x∆200  and 0λ=∆x . 

 

(a) (b)

(c)

 

Fig. 3.5:  Adiabatic vacuum expansion test. Density (a), velocity (b) and  

temperature (c) at time 088.23 tt = ; 01.0 tt =∆ , after 200 time-steps. 

 

 

Fig. 3.6:  Adiabatic vacuum expansion test. Momentum (a) and pressure (b) at time 

088.23 tt = ; 01.0 tt =∆ , after 200 time-steps. 

(a) (b) 
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 Figures 3.5 and 3.6 show the results from the simulation at time 

088.23 tt = , with 01.0 tt =∆ (200 time-iterations), compared to the analytical 

predictions. From fig. 3.5(a), it can be seen that the computed density profile 

is almost indistinguishable from the theoretical values, although the 

velocities and temperatures diverge from the analytical solutions near the 

fluid-vacuum interface, figs. 3.5(b) and 3.5(c), respectively. The plots of 

momentum and pressure, figs. 3.6(a) and 3.6(b), show excellent agreement 

with theory, however, since the deviations in velocity and temperature 

occur in regions of low density. 

 

 For a quantitative analysis of the accuracy of the solutions, we will 

use a widely-accepted measure of the agreement between computed 

solutions and expected solutions, the normalised root mean square deviation 

(NRMSD). If we take ( )xα  to be the analytical values and ( )xβ  as the 

computed values of some flow-field variable, then the formula to calculate 

the NRMSD (expressed as a percentage) is; 
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where jmax is the total system length (in terms of ∆x). 

Applying eq. (3.3) to the plots of momentum and pressure of fig. 3.6, the 

calculated errors are ( ) %30.1=nUerr  and ( ) %428.0=nTerr , respectively. 

 

 Similar to the isothermal case, letting the simulation run to longer 

times improves the agreement between computation and theory as 

evidenced by fig. 3.7, which is a snapshot of the same simulation at the later 

time 088.33 tt =  (300 time-iterations). The density remains almost 

indistinguishable from the analytical solution, while the deviations visible in 

the velocity and temperature plots have decreased, with the computed 

values approaching the theoretical values in the vacuum region. The 
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momentum and pressure profiles of fig. 3.8 again show good agreement, 

with average percentage errors of ( ) %19.1=nUerr  and ( ) %421.0=nTerr , 

respectively. 

 

(a) (b)

(c)

 

Fig. 3.7:  Adiabatic vacuum expansion test. Density (a), velocity (b) and 

temperature (c) at time 088.33 tt = ; 01.0 tt =∆ , after 300 time-steps. 36.0max =ε . 

 

 

Fig. 3.8:  Adiabatic vacuum expansion test. Momentum (a) and pressure (b) at time 

088.33 tt = . Parameters as for fig 3.7. 

 

(a) (b) 
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 With 01.0 tt =∆ , the maximum Courant number attained in the 

simulation, 36.0max =ε . Such a low value has two disadvantages: the 

computation time is increased due to the increased number of time-steps 

required to cover a given time-interval and the effect of round-off errors is 

compounded due to the greater number of calculations being performed per 

unit time. A second adiabatic simulation was carried out with a larger time-

step, 025.0 tt =∆ , with all other parameters as before, leading to a maximum 

Courant number, 98.0max =ε . Results from this simulation at time 088.33 tt =  

are presented in figs. 3.9 and 3.10. Improved agreement is again visible in 

the plots, borne out by the average percentage error values in this case of 

( ) %14.1=nUerr  and ( ) %348.0=nTerr . 

 

(a) (b)

(c)

 

Fig. 3.9:  Adiabatic vacuum expansion test #2. Density (a), velocity (b) and 

temperature (c) at time 088.33 tt = ; 025.0 tt =∆ . 98.0max =ε . 
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Fig. 3.10: Adiabatic vacuum expansion test #2. Momentum (a) and pressure (b) at 

time 088.33 tt = . Parameters as for fig. 3.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 
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3.2 Colliding quasi-neutral plasma simulations 

 In this section, we will apply the computational models (single fluid 

and multi-fluid) to simulations of colliding quasi-neutral plasmas. All 

results are again given in terms of normalised units, as described in the 

previous section. The simulations detailed here do not possess analytical 

solutions, thus quantitative measurements of the accuracy of the results are 

not possible in this case. However, all tests will be initialised as close as is 

feasible, in the absence of electric field and electron fluids, to the colliding 

plasma simulations presented in Rambo and Denavit’s 1992 paper [10]. This 

will allow qualitative comparisons between the data presented here and that 

presented in ref. [10]: where a figure in this section has a direct analogue in 

the work of Rambo and Denavit, the relevant figure is here reproduced from 

ref. [10] for direct comparison. 

