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Abstract

Mechanical Characterization of Porcine Aorta

Using Magnetic Resonance Imaging

Vittoria Flamini

Determination of aortic mechanical properties in a non-invasive way would
be an important step in predicting the onset and development of one of the
most fatal degenerative cardiovascular diseases: abdominal aortic aneurysm
(AAA). The approach presented in this work to achieve this goal couples
Magnetic Resonance Imaging (MRI) with Finite Element (FE) analysis to
define a model of aortic mechanical behaviour. In particular, the aortic fi-
brous structure was analysed using Diffusion Tensor MRI, the results of which
showed that fibres could be tracked in the aortic tissue, and that their angles
measured (± 15◦) are in accordance with the angles reported in literature.
DTI was also applied to a frozen aorta, where the structural parameters ob-
tained were different from those for fresh tissue thus indicating the potential
of DTI to measure damage in aortic tissue. MRI was also used for character-
ization of aortic tissue deformation, using Phase Contrast MRI (PC MRI).
With this technique circumferential strains were measured in an aorta, which
on average ranged between 0.95-4.7%, in accordance with the range found in
vivo from literature. A mechanical constitutive model was implemented, ini-
tially based on the structural information from DTI and uniaxial test data, in
a finite element (FE) model. Strains estimated in the model under applied
physiological pressure were compared with the strains measured using PC
MRI. Material parameters of the constitutive model were changed iteratively
until the strains matched, thus obtaining the material constants necessary
to characterize the behaviour of the aorta non-invasively. This thesis clearly
demonstrates the feasibility of a novel approach to mechanical characteriza-

xix



tion of aortas, based on the use of innovative MRI techniques. Moreover, the
application of DTI to both fresh and frozen tissue, which clearly identified
differences in the tissues at the fibre level, demonstrates the potential of DTI
as a diagnostic tool for degenerative arterial diseases such as AAAs.
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Chapter 1

Introduction

1.1 Cardiovascular Disease

Cardiovascular diseases are the main cause of death in Western Countries.

They are more prevalent in men over 50s and those exposed to the following

risk factors: high lipid diet, smoking and lack of physical activity [1].

The most important characteristic of these diseases is that they can de-

velop symptomless to a large extent for some time. If untreated, cardiovas-

cular diseases may lead to the failure of a major organ such as the heart or

brain, an event that in many cases is catastrophic (e. g. infarction, stroke,

hemorrhage) [2].

In arteries two cardiovascular diseases that occur frequently are atheroscle-

rosis and aneurysms [1]. Atherosclerosis is a narrowing of the internal lumen

of an artery due to the deposition of lipids that form a plaque. The con-

tinuous narrowing of the artery may cause a blockage in the blood flow.

Aneurysms are a localised failure in the arterial wall structure, such that the

vessel becomes thinner and then bulges out. This bulge causes an alteration

in the blood flow and can rupture causing internal bleeding. In both diseases

the anatomical structure of the arterial wall is affected. In particular, the

texture of collagen and elastic fibres that form the arterial wall reinforcement,

acting as a buttress may be altered by the progression of these diseases [2].
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Currently it is possible to study these diseases by looking at blood flow

patterns or using histological techniques. The latter method can give an

insight into the cause and the development of the phenomenon, but it has

huge limitations. First of all, a histological analysis can evaluate only what

happens in a small area of an artery; secondly it requires a surgical procedure,

namely the removal of a piece of tissue from inside the body. Such biopsy

surgery can cause great discomfort and risk for a patient, with related high

costs for the health service. The consequence is that histological techniques

cannot be used to perform screenings to evaluate the physiological condition

of a vast area of the arterial tree. The disease must therefore be developed

enough to cause symptoms and therefore histological analysis cannot be used

to perform an early diagnosis of cardiovascular diseases. There is currently

no appropriate technique that can infer a diagnosis at an early stage of the

disease such that an optimal treatment for the disease can be prescribed.

The absence of an appropriate technology for the study of the compo-

sition of arterial walls in vivo is also a big limitation to the development

of devices for the treatment of cardiovascular diseases. In fact, biomedical

engineers cannot rely on histological data only to determine the mechanical

behaviour of the arterial wall. Difficulties with this data include: the rapid

degradation of tissues excised from the human body and the difficulty with

performing these studies on a large statistical sample where both healthy and

diseased tissues are represented. The lack of reliable material models for in

vivo tissue means that numerical analyses performed to improve the design

of cardiovascular devices (stents, grafts, filters) are limited. The material

models considered are mainly theoretical and due to ex vivo analyses.

It is therefore necessary to develop a new method to study the arterial

tree and its diseases. This new method should be non-invasive and should

allow the different stages of the diseases to be identified and studied. On the

one hand, this would lead to a reliable technique for the diagnosis and the

screening of patients and on the other hand it would offer an effective means

to determine the mechanical properties of the arterial wall, both healthy and

diseased.
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1.2 Objectives

In this study a novel approach is proposed to investigate the structure of

arteries, and in particular, of porcine aortas. More specifically, this study

focuses on the non-invasive determination of aortic mechanical properties

combining Magnetic Resonance Imaging (MRI) and Finite Element Analysis.

In order to achieve this goal the following tasks needed to be completed, see

also fig. 1.1:

1. Constitutive Model:

• Identification of an appropriate constitutive model to describe the

anisotropic fibre structure of an aorta;

• Implementation of the constitutive model using Finite Element

(FE) method;

2. Structural Static Analysis:

• Non-invasive determination of the 3D fibre structure of the aorta

using MRI, and in particular Diffusion Tensor Imaging (DTI);

3. Dynamic Analysis:

• Non-invasive determination of aortic deformations under physi-

ologic of blood flow conditions using Phase Contrast MRI (PC

MRI);

4. Determination of Aortic Mechanical Properties:

• In an iterative procedure, the constitutive model determined in

task 1 needed to be modified using the results from the DT MRI

in task 2 and the PC MRI analysis in task 3 to determine the

specific mechanical behaviour of the imaged aorta.
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Figure 1.1: Flow chart describing the main project objectives and the rela-
tionship between these objectives.

This project shows potential in both the engineering and medical fields. From

an engineering point of view, the success of this technique advances preclinical

research of vascular devices enabling the development of better medical device

designs. From a medical point of view, this methods represents a new means

of studying the arterial wall in a non-invasive manner and it could be of great

importance for the early diagnosis of many life-threatening vascular diseases,

such as aneurysms and the onset of atherosclerosis. In addition, it could offer

significant insight into the aetiology of such degenerative disease.
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Chapter 2

Literature Review

2.1 Introduction

The purpose of this study is the in vivo determination of the mechanical

behaviour of blood vessels and in particular of the aorta. The aorta is the

largest blood vessel in the human body, stemming directly from the heart.

Due to the closeness of the aorta with the pumping action of the heart, the

pressure endured by the aortic wall is the highest in the body, and its shape is

pulsatile and both its amplitude and frequency change with different human

activities [2]. In order to be able to withstand this continuously changing

pulsatile pressure the aortic wall has developed a special structure made of

different layers with fibres interwoven. The study of this structure is not

only interesting for the characterization of the healthy aortic tissue, but it

is of paramount importance in medical practice. In fact, one of the most

fatal cardiovascular diseases, the abdominal aortic aneurysm, is related to a

change in the structure of the aortic wall.

The aortic wall, like the majority of biological tissues, is a soft tissue

whose behaviour can be represented by a constitutive model. Constitutive

models are a representation of the real behaviour of the tissue and they are

usually determined in a two step process. In the first step the structure of the

tissue is analysed and the loading response studied; in the second step the
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information about the structure and the loading response are combined and

a law that describes the tissue behaviour is derived. A constitutive model

for arterial tissue can be implemented into a finite element software, and

can be used for representing the tissue behaviour in simulations aimed at

improving the design of medical devices or at predicting the outcome of a

surgical procedure on a patient.

In order to be deemed suitable a numerical model needs to be validated.

In general this validation is achieved by comparing the effects of a realistic

loading of the tissue with that obtained from a simulation. In the present

work, a constitutive model of the aorta will be defined and validated com-

paring the deformations obtained from a numerical simulation with these

observed in different experiments. Such a constitutive model will be gener-

ated using structural information on the aortic wall obtained using a novel

technique: the aortic structure will be investigated non-invasively by imaging

the vessel using Magnetic Resonance Diffusion Tensor Imaging (MR DTI).

MR DTI will be applied to arterial tissue for the first time in the present

work.

The procedure outlined and validated in the present work leads the way

for the non-invasive characterization of aortic wall structure and has the

potential to be implemented as a diagnostic tool for cardiovascular diseases.

2.2 Aorta: Structure, Function and Diseases

The aorta is the largest artery of the body. It stems out of the heart’s left

atrium, and is the ‘conduit’ that delivers oxygenated blood to all the human

body tissues, see fig. 2.1. Immediately after leaving the heart, the aorta

forms an arch, from which three main branches leave: the brachiocephalic

trunk, the left common carotid artery and the left subclavian arteries, as

can be seen in fig. 2.2. These three branches have the role of supplying

blood to the upper limbs and the brain. After the arch, the aorta descends

into the torso and is then called the descending aorta. Two parts can be
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Figure 2.1: Position of the aorta in the body, from [3].

distinguished in the descending aorta: the thoracic aorta and the abdominal

aorta. In humans, the transition between the descending aorta and the ab-

dominal aorta is marked by the diaphragm. The thoracic aorta begins at the

fourth thoracic vertebra and ends anterior to the twelfth thoracic vertebra,

in the diaphragmatic aortic aperture. It provides visceral branches to the

pericardium, lungs, bronchi and oesophagus, and parietal branches to the

thoracic wall [2, 3].

The abdominal aorta begins at the inferior border of the twelfth thoracic

vertebra and descends anterior to the lumbar vertebrae to end at the fourth

lumbar vertebra, by dividing into two common iliac arteries. The abdominal

aorta branches to supply the viscera and the vertebral column. Its diameter

diminishes rapidly in calibre as it descends, because the branches are large,

however, with age the diameter increases slightly and the angle at the bifur-

cation changes [2].

Similar to all arteries the aorta has three layers: the tunica intima (inner

layer), the tunica media (intermediate layer) and the tunica adventitia (outer
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Figure 2.2: Aortic branches, modified from [3].

layer), as can be seen in fig. 2.3. Arteries can be classified as elastic or mus-

cular depending on the composition of these three layers. Elastic arteries are

those in which the media contains many elastic laminae and smooth muscle

cells. Muscular arteries are those in which the media is mainly composed of

smooth muscle cells and the content of elastic laminae has diminished. Large

blood vessels are elastic, while small diameter vessels and vessels approaching

the periphery are generally classified as muscular [5].

The aortic tunica intima is composed of endothelium and subendothe-

lium. The endothelium is formed by a single layer of cells that is separated

from the next layer by a basal lamina. Its role is the protection of the in-

ner structure from plasma lipids and lipoproteins. The subendothelium is

composed mainly by smooth muscle cells, that become denser as they ap-
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Figure 2.3: Arterial layers within the aortic wall, modified from [4].

proach the tunica media. The tunica media is composed of elastic laminae

and smooth muscle cells, as in fig. 2.4. The elastic laminae are concentri-

cally arranged and regularly spaced. The smooth muscle cells are oriented

obliquely running diagonally at small angles between the concentric elastic

laminae, forming a spiral [5]. Lastly, the tunica adventitia is made up of

dense fibroelastic tissue without smooth muscle cells. It can also contain

Schwann cells with associated nerve axons.

When excised from the body, the length of the aortic vessel diminishes [6].

The aorta, therefore, like most of arteries, is longitudinally pre-stretched in

situ. This is a strategy adopted to reduce the load due to the pressure of the

blood expelled from the heart. As can be seen in fig. 2.4, fibres within the

aorta are helically wound [5]: this means that if stretched along the longitu-

dinal direction, the aortic internal radius diminishes. According to Laplace’s

law for thin walled vessels1:

σθ = P
r

δ
; (2.1)

1The mean value of σθ for thick walled cylindrical vessels equals exactly the universal
result for the inflation of a thin walled cylinder, regardless of the material properties or
the thickness [6].
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Figure 2.4: Concentrical layers in the arterial fibre orientation, from [5]

where σθ is the circumferential stress, P is the internal pressure and r is the

internal radius of the vessel when pressurised, and δ is its thickness. From

this it can be deduced that a reduction in the radius due to the longitudinal

pre-stretch will consequently reduce the circumferential stress experienced

by the aortic wall when pressurised by the blood [7]. The longitudinal pre-

stretch can be evaluated from the following:

λz =
z

Z
; (2.2)

which is the ratio of the axial length of the vessel in situ, z, to that in vitro,

Z [8]. The parameter λz, axial stretch, has been measured for aortas from

different animals and it has been found to increase along the length of the

aorta from 1.1 to 1.6 [8].

Another characteristic of arteries that has been observed is that when an

arterial ring is cut radially, it springs open [9–11]. This behaviour demon-

strates the presence of residual stress in the arteries. Many reasons have been
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proposed to explain this phenomenon. From a developmental point of view it

has been noted that prior to the first heartbeat residual stress is not present,

i.e. the number of cells in the internal and external layers of the vessel are

the same [12]. Subsequently, after the first heartbeat, due to the mechanical

stimulus of the blood flow the cells in the internal layer grow faster than

those in the external layer, causing the residual stress [6]. From a functional

point of view, it has been hypothesised that circumferential residual stress is

needed to maintain an uniform stress state for the vessel [8]. Residual stress

in arteries has been widely studied and it has been found to increase along

the aorta away from the heart and to increase with age, demonstrated by an

increased opening angle [13]. Moreover, the opening angle was found to be

significantly greater in males than in females [13]. Cardiovascular diseases

alter the arterial structure of the vascular wall and cause changes in the phys-

iological stress pattern. Usually, this is estimated by measuring the vessel

opening angle, whereby it is higher in vessels with visible atheroma [13].

Aortas are susceptible to many different diseases, like aortic atheroscle-

rosis and aneurysms. These diseases are due to or cause an alteration in the

mechanical properties of the aortic wall [2].

In aortic atherosclerosis a narrowing of the internal lumen may be ob-

served. This is the result of a chronic inflammatory response in the walls

of the aorta. The inflammation is in large part due to the accumulation

of macrophage white blood cells. Lacking the adequate removal of fats and

cholesterol from the macrophages, which is performed by functional high den-

sity lipoproteins (HDL) low density lipoproteins (LDL) accumulate, promot-

ing atherosclerosis [14]. This disease may be implicated in embolic events or

strokes. Imaging can be used for the diagnosis of aortic atherosclerosis where

it is possible to see a signal loss due to the turbulent flow at the atheroscle-

rotic plaque. Imaging can also enable the narrowing to be observed and the

composition of the plaque to be investigated. This can permit the assessment

of the risk of plaque rupture and thrombus formation [2].

Aortic atherosclerosis itself may be one of the causes of another disease,

the aortic aneurysm [15]. An aneurysm is a dilatation of the aortic wall and

may form in any part of the aorta [16]. In the thoracic aorta the medial wall
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Figure 2.5: Abdominal aortic aneurysm, from [18].

can degenerate and intimal dissection can occur. They can also be result from

diseases of the connective tissue such as Marfan’s syndrome2, homocystin-

uria and Ehlers-Danlos syndrome3. Aneurysms in the descending aorta and

abdominal aortic aneurysms (AAA), are generally caused by atherosclerosis

and in a small percentage of cases by mycotic diseases or trauma, see fig.

2.5. Usually aneurysms grow symptomless. When symptoms are present

they include breathlessness, chest pain, back pain, hoarse voice, cough and

haemoptysis. An aortic aneurysm can alter the blood flow and give rise to a

phenomenon called aortic regurgitation: this altered flow pattern generates

murmurs that may be audible on cardiac auscultation. Repair of AAA is

generally carried out in patients with symptoms or with a dilatation that

exceeds 5 cm in diameter [2, 17]. The treatment consists of a prosthetic-

graft replacement of the diseased aorta [19] or in the deployment of a stent

graft in the aortic region. The former surgery is quite invasive requiring the

abdomen to be opened and may be associated with potential complications

like injury to large lymphatic trunks that could lead to chylous ascites [2].

The biggest risk related to aneurysm is the fact that it can grow silently and

2marfan.org
3ednf.org
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then rupture. Rupture in most cases results in hemorrhage, and is a fatal

event. Many studies have been conducted on the factors that lead to aortic

aneurysms and aortic aneurysm rupture [20].

Most of the studies done on abdominal aortic aneurysms have analysed

the effect that the altered blood flow has on the thin enlarged aneurysmatic

wall [17,21–25] and investigated if a stress concentration in the wall can pre-

dict the rupture point [26]. All of these studies investigate the disease once

it is clearly manifested, i.e. the aorta is dilated. Further study of the micro-

scopic structure of the aortic wall to assess the disease at an early stage is

needed. Many studies have been conducted on the structure and orientation

of fibres within the aortic wall. All of them concluded that an aneurysm is

the result of a degenerative disease that progressively alters the ratio of aortic

wall components, thus weakening its structure [27]. In fact, evidence indi-

cates that AAAs are associated with increased local production of enzymes

capable of degrading elastin and interstitial collagen [28]. In particular, it

was found that AAAs alter elastin concentration and configuration [28–30],

that collagen degradation is caused by an enzyme produced by smooth muscle

cells (SMCs) [28,31], and that SMCs content was reduced and SMCs apopto-

sis was increased in AAAs [30,32]. Most of the studies that relate aortic wall

dilatation with mechanical failure of collagen and elastin were done using

histology or special microscopes that require the tissue to be harvested from

the body [33–35]. The use of these techniques for the early stage diagnosis

of aortic disease is highly impractical due to their invasiveness since removal

of a sample of aortic tissue is necessary.

There is a clear need, therefore, to develop a method to study the aortic

structure in a non-invasive way, in order to provide a means of early diagnosis

of this life-threatening disease.

2.2.1 Porcine Aortas

In general, due to limitations in the availability of fresh human tissue, bio-

logical studies are carried out on animal tissue. Amongst the many species

available, the most popular animal tissue used for modelling the human car-
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Figure 2.6: Anatomy of the aorta in different species: A) Heart and blood
blood vessels in a pig, modified from [41]; Heart and blood blood vessels in
a human being, modified from [3].

diovascular system is the porcine one. The similarity between the porcine

cardiovascular system and the human cardiovascular system, shown in fig.2.6,

stretches so far that porcine aortic valves are used in current clinical practice

for xenotransplants on human diseased hearts [36,37]. Porcine arteries can be

used to model human arteries not only because of a similar size: it has been

demonstrated, in fact, that also the mechanical response and the structure

of two systems is particularly close [38, 39]. Early works by Rhodin [5] and

Burton [40] used porcine aortas in their histological and mechanical stud-

ies of arteries and, more recently, Hughes et al. [38] and Johnson et al. [39]

have used porcine models to mimick the behaviour of human cardiovascu-

lar diseases, since also the histopathological proliferative response to arterial

disease is similar to that seen in humans [39]. Due to the similarities between

human and porcine vascular tissue and due to the large body of literature on

the reliability of porcine models, the novel technique described in this work

was carried out on porcine aortas.
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2.3 Constitutive Models for Arterial Tissue

The starting point for the characterization of the mechanical behaviour of the

aorta is the choice of a suitable constitutive model. The constitutive model

needs to be carefully selected since it will influence the outcome of the whole

study, i.e. a poor constitutive model would fail in the characterization of the

aorta. Finding a suitable model for aortic tissue is a challenging task, because

of the complex three layered structure of the tissue previously described 2.2.

This complex structure has implications in the mechanical behaviour of the

tissue, which responds non-linearly to loading. Moreover it is noteworthy

that in vivo the aorta is subjected to a variety of loads: the longitudinal

pre-stretch, the circumferential residual stress, the cyclic inflation by blood

pressure [6].

Arterial Mechanical Behaviour

By looking at fig. 2.7 it is possible to see that the behaviour of an artery

is non-linear and that it can be represented as a function of the inflating

pressure (blood pressure). As outlined previously, the inflation of a cylinder

follows the law of Laplace, see eq. 2.1. If Laplace relationships are plotted

for different pressures (straight lines through the origin), it can be noted that

for each line there is only one point of intersection with the arterial response

curve. The radial value where the Laplace line and the artery curve meet,

represents the equilibrium radius for the artery at that pressure. For the

inflation to be stable, the intersection point has to exist, as it represents

an equilibrium condition. This shows that there is a functional reason for

the arterial behaviour to be non-linear, as this behaviour will ensure arte-

rial stability for the continuous inflation operated by the heart [42]. The

stress-strain relationship for an aortic wall belongs to a particular kind of

non-linear material: it can be defined as hyperelastic. Hyperelastic means

that the material can undergo large deformations without permanent defor-

mation. This depends on the structure of the three-layered aortic wall and

mainly in its composition of elastin and collagen fibres. In the first part of
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the stress-strain curve of an artery, only elastin is responsible for bearing the

load. As the load increases, the collagen fibres, that are stiffer, straighten

and start to bear the load; they account for the steep linear part at the end

of the curve [42]. This was demonstrated by Burton et al. [40] by selectively

digesting one of the two components (elastin and collagen) and performing

uniaxial tests on the sample. As can be seen from fig. 2.8, when trypsin

digestion was used to remove elastin, the remaining tissue demonstrated the

properties of collagen (curve with diamonds). Alternatively, when formic

acid digestion was used to remove collagen, the remaining tissue had the

properties of elastin fibres (curve with open circles). Together with colla-

gen and elastin there is a third component in arteries, that is the matrix on

which fibres are laid. This component has a high percentage of water, and

gives a very interesting property to the arteries: incompressibility. Water

itself is incompressible, and the arterial wall is composed of approximately

70% water. Incompressibility dictates that not all the deformations are al-

lowed simultaneously: stretching in one direction should be accompanied by

shrinkage in the other direction to ensure the conservation of volume. This

condition is described by equation 2.3, where the product of the stretches

in the circumferential, axial, and radial directions, respectively, is equal to

one [43].
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Figure 2.8: How elastin and collagen affect the arterial stress-strain relation-
ship. The broken curve is for an untreated artery from [42].

λθλzλR = 1; (2.3)

Arterial Constitutive Models

To describe such complex behaviour many constitutive models have been

proposed in literature. Due to the hyperelasticity of the aorta, all of them

have to be defined for large deformations. Under the assumption of path

independence between the initial and final strain states, strain energy func-

tions can be defined to describe these models [44]. The strain energy function

is generally a function of the Green strain tensor E, see eq. 2.4, which is a

function of the deformation gradient F , see eq. 2.5 [6, 45]:

Ψ = Ψ(E); (2.4)

E =
1

2

(
F tF − I

)
; (2.5)
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where Ψ denotes the strain energy function, and I the identity tensor. The

second Piola–Kirchhoff tensor, S, and the Cauchy stresses σ are closely re-

lated to the strain energy function by means of E, see eq. 2.6 and 2.7 [44,45]:

S =
∂Ψ(E)

∂E
; (2.6)

σ = J−1F
∂Ψ(E)

∂E
F t; (2.7)

where J is the Jacobian determinant of the deformation tensor J = det(F )

and represents the ratio of the deformed configuration volume to the reference

configuration volume4 [6]. Expressing a constitutive model through the strain

energy function is convenient as it allows the stress–strain relationship to be

written as a scalar function rather than a tensor function.

The strain energy functions hitherto proposed in literature are exponen-

tial [6,46]; or neo-Hookean [47]; or based on a polynomial interpolation, like

the Mooney-Rivlin model, as in [48]. All these works assumed the material

model as homogeneous and pseudoelastic. Pseudoelasticity is a concept in-

troduced by Fung [46]. In his studies, he noted that arterial tissue does not

have coincident loading and unloading curves, as shown in fig. 2.9. The area

enclosed between the two curves represents the amount of dissipated energy.

This loss of energy can be regarded as viscous dissipation, that depends

not only on the amount of deformation but also on the rate of deforma-

tion [6]. Fung [46] observed that soft tissue tends not to depend strongly on

strain rate. He suggested that the loading and unloading behaviour could

be treated separately as elastic and called such an approach pseudoelasticity.

To describe the stress-strain relationship of arterial tissue he proposed an

exponential strain function, that in its more general formulation corresponds

4The following relationship is also valid: J2 = det(C) = I3 = λ2
xλ

2
yλ

2
z, where C is the

right Cauchy-Green deformation tensor, I3 the third strain invariant and λ the stretch in
the prescribed direction. For arterial tissue incompressibility is assumed, eq. 2.3, and so
it is possible to state that J = 1.
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Figure 2.9: Noncoincident loading and unloading, evidence of viscous dissi-
pation, from [6].

to eq. 2.8:

Ψ =
1

2
c
(
eQ − 1

)
; (2.8)

Q = c1E
2
11 + c2E

2
22 + c3E

2
33

+2c4E11E22 + 2c5E22E33 + 2c6E33E44 (2.9)

+c7
(
E2

12 + E2
21

)
+ c8

(
E2

23 + E2
32

)
+ c9

(
E21

13 + E2
31

)
;

where c and c1−c9 are material parameters and E11−E33 the components of

the Green tensor. The number of c1 − c9 constants changes according to the

material symmetries considered: an orthotropic model will need them all; a

transverse isotropic model will need five constants; an isotropic model only

two [46]. This strain energy function has been applied to a wide variety of

biological soft tissues and has proven to be a good description of experimen-

tal data [6], although not offering any insight into them. In fact, there is no

direct correspondence between the material constants and the structure of

the soft tissue analysed. Since this correspondence is key to the aim of this

thesis, that is to distinguish and describe the behaviour of the constitutive

elements of the aortic tissue, other strain energy function were considered.

Another hyperelastic strain energy function is the Mooney–Rivlin model. It

is a polynomial function of the strain invariants I1, I2, defined according to

eq. 2.11, 2.12. The general formulation of a Mooney–Rivlin strain energy

function is the one shown in eq. 2.10:
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Ψ =
∞∑

i=0,j=0

cij(I1 − 3)m(I2 − 3)n; c00 = 0; (2.10)

where

I1 = tr(C) = λ2
1 + λ2

2 + λ2
3; (2.11)

I2 =
1

2
(C2 − Ct · C) = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3; (2.12)

I3 = det(C) = λ2
1λ

2
2λ

2
3; (2.13)

in this case cij are the material parameters and C is the right Cauchy-Green

deformation tensor. Depending on the values assigned to m and n different

formulations are possible. For example, with m = 2, n = 1 the Signiorini

model is obtained, while with m = 3, n = 1 the model used in Lally et

al. [48] can be reproduced. Note that only when the c10 material parame-

ter is present, the constitutive model is called the neo-Hookean model [44].

Unfortunately, with this model it is also difficult to isolate and represent the

behavior of collagen fibres, and this is the reason why a different kind of

model is needed.

The latest development in the study of arterial tissue is the attempt to

study the tissue as a heterogeneous material. Using heterogeneous material

elements the constitutive parameters have physiological meanings related to

the microstructure, i.e. the model becomes mechanistic. In particular, the

arterial wall can be regarded as an anisotropic fibre-reinforced material: a

material in which fibres are dispersed in a matrix at a specific angle. Ac-

counting for the presence of fibres results in the addition of a term in the

strain energy function that accounts for the anisotropy of the fibres, as shown

in the following eq. 2.14.

Ψ = Ψiso +Ψaniso; (2.14)

The isotropic term is often one of the isotropic models presented above, de-
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pendent on the strain invariants I1, I2. The anisotropic term depends on the

direction (angle) of fibres [43,49–56]. This formulation has led to the determi-

nation of new invariants that describe the strain energy function anisotropic

term, and are defined by eq. 2.15–2.19 [43]:

I4 = a0 · C · a0; (2.15)

I5 = a0 · C2 · a0; (2.16)

I6 = a′0 · C · a′0; (2.17)

I7 = a′0 · C2 · a′0; (2.18)

I8 = a0 · C2 · a′0; (2.19)

where a0, a
′
0 are the directions of the fibres present in the material. The fibre

orientation within the arterial wall is usually determined through histological

analyses, see fig. 2.10, leading to the definition of what can be called a

histomechanical model [50]. Currently there are models defined for one family

of fibres [54, 58], two families of fibres [49–53] and up to four families of

fibres [55,56], see schematic on fig. 2.11.

One of the possible options to model aortic tissue is a fibre reinforced

material model, like the one described in [54, 59]. This is a heterogeneous

model with one family of fibres, where the isotropic part of the strain en-

ergy function has a Mooney-Rivlin formulation and the anisotropic part is

a function of I4. One of the characteristics of the model is that it is de-

termined piecewise (e.g. it applies different equations for different portions

of the stress-strain curve), hence the determination of the model can be bi-

ased by the switch points chosen, making it unsuitable for the present work.

Moreover, considering only one family of fibres while producing valid results

for the in-fibre direction, does not allow for a correct representation of the

cross-fibre directions, [54, 59]. From histological findings, see fig.2.10, it is

possible to see that fibres are usually arranged in a symmetrical way, with

two opposite directions bearing the load.
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Figure 2.10: Example of histomechanical modelling for the coronary artery
from [57]: top) fibre angle from histological data; bottom) stress-strain re-
sponse for every layer.

In order to give a more complete representation of the variety of fibre

distributions observed within the arterial layers, a model considering four

families of fibres could be used [55,56]. The strain energy function defined in

this model is the sum of a neo-Hookean term mimicking the elastin isotropic

behaviour, an exponential term, function of I4 representing the orientation of

each collagen fibre family, and a linear term reproducing the smooth muscle

activation. This model, however complete, lacks the possibility of represent-

ing fibre distribution variation across the different layers. The absence of

a parameter to represent the distribution of each family of fibres weakens

the validity of this model: able to represent the arterial wall globally, but

unsuitable to represent each arterial layer singularly.
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Figure 2.11: Schematic of fibre orientation in different constitutive models:
A) one family of fibres [54, 58]; B) two families of fibres [49–53]; C) four
families of fibres [55, 56].

Factors that can influence the choice between different structurally mo-

tivated models are repeatability, breadth of application, and availability of

data for comparison. A model that fits into these requirements is the one

defined in [53]. This constitutive relation represents the complex architecture

of an arterial layer as a fibre-reinforced composite in which two families of

collagen fibres are embedded in an isotropic groundmatrix [53].This model,

like the former two analysed, is made up by the sum of an isotropic neo-

Hookean term and an anisotropic one. Moreover, like the model by Baek

et al. [55], the anisotropic term, responsible for representing the collagen re-

sponse, is an exponential function. However, the biggest advantage of the

model developed by Gasser et al. [53] is the presence of a fibre dispersion

parameter κ, which, by measuring the distribution of fibres, gives the model

a general validity. In fact, such a model can be used to reproduce the be-

haviour of each single arterial layer, as in fig.2.10, as well as the arterial wall

as a whole. This feature, together with the availability of extensive resources

on the application of this model to arterial tissue [53, 57, 61, 62], made this

constitutive model the most suitable one for the present study.
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Figure 2.12: Comparison between FE results for the model described in
[54,59] with experimental data for a adventitia obtained from [60].