 The colliding plasma simulations of this section involve two plasma 

slabs, with trapezoidal density profiles of full-width at half-maximum of 

20∆x, separated by a distance of 110∆x, as shown in fig. 3.11. When 

comparing the plots given here with the analogous results of ref. [10], it may 

be noted that the spatial axes are different, spanning the region 

xxx ∆≤<∆ 400200  in the plots presented here, contrary to the corresponding 

figures from Rambo and Denavit that span the region xx ∆≤< 2000 . This is 

due to the required use of “buffer” regions, of minimum length 200∆x, on 

either side of the system to move the simulation boundaries away from the 

central, collisional region. From examination of simulations without these 

buffer regions it was ascertained that, although not directly mentioned in 

ref. [10], the simulations of Rambo and Denavit also included such a 

removal of the boundaries away from the collisional region. In the absence 

of these buffer regions, build-ups of temperature and density will 

accumulate at each boundary, causing several undesirable boundary effects 

such as the interaction of the diffusing fluid with the high-pressure cells 

near the walls leading to shocks propagating back towards the centre of the 

system. 
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Fig. 3.11: Initial density profile of the colliding plasma slabs. 

 

3.2.1 Single fluid colliding plasma simulation 

 The single fluid simulation has density initialised as in fig. 3.11, with 

a particle mass of 0100mm = , an initial temperature of 01.1 TT =  and a spatial 

grid-step of 0λ=∆x . With a time-step of 05.0 tt =∆ , fig. 3.12 shows the 

density and temperature profiles at times 0240tt =  and 0600tt = . At 

0240tt = , the slabs have come into contact at the centre of the system and 

begun to stagnate, leading to compression of the fluid on both sides of the 

collision plane, as the diffusing fluid encounters the high-temperature, high-

pressure fluid at the collision interface. At 0600tt = , as more fluid has 

moved towards the centre and stagnated, outward-propagating shocks are 

visible, together with the effect of the high-pressure central region in forcing 

rarefaction and diffusion of the fluid away from the centre. 

 Comparing fig. 3.12 with the analogous results published by Rambo 

and Denavit, presented here as fig. 3.13, it is evident that the two sets of 

results agree closely, with the exception that the central, peak temperatures 

are greater in fig. 3.13. The reason for this perplexing difference remains an 

open question, since both single fluid simulations are initialised identically 

and both computational models incorporate the same transport algorithms, 

source terms etc. In this author’s opinion, the most likely cause of the 

discrepancy is a difference in the handling of the temperature transport in 

vacuum regions.  
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(a) (b)

(c) (d)

 

Fig. 3.12: Single fluid colliding plasma simulation. Density (a) and temperature (b) 

at time 0240tt = ; density (c) and temperature (d) at time 0600tt = . 05.0 tt =∆ . 

 

 

Fig. 3.13: Results from Rambo & Denavit’s single fluid colliding plasma simulation. 

Parameters as in fig. 3.12. Reproduced from ref. [10]. 
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The evolution of the density and temperature profiles are shown in 

figs. 3.14 and 3.15, respectively. At 0120tt = , the leading edges of the 

expansions have come into contact at the centre of the system, see fig. 

3.14(a), resulting in a high-temperature spike, see fig. 3.15(a). 

From 0360tt =  to 0600tt = , the strong outward-propagating shocks 

become visible, together with the cooling of the fluid behind the shocks, see 

figs. 3.15(c) and 3.15(d). In the density plot at 0360tt = , fig. 3.14(c), the 

shocks appear as sharp discontinuities, with the peak density values on 

either side of the collision plane dropping from values of 045.0 nn ≈  to 

01.0 nn ≈  in three cells. This shows that the model exhibits only a small 

degree of numerical smearing, which is a desirable property of any numerical 

solution containing discontinuities. Behind the shocks (i.e. towards the 

centre), dispersion-like oscillations in the density values may be noted, 

spanning regions of approximately eight cells each. These oscillations are 

numerical effects and are undesirable consequences of many numerical 

solutions to PDEs in the presence of shocks [5]. Examining the similar 

regions just behind the shocks in the density plots at later times, 0480tt =  

and 0600tt = , figs. 3.14(d) and 3.12(c), respectively, these oscillations are 

shown to diminish in both amplitude and in the sizes of the affected regions, 

converging to smoother representations of the fluid elements immediately 

behind the shocks. 
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(a) (b)