2.3.1 Mechanical Tests on Arterial Tissue

A constitutive model is usually determined from its stress-strain curve, there-

fore, to study and to determine a characteristic stress-strain curve for the

aorta, experimental tests had to be conducted. These tests have demon-

strated that the aorta, like most of arteries, has an anisotropic behaviour,

i.e. its stress-strain curve depends on the direction of the load. This can

be seen in fig. 2.10, where stress-strain curves obtained by testing coro-

nary arteries are shown. From the same figure it is possible to see that this

anisotropic behaviour is caused by the orientation of the fibres within the

tissue. The anisotropy due to presence of fibres interwoven in the tissue has

raised speculations on the most suitable mechanical test for arteries. In lit-

erature there are many examples of uniaxial [50, 53] and biaxial [6, 48] tests

conducted on arteries. Recently, uniaxial tests on each arterial layer [2],

have been reported [57,60,63]. In order to account for the anisotropy of the

tissue, uniaxial tests on arteries are usually performed in the arterial longi-

tudinal and circumferential direction, see fig. 2.13, and fig. 2.10. Biaxial

tests are often used because a biaxial loading is considered closer to the one

experienced physiologically by the tissue, that is loaded in two directions

simultaneously [17]. While biaxial tests allow for studying the interactions
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Figure 2.13: Example of uniaxial test on aortic tissue; A) longitudinally
oriented porcine aorta test specimen; B) representative stress-strain curve
for longitudinal vessel distraction, from [65].

between the fibres and the ground matrix, they make it impossible to deter-

mine simultaneously the behaviour of the tissue in each direction, and they

need large variations in the stresses and strains applied to the tissue in both

directions to obtain a full characterization of the tissue [64]. By contrast,

uniaxial tensile tests require the tissue to be tested in each direction of in-

terest and therefore allow the effects of the fibres on each direction to be

determined independently. If carried out on each direction of interest, uni-

axial tensile tests can then be considered suitable for the determination of

the stress response of arterial tissue, since they offer enough information to

define an anisotropic behaviour. In the present work, uniaxial tests will be

performed in both the longitudinal and the circumferential direction. Since

the process of stripping every single arterial layer was considered invasive,

the aortic specimens were tested as a whole, and their results used to define

the constitutive model.
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2.4 Medical Imaging

In order to obtain a model representative of the real vascular tissue, its

structure and response to stress should be studied in vivo and with min-

imum discomfort for the patient. Currently studies on vascular tissue are

conducted mainly using histological techniques. This means that the tissue

is studied when it is no longer in the body. In order to perform histological

studies, tissue has to be harvested from human bodies by surgery or during

autopsy. In the first case the discomfort for the patient is evident, whilst

in the second the tissue studied is degraded due to rigor mortis. Medical

imaging is a non-invasive way to examine what happens inside the body.

Non-invasive techniques that are commonly used for the study of arterial

diseases include Computed Tomography Angiography (CTA) [66], Magnetic

Resonance Angiography (MRA) [67], X-Ray Angiography [68] and colour

Doppler Ultrasound [69]. These imaging modalities are limited as they can

only image the blood flow and cannot be used to study the mechanics of the

arterial wall. They can therefore only provide information on the effect of

arterial disease on blood flow and not the underlying cause. Conventional

imaging techniques like Computed Tomography (CT) [70] and Magnetic Res-

onance Imaging (MRI) [71] can be used to image the arterial wall; however

they can only provide an anatomical description of a vessel which is insuf-

ficient for full mechanical characterization. Finally, disadvantages of tech-

niques such as Ultrasound or Nuclear Medical Imaging (NMI) (like Positron

Emission Tomography (PET)) are low penetration through air or bone and

the need for radioactive tracer material to be administered to the patient,

respectively [72].

2.4.1 Magnetic Resonance Imaging

Among the imaging techniques listed above, Magnetic Resonance Imaging is

the technique that poses minimal risk for patients who have no ferromagnetic

foreign bodies implanted [73]. At the same time, MRI allows the visualisation
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of inner human organs: Magnetic Resonance images are characterized by

excellent contrast between the various forms of soft tissue within the body

[72]. Moreover, MRI offers the possibility of extrapolating information other

than geometry of inner organs from the body. Different MRI techniques can

evaluate the shear stress on the tissue (Magnetic Resonance Elastography);

its motion (Tagged Magnetic Resonance); the velocity of its motion (Phase

Contrast Magnetic Resonance or Magnetic Resonance Fluoroscopy [74]); the

diffusion of water (Diffusion Tensor Imaging). Due to its versatility and the

absence of risks for the patient, Magnetic Resonance Imaging (MRI) is the

best technique to determine in vivo aortic structure and behaviour.

In particular, to perform the static analyses in this study a special MRI

technique was chosen: Diffusion Tensor Imaging. In order to study the aortic

wall deformation when subjected to the blood flow cyclic loading another

technique was chosen: Phase Contrast Imaging.

2.4.2 Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a particular MRI technique which was

introduced in the mid 1990s by Basser et al. [75]. With this technique it is

possible to study the diffusion of water that is abundant in human tissues.

Water molecules move through tissues and this motion is due to the thermal

motion of the molecule (Brownian motion). If there are no fibres in the

tissue the probability for a molecule of water to move in all the directions

is the same. This is the case for isotropic diffusion and the area of probable

motion for a water molecule can be represented as a sphere. If there are

fibres in the tissue, there is a higher probability for the molecule of water

to move along the fibres rather than perpendicular to these fibres, as fibres

represent an obstacle. This is the case for anisotropic diffusion and the area

of probable motion for a water molecule can be represented as an ellipsoid.

This diffusion ellipsoid can be represented mathematically by a tensor. It is

therefore possible to determine the anisotropy of a tissue by determining the

diffusion tensor of water in the tissue [76,77].
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Measure of Diffusion

Diffusion is measured using a spin-echo pulse sequence. Every proton (H+),

can be represented as a vector with its resonance frequency (Larmor fre-

quency). When a strong magnetic field is applied, all of these vectors align

along the direction of the field, say z [78]. When a radio frequency excitation

pulse is applied, the vectors are rotated into the transverse plane (x,y) and

start precessing at their Larmor frequency. This frequency is dependent on

the magnetic field experienced by the protons, and is dependent on the tissue

type. Dephasing is the name given to this process. Subsequently a 180◦ refo-

cusing pulse is applied, that causes the protons to rephase, but if the Larmor

frequencies are changed, the realignment will be imperfect. Applying a mag-

netic gradient in one direction, the Larmor frequencies are made spatially

dependent. Therefore, if spins have not moved, they will realign, but if they

have diffused, their frequency will be different and they will not realign [78].

This non-realigning implies a loss in the signal intensity. Then it can be

stated that the more a proton moves during this process, the more signal

intensity is lost, and this loss depends on the strength and duration of the

magnetic field gradient (represented by b, the diffusion weighting factor [79])

and on the Diffusion tensor D itself. D is a 3×3 symmetric positive definite

tensor. The relationship between the signal intensity and the diffusion tensor

can be represented by eq. 2.20:

S

S0

= exp−γ2G(t)2δt2(∆t− δt
3
)D =

= exp−bD; (2.20)

where S0 is the reference signal intensity (i.e. without considering diffusion

gradients), S is the signal with the gradient applied, γ is the gyromagnetic
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ratio5, G(t) is the strength of the gradient pulse, δt is the duration of the

pulse, ∆t is the time between the two pulses, and finally, D is the diffusion

constant [78,80]. The b value influences the signal-to-noise ratio of the image

and describes the impact that the diffusion has on the image: when the b

value increases, water molecular diffusion increases and therefore the signal of

the image, S, diminishes along the direction of the gradient and the signal-

to-noise ratio decreases [81, 82]. In contrast, for low b values the signal-

to-noise ratio can be high but diffusion of water molecules along fibres is

so low that fibre tracking may be impeded. The b value and the gradient

are connected: the b value is proportional to gradient parameters such as

amplitude, duration and time spacing and the most suitable value depends

on the tissue type being imaged [76,82].

In order to have a valid result in a three dimensional environment, the

gradients are applied in more than one direction simultaneously: diffusion

must be measured in at least six directions. This is due to the fact that the

orientation of the tensor is not known in advance and that many orientations

can be present in a biological sample. This special sequence results in the

definition of a diffusion tensor for each voxel of the image.

Tensor-Derived Quantities Of Diffusion

A Diffusion tensor contains information on water diffusion that may be ex-

trapolated to describe structural characteristics of the material. To study

in detail Diffusion Tensor Imaging, tensor-derived quantities have been de-

fined [75,77,79,80,83] that can be used to study the anisotropy of the tissue.

Diffusion Anisotropy Indices The diffusion tensor eigenvalues can be

evaluated and rotational invariants defined according to the following eq.

5When placed in a magnetic field not aligned with its magnetic moment, hydrogen
(H+) nuclear spin will precess at a characteristic frequency: the gyromagnetic ratio is
the relationship between the precession frequency and the magnetic field strength. It is a
property due to proton mass and charge, characteristic of each element rephase [78].
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2.21–2.24:

I1 = λ1 + λ2 + λ3; (2.21)

I2 = λ1λ2 + λ2λ3 + λ1λ3; (2.22)

I3 = λ1λ2λ3; (2.23)

I4 = λ2
1 + λ2

2 + λ2
3; (2.24)

these quantities can be used to define what are called Diffusion Anisotropy

Indices (DAIs) [80], relative quantities that range from zero (isotropy) to one

(complete anisotropy) and that can be used to compare different studies. The

most used DAI is Fractional Anisotropy (FA) [75, 77, 79, 84]. It is defined

according to eq.2.25:

FA =

√
1− I2

I4
=

=

√
3

2

√
(λ1 − tr(D))2 + (λ2 − tr(D))2 + (λ3 − tr(D))2

λ2
1 + λ2

2 + λ2
3

; (2.25)

Fractional Anisotropy6 is related to the presence of oriented structures within

the tissue, and is proportional to the diffusion ellipsoid’s eccentricity [85].

2.4.3 Fibre Analysis

The quantities evaluated from the Diffusion Tensor are not only related to

the motion of water molecules, but can be used to describe the environment

in which this motion happens. From the evaluation of the eigenvectors a

6It has to be noted that invariant I4 defined by eq. 2.15 for fibre-reinforced materials is
different than I4 defined by eq. 2.24 for DTI. In fact, eq. 2.24 corresponds to the trace of
a squared tensor, i.e. I4 = tr(T 2) = I21 − 2I2. Due to the fact that the quantity expressed
by eq. 2.24 can be obtained by the sum of two other invariants, I4 will henceforth take
the meaning of eq. 2.15.
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diffusion ellipsoid can be defined. The first eigenvector will represent the

most favoured motion direction. In fact, the first eigenvector of the diffusion

tensor can represent the fibre direction. From this idea follows the conclusion

that with Diffusion Tensor Imaging it is not only possible to obtain a measure

of the degree of anisotropy of a tissue, but it is also possible to determine the

position and the orientation of the structures giving rise to such anisotropy

within the tissue, i.e. fibres. The study of fibre patterns from DTI is called

Fibre Tractography [86].

Many different approaches can be used to interpolate fibre patterns: fluid

streamlines theory [86]; probabilistic Monte Carlo methods [87]; simulation

of the virtual water diffusion process [88]. The algorithm used in this study is

the one available in the software MedINRIA, (Sophia Antipolis, France) [89].

This module uses Log-Euclidean metrics to process tensors, protected by a

patent (Filing Number 0503483) [89].

The study of fibres through DTI has found numerous successful applica-

tions in the investigation of brain growth [90], structure [83, 91], vascular-

isation [92], and lesions [77, 79, 93]. It has also been applied to the study

of other tissues like myocardium [94–103], skeletal muscle [104,105], smooth

muscle [106] and trabecular bone [85,107].

In particular, the work done on the myocardium is the closest to that

which this study tries to reproduce, as it combines the determination of the

fibre pattern with the study of the motion of the tissue. In fact, among the

tissues listed above and studied with DTI the myocardium is the only one

that undergoes a cyclic deformation whereas brain and trabecular bone are

subjected to deformation only in the case of serious, often fatal, injuries, and

skeletal muscle experiences different task-targeted deformations. The aortic

wall experiences a cyclic deformation, caused by the pumping activity of the

blood. Its smooth muscle cells have to cooperate with elastic laminae to

contain the blood and at the same time distribute it to the periphery of the

body. The aortic wall deforms under the action of blood pressure, and this

motion can be studied using other MRI techniques. The MRI techniques

that have been used to study the motion of the myocardium are: Tagged

MRI [98], and Phase Contrast MRI (PC MRI) [95, 97, 101]. Tagged MRI
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cannot be used to study the aortic wall motion in vivo due to resolution

constraints. To apply Tagged MRI to the aortic wall, a spatial resolution

of less than 0.5 mm is required, resolution not achievable with currently

available clinical MRI scanners. What can be applied to the aortic wall is

the technique called PC MRI.

2.4.4 Phase Contrast Magnetic Resonance Imaging

The studies performed with DTI are all static analyses, but arteries are not

in a static environment [2]. In fact, arteries are loaded cyclically by the

pumping action of the heart. In order to perform a complete study on the

arterial structures, their dynamic behaviour has to be evaluated. Using Phase

Contrast MRI (PC MRI), it is possible to quantify the velocities generated

in each pixel by the cyclic loading of the blood pressure. By the integration

of these velocities it is then possible to determine both the pixels trajectories

and deformations [108, 109]. In PC MRI, the pixel of the image does not

represent the image itself, but the velocity of the pixel, hence the image is said

to be velocity encoded. This technique is closely related to DTI, and shares

its theoretical formulation. The difference between the two is their focus. PC

MRI focuses on the motion of a pixel due to an external stimulus, while DTI

focuses on the motion of the water molecules within the pixel. In particular,

in PC MRI the application of gradient pulses to moving protons induces

phase shifts that are directly proportional to the protons’ velocity along the

direction of the gradient [110]. PC MRI techniques were firstly applied to

the determination of arterial flow (magnetic resonance angiography, MRA).

In this case, gradient pulses were used to sensitize the signal to a particular

flow velocity and direction through an induced phase shift [111–114]. At

the beginning of the nineties the groups of Van Wedeen and Pelc applied

PC MRI to the determination of myocardial strains [108, 109]. Over the

years, PC MRI has been applied to the study of brain motion [115], skeletal

muscle motion [116], muscle contraction [117], and tongue deformation [118].

Finally, the group of Pelc and Taylor worked on vessel wall cyclic strain using

porcine aortas [109,119–122].
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Measurement of Velocity and Strain with PC MRI When the sensi-

tizing gradient is applied, protons moving at the chosen velocity and direction

as well as stationary protons are rephased at the echo time TE. Therefore, it

is necessary to acquire a reference image (an image with no flow sensitization)

and subtract this image from the sensitized image in order to produce images

of only the moving protons (the reference image being an image of stationary

protons) [111]. In order to acquire a complete characterization of the veloc-

ity, sensitized gradients need to be applied in at least three directions. Once

the phase images are acquired (images of the moving protons) and under

the assumption of approximately constant velocity during the experiment,

the velocity component Vi parallel to the imaging gradient G(t) can be con-

sidered proportional to the phase shift ϕi of the moving protons [108]. In

particular, the relationship between phase shift and velocity is represented

by eq.2.26:

ϕi(t) = γ

∫ TE

0

tG(t)Vi(t) dt (2.26)

ϕi ≈ K · Vi;

The terms in the integral in eq.2.26 can be considered constant: the term

G(t) because the gradient applied is constant; the velocity Vi(t), instead, can

be considered approximately constant because the gradient applied for a time

interval extremely short. The parameter K is defined as the sensitivity of

the phase to the velocity [123]. Local differentiation between neighbouring

pixels in each image determines the spatial variation of velocity and leads to

the determination of the velocity gradient tensor L:

L =

 ∆Vx/∆x ∆Vx/∆y ∆Vx/∆z

∆Vy/∆x ∆Vy/∆y ∆Vy/∆z

∆Vz/∆x ∆Vz/∆y ∆Vz/∆z

 ; (2.27)

The symmetric part of L is defined as the strain rate tensor and is defined as
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W = L+Lt

2
[123]. Subsequently, we can consider the following relationship:

∆Vi/∆j = ∆ϕ/K∆j; (2.28)

Where ∆ϕ refers to the phase difference between adjacent pixels in the j-

direction. The phase ϕ repeats itself every 2kπ, k ∈ N, therefore in order to

solve this ambiguity (called “phase wrapping”) the MRI experiment should

be structured so that the phase difference between adjacent pixels in the tis-

sue satisfies the following equation [108]:

∆ϕ < πrad; ∀pixel (2.29)

Only when this condition is satisfied there is a unique value of the phase dif-

ference, and this condition is met in practice by adjusting K, the sensitivity

of the phase to the velocity, in light of an a priori estimate of the maximum

values of ∆Vi/∆j present in the tissue [108]. Once the velocities are derived,

a further step needs to be taken by removing the effects of rigid body trans-

lations and rotations. The procedure for this process is outlined in a patent

that describes a method for extracting deformations from PC MRI [124].

Once this step is accomplished the strain-rate tensor can be evaluated, and

it is then possible to track the motion of the pixels with the forward/back-

ward integration scheme proposed by Pelc [109]. This is done in order to

follow the procedures described in [120–122] for the definition of the strain

values.

Arterial circumferential Strain

Under the assumptions of plane strain (i.e., neglecting through-plane defor-

mation), uniform radial expansion, and approximating the vessel wall as a

membrane, the circumferential strain, ϵθθ, can be expressed in terms of the

deformations in cylindrical coordinates [120], as in the following equation:
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ϵθθ =
1

2

[(
r

R0

)2

− 1

]
; (2.30)

in this equation, R0 is the vessel radius at a reference time point, and r is the

radius measured at any other time in the cardiac cycle [120]. The reference

vessel radius R0 is evaluated from the magnitude image by averaging the

distance from the vessel centre to all points in the vessel wall, while the

other radii r are calculated from the in-plane velocities measured in the vessel

wall [120]. From these analyses on the aortic wall the cyclic strains and the

displacements of the tissue can be determined with the aim of using them as

a confirmation of the fitness of the constitutive model implemented. Clearly,

by defining a constitutive model only on the basis of structural information

(obtained by DTI) and uniaxial tensile tests the constitutive model would not

necessarily be suitable for describing the tissue behaviour when subjected to

physiological pulsatile loading. Hence, a unique constitutive model fit needs

to be determined based on the in vivo measured strains.

2.5 Non-invasive Prediction of Aortic Consti-

tutive Behaviour

Once the constitutive model is established and the structural parameters are

evaluated it is possible to compare the circumferential strains predicted by

the model with the one measured experimentally by PC MRI. To make this

comparison possible, the finite element method (FEM) can be used, since

this computational approach allows for the consideration of complex aortic

geometry, and of the pulsatile pressure waveform applied during physiological

loading.
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2.6 Finite Element Analysis

Finite Element Models offer a reliable tool for the optimisation of the con-

stitutive parameters. In fact, FEM results and experimental data can be

compared and if they match, the constitutive parameters can be defined to

be optimised for the description of the mechanical behaviour observed ex-

perimentally. This approach has been widely used for the determination of

soft tissue constitutive models. In most cases a uniaxial test is performed

in both environments and then compared. The tissues analysed with this

techniques have included ligament [59], arterial wall [52], and the heart [2].

In the present study, both uniaxial tests and the results from PC MRI will

be compared with the results of a finite element simulation to validate the

model chosen. The validation through FE simulation has many applications

that demonstrate the potential of this work. In fact, a constitutive model

which when implemented reproduces physiological arterial behaviour, can be

used as an engineering tool for the improvement of surgical devices design,

as a diagnostic tool for predicting the rupture of atherosclerotic plaques/a-

neurysms, and finally as a pre-clinical tool for estimating the outcome of

surgical procedures on individual patients, leading to patient-specific solu-

tions.

2.7 Summary

The aortic wall is a tissue susceptible to diseases closely related to its struc-

ture. Currently, these diseases can be studied only when they reach a final

stage, due to their silent progression. Finding a way to study this disease

progression means finding a tool able to characterize non-invasively the me-

chanical behaviour of the aorta and its alterations. The tools available nowa-

days to detect a change in the aortic structure have many limitations and do

not allow for a complete study of the tissue. In fact, some of these tools are

invasive, such as histology; others cannot track the early stage of the disease,

such as CT scans; still others cannot directly investigate the composition of
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the altered arterial wall, such as angiography. In order to find a non-invasive

tool for the study of the aortic structure, the first step is the determination

of the relevant parameters that need to be measured. In other words, this

means defining the model that best describes the mechanical behaviour of

the aortic tissue. Details of the model used are given on ch. 3. Next, a state

of the art MRI technique (DTI) [75] and magnetic resonance angiography

tool (PC MRI) [108] are used to measure both the structural characteris-

tics and the motion of porcine aortas. The application of such techniques

to arteries is described in ch. 4 and 5. From the definition of the struc-

tural properties of the aorta and from uniaxial tensile tests the constitutive

model described in ch. 3 can be completely determined and implemented

in a finite element model. Lastly, in ch.6, the aortic deformations predicted

by the model are compared with those measured experimentally through PC

MRI, in ch. 5. The results of the whole process is the determination of a

constitutive model for the physiologically loaded aorta and the definition of a

procedure to extract non-invasively relevant aortic structural characteristics

from MR imaging.
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Chapter 3

Constitutive Model

In this chapter the implementation of a suitable constitutive model for porcine

aorta will be carried out and discussed. The aortic tissue can be regarded

as a fibre reinforced material and its behaviour can be described as the sum

of an isotropic behaviour and an anisotropic one. As outlined in ch.2, the

model chosen considers two families of fibres and it is widely used to rep-

resent arterial tissue [53, 57, 61, 62]. In the following section the method to

retrieve the material constants c, k1 and k2 will be described and applied to

experimental data for porcine aortas, namely uniaxial tensile tests. In order

to define these three parameters, two structural parameters are needed, γ

and κ. In this chapter the values of these two parameters will be obtained

from literature, and in particular from the works by O’Connell et al. on

aortic medial organisation [34] and by Gasser et al. on the implementation

of the model [53].

The results of this chapter show that the model can be implemented

successfully for representing the loading response of porcine aortas uniaxial

tensile tests, but it also shows that its material constants have a precise me-

chanical meaning and that, by considering alterations in the ground matrix

or in the collagen fibres, different mechanical behaviours can be reproduced.

The biggest limitation of the constitutive model implementation, however, is

that the structural constants are obtained invasively through microscopy [34],

using harvested tissue that has therefore lost pre-stretch and residual stresses.
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In ch. 4 a novel method to overcome this limitation will be introduced and

applied to derive the structural parameters non-invasively without altering

the natural loading of the aorta. Inputting these parameters into the consti-

tutive model implemented in the present chapter will generate for the first

time a non-invasive structural characterization of arterial tissue.

3.1 Methods

The following steps were used to define a constitutive model of aortic wall

behaviour that could be implemented in a finite element software and val-

idated by the experimental data found using the MRI procedure described

above. The constitutive model chosen is that developed by G. T. Gasser

et al. [53, 62]. This is a fibre-reinforced mechanistic model based on a neo-

Hookean hyperelastic material model and defined in equations 3.1–3.5:

Ψ = Ψ1 +Ψ2; (3.1)

Ψ1 =
c

2
(Ĩ1 − 3); (3.2)

Ψ2 =
k1
k2

{
exp

[
k2

(
κĨ1 + (1− 3κ)Ĩ4 − 1

)2
]
− 1

}
; (3.3)

Ĩ1 = λ2
z + λ2

θ + (λzλθ)
−2 ; (3.4)

Ĩ4 = λ2
zsin

2(γ) + λ2
θcos

2(γ); (3.5)

Where Ψ is the strain energy function, Ψ1 is the behaviour of the ground sub-
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stance matrix, Ψ2 is the behaviour of collagen fibres. The ground substance

matrix energy function, Ψ1, is described through a neo-Hookean model with

Ĩ1 the invariant of the right Cauchy stretch tensor, see eq.s 2.11 – 2.13, mod-

ified into 3.4 by application of the incompressibility constraint, as shown in

the following equation:

λθλzλR = 1 → λR =
1

λθλz

where, by rearranging eq. 2.3, on page 17, the strains to be considered are

reduced to the strain in the axial direction λz and the strain in the circum-

ferential direction λθ. Instead, the collagen fibres energy function, Ψ2, is a

function of Ĩ4, see eq.s 2.15 – 2.19, on page 21. In particular, Ĩ4 is defined as:

Ĩ4 = a0 · C · a0;

and is modified into eq.3.5 by application of the arguments of symmetry [53].

In this model it is assumed that two families of collagen fibres are embedded

symmetrically, with γ denoting the angle between the circumference and the

mean orientation a0 of the fibre families. The constants γ and κ represent the

structural information, being the fibre angle and the fibre dispersion value,

respectively.

In order to fully characterize the material model three material constants

need to be defined c, k1, and k2, where c is the neo-Hookean parameter, k2

is a dimensionless parameter, and k1 is a stress-like parameter [60]. These

constants can be defined from experimental uniaxial tensile test data using

non linear regression. In particular, an iterative non linear regression routine

was implemented in LabVIEW® to find the value of c, k1, and k2 for both

curves simultaneously 1. This routine uses a Levenberg-Marquardt algorithm

1While a simple non-linear Levenberg-Marquardt algorythm is already implemented in
most curve-fitting tools, a routine able to minimise the objective function in eq.3.6 had
to be implemented manually, since it required the minimisation of two exponential curves
simultaneously where the variables are in the argument of the exponential function.
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to fit the derivatives of the strain energy function defined in eq.s 3.1-3.3 to

the experimental stress-stretch curves obtained from uniaxial tensile tests in

both the axial and the circumferential direction. Since c, k1, and k2 must

be the same in the axial and in the circumferential direction, the Levenberg-

Marquardt algorithm was modified to fit simultaneously the stress-stretch

curve obtained in the axial direction and the one obtained in the circum-

ferential direction. The objective function to minimise is described by the

following equation [60,62]:

χ2 =
n∑

i=1

[
w1(σθθ − σΨ

θθ)
2
i + w1(σzz − σΨ

zz)
2
i

]
; (3.6)

σΨ
θθi =

(
λθ

∂Ψ

∂λθ

)
i

; (3.7)

σΨ
zzi =

(
λz

∂Ψ

∂λz

)
i

; (3.8)

Where n is the number of data points and w1 and w2 are weighting fac-

tors [60]. The equations 3.7 and 3.8 represent the Cauchy stresses in the

circumferential and axial directions of the artery. In the objective function

χ2, these values need to be substracted from the experimental Cauchy stresses

σθθ, σzz.

In order to verify the accuracy of the model built, data from Holzapfel et

al. [63] of the adventitia stress-stretch curve, shown in fig. 3.1, were used to

reproduce the corresponding constants presented in [53].

3.1.1 Uniaxial Tensile Test

The modified Levenberg-Marquardt algorithm was developed to extrapolate

the material constants for the porcine aortic tissue used in the study, and, in

order to apply the algorithm, uniaxial tensile tests were performed on fresh

41



Figure 3.1: Iliac adventitia stress-stretch curve from [63].

porcine aortas. Five aortas, similar to the ones used for the MRI studies,

were harvested and tested within 24h of slaughter. Aortic segments were cut

in correspondence with the thoraco-abdominal tract and opened along the

line of branching small vessels. Using a custom cutter, dogbone samples were

cut in the axial and in the circumferential direction in neighbouring areas of

the flattened aorta, see fig.3.2.A. This operation resulted in four dogbone

samples for each aorta, two in the axial direction and two in the circumfer-

ential direction, respectively. On these dogbone samples two horizontal lines

were marked with a fine tip marker and two vertical ones, as shown in fig.

3.2.B. The samples were tested using a Zwick/Roell Z005 testing machine

with a 20N load cell (Zwick GmbH, Ulm, Germany) and custom designed

grips also shown in fig.3.2.B. The test were performed using a 0.002 N preload

(corresponding to 500 Pa for the average cross-section area) and a test ve-

locity of 12 mm/min. The displacements of the lines were recorded using

a video-extensometer camera (MESSPHYSIK Material Testing, Furstenfeld,

Austria). The stress-stretch curves obtained were exported into Microsoft

Office Excel®, see fig.3.6, and then averaged, see fig.3.7. The two averaged

curves obtained for the axial and the circumferential direction were used

for the non-linear regression routine. The structural parameters, γ and κ,

needed to fit the uniaxial tensile tests routine were determined using confo-

cal miscroscopy data available from literature [34], see fig.3.3, and qualitative

considerations derived from the uniaxial tensile tests, as in [53], respectively.
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A B

Figure 3.2: Porcine aorta uniaxial tensile test: A) details of the dogbone
shape used; B) test set up capture.

3.2 Results

In order to verify the fit of the model implemented in LabVIEW®, the data

presented in [63] were used and data points retrieved from the image were

input into the routine. The structural parameters used, as well as the mate-

rial constants obtained as a result of the interpolation routine are shown in

table 3.1. These constants generated two interpolated curves that fitted the

experimental ones for the constants reported in [53], as shown in fig.3.4 and

3.5. In particular, fig.3.4.A shows the LabVIEW® environment where the

routine was implemented and details of the user interface. The step follow-

ing the validation of the Levenberg-Marquardt routine, was the use of such
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Figure 3.3: Fibre orientation in the aorta, from [34].

a routine to determine the constitutive parameters of the porcine aortas.

From the tensile test results, shown in fig. 3.6, it can be seen that porcine

aortas tensile tests showed a different directionality from the tests presented

in [63], where an iliac artery was used, see fig.3.5. From these uniaxial tests

the curves obtained in the circumferential direction as well as the ones in

the axial direction can be averaged resulting in an averaged circumferential

stress-stretch curve and an averaged axial stress-stretch curve shown in fig.

3.7.

Iliac artery [53] Iliac artery fig.3.4 Porcine aorta fig.3.8

γ 49.98◦ 10◦

κ 0.226 0.326

c 7.46 kPa 12.4 kPa 31.2 kPa

k1 996.6 kPa 1 MPa 1.8 Mpa

k2 524.6 523.6 4

Table 3.1: Constitutive parameters used in the model.
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Figure 3.4: Screen capture of the custom-built Levenberg–Marquardt algo-
rithm A)Data from Holzapfel et al. [63] ; B) Porcine aorta uniaxial tensile
test data.
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Figure 3.5: Holzapfel et al. [63] curves: fit obtained with the custom routine.

These averaged curves can be input into the LabVIEW® routine and the

material parameters c, k1 and k2 evaluated. The constitutive model curves,

shown in fig.3.8, replicated adequately the behaviour of the experimental

ones.

Finally, the material parameters were varied in order to analyse how they

affect the interpolated stress-stretch curve. The resulting curves are shown

in fig.3.9 where it is possible to see that even small changes in the parameters

affect the interpolated curve greatly.