(c) (d)

 

Fig. 3.14: Single fluid colliding plasma simulation. Density profiles at times  

0120tt =  (a), 0240tt =  (b), 0360tt =  (c) and 0480tt =  (d). 05.0 tt =∆ . 

 

(a) (b)

(c) (d)

 

Fig. 3.15: Single fluid colliding plasma simulation. Temperature profiles at times 

0120tt =  (a), 0240tt =  (b), 0360tt =  (c) and 0480tt =  (d). 05.0 tt =∆ . 
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 Snapshots of the momenta and pressures at two times, 0240tt =  and 

0600tt = , are shown in fig. 3.16. Early evidence of the presence of the shocks 

appears at 0240tt = , in both the momentum and pressure plots of figs. 

3.16(a) and 3.16(b). From the differences in the shocks’ positions between 

times 0240tt =  and 0600tt = , the average speed with which the shocks are 

propagating outwards is found to be 053.0 vvshock =  . The numerical 

oscillations behind the shocks are again revealed in the pressure plot at time 

0240tt = , fig. 3.16(b), and are shown to have smoothed out significantly by 

time 0600tt = , see fig. 3.16(d). 

Of note in the momentum plots at times 0240tt =  and 0600tt =  is the 

reversal of the fluid flow between the two times induced by the high-

pressure at the centre pushing fluid away; compare figs 3.16(a) and 3.16(c). 

Another interesting feature revealed by the momentum plots is the reversal 

of the direction of shock propagation. Limiting one’s attention to the region 

to the left of the midplane, justified since the momentum plots are 

antisymmetric about the midplane, the shock in fig. 3.16(a), visible as a 

sharp discontinuity centred around position xx ∆= 294 , has positive 

momentum, indicating that it is travelling to the right, towards the centre. 

The analogous discontinuity at time 0600tt = , located at xx ∆≈ 256  in fig. 

3.16(c), has negative momentum, indicating that it is now propagating to the 

left, away from the centre. Again, this is due to the effect of the high-

pressure central cells in preventing diffusion of fluid into, or across, the 

midplane. 
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(a) (b)

(c) (d)

 

Fig. 3.16: Single fluid colliding plasma simulation. Momentum (a) and pressure (b) 

at time 0240tt = ; momentum (c) and pressure (d) at time 0600tt = . 05.0 tt =∆ . 

 

 

3.2.2 Multi-fluid simulations with collisional momentum coupling 

 The multi-fluid simulations also have density initialised according to 

the profile shown in fig. 3.11, with the exception that the two plasma slabs 

consist of different, distinct, but identical neutral atomic fluids: the left slab 

is fluid 1 and the right slab is fluid 2. The two fluids will interact by means 

of collisional momentum coupling, as described in subsection 2.2.4. There 

are several ways in which the simulations presented here differ from the 

analogous simulations presented in ref. [10]. The most important difference 

is the absence in this work of electric field considerations and electron fluids. 

Other omissions concern the temperature transport algorithms where, in 

this work, temperature equilibration and thermal conduction between 

species have not yet been incorporated. Thus, direct comparisons with the 
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multi-fluid results published by Rambo and Denavit reveal poorer 

agreement than in the tests presented to this point. 

 The particle mass is 0100mm = , the initial temperature is 01.1 TT =  and 

the spatial grid-step is 0λ=∆x , all identical to the values used in the single 

fluid colliding plasma simulation, while the time-step used here, 02.0 tt =∆ . 

The first simulation, simulation #1, has the collision parameter, 3108.6 −×=η . 

Snapshots of the densities of each of the two fluids (dashed lines) and the 

total density (solid lines), 21 nnntot +≡ , together with the average 

temperature, ( ) totav nTnTnT 2211 +≡ , are shown in fig. 3.17 at two times, 

0240tt =  and 0600tt = . 