3.3 Discussion

The search for a suitable model for aortic tissue ended with the identifica-

tion of the constitutive model described in [53, 62]. This model was deemed

suitable because it could represent the anisotropy derived from the fibrous
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Figure 3.6: Porcine aortas uniaxial tensile tests in the circumferential and in
the axial direction.

components in the aorta. This model needs the knowledge of two fibre-

related structural parameters γ and κ, and the definition of three material

constants, c, k1 and k2. The drawback of this model is that the material

constants are found by means of a particular non-linear interpolation on the

circumferential and on the axial stress-stretch curve [53,60]. Hence, the non-

linear Levenberg-Marquardt interpolation had to be implemented and then

validated against published data. In particular, the material constants used

in Gasser et al. [53] are said to be derived from the stress-stretch curves

presented in [63]. Therefore, the validation of the interpolation technique

consisted in inputting the data from [63] in order to find the constants used

in [53]. The plot shown in fig.3.5, shows that the interpolation routine im-

plemented in LabVIEW, see fig.3.4, was able to derive the same material

constants used in [53], as shown in table 3.1. Small differences between the

constants published and the ones obtained with our routine have to be as-

cribed to the fact that the stress-stretch curve data were retrieved from the
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Figure 3.7: Average curves used in the analysis and their standard deviation
superimposed on the uniaxial tensile test results.

picture published in the paper and not from the original test result, thus

introducing some degree of error. Nevertheless, considering the errors intro-

duced by manually tracking the stress-stretch curve the custom interpolation

routine results were validated.

The validated interpolation routine could be then applied to porcine aorta

uniaxial tensile tests. The results of the uniaxial tensile tests are shown in

fig.3.6. The difference between the porcine aorta and the iliac aorta uniaxial

tensile tests is noteworthy by comparing fig.3.4 with fig.3.6. This difference

mirrors a difference in the micro-structure of the two arterial tissues: the

iliac aorta has fibres oriented at 49.98◦ [53] and this means that the fibres

are acting nearly equally in both directions, although slightly more in the

axial directions. Because of such a fibre angle the response is the same in

both directions and is characterized by small stretches due to the effect of

collagen stiffening in both directions. On the other hand, porcine aorta fibres

are oriented in a nearly circumferential orientation at ∼ 10◦ [34]. This results
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Figure 3.8: Comparison of the interpolated curves with porcine aortas uni-
axial tensile test data.

in two completely different curves characterized by a stiffer circumferential

response and an axial response where the load bearing capacity of collagen

fibres is missing. Moreover, it is interesting to note how different the ground

matrix behaviour is, which is responsible for the toe-region of the curves.

While in the iliac artery the ground matrix response is nearly absent, fig.3.4,

in the porcine aorta it has a role of support and shows an isotropic behaviour,

causing the two curves to overlap in the toe-region of the curve.

In order to find the material constants, the value of γ used was the one

available from literature [34] and corresponded to 10◦. In contrast, the value

of κ used in [63] is chosen as the one for which the best fit is obtained. In

the present section, a first approximation of κ was obtained using the same

criteria used in [63], and this value was further refined by comparing the

porcine aorta curves with the iliac artery ones published in [63]. Due to the

fact that the porcine aorta stress-stretch curves were closer than the iliac

artery ones, and since this ‘closeness’ is due to the degree of isotropy, the
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Figure 3.9: Effects of changes in the material constants on the interpolated
curves, the standard deviation bars are left out for clarity purposes.

value chosen for κ was higher than the one used for the iliac arteries, resulting

in a nearly isotropic behaviour, see table 3.1. Further analysis and insights

into the value of κ will be discussed in ch.4 and in ch.6.

This mechanistic model was developed by assigning a precise mechanical

meaning to each constitutive parameter, therefore discussion on the way

the different material constants c, k1 and k2 affect the interpolated curve is

needed. The plots in fig.3.9 show the different curves obtained by changing

each material constant separately. The changes in the plots are not large

because the changes were made while trying to ensure the convergence of the

other material constants wherever possible. An increase in c corresponds to
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an increase in the stiffness of the toe-region of the curve, or, in other words,

to assigning a higher load bearing capacity to the ground matrix. Since the

ground matrix is partially responsible for the loading response, also after the

collagen fibres start bearing the load, a change in c corresponds to a change

in the overall response, see fig.3.9.A. In contrast, a change in k1, a stress-like

parameter [60], corresponds to a change in the stress the collagen fibres can

bear. Diminishing k1 corresponds to diminishing such a stress and hence

the latter part of the circumferential curve gets closer to the axial curve,

which has a reduced collagen response. On the other hand, an increase in

k1 corresponds to an increase in the gap between the last part of the two

curves, see fig.3.9.B. Finally, k2 is a dimensionless parameter that describes

the rate at which the collagen fibres start bearing the load. While in the iliac

artery curves the value of k2 is very high because the start of the collagen

response is sudden and abrupt resulting in a reverse ‘L’ shaped curve, shown

in fig.3.4, in the porcine aorta curves it is much smaller because the collagen

recruitment phase is masked by the ground matrix response; this smoother

transition is shown in fig.3.6 and in fig.3.9.C.

3.3.1 Limitations

The first limitation to a wide application of this constitutive model is due to

the lack of knowledge of the in vivo structural parameters γ and κ. Moreover,

this model cannot be used to characterize in vivo the response of the tissue

because uniaxial tensile tests can only be performed on harvested tissue.

However, this model represents closely the behaviour of an excised aorta and

can be used as a first guess to derive a suitable in vivo model.

The second limitation is in the convergence of the line searching algo-

rithm. The interpolated curves converge correctly to the constants pre-

scribed, but only by tuning the first guess material parameters. In other

words, finding the convergence starting from numbers distant from the opti-

mal ones is difficult because of restrictive hypothesis made in order to guar-

antee the convergence for both curves simultaneously. Improving the line

searching algorithm and creating an independent LabVIEW® application
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will be part of future work.

3.3.2 Conclusions

This chapter has demonstrated how the constitutive model described in [53]

can be used to model effectively the loading response of porcine aorta uniax-

ial tensile tests. This model depends on the structural parameters γ and κ

that are characteristics of the tissue analysed. In general, these two parame-

ters are determined invasively by harvesting the aortic tissue, γ [5,34,57,63],

or qualitatively, based on theoretical considerations, κ [53]. The aim of the

present work is to determine these constants in a non-invasive way; in par-

ticular, in the following chapter it will be demonstrated how these structural

constants can be obtained non invasively by using Diffusion Tensor Imaging.
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Chapter 4

Diffusion Tensor Imaging

The constitutive model illustrated in the previous chapter has the ability

to replicate the behaviour of the aortic tissue starting from two structural

parameters, γ, fibre angle, and κ, fibre distribution. The golden standard

for the measurement of these two parameters is histology. A model that is

completely based on histology data has many limitations, since histology is

an invasive technique that gives insight on the structure of a microscopical

bi-dimensional layer of the tissue, as discussed in ch.2. Finding a method to

analyse in vivo in a non-invasive way the aortic structure is advantageous

from both an engineering and a clinical point of view. For biomedical engi-

neers interested in modelling the tissue, analysing a tissue in vivo is advan-

tageous because it retains the natural longitudinal pre-stretch and residual

stress enabling more realistic models to be created that are closer to the

physiological status of the tissue. On the other hand, analysing the tissue

in vivo in a non-invasive way allows clinicians to understand the underlying

biological changes related to alterations in the physiology of the tissue.

In the present chapter it will be demonstrated how Diffusion Tensor Imag-

ing can be used for finding the structural parameters relevant to the consti-

tutive model in a non-invasive way. It will also be clearly demonstrated that

this MRI technique can successfully detect alterations in the tissue caused by

freezing. It has to be noted that although the potential of DTI in studying

the brain structure and its alteration is well established [77, 79, 83, 90–93],

53



this technique has never been applied to the aorta, or any similar vascular

tissue. The results of the present chapter can be seen as an extension of the

application of DTI, proving its ability in detecting not only axons, or mus-

cular fibres, but also collagen fibres. Moreover, the results of this chapter

suggest that DTI can detect the damage caused by freezing tissue and there

may be potential to extend this technique to detect the damage caused by

arterial diseases, such as aneurysms. The relevance of this consideration has

to be seen in light of its future development: in fact, the results of the present

chapter show that DTI has the potential to be developed into a tool for the

early diagnosis of degenerative arterial diseases.

4.1 Methods

4.1.1 Preparation of Aortic Sample

With both MRI techniques the prepared aortic sample had to enter the MRI

coil. In order to do so a special chamber was designed where the aorta

was placed and immersed in water. This chamber, see appendix A, had a

cylindrical geometry, with a diameter of 32 mm and a length of 220 mm.

Commercial barbed connectors and cable ties were used to keep the aorta

fixed and aligned, see figure 4.1. Tap water was used to fill the chamber

as preliminary tests in the MRI with 0.9% saline solution showed noise due

to the presence of salt molecules both inside and outside it. In the clinical

setting, this limitation will be overcome by the presence of the surrounding

tissues that allows for filtering out the noise due to blood solutes. To ensure

the chamber was airtight, air was syringed out before closing the chamber.

Preparation Protocol

The aortas used for these studies were harvested from pigs provided by Ros-

derra Meats, Glanbia, Edenderry. All pigs were six months old and came

from Irish breeds. The aortas were harvested and all surrounding tissue and
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Figure 4.1: Rendering of the chamber.

Figure 4.2: Aorta prepared according to the protocol.

lymph nodes were removed. Once prepared, the aortas could either directly

undergo scanning (henceforth referred to as ‘fresh aortas’) or be immersed in

water and stored frozen for future scanning (henceforth referred to as ‘frozen

aortas’). Frozen aortas were fully defrosted on the day of the MRI procedure

and then placed in the chamber. Upon completion of the MRI study both

kinds of vessels were disposed of through the DCU waste management com-

pany. Both frozen samples and fresh1 samples were tested. The preparation

for both samples consisted of finding the line of small branching vessels that

1The word fresh refers to an aorta that has not been frozen and that was harvested
from an animal killed 24 to 26 hours prior to the MRI procedure.
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Figure 4.3: Aortic segment prior to placement in the chamber.

form the thoraco-abdominal tract, taking the first vessel as a reference, six

vessels were counted and then the extremities cut, as can be seen in figure

4.2 and 4.3. The resulting vessel segment length was approximately 130 mm.

The diameter and the thickness of the vessel were also measured, see table

4.1. The length of the vessel was taken prior to insertion in the chamber

and was checked again once within the chamber to ensure it was not over-

stretched. In fact, due to the impossibility to measure accurately in situ the

length of the aorta, the aortic segments were placed in the chamber without

considering the axial pre-stretch, thus ensuring conformity and repeatability

of the test.

Once the samples were prepared, they were studied using MRI. The scan-

ner used was a 7 T Biospec® (Bruker BioSpin, Germany). This scanner is

used for animal studies on rats and mice and provided a high resolution

across the thickness of the vessel.

Proximal Distal Proximal Distal
Aorta Length Internal Internal Thickness Thickness

Diameter Diameter

frozen 130±2 mm 16±1 mm 13±1 mm 2.1±0.2 mm 1.8±0.2 mm
fresh 128 mm 16.5 mm 14.5 mm 2.2 mm 1.7 mm

Table 4.1: Aortic Measures
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4.1.2 Imaging Protocol

As described in ch.2, Diffusion Tensor Imaging enables the anisotropic dif-

fusion of water in a tissue to be studied. In other words DTI is capable of

analysing the influence of fibres on the Brownian motion of water molecules.

DTI consists of the application of diffusion gradients (i.e. magnetic field

linear variations in the MRI magnet) in six or more directions. As a result

there is a tensor associated with each voxel that describes the amount of

water diffusion over the three directions x, y and z. The first eigenvector of

the diffusion tensor describes the direction of the fibre.

Since this work marked the first time DTI was used for imaging porcine

aorta, a great amount of time and effort went into defining the final imaging

protocol. For instance, the number of images taken, the optimal imaging

parameters and the ideal coil had to be defined. Therefore, many of the

samples analysed were used only for preliminary testing and for the definition

of the suitable tools and parameters, and could not be used for the definitive

analysis of the aortic fibre structure presented in this chapter. This means

that although 15 aortic samples were analysed, the results presented in this

chapter concentrate on a total of three samples, two fresh and one frozen.

For all three samples, images were taken for different b values, where b is

the quantity defined by eq. 2.20, on page 28, and describes the sensitivity to

diffusion. Different b values were considered in order to determine the optimal

b value for aortic tissue. The values considered were six: 200, 400, 600, 800,

1200 and 1600 s/mm2, indicated in the figures with b1-b6, respectively. The

b values in the range 400-1200 s/mm2 correspond to the range of values

reported in literature for different tissues [81, 102, 125–127], and this range

was extended at the extremities to include 200s/mm2 and 1600s/mm2, thus

offering a complete spectrum of possibilities for the determination of the

optimal b value for aortic tissue.

Furthermore, for these studies a circular polarised 1H RF whole body

coil was used, shown in figure 4.4. The signal obtained with this coil was

homogeneous in all directions, thus enabling a throughout study of the aor-

tic geometry. The sequence used was the same for both fresh and frozen
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Figure 4.4: RF circular polarised whole body coil, used for scanning.

samples and was characterized by the use of five repetitions of the scanning

sequence over 16 slices that were not averaged. It was therefore possible to

see the results for each repetition and each of the 16 slices thus ensuring both

reproducibility and repeatability of the results and justifying our use of only

one frozen sample and two fresh samples. Five repetitions for sixteen slices

in the total volume is analogous to taking 16 test samples from an arterial

conduit and testing each one five times. Moreover, non-averaged images can

easily be transformed to averaged images with a MATLAB® routine. The

contrary, however, is not true, i.e. it is not possible to reconstruct from an

averaged image all the non-averaged ones.

This approach was chosen to see if there were variations over time in

the sample. It was also used to compare the differences due to post mortem

degradation between the frozen and the fresh sample. The other parameters

used are listed in table 4.2.

Matrix FOV N Slices Slice Echo Repetition
Distance Time Time

128 × 128 2.8 × 2.8 cm 16 0.6 mm 20.3 s 2400.00 s

Table 4.2: DTI scanning parameters
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4.1.3 Image Analysis

The DTI image data-sets were input into a software, MedINRIA (Sophia

Antipolis, France), that performed the tensor evaluation [89, 128]. Differ-

ent interpolation algorithms are available, and in this study the algorithm

implemented for the DTI fibre analysis was that available in the software

MedINRIA, since this software is optimised for DTI on clinical data sets. In

fact, in order to reduce noise common in these kinds of acquisitions, MedIN-

RIA applies a maximum likelihood strategy. The estimation of the tensor,

together with the use of Log-Euclidean metrics for tensor processing, im-

proves the quality of the fibres reconstructed, which are tracked by using a

streamline algorithm [89]. Following the evaluation of the tensor it was pos-

sible to track the fibres within the tissue. This operation was also performed

by MedINRIA, whereby the fibres were tracked across the image volume and

then exported to FiberViewer (S. Gouttard and M. Jomier; University of

North Carolina website) format. FiberViewer format is an ASCII file, read-

able as a .txt file. A MATLAB® routine was created to read the fibre

related data contained in the FiberViewer file and to evaluate the fibre angle

distribution across the thickness of the aortic wall.

First of all the image data-sets, contained in a unique .raw file, were

opened using the ImageJ® software. This software allowed the image file

to be opened and divided into single .tiff files. Once the single files were

created (one for each slice) they had to be re-grouped according to the b value

they belonged to. This was accomplished using MRIcron®, and converting

all .tiff files belonging to the same volume to a single ’analyze’ file. Once

the ’analyze’ files were created for the reference b0 value volume and for the

other six gradients, all of the seven files were input into MedINRIA. This

procedure was repeated for each b value set of images. In the MedINRIA

environment a volume was created using the b0 set of images and then from

the other six gradients the global tensor was evaluated. Two parameters

could be set prior to the tensor evaluation, one regarding the background

removal threshold, a filter that removes the noise from the background; and

one regarding the tensor smoothing. The background threshold was set to
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the maximum and the tensor smoothing was set to high. After the evaluation

of the image diffusion tensor, the Region Of Interest (ROI) boundaries were

tracked manually. The reference images for the definition of the ROI volume

were the b0 ones. The definition of the ROI consisted of the definition of

the contours of the vessel, i.e. the inner and outer circumference. The ROI

could be saved as a mask, i.e. like a binary file2 where the white pixels are the

aortic wall (ROI) and the black ones are the background. Once the ROI was

defined the fibres were tracked. At this point the fibre bundles tracked were

selected and exported into the FiberViewer format and the fibre interpolation

stage was complete.

4.1.4 Tensor Analysis

Diffusion eigenvectors are important for the determination of fibres patterns;

the first eigenvector (i.e. the vector corresponding to the largest eigenvalue

of the tensor) represents the direction of maximal diffusion and therefore

it represents the predominant fibre direction [83, 129]. The tensor analysis

was performed using MATLAB® and it consisted of the extrapolation of

the first eigenvector from the tensor, and the determination of the angle it

formed with the x, y plane, as illustrated in fig. 4.5. This was conducted on a

single slice of the image (the central one), following the procedure described

by the flowchart in fig. 4.6. In order to study the consistency of the results

over the length of the sample, the average of the tensor over all the slices

was considered, and the angle of the eigenvector calculated. In both cases

the study was focused on the ROI tracked previously in MedINRIA.

4.1.5 Fibre Analysis

In MATLAB® a custom routine was implemented that analysed the fibre

orientation, the structure of which is shown in fig. 4.6. The first step of this

2with all the white pixels equal to one and the black ones equal to zero
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Figure 4.5: Convention for the lead fibre angles used in the study: A) refer-
ence system for the fibres; B) definition of the fibre angle.

routine analysed the ROI mask image to define the centre of the vessel and

its mean internal and external diameter. This was accomplished studying

the position of the non-zero values on the main axes, x and y.

Then the file containing the fibre data was opened. In the FiberViewer

file for each fibre the coordinates of each voxel composing the fibre expressed

in pixels, and the tensor-evaluated quantities, were defined for each voxel.The

first action completed in MATLAB® was to scale the coordinates from voxels

to mm, using the known resolution of the image, see table 4.2. Then the

conversion into a cylindrical coordinate system was performed, using the

centre data evaluated from the ROI mask. At this point the fibre angle

analysis was performed. To do so, the angle between the fibre and the x− y

plane was evaluated using the numerical partial derivatives of each of the

points composing the fibre. For each fibre a mean angle and a mean radius

were stored.

Each fibre angle and radius value was then post-processed in MATLAB®

in order to study the fibre orientation distribution. This part of the analysis

required the use of the inner and the outer diameter defined by the ROI

mask points and the determination of the vessel thickness in terms of pixels.

The thickness value was then converted into mm, as described above, and

subdivided to represent equal layers. The number of layers depended upon
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Figure 4.6: Flow chart indicating the various stages in the image postpro-
cessing sequence.

the number of pixels of the ROI. The number of divisions considered was six

and corresponded to the average maximum number of pixels in the thickness

of the aortic wall defined for all the specimens. The layers obtained are shown

in fig.4.7. The mean fibre radii were then determined for each layer and the

angle distribution across the thickness evaluated. Finally, two more layers

were added in order to consider the fibres whose mean fibre radius fell out of

the layers’ boundaries shown in fig.4.7.

A sequence description of the different steps involved in the image post-

processing is described in table 4.3.

The MATLAB® angle detection routine was tested creating helices with

the same software and inputting them into the angle routine, see fig. 4.8.

These ‘phantom’ helices with known angles were created using the helix equa-

tions:
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Figure 4.7: Representation of the layers considered for each geometry anal-
ysed: A) stored frozen sample; B, C) fresh samples.

x = Rcos (t) ; (4.1)

y = Rsin (t) ; (4.2)

z = ct; (4.3)

Where t ∈ (0, 2π), c is the lead and R is the radius. To have a right handed

or a left handed helix the sign of the x or of the y term has to be changed.

From these equations the definition of the helix angle used here and in the

angle detection routine is given by:

θ =
2πc

2πR
=

c

R
; (4.4)

The physical meaning can be easily understood if the surface on which the

helices are wrapped is cut and opened flat. In that case it can immediately

be seen that θ corresponds to the tangent of the helix (that becomes a line)

on this surface, see fig. 4.5.B.
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Figure 4.8: Test helices generated in MATLAB®: the blue and the red one
are both left handed but have different leads, the green one is right handed
and has a different lead.

Analysis of Different ROIs

The steps illustrated in the previous section were carried out by tracking

the ROI from the slice in the middle of the volume. The importance of the

position of the ROI can be vital, since it is from the pixels contained in

the ROI that the fibre tractography starts. In particular, each pixel’s first

eigenvector contained in a ROI represents a seed from which the actual fibre

can start and develop, assuming complex spatial orientations. This means

that the eigenvector indicates the direction of the fibre at the beginning of

its path. Along the fibre path this direction may change, thus generating

the resulting fibre orientation which is used to evaluate the fibre angle. The

difference between the ROI eigenvector angle and the fibre angle can be seen

by comparing the tensor values and the fibres plot, which suggest that using

a distinct ROI could produce a different fibre distribution.

In order to investigate further the effect of ROIs on fibre angle and overall

on the fibre distribution, the fibre tractography procedure was applied to the

fibres resulting from a ROI defined on the first slice of the volume (slice 0),

and a ROI defined for the last slice in the volume (slice 15).
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MedINRIA:

• Analysis of the DTI volume;

• Tensor evaluation;

• Region Of Interest (ROI) mask

manually tracked to define aortic

boundaries and volume;

• Fibre tracking;

• Conversion of fibre bundles into

• FiberViewer format.

MATLAB®:

• FiberViewer file opening and reading;

• Fibre angle evaluation;

• Opening of ROI image mask file;

• Aortic wall detection and measure

of aortic thickness;

• Division of aortic wall into

n layers, where n

denotes the maximum number of pixels;

• Study of fibre angle distribution

over the different layers, performed

assigning the average fibre

radius to each layer.

Table 4.3: Details of the fibre analysis step sequence.
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4.1.6 Extrapolation of Material Parameters

DTI was used to study the fibre distribution in the aortic wall. The results of

this fibre distribution are the structural parameters γ and κ. The parameter

γ is the fibre angle while κ is a measure of the fibre distribution. These values

are necessary inputs for the constitutive model described in ch. 3.

Evaluation of fibre angle: γ

DTI results output a fibre angle distribution for the fresh and for the frozen

aortas. These distributions are relevant because they are obtained non-

invasively and represent the distribution of fibres across all of the aortic

volume analysed. From these distributions it is possible to obtain both a

global value of γ and a local one, i.e. a value determined for each layer of the

aorta. The γ resulting as the dominant fibre angle of the fibre angle distri-

bution is the one that will be considered for the definition of the constitutive

model.

Evaluation of fibre dispersion: κ

The parameter κ describes the way the fibres are distributed around the

mean angle. The way to evaluate this parameter is described in [53]. Usually

it is nearly impossible to evaluate it because a fibre distribution is needed,

and this is difficult to achieve from histological samples.

The present work demonstrates that from DTI it is possible to obtain a

global fibre distribution and therefore it is possible to implement the equa-

tions described in the work from Gasser et.al [53]. The value of κ was eval-

uated using a MATLAB® routine that performed a trapezoidal numerical

integration. The angles were analysed using the Von Mises distribution im-

plemented in the CircStat package available on the MATLAB® file exchange

repository [130]. The κ values were evaluated both for fresh and frozen sam-

ples and for the fibre distributions obtained for each b value.
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4.2 Results

In this section the findings obtained from applying DTI to porcine aortas are

presented. This section is split in various subsections that mirror the ones in

the previous section in order to give a clear representation of the data and

of the procedure followed.

4.2.1 Image Analysis

The qualitative analysis of the results for the DTI is the first thing that can

be done prior to proceeding with the angle detection routine. In the following

pages data belonging to both fresh and frozen aortas are presented. Image

analysis involved analysing the FA maps generated in MedINRIA, using eq.

2.25. From these maps, qualitative information was noted on the anisotropic

content of the sample prior to further investigation, as shown in fig. 4.9.

The inspection of FA maps proved a quick verification of DTI’s ability to

detect aortic anisotropy. In fact, fig.4.9 shows the reference image for the

stored frozen and the fresh samples. From these images, it is possible to

appreciate the contours of the aortic wall and the presence of some lymphatic

tissue around the fresh samples. From the FA maps in fig.4.9, the difference

in anisotropy between the aortas and the surrounding water can be seen.

Finally, for the fresh samples it is possible to recognise two black areas that

correspond to the lymphatic tissue.

4.2.2 Tensor Analysis

Once the ability to detect aortic anisotropy was confirmed, the tensor was

analysed. The diffusion tensor is 3×3 and is defined for each pixel. Therefore,

it was necessary to select the information we needed in order to verify the

accuracy and the validity of this information. Since in this work DTI is used

to define the structural parameters of the material, and in particular the angle

at which the fibres are oriented within the tissue, the information chosen to
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Figure 4.9: Top row: MRI images of the aortas analysed, A) stored frozen
sample; B), C) fresh samples. Second row: fractional anisotropy map of
the samples for b1= 200 s/mm2; Third row: fractional anisotropy map of
the samples for b4= 800 s/mm2; Bottom row: fractional anisotropy map for
b6=1600 s/mm2. In B.1 and C.1 the arrows indicate the presence of lymphatic
tissue.
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Figure 4.10: Steps in the DTI procedure and image postprocessing; (A)
MRI anatomical scan, (B) The ROI of the aorta, (C) A map of the angle
of the first eigenvector with the (x,y) plane, (D) A map of the angle of the
first eigenvector with the (x,y) plane with the ROI clearly identified, (E)
The results of the tractography process with the fibres superimposed on the
reference image, and (F) The aortic fibres within the ROI alone.
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Figure 4.11: Contour maps of the angle between the first eigenvector and
the (x,y) plane for the central slices of the image data sets for the different
b values.
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b1 = 200 s/mm2
b2 = 400 s/mm2

b3 = 600 s/mm2 b4 = 800 s/mm2

b5 = 1200 s/mm2 b6 = 1600 s/mm2

Figure 4.12: Contour maps of the angle between the first eigenvector and the
(x,y) plane for the averaged tensors of the image data sets for the different b
values.
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verify each diffusion tensor was the angle formed by its first eigenvector with

the (x,y) plane. The process of verifying the tensor information is illustrated

in fig.4.10, where all of the steps in the postprocessing procedure are shown.

Firstly, the anatomical image resulting from the scan was used to determine

the ROI, see fig. 4.10(A)-(B). Secondly, the diffusion tensor was analysed in

MATLAB and the angle between the first eigenvector and the (x,y) plane

determined and mapped onto the ROI, see fig. 4.10(C)-(D). From both of

these images it can be seen that the region of the aorta in the image is

still recognisable using the tensor map. This process was carried out only

on one fresh sample in order to determine the feasibility of the complete

DTI analysis on arterial tissue. The results for the tensor orientation were

analysed for different b values to determine the influence of the b value on

the tensor angles obtained. For the tensor representing the central slice and

the averaged tensor, the angle between the first eigenvector and the (x,y)

plane had greater variability for small b values and became increasingly more

consistent at higher b values, see fig.4.11 and 4.12. Two dominant eigenvector

angles, close to 0◦ and 180◦, were evident for the analysis of the tensors of

the central slice image for all b values (fig.4.11), whilst three, close to 0◦, 90◦

and 180◦, were present in the averaged images (fig.4.12).

4.2.3 Fibre Analysis

Tracking the fibres passing through a defined ROI of the aorta is the last

step in this image post-processing procedure, and some results are shown in

fig. 4.10E–F. From these images it can be seen that the fibres plotted are

distributed throughout the thickness of the aorta and that they are predom-

inantly oriented circumferentially within the (x,y) plane of the aorta. Fibre

tractography was performed on both fresh and stored frozen aorta images

and the fibre angles were evaluated. The distribution measured mean angles

γ, or dominant fibre angles, presented in fig.4.13. For the stored frozen sam-

ple, no peaks are clearly visible regardless of the b value used. In contrast,

for the fresh samples, two peaks are visible with different amplitudes. In this

case, the peaks correspond to 15◦ ± 2.5◦ and 175◦ ± 2.5◦, where the fibre
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Figure 4.13: Dominant angles for the aortas analysed: A) stored frozen
sample; B), C) fresh samples.
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angle distribution is evaluated over bands of 5◦, and centred in the middle

of each band.

The data for the dominant angles, however, does not give any information

on the radial distribution, which is presented in fig.4.14, 4.15, and 4.16.

From the plots, it is possible to see that the dominant angle prediction is

maintained for different b values. The radial distribution is different between

the stored frozen and the fresh aortas. In particular, by looking at the images

where the fibres tracked for each aorta are superimposed on the MR images,

it can be seen that the fibres tracked cover most of the circular profile of the

aorta in the fresh samples uniformly, while this is not observed for the frozen

one. These observations are confirmed by tables 4.4, 4.5, where the fibre

content of each layer is presented. By looking at the data, there are notable

differences between the distribution in the frozen aorta and the fresh ones.