 Comparing fig. 3.17 with the analogous results presented in ref. [10], 

included here as fig. 3.18, several differences may be noted, due to the 

reasons previously described. Examining the two sets of plots at 0240tt = , it 

may be seen that, up to this time, the diffusion of the plasma plumes has 

proceeded almost identically in both cases. However, the plots of the 

temperature at this time are vastly different: where a temperature spike is 

visible in fig. 3.18, fig. 3.17(b) shows an almost flat temperature profile. In 

the Rambo and Denavit simulation, the ion temperature is initially set to 

01.0 TTi = , with the electrons given a temperature of 0TTe = . These high-

temperature electron fluids quickly diffuse into the centre of the system, due 

to their higher mobility relative to the ions, and conduct heat to the ion 

fluids, causing the high-temperature spike. Thus, the pressure at the centre 

of the system is greater than in the simulation performed in this work, 

inhibiting further diffusion of fluid into the central cells. Ambipolar effects 

seem to be negligible since, as previously stated, the ion diffusion up to time 

0240tt =  in fig. 3.18 is almost identical to the neutral fluid diffusion shown 

in fig. 3.17(a).  Where fig. 3.17(c) shows significant interpenetration of the 

two neutral fluids, the plot of density at 0600tt =  in fig. 3.18 shows 
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stagnation of the central ionic fluids, between two dense regions containing 

outward-moving shocks. 

(a) (b)

(c) (d)

 

Fig. 3.17: Multi-fluid colliding plasma simulation #1 with 3108.6 −×=η . Densities 

and total density (a) and average temperature (b) at 0240tt = ; densities and total 

density (c) and average temperature (d) at 0600tt = . 

 

Fig. 3.18: Results from Rambo & Denavit’s multi-fluid colliding plasma simulation 

with 3108.6 −×=η . Parameters as in fig. 3.17. Reproduced from ref. [10]. 
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 Eventual soft stagnation of the fluids in the simulation presented here 

is observed in the density evolution plots of fig. 3.19. The total density peak 

at the centre increases from time 0360tt = , fig. 3.19(b), until around 0480tt = , 

fig. 3.19(c), at which time the pressure spike at the midplane has become 

great enough to begin forcing diffusion of the fluid away from the centre, 

see fig. 3.20 for the evolution of the total pressure. The total density peak at 

the midplane is seen to broaden and reduce in peak magnitude from times 

0360tt =  to 0600tt = , along with the concomitant separation of the 

individual fluid density peaks shown in fig. 3.19(d). The total pressure peak 

also broadens and reduces in magnitude from times 0360tt =  to 0600tt = , 

see figs. 3.20(c) and 3.20(d), all of which reveals the diffusion of fluid away 

from the midplane. 

 

(a) (b)

(c) (d)

 

Fig. 3.19: Individual fluid densities and total density at times 0240tt =  (a), 0360tt =  

(b), 0480tt =  (c), and 0600tt =  (d), in multi-fluid simulation #1 with 3108.6 −×=η . 
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(a) (b)

(c) (d)

 

Fig. 3.20: Total pressure, 2211 TnTnPtot += , at times 0240tt =  (a), 0360tt =  (b), 

0480tt =  (c), and 0600tt =  (d), in multi-fluid simulation #1 with 3108.6 −×=η . 

 

The stagnation of the fluid is also visible upon comparison of the 

snapshots of the momenta at the two times, 0240tt =  and 0600tt = , shown in 

fig. 3.21, revealed by the reduction of the magnitudes of the peak momenta 

from fig. 3.21(a) to fig. 3.21(b). Also, similar to the single fluid case, the plots 

show reversal of the fluid flow directions between the two times, signifying 

that while the two fluids initially diffuse towards the centre, at the later time 

0600tt =  the pressure at the midplane has inhibited the further diffusion of 

fluid into the centre and has begun pushing fluid outwards, away from the 

centre. The shocks revealed in the plots at 0600tt =  of fig. 3.18, however, 

never form in this simulation, a result of the softer stagnation relative to the 

analogous simulation of Rambo and Denavit. 
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Fig. 3.21: Snapshots of the momenta at times 0240tt =  (a) and 0600tt =  (b), in multi-

fluid simulation #1 with 3108.6 −×=η . Fluid 1 is the solid line and fluid 2 is the 

dashed line in each case. 