It can also be seen that the two fresh aortas follow very similar trends.
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Figure 4.14: Stored frozen sample of fig.4.9.A.1: A) for b1= 200 s/mm2 MRI
image with superimposed fibre plot on the left hand side, distribution of
fibres across the different layers of the aorta on the right hand side. B) for
b4=800 s/mm2 MRI image with superimposed fibre plot on the left hand
side, distribution of fibres across the different layers of the aorta on the right
hand side. C) for b6=1600 s/mm2 MRI image with superimposed fibre plot
on the left hand side, distribution of fibres across the different layers of the
aorta on the right hand side.
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Figure 4.15: Fresh sample of fig.4.9.B.1: A) for b1= 200 s/mm2 MRI image
with superimposed fibre plot on the left hand side, distribution of fibres across
the different layers of the aorta on the right hand side. B) for b4=800 s/mm2

MRI image with superimposed fibre plot on the left hand side, distribution
of fibres across the different layers of the aorta on the right hand side. C) for
b6=1600 s/mm2 MRI image with superimposed fibre plot on the left hand
side, distribution of fibres across the different layers of the aorta on the right
hand side.
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Figure 4.16: Fresh sample of fig.4.9.C.1: A) for b1= 200 s/mm2 MRI image
with superimposed fibre plot on the left hand side, distribution of fibres across
the different layers of the aorta on the right hand side. B) for b4=800 s/mm2

MRI image with superimposed fibre plot on the left hand side, distribution
of fibres across the different layers of the aorta on the right hand side. C) for
b6=1600 s/mm2 MRI image with superimposed fibre plot on the left hand
side, distribution of fibres across the different layers of the aorta on the right
hand side.
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content of fibres in each layer

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8

R< 5.3 mm 5.3 mm<R 5.8 mm<R 6.3 mm<R 6.8 mm<R 7.3 mm<R 7.8 mm<R R> 8.3 mm

≤ 5.8 mm ≤ 6.3 mm ≤ 6.8 mm ≤ 7.3 mm ≤ 7.8 mm ≤ 8.3 mm

b1 0 0 134 389 438 214 44 4

frozen b2 0 3 166 394 404 205 23 0

aorta b3 0 3 144 334 397 186 24 0

b4 0 1 123 331 469 216 17 0

b5 0 7 138 362 413 201 16 0

b6 0 10 182 414 320 122 5 0

R< 6.5 mm 6.5 mm<R 6.8 mm<R 7.2 mm<R 7.5 mm<R 7.8 mm<R 8.2 mm<R R> 8.5 mm

≤ 6.8 mm ≤ 7.2 mm ≤ 7.5 mm ≤ 7.8 mm ≤ 8.2 mm ≤ 8.5 mm

b1 0 64 239 346 712 730 284 110

fresh b2 0 22 178 563 957 1094 451 57

aorta b3 0 23 263 465 825 1299 569 49

b4 0 30 202 517 941 1240 609 68

fig.4.9.B.1 b5 0 42 158 584 896 1212 742 109

b6 1 2 171 450 673 1258 758 76

R< 5.4 mm 5.4 mm<R 5.9 mm<R 6.4 mm<R 6.9 mm<R 7.4 mm<R 7.9 mm<R R> 8.4 mm

≤ 5.9 mm ≤ 6.4 mm ≤ 6.9 mm ≤ 7.4 mm ≤ 7.9 mm ≤ 8.4 mm

b1 32 166 374 502 618 417 138 143

fresh b2 14 138 532 662 651 457 135 14

aorta b3 16 149 328 483 709 446 159 7

b4 9 115 282 595 598 487 188 6

fig.4.9.C.1 b5 7 139 222 320 499 428 160 16

b6 22 141 224 206 397 414 183 15

Table 4.4: Fibre content per layer; bold characters correspond to the transi-
tion layers.
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percentage of fibres in each layer

layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8

R< 5.3 mm 5.3 mm<R 5.8 mm<R 6.3 mm<R 6.8 mm<R 7.3 mm<R 7.8 mm<R R> 8.3 mm

≤ 5.8 mm ≤ 6.3 mm ≤ 6.8 mm ≤ 7.3 mm ≤ 7.8 mm ≤ 8.3 mm

b1 0 0 10.9 31.7 35.7 17.4 3.6 0.3

frozen b2 0 0.2 13.8 32.9 33.7 17.1 1.9 0

aorta b3 0 0.2 13.2 30.6 36.4 17 2.2 0

b4 0 0.1 10.6 28.5 40.5 18.6 1.4 0

b5 0 0.6 12.1 31.8 36.2 17.6 1.4 0

b6 0 0.9 17.2 39.2 30.3 11.5 0.4 0

R< 6.5 mm 6.5 mm<R 6.8 mm<R 7.2 mm<R 7.5 mm<R 7.8 mm<R 8.2 mm<R R> 8.5 mm

≤ 6.8 mm ≤ 7.2 mm ≤ 7.5 mm ≤ 7.8 mm ≤ 8.2 mm ≤ 8.5 mm

b1 0 2.7 9.8 12.4 23.2 30.3 14.7 6.5

fresh b2 0 0.2 4.7 14.5 24.7 32.2 20.4 3.2

aorta b3 0 0.5 4.7 14.5 20.6 34.9 20.7 3.8

b4 0 0.4 4 13.3 25.8 28.4 22.7 5

fig.4.9.B.1 b5 0 0.3 3.6 14.2 23.1 28.2 24.6 5.7

b6 0.1 0 3.4 13.1 17.5 30 29 5.9

R< 5.4 mm 5.4 mm<R 5.9 mm<R 6.4 mm<R 6.9 mm<R 7.4 mm<R 7.9 mm<R R> 8.4 mm

≤ 5.9 mm ≤ 6.4 mm ≤ 6.9 mm ≤ 7.4 mm ≤ 7.9 mm ≤ 8.4 mm

b1 1.3 6.9 15.6 21 25.8 17.4 5.7 5.9

fresh b2 0.5 5.3 20.4 25.4 25 17.5 5.2 5.3

aorta b3 0.7 6.4 14.2 21 30.8 19.4 6.9 0.3

b4 0.4 5 12.3 26 26.2 21.3 8.2 0.2

fig.4.9.C.1 b5 0.4 7.7 12.4 17.8 27.8 23.8 8.9 0.8

b6 1.3 8.7 14 12.8 24.7 25.8 11.4 0.9

Table 4.5: Fibre percentage per layer; bold characters correspond to the
transition layers.
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Different ROIs Analysis

Finally, by looking at fig.4.17 it can be seen that varying the ROI the fibre

distribution plots remain the same. There are little changes in the quantity

of fibres tracked, as expected because of the ROI different position, but the

overall trend is respected.
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Last slice

Middle slice

First slice

Fresh 1 Fresh 2 Frozen

Figure 4.17: Top row: prospective view of the fibres tracked in the sample
volumes. In red the fibre bundle corresponding to the first slice, in white the
one for the middle slice, and in blue the one for the last slice. Bottom three
rows: changes in the fibre distribution according to the ROI chosen for all
the samples.
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4.2.4 Extrapolation of Material Parameters

While the resulting γ can be easily extrapolated from the plots, see fig.4.13,

κ needs to be evaluated through a separate routine described in 4.1.6. The

routine results are shown in table 4.6.

4.3 Discussion

The arterial wall constitutes a highly organised tissue which must withstand

a complex network of forces acting on it, as shown by Burton et al. [40] and

Peterson et al. [131]. The organisation of the tissue is therefore of utmost

importance, as it has to offer distensibility and resistance [132]. The arterial

tissue mechanical properties are derived from its microstructure which is

constituted by collagen, elastin fibres, SMCs and ground substances [5]. The

fibrous components reinforce the structure and their distribution generally

corresponds to the direction of maximum stress [40,132].

values of κ

frozen aorta fresh aorta fresh aorta fresh aortas

fig.4.9.B.1 fig.4.9.C.1 average

b1 0.26 0.12 0.13 0.125±0.05

b2 0.22 0.09 0.09 0.090±0

b3 0.20 0.1 0.06 0.080±0.02

b4 0.21 0.12 0.07 0.095±0.025

b5 0.23 0.14 0.05 0.095±0.045

b6 0.22 0.17 0.05 0.110±0.06

Table 4.6: Values of κ obtained for the different fibre distributions of fig.4.13
according to the procedure outlined in 4.1.6.
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The orientation of arterial fibrous components has been studied with

many different techniques including histology [5], scanning electron microscopy

(SEM) [133], confocal electron microscopy [134], and confocal laser scanning

microscopy [34]. All of these techniques were consistent in finding that ar-

terial tissue fibres are woven according to a helical pattern with a small

pitch. In particular, in the study from O’Connell et al. [34], where the three

dimensional architecture of arterial fibres was reconstructed by means of mi-

croscopy, they demonstrated that all three fibrous constituents of the artery

(i.e. collagen, elastin fibres, and SMCs) are aligned predominantly in the

circumferential direction and in particular approximately ±10◦ from the cir-

cumferential direction, as shown in fig.3.3. Moreover, the study by Stergiop-

ulos et al. [135] showed that the amount of collagen increases towards the

outside of the medial layer of arteries. Finally, the work from Driessen et

al. [136], analysed the fibre orientation using an indirect approach. This ap-

proach consisted in studying the mechanical properties of aorta in order to

derive its composition. The model derived described the aorta as a cylinder

with helical fibres of very low pitch in the luminal and medial layers (result-

ing in a near circumferential alignment of fibres), and increasing towards the

adventitia. Both direct and indirect analyses of fibres arrangement are in

accordance with the findings of the present research, where fibres are found

to align nearly circumferentially with a low pitch.

4.3.1 Image Analysis

Since this is the first time that DTI has been applied to arterial tissue,

the images were analysed qualitatively prior to the numerical interpolation

of fibres in order to verify the feasibility of this approach. The qualitative

image analysis conducted involved the FA maps. From viewing these maps it

is already possible to make two strong statements. The first one is that DTI

is capable of identifying the anisotropy of the aortic tissue, as shown in fig.

4.9. In fact, by looking at all of the maps it is possible to distinguish a clear,

bright, circular area from the surrounding tissues, and lumps of lymphatic

tissue on the surface of the aortas are not as bright as the aortic area. The
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second statement is that the anisotropy detected is higher in the fresh tissue

than in the frozen one, and this can be clearly seen by comparing the maps

in fig.4.9.A.2–4, with the ones in fig.4.9.B.2–4 or fig.4.9.C.2–4. This finding

in the latter image implies that there is a difference in the three dimensional

fibre distribution of the fresh and the frozen samples which DTI is able

to identify. Differences in FA maps intensity are used in clinical practice

to diagnose brain damage after a stroke [91, 92]. Therefore, the difference

observed in the frozen aorta has the potential to describe an altered tissue

structure in the frozen tissue, or one resulting from arterial diseases.

Another interesting feature that can be revealed by a qualitative inspec-

tion of the FA maps is that the amount of anisotropy detected changes with

the b value used. In fact, by looking at fig.4.9.B–C, the aortic area is noisy

for small b values while it is more defined for higher ones. The influence of

b values used on the level of anisotropy tracked will be further discussed in

section 4.3.4, considering also their influence on the fibre distribution. The

insight into the structure of the tissue provided by the qualitative analysis

of the FA maps can be further investigated by analysing the diffusion tensor

of each pixel.

4.3.2 Tensor Analysis

A convenient approach to the study of the diffusion tensors is the use of

tensor maps, where selected information extrapolated from each pixel can

be represented on the tissue geometry. In particular, tensor maps, where

the angle of the first eigenvector with the (x,y) plane is mapped, show that

the main diffusion direction has a small angle. Moreover, by looking at the

map for a single slice, it is clear to see that only the angular extremes, 0◦

and 180◦, are evident on the contour map of the artery (fig.4.11). This

trend was seen in all individual slices where the eigenvector of the diffusion

tensor was determined, however, when considering the overall sample, as in

fig.4.11, areas with eigenvectors at 90◦ to the (x,y) plane are also present.

By comparing the maps of the pixelwise eigenvectors for individual slices

(central slices are shown in fig.4.11) to that of the averaged tensor (fig.4.12),
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it appears that some changes in the diffusion direction occur in parts of the

vessel such that pixels with 0◦ and 180◦ eigenvector angles in different slices

when averaged result in an angle of 90◦. Therefore, analysis of the averaged

tensor gives an indication of changes in the diffusion along the length of the

vessel whilst individual slices give information on the local diffusion and may

be indicators of fibre directions in specific regions of the vessel.

4.3.3 Fibre Analysis

In order to establish fibre directions more conclusively, fibre tractography

needed to be performed and the fibre tractography on the diffusion tensors

in the current study identified dominant fibre angles of ±15◦ (± 2.5◦) over

the two fresh samples, as seen in fig.4.13. This is consistent with the fibre

direction reported in literature for arterial tissue by O’Connell et al. [34].

This result is also in agreement with the eigenvector angles obtained directly

from the diffusion tensor. Differences between the eigenvector angles and the

fibre angles are to be expected due to the fact that these can be regarded as

two different entities. In fact, even though the determination of the fibres is

based on eigenvector angles, it is the three dimensional eigenvector arrange-

ment that dictates the fibre together with the constraints imposed by the

tractography algorithm, see Appendix B.

From fig.4.15–4.16, it can be seen that the fibre content increases towards

the outer radii, as in Stergiopulos et al. [135]. This is also confirmed by

the data in tables 4.4 and 4.5, where the outermost layers have a higher

percentage of fibres. Moreover, for intermediate to high b values, it can be

seen that the outermost layers have a less pronounced orientation, with fibres

angles as high as ± 60/70◦, see fig.4.15.B–C and 4.16.B–C. These results

confirm the findings reported in Driessen et al. [136]. Finally, the orientation

described for intermediate to high b values over the thickness reproduces the

pattern observed by Wicker et al. [56] for rabbit basal artery. By looking

at fig.4.18-right, it is possible to recognise the change in fibre orientation for

outer radii plotted in fig.4.15.B–C and 4.16.B–C.
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Figure 4.18: Fibre distribution obtained using nonlinear optical microscopy
from [56]: left) sampling of slices from the adventitia to the media where
increased undulationcan be noted with decreased pressure, the presence of
black voids in the media (which likely indicate where the smooth muscle cells
reside) and the dramatic shift in orientation from axial to circumferential
fibers; right) fibre angle distribution through wall where 0 marks the outer
adventitia, and 1 the inner media; the fiber angle axis is oriented so that 0◦

is axial and 90◦ is circumferential.
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This evidence shows that Diffusion Tensor Imaging can be used success-

fully to determine the fibre orientation in the aorta. Moreover, this technique

could also be used to distinguish different layers. In fact, in fig. 4.15–4.16

it can be seen that there is always a difference in the fibre content among

two of the outermost layers. By looking at the data in table 4.4 and 4.5, for

both the fresh aortas there is a layer where the fibre content is high (layer 6

for aorta in fig. 4.9.B.1, layer 5 for aorta in fig. 4.9.C.1); while in the subse-

quent layer the content of fibres markedly diminishes (layer 7 for aorta in fig.

4.9.B.1, layer 6 for aorta in fig. 4.9.C.1). This difference in fibrous content,

shown also by the plots in fig. 4.15–4.16, could be used to determine the

transition zone that, as reported in Stergiopulos et al. [135], exists between

the media and adventitia.

All of these results support the use of DTI as a means of obtaining a

reliable description of the natural fibre orientation of arterial tissue in a non

invasive way, whereas techniques such as histology and microscopy need the

tissue to be harvested and fixed. Harvesting the vessel, whilst clearly invasive,

also has implications for the structural properties since that it removes any

in situ longitudinal or circumferential pre-stretches. Moreover, with most

of these techniques only small bi-dimensional portions of the arterial wall

can be analysed, while with DTI it is possible to obtain the global, three

dimensional, fibre orientations.

The fibre angle results obtained for fresh tissue samples are comparable

to those obtained from other techniques [5, 57, 135, 136], thus validating the

method presented.

4.3.4 Optimal b value

Another interesting feature of this study is the determination of the most

appropriate b value for the analysis of the fibrous orientation within the

arterial wall. The optimal b value in DTI is dependant on the tissue being

studied; for example, a value of 1000 s/mm2 has been reported for cartilage

[125], whilst 400 s/mm2 has been used for the medial nerve in the human

wrist [81, 126], and values between 500 and 800 s/mm2 for the myocardium
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[102,127]. The b value appears to be connected with the composition of the

tissue studied and therefore can be used for the diagnosis of diseases that

alter such composition [137,138].

To the best of the authors’ knowledge a suitable b value for arterial DTI

has not been reported to-date and therefore a range of increasing b values

were used in this feasibility study. To find the optimal b value the information

in each image set for this range of b values had to be analysed, in particular

the amount of significant data obtained in each image had to be quantified.

For each b value the tensor maps and the fibre tracts were analysed and these

data were compared over the different b values in order to define the optimal

one. It is possible to make this comparison by looking at the results shown

in fig. 4.11–4.12. For b values less than or equal to 600 s/mm2 it can be seen

that while there is agreement with higher b values in terms of the fibre angles

plotted, see fig.4.13, the corresponding tensor map is not coherent. It can be

seen in fig. 4.11 and 4.12 that for b1 and b2 a variety of angles are obtained,

whereas for higher b values and in particular for b4, the angles determined

converge on two dominant angles. At the same time, for b values higher than

800 s/mm2, the tensor maps show small changes, especially in fig.4.12. This

is confirmed in fig.4.12 where the number of fibres with intermediate angles,

especially in the range between 40◦-90◦, obtained for b5 and b6 are higher

than at b4. In addition, the highest number of fibres is tracked for values in

the range b2 to b4 whilst the number reduces from b2 to b1, and b4 to b6.

These results suggest that the optimal b value for arteries may be around

800 s/mm2 (b4), as this is the value for which there is a balance between

the eigenvector angles in the tensor maps and the fibre data obtained by the

fibre tracking procedure.

The small b values, b1-b2, can still offer some insights however. By looking

at fig. 4.15.A and 4.16.A, and by considering the fact that for these values

the fibres are distributed mostly in the internal layers and not in the outer

ones, it can be concluded that for small b values a different kind of fibre could

be studied. In fact, it is possible to see that for all the other b values the fibre

content ‘shifts’ towards the external radii. The reason for this phenomenon

can be explained by fig. 4.9, where it can be seen that in the FA map the
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aortic area dilates for higher b values. In particular, it can be postulated

that the fibres detected with small b values are elastin fibres that are present

in the luminal-medial layers. The verification of this hypothesis however,

requires further analyses to be carried out.

4.3.5 Extrapolation of Material Parameters

While the evaluation of the structural parameter γ was straight forward for

the fresh tissue, its determination for the frozen tissue posed more problems,

since no clear peaks were detectable, as shown in fig.4.13. A valid measure

for γ in the frozen tissue would be the average of the distribution measured,

and therefore an angle of approximately ± 30◦.The lack of a cohesive fibre

organisation was also indicated by the κ values calculated from the fibre dis-

tribution. In fact, while they are smaller than 0.17 for the fresh samples they

are between 0.2 and 0.26 for the frozen ones, with 0.333 being an isotropic

distribution, see table 4.6. These values clearly show that there is measur-

able structural damage due to freezing the aortic tissue. Freezing the tissues

generates a rearrangement of the fibres within the tissue that alters the me-

chanical behaviour of the tissue itself. The origin of this damage and the

differences between the fresh and the frozen tissue will be discussed in the

following section.

4.3.6 Quantification of aortic damage

As stated at the beginning of the present chapter, one of the main aims of

this study is to verify the ability of DTI in determining the structure of a

healthy aorta as well as a damaged or diseased one. Due to the impossibility

of obtaining porcine aneurysmatic tissue, it was necessary to use another kind

of damaged tissue and frozen tissue was chosen. In fact, freezing is known to

alter the mechanical properties of the soft tissues analysed. Delgadillo, [139]

pointed out that the alteration mainly depends on the medium used for the

freezing process and the sequence used when defrosting it. In fact, although
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Figure 4.19: Hematoxylin and eosin stained section of fresh (a, b) and frozen
(c, d) arteries, with different magnifications: 10× (a, c); 60× (b, d). In the
frozen samples condensed nuclei can be seen (c, d), which indicates smooth
muscle cell injury, from [140].

some freezing techniques can maintain cell size, the defrosting process can

abruptly destroy cells and be much more challenging to control than the

freezing process [140]. The result of cells’ destruction can be observed by

looking at fig.4.19, were arterial frozen cells can clearly be seen to have

flattened, like a punctured balloon. As the freezing protocol for this study

consisted of simply freezing the aortas in water, cells’ structures were altered

by the change in volume of the water within them. Water was chosen as

it presented minimal noise in the MRI, see section 4.1.1 and as it has been

reported to be a freezing media which alters cell structure [139].

Frozen samples obtained by freezing in water produced tissue with an

altered fibre pattern. This alteration was so extensive that it could be seen

qualitatively by looking at the FA maps, as shown in fig.4.9. In fig.4.9, it

can be seen that in the FA maps for the frozen sample the aortic area is

darker compared to the fresh samples. This means there is a lower degree

of anisotropy and therefore, a different kind of fibre orientation. The confir-
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mation of these observations comes from analysing quantitatively the fibre

distribution, see fig.4.13, 4.17. In fig.4.13, 4.17 it is possible to see that the

fibres in the frozen sample are more scattered than in the fresh ones and

also that there is no preferred orientation identifiable by a dominant peak

in the fibre angle plot. In fig. 4.14, it can be seen that this inconsistent

pattern of fibres continues throughout the layers. These observations are

further supported by the data in table 4.4 and 4.5 where the fibre content is

arranged across the layers in a different way compared to the fresh aortas.

These structural changes give rise to a material with different mechanical

properties [140], see fig.4.19, because these properties are influenced by the

microscopic changes in the tissue while freezing. The misalignment produced

by freezing and shown in fig.4.13.A, corresponds to an overall weakening of

the tissue due to the loss of coherence of fibres in the preferred direction.

From this it can be inferred that the knowledge of a tissue’s structural archi-

tecture and relative changes can give an insight into how the damaged tissue

will react to different stimuli, such as the physiological blood pressure and

or the implantation of a surgical device.

Observing such alterations in the damaged aortic wall is an important

result not only in terms of the mechanical characterization of the tissue, but

also from a clinical point of view. The profound meaning of this finding

is that DTI could be used for detecting changes in the aortic tissue non-

invasively, which infers that it has the potential to be further developed as a

tool for the diagnosis of early stage AAAs in humans. In fact, in section 2.2,

it was described how most of the studies on AAAs development conclude that

AAAs are linked to an alteration in the concentration and in the configura-

tion of the protein based constituents of the aortic wall [28–30]. In particular,

this modification in the structure is a result of a rearrangement of the me-

dial structure due to a decrease in elastin content and organisation [141],

to an alteration in collagen deposition caused by the presence of collage-

nases [28, 31], and to a significant reduction in smooth muscle cells [31, 32].

All of these changes can be observed by looking at fig.4.20, where histo-

logical slices of a non-aneurysmal tissue and of an aneuryms are given for

comparison. These histological findings are in accordance with the change in
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Figure 4.20: Histological evidence of structural alteration in ascending tho-
racic aortas. Nonaneurysmal aortas (A, C) and aortic aneurysms (B, D)
were stained with elastin-Van Gieson (EVG) (A, B) or an antibody to SM
α-actin (C, D). Elastin is stained black by EVG and separates the media
from the intima (above) and adventitia (below); in the high magnification
photomicrographs (C,D) it is possible to see lacerations in the structure for
the aortic aneurysm, from [141].

the mechanical properties of the tissue reported and in particular with the

low tensile strength of AAAs tissue measured by Vorp et al. [27], shown in

fig.4.21.

By comparing the results obtained from literature for frozen arteries and

AAAs arteries, see fig.4.19, and 4.20, it is possible to notice that the damage

produced by these phenomena is similar. In both cases there is a global

rearrangement of the protein structure of the tissue that is characterized by

a global loss of cohesion and fine dispersion. Adding to these observations

that DTI is able to pick up alterations in the aortic fibre pattern due to

freezing, it is possible to conclude that DTI could have the potential to
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Figure 4.21: Aneurysm induced Alterations in arterial mechanical behaviour:
effects of aneurysm on tensile strength of longitudinal (LONG) and circum-
ferential (CIRC) specimens of ascending thoracic aortic aneurysm (black)
and nonaneurysmal aortic tissue (white), from [27].

detect alterations in fibre patterns due to AAAs. Besides, the use of DTI for

detecting diseased fibre patterns could trigger an even bigger advancement

in clinical practice, since it could be used to study the early stage of the

disease and thus could give an insight into the aetiology of AAAs, as yet still

unknown [142]. Finally, the use of DTI in a clinical setting could produce

new criteria for AAA rupture prediction, which would be more scientific and

reliable than the current state of the art diameter measurement3 .

Another relevant aspect of the potential of DTI in identifying altered fi-

bres, is its use in predictive modelling. Determining fibre alteration within

the tissue generates new structural parameters for constitutive models which

in turn require different material constants. From this interdependence be-

tween the structural parameters and the constitutive model, the importance

of the structural parameters in determining the overall tissue behaviour can

be drawn, which brings to the conclusion that the fibres tracked have a

structural significance. Therefore, being able to measure fibre disorganisa-

tion with DTI allows for measuring changes in the structural parameters and

consequently, for the determination of new constitutive models.

Finally, the biggest advantage of DTI over other tecniques is its non-

invasiveness and the possibility of obtaining 3D data. Many of the studies

3AAAs smaller that 5 cm are deemed to be unlikely to rupture while AAAs bigger than
5 cm are usually surgically treated. Unfortunately AAAs smaller than 5 cm can rupture
and AAAs bigger than 8 cm can keep growing without rupture [17,23,25,26].
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on aortic damage are based on 2D histological findings which have been

taken from samples harvested post mortem following removal of the in-situ

pre-stretch. By using DTI on fully intact aortic samples there would be two

advantages over state of the art histological techniques: first, the alteration

in fibre direction measured would be representative of the whole arterial

geometry in situ; and second, the non-invasive nature of DTI would make

large epidemiological studies on humans easier and faster.

In this study a damaged fibre pattern was induced using the effect of water

and freezing, so that it could represent diseased aortas with a disrupted fibre

pattern. The results presented suggest that DTI can successfully recognise

the altered fibre pattern contained in a diseased aorta. From this, it can be

concluded that DTI offers a resolution high enough to study patterns in the

healthy aorta as well as diseased vessels.

4.3.7 Limitations

Regarding the interpretation of the results presented, one of the biggest lim-

itations is in the knowledge of the fibres tracked for the small b values. To

determine if they really are elastin fibres further microscopic or histological

analyses are required. Such analyses will also be needed to further investi-

gate the transition zone between the media and adventitia and to create a

clear correspondence between the aortic tunicae and the layers identified in

this study. Three dimensional microscopy analyses such as that performed

by O’Connell et al. [34] would be the best technique to analyse these phe-

nomena given that it can image fully intact cylindrical samples. Histology

could perhaps offer some insights but given that it requires harvesting the

tissue and viewing 2D sections where all in situ loading has been removed it

would not be the optimum exploratory technique.

The aortas were completely immersed in a chamber filled with water as

opposed to saline. Imaging the samples with saline solution posed problems

in terms of filtering the noise, since the solution was inside and all around

the sample. Blood would be inside the samples in vivo and there are MRI

blood suppression routines available that could be applied so the same issues
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would not exist for in vivo analyses. Another limitation was the analysis of

a vessel in the unloaded configuration, whereby the circumferential stretch

was preserved, but the longitudinal stretch was lost. Taking these limitations

into account it is still clear that DTI of arterial tissue is feasible and that it

can be used to successfully image the fibrous structure of arterial tissue in a

non-invasive way.

More generally, a limiting factor in the accuracy of the results was the

fibre tracking streamline deterministic algorithm used, i.e. an algorithm that

considered only one fibre direction for each voxel. This kind of algorithm is

state of the art, but new algorithms are currently under investigation that

allow tracking two or more fibres in each voxel. It must be noted that the

fibres tracked with this algorithm are not the resultant of the two fibres

crossing the voxel, but only one of them. This explains the difference in

peak amplitude for different samples: where two fibres cross in a voxel, only

one is picked. By taking the nature of the fibre tracking algorithm into

consideration it is possible to conclude that there are two families of fibres in

the fresh aortic wall which helically criss-cross each other in a symmetrical

pattern about the reference central axis, this gives rise to two dominant peaks

in the fibre angle plots with equal clockwise and anticlockwise leading angles

for helical fibres.

4.3.8 Conclusions

DTI can describe the fibre arrangement that was described by other tech-

niques used in literature. Over all the other techniques, DTI has many

advantages. Firstly, it has the potential to study fibre orientation in a non

invasive way; secondly, it can do so for a large continuous 3D portion of

the aorta. This means it can be directly applicable to a living human being

and that an extensive portion of the tissue can be studied at the same time.

Finally, because a large amount of fibres can be analysed at the same time

using a computer based technique, biased and time-consuming results such

as those obtained in a manual analysis are avoided.
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Chapter 5

Phase Contrast MRI

characterizations of the mechanical behaviour of a structure cannot be judged

complete without an analysis of the loading response. This analysis can be

carried out in many ways like, for example, the tensile tests described in

2.3.1, see page 24. Since the main aim of this paper is to achieve the charac-

terization of aortic tissue non invasively, tensile tests cannot be considered a

suitable option, since they require the tissue to be harvested.

Magnetic Resonance Imaging again provides a solution to the problem of

determining non invasively the strains resulting from loading of the tissue. In

this case, the technique used was Phase Contrast MRI, which is a technique

developed for studying arterial flow. Although the application of Phase Con-

trast MRI to determine circumferential strains in the aortic tissue is already

reported in literature [109,120–122], its expansion to the characterization of

the behaviour of the aorta, described in the present work, is novel. In fact,

the circumferential strains measured non-invasively with this technique will

be used in the final chapter to define suitable parameters for a constitutive

model capable of describing aortic mechanical behaviour.

5.1 Methods

In contrast with DTI, Phase Contrast MRI is a dynamic technique, produc-

ing images that are velocity maps. Therefore, in order to proceed with PC
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Figure 5.1: Equipment used in the study: A) Pulsatile pump for large animals
from Harvard Apparatus; B) Transducer amplifier from CWE Inc..

MRI, the aortas needed to be adequately pressurised. This was achieved by

connecting the modified chamber, (page 55), to a pulsatile pump for large an-

imals (HA553305, Harvard Apparatus, MA), see fig.5.1,A. Using this pump

the aorta segments were subjected to a pulsatile flow, similar to the one pro-

duced by a heartbeat. The pulsatile profile produced lasted for nearly 850 ms

and repeated identically each cycle, and is shown in fig.5.2. With dynamic

analyses the MRI scanner needs triggering, so that the scan can be taken at

the same point in each cycle. This was achieved by using a pressure trans-

ducer connected through a probe (DTX-plus, BD Medical Systems, UT). The

probe was inserted in the chamber, inside the aorta, and the pressure trans-

ducer was connected to a transducer amplifier (TA100, CWE Inc., PA), see

fig.5.1,B. The transducer amplifier has two analog outputs. The first output

simply reports the pressure from the pressure transducer and is connected

into a monitoring laptop where a custom LABVIEW® code was written for

control, reported in Appendix D. The second output is a result of an in-

strument modification conducted in order to trigger the MRI: the transducer
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Figure 5.2: Continuous pulsatile profile produced by the HA553305 pump in
the porcine aorta. The pressure recorded at the nine time steps considered
in the analysis is highlighted.

amplifier was fitted with a transistor-transistor logic trigger (TTL trigger)

that could be manually modified to send a trigger signal to the MRI system.

The analog output corresponding to the TTL trigger is doubled and feeds

both the MRI system and the monitoring laptop. The arrangement of equip-

ment used for this experiment is shown in fig.5.3, where it can be seen how

the water flow loop and the electronic feed-back loop communicated through

the transducer amplifier. None of the equipment used could stay in the scan-

ner room, due to restrictions on the presence of ferromagnetic metals in the

MRI, and therefore all the equipment shown in fig.5.3, was kept in a separate

room. Since the chamber used in this study was similar to the one used for

the DTI scans, the aortic segments were prepared as described on page 54.

Moreover, this imaging technique required extensive preliminary testing and

set up, as described on page 57, hence the results obtained for one sample

are presented here.

Using the parameters indicated in table 5.1, four images were scanned at

100 ms intervals during the pulsatile cycle (i.e. eight time steps and eight

pressure values). The first image was a reference image, with no gradient

applied and the remaining three were gradient sensitized images, where the
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Figure 5.3: Schematic of equipment connections for the PC MRI experiment:
the blue line represents the water connection while the green line represents
the electronic connections.

gradient was applied each time along a different dimension between x, y, and

z. These images were then input into a custom MATLAB® routine where

the velocities were analysed together with hand-tracked ROIs of the datasets

at each time step.

The first portion of the routine was similar to the DTI routine and anal-

ysed the ROIs in order to extrapolate the centre of mass of each image. Then

the ROIs were used to select the relevant portion of the image (the aorta).

From the images obtained in the x, y and z directions, the reference image was

subtracted and then the phase pixel values were multiplied by the encoding

velocity, as shown in eq. 2.26 (page 33) thus producing velocity encoded im-

ages in the three directions. According to the work of Pelc’s group [120–122],

in order to study the strains in the aorta effects of rigid body translations and

rotations on the velocity encoded images need to be removed. Therefore, the

images underwent the following procedure to remove the effects of rigid body

translations and rotations in accordance with the method described in [124].
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Removal of rigid body translations and rotations

For the removal of rigid body translations and rotations, the centre of the

image needs to be calculated first. This was done by tracking manually the

ROIs of the first slice of the volume in each dataset and evaluating the ROI’s

centre of mass using a custom MATLAB® routine. It is then necessary to

define the rigid body motion. In three dimensions the rigid body motion can

be transformed as a rotation about the centroid of the slice and a translation

of the centroid [124]. Rotation velocities are dependent on angular velocity

(Vrotation = ω × r; r distance from the centroid), while translation velocities

can simply be added, as shown in eq.s 5.1 and 5.2:

Vx = zωy − yωz + V translation
x + V deformation

x (x, y) (5.1)

Vy = xωz − zωy + V translation
y + V deformation

y (x, y) (5.2)

Where Vi is the image velocity, ω is the angular velocity, r = [x, y, z] is the

distance from the centroid, V translation
i is the translation velocity component,

and finally V deformations
i (x, y) is the velocity of the deforming tissue, i.e. the

quantity that needs to be determined [124]. In this approach through-plane

velocities (Vz) are not considered, however this procedure can be extended

to three dimensional motion [124].