 

 

 Multi-fluid simulation #2 has the same input parameters and initial 

density profile as simulation #1, with the exception that, in this case, the 

collision parameter is one order of magnitude less: 4108.6 −×=η . The collision 

frequency is inversely proportional to the collision parameter, meaning 

there is a higher degree of collisionality in this simulation relative to the last, 

bringing the results closer to those of the single fluid case presented in the 

previous subsection with its very abrupt stagnation and formation of strong 

shocks. The evolution of the individual fluid densities and total density is 

shown in fig. 3.22 at four equally-spaced times from 0240tt =  to 0600tt =  

inclusive, such that the plots of figs. 3.22(a) and 3.22(d) are analogous to fig. 

9 of ref. [10], here reproduced as fig. 3.23. Again, significant differences are 

visible upon comparison of these two sets of results and are due to the same 

reasons as for multi-fluid simulation #1. 

 

(a) (b) 
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(a) (b)

(c) (d)

 

Fig. 3.22: Individual fluid densities and total density at times 0240tt =  (a), 0360tt =  

(b), 0480tt =  (c), and 0600tt =  (d), in multi-fluid simulation #2 with 4108.6 −×=η . 

 

 

Fig. 3.23: Densities and total density from Rambo & Denavit’s multi-fluid colliding 

plasma simulation with 4108.6 −×=η . Compare with figs. 3.22(a) and 3.22(d). 

Reproduced from ref. [10]. 

 

Stagnation is again less abrupt for simulation #2 than in Rambo and 

Denavit’s equivalent high-collisionality simulation, as may be seen by 

comparing the density plots at time 0240tt = , but, in this case, the outward-

propagating shocks are clearly visible in the plots from times 0360tt =  to 
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0600tt = , figs. 3.22(b) – 3.22(d), albeit they are closer to the centre of the 

system in fig. 3.22(d) than in the analogous plot of density at time 0600tt =  

of fig. 3.23, having been formed at a later time due to the softer stagnation. 

Similar to the single fluid case, the fluid regions behind the shocks exhibit 

oscillations due to numerical dispersion in the presence of the shocks and 

similar reductions of both the amplitudes of the oscillations and the sizes of 

the affected regions may be seen upon sequential examination of figs. 3.22(b) 

– 3.22(d), showing that the multi-fluid model also converges to smoother, 

more representative solutions as the shocks propagate outwards. The 

remnants of the same numerical effect are visible in the Rambo and Denavit 

plot of density at time 0600tt =  of fig. 3.23, where small oscillations just 

behind the shocks are seen. From the difference in the locations of the shocks 

between times 0360tt =  and 0600tt = , figs. 3.22(b) and 3.22(d), the average 

speed of propagation of the shocks is found to be 05.0 vvshock = , a very similar 

result to that of the single fluid simulation, in which the shocks were found 

to have a speed of 053.0 v . 

Snapshots of the momenta and total pressure at two times, 0240tt =  

and 0600tt = , are presented in fig. 3.24. The momentum plots, figs. 3.24(a) 

and 3.24(c) again reveal the stagnation of the fluids, seen by comparing the 

average magnitudes of the fluid regions between the locations of the peak 

magnitudes of both fluids, which is smaller in fig. 3.24(c). Also visible is the 

by now familiar reversal of fluid flow between the two times.  
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(a) (b)

(c) (d)

 

Fig. 3.24: Momenta of the individual fluids (solid line is fluid 1, dashed line is fluid 

2) at times 0240tt =  (a) and 0600tt =  (b), and total pressures at times 0240tt =  (c) 

and 0600tt =  (d) in multi-fluid simulation #2 with 4108.6 −×=η . 

 

Both the momentum and total pressure plots at time 0240tt = , figs. 

3.24(a) and 3.24(b), show very steep gradients on either side close to the 

midplane, and together with the confirmed presence of shocks at the later 

time in figs. 3.24(c) and 3.24(d), these steep gradients are clear indications 

that step discontinuities, i.e. shocks, are about to be formed. Expanding 

upon this observation, fig. 3.25 shows the total pressure evolution between 

times 0240tt =  and 0315tt =  in intervals of 025t . The total pressure is seen to 

have reached its maximum value by time 0265tt = , fig. 3.25(b), after which 

time the pressure spike splits into the two shocks, hinted at in fig. 3.25(c) 

and confirmed in fig. 3.25(d) by the numerical oscillations present in the 

wake of the shocks. 
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Fig. 3.25: Evolution of the total pressure profiles at times 0240tt =  (a), 0265tt =  (b), 