Since ω and the translation velocity can be considered constant during

the velocity encoding interval, the eq.s 5.1 and 5.2, can be rewritten as [124]:

Matrix FOV N Slices Slice Echo Velocity
Distance Time Encoding

256 × 256 2.8 × 2.8 cm 9 1.5 mm 10 ms 4.6 cm/s

Table 5.1: PC MRI scanning parameters
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-ωz

ωz

Figure 5.4: Top: distribution of values for Vx versus y and Vy versus x. This
distribution can be fitted by a line whose slope corresponds to ωz, and whose
intercept indicates Ai. Bottom: distribution of values for Vx versus y and Vy

versus x after the removal of rigid motions effects. Figure adapted from [124].

V deformation
x (x, y) = Vx − A1 + yωz (5.3)

V deformation
y (x, y) = Vy − A2 − xωz (5.4)

At this point, the constant values Ai and ωz are unknown. From a look at

eq.s 5.3 and 5.4 Ai and ωz can be regarded as the intercept and the angular

coefficient of the line produced by plotting Vx versus y or Vy versus x. Then

the approach used for evaluating Ai and ωz is the following: plotting Vx image

velocity values versus y (or Vy versus x) a distribution of values is produced

that can be fitted by a line, whose slope corresponds to ωz [124], and whose

intercept indicates Ai, as shown in fig.5.4. Finally, V deformation
i (x, y) can be

evaluated using eq.s 5.3 and 5.4 and by inputting the average of the two ωz

and the Ai values for the corresponding direction.
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Once the rigid motion was removed from the velocity encoded images and

prior to proceeding with the strain determination, the spatial derivative of

the deformation velocity was evaluated and thus the gradient velocity tensor

was created, as shown by eq. 2.27 (page 33). The final step involved the

construction of a mesh of the aorta for each time step. In fact, a division

of the aorta into elements was necessary, since it was needed for comparison

with Finite Element Models. Therefore, a mesh was created in MATLAB®

by using the manually tracked ROIs of all the slices and by stacking them

together in order to create a volume. The in-plane division of the mesh

depended on the amount of pixels describing the luminal circumference of

the aorta, and this allowed for the in-plane density of the mesh to be altered

by changing the number of pixels between the nodes of the element. The

same convention was applied to the mesh through-plane dimension that was

defined by the inter-slice thickness. In this case, one element was used over

the in-plane thickness of the aorta, and 20 divisions were applied to the

luminal circumference. This resulted in a mesh of 20 elements for each slice

of the aorta for each time step of the cycle. The mesh created for the first

step of the cycle was exported to ABAQUS® for finite element analysis and

strain comparison. The final results of this procedure were the deformation

velocity matrices and the gradient velocity tensors for each mesh element and

each time step, plus mesh geometrical information (nodes, size of elements,

baricentre) for each time step.

Circumferential strain For the evaluation of circumferential strains, the

results of this MATLAB® routine were exported in a separate file (one for

each time step). The data from the files were read iteratively and then the

radial component of the resultant velocity vector (the average of the velocity

values contained within an element) was evaluated for the i, the i − 1 and

the i + 1 time steps. The extrapolation of the the radial component of ve-

locity was accomplished by using trigonometry and geometrical definitions.

In particular, since the radial component of the velocity vector is defined as

its projection on the line s, see fig. 5.5, it can be described by the equation:
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Figure 5.5: Definition of velocity vectors in a cylindrical coordinate system.

V deformation
r = V deformationcos(α); (5.5)

Where α is the angle between the two lines t and s, as shown in fig. 5.5, that

can be determined using the slope of the two lines, mt and ms:

tan(α) =
mt −ms

1 +mtms

; (5.6)

Then, radial trajectories were evaluated for each mesh element, according to

the forward/backward algorithm defined in [109], and described in Appendix

C. This method can be applied to cyclic motions and defines the trajectory

of an element rk by combining the trajectory produced by going forward in

time fk+1 and backward in time bk−1, as shown briefly by eq.s 5.7. A more

detailed explanation of this integration is reported in Appendix C.

fk+1 = fk +
1

2
[V (fk, tk) + V (fk+1, tk+1)]∆t;

bk−1 = bk −
1

2
[V (bk, tk) + V (bk−1, tk−1)]∆t; (5.7)

rk = wkfk + (1− wk)bk;

Finally, circumferential strains were evaluated using eq. 2.30 (page 35):

103



MATLAB®:

• Definition of the centre of mass from ROIs;

• Use of the ROIs to select relevant area in the image;

• Subtraction of reference image;

• Determination of velocity encoded images;

• Evaluation of deformation velocity as in [124];

• Creation of the velocity gradient tensor L;

• Mesh definition;

• Evaluation of values of interest

for each mesh element & for each time step;

• Radial trajectories tracked as in [109];

• Evaluation of circumferential strain

for each mesh element & for each time step as in 2.30;

Table 5.2: PC MRI step sequence.

ϵθθ =
1

2

[(
r

R0

)2

− 1

]
;

In this case the vessel radius at a reference time point R0 was defined as

the radius calculated from the first time step ROI, while r was obtained as

the radial component trajectory for each mesh element. A summary of the

sequence of the operations performed by the custom MATLAB® routine for

PC MRI is illustrated in table 5.2.

5.2 Results

The non-invasive determination of circumferential strains was the result of

the process described in the previous section. The images obtained from MRI

for each time step were obtained in two formats, a magnitude one (standard

format in which MRI images are generally produced) shown in fig.5.6, and
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A        Slice 1 B        Slice 2 C        Slice 3

D        Slice 4 E        Slice 5 F        Slice 6

G        Slice 7 H        Slice 8 I        Slice 9

Figure 5.6: Magnitude images of the PC MRI sequence for each slice.

a phase one, shown in fig.5.7, where each pixel represents the phase of the

precessing proton and hence, by eq.2.26, the velocity. In these images it

is possible to recognise different components: together with the water and

the aorta present in the images, in fig.5.6 it is possible to see the pressure

transducer, and, for the first slices, the connector which keeps the aorta in

place, see fig.5.8 and fig.4.2 (page 55). Moreover, in the images in fig.5.6 it

is possible to see a blurring effect created by the noise of the water flowing

through the sample. This noise effect is reduced in the phase images in

fig.5.7, making them suitable for further analysis.

As described in the previous section, the components of velocities ob-

tained by subtracting the reference image from the directional images, had

to be filtered in order to remove the rigid body motions. The results of
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A        Slice 1 B        Slice 2 C        Slice 3

D        Slice 4 E        Slice 5 F        Slice 6

G        Slice 7 H        Slice 8 I        Slice 9

Figure 5.7: Phase maps of the PC MRI sequence for each slice.

this method, reported in section 5.1, are shown here for the last slice of the

volume, slice nine, see fig. 5.9. In particular, the distribution of Vx values

versus y coordinates and of Vy values versus x coordinates are reported prior

to the application of the method, see fig.5.10, and after the application of

the method, see fig.5.11. By comparing these two figures it is possible to see

the removal of the rigid body motion of the vessel.
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Figure 5.8: Components of the image in fig.5.6.A: apart from the connector,
these components can also be found on the sub-figures of fig.5.6.

(x,y) plane

slice 9

slice 1

Figure 5.9: Organisation of the aortic volume.
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Figure 5.10: Effect of rigid body motion on the last slice for each time step;
black and dark grey lines represent data in the Vy, x distribution, green and
yellow lines data in the Vx, y distribution.
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Figure 5.11: Correction of rigid body motion on the last slice for each time
step; blue and cyan lines represent data in the Vy, x distribution, red and
magenta lines data in the Vy, x distribution.
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Figure 5.12: Cycle trajectories plotted for elements 1 and 11 (blackened) for
slices 2, 6, and 9.

The result of the removal of rigid body motions is a set of directional

matrices of velocity representing only the deformation velocity in the three

coordinates. From these matrices, where the deformation velocity has been

isolated it is possible to measure the aortic trajectories and then the circum-

ferential strains. In order to obtain a distribution of strains comparable with

the one resulting from a Finite Element simulation, the aortic volume was

divided using the meshing parameters described in the previous section. The

trajectories tracked for three sample slices 2, 6 and 9 and for four sample

elements, taken every π/2, are shown in fig.5.12 and 5.13. From these fig-

ures it can be seen that the trajectories, although varying in path over the

circumference of the aorta, always describe a closing loop due to the interpo-

lation between the forward and the backward integration. On average, the

trajectories were smallest for element 5, with an average path of 0.3 mm.

Finally, the circumferential strains over all the cycles are shown for the
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Figure 5.13: Cycle trajectories plotted for elements 5 and 15 (blackened) for
slices 2, 6, and 9.

sample slices, 2, 6 and 9 in fig.5.14, 5.15, and 5.16. In these figures the circum-

ferential strain magnitudes are plotted in each element and the strain vector

representation is superimposed on the baricentre of each element. Again,

by looking at these figures it can be seen that the strains are not uniform

throughout the circumference. In particular, it can be noted that for slices

6 and 9 there is a marked reduction in strain for the final time steps.

As shown in fig.5.6 and 5.8, the first slices in the aortic volume are tied

to the connector. The presence of this tie and of the connector made it

impossible to decipher the behaviour of the first slices, subjected as they are

to a variety of loads, including contact and shear. This made it necessary to

consider only the last slice (slice 9) for the determination of the strain, given

that for this one the end effect could be considered negligible.

The distribution of the circumferential strain for slice 9 is shown in

fig.5.17, where the average of the strains over all the elements is plotted.
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Figure 5.14: Circumferential strains recorded for the second slice over time:
the colour map represents the magnitude, the arrows the direction.
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Figure 5.15: Circumferential strains recorded for the sixth slice over time:
the colour map represents the magnitude, the arrows the direction.
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Figure 5.16: Circumferential strains recorded for the ninth slice over time:
the colour map represents the magnitude, the arrows the direction.
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Figure 5.17: Plots of the circumferential strain for the ninth slice over time;
the averages of each quarter of the aorta (5 elements) and over all the elements
are also shown.
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In order to account for the variability in strain observed across the circum-

ference of the aorta, the averages of the circumferential strains over each

quarter are also plotted. From fig.5.17, it is possible to see that the pat-

tern of strain observed follows the pattern of the pulsatile waveform applied,

increasing rapidly as the pressure rises and then decreasing.

5.3 Discussion

The noise in the central part of the images shown in fig.5.6 is representative

of the difficulties encountered during the implementation of this technique.

Since the PCMRI sequence was not available among the pre-loaded sequences

in the Bruker Biospin 7T scanner, it had to be programmed manually, adding

the pulse gradients required and reducing the noise created by the pulsatile

flow with saturation slices. The saturation slices were particularly useful in

reducing the noise, although not able to remove it completely. However, the

noise did not affect the phase images as much as the magnitude ones: in the

phase images shown in fig.5.7 the noise due to the incoming flow is reduced,

although still present. The noise reduction achieved by the saturation slices

on the phase images was considered satisfactory for the strain evaluation

since it did not affect the aortic wall (see central part of the images) and

therefore allowed the analysis of the aortic volume. It has to be noted that

the effect of the noise on the phase images rather than magnitude images

was important, because in this study only the phase images were used for

the evaluation of the strain, while the magnitude images were used for the

manual definition of the ROI.

Once the reference image was subtracted from the phase images in the

three directions x, y and z, the velocity of the tissue was evaluated using

eq.2.26 [108]. The velocity maps thus obtained needed to be further ma-

nipulated in order to extract the deformation velocity. This manipulation

consisted of the removal of rigid body translations and rotations. The ef-

fectiveness of this method in correcting for rigid body motions is shown by
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the comparison of fig.5.10 with fig.5.11. The first figure shows the velocity

profile obtained for the last slice (dashed line) and the its linear interpolation

(solid line). The second figure shows the same profiles after the application

of the correction method. It can be seen that the linear interpolations in the

second figure are centered in (0,0) and that their slope is diminished. This

showed that the rigid body motion removal was successful, since a reduction

in the linear interpolation offset corresponds to the removal of the rigid trans-

lation while a reduction in the linear interpolation slope corresponds to the

removal of the rigid rotations. This rigid body motion correction was vitally

important in this study since the aorta was suspended in the water and the

reflection of the pulsatile pressure waveform in the surrounding water caused

an increase in the rigid body motion of the tissue. An example of the increase

in aortic motion induced by the agitation of surrounding water can be seen

in fig.5.10.E-F. In fact, by comparing these figures with the others it is pos-

sible to see that the velocities in the aorta are less uniformly distributed and

that the rigid body motion algorithm is less efficient in reducing the slope of

their linear interpolation, see fig.5.11.E-F. This effect is explained by taking

into consideration the flow induced by the pulsatile flow in the aorta. In

fact, fig.5.18.A shows that the flow increases with the pressure, but before

the pressure reaches its maximum, the flow starts decreasing and creating

effects of back-flow into the vessel. By taking into consideration the time

steps corresponding to fig.5.11.E-F and the flow pattern shown in fig.5.18,

it is possible to determine that for these time steps the flow is decreasing

and instability is experienced by the aorta. The presence of water surround-

ing the vessel and reflecting the flow of the aorta amplifies the effect of this

decrease in flow, thus reducing the effectiveness of the rigid body motion

removal method. Although less distinct, evidence of the effects of a change

in the flow on aortic velocity profile is shown also by fig.5.10.I -5.11.I. In this

case, since the change in flow direction happens when the flow is minimal, at

the end of the cycle, the removal of the rigid body motion is successful.

As shown in the study by Draney et al. [122], the removal of rigid body

motion correction is far more successful in in vivo PC MRI since the aorta

is constrained by the spine and the ligaments, and is surrounded by neigh-
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A
B

Figure 5.18: Relationship between pressure, flow and circumferential strain:
A) pressure ad flow in the abdominal aorta, from [143], where it is shown
that pressure increases although flow is decreasing; aortic flow compared to
the strains measured by Wedding et al., both flow and strains are measured
through MRI, but in two separate acquisitions [120].

bouring internal organs, as opposed to being suspended in water. Therefore,

the in vivo deformation velocity recorded with this technique will not suffer

from a reduction in accuracy for the reverse flow phase of the heartbeat.

Another important consideration that can be drawn from fig.5.10 and

5.11 regards the distribution of the velocities. In fact, from the dashed line

plots it can be seen that the amplitude of the deformation velocity is con-

sistent throughout the slice, with some transition effects at the extremities,

i.e. at the transition with water. The presence of transition effects at the

extremities is caused by the manual tracking of the ROI, which might have

led to the inclusion of water pixels. Since the water around and inside the

aorta is moving faster and in different directions, noise can be generated in

the magnitude images, see fig.5.6, but it is expected that the velocity of such

pixels would be different in amplitude from the velocities measured within

the aorta.

Circumferential strain Once the deformation velocity was isolated, tra-

jectories were tracked using the algorithms proposed in [109, 120–122], and

from the trajectories the circumferential strains were evaluated, using eq.2.30.

The trajectories found for the different elements into which the aortic vol-

118



ume was segmented are plotted in fig.5.12 and 5.13. The plots show that

these trajectories are consistent, describing paths with an average length of

1.2±0.25 mm. Moreover, these trajectories change across the different slices,

as expected, with the first slice constrained and the immediate following ones

subjected to the effect of such constraint. The end effect could be consid-

ered negligible for the last slice given that it is 1.35 cm distant from the

constrained first slice and the radius of the aorta being on average 0.6 cm.

Therefore this was the slice where the aortic circumferential strains were

measured. The trajectories tracked for the last slice resulted in larger mag-

nitudes than those tracked for the other slices reflecting the different loading

condition. Moreover, the trajectories tracked in fig.5.12 and 5.13 for the last

slice show a similar path to the paths reported in [120, 122] for the aortic

wall.

Lastly, the circumferential strains were measured for the whole volume,

although only the strains measured for the last slice were considered repre-

sentative of the pressure loading on the aortic wall. The method for mea-

surement of strain proposed by [109, 120] and used in this study, uses the

radial trajectories in order to define the circumferential strains, see eq.2.30.

Since the trajectories tracked describe a motion consistent with that antic-

ipated based on theory and on literature [120, 122], the method proposed

by [109, 120] can be used to define the cyclic strains of the porcine aorta in

the present study. The measured strains are presented in fig.5.14–5.16 for

different slices in the aortic volume. From these maps a precise distribution

of the circumferential strains across the aortic volume can be determined

and observed, where the sides of the aorta deform more than the top and

the bottom. This difference could depend on structural factors: for exam-

ple the branches of the aorta could be responsible for this variation due to

turbulence effects originating at the branches. Another cause of this effect

of squeezing of the aorta could be the presence of air bubbles on the top

of the aorta, see fig.5.8. Since each element, and the corresponding vector,

represents the average response of all the pixels in the area, a sudden change

in the magnitude of the strain vector or in the colour of the element could

depend on local changes in the distribution of the strains, see fig. 5.14–5.16.
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Finally, to evaluate the validity of the profile and the level of strain mea-

sured, the strains were compared with aortic strains measured with the same

technique reported in literature. From fig.5.17 it can be seen that the cir-

cumferential strain profiles in accordance with that reported in literature: the

sharp peak of circumferential strains and their subsequent decrease conforms

with the observation that the circumferential strains follow the flow profile,

see fig.5.18.B, due to the fact that the flow is known to start decreasing while

the pulsatile pressure is still increasing, see fig.5.18.A [143]. Moreover, the

same behaviour is reported in [120] for both the abdominal and the thoracic

aorta.

The level of strains measured by averaging all the elements in the last slice

were in the same range as those reported by [109, 120–122] for the porcine

aorta, for loadings that were different in shape but always in the physio-

logical range, see fig.5.17. Moreover, the circumferential strains measured

agree with those reported by Morrison et al. for human aorta in a recent

study [144] where the circumferential strains were measured in vivo using a

CT scan. In particular, by comparing the strains recorded in vivo for the

human aorta by Wedding et al. [120] with the strains measured in this study,

fig.5.19, it can be seen that a similar distribution of strains is reported. In

fact, in [120], average strains in the aorta are measured between 1-4%, and

maximal strains between 4-8%, and fig.5.19 shows that both the average and

the maximal strains measured in the current study fall in the same ranges.

This validates the strains measured with PC MRI and justifies their use

in the following section as a comparison for the strains resulting from the

numerical simulation. However, because the reduction in the effectiveness

of the rigid body motion removal method for the time steps corresponding

to fig.5.11.E-F reduces the accuracy of the strain measurement in the same

time step, the strains corresponding to the loading part of the pressure curve

can be considered most accurate. Therefore, only the loading of the first four

time steps will used for comparison with the numerical model in the following

chapter.
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Figure 5.19: Comparison of the strains recorded with the results available
from literature [120]: The yellow box shows that the strains recorded fall into
the average strain range measured in literature (1-4%), while the green box
shows that the maxima fall in the range reported for the maximal strains
(4-8%).

5.3.1 Limitations

Although the application of PC MRI on just one aortic sample usually can

be considered quite limiting, it must be considered that aortic PC MRI is an

established technique [109, 120–122], which in this study is applied to nine

slices in the aortic volume. The results for these nine slices are consistent and

provide a strain pattern that confirms the findings presented in [109,120–122].

In the future, the application of this technique to more samples will give a

greater insight into the behaviour of the tissue and into the possibility of

using this technique in vivo on human patients.

The current study was carried out on a high field experimental scanner

for animal studies in order to maximise the resolution of the images. While

the use of an experimental scanner was an advantage for the most part, at
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the same time it was also the most significant limiting factor in the present

PC MRI analysis. In fact, this scanner lacked a PC MRI sequence pre-loaded

into the MRI processor and therefore it was not possible to correct all the

noise due to the pulsatile flow. These sequences are normally available on

human studies MRI scanners [108,109,120–122], and hence this does not pose

limitations to the future development of the technique.

Finally, the positioning of the aorta in the scanner was affected by the

noise created by the flow of water. In fact, given that water has a higher

content of free hydrogen protons than the aorta, the continuous flow of pro-

tons caused instability in the signal measured from the scanner that could

be reduced only by scanning the aorta at the inflow, where the presence of

the connector decreased the effect of the noise. This presented a limitation

for the study of the aorta since the measured portion coincided with the

constrained part of the aorta, and allowed the determination of the aortic

circumferential strains only for the last slice in the volume. However, this

limitation does not affect the use of PC MRI for in vivo human studies, and

hence its future development, since in vivo aorta is surrounded by neighbour-

ing organs and by the spine, tissue where the contents of hydrogen protons

is comparable to that of the aorta.

5.3.2 Conclusions

This chapter demonstrates how, notwithstanding some limitations due to the

flow induced noise, PC MRI is able to track the circumferential strains in

aortic tissue. The possibility of tracking these strains in vivo, as in the work of

Morrison et al. [144], offers great opportunities for the study of cardiovascular

diseases. In particular the advantage of this technique over a CT based one,

like the one presented in [144], is that it can be performed together with DTI

thus producing a complete mechanical analysis (static and dynamic) with

minimum discomfort for the patient.

Coupling DTI and PC MRI opens new opportunities in biomechanical

and diagnostic analysis of aortas in vivo that will be thoroughly investigated

in the next chapter.
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Chapter 6

Non-invasive Prediction of

Aortic Constitutive Behaviour

In this chapter all the findings of the previous chapters will be brought to-

gether in order to derive a characterization of the mechanical behaviour of

porcine aortas in a non invasive way. This characterization will be the result

of three steps: inputting the structural parameters obtained from DTI in

ch.4 into the constitutive model defined in ch.3, generating a Finite Element

(FE) simulation over the volume of the aorta and modifying iteratively the

material parameters until the circumferential strains resulting from the FE

simulation are comparable to the ones obtained experimentally from PC MRI

in ch.5.

The results of this chapter show that the procedure described in this

thesis is successful in determining the characterization of the mechanical

behaviour of the porcine aorta since it allows for the evaluation of material

constants that can reproduce the behaviour of the tissue in a physiological

loading condition. In addition, this characterization is non-invasive, with

the structural parameters and the strains being obtained without harvesting

the tissue. Finally, by comparing the strains resulting from the iterative

procedure with the in vivo strains available from literature, it can be seen

that this characterization is robust and has the potential to be developed for

the in vivo characterization of the mechanical behaviour of human aortas.
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6.1 Methods

6.1.1 Evaluation of DTI derived material parameters

In order to create a numerical simulation of the tissue behaviour, the con-

stants to be input into the constitutive model had to be chosen. The struc-

tural constants γ and κ were both obtained non-invasively, as a result of the

DTI analyses described in ch.4. These two new structural parameters were

input into the Levenberg-Marquardt non-linear regression routine, described

in ch. 3, to fit the uniaxial tensile test data reported in the same chapter. The

new set of material parameters c, k1 and k2, was then used for the definition

of the FE model properties.

6.1.2 Finite Element Analysis

The constitutive model was implemented in a commercial finite element soft-

ware environment, ABAQUS®. Both the constants used and the geometry

were defined on the basis of the precedent steps: the constants were defined

as a results of the DTI analyses, while the geometry was either defined by

measurements taken from uniaxial tensile tests or by the definition of the

imaged volume. Finite element analyses were used first for the simulation of

the uniaxial tensile tests, in order to verify the fit to the material model im-

plemented, and then for the analysis of the loaded aorta, in order to validate

the model through the PC MRI results.

Uniaxial Tensile Test Simulation To perform the mutual validation

between numerical and experimental tests, a finite element model was created

representing an eighth of the geometry of a uniaxial test on an aortic sample.

The dimensions for the sample were taken from the dog-bone samples used in

the experimental uniaxial tensile tests and a brick eighth model was created

with symmetry constraints on the x, y, and z plane. The sample was loaded

with a nodal force on the top surface where all the top nodes were constrained
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Figure 6.1: Finite element models: loads and boundary conditions. A) uni-
axial tensile test; B) aortic geometry.

in order to move together, as described in [53], see fig.6.1. Two separate

simulations were performed, one in the axial direction, i.e. with γ equal to

the value found from DTI studies; and one in the circumferential direction,

i.e. with γ rotated of 90o. The resulting orientations of the model can be

seen in fig.6.2, where the red arrows are oriented according to γ.

Loaded Aorta Simulation The aortic model was created from the mesh

obtained from PC MRI images. As outlined in section 5.1(page 102) the

mesh was created using the ROIs of the aortic volume for the first time step.

The boundaries of the aorta were manually tracked and then imported into a

custom MATLAB® routine that created nodes across the circumference and

in the thickness according to the numbers defined by the user. Examples

of two meshes obtained with different parameters are given in figure 6.3.

The ROIs obtained from PC MRI were spaced axially according to the MRI

interslice resolution, reported in table, 5.1 (page 100), see also fig.6.4.A,.

This axial spacing needed refinement for FE meshing and therefore the same

MATLAB® routine created axial divisions of the volume by interpolating

the x-y values between two adjacent slices. Finally, the custom routine

grouped all the nodal coordinates and the element connectivities and wrote

them into a input file that could be imported into ABAQUS®. The mesh was
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Figure 6.2: Mesh used in the uniaxial tensile test and fibre orientations: A)
test in the axial direction; B) test in the circumferential direction.

made up of hexahedral elements with hybrid formulation, the global number

of elements dictated by the MATLAB® routine, and is shown in fig.6.4 and

fig.6.5. The aortic model was completely constrained on the first slice in order

to simulate the constraint the cable tie exerted on the aorta in the MRI setup.

The internal area was then loaded with a uniform pressure, changing over

four time steps. In fact, due to the limitations in the strain measurement

reported for the time steps of fig.5.11.E-F, only the strains resulting from

the loading part of the pressure cycle could be compared. This allowed for

the creation of a quasi-static model, where the effects of the changing flow

could be neglected and pressure could be assumed as the only load applied to

the aortic wall. The pressure values applied were the same as those recorded

for the equivalent PC MRI time steps, see fig.5.2 time steps between 0 s

and 0.4 s (page 98). The material constants used were those defined from

DTI. The simulation ran on multiple CPUs and took less than 50 s. The

resulting circumferential strains were evaluated in ABAQUS® and exported

into Microsoft Office Excel® for further analysis. The mesh convergence was

evaluated by increasing the number of elements from 180 to 64,000. From

table 6.1 it can be seen that for a mesh density greater than 3,240 elements,

there are no significant differences in the results obtained. Consequently, the

mesh used for the analysis is the one with 3,240 elements, that is represented
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Figure 6.3: Line mesh for the ninth slice in the volume, bullets represent the
nodes: A) mesh n.1= 20 elements in the circumference, one element in the
thickness; B) mesh n.2= 30 elements in the circumference, 3 elements across
the thickness of the aorta.

in fig.6.4.B and 6.5.B.

6.1.3 Constitutive Model Validation

The global aim of this work was the comparison of the MRI measured cir-

cumferential strains with those obtained from a finite element simulation in

order to define an aortic constitutive model through non-invasive techniques.

In order to reach this aim, the results of the loaded aorta simulation were

Mesh elements

180 3,240 26,460 61,479

average number of

pixels per element 365±44.5 81±9.8 17±2.1 7±1

max strain (%) 8.63 8.66 8.67 8.69

min strain(%) 5.5 5.52 5.53 5.54

average strain(%) 7.27 7.29 7.3 7.32

Table 6.1: Mesh convergence study.
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Figure 6.4: Final ABAQUS® 3D mesh obtained for the meshes of fig.6.3: A)
mesh n.1 with no axial divisions; B) mesh n.2 with 3 axial divisions.

compared with those recorded from PC MRI and the simulation parameters

iteratively changed until there was a good match between the two, i.e. until

they fell in the same range. From the work of Wedding et al. [120] and from

fig.5.17 and 5.19, it can be seen that, although there is variability among

the strains that can be recorded in the aorta, average circumferential strains

in the aorta are measured between 1-4% [120]. Therefore, to define a set

of non-invasively determined material parameters able to simulate the cir-

cumferential strains measured in vivo for the physiological pressure range,

the strains resulting from the FE model must be in the range of the strains

recorded by PC MRI, and in particular, their average should be equal to the

value of 3.5% that is the average of the strains recorded by PC MRI for the

loading phase of the aorta.

Given that the structural parameters γ and κ represented an intrinsic

property of the tissue, only the material parameters c, k1, and k2 were mod-

ified to reach a match between FE and PC MRI strains. These changes were

performed by an iterative custom MATLAB® routine that changed c, k1,

and k2 recursively until a match was found. To measure the circumferential

strains an ABAQUS® simulation started automatically for every change in

the parameters, and the average of the strains was compared with the value

obtained from PC MRI. The elements considered for comparison between

the strains were the elements corresponding to the last slice of the PC MRI
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Figure 6.5: Final ABAQUS® 3D mesh obtained for the meshes of fig.6.3,
front view: A) mesh n.1 with no axial divisions; B) mesh n.2 with 3 axial
divisions.

sample, i.e. the volume defined by the elements in the unconstrained end of

the model.

Prior to the determination of the optimal parameters, rules had to be

drawn from the way a change in the parameters affected the resulting strains.

Initial considerations on the effects of a change in c, k1, and k2 were drawn

from fig.3.9 (page 50) in ch.3. Since a change in k2 had little impact on

the curves, only changes in the parameters c and k1 were considered for the

assessment of the optimal parameters. In particular, to study the effect a

change in the value of c and k1 had on the strains predicted by FE simu-

lations small changes in c (90% and 150%) and in k1 (85% - 115%) were

considered. The ranges of these changes were determined by previous tests

(data not shown) that showed that a small change in k1 was sufficient to

cause a significant influence on the final strains while c needed a much larger

increase and did not converge if reduced by more than 10%.
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6.2 Results

6.2.1 Evaluation of DTI derived structural parameters

Inputting the non-invasively determined values of γ and κ into the Levenberg-

Marquardt routine described on page 39 produced a new fit to the uniaxial

tensile data, as shown on fig.6.6. This new constitutive model fit, obtained

using DTI data, has a different shape compared to the fit obtained using the

literature data reported on table 3.1 (page 44). In fact, from fig.6.6 it can

be seen how a change in the DTI constants, and in particular a change in κ,

strengthened the difference between the axial and the circumferential curve

by making the stiffening in the circumferential direction and the softening in

the axial direction more distinct. In addition, the difference between the fit

for DTI and that for literature is highlighted in table 6.2, where it can be

seen that the value of c increased by an order of magnitude, and the value of

k1 decreased by two orders of magnitude, while k2 showed a smaller decrease.

6.2.2 Finite Element Analysis

Uniaxial Tensile Test Simulation The FE results for uniaxial tensile

test simulations, shown in fig.6.7, demonstrate the effect of the fibres on the

Literature, ch. 3 DTI model

γ 10◦ 15◦

κ 0.326 0.110

c 34.6 kPa 131.575kPa

k1 1.2 Mpa 12.4kPa

k2 4.2 1.67

Table 6.2: Comparison between the DTI derived parameters and the param-
eters obtained in ch.3 based on data from literature. In bold are highlighted
the changes in c and in k1.
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Figure 6.6: Comparison between the constitutive model fit obtained with the
constants defined in ch.3 and with the constants determined non-invasively
through DTI.

strains. In fact, it can be seen how the axial test deforms more than the

circumferential one. Moreover, the stress-strain curves obtained from FE

data show good agreement with both the tensile tests and the constitutive

model fit resulting from the Levenberg-Marquardt interpolation, see fig.6.8.

Loaded Aorta Simulation The results for the loaded aortic geometry

show a non-uniform strain distribution that reflects the irregular geometry

of the aorta, see fig.6.9. As anticipated, the strain distribution at the con-

strained end of the aorta is different from the remaining volume.

6.2.3 Constitutive Model Validation

By comparing the strains obtained from the FE simulation with those ob-

tained from the PC MRI it is possible to see that the FE strains are far
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from those recorded from PC MRI, see fig.6.10. Consequently, the material

parameters c and k1 needed to be changed until the strains fell in the appro-

priate range. The rules for changing the parameters, as mentioned in section

6.1.3 where defined by looking at the effects of changes in the parameters. In

particular, by looking at fig. 6.11 and 6.12 it can be seen that an increase in

c moved the strain curve downwards while a change in k1 changed the slope

in the curve. The optimal parameters were then found by increasing c and

decreasing k1. The iterative procedure resulted in the constants reported in

table 6.3 and in the strain plotted in fig.6.13. In this figure it can be seen that

the strain resulting from the FE simulation is in the range of the PC MRI

strains and of the strains reported in literature [120]. The relevant measures

of strains, such as minimum strain, average and maximum, are reported in

table 6.4.
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Figure 6.7: Strains in the direction of the load for the uniaxial tensile test:
A) axial direction; B) circumferential direction.
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Figure 6.8: Comparison between the constitutive model fit obtained with
the DTI and the stress-strain curve resulting from uniaxial tensile test FE
simulation; the axial FE results had to be interrupted at the asterisk due to
limit of experimental data.
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Figure 6.9: Circumferential strains in the loaded aorta FE simulation: A)
side view; B) front view.
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Figure 6.10: Results from the aortic simulations, The edges of the boxes are
the maximum and the minimum strain recorded, while the line represents
the average of the strains.

6.3 Discussion

6.3.1 Evaluation of DTI derived structural parameters

The global aim of this chapter was the comparison of the MRI measured

circumferential strains with those obtained from a finite element simulation

in order to define a constitutive model through non-invasive techniques. To

reach this aim, material parameters were defined non-invasively and input in

a FE model based on the real aortic geometry measured through MRI.

The structural constants, γ and κ, needed for the definition of the material

parameters were obtained from the DTI analyses in ch.4. The value of γ, ±
15◦ found from DTI analyses is in accordance with the nearly circumferential

value reported in literature [34] and with experimental uniaxial tests showing

distinct stiffening in the circumferential direction, see fig.3.6. By contrast,

there is a lack of reference for the value of κ, since it was determined for the

first time in this study from a fibre distribution , and can only be compared
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Figure 6.11: Effect of the variation of c and k1 on the strains computed from
the FE simulation.

with the values estimated from the tensile test behaviour in ch.3. As shown

in table 6.2, the values of κ in the two cases are completely different, with the

DTI measured κ being characteristic of anisotropy and the estimated κ being

an indication of isotropy. Inputting the DTI derived structural constants into

the non-linear Levenberg-Marquardt regression routine, described in ch.3, a

new constitutive model fit to the experimental tensile tests was produced,

as shown in fig. 6.6. By comparing the new model fit to the one obtained

using data from literature, it is possible to see that the DTI derived value

of κ triggers huge modifications in the curves. In fact, being characteristic

of anisotropy, κ marks a greater distinction between the behaviour in the

circumferential direction and the behaviour in the axial direction. This dis-

tinction is marked also in the values of the material parameters c, k1 and k2

reported in table 6.2. Here it can be seen that a larger value of c is needed

to move the axial response up, and a decrease in the value of k1 is necessary

for narrowing the gap between the two responses. According to what was

discussed in ch.3, these two changes represent an increase in the stiffness of
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Figure 6.12: Details of the effect of the variation of the value of c and of the
value of k1: A) k1 constant; B) c constant.

the ground matrix, larger c, that covers also part of the collagen response,

therefore reducing the stress-like parameter k1. Finally, the slight decrease in

k2 accommodates for a smoother response of the collagen fibres. The increase

in the stiffness of the matrix marked by the increase in c and the decrease in

k1 is needed to match the experimental data because of the reduction in the

stiffness in the axial direction caused by the high degree of anisotropy, i.e.

low κ.

The new constitutive model fit obtained for the non-invasively determined

structural parameters differs from the one obtained from the data from lit-

erature. In fact the second one, assuming isotropy, could fit the toe region

of the experimental tensile test better. This difference in the two model fits

demonstrates the necessity for obtaining realistic material parameters as de-

rived from DTI in order to find the most suitable parameters to define the

behaviour of the tissue.

6.3.2 Finite Element Analysis

Prior to the implementation of a FE aortic model, the stress-strain curve

resulting from the FE simulation of a uniaxial tensile test had to be compared

with the same curves obtained experimentally, in order to check the validity
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Figure 6.13: FE model strains for the values resulting from the iterative
routine, red box. The blue box represents the average strains in the aorta
reported in [109].

of the model. Fig. 6.8 shows that the FE stress-strain curves follow the shape

of the constitutive model fit, although they are slightly over-estimating the

toe-region behaviour. The buckling and the concentration of strains in the

first row of elements below the loaded surface, shown in fig.6.7, is due to

the particular loading of the sample. In fact, this phenomenon is due to

the nodes on the loaded surface being constrained to move together, without

changing their spatial relationship, a constraint that was imposed to mimic

uniform pulling of the surface.

The FE strains for the geometry of the aorta show a distribution of strains

generally uniform throughout the volume, with concentration effects only at

the constrained end, in agreement with that anticipated by theory on the

end-effect. Local variations on the strain distribution in the aorta are due to

the irregularities in the geometry of this biological sample.
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6.3.3 Aortic Constitutive Behaviour

As can be seen in fig.6.10, the global strains recorded for the loaded aorta

using the DTI model are shifted compared to the circumferential strains mea-

sured in the previous section. These large strains are due to the decrease of

the stress-like parameter k1 reported in table 6.2, and hence to a reduction

in the stiffness of the tissue. In order to obtain a better evaluation of the

FE computed strains, the material parameters c and k1 needed to be modi-

fied according to the observation reported in section 6.1.3. In particular, fig.

6.11 and table 6.4 show that changes in the material parameters can make

the strains larger or smaller and can also change the amplitude of the strain

response. Moreover, fig. 6.12, shows that a change in c moves the curve,

while a change in k1, alters the amplitude of the response. From these con-

siderations, rules were drawn on the modifications that had to be imposed

on the curve. In particular, the optimal values of the material parameters

were sought by increasing both c and k1.

The optimisation routine then increased both values until the average

strain value was reached with the maximal amplitude, see fig.6.13. The values

for which this routine converged were 1.7×c and 7×k1, and are reported in

table 6.3. In fact, for these two values, an average strain of 3.5% could be

reached with an amplitude of 1.45 %. The explanation for why these were the

values for which the curve converged can be seen by looking at fig.6.14. In this

figure it can be seen how, for increasing values of k1 both the amplitude and

DTI model Iterative procedure

γ 15◦ 15◦

κ 0.11 0.11

c 131.5 kPa 223.5 kPa

k1 12.4 kPa 87k Pa

k2 1.67 1.67

Table 6.3: Material parameters obtained from the changes in c and in k1.
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the average strain converge to values characteristic of the value of c used.

From fig. 6.14, it can be seen that there are limitations in the behaviour

that can be attained, and that the amplitude and the average for strains are

linked and depend on the constants chosen. For example, a smaller value of c

could increase the amplitude of the strains evaluated, but at the same time it

could make them so larger that they would no longer be comparable with the

strains measured from PC MRI. On the other hand, a larger value of c could

make the minimal strain evaluated from FE coincide with the minimal strain

measured from PC MRI, but then the amplitude of the FE strains would be

much smaller in comparison. Although strongly influenced by the value of c,

it is important to note that the routine converged for a marked increase in the

value of k1, which stiffens the response of the tissue. The increases in these

two constants, c and k1, obviously increase the stiffness of the aorta thus

reducing its deformation, but it is important to note that there is a wider

meaning to the increases in c and k1 for which the routine converges. First

of all, this increase in the stiffness of the aorta is physiologically relevant: in

fact, the material parameter k1 was defined as the stress the collagen fibres

can bear, see ch. 3, and a change in its magnitude will determine a change in

the behaviour of the fibres. By looking at fig. 3.8–3.9 and 6.6–6.8, it can be

seen how the k1 value is related to the maximal stress of the curve, which is

always of the same order of magnitude. Furthermore, by comparing table 6.2

and 6.3, it can be noted how the use of the DTI defined parameters affects

both the values of c and k1, with k1 decreasing of two orders of magnitude.

Hence it can be gathered that the increase in both c and k1 prescribed by

the optimisation routine describes a compensation mechanism for the stress

100%k1 100%k1 100%k1 85%k1 115%k1 700%k1 Literature PC MRI

100%c 90%c 150%c 100%c 100%c 170%c

Minimum 5.52 6.15 3.63 5.57 5.47 2.70 – 2.30

Average 7.29 8.15 4.75 7.36 7.22 3.50 1-4 3.5

Amplitude 3.14 3.55 1.98 3.17 0 1.41 – 2.4

Table 6.4: Relevant measures for the strains analysed (%).
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Figure 6.14: Effect of the variation of k1 on the amplitude and on the average
strain for different values of c.

that can be supported by the collagen fibres which then rises to levels closer

to those observed experimentally.

Moreover, these increases can be seen as the effect of considering the

whole aorta, as opposed to the samples harvested for uniaxial tests. In

these samples the natural residual stresses and the pre-stretch of the tissue,

see ch.2.2, are lost and the same happens to the connections between the

fibres and the organisation of the ground matrix, severed by cutting. This is

the reason why it is expected that the constants obtained by fitting to the

uniaxial tensile tests were under-estimated. The same observation applies

to the constitutive parameters obtained by other mechanical testing, biaxial

testing for example, since it has to do with the invasive action of harvesting

the tissue.

The increase in the values of c and k1 estimated by the iterative routine is

characteristic of the tissue considered in its integrity, and can be considered as

an average of the response of each part of the aorta, i.e. the global response

of the tissue. However, the same method could be applied to match the
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strains measured by PC MRI in a quarter of the aortic volume to the strains

estimated by FE in the same quarter, or even in a smaller portion, thus

measuring non-invasively the local properties of the tissue, or even of a single

layer. This can be accomplished because the constitutive model chosen, i.e.

the model from Gasser et al. [53], relies only on the definition of two structural

parameters for the determination of the behaviour of the tissue, γ and κ. In

fact, as it was discussed in ch.2, by changing the values of these two constants

it is possible to characterize each single arterial layer [57].

Moreover, the approach presented in this work is able to generate a mech-

anistic model of the aortic tissue because it can establish a direct relation

between the material parameters estimated and their effect on the behaviour

of the tissue. This means that this approach is not only successful in study-

ing the property in a healthy tissue but it has the potential to characterize

a diseased tissue as well. In fact, from this close relationship between the

biological components of the tissue and the material parameters it can be

hypothesised that the characterization for the diseased tissue could be deter-

mined solely by knowing the alterations caused by the disease in the fibrous

structure, such as the collagen and the elastin matrix disruption in abdomi-

nal aortic aneurysms [28–30]. Vice versa, it could be inferred that a change

observed in the constitutive model parameters would correspond to a change

in size, quantity and orientation of the biological components sustaining the

tissue.

Finally, the approach presented in this chapter offers greater potential

compared to other techniques currently available for the study of these ar-

terial disease. In fact, in contrast to other techniques that concentrate only

on the effects of age and disease on strains [121, 122, 144], or on the tissue

geometrical features [21,24,144] or even on the local properties of harvested

tissue [57, 63], the approach presented can determine global information on

the tissue and can put it into context by tying the mechanical properties

observed globally to the behaviour of the micro-structural components of the

tissue itself.
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6.3.4 Limitations

The fact that DTI and PC MRI were not carried out on the same aorta can

be considered the biggest limitation to this portion of the study. In fact,

DTI and PC MRI could not be carried out on the same aorta because of

a time conflict: the scanning time would have been in excess of 24 hours,

thus invalidating the hypothesis of fresh tissue that holds when the analysis

happens within 24h of slaughtering. For the present study, this limitation

can be overcome by considering the repeatability of the DTI results. In the

future, the use of a DTI sequence optimised for aortic b values will make it

possible to obtain both structural parameters and circumferential strains in

one scanning session of less than 1h.

Another limitation is represented by the quasi-static analysis. A fluid-

structure interaction simulation could have generated a more realistic strain

profile for the pulsatile pressure. However, since there was no accurate ref-

erence for the strains measured corresponding with the back-flow, only the

strains corresponding to the loading part of the pressure profile could be

studied. In this phase of the cycle the pressure can be considered the main

load acting on the aorta and therefore the assumption of quasi-static load-

ing can be made without loss of generality. Moreover, the analysis of the

quasi-static response of the aorta to the loading phase of the pressure can be

considered a complete characterization of the aorta since it corresponds to

the maximal loading of the tissue.

Finally, having considered the same material properties for all elements

can be considered as another limitation of the analysis. In fact, although

DTI showed the potential to describe the global arrangement of fibres across

the aortic wall thickness, see fig.4.14-4.16, from the uniaxial tensile tests of

the aortic wall performed in ch. 3 a homogenised characterization of the

aorta was obtained, which was then used in the finite element model. In the

future, the knowledge of the stress-strain curves for each layer of the aortic

wall might be used to define each layer material properties.
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6.3.5 Conclusions

In this chapter it was demonstrated that it is possible to determine the me-

chanical behaviour of the aorta using only non-invasive techniques. This

was done by comparing the strains estimated by a FE model to the strains

measured by PC MRI, where the constants used in the FE model were deter-

mined non-invasively by using DTI. Although a perfect match between the

two sets of strains cannot be obtained because of the implementation of a

quasi-static analysis and the constraints imposed by the relationship between

the constants, by modifying the material parameters c and k1 it is possible

to move the strains into the range of the strains measured by PC MRI and

described in literature [120]. The modification of the constitutive model pa-

rameters conforms with that anticipated from theory and from observations

found in literature [5, 7, 8] thus validating this approach.
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Chapter 7

Final Discussion

Since arteries are the conduits for blood flow in the body, arterial diseases

are often characterized by alterations in blood flow patterns although these

diseases can also be characterized by structural changes in the arterial wall

that give rise to alterations in the blood flow. In fact, histological samples of

the two most common arterial diseases, atherosclerosis and aneurysm, have

shown alterations in the network of collagen and elastin fibres that sustain

the arterial wall [2, 15, 28–30]. At present, most of the knowledge on arte-

rial structure and mechanical properties is based on histological samples [5].

Histological analyses, to date the most powerful technique to investigate the

composition of human tissues, have many drawbacks: they are invasive, i.e.

a surgical biopsy is needed which poses limitations to their use in clinical

practice; they require the tissue to be cut into microscopic pieces, thus re-

moving all the natural pre-load of the tissue [7, 8] and making a global look

on the composition of the tissue impossible; they cannot be used for the

early diagnosis of a disease, since biopsies are limited to very localised areas.

In order to overcome all of these limitations a new technique needs to be

established to investigate and define arterial tissue properties, characterized

by its non-invasive nature, ability to analyse the global status of the tissue

and potential to provide an early diagnosis of arterial diseases.

The importance of an early diagnosis is important for aneurysms, and

abdominal aortic aneurysms (AAA), in particular. This disease often pro-
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gresses silently until rupture, an event fatal in 95% of cases [2, 17, 20]. Cur-

rently AAAs are detected by routine imaging of the abdomen, which is often

carried out for patients at high risk of cardiovascular disease. The lack of

an early diagnosis of such diseases has generated many hypotheses on its

aetiology and on the mechanisms that trigger the enlargement of the aortic

tissue, but unfortunately they cannot be verified given the present limitation

to studying the onset of the disease.

In this project a novel approach for the mechanical characterization of the

aortic behaviour is proposed, based on MR imaging techniques and there-

fore non-invasive. This novel approach starts with the selection of a suitable

histomechanical constitutive model for arterial tissue from those available in

literature, and then progresses with the evaluation of the aortic structural

parameters through DTI and the measurement of circumferential strains

through PC MRI; the constitutive parameters generated by inputting DTI

parameters into the constitutive model were optimised to represent the aor-

tic tissue by matching the circumferential strains resulting from a FE model

with those measured from PC MRI.

The procedure adopted for the mechanical characterization of the aortic

tissue is similar in its organisation to the procedure usually followed for the

initial development of a constitutive model, where the estimated output of

the model is verified against mechanical testing [53,57,61,62]. In particular,

the procedure adopted is similar to the procedure used for the determina-

tion of the histomechanical model used in the thesis. In fact, this model

uses structural information of the arterial tissue, obtained through histology,

and strains measured through mechanical testing to determine the material

constants that account for the stiffness of the tissue’s biological components,

i.e. the fibres and ground matrix [53, 62]. The model has been widely used

in literature and was chosen because of the clear mechanical meaning of its

constitutive parameters [53,62] and the large availability of data on its imple-

mentation [53, 57, 61, 62]. In fact, variations in the constitutive parameters,

performed in ch. 3 see fig.3.9 (page 50), demonstrated the link between the

stress-strain curves predicted and the mechanical meaning of each of the

constitutive parameter. This confirmed that such a mechanistic model was
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particularly suited to the approach presented in this thesis since it allowed

for an enhanced understanding of the mechanical behaviour, not only of the

whole tissue, but also of its structural components.

The model, however, is built starting from information obtained in an

invasive way. In fact, both histology and uniaxial tensile tests require the

tissue to be harvested and cut in small samples. Since the aim of this the-

sis was the mechanical characterization of the aorta in a non-invasive way,

suitable techniques had to be selected for the non-invasive analysis of aortic

structure and the measurement of aortic strains.

The identification of a suitable technique to investigate the structure of

the tissue was the biggest challenge, since most of the imaging techniques

used in clinical practice can offer only a representation of the geometry of

the tissue [66–68] or can detect only very specific alterations in the tissue:

for example CT can distinguish calcified arterial tissue [70]. An imaging

technique that can analyse accurately many different tissues is MRI, since it

detects the water content in the tissues [72], and recently a MRI application

was developed to track the motion of hydrogen protons along axon fibres in

the brain. This MRI technique, called DTI, is used in literature mainly for

studying the structure of the brain [77, 79, 83, 90–93], and has been used for

investigating the fibrous structure of the heart [94–103]. However, this tech-

nique has never before been applied to the study of arteries, and in particular

of the aorta. The novelty of using DTI for the analysis of a tissue, different

from the brain or cardiac muscle, introduced many major challenges: finding

the appropriate MRI coil for imaging, see fig.4.4 (page 58); determining the

optimal imaging parameters such as the b value for the aorta, see fig.4.13

(page 73), and tuning the post-processing parameters, i.e. the tractography

parameters from which the fibres could be tracked, see Appendix B. More-

over, since this thesis marked the first application of DTI to aortic tissue, the

results obtained had to be verified by comparing them with similar results

obtained using microscopic techniques that could provide full 3D informa-

tion [34, 56], and not with histology, which is limited to a bi-dimensional

representation of tissue structure.

The output of the DTI investigations was the analysis of aortic fibrous
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structure, see fig.4.10 (page 69) and in particular the evaluation of two fun-

damental structural parameters for the determination of a histomechani-

cal aortic constitutive model. With DTI, it was possible to measure non-

invasively γ, the fibre angle, and κ, a parameter that accounts for fibre dis-

tribution [53,62]. The use of DTI marked the first time that γ was detected

over a complete, three dimensional geometry, and the first time that κ was

ever measured, see table 4.6 (page 82). In fact, although defined in many

papers, κ has never been experimentally determined before due to a lack of

data regarding the three dimensional arrangement of fibres in the aorta, an

arrangement that can be imaged with DTI. The value of γ, determined by

analysing the fibrous structure resulting from DTI, matches the value of aor-

tic fibre angle reported in literature using different techniques [34, 56], and

the fibres arrangement across the aortic wall thickness is also in conformity

with the arrangement observed in literature [56,135,136].

Other than being successful in determining the structural data of a healthy

porcine aorta non-invasively, this work aimed at testing if DTI was able to

detect alterations in the aortic fibrous structure characteristic of arterial dis-

ease. Since it was not possible to obtain diseased porcine aortas for analysis,

the alteration in the fibrous structure was created by freezing it, thus pro-

ducing a damage similar to that found in diseased aortas [27, 139, 140]. The

DTI images presented in fig.4.9, 4.13, 4.14, and 4.17 (pages 68, 73, 75, 81),

suggests th that this imaging technique has the ability to detect the freezing-

induced damage of the aortic structure, thus showing potential to detect

structural alterations in the aortic wall. Two fresh and one frozen porcine

aorta were analysed, and for each aorta 16 slices of the volume were analysed,

and each slice of the volume was scanned five times; this was equivalent to

performing five tests on each sample for 16 samples, thus ensuring repeata-

bility and reproducibility of the results, see fig. 4.17 for comparison.

The novel application of DTI to the investigation of aortic structure pre-

sented in this work shows the significant potential of this imaging technique.

In fact, given that DTI is able to detect the arrangement of fibres in the

tissue non-invasively, it could be coupled with standard MR imaging for the

creation of patient-specific models, or for the definition of focused surgical
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strategies, targeting only the diseased part of the vessel. Moreover, since

the present work showed the ability of DTI in detecting damaged aortic tis-

sue, this could be used for the early diagnosis of aneurysms and of arterial

diseases. In particular, since there is no currently available tool to study

the onset of aneurysms, DTI could be used for early studies on the popu-

lation at greatest risk of aneurysms, and the results could be used to find

new solutions to tackle this disease, thus decreasing the risks connected with

open-abdominal surgical procedures currently in use for repairing aneurysms.

In contrast to the lack of suitable imaging techniques for determining non-

invasively the structure of aortic tissue, there are many possibilities available

for measuring strains in the tissue. Apart from deformation measures ob-

tained by plain imaging [144], that can only give a global estimate of tissue

motion, it is worth mentioning tagged MRI, an imaging technique developed

in the 90s, consisting of a radio-frequency grid applied to the tissue to study

its deformation [98]. Tagged MRI has been used successfully in the heart,

but it cannot be applied to arterial tissue due to limitations to its resolu-

tion [98]: it is currently not possible to place more than one line (tag) across

the aortic tissue. PC MRI is a different imaging technique, able to mea-

sure the velocities in the tissue as opposed to the displacements. Although

not measuring strains directly, PC MRI has the advantage of not having the

same limitations as tagged MRI, and therefore it can be used for every tissue,

whatever the thickness, where its main application is in the study of arterial

flow [95,97,101,111–114].

The use of PC MRI as an imaging technique that can be used for deter-

mining aortic strain is documented in the work by Pelc’s group [109,120–122].

In the studies by Pelc et al., PC MRI is only used as a technique to mea-

sure the strain but its potential, i.e. the possibility of using the information

derived from this technique for the analysis of a diseased vessel, is never ex-

ploited. In fact, given that PC MRI can be used for the determination of

the local strains in the tissue, it can be used to determine the way arterial

disease affects this motion, and therefore its response to the pulsatile loading

of the heartbeat.

Apart from the application of PC MRI as an independent diagnostic tool,
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in this work the potential of PC MRI was focused on the determination of the

circumferential strains generated in a porcine aorta by a pulsatile pressure

waveform. The protocol applied for measuring the circumferential strains was

the one outlined in [120], and it resulted in strains comparable with those

measured in literature with different techniques [120, 144], see fig.5.19 (page

121). Limitations to the implementation of this technique were due to the

fact that the scanning was influenced by noise. In fact, in the experimental

set up used noise was generated by the water which flowed freely inside and

outside the aorta. The noise generated by the flow could not be filtered out

by the MRI software because in this case the aorta was suspended in water,

as opposed to being surrounded by other tissues. However, the noise affected

only a portion of the images taken, see fig.5.10.E-F, 5.11.E-F (pages 108,

109), i.e. the ones taken at the end of the loading phase of the pressure,

when the flow diminished to the point where back-flow was generated, see

fig.5.18 (page 118). This meant that the strains recorded for the loading part

of the pressure waveform were free of noise and, having tested their validity

against the circumferential strains measured from literature [120, 144], they

could be used for further studies on the mechanical characterization of aortic

behaviour.

In the last part of this method, the optimal material parameters were

determined by comparing the strains estimated by the constitutive model

and the strains measured through PC MRI. Constitutive model strains were

generated using a FE model. FE models are widely used in biomedical engi-

neering [52,53,59] as a way to verify theoretical assumptions on the behaviour

of biological tissues or as a way to understand the human body and its reac-

tions to different loads and prostheses. Contrary to standard works, where

FE models are based on invasive histological analyses, in the present thesis

the constants used for this model were generated non-invasively by inputting

the values of γ and κ measured from DTI into the constitutive model estab-

lished from mechanical tests. The FE analysis performed was a quasi-static

analysis of the loading of the tissue. Due to the fact that PC MRI noise did

not affect the strains obtained for the initial loading of the tissue, where the

pressure is the main load acting, the assumption of quasi-static loading could
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be made without loss of generality. The strains obtained by using the original

constitutive model with the newly measured γ and κ, were too large when

compared to the strains measured with PC MRI, see fig.6.10 (page 136), and

alterations to the constitutive model parameters had to be made to achieve

strains in the same range as PC MRI. This was achieved by means of an iter-

ative routine, that changed the material parameters. The material constants

for which the two sets of strains were comparable, see fig. 6.13 (page 139),

showed that the aortic tissue considered as a whole had a stiffer response

than strips of the same tissue harvested and tested mechanically. In par-

ticular, due to the strong tie between the material constants and the aortic

constituents enforced by the model used, it could be concluded that the aor-

tic tissue is characterized by a ground matrix whose stiffness is comparable

to the stiffness of the collagenous structure, especially if the values obtained

for c and k1 as a result of the present work on the aorta are compared with

the same values obtained for the iliac artery in [53].

This result is in agreement with what can be observed by looking at

the uniaxial tensile tests of both curves, presented in ch. 3 (pages 42, 47),

where it can be seen that the aorta stress-stretch curves are characterized by

a large isotropic area which corresponds to the response of the ground ma-

trix. Therefore it can be concluded that the appropriate material parameters

were determined for the aorta, and hence its mechanical characterization was

successfully obtained non-invasively through imaging techniques.

Overall, this project was successful in defining a novel, non-invasive ap-

proach for the determination of aortic mechanical properties. This project

involved the use of DTI for the investigation of aortic structure for the first

time, and of PC MRI for the studies of aortic strains, two techniques that

show a significant potential on their own for the diagnosis of alterations

in aortic wall mechanics and kinematics. In particular, coupling the infor-

mation retrieved from these two techniques with a mechanistic mechanical

model such as the one defined in [53], resulted in the determination of the

most suitable constants to represent the dynamic behaviour of the aorta.

The relevance of this result is not only in the fact that the strains obtained

were comparable to the ones reported in literature, but also that the changes
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in the constants for which these strains were obtained could be linked to

stiffening of the tissue, thus demonstrating that if the aortic strains or the

structural constants were altered by a disease, the validity of this approach

would still hold.

This work marks the first time where imaging modalities such as DTI

and PC MRI are combined with FE to yield information on aortic material

behaviour. In particular, from the novel application of DTI to aortic tissue

it can be hypothesised that in the future non-invasive analyses of the aortic

structure as a whole, or of any part thereof, could be conducted in vivo with

this technique. Moreover, it can be concluded that this procedure has the

potential to be expanded to human arteries where it could become a clinical

tool for the diagnosis of arterial disease, or for the estimation of the potential

of aneurysms to rupture.
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Chapter 8

Conclusions & Future Work

8.1 Conclusions

The aim of this work was the non-invasive characterization of a porcine aorta

constitutive model. This characterization was obtained by using two different

MRI techniques, DTI and PC MRI. While PC MRI gave information on the

kinematics of aortic tissue, DTI investigated the aortic structure. The main

contributions from this work include:

• The determination of a suitable mechanistic constitutive model for aor-

tic tissue. This constitutive model, proposed by Gasser et al. [53], al-

lowed for the characterization of the aorta based on the knowledge of

two structural parameters, fibre angle and fibre distribution, and the

stretches of the tissue. The implementation of this constitutive model

could be used for preclinical tests of devices for the aorta.

• The identification of Diffusion Tensor Imaging as a technique for the

investigation of aortic fibrous structure in vivo; in fact, although DTI

had been used before for studies on axonal connections and on cardiac

muscle structure, it was never been applied before to arterial tissue and

the potential of its application on aortas is explored for the first time

in this project.
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• The identification of DTI as an effective means of detecting the anisotropy

of the aorta and the distribution of the fibres within the tissue by

comparison to available literature data [34, 56]; furthermore, the fibre

distribution could be post-processed through a custom developed algo-

rithm to determine γ, the fibre angle, and κ, the fibre distribution, key

structural parameters necessary for the constitutive model.

• The potential of DTI to be used as a diagnostic tool in its own right,

demonstrated by differences in fresh and frozen tissue measurements

which confirmed that degeneration of aortic fibrous structure can be

detected with this novel technique.

• The in vivo determination of global and local mechanical properties of

aortic tissue using an integrated approach where DTI, PC MRI and FE

models were combined. This indirect approach is both non-invasive and

low risk and offers a real alternative to invasive and surgical approaches.

• The definition of an effective procedure through which a complete non-

invasive characterization of the mechanical behaviour could be obtained

in a single MRI session. In fact, this project demonstrates that, by

combining DTI and PC MRI, data can be obtained on the structure

and the kinematics of the tissue simultaneously. This makes the devel-

opment of an innovative vascular imaging tool capable of diagnosing

arterial diseases based on in vivo mechanical characterization of the

tissue a real possibility whilst also enabling patient specific models to

be generated for preclinical testing of medical devices.

8.2 Future Work

Due to the novelty of the technique implemented and to the relevance of non-

invasive measurement in clinical practice, the work presented in this thesis

has a significant potential to be developed as a clinical tool for diagnosis and

for patient-specific modelling. In order to achieve this aim, future work needs

to be carried out in the following areas:
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• Simultaneous application of DTI and PCMRI: obtaining structural and

dynamic information from the same aorta would generate even more

accurate characterization of the tissue and of how its fibrous structure

changes with physiological motion.

• Testing this approach on healthy and diseased human aortic tissue:

the mechanical characterization of healthy and diseased tissue being

the first step towards using this technique for clinical diagnosis.

• Combining the structural information obtained from DTI with FE mod-

els to study the failure of medical implants, such as peripheral stents,

or to improve the outcome of covered stents and grafts, by adapting

the polyethylene fibrous structure of the graft to the fibre structure of

the aorta analysed with DTI.