0290tt =  (c) and 0315tt =  (d) in multi-fluid simulation #2 with 4108.6 −×=η . 
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Chapter 4. Conclusions and possible next steps 

 The results presented in chapter 3 are numerical tests of the accuracy 

and stability of the computational models, with the simulations initialised as 

closely as possible to those of Rambo and Denavit presented in refs. [6] and 

[10]. The first set of tests are isothermal and adiabatic simulations of neutral 

fluid expansions into vacuum. These simulations are initialised in such a 

way that the expansions are self-similar and thus possess analytical 

solutions, making them ideal test cases for validating the accuracy and 

acceptable behaviour of the discretisation scheme, especially near fluid-

vacuum interfaces. In the isothermal tests, qualitative comparisons of the 

analytical solutions and the numerical results show good agreement in the 

density profiles, although small deviations from the theoretical velocity 

profiles and resulting momentum profiles are seen. The adiabatic 

simulations, which are more representative tests of the accuracy of the 

model due to including temperature variations, show improved agreement 

between computation and theory. While the computed velocity and 

temperature profiles deviate from the theoretical results near the fluid-

vacuum interfaces, the fact that these deviations occur in regions of low 

density, together with the computed densities being almost 

indistinguishable from the analytical solutions, means that the transported 

quantities of momentum and pressure agree closely with theory. 

Quantitative estimates of the accuracy of the adiabatic simulations were 

obtained by calculation of the normalised root mean square deviations of the 

momenta and pressures in each case. The errors were calculated to be 1.30% 

and 0.428% for the momentum and pressure, respectively, in the first 

simulation with time-step, 01.0 tt =∆ , after 200 time-steps. Upon examination 

of the results at a later time these errors were found to have reduced: after 

300 time-steps, i.e. at time 088.33 tt = , the errors in the momenta and 

pressures were found to be 1.19% and 0.421%, respectively. Improved 

accuracy was again obtained by increasing the time-step to 025.0 tt =∆ , thus 



 62 

bringing the maximum Courant number reached close to the maximum 

allowed value of unity: in this case, at time 088.33 tt =  the calculated errors 

were only 1.14% and 0.348% for the momenta and pressures, respectively. 

 

 Having shown that the model exhibits a high degree of accuracy in 

the elementary vacuum expansion tests, the next set of tests involved 

colliding plasma systems, simulated by both the single fluid and the multi-

fluid models, and were compared to the results of the analogous simulations 

of Rambo and Denavit published in ref. [10]. The single fluid simulation 

shows good agreement between the two sets of results and captures the 

major features of the Rambo and Denavit simulation, including the 

formation of strong outward-propagating shocks. A small variation in the 

handling of the temperature transport in vacuum regions, however, causes 

the shocks to form at a later time in the simulation performed in this work 

due to less abrupt stagnation. This less abrupt stagnation proves to be a 

recurring theme in the multi-fluid simulations. The multi-fluid simulations 

presented in this work differ from the analogous simulations of Rambo and 

Denavit by the omission of not only electric field considerations and electron 

fluids, but also of thermal equilibration and heat conduction between 

species. Somewhat surprisingly, the lack of electric field appears to 

contribute little to the differing results in these particular simulations. Of 

greater importance is the omission of heat-conducting electron fluids, which 

quickly conduct heat to the low-density ionic fluids near the collision plane, 

causing a high-temperature spike to form at early times in the Rambo and 

Denavit simulations. Without this effect, the softer stagnation observed in 

the single fluid colliding plasma simulation is compounded due to lower 

pressures at the midplane. Thus, in the simulation having intermediate 

collisionality presented in this work, multi-fluid simulation #1, the 

differences are significant enough to prevent the formation of the shocks 

present in Rambo and Denavit’s analogous simulation, due to the softer 

stagnation observed. In the high-collisionality simulation, multi-fluid 
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simulation #2, again the stagnation is less abrupt than for the Rambo and 

Denavit simulation, however in this case the shocks do form, albeit at a later 

time. Although the multi-fluid results differ significantly from the Rambo 

and Denavit results, the model is at least shown to be stable even in the 

high-collisionality case, with the shocks, physically being step 

discontinuities, captured in only three cells and the spurious numerical 

oscillations caused in their wake are shown to be quickly dampened. These 

two numerical effects are severe problems in computational fluid dynamic 

codes, often leading to major instabilities, but the relative strengths of these 

effects seen in the simulations presented here are well within acceptable 

limits and do not excessively undermine the stability of the model. 