• The characterization of the structural changes that occur with age in

the aorta using DTI, following what has be done in Morrison et al. for

the analysis of the circumferential strains with age [144]. This would

lead to the definition of the characteristics of healthy aortic tissue and

how they change with age.

• The definition of AAA aetiology by analysing the risk population across

a time frame and analysing the changes in the aortic structure that lead

to the formation of aneurysms with DTI: the same approach could be

used to define the factors that determine rupture in AAAs, in order to

define a valid criteria for surgical treatment of such disease.

• Extending DTI application to other blood vessels where aneurysms are

frequently diagnosed, such as cerebral aneurysms, or to the character-

ization of atherosclerosis. In sclerotic arteries, DTI has the potential

to be used for plaque rupture prediction and for the prevention of is-

chaemia.

Finally, the extension of the combined approach of DTI, PC MRI and FE to

other tissues and other diseases offers the possibility to expand the procedure

detailed in this thesis to the non-invasive mechanical characterization of the
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arterial tree. This in turn could become a diagnostic tool for cardiovascu-

lar diseases enabling the translation of classical engineering principles into

routine clinical diagnosis.
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Appendix A

Aortic Chamber

The drawing of the MRI-safe custom designed aortic chamber is shown below.
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Appendix B

DTI: parameters definition

The appropriate tensor and tractography parameters were defined by means

of a number of sensitivity tests. In order to obtain the most suitable value for

each parameter, a range of values were applied and the difference observed

between the results obtained was considered to establish the most suitable

parameter for this particular application. For the tensor parameters, the

background suppression and the tensor smoothing had to be set. The back-

ground suppression consists in setting a threshold on the signal of the image

under which no tensor will be estimated, based on the reference image S0.

This value was set to 1000 compared to a maximum of 32766, in order not to

interfere with the fibre tracking due to the fact that some areas of the arterial

tissue were nearly as dark as the background. Regarding the tensor smooth-

ing, a feature available in MedINRIA to reduce the noise of the tensor, it was

set to ‘high’because, by analysing the different FA maps, this was found to be

the only value that would suppress the effect of surrounding water. Then the

fibre tractography to be determined where: the FA threshold, the minimum

length and the smoothness of the fibres and finally the sampling parameters.

The FA value was analysed first. Fractional anisotropy can be regarded as a

tool to erase the noise and therefore the threshold value of FA influenced the

amount of fibres tracked in the total image volume. The optimum FA should

track fibres predominantly in the region of interest. For the aorta encased in

fluid, extremely low FA threshold values (<0.15) resulted in large amounts
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of fibres being tracked in the water volume, while high FA threshold values

(>0.3) resulted in very few fibres being tracked even in the aortic volume.

Empirically we found that for a FA threshold value of 0.2 most of the fibres

were tracked in the aortic volume and almost none in the water. Following

the establishment of a suitable FA value, the effect of the minimum length

of the fibre tracked was considered by means of a parametric analysis.

B.1 Parametric Analysis

For the fibre bundles detected using the angle detection routine a parametric

analysis was performed to determine the dependence of the fibre tracking

algorithm on the tracking parameters. The parameters considered are de-

scribed on table B.1. Over two different sets of images, three different fibre

lengths were considered, 5, 10 and 15 mm. For 5 mm many fragmented fibres

were tracked while for 15 mm only a few fibres, albeit extremely long fibres,

were tracked. By comparison to available histological data on aortic tissue,

a minimum fibre length of 10 mm showed an optimal trade-off between the

number of fibres and their length for all the different b values and enabled

a suitable sample from which average fibre directions could be ascertained.

The value of 10 mm corresponds to one third of the planar resolution of the

image. The influence of the smoothness parameter on the fibres tracked was

also addressed. This parameter defines the smoothness of the curvature of

the final fibre and ensures that large discontinuities in curvature from pixel

FA threshold Sampling Fibre Fibre
Minimal Length Smoothness

5 pixels 20%
Small ROI 0.2 1 pixel 10 pixels 50%

15 pixels 80%

5 pixels 20%
Wide ROI 0.2 1 pixel 10 pixels 20%

15 pixels 80%

Table B.1: Parametric fibre tracking settings.
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to pixel of the image are identified such that they cannot be considered one

fibre. For the chosen fibre length of 10 mm, variations in the smoothness

value over a large range (20%-80%) showed that the fibre number tracked

is relatively insensitive to this parameter. Finally, the sampling parameter

was investigated. The sampling parameter accounts for the number of pix-

els used for the determination of the fibre. A sampling parameter of one

pixel, although extremely accurate, is computationally expensive. Empiri-

cally we found that a sampling parameter of three, where fibre tracking is

only performed in one voxel out of each three, yields very good accuracy by

comparison to a sampling of one pixel and reduces the computational time

considerably [128].
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Appendix C

PC MRI: method

The evaluation of PC MRI circumferential strains was performed using a

method available from literature: the forward/backward integration of ve-

locities according to the algorithm defined in [109].

C.1 Forward/backward integration

This approach is based on the assumption that the trajectory of a region can

be computed by integrating its velocity as a function of time. The struc-

ture of the algorithm can be divided into three phases: forward integration,

backward integration and combined integration [109].

Forward integration First, the relevant parameters have to be defined:

V (s, t), the velocity at a spatial position s and time t; f the forward inte-

grated trajectory; fk location of the region to be tracked at time tk, where

k is the frame number. Using these parameters it is possible to define the

simplest estimate of the location of the region at a time tk+1 = tk +∆t:

fk+1 = fk + V (fk, tk)∆t; (C.1)

This equation assumes V (fk, tk) as the constant velocity for all the interval

and then suddenly becomes V (fk+1, tk+1). A better approach would consider
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the velocity varying linearly over the interval between the two values, thus

resulting in [109]:

fk+1 = fk +
1

2
[V (fk, tk) + V (fk+1, tk+1)]∆t; (C.2)

The difficulty with eq. C.2 is that it requires the knowledge of V (fk+1, tk+1)

in order to compute fk+1. This problem can be avoided using an estimate of

fk+1 obtained through C.1 to determine V (fk+1, tk+1), and then eq. C.2 can

be used for evaluating the ‘optimal’ fk+1 [109]. In the practical application

of this algorithm fk corresponds to the centre of the region to be tracked, i.e.

the centre of a pixel or the centre of an element.

Backward integration Since the motion of an artery is periodic, for each

time frame it is possible to track the motion of the region also going backward

in time. In this case bk will be the trajectory resulting from the backward

integration [109]. Again, the estimate of bk−1 can be obtained as:

bk−1 = bk − V (bk, tk)∆t; (C.3)

Also in this case eq. C.3 will give only a first estimate of bk−1 that will be

used to determine V (bk−1, tk−1) in order to evaluate the ‘optimal’ bk−1 using

the following equation:

bk−1 = bk −
1

2
[V (bk, tk) + V (bk−1, tk−1)]∆t; (C.4)

Finally, it is important to note that in this integration the same definition of

a region to be tracked is used as the forward integration [109].

Combined integration Each of the two integrations illustrated in the pre-

vious paragraphs provides an estimated trajectory. Since both trajectories

are computed from different time frames, they will have different velocity

offsets and different noise [109]. It is important then, to combine both tra-

jectories into a single estimate. This is done by defining rk a trajectory that
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is a linear combination of the previous two, defined by:

rk = wkfk + (1− wk)bk; (C.5)

Where wk is a weighting factor obtained by minimising the variance of the

combined trajectory. This weighting factor can be expressed as:

wk =
N − k + 1

N
; (C.6)

In the eq. C.6 N is the number of frames produced per cycle, and it can be

seen that wk changes in each time frame. Details on the advantages of this

technique in terms of minimisation of the error and of the noise can be found

in [109].
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Appendix D

LabVIEW® and MATLAB®

scripts

D.1 LabVIEW®

D.1.1 Non-linear Levenberg-Marquardt regression

The non-linear Levenberg-Marquardt regression is made up of several nested

routines. The main one is Regression Holzapfel excel, that calls simultane-

ously the comparison and convergence check routine and the function that

the regression should fit. Many other sub-functions are already defined in

LabVIEW®, and therefore are not given in this thesis.
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Regression Holzapfel excel

regression holzapfel_excel.vi

0,0000

Curve_1 Y

0

residue

0

c

0

k1

0

Number of 

function calls

0

max iteration

0

tolerance

Termination  

parameters
0,000000

Curve_1  X 

0,0000

Curve_2 Y 

0,000000

Curve_2  X

0

 k2

0,000000

Curve_1 Y 

0,000000

Curve_2 Y 

0 00
0

Initial constants: c, k1,k2

Input Output

800000

-100000

0

100000

200000

300000

400000

500000

600000

700000

Time

1200 20 40 60 80 100

Curve_1

Curve_2

Interpolation_1

Interpolation_2Regression

0,000

0,000

0

Structural parameters: 

gamma (rad), kappa

It reads only .txt files where data are separated by tabs.

It needs to read the softer curve first.

The output file will be saved as a .xls file, 

containing both the experimental curves 

and their interpolation

Path

Path 2

Curve_1 Y

residue

c

k1

Number of 

function calls

Termination  

parameters

Curve_1  X 

Curve_2 Y 

Curve_2  X

 k2

Curve_1 Y 

Curve_2 Y 

Initial constants: c, k1,k2

Double

0

1

Path

Double

0

1

Path 2

Regression graph

Structural parameters: 

gamma (rad), kappa

1

1
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Comparison e convergence check

Connector Pane

f(x,a)

initial coefficients

data

number of function calls

best nonlinear fit

best fit coefficients

covariance

error out

residue

Structural parameters: gamm...

error in (no error)

termination

Weight 2

X 2

Y 2

Weight

X

Y

Nonlinear Curve Fit VF.vi

Uses the Levenberg-Marquardt algorithm to determine the least squares set of coefficients that best fit the set of input 

data points (<B>X</B>, <B>Y</B>) as expressed by a nonlinear function y = <B>f(x,a)</B>, where a is the set of 

coefficients. You must manually select the polymorphic instance to use.

Front Panel

0
0

X

0
0

Y

0
0

initial coefficients

00

best fit coefficients

00

best nonlinear fit

0

residue

status

0

code

source

error out

0
0

Weight

0

0 0 0

0 0 0

0 0

0

0

covariance
200

max iteration

1E-8

tolerance

termination

status

0

code

source

error in (no error)

0

number of function calls

f(x,a)

data

0
0

Y 2

0
0

X 2

0
0

Weight 2

1,000

0,0000

Structural parameters: 

gamma (rad), kappa
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Holzapfel function

function.vi

D:\holz_20_05\function.vi

Last modified on 09/06/2010 at 18.46

Printed on 04/08/2010 at 11.40

Page 2

a

X

f(X,a)

error out

data

f'(X,a)

output control

 True 

distingush between axial 

and circumferential 

stretch

27

0

c

1

k1

2

k2

% isotropic part 

%-----------------

a=1/((l1^3)*(l2^2)); 

sigiso=c*(l1-a); 

%part n1 exponential 

%------------------------

I1=(l1^2)+(l2^2)+((l1*l2)^-2); 

diff=(l1^2)-(l2^2); 

I4=(l2^2)+(outtrig*diff); 

term1=(1-(3*kappa))*I4; 

argument=((kappa*I1)+term1-1); 

part1=2*k1*argument; 

exarg=(k2*(argument)^2); 

% part n2 exponential 

% ------------------------ 

dI1=2*(l1-((l1^-3)*(l2^-2))); 

dI4=2*l1*(outtrig); 

term2=(1-(3*kappa))*dI4; 

part2=(kappa*dI1)+term2;

exarg

part2

part1

outtrig

k1

kappa

k2

sigiso

l2

l1

c

For Loop

0

gamma

1

kappa

2

1,9

 False 
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D.1.2 Pressure sensor controller

pressure sensor.vi

D:\pressure sensor\pressure sensor.vi

Last modified on 19/11/2009 at 17.27

Printed on 03/08/2010 at 8.52

Page 1

pressure sensor.vi

stop (F)

1,00

timeout (sec)

1000

rate

180

-20

0

20

40

60

80

100

120

140

160

Time

1.00.09,999

01/01/1904

1.00.00,000

01/01/1904

Pressure

Time

Pressure Chart

0 000

display V

Write Pressure

to file

0

Pressure mmHg

00

trigger

0 000

Global vector (t, P,trigger)

Boolean

0

Pressure @trigger

Write trigger 

 to file
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pressure sensor.vi

D:\pressure sensor\pressure sensor.vi

Last modified on 19/11/2009 at 17.27

Printed on 03/08/2010 at 8.52

Page 2

data

error out

stopped

task out

DAQ Assistant

stop (F)

Pressure Chart

display V

59,9988

Conversion  

from V to mmHg

Signals

Comment

DAQmx Task

Write To 

Pressure File

 True 

Write Pressure

to file

Pressure mmHg

trigger

Global vector (t, P,trigger)

Boolean
Pressure @trigger

 True 

Show the P value when the trigger switches

0

3

0

Signals

Comment

DAQmx Task

Write To 

Pressure & 

trigger file

 True 

Write trigger 

 to file

timeout (sec)

rate

 False  False  False 

Write To Pressure File

Write To Measurement File

Writes data to a text-based measurement file (.lvm) or binary measurement file (.tdm). 

--------------------

This Express VI is configured as follows: 

Mode: Save to one file 

Filename: C:\Documents and Settings\Vittoria Flamini\My Documents\pressure sensor\pressure_meas.lvm

Ask Operator to choose file 

If a file already exists: Rename and keep existing file 

Description:

Convert from Dynamic Data3

Convert from Dynamic Data

Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other 

VIs and functions.
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pressure sensor.vi

D:\pressure sensor\pressure sensor.vi

Last modified on 19/11/2009 at 17.27

Printed on 03/08/2010 at 8.52

Page 3

Convert from Dynamic Data2

Convert from Dynamic Data

Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other 

VIs and functions.

Convert from Dynamic Data

Convert from Dynamic Data

Converts the dynamic data type to numeric, Boolean, waveform, and array data types for use with other 

VIs and functions.

DAQ AssistantCreates, edits, and runs tasks using NI-DAQmx. Refer to the DAQ Quick Start Guide for information on 

devices supported by NI-DAQmx. 

When you place this Express VI on the block diagram, the DAQ Assistant launches to create a new task. 

After you create a task, you can double-click the DAQ Assistant Express VI in order to edit that task. For 

continuous measurement or generation, place a loop around the DAQ Assistant Express VI.

For continuous single-point input or output, the DAQ Assistant Express VI might not provide satisfactory 

performance. Refer to examples\DAQmx\Analog In\Measure Voltage.llb\Cont Acq&Graph Voltage-Single 

Point Optimization.vi for techniques to create higher-performance, single-point I/O applications. 

Write To Pressure & trigger file

Write To Measurement File

Writes data to a text-based measurement file (.lvm) or binary measurement file (.tdm). 

--------------------

This Express VI is configured as follows: 

Mode: Save to one file 

Filename: C:\Documents and Settings\Vittoria Flamini\My Documents\pressure sensor\pressure_meas.lvm

Ask Operator to choose file 

If a file already exists: Rename and keep existing file 

Description:
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D.2 MATLAB®

D.2.1 General image analysis

For both DTI and PC MRI techniques, image data from ROIs were obtained

by using the following routine, although sometimes with small changes and

different names (eg. masking in PC MRI routine).

function [cxo,cyo,circles 2,angles,Out,In]=figure data mod(mask)

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% In this function the geometrical data of the ROI are defined

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% define the mask

I= mask;

%number of layers & spacing

lay=5;

spacing=18;

%image resolution

resolution=[256 256 10];

% ======================================

% Define boundaries and parameters

% ======================================

% dilate the image

se = strel('disk', 1, 0);

BW1 = imdilate(I(:,:,1),se);

% find perimeter

BW2 = bwperim(BW1,8);

% get boundaries

Boundary=bwboundaries(BW2(:,:));

Out = Boundary{1};
In = Boundary{2};

% create points in the inner circumference
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inner=In(round(linspace(1,length(In),spacing)),:);

inner(length(inner),:)=[]; % avoids the first and the last point being

% the same

% create corresponding points in the outer circumference

index=closest(inner, Out);

outer=Out(index,:);

%find centre of mass

L = bwlabel(I(:,:,1));

stats = regionprops(L,'all');

prop=[stats.Centroid];

cxo=round(prop(2));

cyo=round(prop(1));

% find radius

z=BW1([1:cyo],cxo,1);

rady=find(z);

% define vector angles equivalent to inner points

angles=zeros(length(inner(:,1)));

% translate inner points to center of mass

circ=[-(inner(:,2)-cyo) (inner(:,1)-cxo)];

% find ROI angles

angles=atan2(circ(:,2,1), circ(:,1,1));

ROI angles=[angles inner outer];

ROI matrix=sortrows(ROI angles);

% ======================================================

% Create intermediate points

%=======================================================

inner ord=[-(ROI matrix(:,3)-cyo) -(ROI matrix(:,2)-cxo)];

outer ord=[-(ROI matrix(:,5)-cyo) -(ROI matrix(:,4)-cxo)];

for i=1:size(inner,1)

for j=1:size(inner,2)
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nodes(i,j,:)=linspace(inner ord(i,j),outer ord(i,j),lay);

end

end

circles=nodes([1:length(nodes),1],:,:);

ang=atan2(nodes(:,2,1),nodes(:,1,1));

circles 2=zeros(length(nodes),lay);

for i=1:lay

circles 2(:,i)=resolution(1)*sqrt((nodes(:,2,i).ˆ2)+...

(nodes(:,1,i).ˆ2));

end

%==========================================================

% Output vectors

%==========================================================

Out=[Out(:,2) Out(:,1)];

In=[In(:,2) In(:,1)];
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D.2.2 DTI: Tensor analysis

The routine that analysed tensor read the MedINRIA tensor using a Matlab®

available on MedINRIA website.

function Tensor analysis(bvalues,image size,mask)%image filename

% performs the analysis of the eigenvectors of the diffusion tensor

%% definition of the variables

eigenvalues=zeros(image size(1),image size(2),image size(3),bvalues);

eigenvector x=zeros(image size(1),image size(2),image size(3),bvalues);

eigenvector y=zeros(image size(1),image size(2),image size(3),bvalues);

eigenvector z=zeros(image size(1),image size(2),image size(3),bvalues);

eigenv angle xy=zeros(image size(1),image size(2),image size(3),...

bvalues);

average=zeros(image size(1),image size(2),bvalues);

central slice=zeros(image size(1),image size(2),bvalues);

mask tens=ones(image size(1),image size(2),bvalues).*-30;

% definition of the files to be read

stock = char('18 08 b1.inr','18 08 b2.inr','18 08 b3.inr',...

'18 08 b4.inr','18 08 b5.inr','18 08 b6.inr');

%% Read tensors and extrapolate eigenvectors

for i=1:bvalues

[T,sp,origin] = ReadInrTensorData(stock(i,:));

for j=1:image size(1)

for h= 1:image size(2)

for m=1:image size(3)

[VV,D]=eig(T{j,h,m});

einval=[D(1,1) D(2,2) D(3,3)];

value=(max(einval));
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if isempty(find(einval))==0

index=find(einval==max(einval));

eigenvalues(j,h,m,i)=D(index,index);

eigenvector x(j,h,m,i)=VV(1,index);

eigenvector y(j,h,m,i)=VV(2,index);

eigenvector z(j,h,m,i)=VV(3,index);

plane=sqrt(((eigenvalues(j,h,m,i)*...

VV(1,index))ˆ2)+((eigenvalues(j,h,m,i)*...

VV(2,index))ˆ2));

eigenv angle xy(j,h,m,i)=(atan2(...

eigenvalues(j,h,m,i)*VV(3,index),plane))*...

(180/pi);

if eigenv angle xy(j,h,m,i)<0

eigenv angle xy(j,h,m,i)=...

eigenv angle xy(j,h,m,i)+180;

end

else

% eigenvectors of pixels

% non belonging to the aorta,

% i.e. with 0 eigenvalues, were given an out of

% boundary value in order to filter them out

eigenv angle xy(j,h,m,i)=-110;

end

end

end
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end

average(:,:,i)=sum(eigenv angle xy(:,:,:,i),3)/16;

central slice(:,:,i)=eigenv angle xy(:,:,8,i);

end

%% Read start image

img=zeros(image size(1),image size(2),image size(3));

file name=[50 100 115 101 113 48 48 48 48]; % 2dseq0000 %

extension=char([116 105 102]); % tif

tic

for i=0:(image size(3)-1)

% definition of the sequential file name

file name(6:9)=[48+fix(i/1000) 48+fix(rem(i,1000)/100) 48+fix(...

rem(rem(i,1000),100)/10) ...

48+fix(rem(rem(rem(i,1000),100),10)/1)];

% storage of the image in the matrix

img(:,:,i+1)=imread(char(file name),extension);

end

toc

%% Masking

E= imread(mask,'png');

I=flipud(fliplr(E(:,:,1)));

% dilate the image

se = strel('disk', 1, 0);

BW1 = imdilate(I(:,:,1),se);
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BW2 = bwperim(BW1,8);

%find centre of mass

L = bwlabel(I(:,:,1));

Boundary=bwboundaries(BW2(:,:));

Out = Boundary{1};
In = Boundary{2};

%% Angle Distribution Evaluation

ind= find(base);

size(ind)

edges 1=[0:1:180];

normal domain=zeros(length(edges 1),image size(3),bvalues);

inverted domain=zeros(length(edges 1),image size(3),bvalues);

%invert angles

edges 2=[-90:1:90];

for j=1:bvalues

for k=1:image size(3)

usematrix=eigenv angle xy(:,:,k,j);

size(usematrix(ind))

normal domain(:,k,j)= ((hist(usematrix(ind),edges 1)));%

dd=find(usematrix>90);

usematrix(dd)=usematrix(dd)-180;

inverted domain(:,k,j)= ((hist(usematrix(ind),edges 2)));%

end

end

M=[edges 1' normal domain(:,8,4) edges 2' inverted domain(:,8,4)];
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xlswrite('angle distribution',M)
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D.2.3 DTI: Fibre analysis

The function that estimates angles is made up of two functions with the

following hierarchy:

• Fibres study

– Fibre analysis: this function opens the .fib file where fibres are

stored and evaluates γ

Fibres study

function fibres study(resolution,imagefilename)

%

%

% This function reads the .fib files obtained from MedInria, computes

% the fibres and extracts the relevant data information such as fibre

% angle $\gamma$ and fibre distribution (evaluation of $\kappa$ in a

% separate routine). The resulting fibre angles are printed in a .xls

% file.

%

%

% This function require as input a vector of the resolution in the

% x,y,z directions and the name of the ROI file for which the fibres

% were tracked. The ROI file must be in a .png format.

%

%

%% read the mask and defines the layers

% =======================================

lay=6; % number of layers considered across the thickness of the tissue

[cxo1,cyo1,circles,angles]=figure data var(resolution,imagefilename,lay);

% definition of the center of mass (due to the different conventions

% between images coordinates they need to be inverted

cxo=128-cyo1;

cyo=128-cxo1;

%% read the fibres
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% =========================================

% 6=number of fibres files (number of b values)

%---------------------------------------------------------------------

% Grouping fibre angles

edges=[0.0:10:180.0];

langle=length(edges);

angle distribution=zeros(langle,6); %angles across whole tissue

singlelayer=zeros(langle,(lay*d)+2,6); %angles on each layer

%---------------------------------------------------------------------

%---------------------------------------------------------------------

% Storage

dti fibres = char('b1 3s FV.fib','b2 3s FV.fib','b3 3s FV.fib',...

'b4 3s FV.fib','b5 3s FV.fib','b6 3s FV.fib'); % files containing

% the fibres

% coordinates for

% each b value

savefile = double('angles000.txt'); % storage of fibre angle

% distribution for the evaluation

% of $\kappa$
%---------------------------------------------------------------------

%% Find angles

for i=1:6 % b values

%---------------------------------------------------------------------

% Fibre angle evaluation

%

% Function that evaluates the fibre angles and returns a variety of

% parameters. Since the fibre angle is defined as the tangent of the

% helix formed by the fibre, 'tangent' is the name of the vector

% containing the fibre angles

[nfibers,tangent,layer data]=fibrenumberread(dti fibres(i,:),cxo,...
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cyo,resolution,i,circles,angles,lay,edges);

%---------------------------------------------------------------------

%---------------------------------------------------------------------

% Output

angle distribution(:,i)= ((hist(tangent,edges))'); %distribution over

% the whole aorta

singlelayer(:,:,i)=layer data./nfibers; % distribution over the layers

% Write file for the evaluation of $\kappa$.

savefile(7:9)=[48+i 48 48]; % change file name to angles00x.txt

save(char(savefile), 'mtang','-ASCII') % write file

%---------------------------------------------------------------------

end

%% Write data

% Dominant angles

size(angle distribution);

size(edges);

superM=[ edges' angle distribution];

xlswrite('fibres at 10 deg', superM)

%% Write data

% Distribution over thickness

Layers=[ edges' singlelayer(:,:,1)...

edges' singlelayer(:,:,2)...

edges' singlelayer(:,:,3)...

edges' singlelayer(:,:,4)...

edges' singlelayer(:,:,5)...

edges' singlelayer(:,:,6)];

xlswrite('layer distribution at 10 deg', Layers)
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Fibre analysis

function [nfibers,mtang,mstdtang,mvartang,mradius,mangle,fibertang]=

fibre read(filename,Xo,Yo,resolution,num)

%funtion that reads the .fib file and analysies the fibres outputting

%the mean angle of each fibre

%---------------------------------------------------------------------

% open .fib file

fid=fopen(filename,'r');

%look for number of iteration

status = fseek(fid,40,'bof');

[A,count] = fread(fid,5,'char');

% look for number of fibres

nfibers=((A(1)-48)*10000)+((A(2)-48)*1000)+((A(3)-48)*100)+...

((A(4)-48)*10)+(A(5)-48);% char from 48 to 57 are numbers

%---------------------------------------------------------------------

%---------------------------------------------------------------------

% defining storing vectors

%---------------------------------------------------------------------

mtang=zeros(nfibers,1); %FIBRE MEAN ANGLE!

mstdtang=zeros(nfibers,1); %standard variation

mvartang=zeros(nfibers,1);

mradius=zeros(nfibers,1); % FIBRE MEAN RADIUS

mstdrad=zeros(nfibers,1); % standard deviation

mangle=zeros(nfibers,1); % position of the fibre in radians

fiberradii=zeros(200,(nfibers-1)); % fibre radius for each point

fiberx=zeros(200,(nfibers-1)); % fibre x coordinate

fiberangles=zeros(200,(nfibers-1)); %fibre angle for each point

fibery=zeros(200,(nfibers-1));% fibre y coordinate

fiberz=zeros(200,(nfibers-1));% fibre z coordinate

%--------------------------------------------------------------------
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status = fseek(fid,618,'bof'); % read the file

index=1;

%=====================================================================

%Reads fibers from file and stores them in matrices.

%=====================================================================

for i=1:(nfibers-1)

% read number of points of the fiber

[A,count] = fread(fid,3,'char');

if A(3)≥48 && A(3)≤58 % >10 fibres

npoints=((A(1)-48)*100)+((A(2)-48)*10)+(A(3)-48);

% read parameters of the fiber

status = fseek(fid,11,'cof');

elseif A(1)==32

break

else % <10 fibres

npoints=((A(1)-48)*10)+(A(2)-48);

% read parameters of the fiber

status = fseek(fid,10,'cof');

end

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% read from file:

% x y z tensor1 tensor2 tensor3 tensor4 tensor5 tensor6 fa ga i

l1 l2 l3 xevmin yevmin zevmin xevmed yevmed zevmed xevmax yevmax

zevmax md r red green blue

[A,count] = fscanf(fid,'%f %f %f %f %f %f %f %f %f %f %f %f %f '

'%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f',[29 npoints]);

185



Points=A';

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% transform from pixel to mm

Points(:,1)=Points(:,1)*resolution(1);

Points(:,2)=Points(:,2)*resolution(2);

Points(:,3)=Points(:,3)*resolution(3);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% shift to center

cpoint1=Points(:,1)-(Xo*resolution(1));

cpoint2=Points(:,2)-(Yo*resolution(2));

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% define cylindrical coordinates

THETA=zeros(npoints,1);

RHO=zeros(npoints,1);

Z=zeros(npoints,1);

[THETA,RHO,Z] = cart2pol(cpoint1,cpoint2,Points(:,3));

THETA2=unwrap(THETA); %puts in order theta!

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% assign quantities to storing vectors

fiberradii([1:npoints],i)=RHO;

fiberx([1:npoints],i)=Points(:,1);

fiberangles([1:npoints],i)=THETA2;

fibery([1:npoints],i)=Points(:,2);

fiberz([1:npoints],i)=Z;

mradius(i)=median(RHO);

mstdrad(i)=std(RHO);

mangle(i)=median(THETA2);
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mstdand(i)=std(THETA2);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% EVALUATE FIBRE ANGLE

C=-diff(Points(:,3))./diff(THETA2); %derivative

tang=(atan2(C,RHO(1:(npoints-1))))*180/pi;

fibertang([1:(npoints-1)],i)=tang;

mtang(i)=median(tang); %!!!

%move from [-pi/2 pi/2] to [0 180]

if mtang(i)<0

mtang(i)=mtang(i)+180;

end

mstdtang(i)=std(tang);

mvartang(i)=var(tang);

%+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

% end

if i==(nfibers-1)

%exit

break

else

%move to next fibre

status = fseek(fid,392,'cof');

index=index+1;

end

end
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fclose(fid);
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D.2.4 PC MRI: Definition of elements and deforma-

tion velocity

The function that estimates deformation velocities from PC MRI images as

the following hierarchy:

• Phase mesh

– Masking (similar to the routine reported in section D.2.1)

– Application of the method described in [124]

– Evaluation of deformation velocity

– Assign values to elements

Phase mesh

function phase mesh

%%

%This function creates the matrices containing the deformation

%velocity and

%the geometry for each slice acquired during PC MRI

% PC MRI acquisition images

magnitude=double('mag0000.tif');

file=double('phase0000.tif');

destination=double('time000');

strain=double('strain000');

save image=double('seig000risultante');

extension=double('tif');

%storage matrices

translation=ones(256,256,10);

images=zeros(256,256,10,4);

venc im=zeros(256,256,30);

%storage file

savefile = double('data0006.txt');

eingfile = double('eing0006.txt');
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mapfile=double('map0006.txt');

%define mesh parameters

layers=2;

lines=20;%eq to elements per slice

index=1;

%%

% ==============================================================

% define centre of mass from first slice

mask(:,:)=imread(char(double('roi0000.bmp')));

[cxo,cyo,circles 2,angles,Out,In]=figure data mod(mask(:,:));

translation x=translation;

translation y=translation;

translation x(:,1:cyo,:)=translation x(:,1:cyo,:)*-1;

translation y(1:cxo,:,:)=translation y(1:cxo,:,:)*-1;

% =============================================================

%%

%==============================================================

% read images

for j=0:8

count=1;

for i=0:3 % directions

for h=0:9 % slices

file(6:9)=[48+j 48+i 48 48+h];

images(:,:,h+1,count) = imread(char(file));

end

count=count+1;
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end

count2=2+(j*4);

% centering & masking with ROI

[volume,nodes x,nodes y,Coord]=masking...

(j+1,layers,lines,cxo,cyo,angles);

% vectors for rigid translation and rotations

A=zeros(10,3); %A1 A2

omegaz=zeros(10,3);%omegaz>0 omegaz<0

for k=1:3

% subtraction of reference image

phase im=images(:,:,:,k+1)-images(:,:,:,1);

start=(10*(k-1));stop=10*k;

% conversion from pixel value to angle -->

% angle=pixel*pi/maxpixel

phase im ang=(pi/65536)*phase im;

% VEnc=(2*pi/(42.58*(10ˆ6)*(360*(10ˆ-3))*((7.5*(10ˆ-3))ˆ2)))

% (m/s)

% VEnc 7.5 ms 0.0023

venc im unmask=0.0023*phase im ang;

% mask with ROIs

artery=venc im unmask.*volume;

% define deformation velocity according to patent

[A(:,k),omegaz(:,k)]=patent(Coord,artery,k,j+1);

% create a unique array of the velocity in the different

% directions

venc im(:,:,[1+start:stop])=artery;

count2=count2+1;

191



index=index+1;

end

% evaluate V deformation

[Vdef]=defvdef(A,omegaz,venc im,volume,cxo,cyo,j+1);

% evaluate spatial derivative

[dVdx,dVdy]=derivativesxy(Vdef);

[dVdz]=derivativesz(Vdef);

% average on elements

% assign values to elements defined in the mesh

[map,element dVvalue,eig quantities,geometry]=meshing(nodes x,...

nodes y,dVdx,dVdy,dVdz,Vdef);

eig=cell2mat(eig quantities);

supermap=vertcat(map(:,:,1),map(:,:,2),map(:,:,3),map(:,:,4),...

map(:,:,5),map(:,:,6),map(:,:,7),map(:,:,8),map(:,:,9),...

map(:,:,10));

% write output files

mapfile(4:6)=[48+j 48 48];

save(char(mapfile), 'supermap','-ASCII')

data=horzcat(element dVvalue,geometry);

savefile(5:7)=[48+j 48 48];

save(char(savefile), 'data','-ASCII')

eingfile(5:7)=[48+j 48 48];

save(char(eingfile), 'eig','-ASCII')

save image(5:7)=[49+j 48 48];

end
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Patent method [124]

function [A,omegaz,fig]=patent(Coord,Artery,k,w)

% Definition of patent parameters

A=zeros(10,1); %A1 A2

omegaz=zeros(10,1);%omegaz>0 omegaz<0

fig=zeros(2,1);

if k==1 %y, Vx

for h=1:10

D=Artery(:,:,h);

[i,j]=find(D);

points=[min(i):1:max(i)];

vx=zeros(length(points),1);

y=Coord{2,h}';

a=length(y)-length(points);

if a≥1

%linear interpolation of Vy distribution

y=y(1+fix(a/2):length(y)-rem(a,2)-fix(a/2));

end

for r=1:length(points)

vx(r)=mean(nonzeros(D(points(r),:)));

end

b=polyfit(y,vx,1);
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A(h,1)=b(2); %rigid translation

omegaz(h,1)=b(1); %rigid rotation

end

elseif k==2 %x, Vy

for h=1:10

[i,j]=find(Artery(:,:,h));

points=[min(j):1:max(j)];

vy=zeros(length(points),1);

x=Coord{1,h}';

a=length(x)-length(points);

if a≥1

%linear interpolation of Vx distribution

x=x(1+fix(a/2):length(x)-rem(a,2)-fix(a/2));

end

for r=1:length(points)

vy(r)=mean(nonzeros(Artery(:,points(r),h)));

end

p=polyfit(x,vy,1);

A(h,1)=p(2); %rigid translation

omegaz(h,1)=p(1); %rigid rotation

end
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else % z, Vz

A(:,1)=ones(10,1);

omegaz(:,1)=ones(10,1);

end
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Evaluation of Velocity deformation

function [Vdef]=defvdef(Aa,omegaz,Venc,volume,cxo,cyo,index)

% Definition of deformation velocity according to patent

[a,b,c]=size(Venc);

Vdef=zeros(a,b,c);

% average of rigid rotations

Wz(1:10,1)=(abs(omegaz(:,1))+abs(omegaz(:,2)))/2;

for h=1:10

[i,j]=find(volume(:,:,h));

for s=1:length(i)

Vdef(i(s),j(s),h)=Venc(i(s),j(s),h)-Aa(h,1)+((j(s)-cxo)

.*Wz(h).*sign(omegaz(h,1)));

Vdef(i(s),j(s),h+10)=Venc(i(s),j(s),h+10)-Aa(h,2)-((i(s)-cyo)

.*Wz(h).*sign(omegaz(h,2)));

Vdef(i(s),j(s),h+20)=Venc(i(s),j(s),h+20);

end

if h==10

i=sort(i);

j=sort(j);

end

end
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Assign values to elements

function [map,element dVvalue,eig quantities,geometry]=

meshing(nodes x,nodes y,dVdx,dVdy,dVdz,venc im)

% ====================================================================

% function that reads the nodes and the velocity gradients and gives

% back

% the average of the velocity gradient over the element and the

% eigenvectors

% ====================================================================

[a,b,c]=size(dVdx);

map=zeros(a,b,10);

points=zeros(a,b);

geometry=zeros(length(nodes x),5); % center of mass x center of mass y

%width height position

element dVvalue=zeros(length(nodes x),12); % dVxdx dVydx dVzdx dVxdy

%dVydy dVzdy dVxdz dVydz dVzdz Vx Vy Vz

eig quantities=cell(length(nodes x),2); % cells containing eigenvalues

%& eigenvectors (D & V)

% ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

% definition of the X Y vectors that will create the grid

% ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

for i=1:256

X((i*256)-255:i*256)=i*ones(256,1);

Y((i*256)-255:i*256)=[1:1:256]';

end

terminal=length(nonzeros(nodes x(:,9)));

for j=1:terminal % for every element

slice=nonzeros(nodes x(j,9));

% j, length(nodes x)

element 1 x=[nodes x(j,1:4) nodes x(j,1)];
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element 1 y=[nodes y(j,1:4) nodes y(j,1)];

IN 1=inpolygon(X,Y,element 1 x,element 1 y);

element 2 x=[nodes x(j,5:8) nodes x(j,1)];

element 2 y=[nodes y(j,5:8) nodes y(j,1)];

IN 2=inpolygon(X,Y,element 2 x,element 2 y);

points(IN 1)=j;

map(:,:,slice)=map(:,:,slice)+points;

points BW=bwlabel(points);

% define element geometry parameters

stats = regionprops(points BW,'all');

prop=[stats.Centroid];

bx=round(prop(2));

by=round(prop(1));

width=[stats.MajorAxisLength];

height=[stats.MinorAxisLength];

geometry(j,:)=[bx by width height nodes x(j,9)];

for u=1:3

dX=dVdx(:,:,slice*u);

dY=dVdy(:,:,slice*u);

dZ=dVdz(:,:,slice*u);

% assign value to starting points

element dVvalue(j,(u*3-2):(u*3))=[(mean(dX(IN 1))+mean...

(dX(IN 2)))*0.5 (mean(dY(IN 1))+mean(dY(IN 2)))*0.5 ...

(mean(dZ(IN 1))+mean(dZ(IN 2)))*0.5];

end

Vx=venc im(:,:,slice);

Vy=venc im(:,:,slice+10);

Vz=venc im(:,:,slice+20);
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element dVvalue(j,10:12)=[median(Vx(IN 1)) ...

median(Vy(IN 1)) median(Vz(IN 1))];

% 0.1=time step ==> transforms strain rate into strain

tensor=0.1*[element dVvalue(j,3) 0.5*(element dVvalue(j,2)+...

element dVvalue(j,4)); ...

0.5*(element dVvalue(j,2)+element dVvalue(j,4)) ...

element dVvalue(j,5)];

[VV,D]=eig(tensor);

eig quantities{j,1}=D;
eig quantities{j,2}=VV;

points=zeros(a,b);

end
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D.2.5 PC MRI: Circumferential strains

function circumferential strain

% This function evaluates circumferential strains starting from the

PC MRI

% data stored in the files for each time step

% Output form phase mesh.m (maps concatenated vertically)

savefile = double('data0004.txt');

eingfile = double('eing0004.txt');

mapfile=double('map0004.txt');

% Storage vectors

translation=ones(256,256,10);

Trajectory f=zeros(180,6,9);%ten points, three coordinates, nine time

%steps %225

Trajectory b=zeros(180,6,9);%ten points, three coordinates, nine time

%steps

Trajectory r=zeros(180,6,9);%ten points, three coordinates, nine time

%steps

strain=zeros(180,9);

% ==============================================================

% define centre of mass from first slice

mask(:,:)=imread(char(double('roi0000.bmp')));

[cxo,cyo,circles 2,ang,Out,In]=figure data var(mask(:,:,1,1));

translation x=translation;

translation y=translation;

translation x(:,1:cyo,:)=translation x(:,1:cyo,:)*-1;

translation y(1:cxo,:,:)=translation y(1:cxo,:,:)*-1;

% =============================================================

% =============================================================

for j=0:8

%----------------------------------------------------------
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% open files

mapfile(4:6)=[48+j 48 48];

savefile(5:7)=[48+j 48 48];

eingfile(5:7)=[48+j 48 48];

dataf1 = load(char(savefile));

eigenf1 = load(char(eingfile));

mapsf1 = load(char(mapfile));

num nodes=max(mapsf1(256,:));

%---------------------------------------------------------

iterations=[1:num nodes:length(dataf1(:,1))];

%---------------------------------------------------------

step=[0.000117*dataf1(:,15) 0.000117*dataf1(:,16) 0.0015*

ones(length(dataf1(:,1)),1)];

count=9-j;

index=1+j;

L=length(dataf1(:,1));

if j==0

% ============================================================

% determine starting points

pointfy=dataf1(:,14);

pointfx=dataf1(:,13);

[thetaf, radiusf] = cart2pol(pointfx-cyo,pointfy-cxo);

pointfz=ones(L,1);

pointby=dataf1(:,14);

pointbx=dataf1(:,13);

[thetab, radiusb] = cart2pol(pointbx-cyo,pointby-cxo);

pointbz=ones(L,1);

% ============================================================
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Trajectory r(:,1:3,1)=[pointfx pointfy pointfz];

Trajectory f(:,1:3,1)=Trajectory r(:,1:3,1);

Trajectory b(:,1:3,end)=Trajectory r(:,1:3,1);

index=1;

% forward integration starting points=element centre

[theta, radius] = cart2pol((0.000117)*(pointfx-cyo),(0.000117)

*(pointfy-cxo));

fkx=0.000117*pointfx;

fky=0.000117*pointfy;

fkr=radius;

fkt=theta;

fkz=0.0015*ones(L,1);

% backward integration starting points=element centre

bkx=0.000117*pointbx;

bky=0.000117*pointby;

bkr=radius;

bkt=theta;

bkz=0.0015*ones(L,1);

step=[(0.000117*dataf1(:,15))/2 (0.000117*dataf1(:,16))/2

(0.0015*ones(length(dataf1(:,1)),1))/2];

count=0;

elseif j==8

index=1;

end

% Forward velocity

savefile(5:7)=[48+index 48 48];

dataf2 = load(char(savefile));

venc im f1=[dataf1(:,10) dataf1(:,11) dataf1(:,12)];

venc im f2=[dataf2(:,10) dataf2(:,11) dataf2(:,12)];
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% Backward velocity

savefile(5:7)=[48+count 48 48];

datab1 = load(char(savefile));

savefile(5:7)=[48+8-j 48 48];

datab2 = load(char(savefile));

venc im b1=[datab1(:,10) datab1(:,11) datab1(:,12)];

venc im b2=[datab2(:,10) datab2(:,11) datab2(:,12)];

% forward integration

[fkx,fky,fkz,pointfx,pointfy,pointfz]=

forward integration g(venc im f1, venc im f2, fkx,fky,fkz,

pointfx,pointfy,pointfz,step);

Trajectory f(:,:,j+1)=[pointfx pointfy pointfz fkx fky fkz]; % j+2

% backward integration

[bkx,bky,bkz,pointbx,pointby,pointbz]=

backward integration g(venc im b1, venc im b2, bkx,bky,bkz,

pointbx,pointby,pointbz,step);

Trajectory b(:,:,(end)-j)=[pointbx pointby pointbz bkx bky bkz];

%(end-1)-j

% assign output

fkx=fkx;

fky=fky;

fkz=fkz;

bkx=bkx;

bky=bky;

bkz=bkz;

end

%============================================================

% Determine global trajectory
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for k=0:8

wk=(9-(k+1)+1)/9;

Trajectory r(:,:,k+1)=(wk*Trajectory f(:,:,k+1))+

((1-wk)*Trajectory b(:,:,k+1));

[th(:,k+1),r(:,k+1)]=cart2pol(Trajectory r(:,4,k+1)-

(cyo*0.000117),Trajectory r(:,5,k+1)-(cxo*0.000117));

end

%=============================================================

% Determine circumferential strain

for k=0:8

strain angle=th(:,k+1)+(pi/2);

radial=((r(:,k+1)./Ro).ˆ2);

strain(:,k+1)=0.5*(radial-1);

components circum strain(:,:,k+1)=[strain(:,k+1).*

cos(strain angle) strain(:,k+1).*sin(strain angle)];

end
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D.2.6 FE: Mesh from MRI data

This routine is based on the general image analysis routine, and it is extended

to the definition of nodes, of the element, and of the surface to which the

pressure will be applied.

function initialmesh

% This function defines a mesh of the aorta starting from PC MRI images

% define starting ROIs

file mask=double('2roi000.png');

% storage vectors

mask=zeros(257,257,10);

nodes x=zeros(135, 9);

nodes y=zeros(135, 9);

Coord=cell(2,10);

% mesh parameters

layers=8;

lines=60; %max number of lines=69 (limit due to the number of the

%pixels)

interslices=4;

% ==============================================================

%% define centre of mass from first slice

mask1=imread(char(double('2roi000.png')));

[cxo,cyo,circles 2,angles,Out,In]=figure data mod(mask1(:,:,1));

% =============================================================

n count=1;

count=0;

points=[1:lines:(lines*layers*10)+1];

for h=0:9

file mask(5:7)=[48 48 48+h];

prova=imread(char(file mask));
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mask(:,:,h+1)=prova(:,:,1);

AA=mask(:,:,h+1);

[i,j]=find(AA);

Coord{1,h+1}=[-cyo+min(j):1:257-cyo-(257-max(j))];
Coord{2,h+1}=[-cxo+min(i):1:257-cxo-(257-max(i))];
% ======================================

% Define boundaries and parameters

% ======================================

% dilate the image

se = strel('disk', 1, 0);

BW1 = imdilate(mask(:,:,h+1),se);

% find perimeter

BW2 = bwperim(BW1,8);

% get boundaries

Boundary=bwboundaries(BW2(:,:));

Out = Boundary{1};
In = Boundary{2};

inner=inner spacing(In,lines,cxo,cyo);

index=closest v(inner,Out,cxo,cyo);

outer=Out(index,:);

% translate inner points to center of mass

circ=[-(inner(:,2)-cyo) (inner(:,1)-cxo)];

% find ROI angles

angles3=atan2(circ(:,2,1), circ(:,1,1));

ROI angles=[angles3 inner outer];

ROI matrix=sortrows(ROI angles);

inner ord=[(ROI matrix(:,3)) (ROI matrix(:,2))];

outer ord=[(ROI matrix(:,5)) (ROI matrix(:,4))];

% ======================================================
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% Create intermediate points in the boundaries

% ======================================================

for i=1:size(inner,1)

for j=1:size(inner,2)

nodes prov(i,j,:)=linspace(inner ord(i,j),...

outer ord(i,j),layers);

n count=n count+1;

end

end

for t=1:layers

% assign nodes coordinates

nodes(points(count+t):points(count+t+1)-1,:)=[...

[points(count+t):1:points(count+t+1)-1]' ...

(nodes prov(:,1,t)-cxo)*0.000117 ...

(nodes prov(:,2,t)-cyo)*0.000117 0.0015*h*ones(lines,1)];

end

count=count+layers;

for u=1:layers-1

in=(u*size(nodes prov,1))-(size(nodes prov,1)-1);

nod reord(in:in-1+size(nodes prov,1),1:8)=[...

nodes prov(:,:,u) nodes prov(:,:,u+1) ...

circshift(nodes prov(:,:,u),-1) ...

circshift(nodes prov(:,:,u+1),-1)];

end

Out=[Out(:,2) Out(:,1)];

In=[In(:,2) In(:,1)];
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% ============================================================

% Save nodes

% ============================================================

slice=(h+1)*ones(length(nod reord(:,1)),1); % slice pointer

if h==0

nodes x(1:length(nod reord),1:4)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes y(1:length(nod reord),1:4)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

elseif h==9

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),5:8)...

=([nod reord(:,1) nod reord(:,3) nod reord(:,7) ...

nod reord(:,5)]-cyo)*0.117;

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),5:8)...

=([nod reord(:,2) nod reord(:,4) nod reord(:,8) ...

nod reord(:,6)]-cxo)*0.117;

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

else

nodes x((length(nod reord)*(h-1))+...

1:(length(nod reord)*(h)),5:8)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

nodes x((length(nod reord)*(h))+...

1:(length(nod reord)*(h+1)),1:4)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes y((length(nod reord)*(h-1))+...
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1:(length(nod reord)*(h)),5:8)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

nodes y((length(nod reord)*(h))+...

1:(length(nod reord)*(h+1)),1:4)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

end

end

%% Create interslices (axial divisions)

if interslices≥1

% storage vectors

points is=[1:lines*(layers):...

(lines*(layers)*(10+(interslices*9)))+1];

position=[1:lines*(layers):lines*(layers)*(interslices+1)+1];

place=[1:lines*(layers):lines*(layers)*10];

nodes is=zeros((lines*(layers)*(10+(interslices*9))),4);

for h=1:9 %slices-1

for u=1:lines*layers

nodes is size=length(position);

% linear interpolation of the points belonging to two

% PC MRI slices

vector=[linspace(nodes(place(1),2),nodes(place(2),2),...

(interslices+2))' ...

linspace(nodes(place(1),3),nodes(place(2),3),...

(interslices+2))' linspace(nodes(place(1),4),...

nodes(place(2),4),(interslices+2))'];
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for t=1:nodes is size

nodes is(position(t),:)=[position(t) vector(t,:)];

end

position=position+1;

place=place+1;

end

position=[lines*(layers)*(interslices+1)*h+1:lines*...

(layers):lines*(layers)*(interslices+1)*(h+1)+1];

end

end

%*******ELEMENTS******************************************************

sizc = lines;%circumferential size(c nodes,2);

sizr = layers; %radial, 1 less element than nodes in radial direction

%size(c nodes,3);

siza = 10+(9*interslices); %axial, 1 less element than nodes in axial

% direction size(c nodes,4);

c elements = zeros( sizc + (sizr-2)*sizc + (siza-2)*sizc*(sizr-1) ,8);

c count = [];

for k = 1:siza-1

for j = 1:sizr-1

for i = 1:sizc

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,1) =...

i + (j-1)*sizc + (k-1)*sizc*sizr;
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c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,2) = ...

i + 1 + (j-1)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,3) =...

i + 1 + (j)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,4) =...

i + (j)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,5) =...

i + (j-1)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,6) =...

i + 1 + (j-1)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,7) =...

i + 1 + (j)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,8) =...

i + (j)*sizc + (k)*sizc*sizr;

if i == sizc % as there are as many circumferential nodes

% and elements

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,2) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,2) -

sizc;

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,3) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,3) -

sizc;

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,6) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,6) -

sizc;

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,7) = c elements...
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( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,7) -

sizc;

end

if j == 1; c count = [c count, i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1)]; end;

end

end

end

for j = 2:sizr-1; c count(j,:) = c count(1,:) + (j-1)*sizc; end

nel=[1:length(c elements)]';

elements=[nel c elements];

%*********************************************************************

%*******ELSET*********************************************************

% this set define the internal area of the aorta where the pressure is

% applies

thickness=lines*(layers-1);

elemensets=zeros(1,lines*9);

count=0;

count2=0;

for h=1:9+9*interslices

elemensets(count+1:count+lines)=[count2+1:count2+lines];

count=count+lines;

count2=count2+thickness;

end

division=1:16:length(elemensets);

el set=zeros(length(division),16);

for j=1:length(division)-1
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el set(j,:)=elemensets(division(j):1:division(j+1)-1);

end

odds=length(elemensets(division(end):end));

el set(end,1:odds)=elemensets(division(end):end);

% ********************************************************************

Writefile(nodes is,elements,el set,'vitto mesh')
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D.2.7 FE: Iterative

The iterative routine follows this hierarchy:

• Abaqus iteration

– Abaqus routine call

– Phyton script:

Abaqus iteration

function initialmesh

% This function defines a mesh of the aorta starting from PC MRI images

% define starting ROIs

file mask=double('2roi000.png');

% storage vectors

mask=zeros(257,257,10);

nodes x=zeros(135, 9);

nodes y=zeros(135, 9);

Coord=cell(2,10);

% mesh parameters

layers=8;

lines=60; %max number of lines=69 (limit due to the number of the

%pixels)

interslices=4;

% ==============================================================

%% define centre of mass from first slice

mask1=imread(char(double('2roi000.png')));

[cxo,cyo,circles 2,angles,Out,In]=figure data mod(mask1(:,:,1));

% =============================================================

n count=1;

count=0;

points=[1:lines:(lines*layers*10)+1];
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for h=0:9

file mask(5:7)=[48 48 48+h];

prova=imread(char(file mask));

mask(:,:,h+1)=prova(:,:,1);

AA=mask(:,:,h+1);

[i,j]=find(AA);

Coord{1,h+1}=[-cyo+min(j):1:257-cyo-(257-max(j))];
Coord{2,h+1}=[-cxo+min(i):1:257-cxo-(257-max(i))];
% ======================================

% Define boundaries and parameters

% ======================================

% dilate the image

se = strel('disk', 1, 0);

BW1 = imdilate(mask(:,:,h+1),se);

% find perimeter

BW2 = bwperim(BW1,8);

% get boundaries

Boundary=bwboundaries(BW2(:,:));

Out = Boundary{1};
In = Boundary{2};

inner=inner spacing(In,lines,cxo,cyo);

index=closest v(inner,Out,cxo,cyo);

outer=Out(index,:);

% translate inner points to center of mass

circ=[-(inner(:,2)-cyo) (inner(:,1)-cxo)];

% find ROI angles

angles3=atan2(circ(:,2,1), circ(:,1,1));

ROI angles=[angles3 inner outer];

ROI matrix=sortrows(ROI angles);
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inner ord=[(ROI matrix(:,3)) (ROI matrix(:,2))];

outer ord=[(ROI matrix(:,5)) (ROI matrix(:,4))];

% ======================================================

% Create intermediate points in the boundaries

% ======================================================

for i=1:size(inner,1)

for j=1:size(inner,2)

nodes prov(i,j,:)=linspace(inner ord(i,j),...

outer ord(i,j),layers);

n count=n count+1;

end

end

for t=1:layers

% assign nodes coordinates

nodes(points(count+t):points(count+t+1)-1,:)=[...

[points(count+t):1:points(count+t+1)-1]' ...

(nodes prov(:,1,t)-cxo)*0.000117 ...

(nodes prov(:,2,t)-cyo)*0.000117 0.0015*h*ones(lines,1)];

end

count=count+layers;

for u=1:layers-1

in=(u*size(nodes prov,1))-(size(nodes prov,1)-1);

nod reord(in:in-1+size(nodes prov,1),1:8)=[...

nodes prov(:,:,u) nodes prov(:,:,u+1) ...

circshift(nodes prov(:,:,u),-1) ...

circshift(nodes prov(:,:,u+1),-1)];
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end

Out=[Out(:,2) Out(:,1)];

In=[In(:,2) In(:,1)];

% ============================================================

% Save nodes

% ============================================================

slice=(h+1)*ones(length(nod reord(:,1)),1); % slice pointer

if h==0

nodes x(1:length(nod reord),1:4)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes y(1:length(nod reord),1:4)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

elseif h==9

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),5:8)...

=([nod reord(:,1) nod reord(:,3) nod reord(:,7) ...

nod reord(:,5)]-cyo)*0.117;

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),5:8)...

=([nod reord(:,2) nod reord(:,4) nod reord(:,8) ...

nod reord(:,6)]-cxo)*0.117;

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

else

nodes x((length(nod reord)*(h-1))+...

1:(length(nod reord)*(h)),5:8)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes x((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];
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nodes x((length(nod reord)*(h))+...

1:(length(nod reord)*(h+1)),1:4)=([nod reord(:,1) ...

nod reord(:,3) nod reord(:,7) nod reord(:,5)]-cyo)*0.117;

nodes y((length(nod reord)*(h-1))+...

1:(length(nod reord)*(h)),5:8)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

nodes y((length(nod reord)*8)+1:(length(nod reord)*9),9)=...

0.0015*[slice];

nodes y((length(nod reord)*(h))+...

1:(length(nod reord)*(h+1)),1:4)=([nod reord(:,2) ...

nod reord(:,4) nod reord(:,8) nod reord(:,6)]-cxo)*0.117;

end

end

%% Create interslices (axial divisions)

if interslices≥1

% storage vectors

points is=[1:lines*(layers):...

(lines*(layers)*(10+(interslices*9)))+1];

position=[1:lines*(layers):lines*(layers)*(interslices+1)+1];

place=[1:lines*(layers):lines*(layers)*10];

nodes is=zeros((lines*(layers)*(10+(interslices*9))),4);

for h=1:9 %slices-1

for u=1:lines*layers

nodes is size=length(position);

% linear interpolation of the points belonging to two

% PC MRI slices
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vector=[linspace(nodes(place(1),2),nodes(place(2),2),...

(interslices+2))' ...

linspace(nodes(place(1),3),nodes(place(2),3),...

(interslices+2))' linspace(nodes(place(1),4),...

nodes(place(2),4),(interslices+2))'];

for t=1:nodes is size

nodes is(position(t),:)=[position(t) vector(t,:)];

end

position=position+1;

place=place+1;

end

position=[lines*(layers)*(interslices+1)*h+1:lines*...

(layers):lines*(layers)*(interslices+1)*(h+1)+1];

end

end

%*******ELEMENTS******************************************************

sizc = lines;%circumferential size(c nodes,2);

sizr = layers; %radial, 1 less element than nodes in radial direction

%size(c nodes,3);

siza = 10+(9*interslices); %axial, 1 less element than nodes in axial

% direction size(c nodes,4);

c elements = zeros( sizc + (sizr-2)*sizc + (siza-2)*sizc*(sizr-1) ,8);

c count = [];

for k = 1:siza-1

for j = 1:sizr-1
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for i = 1:sizc

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,1) =...

i + (j-1)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,2) = ...

i + 1 + (j-1)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,3) =...

i + 1 + (j)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,4) =...

i + (j)*sizc + (k-1)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,5) =...

i + (j-1)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,6) =...

i + 1 + (j-1)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,7) =...

i + 1 + (j)*sizc + (k)*sizc*sizr;

c elements( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,8) =...

i + (j)*sizc + (k)*sizc*sizr;

if i == sizc % as there are as many circumferential nodes

% and elements

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,2) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,2) -

sizc;

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,3) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,3) -

sizc;

c elements( i + (j-1)*sizc + ...
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(k-1)*sizc*(sizr-1) ,6) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,6) -

sizc;

c elements( i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1) ,7) = c elements...

( i + (j-1)*sizc + (k-1)*sizc*(sizr-1) ,7) -

sizc;

end

if j == 1; c count = [c count, i + (j-1)*sizc + ...

(k-1)*sizc*(sizr-1)]; end;

end

end

end

for j = 2:sizr-1; c count(j,:) = c count(1,:) + (j-1)*sizc; end

nel=[1:length(c elements)]';

elements=[nel c elements];

%*********************************************************************

%*******ELSET*********************************************************

% this set define the internal area of the aorta where the pressure is

% applies

thickness=lines*(layers-1);

elemensets=zeros(1,lines*9);

count=0;

count2=0;

for h=1:9+9*interslices

elemensets(count+1:count+lines)=[count2+1:count2+lines];

count=count+lines;

count2=count2+thickness;

end
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division=1:16:length(elemensets);

el set=zeros(length(division),16);

for j=1:length(division)-1

el set(j,:)=elemensets(division(j):1:division(j+1)-1);

end

odds=length(elemensets(division(end):end));

el set(end,1:odds)=elemensets(division(end):end);

% ********************************************************************

Writefile(nodes is,elements,el set,'vitto mesh')
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Abaqus routine call

function averages=ab rout(c,k11,k22,file, command)

%import old .inp file

%*********************************************************************

fid = fopen('vitto new.inp');

C = textscan(fid, '%q', 'Whitespace', '');

fclose(fid);

C = C{1};

ind1 = [];

% find line of material properties in .inp file

%*********************************************************************

for i = 1:length(C)

if length(C{i}) == length('*anisotropic hyperelastic,holzapfel,

local directions=2');

if C{i} == '*anisotropic hyperelastic,holzapfel,

local directions=2'

ind1 = i;

break;

end;

end

end

ind1 = ind1+1;

C{ind1};

%change properties

%*********************************************************************
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c10 = c;

k1 = k11;

k2 = k22;

material str = [' ',num2str(c10),', 0, ',num2str(k1),', ',num2str(k2),

', 0.11 '];

%*********************************************************************

%write new file

fid = fopen(char(file),'w+');

D = [ C(1:ind1-1); cellstr(material str); C(ind1+1:end) ];

for i = 1:length(D)

fprintf(fid,[D{i}, '\n']);

end

fclose(fid);

%*********************************************************************

%run new file

[sta, string out] = system(char(command));

pause(50)

% average value from last simulation

%*********************************************************************

name=double('abaqus python extract NE22 step0.py');

averages=zeros(9,1);

for j=1:9
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name(32)=48+j;

[sta, string out] = system(char(name));

s out = str2num(string out); % average s22

averages(j)=s out;

end
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Phyton script

from odbAccess import *

odb = openOdb('uniaxial.odb');

field = odb.steps['Step-1'].frames[-1].fieldOutputs['NE'];

field = field.getSubset(position=CENTROID);

i = 0;

s11 = [];

s22 = [];

s33 = [];

s12 = [];

s13 = [];

s23 = [];

while i < len(field.values):

s11.append(field.values[i].data[0]);

s22.append(field.values[i].data[1]);

s33.append(field.values[i].data[2]);

s12.append(field.values[i].data[3]);

s13.append(field.values[i].data[4]);

s23.append(field.values[i].data[5]);

i = i+1;

print s11[1]
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Appendix E

Further data and information

In the following pages additional DTI plots and information on repetitions

are reported.
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Figure E.1: Plot of the second derivatives of the fibre number versus fibre
angle plots for the central slice and b1, b2 and b6.
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Table E.1: Evaluation of the difference in the eigenvector angles between
each repetition and the average over all the repetitions for the central slice
of the image.
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Table E.2: Evaluation of the difference in the eigenvector angles between
each repetition and the average over all of the repetitions. In this case the
measurement is averaged over all of the slices of the volume.
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