 

Possible extensions to the computational model here presented are 

numerous. Initial updates include the incorporation of temperature 

equilibration and thermal conduction between species, as described by 

Rambo and Denavit in ref. [10], which will enable heat-conducting electron 

fluids to be included in simulations. This will allow the results of future 

colliding plasma simulations to approach the analogous results of Rambo 

and Denavit. Of vital future importance to the development of the code is 

the addition to the transport algorithms of an electric field (Poisson 

equation) solver, such as that described by Rambo and Denavit in refs. [6] 

and [10]. While it has been postulated in this work that the absence of 

electric field considerations has little effect on the multi-fluid colliding 

plasma simulations presented in subsection 3.2.2, the successful 

incorporation of an electric field solver is imperative in order to adequately 

model physical plasma phenomena that are distinct from effects observed in 

neutral gas systems, such as ambipolar diffusion and double layers. With 

the inclusion of a working electric field solver, an interesting and illustrative 

test of the quantitative accuracy and qualitative physicality of the model 

would be a comparison with the observed results of a physical plasma 

experiment, either constrained in two dimensions in some manner thereby 
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approximating a one-dimensional system, or by the application of suitable 

geometric assumptions to the computational model, making it a so-called 

“1.5-dimenional” model. 

 

The extensions to the model just described are short- to medium-term 

objectives. Long-term possible additions to the computational model, should 

the current line of research be continued, would involve the inclusion of 

factors not directly related to hydrodynamics, such as modelling of the laser 

ablation of target materials and atomic processes (ionisation, recombination, 

photon emission) within the plasma or due to the presence of a re-heating 

laser focussed on, e.g. the stagnation layer resulting from colliding plasmas. 

However, computer codes that model these effects have already been 

developed (MEDUSA, Z*), allowing for either the development of a modular 

code incorporating these disparate elements or simply sequential use of the 

various computational models to generate parameters and fluid variable 

(density, temperature etc.) profiles to be used as the inputs for the other 

codes. An extension to multidimensions is another exciting possibility, 

which, although challenging, would allow for “realistic” comparisons with 

colliding plasma experiments without having to constrain the experimental 

plasma system or introduce geometric assumptions into the model. 
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Appendix: Simulation results with Gaussian-cgs units 

  

Presented here, without commentary, are the results from a multi-

fluid colliding plasma simulation with the appropriate conversion factors 

applied to enable the display of the outputted fluid variables in terms of 

physical (Gaussian-cgs) units. This simulation uses the same multi-fluid 

model as for the results presented in subsection 3.2.2, with 0λ=∆x , 0tt =∆  

and having an intermediate collisionality with 3101 −×=η . The initial 

density, velocity and temperature profiles are similar to those of the 

simulations of subsection 3.2.2, although with differing relative peak values; 

the initial profiles are displayed in the plots at time 0=t  of figs. A1-A3. The 

conversion factors utilised to convert from the normalised units used so far 

in this work to Gaussian units are as follows: 

 

  Density: -323
0 cm10=n   

Velocity: -16-14
0 cms10ms10 ==v  

Length: cm10m10 -46
0 == −λ  

Time:  s10 10
000

−== vt λ  

 Mass:  g10661amu1 -24
0 ×⋅==m  

 Temperature: eV0361J10661 19
000 ⋅=×⋅== −vmT  
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Fig. A1: Density profile evolution in a simulation with 310−=η . Fluids 1 & 2 

represented by solid and dashed lines, respectively. 

 

 

Fig. A2: Velocity profile evolution of fluid 1 in a simulation with 310−=η . 

The profile of fluid 2 is antisymmetric about the midplane in each case. 
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Fig. A3: Temperature profile evolution in a simulation with 310−=η . Fluids 1 & 2 

represented by solid and dashed lines, respectively. 

 

 

Fig. A4: Pressure profile evolution in a simulation with 310−=η . Fluids 1 & 2 

represented by solid and dashed lines, respectively. 
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Fig. A5: Momentum profile evolution of fluid 1 in a simulation with 310−=η . 

The profile of fluid 2 is antisymmetric about the midplane in each case. 
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